1
|
Dinamarca S, Croce C, Salvioni A, Garrido F, Fidalgo SE, Bigliani G, Mayorga LS, Blanchard N, Cebrian I. SNX17 Regulates Antigen Internalisation and Phagosomal Maturation by Dendritic Cells. Immunology 2025; 174:167-185. [PMID: 39559950 DOI: 10.1111/imm.13878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 09/25/2024] [Accepted: 11/04/2024] [Indexed: 11/20/2024] Open
Abstract
Antigen cross-presentation is the process whereby small peptides derived from exogenous antigens are attached to MHC-I molecules triggering CD8+ T lymphocyte activation. The endocytic route of dendritic cells (DCs) is highly specialised for cross-presentation to initiate cytotoxic immune responses against numerous intracellular pathogens and tumours. In this study, we identify the endosomal protein sorting nexin (SNX) 17 as a key regulator of antigen internalisation and cross-presentation by DCs. SNX17 expression in DCs guarantees optimal cross-presentation of soluble, particulate, and Toxoplasma gondii-associated antigens. The silencing of SNX17 expression in DCs significantly affected the internalisation of exogenous antigens by fluid-phase endocytosis, phagocytosis, and more strikingly, T. gondii invasion. We show that SNX17 controls proper integrin recycling, actin cytoskeleton organisation, and phagosomal maturation. Altogether, our findings provide compelling evidence that SNX17 plays a central role in the modulation of the DC endocytic network, which is essential for competent antigen cross-presentation.
Collapse
Affiliation(s)
- Sofía Dinamarca
- Instituto de Histología y Embriología de Mendoza (IHEM), Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina
| | - Cristina Croce
- Instituto de Histología y Embriología de Mendoza (IHEM), Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina
| | - Anna Salvioni
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (Infinity), Inserm/CNRS/Université Toulouse 3, Toulouse, France
| | - Facundo Garrido
- Instituto de Histología y Embriología de Mendoza (IHEM), Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina
| | - Sandra Estrada Fidalgo
- Instituto de Histología y Embriología de Mendoza (IHEM), Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina
| | - Gonzalo Bigliani
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain
| | - Luis S Mayorga
- Instituto de Histología y Embriología de Mendoza (IHEM), Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina
| | - Nicolas Blanchard
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (Infinity), Inserm/CNRS/Université Toulouse 3, Toulouse, France
| | - Ignacio Cebrian
- Instituto de Histología y Embriología de Mendoza (IHEM), Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina
| |
Collapse
|
2
|
Wakamatsu E, Machiyama H, Toyota H, Takeuchi A, Hashimoto R, Kozono H, Yokosuka T. Indirect suppression of CD4 T cell activation through LAG-3-mediated trans-endocytosis of MHC class II. Cell Rep 2024; 43:114655. [PMID: 39191259 DOI: 10.1016/j.celrep.2024.114655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/28/2024] [Accepted: 08/02/2024] [Indexed: 08/29/2024] Open
Abstract
Blockade of immune checkpoint receptors has shown outstanding efficacy for tumor immunotherapy. Promising treatment with anti-lymphocyte-activation gene-3 (LAG-3) has already been recognized as the next efficacious treatment, but there is still limited understanding of the mechanism of LAG-3-mediated immune suppression. Here, utilizing high-resolution molecular imaging, we find a mechanism of CD4 T cell suppression via LAG-3, in which LAG-3-bound major histocompatibility complex (MHC) class II molecules on antigen-presenting cells (APCs) gather at the central region of an immunological synapse and are trans-endocytosed by T cell receptor-driven internalization motility toward CD4 and CD8 T cells expressing LAG-3. Downregulation of MHC class II molecules on APCs thus results in the attenuation of their antigen-presentation function and impairment of CD4 T cell activation. From these data, anti-LAG-3 treatment is suggested to have potency to directly block the inhibitory signaling via LAG-3 and simultaneously reduce MHC class II expression on APCs by LAG-3-mediated trans-endocytosis for recovery from T cell exhaustion.
Collapse
Affiliation(s)
- Ei Wakamatsu
- Department of Immunology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan.
| | - Hiroaki Machiyama
- Department of Immunology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Hiroko Toyota
- Department of Immunology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Arata Takeuchi
- Department of Immunology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Ryuji Hashimoto
- Department of Immunology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Haruo Kozono
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba 263-8555, Japan
| | - Tadashi Yokosuka
- Department of Immunology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan.
| |
Collapse
|
3
|
Sandner L, Alteneder M, Rica R, Woller B, Sala E, Frey T, Tosevska A, Zhu C, Madern M, Khan M, Hoffmann P, Schebesta A, Taniuchi I, Bonelli M, Schmetterer K, Iannacone M, Kuka M, Ellmeier W, Sakaguchi S, Herbst R, Boucheron N. The guanine nucleotide exchange factor Rin-like controls Tfh cell differentiation via CD28 signaling. J Exp Med 2023; 220:e20221466. [PMID: 37703004 PMCID: PMC10499045 DOI: 10.1084/jem.20221466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 06/07/2023] [Accepted: 08/21/2023] [Indexed: 09/14/2023] Open
Abstract
T follicular helper (Tfh) cells are essential for the development of germinal center B cells and high-affinity antibody-producing B cells in humans and mice. Here, we identify the guanine nucleotide exchange factor (GEF) Rin-like (Rinl) as a negative regulator of Tfh generation. Loss of Rinl leads to an increase of Tfh in aging, upon in vivo immunization and acute LCMV Armstrong infection in mice, and in human CD4+ T cell in vitro cultures. Mechanistically, adoptive transfer experiments using WT and Rinl-KO naïve CD4+ T cells unraveled T cell-intrinsic GEF-dependent functions of Rinl. Further, Rinl regulates CD28 internalization and signaling, thereby shaping CD4+ T cell activation and differentiation. Thus, our results identify the GEF Rinl as a negative regulator of global Tfh differentiation in an immunological context and species-independent manner, and furthermore, connect Rinl with CD28 internalization and signaling pathways in CD4+ T cells, demonstrating for the first time the importance of endocytic processes for Tfh differentiation.
Collapse
Affiliation(s)
- Lisa Sandner
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Marlis Alteneder
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Ramona Rica
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Barbara Woller
- Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Eleonora Sala
- School of Medicine, Vita-Salute San Raffaele University and Division of Immunology, Transplantation, and Infectious Diseases, Istituto di Ricovero e Cura a Carettere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Tobias Frey
- Department of Laboratory Medicine, Klinisches Institut für Labormedizin (KILM), Anna Spiegel Research Building, Medical University of Vienna, Vienna, Austria
| | - Anela Tosevska
- Internal Medicine III, Division of Rheumatology, Medical University of Vienna, Vienna, Austria
| | - Ci Zhu
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Moritz Madern
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Matarr Khan
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Pol Hoffmann
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Alexandra Schebesta
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Ichiro Taniuchi
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Michael Bonelli
- Internal Medicine III, Division of Rheumatology, Medical University of Vienna, Vienna, Austria
| | - Klaus Schmetterer
- Department of Laboratory Medicine, Klinisches Institut für Labormedizin (KILM), Anna Spiegel Research Building, Medical University of Vienna, Vienna, Austria
| | - Matteo Iannacone
- School of Medicine, Vita-Salute San Raffaele University and Division of Immunology, Transplantation, and Infectious Diseases, Istituto di Ricovero e Cura a Carettere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
- Experimental Imaging Center, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), San Raffaele Scientific Institute, Milan, Italy
| | - Mirela Kuka
- School of Medicine, Vita-Salute San Raffaele University and Division of Immunology, Transplantation, and Infectious Diseases, Istituto di Ricovero e Cura a Carettere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Wilfried Ellmeier
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Shinya Sakaguchi
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Ruth Herbst
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Nicole Boucheron
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
4
|
Zhou XMM, Mørch AM, Dustin ML. Curving out a new path: CD28/B7 cis interactions. Immunity 2023; 56:1155-1157. [PMID: 37315528 DOI: 10.1016/j.immuni.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 05/05/2023] [Indexed: 06/16/2023]
Abstract
Important signaling events at the immunological synapse have increasingly been linked to cis interactions between receptors on T cells. In this issue of Immunity, Zhao et al.1 implicate cis CD28/B7 interactions facilitated by curved membrane invaginations in boosting tumor immunity.
Collapse
Affiliation(s)
- Xin Ming Matthew Zhou
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, The University of Oxford, Oxford, UK
| | - Alexander M Mørch
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, The University of Oxford, Oxford, UK
| | - Michael L Dustin
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, The University of Oxford, Oxford, UK.
| |
Collapse
|
5
|
Zhao Y, Caron C, Chan YY, Lee CK, Xu X, Zhang J, Masubuchi T, Wu C, Bui JD, Hui E. cis-B7:CD28 interactions at invaginated synaptic membranes provide CD28 co-stimulation and promote CD8 + T cell function and anti-tumor immunity. Immunity 2023; 56:1187-1203.e12. [PMID: 37160118 PMCID: PMC10330546 DOI: 10.1016/j.immuni.2023.04.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 01/30/2023] [Accepted: 04/07/2023] [Indexed: 05/11/2023]
Abstract
B7 ligands (CD80 and CD86), expressed by professional antigen-presenting cells (APCs), activate the main co-stimulatory receptor CD28 on T cells in trans. However, in peripheral tissues, APCs expressing B7 ligands are relatively scarce. This raises the questions of whether and how CD28 co-stimulation occurs in peripheral tissues. Here, we report that CD8+ T cells displayed B7 ligands that interacted with CD28 in cis at membrane invaginations of the immunological synapse as a result of membrane remodeling driven by phosphoinositide-3-kinase (PI3K) and sorting-nexin-9 (SNX9). cis-B7:CD28 interactions triggered CD28 signaling through protein kinase C theta (PKCθ) and promoted CD8+ T cell survival, migration, and cytokine production. In mouse tumor models, loss of T cell-intrinsic cis-B7:CD28 interactions decreased intratumoral T cells and accelerated tumor growth. Thus, B7 ligands on CD8+ T cells can evoke cell-autonomous CD28 co-stimulation in cis in peripheral tissues, suggesting cis-signaling as a general mechanism for boosting T cell functionality.
Collapse
Affiliation(s)
- Yunlong Zhao
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA.
| | - Christine Caron
- Department of Pathology, University of California San Diego, La Jolla, CA 92093, USA
| | - Ya-Yuan Chan
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Calvin K Lee
- Department of Pathology, University of California San Diego, La Jolla, CA 92093, USA
| | - Xiaozheng Xu
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Jibin Zhang
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Takeya Masubuchi
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Chuan Wu
- Experimental Immunology Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Jack D Bui
- Department of Pathology, University of California San Diego, La Jolla, CA 92093, USA.
| | - Enfu Hui
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
6
|
Cruz-Morales E, Hart AP, Fossett GM, Laufer TM. Helios + and RORγt + Treg populations are differentially regulated by MHCII, CD28, and ICOS to shape the intestinal Treg pool. Mucosal Immunol 2023; 16:264-274. [PMID: 36935092 DOI: 10.1016/j.mucimm.2023.02.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 02/21/2023] [Indexed: 03/19/2023]
Abstract
Foxp3+ regulatory T cells (Tregs) are essential for intestinal homeostasis. Tregs in the small intestine include Helios+ thymus-derived Tregs (tTregs) and RORγt+ Tregs that differentiate in the periphery after antigenic stimulation (pTregs). TCR and costimulatory signals sustain Tregs with effector phenotypes, including those in the intestine, but it is unknown if tTregs and pTregs have similar requirements for these pathways. We previously used mice lacking peripheral expression of MHCII to demonstrate that the small intestine sustains tTregs independently of peripheral antigen. Here, we show that the effector phenotype and tissue-resident signature of tTregs are also MHCII-independent. Using this model, we define the distinct costimulatory requirements of intestinal tTregs and pTregs. Helios+ effector tTregs proliferate through CD28 and require neither ICOS nor MHCII for maintenance. In contrast, RORγt+ pTregs use CD28 and ICOS. Notably, the differential costimulatory utilization allows tTregs and pTregs to dynamically respond to perturbations to support a fixed number of intestinal Tregs. This suggests that the environmental regulation of costimulatory ligands might shape the subpopulations of intestinal Tregs and promote effective homeostasis and defense. Our data reveal new complexity in effector Treg biology and costimulatory signaling of tTregs and pTregs and highlight the importance of analyzing both subpopulations.
Collapse
Affiliation(s)
- Elisa Cruz-Morales
- Division of Rheumatology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Andrew P Hart
- Division of Rheumatology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Georgia M Fossett
- Division of Rheumatology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Terri M Laufer
- Division of Rheumatology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA; Division of Rheumatology, Department of Medicine, Corporal Michael C. Crescenz VA Medical Center, Philadelphia, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA.
| |
Collapse
|
7
|
Trefny MP, Kirchhammer N, Auf der Maur P, Natoli M, Schmid D, Germann M, Fernandez Rodriguez L, Herzig P, Lötscher J, Akrami M, Stinchcombe JC, Stanczak MA, Zingg A, Buchi M, Roux J, Marone R, Don L, Lardinois D, Wiese M, Jeker LT, Bentires-Alj M, Rossy J, Thommen DS, Griffiths GM, Läubli H, Hess C, Zippelius A. Deletion of SNX9 alleviates CD8 T cell exhaustion for effective cellular cancer immunotherapy. Nat Commun 2023; 14:86. [PMID: 36732507 PMCID: PMC9895440 DOI: 10.1038/s41467-022-35583-w] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/12/2022] [Indexed: 02/04/2023] Open
Abstract
Tumor-specific T cells are frequently exhausted by chronic antigenic stimulation. We here report on a human antigen-specific ex vivo model to explore new therapeutic options for T cell immunotherapies. T cells generated with this model resemble tumor-infiltrating exhausted T cells on a phenotypic and transcriptional level. Using a targeted pooled CRISPR-Cas9 screen and individual gene knockout validation experiments, we uncover sorting nexin-9 (SNX9) as a mediator of T cell exhaustion. Upon TCR/CD28 stimulation, deletion of SNX9 in CD8 T cells decreases PLCγ1, Ca2+, and NFATc2-mediated T cell signaling and reduces expression of NR4A1/3 and TOX. SNX9 knockout enhances memory differentiation and IFNγ secretion of adoptively transferred T cells and results in improved anti-tumor efficacy of human chimeric antigen receptor T cells in vivo. Our findings highlight that targeting SNX9 is a strategy to prevent T cell exhaustion and enhance anti-tumor immunity.
Collapse
Affiliation(s)
- Marcel P Trefny
- Laboratory of Cancer Immunology, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland.
| | - Nicole Kirchhammer
- Laboratory of Cancer Immunology, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Priska Auf der Maur
- Laboratory of Tumor Heterogeneity, Metastasis and Resistance, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Marina Natoli
- Laboratory of Cancer Immunology, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Dominic Schmid
- Laboratory of Cancer Immunology, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Markus Germann
- Laboratory of Cancer Immunology, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Laura Fernandez Rodriguez
- Laboratory of Cancer Immunology, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Petra Herzig
- Laboratory of Cancer Immunology, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Jonas Lötscher
- Laboratory of Immunobiology, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Maryam Akrami
- Laboratory of Cancer Immunology, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Jane C Stinchcombe
- Cambridge Institute for Medical Research, Biomedical Campus, Cambridge, CB2 0XY, UK
| | - Michal A Stanczak
- Laboratory of Cancer Immunotherapy, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Andreas Zingg
- Laboratory of Cancer Immunotherapy, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Melanie Buchi
- Laboratory of Cancer Immunology, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Julien Roux
- Bioinformatics Core Facility, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland.,Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Romina Marone
- Laboratory of Molecular Immune Regulation, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland.,Transplantation Immunology & Nephrology, Basel University Hospital, Basel, Switzerland
| | - Leyla Don
- Laboratory of Cancer Immunology, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Didier Lardinois
- Department of Surgery, University Hospital Basel, Basel, Switzerland
| | - Mark Wiese
- Department of Surgery, University Hospital Basel, Basel, Switzerland
| | - Lukas T Jeker
- Laboratory of Molecular Immune Regulation, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland.,Transplantation Immunology & Nephrology, Basel University Hospital, Basel, Switzerland
| | - Mohamed Bentires-Alj
- Laboratory of Tumor Heterogeneity, Metastasis and Resistance, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Jérémie Rossy
- Biotechnology Institute Thurgau, University of Konstanz, Kreuzlingen, Switzerland
| | - Daniela S Thommen
- Laboratory of Cancer Immunology, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland.,Division of Molecular Oncology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Gillian M Griffiths
- Cambridge Institute for Medical Research, Biomedical Campus, Cambridge, CB2 0XY, UK
| | - Heinz Läubli
- Laboratory of Cancer Immunotherapy, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland.,Medical Oncology, University Hospital Basel, Basel, Switzerland
| | - Christoph Hess
- Laboratory of Immunobiology, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland.,Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, CB2 0AW, UK
| | - Alfred Zippelius
- Laboratory of Cancer Immunology, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland. .,Medical Oncology, University Hospital Basel, Basel, Switzerland.
| |
Collapse
|
8
|
Molon B, Liboni C, Viola A. CD28 and chemokine receptors: Signalling amplifiers at the immunological synapse. Front Immunol 2022; 13:938004. [PMID: 35983040 PMCID: PMC9379342 DOI: 10.3389/fimmu.2022.938004] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/08/2022] [Indexed: 01/14/2023] Open
Abstract
T cells are master regulators of the immune response tuning, among others, B cells, macrophages and NK cells. To exert their functions requiring high sensibility and specificity, T cells need to integrate different stimuli from the surrounding microenvironment. A finely tuned signalling compartmentalization orchestrated in dynamic platforms is an essential requirement for the proper and efficient response of these cells to distinct triggers. During years, several studies have depicted the pivotal role of the cytoskeleton and lipid microdomains in controlling signalling compartmentalization during T cell activation and functions. Here, we discuss mechanisms responsible for signalling amplification and compartmentalization in T cell activation, focusing on the role of CD28, chemokine receptors and the actin cytoskeleton. We also take into account the detrimental effect of mutations carried by distinct signalling proteins giving rise to syndromes characterized by defects in T cell functionality.
Collapse
Affiliation(s)
- Barbara Molon
- Pediatric Research Institute “Città della Speranza”, Corso Stati Uniti, Padova, Italy
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- *Correspondence: Barbara Molon,
| | - Cristina Liboni
- Pediatric Research Institute “Città della Speranza”, Corso Stati Uniti, Padova, Italy
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Antonella Viola
- Pediatric Research Institute “Città della Speranza”, Corso Stati Uniti, Padova, Italy
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| |
Collapse
|
9
|
The Actin Cytoskeleton Responds to Inflammatory Cues and Alters Macrophage Activation. Cells 2022; 11:cells11111806. [PMID: 35681501 PMCID: PMC9180445 DOI: 10.3390/cells11111806] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 02/01/2023] Open
Abstract
Much remains to be learned about the molecular mechanisms underlying a class of human disorders called actinopathies. These genetic disorders are characterized by loss-of-function mutations in actin-associated proteins that affect immune cells, leading to human immunopathology. However, much remains to be learned about how cytoskeletal dysregulation promotes immunological dysfunction. The current study reveals that the macrophage actin cytoskeleton responds to LPS/IFNγ stimulation in a biphasic manner that involves cellular contraction followed by cellular spreading. Myosin II inhibition by blebbistatin blocks the initial contraction phase and lowers iNOS protein levels and nitric oxide secretion. Conversely, conditional deletion of Arp2/3 complex in macrophages attenuates spreading and increases nitric oxide secretion. However, iNOS transcription is not altered by loss of myosin II or Arp2/3 function, suggesting post-transcriptional regulation of iNOS by the cytoskeleton. Consistent with this idea, proteasome inhibition reverses the effects of blebbistatin and rescues iNOS protein levels. Arp2/3-deficient macrophages demonstrate two additional phenotypes: defective MHCII surface localization, and depressed secretion of the T cell chemokine CCL22. These data suggest that interplay between myosin II and Arp2/3 influences macrophage activity, and potentially impacts adaptive-innate immune coordination. Disrupting this balance could have detrimental impacts, particularly in the context of Arp2/3-associated actinopathies.
Collapse
|
10
|
Ecker M, Schregle R, Kapoor-Kaushik N, Rossatti P, Betzler VM, Kempe D, Biro M, Ariotti N, Redpath GMI, Rossy J. SNX9-induced membrane tubulation regulates CD28 cluster stability and signalling. eLife 2022; 11:e67550. [PMID: 35050850 PMCID: PMC8786313 DOI: 10.7554/elife.67550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 01/12/2022] [Indexed: 12/12/2022] Open
Abstract
T cell activation requires engagement of a cognate antigen by the T cell receptor (TCR) and the co-stimulatory signal of CD28. Both TCR and CD28 aggregate into clusters at the plasma membrane of activated T cells. While the role of TCR clustering in T cell activation has been extensively investigated, little is known about how CD28 clustering contributes to CD28 signalling. Here, we report that upon CD28 triggering, the BAR-domain protein sorting nexin 9 (SNX9) is recruited to CD28 clusters at the immunological synapse. Using three-dimensional correlative light and electron microscopy, we show that SNX9 generates membrane tubulation out of CD28 clusters. Our data further reveal that CD28 clusters are in fact dynamic structures and that SNX9 regulates their stability as well as CD28 phosphorylation and the resulting production of the cytokine IL-2. In summary, our work suggests a model in which SNX9-mediated tubulation generates a membrane environment that promotes CD28 triggering and downstream signalling events.
Collapse
Affiliation(s)
- Manuela Ecker
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences and the ARC Centre of Excellence in Advanced Molecular Imaging, University of New South WalesSydneyAustralia
| | - Richard Schregle
- Biotechnology Institute Thurgau (BITg) at the University of KonstanzKreuzlingenSwitzerland
- Department of Biology, University of KonstanzKonstanzGermany
| | - Natasha Kapoor-Kaushik
- Electron Microscopy Unit, Mark Wainwright Analytical Centre, University of New South WalesSydneyAustralia
| | - Pascal Rossatti
- Biotechnology Institute Thurgau (BITg) at the University of KonstanzKreuzlingenSwitzerland
| | - Verena M Betzler
- Biotechnology Institute Thurgau (BITg) at the University of KonstanzKreuzlingenSwitzerland
| | - Daryan Kempe
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences and the ARC Centre of Excellence in Advanced Molecular Imaging, University of New South WalesSydneyAustralia
| | - Maté Biro
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences and the ARC Centre of Excellence in Advanced Molecular Imaging, University of New South WalesSydneyAustralia
| | - Nicholas Ariotti
- Electron Microscopy Unit, Mark Wainwright Analytical Centre, University of New South WalesSydneyAustralia
- Institute for Molecular Bioscience (IMB), University of QueenslandBrisbaneAustralia
| | - Gregory MI Redpath
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences and the ARC Centre of Excellence in Advanced Molecular Imaging, University of New South WalesSydneyAustralia
| | - Jeremie Rossy
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences and the ARC Centre of Excellence in Advanced Molecular Imaging, University of New South WalesSydneyAustralia
- Biotechnology Institute Thurgau (BITg) at the University of KonstanzKreuzlingenSwitzerland
- Department of Biology, University of KonstanzKonstanzGermany
| |
Collapse
|
11
|
Sechi S, Karimpour-Ghahnavieh A, Frappaolo A, Di Francesco L, Piergentili R, Schininà E, D’Avino PP, Giansanti MG. Identification of GOLPH3 Partners in Drosophila Unveils Potential Novel Roles in Tumorigenesis and Neural Disorders. Cells 2021; 10:cells10092336. [PMID: 34571985 PMCID: PMC8468827 DOI: 10.3390/cells10092336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 12/28/2022] Open
Abstract
Golgi phosphoprotein 3 (GOLPH3) is a highly conserved peripheral membrane protein localized to the Golgi apparatus and the cytosol. GOLPH3 binding to Golgi membranes depends on phosphatidylinositol 4-phosphate [PI(4)P] and regulates Golgi architecture and vesicle trafficking. GOLPH3 overexpression has been correlated with poor prognosis in several cancers, but the molecular mechanisms that link GOLPH3 to malignant transformation are poorly understood. We recently showed that PI(4)P-GOLPH3 couples membrane trafficking with contractile ring assembly during cytokinesis in dividing Drosophila spermatocytes. Here, we use affinity purification coupled with mass spectrometry (AP-MS) to identify the protein-protein interaction network (interactome) of Drosophila GOLPH3 in testes. Analysis of the GOLPH3 interactome revealed enrichment for proteins involved in vesicle-mediated trafficking, cell proliferation and cytoskeleton dynamics. In particular, we found that dGOLPH3 interacts with the Drosophila orthologs of Fragile X mental retardation protein and Ataxin-2, suggesting a potential role in the pathophysiology of disorders of the nervous system. Our findings suggest novel molecular targets associated with GOLPH3 that might be relevant for therapeutic intervention in cancers and other human diseases.
Collapse
Affiliation(s)
- Stefano Sechi
- Istituto di Biologia e Patologia Molecolari del CNR, c/o Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Piazzale A. Moro 5, 00185 Roma, Italy; (S.S.); (A.K.-G.); (A.F.); (R.P.)
| | - Angela Karimpour-Ghahnavieh
- Istituto di Biologia e Patologia Molecolari del CNR, c/o Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Piazzale A. Moro 5, 00185 Roma, Italy; (S.S.); (A.K.-G.); (A.F.); (R.P.)
| | - Anna Frappaolo
- Istituto di Biologia e Patologia Molecolari del CNR, c/o Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Piazzale A. Moro 5, 00185 Roma, Italy; (S.S.); (A.K.-G.); (A.F.); (R.P.)
| | - Laura Di Francesco
- Dipartimento di Scienze Biochimiche A. Rossi Fanelli, Sapienza Università di Roma, Piazzale A. Moro 5, 00185 Roma, Italy; (L.D.F.); (E.S.)
| | - Roberto Piergentili
- Istituto di Biologia e Patologia Molecolari del CNR, c/o Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Piazzale A. Moro 5, 00185 Roma, Italy; (S.S.); (A.K.-G.); (A.F.); (R.P.)
| | - Eugenia Schininà
- Dipartimento di Scienze Biochimiche A. Rossi Fanelli, Sapienza Università di Roma, Piazzale A. Moro 5, 00185 Roma, Italy; (L.D.F.); (E.S.)
| | - Pier Paolo D’Avino
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK;
| | - Maria Grazia Giansanti
- Istituto di Biologia e Patologia Molecolari del CNR, c/o Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Piazzale A. Moro 5, 00185 Roma, Italy; (S.S.); (A.K.-G.); (A.F.); (R.P.)
- Correspondence: ; Tel.: +39-064-991-2555
| |
Collapse
|
12
|
Dupré L, Boztug K, Pfajfer L. Actin Dynamics at the T Cell Synapse as Revealed by Immune-Related Actinopathies. Front Cell Dev Biol 2021; 9:665519. [PMID: 34249918 PMCID: PMC8266300 DOI: 10.3389/fcell.2021.665519] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/06/2021] [Indexed: 01/21/2023] Open
Abstract
The actin cytoskeleton is composed of dynamic filament networks that build adaptable local architectures to sustain nearly all cellular activities in response to a myriad of stimuli. Although the function of numerous players that tune actin remodeling is known, the coordinated molecular orchestration of the actin cytoskeleton to guide cellular decisions is still ill defined. T lymphocytes provide a prototypical example of how a complex program of actin cytoskeleton remodeling sustains the spatio-temporal control of key cellular activities, namely antigen scanning and sensing, as well as polarized delivery of effector molecules, via the immunological synapse. We here review the unique knowledge on actin dynamics at the T lymphocyte synapse gained through the study of primary immunodeficiences caused by mutations in genes encoding actin regulatory proteins. Beyond the specific roles of individual actin remodelers, we further develop the view that these operate in a coordinated manner and are an integral part of multiple signaling pathways in T lymphocytes.
Collapse
Affiliation(s)
- Loïc Dupré
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (LBI-RUD), Vienna, Austria.,Department of Dermatology, Medical University of Vienna, Vienna, Austria.,Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM, CNRS, Toulouse III Paul Sabatier University, Toulouse, France
| | - Kaan Boztug
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (LBI-RUD), Vienna, Austria.,St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria.,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.,Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria.,St. Anna Children's Hospital, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Laurène Pfajfer
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (LBI-RUD), Vienna, Austria.,Department of Dermatology, Medical University of Vienna, Vienna, Austria.,Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM, CNRS, Toulouse III Paul Sabatier University, Toulouse, France.,St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| |
Collapse
|
13
|
Class IA PI3K regulatory subunits: p110-independent roles and structures. Biochem Soc Trans 2021; 48:1397-1417. [PMID: 32677674 PMCID: PMC7458397 DOI: 10.1042/bst20190845] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/26/2020] [Accepted: 06/30/2020] [Indexed: 12/12/2022]
Abstract
The phosphatidylinositol 3-kinase (PI3K) pathway is a critical regulator of many cellular processes including cell survival, growth, proliferation and motility. Not surprisingly therefore, the PI3K pathway is one of the most frequently mutated pathways in human cancers. In addition to their canonical role as part of the PI3K holoenzyme, the class IA PI3K regulatory subunits undertake critical functions independent of PI3K. The PI3K regulatory subunits exist in excess over the p110 catalytic subunits and therefore free in the cell. p110-independent p85 is unstable and exists in a monomer-dimer equilibrium. Two conformations of dimeric p85 have been reported that are mediated by N-terminal and C-terminal protein domain interactions, respectively. The role of p110-independent p85 is under investigation and it has been found to perform critical adaptor functions, sequestering or influencing compartmentalisation of key signalling proteins. Free p85 has roles in glucose homeostasis, cellular stress pathways, receptor trafficking and cell migration. As a regulator of fundamental pathways, the amount of p110-independent p85 in the cell is critical. Factors that influence the monomer-dimer equilibrium of p110-independent p85 offer additional control over this system, disruption to which likely results in disease. Here we review the current knowledge of the structure and functions of p110-independent class IA PI3K regulatory subunits.
Collapse
|
14
|
Orbach R, Su X. Surfing on Membrane Waves: Microvilli, Curved Membranes, and Immune Signaling. Front Immunol 2020; 11:2187. [PMID: 33013920 PMCID: PMC7516127 DOI: 10.3389/fimmu.2020.02187] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 08/11/2020] [Indexed: 01/22/2023] Open
Abstract
Microvilli are finger-like membrane protrusions, supported by the actin cytoskeleton, and found on almost all cell types. A growing body of evidence suggests that the dynamic lymphocyte microvilli, with their highly curved membranes, play an important role in signal transduction leading to immune responses. Nevertheless, challenges in modulating local membrane curvature and monitoring the high dynamicity of microvilli hampered the investigation of the curvature-generation mechanism and its functional consequences in signaling. These technical barriers have been partially overcome by recent advancements in adapted super-resolution microscopy. Here, we review the up-to-date progress in understanding the mechanisms and functional consequences of microvillus formation in T cell signaling. We discuss how the deformation of local membranes could potentially affect the organization of signaling proteins and their biochemical activities. We propose that curved membranes, together with the underlying cytoskeleton, shape microvilli into a unique compartment that sense and process signals leading to lymphocyte activation.
Collapse
Affiliation(s)
- Ron Orbach
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, United States
| | - Xiaolei Su
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, United States
- Yale Cancer Center, Yale University, New Haven, CT, United States
| |
Collapse
|
15
|
Enteropathogenic Escherichia coli (EPEC) Recruitment of PAR Polarity Protein Atypical PKCζ to Pedestals and Cell-Cell Contacts Precedes Disruption of Tight Junctions in Intestinal Epithelial Cells. Int J Mol Sci 2020; 21:ijms21020527. [PMID: 31947656 PMCID: PMC7014222 DOI: 10.3390/ijms21020527] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 12/26/2022] Open
Abstract
Enteropathogenic Escherichia coli (EPEC) uses a type three secretion system to inject effector proteins into host intestinal epithelial cells, causing diarrhea. EPEC induces the formation of pedestals underlying attached bacteria, disrupts tight junction (TJ) structure and function, and alters apico-basal polarity by redistributing the polarity proteins Crb3 and Pals1, although the mechanisms are unknown. Here we investigate the temporal relationship of PAR polarity complex and TJ disruption following EPEC infection. EPEC recruits active aPKCζ, a PAR polarity protein, to actin within pedestals and at the plasma membrane prior to disrupting TJ. The EPEC effector EspF binds the endocytic protein sorting nexin 9 (SNX9). This interaction impacts actin pedestal organization, recruitment of active aPKCζ to actin at cell–cell borders, endocytosis of JAM-A S285 and occludin, and TJ barrier function. Collectively, data presented herein support the hypothesis that EPEC-induced perturbation of TJ is a downstream effect of disruption of the PAR complex and that EspF binding to SNX9 contributes to this phenotype. aPKCζ phosphorylates polarity and TJ proteins and participates in actin dynamics. Therefore, the early recruitment of aPKCζ to EPEC pedestals and increased interaction with actin at the membrane may destabilize polarity complexes ultimately resulting in perturbation of TJ.
Collapse
|
16
|
Thauland TJ, Khan HA, Butte MJ. The Actin-Capping Protein Alpha-Adducin Is Required for T-Cell Costimulation. Front Immunol 2019; 10:2706. [PMID: 31824498 PMCID: PMC6879651 DOI: 10.3389/fimmu.2019.02706] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 11/04/2019] [Indexed: 11/13/2022] Open
Abstract
Alpha-adducin (Add1) is a critical component of the actin-spectrin network in erythrocytes, acting to cap the fast-growing, barbed ends of actin filaments, and recruiting spectrin to these junctions. Add1 is highly expressed in T cells, but its role in T-cell activation has not been examined. Using a conditional knockout model, we show that Add1 is necessary for complete activation of CD4+ T cells in response to low levels of antigen but is dispensable for CD8+ T cell activation and response to infection. Surprisingly, costimulatory signals through CD28 were completely abrogated in the absence of Add1. This study is the first to examine the role of actin-capping in T cells, and it reveals a previously unappreciated role for the actin cytoskeleton in regulating costimulation.
Collapse
Affiliation(s)
| | | | - Manish J. Butte
- Division of Immunology, Allergy, and Rheumatology, Department of Pediatrics, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
17
|
Liu C, Zhai X, Du H, Cao Y, Cao H, Wang Y, Yu X, Gao J, Xu Z. Sorting nexin 9 (SNX9) is not essential for development and auditory function in mice. Oncotarget 2018; 7:68921-68932. [PMID: 27655699 PMCID: PMC5356600 DOI: 10.18632/oncotarget.12040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 09/02/2016] [Indexed: 12/20/2022] Open
Abstract
Sorting nexins are a large family of evolutionarily conserved proteins that play fundamental roles in endocytosis, endosomal sorting and signaling. As an important member of sorting nexin family, sorting nexin 9 (SNX9) has been shown to participate in coordinating actin polymerization with membrane tubulation and vesicle formation. We previously showed that SNX9 is expressed in mouse auditory hair cells and might regulate actin polymerization in those cells. To further examine the physiological role of SNX9, we generated Snx9 knockout mice using homologous recombination method. Unexpectedly, Snx9 knockout mice have normal viability and fertility, and are morphologically and behaviorally indistinguishable from control mice. Further investigation revealed that the morphology and function of auditory hair cells are not affected by Snx9 inactivation, and Snx9 knockout mice have normal hearing threshold. In conclusion, our data revealed that Snx9-deficient mice do not show defects in development as well as auditory function, suggesting that SNX9 is not essential for mice development and hearing.
Collapse
Affiliation(s)
- Chengcheng Liu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, P. R. China
| | - Xiaoyan Zhai
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, P. R. China
| | - Haibo Du
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, P. R. China
| | - Yujie Cao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, P. R. China
| | - Huiren Cao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, P. R. China
| | - Yanfei Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, P. R. China
| | - Xiao Yu
- Department of Physiology, Shandong University School of Medicine, Jinan, Shandong 250012, P. R. China
| | - Jiangang Gao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, P. R. China
| | - Zhigang Xu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, P. R. China
| |
Collapse
|
18
|
Xie F, Ling L, van Dam H, Zhou F, Zhang L. TGF-β signaling in cancer metastasis. Acta Biochim Biophys Sin (Shanghai) 2018; 50:121-132. [PMID: 29190313 DOI: 10.1093/abbs/gmx123] [Citation(s) in RCA: 178] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Indexed: 02/06/2023] Open
Abstract
The transforming growth factor (TGF)-β signaling events are well known to control diverse processes and numerous responses, such as cell proliferation, differentiation, apoptosis, and migration. TGF-β signaling plays context-dependent roles in cancer: in pre-malignant cells TGF-β primarily functions as a tumor suppressor, while in the later stages of cancer TGF-β signaling promotes invasion and metastasis. Recent studies have also suggested that the cross-talk between TGF-β signaling and other signaling pathways, such as Hippo, Wnt, EGFR/RAS, and PI3K/AKT pathways, may substantially contribute to our current understanding of TGF-β signaling and cancer. As a result of the wide-ranging effects of TGF-β, blockade of TGF-β and its downstream signaling components provides multiple therapeutic opportunities. Therefore, the outlook for anti-TGF-β signaling therapy for numerous diseases appears bright and will provide valuable information and thinking on the drug molecular design. In this review, we focus on recent insights into the regulation of TGF-β signaling in cancer metastasis which may contribute to the development of novel cancer-targeting therapies.
Collapse
Affiliation(s)
- Feng Xie
- Institutes of Biology and Medical Science, Soochow University, Suzhou 215123, China
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Li Ling
- Institutes of Biology and Medical Science, Soochow University, Suzhou 215123, China
| | - Hans van Dam
- Department of Molecular Cell Biology, Cancer Genomics Centre Netherlands, Leiden University Medical Center, Postbus 9600, 2300 RC Leiden, The Netherlands
| | - Fangfang Zhou
- Institutes of Biology and Medical Science, Soochow University, Suzhou 215123, China
| | - Long Zhang
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
19
|
Kamuran K, Çetin M, Geylan H, Karaman S, Demir N, Yurekturk E, Yavuz İ, Yavuz G, Tuncer O. Wiskott-Aldrich syndrome: Two case reports with a novel mutation. Pediatr Hematol Oncol 2017; 34:286-291. [PMID: 29200320 DOI: 10.1080/08880018.2017.1397072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND The Wiskott-Aldrich syndrome (WAS) is X-linked recessive disorder associated with microplatelet thrombocytopenia, eczema, infections, and an increased risk of autoimmunity and lymphoid neoplasia. The originally described features of WAS include susceptibility to infections, microthrombocytopenia, and eczema. AIM In this case report, we present our experience about two cases diagnosed with a new mutation. METHODS We report phenotypical and laboratory description of two cases with WAS. RESULTS We, for the first time, detected a new hemizygote mutation of WAS gene (NM_000377.2 p.M393lfs*102 (c.1178dupT)) in two patients. The first case was an 11-month-old boy presenting with complaints of recurrent soft tissue infection, ear infection, anemia, and thrombocytopenia with a low platelet volume. The second case was a 2-month-old boy presenting with thrombocytopenia and a low platelet volume. Both cases were the first-degree relatives: they were cousins and their mothers were sisters. CONCLUSION Herein, we report two cases of WAS and a new gene mutation which would disrupt the WAS protein function within the Polyproline (PPP) domain. This report adds to the growing number of mutations which cause complex clinical manifestations associated with WAS.
Collapse
Affiliation(s)
- Karaman Kamuran
- a Division of Pediatric Hematology Oncology, Faculty of Medicine, Yüzüncü Yıl University , Van , Turkey
| | - Mecnun Çetin
- b Yuzuncu Yıl University, School of Medicine, Van , Turkey
| | - Hadi Geylan
- b Yuzuncu Yıl University, School of Medicine, Van , Turkey
| | - Serap Karaman
- b Yuzuncu Yıl University, School of Medicine, Van , Turkey
| | - Nihat Demir
- b Yuzuncu Yıl University, School of Medicine, Van , Turkey
| | | | - İbrahim Yavuz
- c Department of Dermatology , School of Medicine, Yuzuncu Yıl University , Van , Turkey
| | - Göknur Yavuz
- c Department of Dermatology , School of Medicine, Yuzuncu Yıl University , Van , Turkey
| | - Oğuz Tuncer
- b Yuzuncu Yıl University, School of Medicine, Van , Turkey
| |
Collapse
|
20
|
Tapia R, Kralicek SE, Hecht GA. EPEC effector EspF promotes Crumbs3 endocytosis and disrupts epithelial cell polarity. Cell Microbiol 2017; 19. [PMID: 28618099 DOI: 10.1111/cmi.12757] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 05/19/2017] [Accepted: 06/09/2017] [Indexed: 12/12/2022]
Abstract
Enteropathogenic Escherichia coli (EPEC) uses a type III secretion system to inject effector proteins into host intestinal epithelial cells causing diarrhoea. EPEC infection redistributes basolateral proteins β1-integrin and Na+ /K+ ATPase to the apical membrane of host cells. The Crumbs (Crb) polarity complex (Crb3/Pals1/Patj) is essential for epithelial cell polarisation and tight junction (TJ) assembly. Here, we demonstrate that EPEC displaces Crb3 and Pals1 from the apical membrane to the cytoplasm of cultured intestinal epithelial cells and colonocytes of infected mice. In vitro studies show that EspF, but not Map, alters Crb3, whereas both effectors modulate Pals1. EspF perturbs polarity formation in cyst morphogenesis assays and induces endocytosis and apical redistribution of Na+ /K+ ATPase. EspF binds to sorting nexin 9 (SNX9) causing membrane remodelling in host cells. Infection with ΔespF/pespFD3, a mutant strain that ablates EspF binding to SNX9, or inhibition of dynamin, attenuates Crb3 endocytosis caused by EPEC. In addition, infection with ΔespF/pespFD3 has no impact on Na+ /K+ ATPase endocytosis. These data support the hypothesis that EPEC perturbs apical-basal polarity in an EspF-dependent manner, which would contribute to EPEC-associated diarrhoea by disruption of TJ and altering the crucial positioning of membrane transporters involved in the absorption of ions and solutes.
Collapse
Affiliation(s)
- Rocio Tapia
- Department of Medicine and Division of Gastroenterology and Nutrition, Loyola University Chicago, Chicago, IL, USA
| | - Sarah E Kralicek
- Department of Medicine and Division of Gastroenterology and Nutrition, Loyola University Chicago, Chicago, IL, USA
| | - Gail A Hecht
- Department of Medicine and Division of Gastroenterology and Nutrition, Loyola University Chicago, Chicago, IL, USA.,Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, USA.,Edward Hines Jr. VA Hospital, Hines, IL, USA
| |
Collapse
|
21
|
In-depth PtdIns(3,4,5)P 3 signalosome analysis identifies DAPP1 as a negative regulator of GPVI-driven platelet function. Blood Adv 2017; 1:918-932. [PMID: 29242851 DOI: 10.1182/bloodadvances.2017005173] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The class I phosphoinositide 3-kinase (PI3K) isoforms play important roles in platelet priming, activation, and stable thrombus formation. Class I PI3Ks predominantly regulate cell function through their catalytic product, the signaling phospholipid phosphatidylinositol 3,4,5-trisphosphate [PtdIns(3,4,5)P3], which coordinates the localization and/or activity of a diverse range of binding proteins. Notably, the complete repertoire of these class I PI3K effectors in platelets remains unknown, limiting mechanistic understanding of class I PI3K-mediated control of platelet function. We measured robust agonist-driven PtdIns (3,4,5)P3 generation in human platelets by lipidomic mass spectrometry (MS), and then used affinity-capture coupled to high-resolution proteomic MS to identify the targets of PtdIns (3,4,5)P3 in these cells. We reveal for the first time a diverse platelet PtdIns(3,4,5)P3 interactome, including kinases, signaling adaptors, and regulators of small GTPases, many of which are previously uncharacterized in this cell type. Of these, we show dual adaptor for phosphotyrosine and 3-phosphoinositides (DAPP1) to be regulated by Src-family kinases and PI3K, while platelets from DAPP1-deficient mice display enhanced thrombus formation on collagen in vitro. This was associated with enhanced platelet α/δ granule secretion and αIIbβ3 integrin activation downstream of the collagen receptor glycoprotein VI. Thus, we present the first comprehensive analysis of the PtdIns(3,4,5)P3 signalosome of human platelets and identify DAPP1 as a novel negative regulator of platelet function. This work provides important new insights into how class I PI3Ks shape platelet function.
Collapse
|
22
|
Kang JH, Jung MY, Yin X, Andrianifahanana M, Hernandez DM, Leof EB. Cell-penetrating peptides selectively targeting SMAD3 inhibit profibrotic TGF-β signaling. J Clin Invest 2017; 127:2541-2554. [PMID: 28530637 DOI: 10.1172/jci88696] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 03/29/2017] [Indexed: 12/20/2022] Open
Abstract
TGF-β is considered a master switch in the pathogenesis of organ fibrosis. The primary mediators of this activity are the SMAD proteins, particularly SMAD3. In the current study, we have developed a cell-penetrating peptide (CPP) conjugate of the HIV TAT protein that is fused to an aminoterminal sequence of sorting nexin 9 (SNX9), which was previously shown to bind phosphorylated SMAD3 (pSMAD3). We determined that specifically preventing the nuclear import of pSMAD3 using the TAT-SNX9 peptide inhibited profibrotic TGF-β activity in murine cells and human lung fibroblasts as well as in vivo with no demonstrable toxicity. TGF-β signaling mediated by pSMAD2, bone morphogenetic protein 4 (BMP4), EGF, or PDGF was unaffected by the TAT-SNX9 peptide. Furthermore, while the TAT-SNX9 peptide prevented TGF-β's profibrotic activity in vitro as well as in 2 murine treatment models of pulmonary fibrosis, a 3-amino acid point mutant that was unable to bind pSMAD3 proved ineffective. These findings indicate that specifically targeting pSMAD3 can ameliorate both the direct and indirect fibroproliferative actions of TGF-β.
Collapse
Affiliation(s)
| | - Mi-Yeon Jung
- Departments of Pulmonary and Critical Care Medicine and
| | - Xueqian Yin
- Departments of Pulmonary and Critical Care Medicine and
| | | | | | - Edward B Leof
- Departments of Pulmonary and Critical Care Medicine and.,Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
23
|
Fritz-Laylin LK, Lord SJ, Mullins RD. WASP and SCAR are evolutionarily conserved in actin-filled pseudopod-based motility. J Cell Biol 2017; 216:1673-1688. [PMID: 28473602 PMCID: PMC5461030 DOI: 10.1083/jcb.201701074] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 03/12/2017] [Accepted: 03/31/2017] [Indexed: 01/08/2023] Open
Abstract
Eukaryotic cells use diverse cellular mechanisms to crawl through complex environments. Fritz-Laylin et al. define α-motility as a mode of migration associated with dynamic, actin-filled pseudopods and show that WASP and SCAR constitute an evolutionarily conserved genetic signature of α-motility. Diverse eukaryotic cells crawl through complex environments using distinct modes of migration. To understand the underlying mechanisms and their evolutionary relationships, we must define each mode and identify its phenotypic and molecular markers. In this study, we focus on a widely dispersed migration mode characterized by dynamic actin-filled pseudopods that we call “α-motility.” Mining genomic data reveals a clear trend: only organisms with both WASP and SCAR/WAVE—activators of branched actin assembly—make actin-filled pseudopods. Although SCAR has been shown to drive pseudopod formation, WASP’s role in this process is controversial. We hypothesize that these genes collectively represent a genetic signature of α-motility because both are used for pseudopod formation. WASP depletion from human neutrophils confirms that both proteins are involved in explosive actin polymerization, pseudopod formation, and cell migration. WASP and WAVE also colocalize to dynamic signaling structures. Moreover, retention of WASP together with SCAR correctly predicts α-motility in disease-causing chytrid fungi, which we show crawl at >30 µm/min with actin-filled pseudopods. By focusing on one migration mode in many eukaryotes, we identify a genetic marker of pseudopod formation, the morphological feature of α-motility, providing evidence for a widely distributed mode of cell crawling with a single evolutionary origin.
Collapse
Affiliation(s)
- Lillian K Fritz-Laylin
- Department of Cellular and Molecular Pharmacology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94143
| | - Samuel J Lord
- Department of Cellular and Molecular Pharmacology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94143
| | - R Dyche Mullins
- Department of Cellular and Molecular Pharmacology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94143
| |
Collapse
|
24
|
Bendris N, Schmid SL. Endocytosis, Metastasis and Beyond: Multiple Facets of SNX9. Trends Cell Biol 2016; 27:189-200. [PMID: 27989654 DOI: 10.1016/j.tcb.2016.11.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 11/01/2016] [Accepted: 11/03/2016] [Indexed: 11/26/2022]
Abstract
Sorting nexin (SNX)9 was first discovered as an endocytic accessory protein involved in clathrin-mediated endocytosis. However, recent data suggest that SNX9 is a multifunctional scaffold that coordinates membrane trafficking and remodeling with changes in actin dynamics to affect diverse cellular processes. Here, we review the accumulated knowledge on SNX9 with an emphasis on its recently identified roles in clathrin-independent endocytic pathways, cell invasion, and cell division, which have implications for SNX9 function in human disease, including cancer.
Collapse
Affiliation(s)
- Nawal Bendris
- Department of Cell Biology, The University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Sandra L Schmid
- Department of Cell Biology, The University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
25
|
Developmentally programmed germ cell remodelling by endodermal cell cannibalism. Nat Cell Biol 2016; 18:1302-1310. [PMID: 27842058 PMCID: PMC5129868 DOI: 10.1038/ncb3439] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 10/13/2016] [Indexed: 02/06/2023]
Abstract
Primordial germ cells (PGCs) in many species associate intimately with endodermal cells, but the significance of such interactions is largely unexplored. Here, we show that Caenorhabditis elegans PGCs form lobes that are removed and digested by endodermal cells, dramatically altering PGC size and mitochondrial content. We demonstrate that endodermal cells do not scavenge lobes PGCs shed, but rather, actively remove lobes from the cell body. CED-10 (Rac)-induced actin, DYN-1 (dynamin) and LST-4 (SNX9) transiently surround lobe necks and are required within endodermal cells for lobe scission, suggesting that scission occurs through a mechanism resembling vesicle endocytosis. These findings reveal an unexpected role for endoderm in altering the contents of embryonic PGCs, and define a form of developmentally programmed cell remodelling involving intercellular cannibalism. Active roles for engulfing cells have been proposed in several neuronal remodelling events, suggesting that intercellular cannibalism may be a more widespread method used to shape cells than previously thought.
Collapse
|
26
|
Santos LC, Blair DA, Kumari S, Cammer M, Iskratsch T, Herbin O, Alexandropoulos K, Dustin ML, Sheetz MP. Actin polymerization-dependent activation of Cas-L promotes immunological synapse stability. Immunol Cell Biol 2016; 94:981-993. [PMID: 27359298 PMCID: PMC5121033 DOI: 10.1038/icb.2016.61] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 06/06/2016] [Accepted: 06/20/2016] [Indexed: 02/07/2023]
Abstract
The immunological synapse formed between a T-cell and an antigen-presenting cell is important for cell-cell communication during T-cell-mediated immune responses. Immunological synapse formation begins with stimulation of the T-cell receptor (TCR). TCR microclusters are assembled and transported to the center of the immunological synapse in an actin polymerization-dependent process. However, the physical link between TCR and actin remains elusive. Here we show that lymphocyte-specific Crk-associated substrate (Cas-L), a member of a force sensing protein family, is required for transport of TCR microclusters and for establishing synapse stability. We found that Cas-L is phosphorylated at TCR microclusters in an actin polymerization-dependent fashion. Furthermore, Cas-L participates in a positive feedback loop leading to amplification of Ca2+ signaling, inside-out integrin activation, and actomyosin contraction. We propose a new role for Cas-L in T-cell activation as a mechanical transducer linking TCR microclusters to the underlying actin network and coordinating multiple actin-dependent structures in the immunological synapse. Our studies highlight the importance of mechanotransduction processes in T-cell-mediated immune responses.
Collapse
Affiliation(s)
- Luís C Santos
- Department of Biological Sciences, Columbia UniversityNew YorkNYUSA
- Skirball Institute of Biomolecular Medicine, New York School of MedicineNew YorkNYUSA
- Icahn Medical Institute, Mount Sinai School of MedicineNew YorkNYUSA
| | - David A Blair
- Skirball Institute of Biomolecular Medicine, New York School of MedicineNew YorkNYUSA
| | - Sudha Kumari
- Skirball Institute of Biomolecular Medicine, New York School of MedicineNew YorkNYUSA
| | - Michael Cammer
- Skirball Institute of Biomolecular Medicine, New York School of MedicineNew YorkNYUSA
| | - Thomas Iskratsch
- Department of Biological Sciences, Columbia UniversityNew YorkNYUSA
| | - Olivier Herbin
- Icahn Medical Institute, Mount Sinai School of MedicineNew YorkNYUSA
| | | | - Michael L Dustin
- Skirball Institute of Biomolecular Medicine, New York School of MedicineNew YorkNYUSA
- Kennedy Institute of Rheumatology, University of OxfordHeadingtonUK
| | - Michael P Sheetz
- Department of Biological Sciences, Columbia UniversityNew YorkNYUSA
| |
Collapse
|
27
|
Brzostek J, Gascoigne NRJ, Rybakin V. Cell Type-Specific Regulation of Immunological Synapse Dynamics by B7 Ligand Recognition. Front Immunol 2016; 7:24. [PMID: 26870040 PMCID: PMC4740375 DOI: 10.3389/fimmu.2016.00024] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 01/18/2016] [Indexed: 01/07/2023] Open
Abstract
B7 proteins CD80 (B7-1) and CD86 (B7-2) are expressed on most antigen-presenting cells and provide critical co-stimulatory or inhibitory input to T cells via their T-cell-expressed receptors: CD28 and CTLA-4. CD28 is expressed on effector T cells and regulatory T cells (Tregs), and CD28-dependent signals are required for optimum activation of effector T cell functions. CD28 ligation on effector T cells leads to formation of distinct molecular patterns and induction of cytoskeletal rearrangements at the immunological synapse (IS). CD28 plays a critical role in recruitment of protein kinase C (PKC)-θ to the effector T cell IS. CTLA-4 is constitutively expressed on the surface of Tregs, but it is expressed on effector T cells only after activation. As CTLA-4 binds to B7 proteins with significantly higher affinity than CD28, B7 ligand recognition by cells expressing both receptors leads to displacement of CD28 and PKC-θ from the IS. In Tregs, B7 ligand recognition leads to recruitment of CTLA-4 and PKC-η to the IS. CTLA-4 plays a role in regulation of T effector and Treg IS stability and cell motility. Due to their important roles in regulating T-cell-mediated responses, B7 receptors are emerging as important drug targets in oncology. In this review, we present an integrated summary of current knowledge about the role of B7 family receptor–ligand interactions in the regulation of spatial and temporal IS dynamics in effector and Tregs.
Collapse
Affiliation(s)
- Joanna Brzostek
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine and Immunology Programme, National University of Singapore , Singapore , Singapore
| | - Nicholas R J Gascoigne
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine and Immunology Programme, National University of Singapore , Singapore , Singapore
| | - Vasily Rybakin
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine and Immunology Programme, National University of Singapore, Singapore, Singapore; Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| |
Collapse
|
28
|
Ish-Shalom E, Meirow Y, Sade-Feldman M, Kanterman J, Wang L, Mizrahi O, Klieger Y, Baniyash M. Impaired SNX9 Expression in Immune Cells during Chronic Inflammation: Prognostic and Diagnostic Implications. THE JOURNAL OF IMMUNOLOGY 2015; 196:156-67. [PMID: 26608909 DOI: 10.4049/jimmunol.1402877] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 10/25/2015] [Indexed: 11/19/2022]
Abstract
Chronic inflammation is associated with immunosuppression and downregulated expression of the TCR CD247. In searching for new biomarkers that could validate the impaired host immune status under chronic inflammatory conditions, we discovered that sorting nexin 9 (SNX9), a protein that participates in early stages of clathrin-mediated endocytosis, is downregulated as well under such conditions. SNX9 expression was affected earlier than CD247 by the generated harmful environment, suggesting that it is a potential marker sensing the generated immunosuppressive condition. We found that myeloid-derived suppressor cells, which are elevated in the course of chronic inflammation, are responsible for the observed SNX9 reduced expression. Moreover, SNX9 downregulation is reversible, as its expression levels return to normal and immune functions are restored when the inflammatory response and/or myeloid-derived suppressor cells are neutralized. SNX9 downregulation was detected in numerous mouse models for pathologies characterized by chronic inflammation such as chronic infection (Leishmania donovani), cancer (melanoma and colorectal carcinoma), and an autoimmune disease (rheumatoid arthritis). Interestingly, reduced levels of SNX9 were also observed in blood samples from colorectal cancer patients, emphasizing the feasibility of its use as a diagnostic and prognostic biomarker sensing the host's immune status and inflammatory stage. Our new discovery of SNX9 as being regulated by chronic inflammation and its association with immunosuppression, in addition to the CD247 regulation under such conditions, show the global impact of chronic inflammation and the generated immune environment on different cellular pathways in a diverse spectrum of diseases.
Collapse
Affiliation(s)
- Eliran Ish-Shalom
- Lautenberg Center for General and Tumor Immunology, Israel-Canada Medical Research Institute, Faculty of Medicine, Hebrew University, Jerusalem 91120, Israel; and ImProDia Ltd., Herzliya Pituah 46723, Israel
| | - Yaron Meirow
- Lautenberg Center for General and Tumor Immunology, Israel-Canada Medical Research Institute, Faculty of Medicine, Hebrew University, Jerusalem 91120, Israel; and
| | - Moshe Sade-Feldman
- Lautenberg Center for General and Tumor Immunology, Israel-Canada Medical Research Institute, Faculty of Medicine, Hebrew University, Jerusalem 91120, Israel; and
| | - Julia Kanterman
- Lautenberg Center for General and Tumor Immunology, Israel-Canada Medical Research Institute, Faculty of Medicine, Hebrew University, Jerusalem 91120, Israel; and
| | - Lynn Wang
- Lautenberg Center for General and Tumor Immunology, Israel-Canada Medical Research Institute, Faculty of Medicine, Hebrew University, Jerusalem 91120, Israel; and
| | | | - Yair Klieger
- Lautenberg Center for General and Tumor Immunology, Israel-Canada Medical Research Institute, Faculty of Medicine, Hebrew University, Jerusalem 91120, Israel; and ImProDia Ltd., Herzliya Pituah 46723, Israel
| | - Michal Baniyash
- Lautenberg Center for General and Tumor Immunology, Israel-Canada Medical Research Institute, Faculty of Medicine, Hebrew University, Jerusalem 91120, Israel; and
| |
Collapse
|
29
|
Hicks L, Liu G, Ukken FP, Lu S, Bollinger KE, O'Connor-Giles K, Gonsalvez GB. Depletion or over-expression of Sh3px1 results in dramatic changes in cell morphology. Biol Open 2015; 4:1448-61. [PMID: 26459243 PMCID: PMC4728355 DOI: 10.1242/bio.013755] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The mammalian Sorting Nexin 9 (Snx9) family consists of three paralogs: Snx9, Snx18 and Snx33. Most of the published literature to date has centered on the role of Snx9 in clathrin-mediated endocytosis (CME). Snx9 contains an Sh3 domain at its N-terminus and has been shown to interact with Dynamin and actin nucleation factors via this domain. In addition to the Sh3 domain, Snx9 also contains a C-terminal BAR domain. BAR domains are known to sense and/or induce membrane curvature. In addition to endocytosis, recent studies have implicated the Snx9 family in diverse processes such as autophagy, macropinocytosis, phagocytosis and mitosis. The Snx9 family is encoded by a single gene in Drosophila called sh3px1. In this report, we present our initial characterization of sh3px1. We found that depletion of Sh3px1 from Drosophila Schneider 2 (S2) cells resulted in defective lamellipodia formation. A similar phenotype has been reported upon depletion of Scar, the actin nucleation factor implicated in forming lamellipodia. In addition, we demonstrate that over-expression of Sh3px1 in S2 cells results in the formation of tubules as well as long protrusions. Formation of these structures required the C-terminal BAR domain as well as the adjacent Phox homology (PX) domain of Sh3px1. Furthermore, efficient protrusion formation by Sh3px1 required the actin nucleation factor Wasp. Tubules and protrusions were also generated upon over-expressing the mammalian orthologs Snx18 and Snx33 in S2 cells. By contrast, over-expressing Snx9 mostly induced long tubules. Summary: Proteins containing BAR domains are known to generate membrane curvature. Some BAR domains generate tubules upon over-expression in cells, whereas others generate membrane protrusions. We demonstrate that Sh3px1, the Drosophila ortholog of the Snx9 family, is capable of inducing both tubules and protrusions.
Collapse
Affiliation(s)
- Lawrence Hicks
- Cellular Biology and Anatomy, Georgia Regents University, Augusta, GA 30912, USA
| | - Guojun Liu
- Cellular Biology and Anatomy, Georgia Regents University, Augusta, GA 30912, USA
| | - Fiona P Ukken
- Laboratory of Genetics, and Laboratory of Cell and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Sumin Lu
- Cellular Biology and Anatomy, Georgia Regents University, Augusta, GA 30912, USA
| | - Kathryn E Bollinger
- Cellular Biology and Anatomy, Georgia Regents University, Augusta, GA 30912, USA James and Jean Culver Vision Discovery Institute, Georgia Regents University, Augusta, GA 30912, USA
| | - Kate O'Connor-Giles
- Laboratory of Genetics, and Laboratory of Cell and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Graydon B Gonsalvez
- Cellular Biology and Anatomy, Georgia Regents University, Augusta, GA 30912, USA
| |
Collapse
|
30
|
Abstract
Wiskott-Aldrich syndrome (WAS) is a rare X-linked primary immunodeficiency characterized by an increased incidence of autoimmunity, malignancy, microthrombocytes with thrombocytopenia, eczema, and recurrent infections. In this case report, we present a novel mutation, hemizygous for c.1125_1129delTGGAC mutation in the WAS gene, and a unique clinical presentation. Our patient was initially diagnosed with a milk protein allergy after presenting with a lower gastrointestinal bleed, leukopenia, and thrombocytopenia with normal platelet volume. However, signs of vasculitis and detection of microthrombocytes required additional testing and consideration of WAS. This case report illustrates the importance of retaining a high index of clinical suspicion despite normal platelet volume, as well as adding to the growing number of known mutations associated with WAS.
Collapse
|
31
|
Wilkes MC, Repellin CE, Kang JH, Andrianifahanana M, Yin X, Leof EB. Sorting nexin 9 differentiates ligand-activated Smad3 from Smad2 for nuclear import and transforming growth factor β signaling. Mol Biol Cell 2015; 26:3879-91. [PMID: 26337383 PMCID: PMC4626071 DOI: 10.1091/mbc.e15-07-0545] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 08/27/2015] [Indexed: 01/23/2023] Open
Abstract
Sorting nexin 9 (SNX9) is shown to differentiate Smad3 from Smad2 nuclear delivery by mediating the association of phosphorylated Smad3 with importin 8 and the nuclear membrane. While the absence of SNX9 had negligible effects on transforming growth factor β receptor activity or Smad2 signaling, Smad3-dependent targets and phenotypes were inhibited. Transforming growth factor β (TGFβ) is a pleiotropic protein secreted from essentially all cell types and primary tissues. While TGFβ’s actions reflect the activity of a number of signaling networks, the primary mediator of TGFβ responses are the Smad proteins. Following receptor activation, these cytoplasmic proteins form hetero-oligomeric complexes that translocate to the nucleus and affect gene transcription. Here, through biological, biochemical, and immunofluorescence approaches, sorting nexin 9 (SNX9) is identified as being required for Smad3-dependent responses. SNX9 interacts with phosphorylated (p) Smad3 independent of Smad2 or Smad4 and promotes more rapid nuclear delivery than that observed independent of ligand. Although SNX9 does not bind nucleoporins Nup153 or Nup214 or some β importins (Imp7 or Impβ), it mediates the association of pSmad3 with Imp8 and the nuclear membrane. This facilitates nuclear translocation of pSmad3 but not SNX9.
Collapse
Affiliation(s)
- Mark C Wilkes
- Thoracic Diseases Research Unit, Department of Pulmonary and Critical Care Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905
| | - Claire E Repellin
- Thoracic Diseases Research Unit, Department of Pulmonary and Critical Care Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905
| | - Jeong-Han Kang
- Thoracic Diseases Research Unit, Department of Pulmonary and Critical Care Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905
| | - Mahefatiana Andrianifahanana
- Thoracic Diseases Research Unit, Department of Pulmonary and Critical Care Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905
| | - Xueqian Yin
- Thoracic Diseases Research Unit, Department of Pulmonary and Critical Care Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905
| | - Edward B Leof
- Thoracic Diseases Research Unit, Department of Pulmonary and Critical Care Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905
| |
Collapse
|
32
|
Freeman SA, Grinstein S. Phagocytosis: receptors, signal integration, and the cytoskeleton. Immunol Rev 2015; 262:193-215. [PMID: 25319336 DOI: 10.1111/imr.12212] [Citation(s) in RCA: 390] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Phagocytosis is a remarkably complex and versatile process: it contributes to innate immunity through the ingestion and elimination of pathogens, while also being central to tissue homeostasis and remodeling by clearing effete cells. The ability of phagocytes to perform such diverse functions rests, in large part, on their vast repertoire of receptors. In this review, we address the various receptor types, their mobility in the plane of the membrane, and two modes of receptor crosstalk: priming and synergy. A major section is devoted to the actin cytoskeleton, which not only governs receptor mobility and clustering but also is instrumental in particle engulfment. Four stages of the actin remodeling process are identified and discussed: (i) the 'resting' stage that precedes receptor engagement, (ii) the disruption of the cortical actin prior to formation of the phagocytic cup, (iii) the actin polymerization that propels pseudopod extension, and (iv) the termination of polymerization and removal of preassembled actin that are required for focal delivery of endomembranes and phagosomal sealing. These topics are viewed in the larger context of the differentiation and polarization of the phagocytic cells.
Collapse
Affiliation(s)
- Spencer A Freeman
- Program in Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | | |
Collapse
|
33
|
Cotta-de-Almeida V, Dupré L, Guipouy D, Vasconcelos Z. Signal Integration during T Lymphocyte Activation and Function: Lessons from the Wiskott-Aldrich Syndrome. Front Immunol 2015; 6:47. [PMID: 25709608 PMCID: PMC4321635 DOI: 10.3389/fimmu.2015.00047] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 01/26/2015] [Indexed: 11/18/2022] Open
Abstract
Over the last decades, research dedicated to the molecular and cellular mechanisms underlying primary immunodeficiencies (PID) has helped to understand the etiology of many of these diseases and to develop novel therapeutic approaches. Beyond these aspects, PID are also studied because they offer invaluable natural genetic tools to dissect the human immune system. In this review, we highlight the research that has focused over the last 20 years on T lymphocytes from Wiskott–Aldrich syndrome (WAS) patients. WAS T lymphocytes are defective for the WAS protein (WASP), a regulator of actin cytoskeleton remodeling. Therefore, study of WAS T lymphocytes has helped to grasp that many steps of T lymphocyte activation and function depend on the crosstalk between membrane receptors and the actin cytoskeleton. These steps include motility, immunological synapse assembly, and signaling, as well as the implementation of helper, regulatory, or cytotoxic effector functions. The recent concept that WASP also works as a regulator of transcription within the nucleus is an illustration of the complexity of signal integration in T lymphocytes. Finally, this review will discuss how further study of WAS may contribute to solve novel challenges of T lymphocyte biology.
Collapse
Affiliation(s)
| | - Loïc Dupré
- UMR 1043, Centre de Physiopathologie de Toulouse Purpan, INSERM , Toulouse , France ; Université Toulouse III Paul-Sabatier , Toulouse , France ; UMR 5282, CNRS , Toulouse , France
| | - Delphine Guipouy
- UMR 1043, Centre de Physiopathologie de Toulouse Purpan, INSERM , Toulouse , France ; Université Toulouse III Paul-Sabatier , Toulouse , France ; UMR 5282, CNRS , Toulouse , France
| | | |
Collapse
|
34
|
Muscolini M, Camperio C, Porciello N, Caristi S, Capuano C, Viola A, Galandrini R, Tuosto L. Phosphatidylinositol 4–Phosphate 5–Kinase α and Vav1 Mutual Cooperation in CD28-Mediated Actin Remodeling and Signaling Functions. THE JOURNAL OF IMMUNOLOGY 2015; 194:1323-1333. [DOI: 10.4049/jimmunol.1401643] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Abstract
Phosphatidylinositol 4,5–biphosphate (PIP2) is a cell membrane phosphoinositide crucial for cell signaling and activation. Indeed, PIP2 is a pivotal source for second messenger generation and controlling the activity of several proteins regulating cytoskeleton reorganization. Despite its critical role in T cell activation, the molecular mechanisms regulating PIP2 turnover remain largely unknown. In human primary CD4+ T lymphocytes, we have recently demonstrated that CD28 costimulatory receptor is crucial for regulating PIP2 turnover by allowing the recruitment and activation of the lipid kinase phosphatidylinositol 4–phosphate 5–kinase (PIP5Kα). We also identified PIP5Kα as a key modulator of CD28 costimulatory signals leading to the efficient T cell activation. In this study, we extend these data by demonstrating that PIP5Kα recruitment and activation is essential for CD28-mediated cytoskeleton rearrangement necessary for organizing a complete signaling compartment leading to downstream signaling functions. We also identified Vav1 as the linker molecule that couples the C-terminal proline-rich motif of CD28 to the recruitment and activation of PIP5Kα, which in turn cooperates with Vav1 in regulating actin polymerization and CD28 signaling functions.
Collapse
Affiliation(s)
- Michela Muscolini
- *Department of Biology and Biotechnology “Charles Darwin,” Pasteur Institute–Cenci Bolognetti Foundation, Sapienza University, 00185 Rome, Italy
| | - Cristina Camperio
- *Department of Biology and Biotechnology “Charles Darwin,” Pasteur Institute–Cenci Bolognetti Foundation, Sapienza University, 00185 Rome, Italy
| | - Nicla Porciello
- *Department of Biology and Biotechnology “Charles Darwin,” Pasteur Institute–Cenci Bolognetti Foundation, Sapienza University, 00185 Rome, Italy
| | - Silvana Caristi
- *Department of Biology and Biotechnology “Charles Darwin,” Pasteur Institute–Cenci Bolognetti Foundation, Sapienza University, 00185 Rome, Italy
| | - Cristina Capuano
- †Department of Experimental Medicine, Sapienza University, 00185 Rome, Italy
| | - Antonella Viola
- ‡The Venetian Institute of Molecular Medicine, Padova 35129, Italy; and
- §Department of Biomedical Sciences, University of Padova, Padova 35121, Italy
| | | | - Loretta Tuosto
- *Department of Biology and Biotechnology “Charles Darwin,” Pasteur Institute–Cenci Bolognetti Foundation, Sapienza University, 00185 Rome, Italy
| |
Collapse
|
35
|
Pauker MH, Reicher B, Joseph N, Wortzel I, Jakubowicz S, Noy E, Perl O, Barda-Saad M. WASp family verprolin-homologous protein-2 (WAVE2) and Wiskott-Aldrich syndrome protein (WASp) engage in distinct downstream signaling interactions at the T cell antigen receptor site. J Biol Chem 2014; 289:34503-19. [PMID: 25342748 DOI: 10.1074/jbc.m114.591685] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
T cell antigen receptor (TCR) engagement has been shown to activate pathways leading to actin cytoskeletal polymerization and reorganization, which are essential for lymphocyte activation and function. Several actin regulatory proteins were implicated in regulating the actin machinery, such as members of the Wiskott-Aldrich syndrome protein (WASp) family. These include WASp and the WASp family verprolin-homologous protein-2 (WAVE2). Although WASp and WAVE2 share several structural features, the precise regulatory mechanisms and potential redundancy between them have not been fully characterized. Specifically, unlike WASp, the dynamic molecular interactions that regulate WAVE2 recruitment to the cell membrane and specifically to the TCR signaling complex are largely unknown. Here, we identify the molecular mechanism that controls the recruitment of WAVE2 in comparison with WASp. Using fluorescence resonance energy transfer (FRET) and novel triple-color FRET (3FRET) technology, we demonstrate how WAVE2 signaling complexes are dynamically regulated during lymphocyte activation in vivo. We show that, similar to WASp, WAVE2 recruitment to the TCR site depends on protein-tyrosine kinase, ZAP-70, and the adaptors LAT, SLP-76, and Nck. However, in contrast to WASp, WAVE2 leaves this signaling complex and migrates peripherally together with vinculin to the membrane leading edge. Our experiments demonstrate that WASp and WAVE2 differ in their dynamics and their associated proteins. Thus, this study reveals the differential mechanisms regulating the function of these cytoskeletal proteins.
Collapse
Affiliation(s)
- Maor H Pauker
- From the Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Barak Reicher
- From the Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Noah Joseph
- From the Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Inbal Wortzel
- From the Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Shlomi Jakubowicz
- From the Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Elad Noy
- From the Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Orly Perl
- From the Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Mira Barda-Saad
- From the Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| |
Collapse
|
36
|
Nández R, Balkin DM, Messa M, Liang L, Paradise S, Czapla H, Hein MY, Duncan JS, Mann M, De Camilli P. A role of OCRL in clathrin-coated pit dynamics and uncoating revealed by studies of Lowe syndrome cells. eLife 2014; 3:e02975. [PMID: 25107275 PMCID: PMC4358339 DOI: 10.7554/elife.02975] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 08/07/2014] [Indexed: 12/15/2022] Open
Abstract
Mutations in the inositol 5-phosphatase OCRL cause Lowe syndrome and Dent's disease. Although OCRL, a direct clathrin interactor, is recruited to late-stage clathrin-coated pits, clinical manifestations have been primarily attributed to intracellular sorting defects. Here we show that OCRL loss in Lowe syndrome patient fibroblasts impacts clathrin-mediated endocytosis and results in an endocytic defect. These cells exhibit an accumulation of clathrin-coated vesicles and an increase in U-shaped clathrin-coated pits, which may result from sequestration of coat components on uncoated vesicles. Endocytic vesicles that fail to lose their coat nucleate the majority of the numerous actin comets present in patient cells. SNX9, an adaptor that couples late-stage endocytic coated pits to actin polymerization and which we found to bind OCRL directly, remains associated with such vesicles. These results indicate that OCRL acts as an uncoating factor and that defects in clathrin-mediated endocytosis likely contribute to pathology in patients with OCRL mutations. DOI:http://dx.doi.org/10.7554/eLife.02975.001 Oculo-Cerebro-Renal syndrome of Lowe (Lowe syndrome) is a rare genetic disorder that can cause cataracts, mental disabilities and kidney dysfunction. It is caused by mutations in the gene encoding OCRL, a protein that modifies a membrane lipid and that is found on membranes transporting molecules (cargo) into cells by a process known as endocytosis. During endocytosis, the cell outer membrane is deformed into a pit that engulfs the cargo to be taken up by the cell. The pit then pinches off from the outer membrane to form a vesicle—a bubble-like compartment—inside the cell that transports the cargo to its destination. In one type of endocytosis, this process is mediated by a basket-like coat primarily made up from the protein clathrin that assembles at the membrane patch to be internalized. After the vesicle is released from the cell membrane, the clathrin coat is broken apart and its components are shed and recycled for use by new budding endocytic vesicles. The OCRL protein had previously been observed associated to newly forming clathrin-coated vesicles, but the significance of this was not known. Now, Nández et al. have used a range of imaging and analytical techniques to further investigate the properties of OCRL, taking advantage of cells from patients with Lowe syndrome. These cells lack OCRL, and so allow the effect of OCRL's absence on cell function to be deduced. OCRL destroys the membrane lipid that helps to connect the clathrin coat to the membrane, and Nández et al. show that without OCRL the newly formed vesicle moves into the cell but fails to efficiently shed its clathrin coat. Thus, a large fraction of clathrin coat components remain trapped on the vesicles, reducing the amount of such components available to help new pits develop into vesicles. As a consequence, the cell has difficulty internalizing molecules. Collectively, the findings of Nández et al. outline that OCRL plays a role in the regulation of endocytosis in addition to its previously reported actions in the control of intracellular membrane traffic. The results also help to explain some of the symptoms seen in Lowe syndrome patients. DOI:http://dx.doi.org/10.7554/eLife.02975.002
Collapse
Affiliation(s)
- Ramiro Nández
- Department of Cell Biology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, United States
| | - Daniel M Balkin
- Department of Cell Biology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, United States
| | - Mirko Messa
- Department of Cell Biology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, United States
| | - Liang Liang
- Department of Diagnostic Radiology, Yale University School of Medicine, New Haven, United States
| | - Summer Paradise
- Department of Cell Biology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, United States
| | - Heather Czapla
- Department of Cell Biology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, United States
| | - Marco Y Hein
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - James S Duncan
- Department of Diagnostic Radiology, Yale University School of Medicine, New Haven, United States
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Pietro De Camilli
- Department of Cell Biology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, United States
| |
Collapse
|
37
|
Wu J, Liu D, Tu W, Song W, Zhao X. T-cell receptor diversity is selectively skewed in T-cell populations of patients with Wiskott-Aldrich syndrome. J Allergy Clin Immunol 2014; 135:209-16. [PMID: 25091438 DOI: 10.1016/j.jaci.2014.06.025] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 06/20/2014] [Accepted: 06/25/2014] [Indexed: 12/13/2022]
Abstract
BACKGROUND Wiskott-Aldrich syndrome (WAS) is a severe disorder characterized by thrombocytopenia, eczema, immunodeficiency, and increased risk of autoimmune disease and lymphoid malignancies. The immunodeficiency caused by a lack of WAS protein expression has been mainly attributed to defective T-cell functions. Whether WAS mutations differentially influence the T-cell receptor (TCR) diversity of different T-cell subsets is unknown. OBJECTIVE We aimed to identify the degree and pattern of skewing in the variable region of the TCR β-chain (Vβ) in different T-cell subsets from patients with WAS. METHODS The TCR repertoire diversity in total peripheral T cells, sorted CD4(+) and CD8(+) T cells, and CD45RA(+) (CD45RA(+)CD45RO(-) cells) and CD45RO(+) (CD45RA(-)CD45RO(+) cells) CD4(+) and CD8(+) T cells from patients with WAS and age-matched healthy control subjects was analyzed and compared by using spectratyping of complementarity-determining region 3. The complementarity-determining region 3 of TCRβ transcripts in CD45RA(+)CD4(+) and CD45RA(+)CD8(+) T cells, CD45RO(+)CD4(+) T cells, CD8(+) terminally differentiated effector memory T (Temra) cells, and naive CD8(+) T cells (CD8(+)CD45RO(-)CCR7(+) cells) from patients and control subjects were analyzed and compared by using high-throughput sequencing. RESULTS The TCR repertoire diversity in CD45RO(+)CD4(+) T cells and CD8(+) Temra cells of patients with WAS was significantly skewed in comparison with that seen in age-matched control subjects. CONCLUSION Our results indicate that WAS gene mutations selectively influence TCR repertoire development or expansion in CD45RO(+) (memory) CD4(+) T cells.
Collapse
Affiliation(s)
- Junfeng Wu
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Dawei Liu
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Wenwei Tu
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - Wenxia Song
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China; Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Md
| | - Xiaodong Zhao
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
38
|
Kanai T, Seki S, Jenks JA, Kohli A, Kawli T, Martin DP, Snyder M, Bacchetta R, Nadeau KC. Identification of STAT5A and STAT5B target genes in human T cells. PLoS One 2014; 9:e86790. [PMID: 24497979 PMCID: PMC3907443 DOI: 10.1371/journal.pone.0086790] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 12/13/2013] [Indexed: 01/07/2023] Open
Abstract
Signal transducer and activator of transcription (STAT) comprises a family of universal transcription factors that help cells sense and respond to environmental signals. STAT5 refers to two highly related proteins, STAT5A and STAT5B, with critical function: their complete deficiency is lethal in mice; in humans, STAT5B deficiency alone leads to endocrine and immunological problems, while STAT5A deficiency has not been reported. STAT5A and STAT5B show peptide sequence similarities greater than 90%, but subtle structural differences suggest possible non-redundant roles in gene regulation. However, these roles remain unclear in humans. We applied chromatin immunoprecipitation followed by DNA sequencing using human CD4+ T cells to detect candidate genes regulated by STAT5A and/or STAT5B, and quantitative-PCR in STAT5A or STAT5B knock-down (KD) human CD4+ T cells to validate the findings. Our data show STAT5A and STAT5B play redundant roles in cell proliferation and apoptosis via SGK1 interaction. Interestingly, we found a novel, unique role for STAT5A in binding to genes involved in neural development and function (NDRG1, DNAJC6, and SSH2), while STAT5B appears to play a distinct role in T cell development and function via DOCK8, SNX9, FOXP3 and IL2RA binding. Our results also suggest that one or more co-activators for STAT5A and/or STAT5B may play important roles in establishing different binding abilities and gene regulation behaviors. The new identification of these genes regulated by STAT5A and/or STAT5B has major implications for understanding the pathophysiology of cancer progression, neural disorders, and immune abnormalities.
Collapse
Affiliation(s)
- Takahiro Kanai
- Division of Immunology and Allergy, Department of Pediatrics, School of Medicine, Stanford University, Stanford, California, United States of America
| | - Scott Seki
- Division of Immunology and Allergy, Department of Pediatrics, School of Medicine, Stanford University, Stanford, California, United States of America
| | - Jennifer A Jenks
- Division of Immunology and Allergy, Department of Pediatrics, School of Medicine, Stanford University, Stanford, California, United States of America
| | - Arunima Kohli
- Division of Immunology and Allergy, Department of Pediatrics, School of Medicine, Stanford University, Stanford, California, United States of America
| | - Trupti Kawli
- Department of Genetics, School of Medicine, Stanford University, Stanford, California, United States of America
| | - Dorrelyn Patacsil Martin
- Department of Genetics, School of Medicine, Stanford University, Stanford, California, United States of America
| | - Michael Snyder
- Department of Genetics, School of Medicine, Stanford University, Stanford, California, United States of America
| | - Rosa Bacchetta
- Division of Immunology and Allergy, Department of Pediatrics, School of Medicine, Stanford University, Stanford, California, United States of America ; San Raffaele Telethon Institute for Gene Therapy (HSR-TIGET), San Raffaele Scientific Institute, Milan, Italy
| | - Kari C Nadeau
- Division of Immunology and Allergy, Department of Pediatrics, School of Medicine, Stanford University, Stanford, California, United States of America
| |
Collapse
|
39
|
Matalon O, Reicher B, Barda-Saad M. Wiskott-Aldrich syndrome protein - dynamic regulation of actin homeostasis: from activation through function and signal termination in T lymphocytes. Immunol Rev 2013; 256:10-29. [DOI: 10.1111/imr.12112] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Omri Matalon
- The Mina and Everard Goodman Faculty of Life Sciences; Bar-Ilan University; Ramat-Gan Israel
| | - Barak Reicher
- The Mina and Everard Goodman Faculty of Life Sciences; Bar-Ilan University; Ramat-Gan Israel
| | - Mira Barda-Saad
- The Mina and Everard Goodman Faculty of Life Sciences; Bar-Ilan University; Ramat-Gan Israel
| |
Collapse
|
40
|
Yousefi M, Duplay P. CD28 controls the development of innate-like CD8+ T cells by promoting the functional maturation of NKT cells. Eur J Immunol 2013; 43:3017-27. [PMID: 23896981 DOI: 10.1002/eji.201343627] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 06/20/2013] [Accepted: 07/24/2013] [Indexed: 11/08/2022]
Abstract
NK T cells(NKT cells) share functional characteristics and homing properties that are distinct from conventional T cells. In this study, we investigated the contribution of CD28 in the functional development of γδ NKT and αβ NKT cells in mice. We show that CD28 promotes the thymic maturation of promyelocytic leukemia zinc finger(+) IL-4(+) NKT cells and upregulation of LFA-1 expression on NKT cells. We demonstrate that the developmental defect of γδ NKT cells in CD28-deficient mice is cell autonomous. Moreover, we show in both wild-type C57BL/6 mice and in downstream of tyrosine kinase-1 transgenic mice, a mouse model with increased numbers of γδ NKT cells, that CD28-mediated regulation of thymic IL-4(+) NKT cells promotes the differentiation of eomesodermin(+) CD44(high) innate-like CD8(+) T cells. These findings reveal a previously unappreciated mechanism by which CD28 controls NKT-cell homeostasis and the size of the innate-like CD8(+) T-cell pool.
Collapse
Affiliation(s)
- Mitra Yousefi
- Institut National de la Recherche Scientifique-Institut Armand-Frappier, Université du Québec, Laval, Canada
| | | |
Collapse
|
41
|
Liang Y, Cucchetti M, Roncagalli R, Yokosuka T, Malzac A, Bertosio E, Imbert J, Nijman IJ, Suchanek M, Saito T, Wülfing C, Malissen B, Malissen M. The lymphoid lineage-specific actin-uncapping protein Rltpr is essential for costimulation via CD28 and the development of regulatory T cells. Nat Immunol 2013; 14:858-66. [PMID: 23793062 DOI: 10.1038/ni.2634] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 05/01/2013] [Indexed: 02/07/2023]
Abstract
Although T cell activation can result from signaling via T cell antigen receptor (TCR) alone, physiological T cell responses require costimulation via the coreceptor CD28. Through the use of an N-ethyl-N-nitrosourea-mutagenesis screen, we identified a mutation in Rltpr. We found that Rltpr was a lymphoid cell-specific, actin-uncapping protein essential for costimulation via CD28 and the development of regulatory T cells. Engagement of TCR-CD28 at the immunological synapse resulted in the colocalization of CD28 with both wild-type and mutant Rltpr proteins. However, the connection between CD28 and protein kinase C-θ and Carma1, two key effectors of CD28 costimulation, was abrogated in T cells expressing mutant Rltpr, and CD28 costimulation did not occur in those cells. Our findings provide a more complete model of CD28 costimulation in which Rltpr has a key role.
Collapse
Affiliation(s)
- Yinming Liang
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Marseille, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Chua RYR, Wong SH. SNX3 recruits to phagosomes and negatively regulates phagocytosis in dendritic cells. Immunology 2013; 139:30-47. [PMID: 23237080 DOI: 10.1111/imm.12051] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Revised: 12/10/2012] [Accepted: 12/10/2012] [Indexed: 12/11/2022] Open
Abstract
Phagocytes such as dendritic cells (DC) and macrophages employ phagocytosis to take up pathogenic bacteria into phagosomes, digest the bacteria and present the bacteria-derived peptide antigens to the adaptive immunity. Hence, efficient antigen presentation depends greatly on a well-regulated phagocytosis process. Lipids, particularly phosphoinositides, are critical components of the phagosomes. Phosphatidylinositol-3,4,5-triphosphate [PI(3,4,5)P3 ] is formed at the phagocytic cup, and as the phagosome seals off from the plasma membrane, rapid disappearance of PI(3,4,5)P3 is accompanied by high levels of phosphatidylinositol-3-phosphate (PI3P) formation. The sorting nexin (SNX) family consists of a diverse group of Phox-homology (PX) domain-containing cytoplasmic and membrane-associated proteins that are potential effectors of phosphoinositides. We hypothesized that SNX3, a small sorting nexin that contains a single PI3P lipid-binding PX domain as its only protein domain, localizes to phagosomes and regulates phagocytosis in DC. Our results show that SNX3 recruits to nascent phagosomes and silencing of SNX3 enhances phagocytic uptake of bacteria by DC. Furthermore, SNX3 competes with PI3P lipid-binding protein, early endosome antigen-1 (EEA1) recruiting to membranes. Our results indicate that SNX3 negatively regulates phagocytosis in DC possibly by modulating recruitment of essential PI3P lipid-binding proteins of the phagocytic pathways, such as EEA1, to phagosomal membranes.
Collapse
Affiliation(s)
- Rong Yuan Ray Chua
- Laboratory of Membrane Trafficking and Immunoregulation, Department of Microbiology, Immunology Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | |
Collapse
|
43
|
Wilkinson JM, Dyck MK, Dixon WT, Foxcroft GR, Dhakal S, Harding JC. Transcriptomic analysis identifies candidate genes and functional networks controlling the response of porcine peripheral blood mononuclear cells to mitogenic stimulation. J Anim Sci 2013; 90:3337-52. [PMID: 23038743 DOI: 10.2527/jas.2012-5167] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
It is difficult to obtain phenotypic data on disease susceptibility directly from swine in an industry setting. The magnitude of the proliferative response of peripheral blood mononuclear cells (PBMC) to the T cell mitogen concanavalin A (Con A) has long been used as an indirect measure of the responsiveness of the immune system to antigenic stimulation. This trait is known to exhibit moderate heritability in swine, but little is known about the identity of the genes that control the response. In this study, we carried out a time-course microarray experiment to measure gene expression at 3 different stages (3, 20, and 68 h) poststimulation of PBMC with Con A. A total of 46, 452, and 418 differentially expressed (DifEx) genes were identified at each time point, respectively. Expression changes for a subset of these genes were subsequently confirmed by real-time PCR. Functional annotation analyses of the microarray results successfully identified sets of genes involved in processes associated with multiple aspects of cell division, such as DNA and protein synthesis, and control of mitosis. However, the discovery of genes that controlled the response of PBMC to mitogen was limited with this approach, because the drastic changes in the transcriptional program necessitated by cells undergoing division masked changes in smaller immune response gene sets. Pathway and network analyses that focused on immune cells proved to be a more effective strategy for the identification of genes that coordinate aspects of the mitogenic response that are specific to PBMC. The cytokine gene IL15 was shown to be central to the highest scoring network at 20 h and affect the expression of 16 other DifEx genes, including some genes known to regulate T cell activation, such as IL7R, JUN, TNFRSF9, and ZAP70. The IL15 gene maps to a previously identified QTL interval for immune responsiveness to Con A on SSC 8, which also contains the related IL2 gene. At 68 h, a distinct downregulation of major histocompatibility complex class II antigen presentation genes was observed. Overall, the gene expression profile of the Con A-stimulated porcine PBMC points to a Th(1) bias in immune activation. Further work is required to determine whether polymorphisms linked to genes identified in this study affect this immune response trait in pig populations and whether the trait itself correlates with decreased susceptibility to intracellular pathogens in swine.
Collapse
Affiliation(s)
- J M Wilkinson
- Swine Reproduction and Development Program, Agriculture/Forestry Centre, University of Alberta, Edmonton T6G 2P5, Canada.
| | | | | | | | | | | |
Collapse
|
44
|
WASH knockout T cells demonstrate defective receptor trafficking, proliferation, and effector function. Mol Cell Biol 2012; 33:958-73. [PMID: 23275443 DOI: 10.1128/mcb.01288-12] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
WASH is an Arp2/3 activator of the Wiskott-Aldrich syndrome protein superfamily that functions during endosomal trafficking processes in collaboration with the retromer and sorting nexins, but its in vivo function has not been examined. To elucidate the physiological role of WASH in T cells, we generated a WASH conditional knockout (WASHout) mouse model. Using CD4(Cre) deletion, we found that thymocyte development and naive T cell activation are unaltered in the absence of WASH. Surprisingly, despite normal T cell receptor (TCR) signaling and interleukin-2 production, WASHout T cells demonstrate significantly reduced proliferative potential and fail to effectively induce experimental autoimmune encephalomyelitis. Interestingly, after activation, WASHout T cells fail to maintain surface levels of TCR, CD28, and LFA-1. Moreover, the levels of the glucose transporter, GLUT1, are also reduced compared to wild-type T cells. We further demonstrate that the loss of surface expression of these receptors in WASHout cells results from aberrant accumulation within the collapsed endosomal compartment, ultimately leading to degradation within the lysosome. Subsequently, activated WASHout T cells experience reduced glucose uptake and metabolic output. Thus, we found that WASH is a newly recognized regulator of TCR, CD28, LFA-1, and GLUT1 endosome-to-membrane recycling. Aberrant trafficking of these key T cell proteins may potentially lead to attenuated proliferation and effector function.
Collapse
|
45
|
Ma MPC, Chircop M. SNX9, SNX18 and SNX33 are required for progression through and completion of mitosis. J Cell Sci 2012; 125:4372-82. [PMID: 22718350 DOI: 10.1242/jcs.105981] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Mitosis involves considerable membrane remodelling and vesicular trafficking to generate two independent cells. Consequently, endocytosis and endocytic proteins are required for efficient mitotic progression and completion. Several endocytic proteins also participate in mitosis in an endocytosis-independent manner. Here, we report that the sorting nexin 9 (SNX9) subfamily members - SNX9, SNX18 and SNX33 - are required for progression and completion of mitosis. Depletion of any one of these proteins using siRNA induces multinucleation, an indicator of cytokinesis failure, as well as an accumulation of cytokinetic cells. Time-lapse microscopy on siRNA-treated cells revealed a role for SNX9 subfamily members in progression through the ingression and abscission stages of cytokinesis. Depletion of these three proteins disrupted MRLC(S19) localization during ingression and recruitment of Rab11-positive recycling endosomes to the intracellular bridge between nascent daughter cells. SNX9 depletion also disrupted the localization of Golgi during cytokinesis. Endocytosis of transferrin was blocked during cytokinesis by depletion of the SNX9 subfamily members, suggesting that these proteins participate in cytokinesis in an endocytosis-dependent manner. In contrast, depletion of SNX9 did not block transferrin uptake during metaphase but did delay chromosome alignment and segregation, suggesting that SNX9 plays an additional non-endocytic role at early mitotic stages. We conclude that SNX9 subfamily members are required for mitosis through both endocytosis-dependent and -independent processes.
Collapse
Affiliation(s)
- Maggie P C Ma
- Children's Medical Research Institute, The University of Sydney, Westmead, NSW 2145, Australia
| | | |
Collapse
|
46
|
Xu L, Yin W, Xia J, Peng M, Li S, Lin S, Pei D, Shu X. An antiapoptotic role of sorting nexin 7 is required for liver development in zebrafish. Hepatology 2012; 55:1985-93. [PMID: 22213104 DOI: 10.1002/hep.25560] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 12/15/2011] [Indexed: 12/29/2022]
Abstract
UNLABELLED Sorting nexin (SNX) family proteins are best characterized for their abilities to regulate protein trafficking during processes such as endocytosis of membrane receptors, endosomal sorting, and protein degradation, but their in vivo functions remain largely unknown. We started to investigate the biological functions of SNXs using the zebrafish model. In this study, we demonstrated that SNX7 was essential for embryonic liver development. Hepatoblasts were specified normally, and the proliferation of these cells was not affected when SNX7 was knocked down by gene-specific morpholinos; however, they underwent massive apoptosis during the early budding stage. SNX7 mainly regulated the survival of cells in the embryonic liver and did not affect the viability of cells in other endoderm-derived organs. We further demonstrated that down-regulation of SNX7 by short interfering RNAs induced apoptosis in cell culture. At the molecular level, the cellular FLICE-like inhibitory protein (c-FLIP)/caspase 8 pathway was activated when SNX7 was down-regulated. Furthermore, overexpression of c-FLIP(S) was able to rescue the SNX7 knockdown-induced liver defect. CONCLUSION SNX7 is a liver-enriched antiapoptotic protein that is indispensable for the survival of hepatoblasts during zebrafish early embryogenesis.
Collapse
Affiliation(s)
- Liangliang Xu
- Laboratory of Stem Cell Biology, Department of Biological Sciences and Biotechnology, Institute of Biomedicine, School of Medicine, Tsinghua University, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Insights into the PX (phox-homology) domain and SNX (sorting nexin) protein families: structures, functions and roles in disease. Biochem J 2011; 441:39-59. [DOI: 10.1042/bj20111226] [Citation(s) in RCA: 212] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The mammalian genome encodes 49 proteins that possess a PX (phox-homology) domain, responsible for membrane attachment to organelles of the secretory and endocytic system via binding of phosphoinositide lipids. The PX domain proteins, most of which are classified as SNXs (sorting nexins), constitute an extremely diverse family of molecules that play varied roles in membrane trafficking, cell signalling, membrane remodelling and organelle motility. In the present review, we present an overview of the family, incorporating recent functional and structural insights, and propose an updated classification of the proteins into distinct subfamilies on the basis of these insights. Almost all PX domain proteins bind PtdIns3P and are recruited to early endosomal membranes. Although other specificities and localizations have been reported for a select few family members, the molecular basis for binding to other lipids is still not clear. The PX domain is also emerging as an important protein–protein interaction domain, binding endocytic and exocytic machinery, transmembrane proteins and many other molecules. A comprehensive survey of the molecular interactions governed by PX proteins highlights the functional diversity of the family as trafficking cargo adaptors and membrane-associated scaffolds regulating cell signalling. Finally, we examine the mounting evidence linking PX proteins to different disorders, in particular focusing on their emerging importance in both pathogen invasion and amyloid production in Alzheimer's disease.
Collapse
|
48
|
Multiple roles for the p85α isoform in the regulation and function of PI3K signalling and receptor trafficking. Biochem J 2011; 441:23-37. [DOI: 10.1042/bj20111164] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The p85α protein is best known as the regulatory subunit of class 1A PI3Ks (phosphoinositide 3-kinases) through its interaction, stabilization and repression of p110-PI3K catalytic subunits. PI3Ks play multiple roles in the regulation of cell survival, signalling, proliferation, migration and vesicle trafficking. The present review will focus on p85α, with special emphasis on its important roles in the regulation of PTEN (phosphatase and tensin homologue deleted on chromosome 10) and Rab5 functions. The phosphatidylinositol-3-phosphatase PTEN directly counteracts PI3K signalling through dephosphorylation of PI3K lipid products. Thus the balance of p85α–p110 and p85α–PTEN complexes determines the signalling output of the PI3K/PTEN pathway, and under conditions of reduced p85α levels, the p85α–PTEN complex is selectively reduced, promoting PI3K signalling. Rab5 GTPases are important during the endocytosis, intracellular trafficking and degradation of activated receptor complexes. The p85α protein helps switch off Rab5, and if defective in this p85α function, results in sustained activated receptor tyrosine kinase signalling and cell transformation through disrupted receptor trafficking. The central role for p85α in the regulation of PTEN and Rab5 has widened the scope of p85α functions to include integration of PI3K activation (p110-mediated), deactivation (PTEN-mediated) and receptor trafficking/signalling (Rab5-mediated) functions, all with key roles in maintaining cellular homoeostasis.
Collapse
|
49
|
Abstract
From the pioneering work of Mabel and Lowell Hokin in the 1950s, the biology of this specific isomer of hexahydroxycyclohexane and its phosphorylated derivatives, in the form of inositol phosphates and phosphoinositides, has expanded to fill virtually every corner of cell biology, whole-organism physiology and development. In the present paper, I give a personal view of the role played by phosphoinositides in regulating the function of the endosomal network, and, in so doing, highlight some of the basic properties through which phosphoinositides regulate cell function.
Collapse
|
50
|
Nunez D, Antonescu C, Mettlen M, Liu A, Schmid SL, Loerke D, Danuser G. Hotspots organize clathrin-mediated endocytosis by efficient recruitment and retention of nucleating resources. Traffic 2011; 12:1868-78. [PMID: 21883765 DOI: 10.1111/j.1600-0854.2011.01273.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The formation of clathrin-coated pits (CCPs) at the plasma membrane has been reported to sometimes occur repeatedly at predefined sites. However, defining such CCP 'hotspots' structurally and mechanistically has been difficult due to the dynamic and heterogeneous nature of CCPs. Here, we explore the molecular requirements for hotspots using a global assay of CCP dynamics. Our data confirmed that a subset of CCPs is nucleated at spatially distinct sites. The degree of clustering of nucleation events at these sites is dependent on the integrity of cortical actin, and the availability of certain resources, including the adaptor protein AP-2 and the phospholipid PI(4,5)P(2) . We observe that modulation in the expression level of FCHo1 and 2, which have been reported to initiate CCPs, affects only the number of nucleations. Modulation in the expression levels of other accessory proteins, such as SNX9, affects the spatial clustering of CCPs but not the number of nucleations. On the basis of these findings, we distinguish two classes of accessory proteins in clathrin-mediated endocytosis (CME): nucleation factors and nucleation organizers. Finally, we observe that clustering of transferrin receptors spatially randomizes pit nucleation and thus reduces the role of hotspots. On the basis of these data, we propose that hotspots are specialized cortical actin patches that organize CCP nucleations from within the cell by more efficient recruitment and/or retention of the resources required for CCP nucleation partially due to the action of nucleation organizers.
Collapse
Affiliation(s)
- Daniel Nunez
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | |
Collapse
|