1
|
Black A, Williams TD, Soubigou F, Joshua IM, Zhou H, Lamoliatte F, Rousseau A. The ribosome-associated chaperone Zuo1 controls translation upon TORC1 inhibition. EMBO J 2023; 42:e113240. [PMID: 37984430 PMCID: PMC10711665 DOI: 10.15252/embj.2022113240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 10/23/2023] [Accepted: 10/26/2023] [Indexed: 11/22/2023] Open
Abstract
Protein requirements of eukaryotic cells are ensured by proteostasis, which is mediated by tight control of TORC1 activity. Upon TORC1 inhibition, protein degradation is increased and protein synthesis is reduced through inhibition of translation initiation to maintain cell viability. Here, we show that the ribosome-associated complex (RAC)/Ssb chaperone system, composed of the HSP70 chaperone Ssb and its HSP40 co-chaperone Zuo1, is required to maintain proteostasis and cell viability under TORC1 inhibition in Saccharomyces cerevisiae. In the absence of Zuo1, translation does not decrease in response to the loss of TORC1 activity. A functional interaction between Zuo1 and Ssb is required for proper translational control and proteostasis maintenance upon TORC1 inhibition. Furthermore, we have shown that the rapid degradation of eIF4G following TORC1 inhibition is mediated by autophagy and is prevented in zuo1Δ cells, contributing to decreased survival in these conditions. We found that autophagy is defective in zuo1Δ cells, which impedes eIF4G degradation upon TORC1 inhibition. Our findings identify an essential role for RAC/Ssb in regulating translation in response to changes in TORC1 signalling.
Collapse
Affiliation(s)
- Ailsa Black
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life SciencesUniversity of DundeeDundeeUK
| | - Thomas D Williams
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life SciencesUniversity of DundeeDundeeUK
| | - Flavie Soubigou
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life SciencesUniversity of DundeeDundeeUK
| | - Ifeoluwapo M Joshua
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life SciencesUniversity of DundeeDundeeUK
| | - Houjiang Zhou
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life SciencesUniversity of DundeeDundeeUK
| | - Frederic Lamoliatte
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life SciencesUniversity of DundeeDundeeUK
| | - Adrien Rousseau
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life SciencesUniversity of DundeeDundeeUK
| |
Collapse
|
2
|
Chen YJ, Cheng SY, Liu CH, Tsai WC, Wu HH, Huang MD. Exploration of the truncated cytosolic Hsp70 in plants - unveiling the diverse T1 lineage and the conserved T2 lineage. FRONTIERS IN PLANT SCIENCE 2023; 14:1279540. [PMID: 38034583 PMCID: PMC10687569 DOI: 10.3389/fpls.2023.1279540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/18/2023] [Indexed: 12/02/2023]
Abstract
The 70-kDa heat shock proteins (Hsp70s) are chaperone proteins involved in protein folding processes. Truncated Hsp70 (Hsp70T) refers to the variant lacking a conserved C-terminal motif, which is crucial for co-chaperone interactions or protein retention. Despite their significance, the characteristics of Hsp70Ts in plants remain largely unexplored. In this study, we performed a comprehensive genome-wide analysis of 192 sequenced plant and green algae genomes to investigate the distribution and features of Hsp70Ts. Our findings unveil the widespread occurrence of Hsp70Ts across all four Hsp70 forms, including cytosolic, endoplasmic reticulum, mitochondrial, and chloroplast Hsp70s, with cytosolic Hsp70T being the most prevalent and abundant subtype. Cytosolic Hsp70T is characterized by two distinct lineages, referred to as T1 and T2. Among the investigated plant and green algae species, T1 genes were identified in approximately 60% of cases, showcasing a variable gene count ranging from one to several dozens. In contrast, T2 genes were prevalent across the majority of plant genomes, usually occurring in fewer than five gene copies per species. Sequence analysis highlights that the putative T1 proteins exhibit higher similarity to full-length cytosolic Hsp70s in comparison to T2 proteins. Intriguingly, the T2 lineage demonstrates a higher level of conservation within their protein sequences, whereas the T1 lineage presents a diverse range in the C-terminal and SBDα region, leading to categorization into four distinct subtypes. Furthermore, we have observed that T1-rich species characterized by the possession of 15 or more T1 genes exhibit an expansion of T1 genes into tandem gene clusters. The T1 gene clusters identified within the Laurales order display synteny with clusters found in a species of the Chloranthales order and another species within basal angiosperms, suggesting a conserved evolutionary relationship of T1 gene clusters among these plants. Additionally, T2 genes demonstrate distinct expression patterns in seeds and under heat stress, implying their potential roles in seed development and stress response.
Collapse
Affiliation(s)
- Yi-Jing Chen
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Sou-Yu Cheng
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Cheng-Han Liu
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Wen-Chieh Tsai
- Institute of Tropical Plant Sciences and Microbiology, National Cheng Kung University, Tainan, Taiwan
| | - Hsin-Hsin Wu
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Ming-Der Huang
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| |
Collapse
|
3
|
Li W, Zhu L, Wu B, Liu Y, Li J, Xu L, Huangfu X, Shi D, Gu L, Chen C. Improving mesophilic anaerobic digestion of food waste by side-stream thermophilic reactor: Activation of methanogenic, key enzymes and metabolism. WATER RESEARCH 2023; 241:120167. [PMID: 37290195 DOI: 10.1016/j.watres.2023.120167] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/21/2023] [Accepted: 06/01/2023] [Indexed: 06/10/2023]
Abstract
Anaerobic digestion (AD) is a favorable way to convert organic pollutants, such as food waste (FW), into clean energy through microbial action. This work adopted a side-stream thermophilic anaerobic digestion (STA) strategy to improve a digestive system's efficiency and stability. Results showed that the STA strategy brought higher methane production as well as higher system stability. It quickly adapted to thermal stimulation and increased the specific methane production from 359 mL CH4/g·VS to 439 mL CH4/g·VS, which was also higher than 317 mL CH4/g·VS from single-stage thermophilic anaerobic digestion. Further exploration of the mechanism of STA using metagenomic and metaproteomic analysis revealed enhanced activity of key enzymes. The main metabolic pathway was up-regulated, while the dominant bacteria were concentrated, and the multifunctional Methanosarcina was enriched. These results indicate that STA optimized organic metabolism patterns, comprehensively promoted methane production pathways, and formed various energy conservation mechanisms. Further, the system's limited heating avoided adverse effects from thermal stimulation, and activated enzyme activity and heat shock proteins through circulating slurries, which improved the metabolic process, showing great application potential.
Collapse
Affiliation(s)
- Wen Li
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing, 400045, PR China
| | - Lirong Zhu
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing, 400045, PR China
| | - Baocun Wu
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing, 400045, PR China
| | - Yongli Liu
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing, 400045, PR China
| | - Jinze Li
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing, 400045, PR China
| | - Linji Xu
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing, 400045, PR China
| | - Xiaoliu Huangfu
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing, 400045, PR China
| | - Dezhi Shi
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing, 400045, PR China
| | - Li Gu
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing, 400045, PR China.
| | - Cong Chen
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing, 400045, PR China
| |
Collapse
|
4
|
Kišonaitė M, Wild K, Lapouge K, Gesé GV, Kellner N, Hurt E, Sinning I. Structural inventory of cotranslational protein folding by the eukaryotic RAC complex. Nat Struct Mol Biol 2023; 30:670-677. [PMID: 37081320 DOI: 10.1038/s41594-023-00973-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 03/20/2023] [Indexed: 04/22/2023]
Abstract
The challenge of nascent chain folding at the ribosome is met by the conserved ribosome-associated complex (RAC), which forms a chaperone triad with the Hsp70 protein Ssb in fungi, and consists of the non-canonical Hsp70 Ssz1 and the J domain protein Zuotin (Zuo1). Here we determine cryo-EM structures of Chaetomium thermophilum RAC bound to 80S ribosomes. RAC adopts two distinct conformations accommodating continuous ribosomal rotation by a flexible lever arm. It is held together by a tight interaction between the Ssz1 substrate-binding domain and the Zuo1 N terminus, and additional contacts between the Ssz1 nucleotide-binding domain and Zuo1 J- and Zuo1 homology domains, which form a rigid unit. The Zuo1 HPD motif conserved in J-proteins is masked in a non-canonical interaction by the Ssz1 nucleotide-binding domain, and allows the positioning of Ssb for activation by Zuo1. Overall, we provide the basis for understanding how RAC cooperates with Ssb in a dynamic nascent chain interaction and protein folding.
Collapse
Affiliation(s)
- Miglė Kišonaitė
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| | - Klemens Wild
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| | - Karine Lapouge
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| | | | - Nikola Kellner
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| | - Ed Hurt
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| | - Irmgard Sinning
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany.
| |
Collapse
|
5
|
Shao W, Sun K, Ma T, Jiang H, Hahn M, Ma Z, Jiao C, Yin Y. SUMOylation regulates low-temperature survival and oxidative DNA damage tolerance in Botrytis cinerea. THE NEW PHYTOLOGIST 2023; 238:817-834. [PMID: 36651012 DOI: 10.1111/nph.18748] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 01/13/2023] [Indexed: 06/17/2023]
Abstract
SUMOylation as one of the protein post-translational modifications plays crucial roles in multiple biological processes of eukaryotic organisms. Botrytis cinerea is a devastating fungal pathogen and capable of infecting plant hosts at low temperature. However, the molecular mechanisms of low-temperature adaptation are largely unknown in fungi. Combining with biochemical methods and biological analyses, we report that SUMOylation regulates pathogen survival at low temperature and oxidative DNA damage response during infection in B. cinerea. The heat shock protein (Hsp70) BcSsb and E3 ubiquitin ligase BcRad18 were identified as substrates of SUMOylation; moreover, their SUMOylation both requires a single unique SUMO-interacting motif (SIM). SUMOylated BcSsb regulates β-tubulin accumulation, thereby affecting the stability of microtubules and consequently mycelial growth at low temperature. On the contrary, SUMOylated BcRad18 modulates mono-ubiquitination of the sliding clamp protein proliferating cell nuclear antigen (PCNA), which is involved in response to oxidative DNA damage during infection. Our study uncovers the molecular mechanisms of SUMOylation-mediated low-temperature survival and oxidative DNA damage tolerance during infection in a devastating fungal pathogen, which provides novel insights into low-temperature adaptation and pathogenesis for postharvest pathogens as well as new targets for inhibitor invention in disease control.
Collapse
Affiliation(s)
- Wenyong Shao
- State Key Laboratory of Rice Biology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Kewei Sun
- State Key Laboratory of Rice Biology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Tianling Ma
- State Key Laboratory of Rice Biology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Huixian Jiang
- State Key Laboratory of Rice Biology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Matthias Hahn
- Department of Biology, University of Kaiserslautern, PO Box 3049, 67653, Kaiserslautern, Germany
| | - Zhonghua Ma
- State Key Laboratory of Rice Biology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Chen Jiao
- State Key Laboratory of Rice Biology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Yanni Yin
- State Key Laboratory of Rice Biology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| |
Collapse
|
6
|
Structural remodeling of ribosome associated Hsp40-Hsp70 chaperones during co-translational folding. Nat Commun 2022; 13:3410. [PMID: 35701497 PMCID: PMC9197937 DOI: 10.1038/s41467-022-31127-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 06/02/2022] [Indexed: 11/16/2022] Open
Abstract
Ribosome associated complex (RAC), an obligate heterodimer of HSP40 and HSP70 (Zuo1 and Ssz1 in yeast), is conserved in eukaryotes and functions as co-chaperone for another HSP70 (Ssb1/2 in yeast) to facilitate co-translational folding of nascent polypeptides. Many mechanistic details, such as the coordination of one HSP40 with two HSP70s and the dynamic interplay between RAC-Ssb and growing nascent chains, remain unclear. Here, we report three sets of structures of RAC-containing ribosomal complexes isolated from Saccharomyces cerevisiae. Structural analyses indicate that RAC on the nascent-chain-free ribosome is in an autoinhibited conformation, and in the presence of a nascent chain at the peptide tunnel exit (PTE), RAC undergoes large-scale structural remodeling to make Zuo1 J-Domain more accessible to Ssb. Our data also suggest a role of Zuo1 in orienting Ssb-SBD proximal to the PTE for easy capture of the substrate. Altogether, in accordance with previous data, our work suggests a sequence of structural remodeling events for RAC-Ssb during co-translational folding, triggered by the binding and passage of growing nascent chain from one to another. Ribosome associated complex (RAC)- HSP70 (Ssb in yeast) is a eukaryotic chaperone system involved in co-translational folding. Here, authors report structures of RAC-containing ribosomal complexes, which suggest a working model for the dynamic actions of RAC-Ssb during the process.
Collapse
|
7
|
Schilke BA, Craig EA. Essentiality of Sis1, a J-domain protein Hsp70 cochaperone, can be overcome by Tti1, a specialized PIKK chaperone. Mol Biol Cell 2021; 33:br3. [PMID: 34935410 PMCID: PMC9250385 DOI: 10.1091/mbc.e21-10-0493] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
J-domain protein cochaperones drive much of the functional diversity of Hsp70-based chaperone systems. Sis1 is the only essential J-domain protein of the cytosol/nucleus of Saccharomyces cerevisiae. Why it is required for cell growth is not understood, nor how critical its role is in regulation of heat shock transcription factor 1 (Hsf1). We report that single-residue substitutions in Tti1, a component of the heterotrimeric TTT complex, a specialized chaperone system for phosphatidylinositol 3-kinase-related kinase (PIKK) proteins, allow growth of cells lacking Sis1. Upon depletion of Sis1, cells become hypersensitive to rapamycin, a specific inhibitor of TORC1 kinase. In addition, levels of the three essential PIKKs (Mec1, Tra1, and Tor2), as well as Tor1, decrease upon Sis1 depletion. Overexpression of Tti1 allows growth without an increase in the other subunits of the TTT complex, Tel2 and Tti2, suggesting that it can function independent of the complex. Cells lacking Sis1, with viability supported by Tti1 suppressor, substantially up-regulate some, but not all, heat shock elements activated by Hsf1. Together, our results suggest that Sis1 is required as a cochaperone of Hsp70 for the folding/maintenance of PIKKs, making Sis1 an essential gene, and its requirement for Hsf1 regulation is more nuanced than generally appreciated.
Collapse
Affiliation(s)
- Brenda A Schilke
- Department of Biochemistry, 433 Babcock Drive, University of Wisconsin - Madison, Madison, Wisconsin 53706
| | - Elizabeth A Craig
- Department of Biochemistry, 433 Babcock Drive, University of Wisconsin - Madison, Madison, Wisconsin 53706
| |
Collapse
|
8
|
Lee K, Ziegelhoffer T, Delewski W, Berger SE, Sabat G, Craig EA. Pathway of Hsp70 interactions at the ribosome. Nat Commun 2021; 12:5666. [PMID: 34580293 PMCID: PMC8476630 DOI: 10.1038/s41467-021-25930-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 09/08/2021] [Indexed: 11/09/2022] Open
Abstract
In eukaryotes, an Hsp70 molecular chaperone triad assists folding of nascent chains emerging from the ribosome tunnel. In fungi, the triad consists of canonical Hsp70 Ssb, atypical Hsp70 Ssz1 and J-domain protein cochaperone Zuo1. Zuo1 binds the ribosome at the tunnel exit. Zuo1 also binds Ssz1, tethering it to the ribosome, while its J-domain stimulates Ssb’s ATPase activity to drive efficient nascent chain interaction. But the function of Ssz1 and how Ssb engages at the ribosome are not well understood. Employing in vivo site-specific crosslinking, we found that Ssb(ATP) heterodimerizes with Ssz1. Ssb, in a manner consistent with the ADP conformation, also crosslinks to ribosomal proteins across the tunnel exit from Zuo1. These two modes of Hsp70 Ssb interaction at the ribosome suggest a functionally efficient interaction pathway: first, Ssb(ATP) with Ssz1, allowing optimal J-domain and nascent chain engagement; then, after ATP hydrolysis, Ssb(ADP) directly with the ribosome. Here, the authors use in vivo site-specific crosslinking to provide molecular-level insight into how the fungal Hsp70 chaperone system — the Ssb:Ssz1:Zuo1 triad — assists the folding process for the nascent peptide chain emerging from the ribosome tunnel.
Collapse
Affiliation(s)
- Kanghyun Lee
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA.,Department of Biochemistry and Biophysics, Institute for Neurodegenerative Diseases, University of California, San Francisco, CA, 94158, USA
| | - Thomas Ziegelhoffer
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - Wojciech Delewski
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - Scott E Berger
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA.,Department of Chemistry, Lafayette College, Easton, PA, 18042, USA.,Biophysics Program, Stanford University, Stanford, CA, 94305, USA
| | - Grzegorz Sabat
- Biotechnology Center, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - Elizabeth A Craig
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA.
| |
Collapse
|
9
|
A role for the ribosome-associated complex in activation of the IRE1 branch of UPR. Cell Rep 2021; 35:109217. [PMID: 34107246 DOI: 10.1016/j.celrep.2021.109217] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 03/31/2021] [Accepted: 05/13/2021] [Indexed: 12/11/2022] Open
Abstract
The ubiquitous ribosome-associated complex (RAC) is a chaperone that spans ribosomes, making contacts near both the polypeptide exit tunnel and the decoding center, a position prime for sensing and coordinating translation and folding. Loss of RAC is known to result in growth defects and sensitization to translational and osmotic stresses. However, the physiological substrates of RAC and the mechanism(s) by which RAC is involved in responding to specific stresses in higher eukaryotes remain obscure. The data presented here uncover an essential function of mammalian RAC in the unfolded protein response (UPR). Knockdown of RAC sensitizes mammalian cells to endoplasmic reticulum (ER) stress and selectively interferes with IRE1 branch activation. Higher-order oligomerization of the inositol-requiring enzyme 1α (IRE1α) kinase/endoribonuclease depends upon RAC. These results reveal a surveillance function for RAC in the UPR, as follows: modulating IRE1α clustering as required for endonuclease activation and splicing of the substrate Xbp1 mRNA.
Collapse
|
10
|
Normal levels of ribosome-associated chaperones cure two groups of [PSI+] prion variants. Proc Natl Acad Sci U S A 2020; 117:26298-26306. [PMID: 33020283 DOI: 10.1073/pnas.2016954117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The yeast prion [PSI+] is a self-propagating amyloid of the translation termination factor, Sup35p. For known pathogenic prions, such as [PSI+], a single protein can form an array of different amyloid structures (prion variants) each stably inherited and with differing biological properties. The ribosome-associated chaperones, Ssb1/2p (Hsp70s), and RAC (Zuo1p (Hsp40) and Ssz1p (Hsp70)), enhance de novo protein folding by protecting nascent polypeptide chains from misfolding and maintain translational fidelity by involvement in translation termination. Ssb1/2p and RAC chaperones were previously found to inhibit [PSI+] prion generation. We find that most [PSI+] variants arising in the absence of each chaperone were cured by restoring normal levels of that protein. [PSI+] variants hypersensitive to Ssb1/2p have distinguishable biological properties from those hypersensitive to Zuo1p or Ssz1p. The elevated [PSI+] generation frequency in each deletion strain is not due to an altered [PIN+], another prion that primes [PSI+] generation. [PSI+] prion generation/propagation may be inhibited by Ssb1/2/RAC chaperones by ensuring proper folding of nascent Sup35p, thus preventing its joining amyloid fibers. Alternatively, the effect of RAC/Ssb mutations on translation termination and the absence of an effect on the [URE3] prion suggest an effect on the mature Sup35p such that it does not readily join amyloid filaments. Ssz1p is degraded in zuo1Δ [psi-] cells, but not if the cells carry any of several [PSI+] variants. Our results imply that prions arise more frequently than had been thought but the cell has evolved exquisite antiprion systems that rapidly eliminate most variants.
Collapse
|
11
|
The ribosome-associated complex RAC serves in a relay that directs nascent chains to Ssb. Nat Commun 2020; 11:1504. [PMID: 32198371 PMCID: PMC7083937 DOI: 10.1038/s41467-020-15313-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 03/03/2020] [Indexed: 11/21/2022] Open
Abstract
The conserved ribosome-associated complex (RAC) consisting of Zuo1 (Hsp40) and Ssz1 (non-canonical Hsp70) acts together with the ribosome-bound Hsp70 chaperone Ssb in de novo protein folding at the ribosomal tunnel exit. Current models suggest that the function of Ssz1 is confined to the support of Zuo1, however, it is not known whether RAC by itself serves as a chaperone for nascent chains. Here we show that, via its rudimentary substrate binding domain (SBD), Ssz1 directly binds to emerging nascent chains prior to Ssb. Structural and biochemical analyses identify a conserved LP-motif at the Zuo1 N-terminus forming a polyproline-II helix, which binds to the Ssz1-SBD as a pseudo-substrate. The LP-motif competes with nascent chain binding to the Ssz1-SBD and modulates nascent chain transfer. The combined data indicate that Ssz1 is an active chaperone optimized for transient, low-affinity substrate binding, which ensures the flux of nascent chains through RAC/Ssb. The ribosome-associated complex (RAC), which contains the Hsp40 protein Zuo1 and the non-canonical Hsp70 protein Ssz1 forms a chaperone triad with the fungal-specific Hsp70 protein Ssb. Here the authors combine X-ray crystallography, crosslinking and biochemical experiments and present the structure of the Zuo1 N-terminus bound to Ssz1 and demonstrate that Ssz1 is an active chaperone for nascent chains.
Collapse
|
12
|
Deuerling E, Gamerdinger M, Kreft SG. Chaperone Interactions at the Ribosome. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a033977. [PMID: 30833456 DOI: 10.1101/cshperspect.a033977] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The continuous refreshment of the proteome is critical to maintain protein homeostasis and to adapt cells to changing conditions. Thus, de novo protein biogenesis by ribosomes is vitally important to every cellular system. This process is delicate and error-prone and requires, besides cytosolic chaperones, the guidance by a specialized set of molecular chaperones that bind transiently to the translation machinery and the nascent protein to support early folding events and to regulate cotranslational protein transport. These chaperones include the bacterial trigger factor (TF), the archaeal and eukaryotic nascent polypeptide-associated complex (NAC), and the eukaryotic ribosome-associated complex (RAC). This review focuses on the structures, functions, and substrates of these ribosome-associated chaperones and highlights the most recent findings about their potential mechanisms of action.
Collapse
Affiliation(s)
- Elke Deuerling
- Molecular Microbiology, Department of Biology, University of Konstanz, 78464 Konstanz, Germany
| | - Martin Gamerdinger
- Molecular Microbiology, Department of Biology, University of Konstanz, 78464 Konstanz, Germany
| | - Stefan G Kreft
- Molecular Microbiology, Department of Biology, University of Konstanz, 78464 Konstanz, Germany
| |
Collapse
|
13
|
Kramer G, Shiber A, Bukau B. Mechanisms of Cotranslational Maturation of Newly Synthesized Proteins. Annu Rev Biochem 2019; 88:337-364. [DOI: 10.1146/annurev-biochem-013118-111717] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The timely production of functional proteins is of critical importance for the biological activity of cells. To reach the functional state, newly synthesized polypeptides have to become enzymatically processed, folded, and assembled into oligomeric complexes and, for noncytosolic proteins, translocated across membranes. Key activities of these processes occur cotranslationally, assisted by a network of machineries that transiently engage nascent polypeptides at distinct phases of translation. The sequence of events is tuned by intrinsic features of the nascent polypeptides and timely association of factors with the translating ribosome. Considering the dynamics of translation, the heterogeneity of cellular proteins, and the diversity of interaction partners, it is a major cellular achievement that these processes are temporally and spatially so precisely coordinated, minimizing the generation of damaged proteins. This review summarizes the current progress we have made toward a comprehensive understanding of the cotranslational interactions of nascent chains, which pave the way to their functional state.
Collapse
Affiliation(s)
- Günter Kramer
- Center for Molecular Biology of Heidelberg University (ZMBH) and German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, D-69120 Heidelberg, Germany;,
| | - Ayala Shiber
- Center for Molecular Biology of Heidelberg University (ZMBH) and German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, D-69120 Heidelberg, Germany;,
| | - Bernd Bukau
- Center for Molecular Biology of Heidelberg University (ZMBH) and German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, D-69120 Heidelberg, Germany;,
| |
Collapse
|
14
|
Lee SH, Kim YH, Lee K, Im H. Peptidyl-Prolyl Isomerase Cpr7p of Yeast Prevents Protein Aggregation Upon Freezing. B KOREAN CHEM SOC 2018. [DOI: 10.1002/bkcs.11581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Seung Hyun Lee
- Department of Integrative Bioscience and Biotechnology; Sejong University; Seoul 05006 Korea
| | - Yang-Hee Kim
- Department of Integrative Bioscience and Biotechnology; Sejong University; Seoul 05006 Korea
| | - Kyunghee Lee
- Department of Chemistry; Sejong University; Seoul 05006 Korea
| | - Hana Im
- Department of Integrative Bioscience and Biotechnology; Sejong University; Seoul 05006 Korea
| |
Collapse
|
15
|
Yang J, Liu M, Liu X, Yin Z, Sun Y, Zhang H, Zheng X, Wang P, Zhang Z. Heat-Shock Proteins MoSsb1, MoSsz1, and MoZuo1 Attenuate MoMkk1-Mediated Cell-Wall Integrity Signaling and Are Important for Growth and Pathogenicity of Magnaporthe oryzae. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:1211-1221. [PMID: 29869941 PMCID: PMC6790631 DOI: 10.1094/mpmi-02-18-0052-r] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The mitogen-activated protein kinase (MAPK) MoMkk1 governs the cell-wall integrity (CWI) pathway in rice blast fungus Magnaporthe oryzae. To understand the underlying mechanism, we have identified MoSsb1 as one of the MoMkk1-interacting proteins. MoSsb1 is a stress-seventy subfamily B (Ssb) protein homolog, sharing high amino acid sequence homology with the 70-kDa heat shock proteins (Hsp70s). Hsp70 are a family of conserved and ubiquitously expressed chaperones that regulate protein biogenesis by promoting protein folding, preventing protein aggregation, and controlling protein degradation. We found that MoSsb1 regulates the synthesis of nascent polypeptide chains and this regulation is achieved by being in complex with other members of Hsp70s MoSsz1 and 40-kDa Hsp40 MoZuo1. MoSsb1 is important for the growth, conidiation, and full virulence of the blast fungus and this role is also shared by MoSsz1 and MoZuo1. Importantly, MoSsb1, MoSsz1, and MoZuo1 are all involved in the regulation of the CWI MAPK pathway by modulating MoMkk1 biosynthesis. Our studies reveal novel insights into how MoSsb1, MoSsz1, and MoZuo1 affect CWI signaling that is involved in regulating growth, differentiation, and virulence of M. oryzae and highlight the conserved functional mechanisms of heat-shock proteins in pathogenic fungi.
Collapse
Affiliation(s)
- Jie Yang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - Muxing Liu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - Xinyu Liu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - Ziyi Yin
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - Yi Sun
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - Haifeng Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - Xiaobo Zheng
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - Ping Wang
- Departments of Pediatrics, and Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, U.S.A
| | - Zhengguang Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
- Corresponding author: Zhengguang Zhang;
| |
Collapse
|
16
|
Importance of Proteasome Gene Expression during Model Dough Fermentation after Preservation of Baker's Yeast Cells by Freezing. Appl Environ Microbiol 2018; 84:AEM.00406-18. [PMID: 29625985 DOI: 10.1128/aem.00406-18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 03/30/2018] [Indexed: 11/20/2022] Open
Abstract
Freeze-thaw stress causes various types of cellular damage, survival and/or proliferation defects, and metabolic alterations. However, the mechanisms underlying how cells cope with freeze-thaw stress are poorly understood. Here, model dough fermentations using two baker's yeast strains, 45 and YF, of Saccharomyces cerevisiae were compared after 2 weeks of cell preservation in a refrigerator or freezer. YF exhibited slow fermentation after exposure to freeze-thaw stress due to low cell viability. A DNA microarray analysis of the YF cells during fermentation revealed that the genes involved in oxidative phosphorylation were relatively strongly expressed, suggesting a decrease in the glycolytic capacity. Furthermore, we found that mRNA levels of the genes that encode the components of the proteasome complex were commonly low, and ubiquitinated proteins were accumulated by freeze-thaw stress in the YF strain. In the cells with a laboratory strain background, treatment with the proteasome inhibitor MG132 or the deletion of each transcriptional activator gene for the proteasome genes (RPN4, PDR1, or PDR3) led to marked impairment of model dough fermentation using the frozen cells. Based on these data, proteasomal degradation of freeze-thaw-damaged proteins may guarantee high cell viability and fermentation performance. We also found that the freeze-thaw stress-sensitive YF strain was heterozygous at the PDR3 locus, and one of the alleles (A148T/A229V/H336R/L541P) was shown to possess a dominant negative phenotype of slow fermentation. Removal of such responsible mutations could improve the freeze-thaw stress tolerance and the fermentation performance of baker's yeast strains, as well as other industrial S. cerevisiae strains.IMPORTANCE The development of freezing technology has enabled the long-term preservation and long-distance transport of foods and other agricultural products. Fresh yeast, however, is usually not frozen because the fermentation performance and/or the viability of individual cells is severely affected after thawing. Here, we demonstrate that proteasomal degradation of ubiquitinated proteins is an essential process in the freeze-thaw stress responses of S. cerevisiae Upstream transcriptional activator genes for the proteasome components are responsible for the fermentation performance after freezing preservation. Thus, this study provides a potential linkage between freeze-thaw stress inputs and the transcriptional regulatory network that might be functionally conserved in higher eukaryotes. Elucidation of the molecular targets of freeze-thaw stress will contribute to advances in cryobiology, such as freezing preservation of human cells, tissues, and embryos for medical purposes and breeding of industrial microorganisms and agricultural crops that adapt well to low temperatures.
Collapse
|
17
|
Acosta-Sampson L, Döring K, Lin Y, Yu VY, Bukau B, Kramer G, Cate JHD. Role for ribosome-associated complex and stress-seventy subfamily B (RAC-Ssb) in integral membrane protein translation. J Biol Chem 2017; 292:19610-19627. [PMID: 28972146 PMCID: PMC5712606 DOI: 10.1074/jbc.m117.813857] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Indexed: 01/04/2023] Open
Abstract
Targeting of most integral membrane proteins to the endoplasmic reticulum is controlled by the signal recognition particle, which recognizes a hydrophobic signal sequence near the protein N terminus. Proper folding of these proteins is monitored by the unfolded protein response and involves protein degradation pathways to ensure quality control. Here, we identify a new pathway for quality control of major facilitator superfamily transporters that occurs before the first transmembrane helix, the signal sequence recognized by the signal recognition particle, is made by the ribosome. Increased rates of translation elongation of the N-terminal sequence of these integral membrane proteins can divert the nascent protein chains to the ribosome-associated complex and stress-seventy subfamily B chaperones. We also show that quality control of integral membrane proteins by ribosome-associated complex-stress-seventy subfamily B couples translation rate to the unfolded protein response, which has implications for understanding mechanisms underlying human disease and protein production in biotechnology.
Collapse
Affiliation(s)
| | - Kristina Döring
- the Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, Heidelberg D-69120, Germany
- the German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg D-69120, Germany, and
| | - Yuping Lin
- From the Departments of Molecular and Cell Biology and
| | - Vivian Y Yu
- From the Departments of Molecular and Cell Biology and
| | - Bernd Bukau
- the Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, Heidelberg D-69120, Germany
- the German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg D-69120, Germany, and
| | - Günter Kramer
- the Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, Heidelberg D-69120, Germany
- the German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg D-69120, Germany, and
| | - Jamie H D Cate
- From the Departments of Molecular and Cell Biology and
- Chemistry, University of California, Berkeley, California 94720
- the Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| |
Collapse
|
18
|
Liu Z, Wang Z, Huang M, Yan L, Ma Z, Yin Y. The FgSsb-FgZuo-FgSsz complex regulates multiple stress responses and mycotoxin production via folding the soluble SNARE Vam7 and β2-tubulin in Fusarium graminearum. Environ Microbiol 2017; 19:5040-5059. [PMID: 29076607 DOI: 10.1111/1462-2920.13968] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 10/16/2017] [Accepted: 10/19/2017] [Indexed: 11/28/2022]
Abstract
Hsp70 proteins play important roles in protein folding in the budding yeast, but their functions in pathogenic fungi are largely unknown. Here, we found that Fusarium graminearum Hsp70 proteins FgSsb, FgSsz and their cochaperone FgZuo formed a complex. This complex was required for microtubule morphology, vacuole fusion and endocytosis. More importantly, the β2-tubulin FgTub2 and SNARE protein FgVam7 were identified as targeting proteins of this complex. We further found that the complex FgSsb-FgZuo-FgSsz controlled sensitivity of F. graminearum to the antimicrotubule drug carbendazim and cold stress via regulating the folding of FgTub2. Moreover, this complex assisted the folding of FgVam7, subsequently modulated vacuole fusion and responses to heavy metal, osmotic and oxidative stresses. In addition, the deletion of this complex led to dramatically decreased deoxynivalenol biosynthesis. This study uncovers a novel regulating mechanism of Hsp70 in multiple stress responses in a filamentous fungus.
Collapse
Affiliation(s)
- Zunyong Liu
- Institute of Biotechnology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Zhihui Wang
- Institute of Biotechnology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Mengmeng Huang
- Institute of Biotechnology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Leiyan Yan
- Ningbo Academy of Agricultural Sciences, Ningbo, 315040, China
| | - Zhonghua Ma
- Institute of Biotechnology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China.,State Key Laboratory of Rice Biology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Yanni Yin
- Institute of Biotechnology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| |
Collapse
|
19
|
Two chaperones locked in an embrace: structure and function of the ribosome-associated complex RAC. Nat Struct Mol Biol 2017; 24:611-619. [PMID: 28771464 DOI: 10.1038/nsmb.3435] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 06/14/2017] [Indexed: 12/26/2022]
Abstract
Chaperones, which assist protein folding are essential components of every living cell. The yeast ribosome-associated complex (RAC) is a chaperone that is highly conserved in eukaryotic cells. The RAC consists of the J protein Zuo1 and the unconventional Hsp70 homolog Ssz1. The RAC heterodimer stimulates the ATPase activity of the ribosome-bound Hsp70 homolog Ssb, which interacts with nascent polypeptide chains to facilitate de novo protein folding. In addition, the RAC-Ssb system is required to maintain the fidelity of protein translation. Recent work reveals important details of the unique structures of RAC and Ssb and identifies how the chaperones interact with the ribosome. The new findings start to uncover how the exceptional chaperone triad cooperates in protein folding and maintenance of translational fidelity and its connection to extraribosomal functions.
Collapse
|
20
|
Protein quality control at the ribosome: focus on RAC, NAC and RQC. Essays Biochem 2017; 60:203-212. [PMID: 27744336 DOI: 10.1042/ebc20160011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 05/09/2016] [Indexed: 11/17/2022]
Abstract
The biogenesis of new polypeptides by ribosomes and their subsequent correct folding and localization to the appropriate cellular compartments are essential key processes to maintain protein homoeostasis. These complex mechanisms are governed by a repertoire of protein biogenesis factors that directly bind to the ribosome and chaperone nascent polypeptide chains as soon as they emerge from the ribosomal tunnel exit. This nascent chain 'welcoming committee' regulates multiple co-translational processes including protein modifications, folding, targeting and degradation. Acting at the front of the protein production line, these ribosome-associated protein biogenesis factors lead the way in the cellular proteostasis network to ensure proteome integrity. In this article, I focus on three different systems in eukaryotes that are critical for the maintenance of protein homoeostasis by controlling the birth, life and death of nascent polypeptide chains.
Collapse
|
21
|
Weyer FA, Gumiero A, Gesé GV, Lapouge K, Sinning I. Structural insights into a unique Hsp70-Hsp40 interaction in the eukaryotic ribosome-associated complex. Nat Struct Mol Biol 2017; 24:144-151. [PMID: 28067917 DOI: 10.1038/nsmb.3349] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 12/01/2016] [Indexed: 01/19/2023]
Abstract
Cotranslational chaperones assist de novo folding of nascent polypeptides, prevent them from aggregating and modulate translation. The ribosome-associated complex (RAC) is unique in that the Hsp40 protein Zuo1 and the atypical Hsp70 chaperone Ssz1 form a stable heterodimer, which acts as a cochaperone for the Hsp70 chaperone Ssb. Here we present the structure of the Chaetomium thermophilum RAC core comprising Ssz1 and the Zuo1 N terminus. We show how the conserved allostery of Hsp70 proteins is abolished and this Hsp70-Hsp40 pair is molded into a functional unit. Zuo1 stabilizes Ssz1 in trans through interactions that in canonical Hsp70s occur in cis. Ssz1 is catalytically inert and cannot adopt the closed conformation, but the substrate binding domain β is completed by Zuo1. Our study offers insights into the coupling of a special Hsp70-Hsp40 pair, which evolved to link protein folding and translation.
Collapse
Affiliation(s)
| | - Andrea Gumiero
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| | | | - Karine Lapouge
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| | - Irmgard Sinning
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| |
Collapse
|
22
|
Multivalent contacts of the Hsp70 Ssb contribute to its architecture on ribosomes and nascent chain interaction. Nat Commun 2016; 7:13695. [PMID: 27917864 PMCID: PMC5150220 DOI: 10.1038/ncomms13695] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 10/25/2016] [Indexed: 01/11/2023] Open
Abstract
Hsp70 chaperones assist de novo folding of newly synthesized proteins in all cells. In yeast, the specialized Hsp70 Ssb directly binds to ribosomes. The structural basis and functional mode of recruitment of Ssb to ribosomes is not understood. Here, we present the molecular details underlying ribosome binding of Ssb in Saccharomyces cerevisiae. This interaction is multifaceted, involving the co-chaperone RAC and two specific regions within Ssb characterized by positive charges. The C-terminus of Ssb mediates the key contact and a second attachment point is provided by a KRR-motif in the substrate binding domain. Strikingly, ribosome binding of Ssb is not essential. Autonomous ribosome attachment becomes necessary if RAC is absent, suggesting a dual mode of Ssb recruitment to nascent chains. We propose, that the multilayered ribosomal interaction allows positioning of Ssb in an optimal orientation to the tunnel exit guaranteeing an efficient nascent polypeptide interaction. The correct folding of proteins often requires the intervention molecular chaperones, which can occur co-translationally. Here the authors identify elements of yeast Ssb (Hsp70) that mediate ribosomal binding, and suggest a mechanism that directs efficient interaction of Ssb with the nascent chain.
Collapse
|
23
|
Gumiero A, Conz C, Gesé GV, Zhang Y, Weyer FA, Lapouge K, Kappes J, von Plehwe U, Schermann G, Fitzke E, Wölfle T, Fischer T, Rospert S, Sinning I. Interaction of the cotranslational Hsp70 Ssb with ribosomal proteins and rRNA depends on its lid domain. Nat Commun 2016; 7:13563. [PMID: 27882919 PMCID: PMC5123055 DOI: 10.1038/ncomms13563] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 10/13/2016] [Indexed: 12/22/2022] Open
Abstract
Cotranslational chaperones assist in de novo folding of nascent polypeptides in all organisms. In yeast, the heterodimeric ribosome-associated complex (RAC) forms a unique chaperone triad with the Hsp70 homologue Ssb. We report the X-ray structure of full length Ssb in the ATP-bound open conformation at 2.6 Å resolution and identify a positively charged region in the α-helical lid domain (SBDα), which is present in all members of the Ssb-subfamily of Hsp70s. Mutational analysis demonstrates that this region is strictly required for ribosome binding. Crosslinking shows that Ssb binds close to the tunnel exit via contacts with both, ribosomal proteins and rRNA, and that specific contacts can be correlated with switching between the open (ATP-bound) and closed (ADP-bound) conformation. Taken together, our data reveal how Ssb dynamics on the ribosome allows for the efficient interaction with nascent chains upon RAC-mediated activation of ATP hydrolysis. In yeast, the heterodimeric ribosome-associated complex (RAC) acts in concert with the Hsp70 protein Ssb, forming a unique chaperone triad. Here the authors use structural and biochemical approaches to shed light on how translation and folding are coupled in eukaryotes.
Collapse
Affiliation(s)
- Andrea Gumiero
- Heidelberg University Biochemistry Center (BZH), INF 328, D-69120 Heidelberg, Germany
| | - Charlotte Conz
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, D-79104 Freiburg, Germany.,BIOSS Centre for Biological Signaling Studies, University of Freiburg, D-79104 Freiburg, Germany
| | - Genís Valentín Gesé
- Heidelberg University Biochemistry Center (BZH), INF 328, D-69120 Heidelberg, Germany
| | - Ying Zhang
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, D-79104 Freiburg, Germany.,BIOSS Centre for Biological Signaling Studies, University of Freiburg, D-79104 Freiburg, Germany
| | - Felix Alexander Weyer
- Heidelberg University Biochemistry Center (BZH), INF 328, D-69120 Heidelberg, Germany
| | - Karine Lapouge
- Heidelberg University Biochemistry Center (BZH), INF 328, D-69120 Heidelberg, Germany
| | - Julia Kappes
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, D-79104 Freiburg, Germany
| | - Ulrike von Plehwe
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, D-79104 Freiburg, Germany
| | - Géza Schermann
- Heidelberg University Biochemistry Center (BZH), INF 328, D-69120 Heidelberg, Germany
| | - Edith Fitzke
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, D-79104 Freiburg, Germany.,BIOSS Centre for Biological Signaling Studies, University of Freiburg, D-79104 Freiburg, Germany
| | - Tina Wölfle
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, D-79104 Freiburg, Germany.,BIOSS Centre for Biological Signaling Studies, University of Freiburg, D-79104 Freiburg, Germany
| | - Tamás Fischer
- Heidelberg University Biochemistry Center (BZH), INF 328, D-69120 Heidelberg, Germany
| | - Sabine Rospert
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, D-79104 Freiburg, Germany.,BIOSS Centre for Biological Signaling Studies, University of Freiburg, D-79104 Freiburg, Germany
| | - Irmgard Sinning
- Heidelberg University Biochemistry Center (BZH), INF 328, D-69120 Heidelberg, Germany
| |
Collapse
|
24
|
Lee K, Sharma R, Shrestha OK, Bingman CA, Craig EA. Dual interaction of the Hsp70 J-protein cochaperone Zuotin with the 40S and 60S ribosomal subunits. Nat Struct Mol Biol 2016; 23:1003-1010. [PMID: 27669034 PMCID: PMC5097012 DOI: 10.1038/nsmb.3299] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 08/31/2016] [Indexed: 12/30/2022]
Abstract
Ribosome-associated J protein-Hsp70 chaperones promote nascent polypeptide folding and normal translational fidelity. Though known to span the ribosome subunits, understanding of J protein Zuo1 function is limited. New structural and crosslinking data allow more precise positioning of Saccharomyces cerevisiae Zuo1 near the 60S polypeptide exit site, pointing to interactions with ribosomal protein eL31 and 25S rRNA helix 24. The junction between the 60S-interacting and subunit-spanning helices is a hinge, positioning Zuo1 on the 40S, yet accommodating subunit rotation. Interaction between C-terminus of Zuo1 and 40S occurs via 18S rRNA expansion segment 12 (ES12) of helix 44, which originates at the decoding site. Deletions in either ES12 or C-terminus of Zuo1 alter stop codon readthrough and −1 frameshifting. Our study offers insight into how this cotranslational chaperone system may monitor decoding site activity and nascent polypeptide transit, thereby coordinating protein translation and folding.
Collapse
Affiliation(s)
- Kanghyun Lee
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ruchika Sharma
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Om Kumar Shrestha
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Craig A Bingman
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Elizabeth A Craig
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
25
|
Amor AJ, Castanzo DT, Delany SP, Selechnik DM, van Ooy A, Cameron DM. The ribosome-associated complex antagonizes prion formation in yeast. Prion 2016; 9:144-64. [PMID: 25739058 PMCID: PMC4601405 DOI: 10.1080/19336896.2015.1022022] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The number of known fungal proteins capable of switching between alternative stable conformations is steadily increasing, suggesting that a prion-like mechanism may be broadly utilized as a means to propagate altered cellular states. To gain insight into the mechanisms by which cells regulate prion formation and toxicity we examined the role of the yeast ribosome-associated complex (RAC) in modulating both the formation of the [PSI(+)] prion - an alternative conformer of Sup35 protein - and the toxicity of aggregation-prone polypeptides. The Hsp40 RAC chaperone Zuo1 anchors the RAC to ribosomes and stimulates the ATPase activity of the Hsp70 chaperone Ssb. We found that cells lacking Zuo1 are sensitive to over-expression of some aggregation-prone proteins, including the Sup35 prion domain, suggesting that co-translational protein misfolding increases in Δzuo1 strains. Consistent with this finding, Δzuo1 cells exhibit higher frequencies of spontaneous and induced prion formation. Cells expressing mutant forms of Zuo1 lacking either a C-terminal charged region required for ribosome association, or the J-domain responsible for Ssb ATPase stimulation, exhibit similarly high frequencies of prion formation. Our findings are consistent with a role for the RAC in chaperoning nascent Sup35 to regulate folding of the N-terminal prion domain as it emerges from the ribosome.
Collapse
Affiliation(s)
- Alvaro J Amor
- a Biology Department ; Ursinus College ; Collegeville , PA USA
| | | | | | | | | | | |
Collapse
|
26
|
Wallace EWJ, Kear-Scott JL, Pilipenko EV, Schwartz MH, Laskowski PR, Rojek AE, Katanski CD, Riback JA, Dion MF, Franks AM, Airoldi EM, Pan T, Budnik BA, Drummond DA. Reversible, Specific, Active Aggregates of Endogenous Proteins Assemble upon Heat Stress. Cell 2015; 162:1286-98. [PMID: 26359986 DOI: 10.1016/j.cell.2015.08.041] [Citation(s) in RCA: 357] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 06/19/2015] [Accepted: 08/05/2015] [Indexed: 01/03/2023]
Abstract
Heat causes protein misfolding and aggregation and, in eukaryotic cells, triggers aggregation of proteins and RNA into stress granules. We have carried out extensive proteomic studies to quantify heat-triggered aggregation and subsequent disaggregation in budding yeast, identifying >170 endogenous proteins aggregating within minutes of heat shock in multiple subcellular compartments. We demonstrate that these aggregated proteins are not misfolded and destined for degradation. Stable-isotope labeling reveals that even severely aggregated endogenous proteins are disaggregated without degradation during recovery from shock, contrasting with the rapid degradation observed for many exogenous thermolabile proteins. Although aggregation likely inactivates many cellular proteins, in the case of a heterotrimeric aminoacyl-tRNA synthetase complex, the aggregated proteins remain active with unaltered fidelity. We propose that most heat-induced aggregation of mature proteins reflects the operation of an adaptive, autoregulatory process of functionally significant aggregate assembly and disassembly that aids cellular adaptation to thermal stress.
Collapse
Affiliation(s)
- Edward W J Wallace
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 East 57(th) Street, Chicago, IL 60637, USA
| | - Jamie L Kear-Scott
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 East 57(th) Street, Chicago, IL 60637, USA
| | - Evgeny V Pilipenko
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 East 57(th) Street, Chicago, IL 60637, USA
| | - Michael H Schwartz
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 East 57(th) Street, Chicago, IL 60637, USA
| | - Pawel R Laskowski
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 East 57(th) Street, Chicago, IL 60637, USA
| | - Alexandra E Rojek
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 East 57(th) Street, Chicago, IL 60637, USA; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Christopher D Katanski
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 East 57(th) Street, Chicago, IL 60637, USA
| | - Joshua A Riback
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 East 57(th) Street, Chicago, IL 60637, USA
| | - Michael F Dion
- FAS Center for Systems Biology, Harvard University, Cambridge, MA 02138, USA
| | | | - Edoardo M Airoldi
- FAS Center for Systems Biology, Harvard University, Cambridge, MA 02138, USA; Department of Statistics, Harvard University, Cambridge, MA 02138, USA
| | - Tao Pan
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 East 57(th) Street, Chicago, IL 60637, USA
| | - Bogdan A Budnik
- FAS Center for Systems Biology, Harvard University, Cambridge, MA 02138, USA
| | - D Allan Drummond
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 East 57(th) Street, Chicago, IL 60637, USA.
| |
Collapse
|
27
|
Blocking Hsp70 enhances the efficiency of amphotericin B treatment against resistant Aspergillus terreus strains. Antimicrob Agents Chemother 2015; 59:3778-88. [PMID: 25870060 DOI: 10.1128/aac.05164-14] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 04/04/2015] [Indexed: 12/24/2022] Open
Abstract
The polyene antifungal amphotericin B (AmB) is widely used to treat life-threatening fungal infections. Even though AmB resistance is exceptionally rare in fungi, most Aspergillus terreus isolates exhibit an intrinsic resistance against the drug in vivo and in vitro. Heat shock proteins perform a fundamental protective role against a multitude of stress responses, thereby maintaining protein homeostasis in the organism. In this study, we elucidated the role of heat shock protein 70 (Hsp70) family members and compared resistant and susceptible A. terreus clinical isolates. The upregulation of cytoplasmic Hsp70 members at the transcriptional as well as translational levels was significantly higher with AmB treatment than without AmB treatment, particularly in resistant A. terreus isolates, thereby indicating a role of Hsp70 proteins in the AmB response. We found that Hsp70 inhibitors considerably increased the susceptibility of resistant A. terreus isolates to AmB but exerted little impact on susceptible isolates. Also, in in vivo experiments, using the Galleria mellonella infection model, cotreatment of resistant A. terreus strains with AmB and the Hsp70 inhibitor pifithrin-μ resulted in significantly improved survival compared with that achieved with AmB alone. Our results point to an important mechanism of regulation of AmB resistance by Hsp70 family members in A. terreus and suggest novel drug targets for the treatment of infections caused by resistant fungal isolates.
Collapse
|
28
|
Kaschner LA, Sharma R, Shrestha OK, Meyer AE, Craig EA. A conserved domain important for association of eukaryotic J-protein co-chaperones Jjj1 and Zuo1 with the ribosome. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:1035-45. [PMID: 25639645 DOI: 10.1016/j.bbamcr.2015.01.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 01/20/2015] [Accepted: 01/22/2015] [Indexed: 11/28/2022]
Abstract
J-proteins, obligate co-chaperones, provide specialization for Hsp70 function in a variety of cellular processes. Two of the 13 J-proteins of the yeast cytosol/nucleus, Zuo1 and Jjj1, are associated with 60S ribosomal subunits. Abundant Zuo1 facilitates folding of nascent polypeptides; Jjj1, of much lower abundance, functions in ribosome biogenesis. However, overexpression of Jjj1 substantially rescues growth defects of cells lacking Zuo1. We analyzed a region held in common by Zuo1 and Jjj1, outside the signature J-domain found in all J-proteins. This shared "zuotin homology domain" (ZHD) is important for ribosome association of both proteins. An N-terminal segment of Jjj1, containing the J-domain and ZHD, is ribosome-associated and, like full-length Jjj1, is competent to rescue both the cold- and cation-sensitivity of ∆zuo1. However, this fragment, when expressed at normal levels, cannot rescue the cytosolic ribosome biogenesis defect of ∆jjj1. Our results are consistent with a model in which the primary functions of Zuo1 and Jjj1 occur in the cytosol. In addition, our data suggest that Zuo1 and Jjj1 bind overlapping sites on ribosomes due to an interaction via their common ZHDs, but Jjj1 binds primarily to pre-60S particles and Zuo1 to mature subunits. We hypothesize that ZUO1 and JJJ1, which are conserved throughout eukaryotes, arose from an ancient duplication of a progenitor J-protein gene that encoded the ZHD ribosome-binding region; subsequently, specialized roles and additional ribosome interaction sites evolved.
Collapse
Affiliation(s)
- Lindsey A Kaschner
- Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, USA; Department of Biochemistry, University of Wisconsin-Madison, USA
| | - Ruchika Sharma
- Department of Biochemistry, University of Wisconsin-Madison, USA
| | | | - Alison E Meyer
- Department of Biochemistry, University of Wisconsin-Madison, USA
| | | |
Collapse
|
29
|
Tenge VR, Zuehlke AD, Shrestha N, Johnson JL. The Hsp90 cochaperones Cpr6, Cpr7, and Cns1 interact with the intact ribosome. EUKARYOTIC CELL 2015; 14:55-63. [PMID: 25380751 PMCID: PMC4279014 DOI: 10.1128/ec.00170-14] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 11/05/2014] [Indexed: 01/02/2023]
Abstract
The abundant molecular chaperone Hsp90 is essential for the folding and stabilization of hundreds of distinct client proteins. Hsp90 is assisted by multiple cochaperones that modulate Hsp90's ATPase activity and/or promote client interaction, but the in vivo functions of many of these cochaperones are largely unknown. We found that Cpr6, Cpr7, and Cns1 interact with the intact ribosome and that Saccharomyces cerevisiae lacking CPR7 or containing mutations in CNS1 exhibited sensitivity to the translation inhibitor hygromycin. Cpr6 contains a peptidyl-prolyl isomerase (PPIase) domain and a tetratricopeptide repeat (TPR) domain flanked by charged regions. Truncation or alteration of basic residues near the carboxy terminus of Cpr6 disrupted ribosome interaction. Cns1 contains an amino-terminal TPR domain and a poorly characterized carboxy-terminal domain. The isolated carboxy-terminal domain was able to interact with the ribosome. Although loss of CPR6 does not cause noticeable growth defects, overexpression of CPR6 results in enhanced growth defects in cells expressing the temperature-sensitive cns1-G90D mutation (the G-to-D change at position 90 encoded by cns1). Cpr6 mutants that exhibit reduced ribosome interaction failed to cause growth defects, indicating that ribosome interaction is required for in vivo functions of Cpr6. Together, these results represent a novel link between the Hsp90 molecular-chaperone machine and protein synthesis.
Collapse
Affiliation(s)
- Victoria R Tenge
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
| | - Abbey D Zuehlke
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
| | - Neelima Shrestha
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
| | - Jill L Johnson
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
| |
Collapse
|
30
|
Structural basis for interaction of a cotranslational chaperone with the eukaryotic ribosome. Nat Struct Mol Biol 2014; 21:1042-6. [PMID: 25362488 DOI: 10.1038/nsmb.2908] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 09/30/2014] [Indexed: 11/08/2022]
Abstract
Cotranslational chaperones, ubiquitous in all living organisms, protect nascent polypeptides from aggregation and facilitate their de novo folding. Importantly, emerging data have also suggested that ribosome-associated cotranslational chaperones have active regulatory roles in modulating protein translation. By characterizing the structure of a type of eukaryotic cotranslational chaperone, the ribosome-associated complex (RAC) from Saccharomyces cerevisiae, we show that RAC cross-links two ribosomal subunits, through a single long α-helix, to limit the predominant intersubunit rotation required for peptide elongation. We further demonstrate that any changes in the continuity, length or rigidity of this middle α-helix impair RAC function in vivo. Our results suggest a new mechanism in which RAC directly regulates protein translation by mechanically coupling cotranslational folding with the peptide-elongation cycle, and they lay the foundation for further exploration of regulatory roles of RAC in translation control.
Collapse
|
31
|
Detecting selection in the blue crab, Callinectes sapidus, using DNA sequence data from multiple nuclear protein-coding genes. PLoS One 2014; 9:e99081. [PMID: 24896825 PMCID: PMC4045945 DOI: 10.1371/journal.pone.0099081] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Accepted: 05/11/2014] [Indexed: 11/23/2022] Open
Abstract
The identification of genes involved in the adaptive evolution of non-model organisms with uncharacterized genomes constitutes a major challenge. This study employed a rigorous and targeted candidate gene approach to test for positive selection on protein-coding genes of the blue crab, Callinectes sapidus. Four genes with putative roles in physiological adaptation to environmental stress were chosen as candidates. A fifth gene not expected to play a role in environmental adaptation was used as a control. Large samples (n>800) of DNA sequences from C. sapidus were used in tests of selective neutrality based on sequence polymorphisms. In combination with these, sequences from the congener C. similis were used in neutrality tests based on interspecific divergence. In multiple tests, significant departures from neutral expectations and indicative of positive selection were found for the candidate gene trehalose 6-phosphate synthase (tps). These departures could not be explained by any of the historical population expansion or bottleneck scenarios that were evaluated in coalescent simulations. Evidence was also found for balancing selection at ATP-synthase subunit 9 (atps) using a maximum likelihood version of the Hudson, Kreitmen, and Aguadé test, and positive selection favoring amino acid replacements within ATP/ADP translocase (ant) was detected using the McDonald-Kreitman test. In contrast, test statistics for the control gene, ribosomal protein L12 (rpl), which presumably has experienced the same demographic effects as the candidate loci, were not significantly different from neutral expectations and could readily be explained by demographic effects. Together, these findings demonstrate the utility of the candidate gene approach for investigating adaptation at the molecular level in a marine invertebrate for which extensive genomic resources are not available.
Collapse
|
32
|
Chen DH, Huang Y, Liu C, Ruan Y, Shen WH. Functional conservation and divergence of J-domain-containing ZUO1/ZRF orthologs throughout evolution. PLANTA 2014; 239:1159-1173. [PMID: 24659052 DOI: 10.1007/s00425-014-2058-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 03/05/2014] [Indexed: 06/03/2023]
Abstract
Heat shock protein 40s (Hsp40s), also known as J-proteins, are conserved in prokaryotes and eukaryotes. The Zuotin/Zuotin-related factor (ZUO1/ZRF) family belongs to a novel Hsp40 clade exclusively found in eukaryotes. Zuotin/Zuotin-related factor proteins are characterized by a large N terminal ZUO1 domain originally identified in the yeast ZUO1 protein. The ZUO1 domain is characterized by a highly conserved J-domain, together with an atypical UBD domain first identified in the human ZRF1 protein. Furthermore, ZUO1/ZRF protein families in animals and plants harbor a pair of C terminal SANT domains, suggesting the divergence of their functions with those in fungi. Zuotin/Zuotin-related factor proteins retain the ancestral function as an Hsp70co-chaperone implicated in protein folding and renaturation after stress; these proteins also perform diverse neofunctions in the cytoplasm and transcriptional and/or epigenetic regulatory functions in the nucleus. Therefore, these proteins are involved in translational fidelity control, ribosomal biogenesis, asymmetric cell division, cell cycle, apoptosis, differentiation, and tumorigenesis. The results of sequence and domain organization analysis of proteins from diverse organisms provided valuable insights into the evolutionary conservation and diversity of ZUO1/ZRF protein family. Further, phylogenetic analysis provides a platform for future functional investigation on the ZUO1/ZRF protein family, particularly in higher plants.
Collapse
|
33
|
Abrams JL, Verghese J, Gibney PA, Morano KA. Hierarchical functional specificity of cytosolic heat shock protein 70 (Hsp70) nucleotide exchange factors in yeast. J Biol Chem 2014; 289:13155-67. [PMID: 24671421 DOI: 10.1074/jbc.m113.530014] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Heat shock protein 70 (Hsp70) molecular chaperones play critical roles in protein homeostasis. In the budding yeast Saccharomyces cerevisiae, cytosolic Hsp70 interacts with up to three types of nucleotide exchange factors (NEFs) homologous to human counterparts: Sse1/Sse2 (Heat shock protein 110 (Hsp110)), Fes1 (HspBP1), and Snl1 (Bag-1). All three NEFs stimulate ADP release; however, it is unclear why multiple distinct families have been maintained throughout eukaryotic evolution. In this study we investigate NEF roles in Hsp70 cell biology using an isogenic combinatorial collection of NEF deletion mutants. Utilizing well characterized model substrates, we find that Sse1 participates in most Hsp70-mediated processes and is of particular importance in protein biogenesis and degradation, whereas Fes1 contributes to a minimal extent. Surprisingly, disaggregation and resolubilization of thermally denatured firefly luciferase occurred independently of NEF activity. Simultaneous deletion of SSE1 and FES1 resulted in constitutive activation of heat shock protein expression mediated by the transcription factor Hsf1, suggesting that these two factors are important for modulating stress response. Fes1 was found to interact in vivo preferentially with the Ssa family of cytosolic Hsp70 and not the co-translational Ssb homolog, consistent with the lack of cold sensitivity and protein biogenesis phenotypes for fes1Δ cells. No significant consequence could be attributed to deletion of the minor Hsp110 SSE2 or the Bag homolog SNL1. Together, these lines of investigation provide a comparative analysis of NEF function in yeast that implies Hsp110 is the principal NEF for cytosolic Hsp70, making it an ideal candidate for therapeutic intervention in human protein folding disorders.
Collapse
Affiliation(s)
- Jennifer L Abrams
- From the Department of Microbiology and Molecular Genetics, University of Texas Medical School, Houston, Texas 77030
| | | | | | | |
Collapse
|
34
|
The phytoalexin camalexin induces fundamental changes in the proteome of Alternaria brassicicola different from those caused by brassinin. Fungal Biol 2014; 118:83-93. [DOI: 10.1016/j.funbio.2013.11.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 10/22/2013] [Accepted: 11/19/2013] [Indexed: 02/07/2023]
|
35
|
Chernova TA, Wilkinson KD, Chernoff YO. Physiological and environmental control of yeast prions. FEMS Microbiol Rev 2013; 38:326-44. [PMID: 24236638 DOI: 10.1111/1574-6976.12053] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 11/08/2013] [Accepted: 11/10/2013] [Indexed: 11/30/2022] Open
Abstract
Prions are self-perpetuating protein isoforms that cause fatal and incurable neurodegenerative disease in mammals. Recent evidence indicates that a majority of human proteins involved in amyloid and neural inclusion disorders possess at least some prion properties. In lower eukaryotes, such as yeast, prions act as epigenetic elements, which increase phenotypic diversity by altering a range of cellular processes. While some yeast prions are clearly pathogenic, it is also postulated that prion formation could be beneficial in variable environmental conditions. Yeast and mammalian prions have similar molecular properties. Crucial cellular factors and conditions influencing prion formation and propagation were uncovered in the yeast models. Stress-related chaperones, protein quality control deposits, degradation pathways, and cytoskeletal networks control prion formation and propagation in yeast. Environmental stresses trigger prion formation and loss, supposedly acting via influencing intracellular concentrations of the prion-inducing proteins, and/or by localizing prionogenic proteins to the prion induction sites via heterologous ancillary helpers. Physiological and environmental modulation of yeast prions points to new opportunities for pharmacological intervention and/or prophylactic measures targeting general cellular systems rather than the properties of individual amyloids and prions.
Collapse
Affiliation(s)
- Tatiana A Chernova
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | | | | |
Collapse
|
36
|
Biology of the heat shock response and protein chaperones: budding yeast (Saccharomyces cerevisiae) as a model system. Microbiol Mol Biol Rev 2012; 76:115-58. [PMID: 22688810 DOI: 10.1128/mmbr.05018-11] [Citation(s) in RCA: 384] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The eukaryotic heat shock response is an ancient and highly conserved transcriptional program that results in the immediate synthesis of a battery of cytoprotective genes in the presence of thermal and other environmental stresses. Many of these genes encode molecular chaperones, powerful protein remodelers with the capacity to shield, fold, or unfold substrates in a context-dependent manner. The budding yeast Saccharomyces cerevisiae continues to be an invaluable model for driving the discovery of regulatory features of this fundamental stress response. In addition, budding yeast has been an outstanding model system to elucidate the cell biology of protein chaperones and their organization into functional networks. In this review, we evaluate our understanding of the multifaceted response to heat shock. In addition, the chaperone complement of the cytosol is compared to those of mitochondria and the endoplasmic reticulum, organelles with their own unique protein homeostasis milieus. Finally, we examine recent advances in the understanding of the roles of protein chaperones and the heat shock response in pathogenic fungi, which is being accelerated by the wealth of information gained for budding yeast.
Collapse
|
37
|
Ducett JK, Peterson FC, Hoover LA, Prunuske AJ, Volkman BF, Craig EA. Unfolding of the C-terminal domain of the J-protein Zuo1 releases autoinhibition and activates Pdr1-dependent transcription. J Mol Biol 2012; 425:19-31. [PMID: 23036859 DOI: 10.1016/j.jmb.2012.09.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 09/17/2012] [Indexed: 11/28/2022]
Abstract
The C-terminal 69 residues of the J-protein Zuo1 are sufficient to activate Pdr1, a transcription factor involved in both pleiotropic drug resistance and growth control. Little is understood about the pathway of activation by this primarily ribosome associated Hsp40 co-chaperone. Here, we report that only the C-terminal 13 residues of Zuo1 are required for activation of Pdr1, with hydrophobic residues being critical for activity. Two-hybrid interaction experiments suggest that the interaction between this 13-residue Zuo1 peptide and Pdr1 is direct, analogous to the activation of Pdr1 by xenobiotics. However, simply dissociation of Zuo1 from the ribosome is not sufficient for induction of Pdr1 transcriptional activity, as the C-terminal 86 residues of Zuo1 fold into an autoinhibitory left-handed four-helix bundle. Hydrophobic residues critical for interaction with Pdr1 are sequestered within the structure of this C-terminal domain (CTD), necessitating unfolding for activation. Thus, although expression of the CTD does not result in activation, alterations that destabilize the structure cause induction of pleiotropic drug resistance. These destabilizing alterations also result in dissociation of the full-length protein from the ribosome. Thus, our results are consistent with an activation pathway in which unfolding of Zuo1's C-terminal helical bundle domain results in ribosome dissociation followed by activation of Pdr1 via a direct interaction.
Collapse
Affiliation(s)
- Jeanette K Ducett
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA
| | | | | | | | | | | |
Collapse
|
38
|
Ribosome-associated complex and Ssb are required for translational repression induced by polylysine segments within nascent chains. Mol Cell Biol 2012; 32:4769-79. [PMID: 23007158 DOI: 10.1128/mcb.00809-12] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
When a polyadenylated nonstop transcript is fully translated, a complex consisting of the ribosome, the nonstop mRNA, and the C-terminally polylysine-tagged protein is generated. In Saccharomyces cerevisiae, a 3-step quality control system prevents formation of such dead-end complexes. Nonstop mRNA is rapidly degraded, translation of nonstop mRNA is repressed, and finally, nonstop proteins are cotranslationally degraded. Nonstop mRNA degradation depends on Ski7 and the exosome; nonstop protein degradation depends on the ribosome-bound E3 ligase Ltn1 and the proteasome. However, components which mediate translational repression of nonstop mRNA have previously not been identified. Here we show that the ribosome-bound chaperone system consisting of the ribosome-associated complex (RAC) and the Hsp70 homolog Ssb is required to stabilize translationally repressed ribosome-polylysine protein complexes, without affecting the folding or the degradation of polylysine proteins. As a consequence, in the absence of RAC/Ssb, polylysine proteins escaped translational repression and subsequently folded into their native conformation. This active role of RAC/Ssb in the quality control of polylysine proteins significantly contributed to the low level of expression of nonstop transcripts in vivo.
Collapse
|
39
|
Abstract
A common need for microbial cells is the ability to respond to potentially toxic environmental insults. Here we review the progress in understanding the response of the yeast Saccharomyces cerevisiae to two important environmental stresses: heat shock and oxidative stress. Both of these stresses are fundamental challenges that microbes of all types will experience. The study of these environmental stress responses in S. cerevisiae has illuminated many of the features now viewed as central to our understanding of eukaryotic cell biology. Transcriptional activation plays an important role in driving the multifaceted reaction to elevated temperature and levels of reactive oxygen species. Advances provided by the development of whole genome analyses have led to an appreciation of the global reorganization of gene expression and its integration between different stress regimens. While the precise nature of the signal eliciting the heat shock response remains elusive, recent progress in the understanding of induction of the oxidative stress response is summarized here. Although these stress conditions represent ancient challenges to S. cerevisiae and other microbes, much remains to be learned about the mechanisms dedicated to dealing with these environmental parameters.
Collapse
|
40
|
Role for the molecular chaperones Zuo1 and Ssz1 in quorum sensing via activation of the transcription factor Pdr1. Proc Natl Acad Sci U S A 2011; 109:472-7. [PMID: 22203981 DOI: 10.1073/pnas.1119184109] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Zuo1 functions as a J-protein cochaperone of its partner Hsp70. In addition, the C terminus of Zuo1 and the N terminus of Ssz1, with which Zuo1 forms a heterodimer, can independently activate the Saccharomyces cerevisiae transcription factor pleiotropic drug resistance 1 (Pdr1). Here we report that activation of Pdr1 by Zuo1 or Ssz1 causes premature growth arrest of cells during the diauxic shift, as they adapt to the changing environmental conditions. Conversely, cells lacking Zuo1 or Ssz1 overgrow, arresting at a higher cell density, an effect overcome by activation of Pdr1. Cells lacking the genes encoding plasma membrane transporters Pdr5 and Snq2, two targets of Pdr1, also overgrow at the diauxic shift. Adding conditioned medium harvested from cultures of wild-type cells attenuated the overgrowth of both zuo1Δssz1Δ and pdr5Δsnq2Δ cells, suggesting the extracellular presence of molecules that signal growth arrest. In addition, our yeast two-hybrid analysis revealed an interaction between Pdr1 and both Zuo1 and Ssz1. Together, our results support a model in which (i) membrane transporters, encoded by Pdr1 target genes act to promote cell-cell communication by exporting quorum sensing molecules, in addition to playing a role in pleiotropic drug resistance; and (ii) molecular chaperones function at promoters to regulate this intercellular communication through their activation of the transcription factor Pdr1.
Collapse
|
41
|
Kabani M, Martineau CN. Multiple hsp70 isoforms in the eukaryotic cytosol: mere redundancy or functional specificity? Curr Genomics 2011; 9:338-248. [PMID: 19471609 PMCID: PMC2685646 DOI: 10.2174/138920208785133280] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2008] [Revised: 05/15/2008] [Accepted: 05/19/2008] [Indexed: 12/30/2022] Open
Abstract
Hsp70 molecular chaperones play a variety of functions in every organism, cell type and organelle, and their activities have been implicated in a number of human pathologies, ranging from cancer to neurodegenerative diseases. The functions, regulations and structure of Hsp70s were intensively studied for about three decades, yet much still remains to be learned about these essential folding enzymes. Genome sequencing efforts revealed that most genomes contain multiple members of the Hsp70 family, some of which co-exist in the same cellular compartment. For example, the human cytosol and nucleus contain six highly homologous Hsp70 proteins while the yeast Saccharomyces cerevisiae contains four canonical Hsp70s and three fungal-specific ribosome-associated and specialized Hsp70s. The reasons and significance of the requirement for multiple Hsp70s is still a subject of debate. It has been postulated for a long time that these Hsp70 isoforms are functionally redundant and differ only by their spatio-temporal expression patterns. However, several studies in yeast and higher eukaryotic organisms challenged this widely accepted idea by demonstrating functional specificity among Hsp70 isoforms. Another element of complexity is brought about by specific cofactors, such as Hsp40s or nucleotide exchange factors that modulate the activity of Hsp70s and their binding to client proteins. Hence, a dynamic network of chaperone/co-chaperone interactions has evolved in each organism to efficiently take advantage of the multiple cellular roles Hsp70s can play. We summarize here our current knowledge of the functions and regulations of these molecular chaperones, and shed light on the known functional specificities among isoforms.
Collapse
Affiliation(s)
- Mehdi Kabani
- Laboratoire d'Enzymologie et Biochimie Structurales (LEBS), CNRS, Bât. 34, Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | | |
Collapse
|
42
|
Abstract
Mammalian ribosome-associated complex (mRAC), consisting of the J-domain protein MPP11 and the atypical Hsp70 homolog (70-homolog) Hsp70L1, can partly complement the function of RAC, which is the homologous complex from Saccharomyces cerevisiae. RAC is the J-domain partner exclusively of the 70-homolog Ssb, which directly and independently of RAC binds to the ribosome. We here show that growth defects due to mRAC depletion in HeLa cells resemble those of yeast strains lacking RAC. Functional conservation, however, did not extend to the 70-homolog partner of mRAC. None of the major human 70-homologs was able to complement the growth defects of yeast strains lacking Ssb or was bound to ribosomes in an Ssb-like manner. Instead, our data suggest that mRAC was a specific partner of human Hsp70 but not of its close homolog Hsc70. On a mechanistic level, ATP binding, but not ATP hydrolysis, by Hsp70L1 affected mRAC's function as a J-domain partner of Hsp70. The combined data indicate that, while functionally conserved, yeast and mammalian cells have evolved distinct solutions to ensure that Hsp70-type chaperones can efficiently assist the biogenesis of newly synthesized polypeptide chains.
Collapse
|
43
|
Koplin A, Preissler S, Ilina Y, Koch M, Scior A, Erhardt M, Deuerling E. A dual function for chaperones SSB-RAC and the NAC nascent polypeptide-associated complex on ribosomes. ACTA ACUST UNITED AC 2010; 189:57-68. [PMID: 20368618 PMCID: PMC2854369 DOI: 10.1083/jcb.200910074] [Citation(s) in RCA: 157] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The yeast Hsp70/40 system SSB-RAC (stress 70 B-ribosome-associated complex) binds to ribosomes and contacts nascent polypeptides to assist cotranslational folding. In this study, we demonstrate that nascent polypeptide-associated complex (NAC), another ribosome-tethered system, is functionally connected to SSB-RAC and the cytosolic Hsp70 network. Simultaneous deletions of genes encoding NAC and SSB caused conditional loss of cell viability under protein-folding stress conditions. Furthermore, NAC mutations revealed genetic interaction with a deletion of Sse1, a nucleotide exchange factor regulating the cytosolic Hsp70 network. Cells lacking SSB or Sse1 showed protein aggregation, which is enhanced by additional loss of NAC; however, these mutants differ in their potential client repertoire. Aggregation of ribosomal proteins and biogenesis factors accompanied by a pronounced deficiency in ribosomal particles and translating ribosomes only occurs in ssbDelta and nacDeltassbDelta cells, suggesting that SSB and NAC control ribosome biogenesis. Thus, SSB-RAC and NAC assist protein folding and likewise have important functions for regulation of ribosome levels. These findings emphasize the concept that ribosome production is coordinated with the protein-folding capacity of ribosome-associated chaperones.
Collapse
Affiliation(s)
- Ansgar Koplin
- Laboratory of Molecular Microbiology, Department of Biology, and 2 Konstanz Research School of Chemical Biology, University of Konstanz, 78457 Konstanz, Germany
| | | | | | | | | | | | | |
Collapse
|
44
|
Deuerling E, Bukau B. Chaperone-Assisted Folding of Newly Synthesized Proteins in the Cytosol. Crit Rev Biochem Mol Biol 2010; 39:261-77. [PMID: 15763705 DOI: 10.1080/10409230490892496] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The way in which a newly synthesized polypeptide chain folds into its unique three-dimensional structure remains one of the fundamental questions in molecular biology. Protein folding in the cell is a problematic process and, in many cases, requires the assistance of a network of molecular chaperones to support productive protein foldingin vivo. During protein biosynthesis, ribosome-associated chaperones guide the folding of the nascent polypeptide emerging from the ribosomal tunnel. In this review we summarize the basic principles of the protein-folding process and the involved chaperones, and focus on the role of ribosome-associated chaperones. Our discussion emphasizes the bacterial Trigger Factor, which is the best studied chaperone of this type. Recent advances have determined the atomic structure of the Trigger Factor, providing new, exciting insights into the role of ribosome-associated chaperones in co-translational protein folding.
Collapse
Affiliation(s)
- Elke Deuerling
- Zentrum für Molekulare Biologie Heidelberg, Universität Heidelberg, Heidelberg, Germany.
| | | |
Collapse
|
45
|
Peisker K, Chiabudini M, Rospert S. The ribosome-bound Hsp70 homolog Ssb of Saccharomyces cerevisiae. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1803:662-72. [PMID: 20226819 DOI: 10.1016/j.bbamcr.2010.03.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Revised: 03/01/2010] [Accepted: 03/04/2010] [Indexed: 11/29/2022]
Abstract
The Hsp70 homolog Ssb directly binds to the ribosome and contacts a variety of newly synthesized polypeptide chains as soon as they emerge from the ribosomal exit tunnel. For this reason a general role of Ssb in the de novo folding of newly synthesized proteins is highly suggestive. However, for more than a decade client proteins which require Ssb for proper folding have remained elusive. It was therefore speculated that Ssb, despite its ability to interact with a large variety of nascent polypeptides, may assist the folding of only a small and specific subset. Alternatively, it has been suggested that Ssb's function may be limited to the protection of nascent polypeptides from aggregation until downstream chaperones take over and actively fold their substrates. There is also evidence that Ssb, in parallel to a classical chaperone function, is involved in the regulation of cellular signaling processes. Here we aim to summarize what is currently known about Ssb's multiple functions and what remains to be ascertained by future research.
Collapse
Affiliation(s)
- Kristin Peisker
- Department of Cell and Molecular Biology, Biomedicinskt Centrum BMC, Uppsala, Sweden
| | | | | |
Collapse
|
46
|
Ssz1 restores endoplasmic reticulum-associated protein degradation in cells expressing defective cdc48-ufd1-npl4 complex by upregulating cdc48. Genetics 2009; 184:695-706. [PMID: 20038635 DOI: 10.1534/genetics.109.111419] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The endoplasmic reticulum (ER)-associated protein degradation (ERAD) pathway eliminates aberrant proteins from the ER. The key role of Cdc48p-Ufd1p-Npl4p is indicated by impaired ERAD in Saccharomyces cerevisiae with mutations in any of this complex's genes. We identified SSZ1 in genetic screens for cdc48-10 suppressors and show that it upregulates Cdc48p via the pleiotropic drug resistance (PDR) network. A pSSZ1 plasmid restored impaired ERAD-M of 6myc-Hmg2 in cdc48-10, ufd1-2, and npl4-1, while SSZ1 deletion had no effect. Ssz1p activates Pdr1p, the PDR master regulator. Indeed, plasmids of PDR1 or its target gene RPN4 increased cdc48-10p levels and restored ERAD-M in cdc48-10. Rpn4p regulates transcription of proteasome subunits and CDC48, thus RPN4 deletion abolished ERAD. However, the diminished proteasome level in Deltarpn4 was sufficient for degrading a cytosolic substrate, whereas the impaired ERAD-M was the result of diminished Cdc48p and was restored by expression of pCDC48. The corrected ERAD-M in the hypomorphic strains of the Cdc48 partners ufd1-2 and npl4-1 by the pCDC48 plasmid, and in cdc48-10 cells by the pcdc48-10 plasmid, combined with the finding that neither pSSZ1 nor pcdc48-10 restored ERAD-L of CPY*-HA, support our conclusion that Ssz1p suppressing effects is brought about by upregulating Cdc48p.
Collapse
|
47
|
Fiaux J, Horst J, Scior A, Preissler S, Koplin A, Bukau B, Deuerling E. Structural analysis of the ribosome-associated complex (RAC) reveals an unusual Hsp70/Hsp40 interaction. J Biol Chem 2009; 285:3227-34. [PMID: 19920147 DOI: 10.1074/jbc.m109.075804] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Yeast Zuotin and Ssz are members of the conserved Hsp40 and Hsp70 chaperone families, respectively, but compared with canonical homologs, they atypically form a stable heterodimer termed ribosome-associated complex (RAC). RAC acts as co-chaperone for another Hsp70 to assist de novo protein folding. In this study, we identified the molecular basis for the unusual Hsp70/Hsp40 pairing using amide hydrogen exchange (HX) coupled with mass spectrometry and mutational analysis. Association of Ssz with Zuotin strongly decreased the conformational dynamics mainly in the C-terminal domain of Ssz, whereas Zuotin acquired strong conformational stabilization in its N-terminal segment. Deletion of the highly flexible N terminus of Zuotin abolished stable association with Ssz in vitro and caused a phenotype resembling the loss of Ssz function in vivo. Thus, the C-terminal domain of Ssz, the N-terminal extension of Zuotin, and their mutual stabilization are the major structural determinants for RAC assembly. We furthermore found dynamic changes in the J-domain of Zuotin upon complex formation that might be crucial for RAC co-chaperone function. Taken together, we present a novel mechanism for converting Zuotin and Ssz chaperones into a functionally active dimer.
Collapse
Affiliation(s)
- Jocelyne Fiaux
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, INF282, 69120 Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
48
|
The ribosome as a platform for co-translational processing, folding and targeting of newly synthesized proteins. Nat Struct Mol Biol 2009; 16:589-97. [PMID: 19491936 DOI: 10.1038/nsmb.1614] [Citation(s) in RCA: 347] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The early events in the life of newly synthesized proteins in the cellular environment are remarkably complex. Concurrently with their synthesis by the ribosome, nascent polypeptides are subjected to enzymatic processing, chaperone-assisted folding or targeting to translocation pores at membranes. The ribosome itself has a key role in these different tasks and governs the interplay between the various factors involved. Indeed, the ribosome serves as a platform for the spatially and temporally regulated association of enzymes, targeting factors and chaperones that act upon the nascent polypeptides emerging from the exit tunnel. Furthermore, the ribosome provides opportunities to coordinate the protein-synthesis activity of its peptidyl transferase center with the protein targeting and folding processes. Here we review the early co-translational events involving the ribosome that guide cytosolic proteins to their native state.
Collapse
|
49
|
Panasenko OO, David FPA, Collart MA. Ribosome association and stability of the nascent polypeptide-associated complex is dependent upon its own ubiquitination. Genetics 2009; 181:447-60. [PMID: 19087962 PMCID: PMC2644939 DOI: 10.1534/genetics.108.095422] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Accepted: 12/12/2008] [Indexed: 11/18/2022] Open
Abstract
In this work we addressed the role of ubiquitination in the function of the nascent polypeptide-associated complex (NAC), named EGD in the yeast Saccharomyces cerevisiae. To this end, we first identified the lysines residues required for ubiquitination of EGD/NAC. While simultaneous mutation of many lysines in the alpha-subunit of NAC (Egd2p) was required to abolish its ubiquitination, for the beta-subunit of NAC (Egd1p), mutation of K29 and K30 was sufficient. We determined that the ubiquitination of the two EGD subunits was coordinated, occurring during growth first on Egd1p and then on Egd2p. Egd2p was ubiquitinated earlier during growth if Egd1p could not be ubiquitinated. The use of mutants revealed the importance of EGD ubiqutination for its ribosome association and stability. Finally, our study demonstrated an interaction of EGD/NAC with the proteasome and revealed the importance of the Not4p E3 ligase, responsible for EGD/NAC ubiquitination, in this association.
Collapse
Affiliation(s)
- Olesya O Panasenko
- Swiss Institute for Bioinformatics, University of Geneva, 1211 Geneva 4, Switzerland
| | | | | |
Collapse
|
50
|
Cytosolic chaperones influence the fate of a toxin dislocated from the endoplasmic reticulum. Proc Natl Acad Sci U S A 2008; 105:17408-13. [PMID: 18988734 DOI: 10.1073/pnas.0809013105] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The plant cytotoxin ricin enters target mammalian cells by receptor-mediated endocytosis and undergoes retrograde transport to the endoplasmic reticulum (ER). Here, its catalytic A chain (RTA) is reductively separated from the cell-binding B chain, and free RTA enters the cytosol where it inactivates ribosomes. Cytosolic entry requires unfolding of RTA and dislocation across the ER membrane such that it arrives in the cytosol in a vulnerable, nonnative conformation. Clearly, for such a dislocated toxin to become active, it must avoid degradation and fold to a catalytic conformation. Here, we show that, in vitro, Hsc70 prevents aggregation of heat-treated RTA, and that RTA catalytic activity is recovered after chaperone treatment. A combination of pharmacological inhibition and cochaperone expression reveals that, in vivo, cytosolic RTA is scrutinized sequentially by the Hsc70 and Hsp90 cytosolic chaperone machineries, and that its eventual fate is determined by the balance of activities of cochaperones that regulate Hsc70 and Hsp90 functions. Cytotoxic activity follows Hsc70-mediated escape of RTA from an otherwise destructive pathway facilitated by Hsp90. We demonstrate a role for cytosolic chaperones, proteins typically associated with folding nascent proteins, assembling multimolecular protein complexes and degrading cytosolic and stalled, cotranslocational clients, in a toxin triage, in which both toxin folding and degradation are initiated from chaperone-bound states.
Collapse
|