1
|
Muhammad AA, Basto C, Peterlini T, Guirouilh-Barbat J, Thomas M, Veaute X, Busso D, Lopez B, Mazon G, Le Cam E, Masson JY, Dupaigne P. Human RAD52 stimulates the RAD51-mediated homology search. Life Sci Alliance 2024; 7:e202201751. [PMID: 38081641 PMCID: PMC10713436 DOI: 10.26508/lsa.202201751] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/01/2023] [Accepted: 12/01/2023] [Indexed: 12/18/2023] Open
Abstract
Homologous recombination (HR) is a DNA repair mechanism of double-strand breaks and blocked replication forks, involving a process of homology search leading to the formation of synaptic intermediates that are regulated to ensure genome integrity. RAD51 recombinase plays a central role in this mechanism, supported by its RAD52 and BRCA2 partners. If the mediator function of BRCA2 to load RAD51 on RPA-ssDNA is well established, the role of RAD52 in HR is still far from understood. We used transmission electron microscopy combined with biochemistry to characterize the sequential participation of RPA, RAD52, and BRCA2 in the assembly of the RAD51 filament and its activity. Although our results confirm that RAD52 lacks a mediator activity, RAD52 can tightly bind to RPA-coated ssDNA, inhibit the mediator activity of BRCA2, and form shorter RAD51-RAD52 mixed filaments that are more efficient in the formation of synaptic complexes and D-loops, resulting in more frequent multi-invasions as well. We confirm the in situ interaction between RAD51 and RAD52 after double-strand break induction in vivo. This study provides new molecular insights into the formation and regulation of presynaptic and synaptic intermediates by BRCA2 and RAD52 during human HR.
Collapse
Affiliation(s)
- Ali Akbar Muhammad
- Genome Integrity and Cancers UMR 9019 CNRS, Université Paris- Saclay, Gustave Roussy, Villejuif Cedex, France
| | - Clara Basto
- Genome Integrity and Cancers UMR 9019 CNRS, Université Paris- Saclay, Gustave Roussy, Villejuif Cedex, France
| | - Thibaut Peterlini
- Genome Stability Laboratory, CHU de Quebec Research Center, HDQ Pavilion, Oncology Axis, Quebec City, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University, Quebec City, Canada
| | - Josée Guirouilh-Barbat
- INSERM U1016, UMR 8104 CNRS, Institut Cochin, Equipe Labellisée Ligue Contre le Cancer, Université de Paris, Paris, France
| | - Melissa Thomas
- Genome Stability Laboratory, CHU de Quebec Research Center, HDQ Pavilion, Oncology Axis, Quebec City, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University, Quebec City, Canada
| | - Xavier Veaute
- CIGEx Platform, INSERM, IRCM/IBFJ CEA, UMR Stabilité Génétique Cellules Souches et Radiations, Université de Paris and Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Didier Busso
- CIGEx Platform, INSERM, IRCM/IBFJ CEA, UMR Stabilité Génétique Cellules Souches et Radiations, Université de Paris and Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Bernard Lopez
- INSERM U1016, UMR 8104 CNRS, Institut Cochin, Equipe Labellisée Ligue Contre le Cancer, Université de Paris, Paris, France
| | - Gerard Mazon
- Genome Integrity and Cancers UMR 9019 CNRS, Université Paris- Saclay, Gustave Roussy, Villejuif Cedex, France
| | - Eric Le Cam
- Genome Integrity and Cancers UMR 9019 CNRS, Université Paris- Saclay, Gustave Roussy, Villejuif Cedex, France
| | - Jean-Yves Masson
- Genome Stability Laboratory, CHU de Quebec Research Center, HDQ Pavilion, Oncology Axis, Quebec City, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University, Quebec City, Canada
| | - Pauline Dupaigne
- Genome Integrity and Cancers UMR 9019 CNRS, Université Paris- Saclay, Gustave Roussy, Villejuif Cedex, France
| |
Collapse
|
2
|
Belan O, Greenhough L, Kuhlen L, Anand R, Kaczmarczyk A, Gruszka DT, Yardimci H, Zhang X, Rueda DS, West SC, Boulton SJ. Visualization of direct and diffusion-assisted RAD51 nucleation by full-length human BRCA2 protein. Mol Cell 2023; 83:2925-2940.e8. [PMID: 37499663 PMCID: PMC7615647 DOI: 10.1016/j.molcel.2023.06.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 06/09/2023] [Accepted: 06/26/2023] [Indexed: 07/29/2023]
Abstract
Homologous recombination (HR) is essential for error-free repair of DNA double-strand breaks, perturbed replication forks (RFs), and post-replicative single-stranded DNA (ssDNA) gaps. To initiate HR, the recombination mediator and tumor suppressor protein BRCA2 facilitates nucleation of RAD51 on ssDNA prior to stimulation of RAD51 filament growth by RAD51 paralogs. Although ssDNA binding by BRCA2 has been implicated in RAD51 nucleation, the function of double-stranded DNA (dsDNA) binding by BRCA2 remains unclear. Here, we exploit single-molecule (SM) imaging to visualize BRCA2-mediated RAD51 nucleation in real time using purified proteins. We report that BRCA2 nucleates and stabilizes RAD51 on ssDNA either directly or through an unappreciated diffusion-assisted delivery mechanism involving binding to and sliding along dsDNA, which requires the cooperative action of multiple dsDNA-binding modules in BRCA2. Collectively, our work reveals two distinct mechanisms of BRCA2-dependent RAD51 loading onto ssDNA, which we propose are critical for its diverse functions in maintaining genome stability and cancer suppression.
Collapse
Affiliation(s)
- Ondrej Belan
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Luke Greenhough
- DNA Recombination and Repair Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Lucas Kuhlen
- Section of Structural Biology, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, South Kensington, London SW7 2AZ, UK
| | - Roopesh Anand
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Artur Kaczmarczyk
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London W12 0NN, UK; Single Molecule Imaging Group, MRC-London Institute of Medical Sciences, London W12 0NN, UK
| | - Dominika T Gruszka
- Single Molecule Imaging of Genome Duplication and Maintenance Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Hasan Yardimci
- Single Molecule Imaging of Genome Duplication and Maintenance Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Xiaodong Zhang
- Section of Structural Biology, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, South Kensington, London SW7 2AZ, UK
| | - David S Rueda
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London W12 0NN, UK; Single Molecule Imaging Group, MRC-London Institute of Medical Sciences, London W12 0NN, UK
| | - Stephen C West
- DNA Recombination and Repair Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Simon J Boulton
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, London NW1 1AT, UK.
| |
Collapse
|
3
|
Athar F, Templeman NM. C. elegans as a model organism to study female reproductive health. Comp Biochem Physiol A Mol Integr Physiol 2022; 266:111152. [PMID: 35032657 DOI: 10.1016/j.cbpa.2022.111152] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/04/2022] [Accepted: 01/07/2022] [Indexed: 12/17/2022]
Abstract
Female reproductive health has been historically understudied and underfunded. Here, we present the advantages of using a free-living nematode, Caenorhabditis elegans, as an animal system to study fundamental aspects of female reproductive health. C. elegans is a powerful high-throughput model organism that shares key genetic and physiological similarities with humans. In this review, we highlight areas of pressing medical and biological importance in the 21st century within the context of female reproductive health. These include the decline in female reproductive capacity with increasing chronological age, reproductive dysfunction arising from toxic environmental insults, and cancers of the reproductive system. C. elegans has been instrumental in uncovering mechanistic insights underlying these processes, and has been valuable for developing and testing therapeutics to combat them. Adopting a convenient model organism such as C. elegans for studying reproductive health will encourage further research into this field, and broaden opportunities for making advancements into evolutionarily conserved mechanisms that control reproductive function.
Collapse
Affiliation(s)
- Faria Athar
- Department of Biology, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Nicole M Templeman
- Department of Biology, University of Victoria, Victoria, British Columbia V8P 5C2, Canada.
| |
Collapse
|
4
|
Mechanism of mitotic recombination: insights from C. elegans. Curr Opin Genet Dev 2021; 71:10-18. [PMID: 34186335 PMCID: PMC8683258 DOI: 10.1016/j.gde.2021.06.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/18/2021] [Accepted: 06/07/2021] [Indexed: 11/23/2022]
Abstract
Homologous recombination (HR) plays a critical role in largely error-free repair of mitotic and meiotic DNA double-strand breaks (DSBs). DSBs are one of the most deleterious DNA lesions, which are repaired by non-homologous end joining (NHEJ), homologous recombination (HR) or, if compromised, micro-homology mediated end joining (MMEJ). If left unrepaired, DSBs can lead to cell death or if repaired incorrectly can result in chromosome rearrangements that drive cancer development. Here, we describe recent advances in the field of mitotic HR made using Caenorhabditis elegans roundworm, as a model system.
Collapse
|
5
|
Špírek M, Taylor MRG, Belan O, Boulton SJ, Krejci L. Nucleotide proofreading functions by nematode RAD51 paralogs facilitate optimal RAD51 filament function. Nat Commun 2021; 12:5545. [PMID: 34545070 PMCID: PMC8452638 DOI: 10.1038/s41467-021-25830-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 09/02/2021] [Indexed: 12/30/2022] Open
Abstract
The RAD51 recombinase assembles as helical nucleoprotein filaments on single-stranded DNA (ssDNA) and mediates invasion and strand exchange with homologous duplex DNA (dsDNA) during homologous recombination (HR), as well as protection and restart of stalled replication forks. Strand invasion by RAD51-ssDNA complexes depends on ATP binding. However, RAD51 can bind ssDNA in non-productive ADP-bound or nucleotide-free states, and ATP-RAD51-ssDNA complexes hydrolyse ATP over time. Here, we define unappreciated mechanisms by which the RAD51 paralog complex RFS-1/RIP-1 limits the accumulation of RAD-51-ssDNA complexes with unfavorable nucleotide content. We find RAD51 paralogs promote the turnover of ADP-bound RAD-51 from ssDNA, in striking contrast to their ability to stabilize productive ATP-bound RAD-51 nucleoprotein filaments. In addition, RFS-1/RIP-1 inhibits binding of nucleotide-free RAD-51 to ssDNA. We propose that ‘nucleotide proofreading’ activities of RAD51 paralogs co-operate to ensure the enrichment of active, ATP-bound RAD-51 filaments on ssDNA to promote HR. A RAD51 paralog complex, RFS-1/RIP-1, is shown to control ssDNA binding and dissociation by RAD-51 differentially in the presence and absence of nucleotide cofactors. These nucleotide proofreading activities drive a preferential accumulation of RAD-51-ssDNA complexes with optimal nucleotide content.
Collapse
Affiliation(s)
- Mário Špírek
- International Clinical Research Center, St. Anne's University Hospital in Brno, 62500, Brno, Czech Republic.,Department of Biology Masaryk University, 62500, Brno, Czech Republic
| | | | - Ondrej Belan
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.,National Centre for Biomolecular Research, Masaryk University, 62500, Brno, Czech Republic
| | - Simon J Boulton
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Lumir Krejci
- International Clinical Research Center, St. Anne's University Hospital in Brno, 62500, Brno, Czech Republic. .,Department of Biology Masaryk University, 62500, Brno, Czech Republic. .,National Centre for Biomolecular Research, Masaryk University, 62500, Brno, Czech Republic.
| |
Collapse
|
6
|
Le HP, Heyer WD, Liu J. Guardians of the Genome: BRCA2 and Its Partners. Genes (Basel) 2021; 12:genes12081229. [PMID: 34440403 PMCID: PMC8394001 DOI: 10.3390/genes12081229] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 12/28/2022] Open
Abstract
The tumor suppressor BRCA2 functions as a central caretaker of genome stability, and individuals who carry BRCA2 mutations are predisposed to breast, ovarian, and other cancers. Recent research advanced our mechanistic understanding of BRCA2 and its various interaction partners in DNA repair, DNA replication support, and DNA double-strand break repair pathway choice. In this review, we discuss the biochemical and structural properties of BRCA2 and examine how these fundamental properties contribute to DNA repair and replication fork stabilization in living cells. We highlight selected BRCA2 binding partners and discuss their role in BRCA2-mediated homologous recombination and fork protection. Improved mechanistic understanding of how BRCA2 functions in genome stability maintenance can enable experimental evidence-based evaluation of pathogenic BRCA2 mutations and BRCA2 pseudo-revertants to support targeted therapy.
Collapse
Affiliation(s)
- Hang Phuong Le
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA; (H.P.L.); (W.-D.H.)
| | - Wolf-Dietrich Heyer
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA; (H.P.L.); (W.-D.H.)
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | - Jie Liu
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA; (H.P.L.); (W.-D.H.)
- Correspondence: ; Tel.: +1-530-752-3016
| |
Collapse
|
7
|
Li Q, Engebrecht J. BRCA1 and BRCA2 Tumor Suppressor Function in Meiosis. Front Cell Dev Biol 2021; 9:668309. [PMID: 33996823 PMCID: PMC8121103 DOI: 10.3389/fcell.2021.668309] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 03/19/2021] [Indexed: 12/12/2022] Open
Abstract
Meiosis is a specialized cell cycle that results in the production of haploid gametes for sexual reproduction. During meiosis, homologous chromosomes are connected by chiasmata, the physical manifestation of crossovers. Crossovers are formed by the repair of intentionally induced double strand breaks by homologous recombination and facilitate chromosome alignment on the meiotic spindle and proper chromosome segregation. While it is well established that the tumor suppressors BRCA1 and BRCA2 function in DNA repair and homologous recombination in somatic cells, the functions of BRCA1 and BRCA2 in meiosis have received less attention. Recent studies in both mice and the nematode Caenorhabditis elegans have provided insight into the roles of these tumor suppressors in a number of meiotic processes, revealing both conserved and organism-specific functions. BRCA1 forms an E3 ubiquitin ligase as a heterodimer with BARD1 and appears to have regulatory roles in a number of key meiotic processes. BRCA2 is a very large protein that plays an intimate role in homologous recombination. As women with no indication of cancer but carrying BRCA mutations show decreased ovarian reserve and accumulated oocyte DNA damage, studies in these systems may provide insight into why BRCA mutations impact reproductive success in addition to their established roles in cancer.
Collapse
Affiliation(s)
- Qianyan Li
- Department of Molecular and Cellular Biology, and Biochemistry, Molecular, Cellular and Developmental Biology Graduate Group, University of California, Davis, Davis, CA, United States
| | - JoAnne Engebrecht
- Department of Molecular and Cellular Biology, and Biochemistry, Molecular, Cellular and Developmental Biology Graduate Group, University of California, Davis, Davis, CA, United States
| |
Collapse
|
8
|
Single-molecule analysis reveals cooperative stimulation of Rad51 filament nucleation and growth by mediator proteins. Mol Cell 2021; 81:1058-1073.e7. [PMID: 33421363 PMCID: PMC7941204 DOI: 10.1016/j.molcel.2020.12.020] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/02/2020] [Accepted: 12/10/2020] [Indexed: 12/16/2022]
Abstract
Homologous recombination (HR) is an essential DNA double-strand break (DSB) repair mechanism, which is frequently inactivated in cancer. During HR, RAD51 forms nucleoprotein filaments on RPA-coated, resected DNA and catalyzes strand invasion into homologous duplex DNA. How RAD51 displaces RPA and assembles into long HR-proficient filaments remains uncertain. Here, we employed single-molecule imaging to investigate the mechanism of nematode RAD-51 filament growth in the presence of BRC-2 (BRCA2) and RAD-51 paralogs, RFS-1/RIP-1. BRC-2 nucleates RAD-51 on RPA-coated DNA, whereas RFS-1/RIP-1 acts as a "chaperone" to promote 3' to 5' filament growth via highly dynamic engagement with 5' filament ends. Inhibiting ATPase or mutation in the RFS-1 Walker box leads to RFS-1/RIP-1 retention on RAD-51 filaments and hinders growth. The rfs-1 Walker box mutants display sensitivity to DNA damage and accumulate RAD-51 complexes non-functional for HR in vivo. Our work reveals the mechanism of RAD-51 nucleation and filament growth in the presence of recombination mediators.
Collapse
|
9
|
Janisiw E, Raices M, Balmir F, Paulin LF, Baudrimont A, von Haeseler A, Yanowitz JL, Jantsch V, Silva N. Poly(ADP-ribose) glycohydrolase coordinates meiotic DNA double-strand break induction and repair independent of its catalytic activity. Nat Commun 2020; 11:4869. [PMID: 32978394 PMCID: PMC7519143 DOI: 10.1038/s41467-020-18693-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 09/07/2020] [Indexed: 02/07/2023] Open
Abstract
Poly(ADP-ribosyl)ation is a reversible post-translational modification synthetized by ADP-ribose transferases and removed by poly(ADP-ribose) glycohydrolase (PARG), which plays important roles in DNA damage repair. While well-studied in somatic tissues, much less is known about poly(ADP-ribosyl)ation in the germline, where DNA double-strand breaks are introduced by a regulated program and repaired by crossover recombination to establish a tether between homologous chromosomes. The interaction between the parental chromosomes is facilitated by meiotic specific adaptation of the chromosome axes and cohesins, and reinforced by the synaptonemal complex. Here, we uncover an unexpected role for PARG in coordinating the induction of meiotic DNA breaks and their homologous recombination-mediated repair in Caenorhabditis elegans. PARG-1/PARG interacts with both axial and central elements of the synaptonemal complex, REC-8/Rec8 and the MRN/X complex. PARG-1 shapes the recombination landscape and reinforces the tightly regulated control of crossover numbers without requiring its catalytic activity. We unravel roles in regulating meiosis, beyond its enzymatic activity in poly(ADP-ribose) catabolism. Poly(ADP-ribose) glycohydrolase (PARG) is involved in different cellular processes including DNA repair. Here the authors reveal a role for PARG in regulating meiotic DNA double strand break induction and repair in Caenorhabditis elegans.
Collapse
Affiliation(s)
- Eva Janisiw
- Department of Chromosome Biology, Max Perutz Laboratories, Vienna Biocenter, University of Vienna, Vienna, Austria.,Centre for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Marilina Raices
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Fabiola Balmir
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,AHN Center for Reproductive Medicine, AHN McCandless, Pittsburgh, PA, USA
| | - Luis F Paulin
- Center for Integrative Bioinformatics Vienna (CIBIV), Max Perutz Laboratories, Medical University of Vienna, Vienna BioCenter, University of Vienna, Vienna, Austria
| | - Antoine Baudrimont
- Department of Chromosome Biology, Max Perutz Laboratories, Vienna Biocenter, University of Vienna, Vienna, Austria
| | - Arndt von Haeseler
- Center for Integrative Bioinformatics Vienna (CIBIV), Max Perutz Laboratories, Medical University of Vienna, Vienna BioCenter, University of Vienna, Vienna, Austria.,Bioinformatics and Computational Biology, Faculty of Computer Science, University of Vienna, Vienna, Austria
| | - Judith L Yanowitz
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Verena Jantsch
- Department of Chromosome Biology, Max Perutz Laboratories, Vienna Biocenter, University of Vienna, Vienna, Austria
| | - Nicola Silva
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
10
|
Špírek M, Mlcoušková J, Belán O, Gyimesi M, Harami GM, Molnár E, Novacek J, Kovács M, Krejci L. Human RAD51 rapidly forms intrinsically dynamic nucleoprotein filaments modulated by nucleotide binding state. Nucleic Acids Res 2019; 46:3967-3980. [PMID: 29481689 PMCID: PMC5934667 DOI: 10.1093/nar/gky111] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 02/08/2018] [Indexed: 12/31/2022] Open
Abstract
Formation of RAD51 filaments on single-stranded DNA is an essential event during homologous recombination, which is required for homology search, strand exchange and protection of replication forks. Formation of nucleoprotein filaments (NF) is required for development and genomic stability, and its failure is associated with developmental abnormalities and tumorigenesis. Here we describe the structure of the human RAD51 NFs and of its Walker box mutants using electron microscopy. Wild-type RAD51 filaments adopt an ‘open’ conformation when compared to a ‘closed’ structure formed by mutants, reflecting alterations in helical pitch. The kinetics of formation/disassembly of RAD51 filaments show rapid and high ssDNA coverage via low cooperativity binding of RAD51 units along the DNA. Subsequently, a series of isomerization or dissociation events mediated by nucleotide binding state creates intrinsically dynamic RAD51 NFs. Our findings highlight important a mechanistic divergence among recombinases from different organisms, in line with the diversity of biological mechanisms of HR initiation and quality control. These data reveal unexpected intrinsic dynamic properties of the RAD51 filament during assembly/disassembly, which may be important for the proper control of homologous recombination.
Collapse
Affiliation(s)
- Mário Špírek
- Department of Biology, Masaryk University, Brno 62500, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital Brno, Brno 65691, Czech Republic
| | - Jarmila Mlcoušková
- Department of Biology, Masaryk University, Brno 62500, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital Brno, Brno 65691, Czech Republic
| | - Ondrej Belán
- Department of Biology, Masaryk University, Brno 62500, Czech Republic
| | - Máté Gyimesi
- Department of Biochemistry, Eötvös Loránd University, Budapest H-1117, Hungary
| | - Gábor M Harami
- Department of Biochemistry, Eötvös Loránd University, Budapest H-1117, Hungary
| | - Eszter Molnár
- Department of Biochemistry, Eötvös Loránd University, Budapest H-1117, Hungary
| | - Jiri Novacek
- CEITEC, Masaryk University, Brno, Czech Republic
| | - Mihály Kovács
- Department of Biochemistry, Eötvös Loránd University, Budapest H-1117, Hungary
| | - Lumir Krejci
- Department of Biology, Masaryk University, Brno 62500, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital Brno, Brno 65691, Czech Republic.,National Centre for Biomolecular Research, Masaryk University, Brno 62500, Czech Republic
| |
Collapse
|
11
|
BRCA1-BARD1 associate with the synaptonemal complex and pro-crossover factors and influence RAD-51 dynamics during Caenorhabditis elegans meiosis. PLoS Genet 2018; 14:e1007653. [PMID: 30383754 PMCID: PMC6211622 DOI: 10.1371/journal.pgen.1007653] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 08/23/2018] [Indexed: 11/19/2022] Open
Abstract
During meiosis, the maternal and paternal homologous chromosomes must align along their entire length and recombine to achieve faithful segregation in the gametes. Meiotic recombination is accomplished through the formation of DNA double-strand breaks, a subset of which can mature into crossovers to link the parental homologous chromosomes and promote their segregation. Breast and ovarian cancer susceptibility protein BRCA1 and its heterodimeric partner BARD1 play a pivotal role in DNA repair in mitotic cells; however, their functions in gametogenesis are less well understood. Here we show that localization of BRC-1 and BRD-1 (Caenorhabditis elegans orthologues of BRCA1 and BARD1) is dynamic during meiotic prophase I; they ultimately becoming concentrated at regions surrounding the presumptive crossover sites, co-localizing with the pro-crossover factors COSA-1, MSH-5 and ZHP-3. The synaptonemal complex and PLK-2 activity are essential for recruitment of BRC-1 to chromosomes and its subsequent redistribution towards the short arm of the bivalent. BRC-1 and BRD-1 form in vivo complexes with the synaptonemal complex component SYP-3 and the crossover-promoting factor MSH-5. Furthermore, BRC-1 is essential for efficient stage-specific recruitment/stabilization of the RAD-51 recombinase to DNA damage sites when synapsis is impaired and upon induction of exogenous damage. Taken together, our data provide new insights into the localization and meiotic function of the BRC-1-BRD-1 complex and highlight its essential role in DNA double-strand break repair during gametogenesis.
Collapse
|
12
|
Ranjha L, Howard SM, Cejka P. Main steps in DNA double-strand break repair: an introduction to homologous recombination and related processes. Chromosoma 2018; 127:187-214. [PMID: 29327130 DOI: 10.1007/s00412-017-0658-1] [Citation(s) in RCA: 232] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 12/15/2017] [Accepted: 12/19/2017] [Indexed: 12/16/2022]
Abstract
DNA double-strand breaks arise accidentally upon exposure of DNA to radiation and chemicals or result from faulty DNA metabolic processes. DNA breaks can also be introduced in a programmed manner, such as during the maturation of the immune system, meiosis, or cancer chemo- or radiotherapy. Cells have developed a variety of repair pathways, which are fine-tuned to the specific needs of a cell. Accordingly, vegetative cells employ mechanisms that restore the integrity of broken DNA with the highest efficiency at the lowest cost of mutagenesis. In contrast, meiotic cells or developing lymphocytes exploit DNA breakage to generate diversity. Here, we review the main pathways of eukaryotic DNA double-strand break repair with the focus on homologous recombination and its various subpathways. We highlight the differences between homologous recombination and end-joining mechanisms including non-homologous end-joining and microhomology-mediated end-joining and offer insights into how these pathways are regulated. Finally, we introduce noncanonical functions of the recombination proteins, in particular during DNA replication stress.
Collapse
Affiliation(s)
- Lepakshi Ranjha
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Sean M Howard
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Petr Cejka
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland. .,Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
13
|
Abstract
Sexual reproduction requires the production of haploid gametes (sperm and egg) with only one copy of each chromosome; fertilization then restores the diploid chromosome content in the next generation. This reduction in genetic content is accomplished during a specialized cell division called meiosis, in which two rounds of chromosome segregation follow a single round of DNA replication. In preparation for the first meiotic division, homologous chromosomes pair and synapse, creating a context that promotes formation of crossover recombination events. These crossovers, in conjunction with sister chromatid cohesion, serve to connect the two homologs and facilitate their segregation to opposite poles during the first meiotic division. During the second meiotic division, which is similar to mitosis, sister chromatids separate; the resultant products are haploid cells that become gametes. In Caenorhabditis elegans (and most other eukaryotes) homologous pairing and recombination are required for proper chromosome inheritance during meiosis; accordingly, the events of meiosis are tightly coordinated to ensure the proper execution of these events. In this chapter, we review the seminal events of meiosis: pairing of homologous chromosomes, the changes in chromosome structure that chromosomes undergo during meiosis, the events of meiotic recombination, the differentiation of homologous chromosome pairs into structures optimized for proper chromosome segregation at Meiosis I, and the ultimate segregation of chromosomes during the meiotic divisions. We also review the regulatory processes that ensure the coordinated execution of these meiotic events during prophase I.
Collapse
Affiliation(s)
- Kenneth J Hillers
- Biological Sciences Department, California Polytechnic State University, San Luis Obispo, CA 93407, United States
| | - Verena Jantsch
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter,1030 Vienna, Austria
| | | | - Judith L Yanowitz
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, United States
| |
Collapse
|
14
|
Park S, Choi S, Ahn B. DNA Strand Breaks in Mitotic Germ Cells of Caenorhabditis elegans Evaluated by Comet Assay. Mol Cells 2016; 39:204-10. [PMID: 26903030 PMCID: PMC4794602 DOI: 10.14348/molcells.2016.2206] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 11/23/2015] [Accepted: 11/23/2015] [Indexed: 12/27/2022] Open
Abstract
DNA damage responses are important for the maintenance of genome stability and the survival of organisms. Such responses are activated in the presence of DNA damage and lead to cell cycle arrest, apoptosis, and DNA repair. In Caenorhabditis elegans, double-strand breaks induced by DNA damaging agents have been detected indirectly by antibodies against DSB recognizing proteins. In this study we used a comet assay to detect DNA strand breaks and to measure the elimination of DNA strand breaks in mitotic germline nuclei of C. elegans. We found that C. elegans brc-1 mutants were more sensitive to ionizing radiation and camptothecin than the N2 wild-type strain and repaired DNA strand breaks less efficiently than N2. This study is the first demonstration of direct measurement of DNA strand breaks in mitotic germline nuclei of C. elegans. This newly developed assay can be applied to detect DNA strand breaks in different C. elegans mutants that are sensitive to DNA damaging agents.
Collapse
Affiliation(s)
- Sojin Park
- Department of Life Sciences, University of Ulsan, Ulsan 44610,
Korea
| | - Seoyun Choi
- Department of Life Sciences, University of Ulsan, Ulsan 44610,
Korea
| | - Byungchan Ahn
- Department of Life Sciences, University of Ulsan, Ulsan 44610,
Korea
| |
Collapse
|
15
|
Taylor MRG, Špírek M, Chaurasiya KR, Ward JD, Carzaniga R, Yu X, Egelman EH, Collinson LM, Rueda D, Krejci L, Boulton SJ. Rad51 Paralogs Remodel Pre-synaptic Rad51 Filaments to Stimulate Homologous Recombination. Cell 2015; 162:271-286. [PMID: 26186187 PMCID: PMC4518479 DOI: 10.1016/j.cell.2015.06.015] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 03/27/2015] [Accepted: 06/01/2015] [Indexed: 10/31/2022]
Abstract
Repair of DNA double strand breaks by homologous recombination (HR) is initiated by Rad51 filament nucleation on single-stranded DNA (ssDNA), which catalyzes strand exchange with homologous duplex DNA. BRCA2 and the Rad51 paralogs are tumor suppressors and critical mediators of Rad51. To gain insight into Rad51 paralog function, we investigated a heterodimeric Rad51 paralog complex, RFS-1/RIP-1, and uncovered the molecular basis by which Rad51 paralogs promote HR. Unlike BRCA2, which nucleates RAD-51-ssDNA filaments, RFS-1/RIP-1 binds and remodels pre-synaptic filaments to a stabilized, "open," and flexible conformation, in which the ssDNA is more accessible to nuclease digestion and RAD-51 dissociation rate is reduced. Walker box mutations in RFS-1, which abolish filament remodeling, fail to stimulate RAD-51 strand exchange activity, demonstrating that remodeling is essential for RFS-1/RIP-1 function. We propose that Rad51 paralogs stimulate HR by remodeling the Rad51 filament, priming it for strand exchange with the template duplex.
Collapse
Affiliation(s)
- Martin R G Taylor
- DNA Damage Response Laboratory, Clare Hall Laboratory, The Francis Crick Institute, South Mimms EN6 3LD, UK
| | - Mário Špírek
- Department of Biology, Masaryk University, 62500 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital in Brno, 62500 Brno, Czech Republic
| | - Kathy R Chaurasiya
- Section of Virology, Single Molecule Imaging Group and MRC Clinical Sciences Centre, Department of Medicine, Imperial College London, London W12 0NN, UK
| | - Jordan D Ward
- DNA Damage Response Laboratory, Clare Hall Laboratory, The Francis Crick Institute, South Mimms EN6 3LD, UK; UCSF-Mission Bay, Genentech Hall S574, San Francisco, CA 94158, USA
| | - Raffaella Carzaniga
- Electron Microscopy Science Technology Platform, Lincoln's Inn Fields Laboratory, The Francis Crick Institute, London WC2A 3LY, UK
| | - Xiong Yu
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Edward H Egelman
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Lucy M Collinson
- Electron Microscopy Science Technology Platform, Lincoln's Inn Fields Laboratory, The Francis Crick Institute, London WC2A 3LY, UK
| | - David Rueda
- Section of Virology, Single Molecule Imaging Group and MRC Clinical Sciences Centre, Department of Medicine, Imperial College London, London W12 0NN, UK
| | - Lumir Krejci
- Department of Biology, Masaryk University, 62500 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital in Brno, 62500 Brno, Czech Republic; National Centre for Biomolecular Research, Masaryk University, 62500 Brno, Czech Republic.
| | - Simon J Boulton
- DNA Damage Response Laboratory, Clare Hall Laboratory, The Francis Crick Institute, South Mimms EN6 3LD, UK.
| |
Collapse
|
16
|
Lee MS, Yu M, Kim KY, Park GH, Kwack K, Kim KP. Functional Validation of Rare Human Genetic Variants Involved in Homologous Recombination Using Saccharomyces cerevisiae. PLoS One 2015; 10:e0124152. [PMID: 25938495 PMCID: PMC4418691 DOI: 10.1371/journal.pone.0124152] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 03/10/2015] [Indexed: 12/02/2022] Open
Abstract
Systems for the repair of DNA double-strand breaks (DSBs) are necessary to maintain genome integrity and normal functionality of cells in all organisms. Homologous recombination (HR) plays an important role in repairing accidental and programmed DSBs in mitotic and meiotic cells, respectively. Failure to repair these DSBs causes genome instability and can induce tumorigenesis. Rad51 and Rad52 are two key proteins in homologous pairing and strand exchange during DSB-induced HR; both are highly conserved in eukaryotes. In this study, we analyzed pathogenic single nucleotide polymorphisms (SNPs) in human RAD51 and RAD52 using the Polymorphism Phenotyping (PolyPhen) and Sorting Intolerant from Tolerant (SIFT) algorithms and observed the effect of mutations in highly conserved domains of RAD51 and RAD52 on DNA damage repair in a Saccharomyces cerevisiae-based system. We identified a number of rad51 and rad52 alleles that exhibited severe DNA repair defects. The functionally inactive SNPs were located near ATPase active site of Rad51 and the DNA binding domain of Rad52. The rad51-F317I, rad52-R52W, and rad52-G107C mutations conferred hypersensitivity to methyl methane sulfonate (MMS)-induced DNA damage and were defective in HR-mediated DSB repair. Our study provides a new approach for detecting functional and loss-of-function genetic polymorphisms and for identifying causal variants in human DNA repair genes that contribute to the initiation or progression of cancer.
Collapse
Affiliation(s)
- Min-Soo Lee
- Department of Life Science, Chung-Ang University, Seoul, Korea
| | - Mi Yu
- Department of Life Science, Chung-Ang University, Seoul, Korea
| | - Kyoung-Yeon Kim
- Department of Biomedical Science, CHA University, Seongnam, Korea
| | - Geun-Hee Park
- Department of Life Science, Chung-Ang University, Seoul, Korea
| | - KyuBum Kwack
- Department of Biomedical Science, CHA University, Seongnam, Korea
- * E-mail: (KPK); (KBK)
| | - Keun P. Kim
- Department of Life Science, Chung-Ang University, Seoul, Korea
- * E-mail: (KPK); (KBK)
| |
Collapse
|
17
|
Liu T, Huang J. Quality control of homologous recombination. Cell Mol Life Sci 2014; 71:3779-97. [PMID: 24858417 PMCID: PMC11114062 DOI: 10.1007/s00018-014-1649-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 05/09/2014] [Indexed: 12/21/2022]
Abstract
Exogenous and endogenous genotoxic agents, such as ionizing radiation and numerous chemical agents, cause DNA double-strand breaks (DSBs), which are highly toxic and lead to genomic instability or tumorigenesis if not repaired accurately and efficiently. Cells have over evolutionary time developed certain repair mechanisms in response to DSBs to maintain genomic integrity. Major DSB repair mechanisms include non-homologous end joining and homologous recombination (HR). Using sister homologues as templates, HR is a high-fidelity repair pathway that can rejoin DSBs without introducing mutations. However, HR execution without appropriate guarding may lead to more severe gross genome rearrangements. Here we review current knowledge regarding the factors and mechanisms required for accomplishment of accurate HR.
Collapse
Affiliation(s)
- Ting Liu
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058 Zhejiang China
| | - Jun Huang
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058 Zhejiang China
| |
Collapse
|
18
|
Abe T, Branzei D. High levels of BRC4 induced by a Tet-On 3G system suppress DNA repair and impair cell proliferation in vertebrate cells. DNA Repair (Amst) 2014; 22:153-64. [PMID: 25218467 PMCID: PMC4194320 DOI: 10.1016/j.dnarep.2014.08.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 08/01/2014] [Accepted: 08/21/2014] [Indexed: 12/27/2022]
Abstract
The Tet-On 3G system is useful for conditional gene overexpression studies in DT40. The Tet-On-I-SceI effectively induces DSB formation in vertebrate cells. BRC4 overexpression induces chromosomal breaks and G2-arrest. BRC4 cytotoxicity is mediated by endogenous BRCA2, but independent of NHEJ. BRC4 inhibits cancer cell proliferation and exacerbates the effects of chemotherapy.
Transient induction or suppression of target genes is useful to study the function of toxic or essential genes in cells. Here we apply a Tet-On 3G system to DT40 lymphoma B cell lines, validating it for three different genes. Using this tool, we then show that overexpression of the chicken BRC4 repeat of the tumor suppressor BRCA2 impairs cell proliferation and induces chromosomal breaks. Mechanistically, high levels of BRC4 suppress double strand break-induced homologous recombination, inhibit the formation of RAD51 recombination repair foci, reduce cellular resistance to DNA damaging agents and induce a G2 damage checkpoint-mediated cell-cycle arrest. The above phenotypes are mediated by BRC4 capability to bind and inhibit RAD51. The toxicity associated with BRC4 overexpression is exacerbated by chemotherapeutic agents and reversed by RAD51 overexpression, but it is neither aggravated nor suppressed by a deficit in the non-homologous end-joining pathway of double strand break repair. We further find that the endogenous BRCA2 mediates the cytotoxicity associated with BRC4 induction, thus underscoring the possibility that BRC4 or other domains of BRCA2 cooperate with ectopic BRC4 in regulating repair activities or mitotic cell division. In all, the results demonstrate the utility of the Tet-On 3G system in DT40 research and underpin a model in which BRC4 role on cell proliferation and chromosome repair arises primarily from its suppressive role on RAD51 functions.
Collapse
Affiliation(s)
- Takuya Abe
- IFOM, The FIRC Institute for Molecular Oncology Foundation, IFOM-IEO Campus, Via Adamello 16, 20139 Milan, Italy.
| | - Dana Branzei
- IFOM, The FIRC Institute for Molecular Oncology Foundation, IFOM-IEO Campus, Via Adamello 16, 20139 Milan, Italy.
| |
Collapse
|
19
|
Jensen RB. BRCA2: one small step for DNA repair, one giant protein purified. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2013; 86:479-89. [PMID: 24348212 PMCID: PMC3848102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
DNA damage, malfunctions in DNA repair, and genomic instability are processes that intersect at the crossroads of carcinogenesis. Underscoring the importance of DNA repair in breast and ovarian tumorigenesis is the familial inherited cancer predisposition gene BRCA2. The role of BRCA2 in DNA double-strand break repair was first revealed based on its interaction with RAD51, a central player in homologous recombination. The RAD51 protein forms a nucleoprotein filament on single-stranded DNA, invades a DNA duplex, and initiates a search for homology. Once a homologous DNA sequence is found, the DNA is used as a template for the high-fidelity repair of the DNA break. Many of the biochemical features that allow BRCA2 to choreograph the activities of RAD51 have been elucidated and include: targeting RAD51 to single-stranded DNA while inhibiting binding to dsDNA, reducing the ATPase activity of RAD51, and facilitating the displacement of the single-strand DNA binding protein, Replication Protein A. These reinforcing activities of BRCA2 culminate in the correct positioning of RAD51 onto a processed DNA double-strand break and initiate its faithful repair by homologous recombination. In this review, I will address current biochemical data concerning the BRCA2 protein and highlight unanswered questions regarding BRCA2 function in homologous recombination and cancer.
Collapse
|
20
|
Verma S, Rao BJ. p53 suppresses BRCA2-stimulated ATPase and strand exchange functions of human RAD51. J Biochem 2013; 154:237-48. [PMID: 23678008 DOI: 10.1093/jb/mvt040] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Although homologous recombination (HR) is an important pathway for DNA repair, it can also be a cause for deleterious genomic rearrangements leading to carcinogenesis. Therefore, cells have evolved elaborate mechanisms to regulate HR, positively as well as negatively. Among many molecular components that regulate HR are tumour suppressors p53, a negative regulator and breast cancer early-onset (BRCA)2, a positive regulator. Both the players not only interact with each other but also directly interact with human RAD51 (hRAD51), the key recombinase in HR. Here, for the first time we studied HR regulation by the combined action of p53 and BRCA2, in vitro. While BRC4 peptide inhibits ATP hydrolysis by hRAD51, BRCA2(BRC1-8) stimulates DNA-independent and double-stranded DNA-dependent ATPase several fold and only marginally single-stranded DNA-dependent ATPase. Pull down assays demonstrated the occurrence of complex comprising of all three proteins and DNA, where p53 tends to compete out hRAD51 and BRCA2(BRC1-8), leading to not only the decline in ATP hydrolysis but also the strand exchange function of hRAD51 that was stimulated by BRCA2(BRC1-8). Our findings suggest a rigorous p53-mediated regulation on hRAD51 functions in HR even in the presence of BRCA2.
Collapse
Affiliation(s)
- Shalini Verma
- Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005, Maharashtra, India
| | | |
Collapse
|
21
|
Dargahi D, Baillie D, Pio F. Bioinformatics analysis identify novel OB fold protein coding genes in C. elegans. PLoS One 2013; 8:e62204. [PMID: 23638006 PMCID: PMC3636199 DOI: 10.1371/journal.pone.0062204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 03/20/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The C. elegans genome has been extensively annotated by the WormBase consortium that uses state of the art bioinformatics pipelines, functional genomics and manual curation approaches. As a result, the identification of novel genes in silico in this model organism is becoming more challenging requiring new approaches. The Oligonucleotide-oligosaccharide binding (OB) fold is a highly divergent protein family, in which protein sequences, in spite of having the same fold, share very little sequence identity (5-25%). Therefore, evidence from sequence-based annotation may not be sufficient to identify all the members of this family. In C. elegans, the number of OB-fold proteins reported is remarkably low (n=46) compared to other evolutionary-related eukaryotes, such as yeast S. cerevisiae (n=344) or fruit fly D. melanogaster (n=84). Gene loss during evolution or differences in the level of annotation for this protein family, may explain these discrepancies. METHODOLOGY/PRINCIPAL FINDINGS This study examines the possibility that novel OB-fold coding genes exist in the worm. We developed a bioinformatics approach that uses the most sensitive sequence-sequence, sequence-profile and profile-profile similarity search methods followed by 3D-structure prediction as a filtering step to eliminate false positive candidate sequences. We have predicted 18 coding genes containing the OB-fold that have remarkably partially been characterized in C. elegans. CONCLUSIONS/SIGNIFICANCE This study raises the possibility that the annotation of highly divergent protein fold families can be improved in C. elegans. Similar strategies could be implemented for large scale analysis by the WormBase consortium when novel versions of the genome sequence of C. elegans, or other evolutionary related species are being released. This approach is of general interest to the scientific community since it can be used to annotate any genome.
Collapse
Affiliation(s)
- Daryanaz Dargahi
- Molecular Biology and Biochemistry Department, Simon Fraser University, Burnaby, British Columbia, Canada
| | - David Baillie
- Molecular Biology and Biochemistry Department, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Frederic Pio
- Molecular Biology and Biochemistry Department, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
22
|
Lui DY, Colaiácovo MP. Meiotic development in Caenorhabditis elegans. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 757:133-70. [PMID: 22872477 DOI: 10.1007/978-1-4614-4015-4_6] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Caenorhabditis elegans has become a powerful experimental organism with which to study meiotic processes that promote the accurate segregation of chromosomes during the generation of haploid gametes. Haploid reproductive cells are produced through one round of chromosome replication followed by two -successive cell divisions. Characteristic meiotic chromosome structure and dynamics are largely conserved in C. elegans. Chromosomes adopt a meiosis-specific structure by loading cohesin proteins, assembling axial elements, and acquiring chromatin marks. Homologous chromosomes pair and form physical connections though synapsis and recombination. Synaptonemal complex and crossover formation allow for the homologs to stably associate prior to remodeling that facilitates their segregation. This chapter will cover conserved meiotic processes as well as highlight aspects of meiosis that are unique to C. elegans.
Collapse
Affiliation(s)
- Doris Y Lui
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
23
|
Trenaman A, Hartley C, Prorocic M, Passos-Silva DG, van den Hoek M, Nechyporuk-Zloy V, Machado CR, McCulloch R. Trypanosoma brucei BRCA2 acts in a life cycle-specific genome stability process and dictates BRC repeat number-dependent RAD51 subnuclear dynamics. Nucleic Acids Res 2012; 41:943-60. [PMID: 23222131 PMCID: PMC3553974 DOI: 10.1093/nar/gks1192] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Trypanosoma brucei survives in mammals through antigenic variation, which is driven by RAD51-directed homologous recombination of Variant Surface Glycoproteins (VSG) genes, most of which reside in a subtelomeric repository of >1000 silent genes. A key regulator of RAD51 is BRCA2, which in T. brucei contains a dramatic expansion of a motif that mediates interaction with RAD51, termed the BRC repeats. BRCA2 mutants were made in both tsetse fly-derived and mammal-derived T. brucei, and we show that BRCA2 loss has less impact on the health of the former. In addition, we find that genome instability, a hallmark of BRCA2 loss in other organisms, is only seen in mammal-derived T. brucei. By generating cells expressing BRCA2 variants with altered BRC repeat numbers, we show that the BRC repeat expansion is crucial for RAD51 subnuclear dynamics after DNA damage. Finally, we document surprisingly limited co-localization of BRCA2 and RAD51 in the T. brucei nucleus, and we show that BRCA2 mutants display aberrant cell division, revealing a function distinct from BRC-mediated RAD51 interaction. We propose that BRCA2 acts to maintain the huge VSG repository of T. brucei, and this function has necessitated the evolution of extensive RAD51 interaction via the BRC repeats, allowing re-localization of the recombinase to general genome damage when needed.
Collapse
Affiliation(s)
- Anna Trenaman
- The Wellcome Trust Centre for Molecular Parasitology, College of Medical Veterinary and Life Sciences, Institute of Infection, Immunity and Inflammation, University of Glasgow, Sir Graeme Davies Building, 120 University Place, Glasgow G12 8TA, UK
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Lok BH, Powell SN. Molecular pathways: understanding the role of Rad52 in homologous recombination for therapeutic advancement. Clin Cancer Res 2012; 18:6400-6. [PMID: 23071261 PMCID: PMC3513650 DOI: 10.1158/1078-0432.ccr-11-3150] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The Rad52 protein was largely ignored in humans and other mammals when the mouse knockout revealed a largely "no-effect" phenotype. However, using synthetic lethal approaches to investigate context-dependent function, new studies have shown that Rad52 plays a key survival role in cells lacking the function of the breast cancer type 1 susceptibility protein (BRCA1)-BRCA2 pathway of homologous recombination. Biochemical studies also showed significant differences between yeast and human Rad52 (hRad52), in which yeast Rad52 can promote strand invasion of replication protein A (RPA)-coated single-stranded DNA (ssDNA) in the presence of Rad51 but hRad52 cannot. This results in the paradox of how is hRad52 providing Rad51 function: presumably there is something missing in the biochemical assays that exists in vivo, but the nature of this missing factor is currently unknown. Recent studies have suggested that Rad52 provides back-up Rad51 function for all members of the BRCA1-BRCA2 pathway, suggesting that Rad52 may be a target for therapy in BRCA pathway-deficient cancers. Screening for ways to inhibit Rad52 would potentially provide a complementary strategy for targeting BRCA-deficient cancers in addition to poly (ADP-ribose) polymerase (PARP) inhibitors.
Collapse
Affiliation(s)
- Benjamin H. Lok
- Memorial Sloan-Kettering Cancer Center, New York, NY
- New York University School of Medicine, New York, NY
| | | |
Collapse
|
25
|
La Volpe A, Barchi M. Meiotic double strand breaks repair in sexually reproducing eukaryotes: We are not all equal. Exp Cell Res 2012; 318:1333-9. [DOI: 10.1016/j.yexcr.2012.03.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 03/14/2012] [Accepted: 03/14/2012] [Indexed: 11/16/2022]
|
26
|
Liu J, Ehmsen KT, Heyer WD, Morrical SW. Presynaptic filament dynamics in homologous recombination and DNA repair. Crit Rev Biochem Mol Biol 2011; 46:240-70. [PMID: 21599536 DOI: 10.3109/10409238.2011.576007] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Homologous recombination (HR) is an essential genome stability mechanism used for high-fidelity repair of DNA double-strand breaks and for the recovery of stalled or collapsed DNA replication forks. The crucial homology search and DNA strand exchange steps of HR are catalyzed by presynaptic filaments-helical filaments of a recombinase enzyme bound to single-stranded DNA (ssDNA). Presynaptic filaments are fundamentally dynamic structures, the assembly, catalytic turnover, and disassembly of which must be closely coordinated with other elements of the DNA recombination, repair, and replication machinery in order for genome maintenance functions to be effective. Here, we reviewed the major dynamic elements controlling the assembly, activity, and disassembly of presynaptic filaments; some intrinsic such as recombinase ATP-binding and hydrolytic activities, others extrinsic such as ssDNA-binding proteins, mediator proteins, and DNA motor proteins. We examined dynamic behavior on multiple levels, including atomic- and filament-level structural changes associated with ATP binding and hydrolysis as evidenced in crystal structures, as well as subunit binding and dissociation events driven by intrinsic and extrinsic factors. We examined the biochemical properties of recombination proteins from four model systems (T4 phage, Escherichia coli, Saccharomyces cerevisiae, and Homo sapiens), demonstrating how their properties are tailored for the context-specific requirements in these diverse species. We proposed that the presynaptic filament has evolved to rely on multiple external factors for increased multilevel regulation of HR processes in genomes with greater structural and sequence complexity.
Collapse
Affiliation(s)
- Jie Liu
- Departments of Microbiology and of Molecular and Cellular Biology, University of California, Davis, CA, USA
| | | | | | | |
Collapse
|
27
|
Holthausen JT, van Loenhout MTJ, Sanchez H, Ristic D, van Rossum-Fikkert SE, Modesti M, Dekker C, Kanaar R, Wyman C. Effect of the BRCA2 CTRD domain on RAD51 filaments analyzed by an ensemble of single molecule techniques. Nucleic Acids Res 2011; 39:6558-67. [PMID: 21576230 PMCID: PMC3159462 DOI: 10.1093/nar/gkr295] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Homologous recombination is essential for the preservation of genome stability, thereby preventing cancer. The recombination protein RAD51 drives DNA strand exchange, which requires the assembly, rearrangement and disassembly of a RAD51 filament on DNA, coupled to ATP binding and hydrolysis. This process is facilitated and controlled by recombination mediators and accessory factors. Here, we have employed a range of single molecule techniques to determine the influence of the C-terminal RAD51 interaction domain (CTRD) of the breast cancer tumor suppressor BRCA2 on intrinsic aspects of RAD51-DNA interactions. We show that at high concentration the CTRD entangles RAD51 filaments and reduces RAD51 filament formation in a concentration dependent manner. It does not affect the rate of filament disassembly measured as the loss of fluorescent signal due to intrinsic RAD51 protein dissociation from double-stranded DNA (dsDNA). We conclude that, outside the context of the full-length protein, the CTRD does not reduce RAD51 dissociation kinetics, but instead hinders filament formation on dsDNA. The CTRDs mode of action is most likely sequestration of multiple RAD51 molecules thereby rendering them inactive for filament formation on dsDNA.
Collapse
Affiliation(s)
- J T Holthausen
- Department of Genetics, Cancer Genomics Center, Erasmus Medical Center, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Hall M, Misra S, Chaudhuri M, Chaudhuri G. Peptide aptamer mimicking RAD51-binding domain of BRCA2 inhibits DNA damage repair and survival in Trypanosoma brucei. Microb Pathog 2011; 50:252-62. [PMID: 21296653 PMCID: PMC3065951 DOI: 10.1016/j.micpath.2010.11.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2010] [Revised: 11/26/2010] [Accepted: 11/30/2010] [Indexed: 10/18/2022]
Abstract
The eukaryotic DNA recombination repair protein BRCA2 is functional in the parasitic protozoan Trypanosoma brucei. The mechanism of the involvement of BRCA2 in homologous recombination includes its interaction with the DNA recombinase proteins of the RAD51 family. BRCA2 is known to interact with RAD51 through its unique and essential BRC sequence motifs. T. brucei BRCA2 homolog (TbBRCA2) has fifteen repeating BRC motifs as compared to mammalian BRCA2 that has only eight. We report here our yeast 2-hybrid analysis studies on the interactions of TbBRCA2 BRC motifs with five different RAD51 paralogues of T. brucei. Our study revealed that a single BRC motif is sufficient to bind to these RAD51 paralogues. To test the possibility whether a single 44 amino acid long repeating unit of the TbBRCA2 BRC motif may be exploited as an inhibitor of T. brucei growth, we ectopically expressed this peptide segment in the procyclic form of the parasite and evaluated its effects on cell survival as well as the sensitivity of these cells to the DNA damaging agent methyl methane sulfonate (MMS). Expression of a single BRC motif led to MMS sensitivity and inhibited cellular proliferation in T. brucei.
Collapse
Affiliation(s)
- Mack Hall
- Department of Microbiology and Immunology, Meharry Medical College, Nashville, TN
| | - Smita Misra
- Department of Microbiology and Immunology, Meharry Medical College, Nashville, TN
| | - Minu Chaudhuri
- Department of Microbiology and Immunology, Meharry Medical College, Nashville, TN
| | - Gautam Chaudhuri
- Department of Microbiology and Immunology, Meharry Medical College, Nashville, TN
| |
Collapse
|
29
|
Youds JL, Boulton SJ. The choice in meiosis – defining the factors that influence crossover or non-crossover formation. J Cell Sci 2011; 124:501-13. [DOI: 10.1242/jcs.074427] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Meiotic crossovers are essential for ensuring correct chromosome segregation as well as for creating new combinations of alleles for natural selection to take place. During meiosis, excess meiotic double-strand breaks (DSBs) are generated; a subset of these breaks are repaired to form crossovers, whereas the remainder are repaired as non-crossovers. What determines where meiotic DSBs are created and whether a crossover or non-crossover will be formed at any particular DSB remains largely unclear. Nevertheless, several recent papers have revealed important insights into the factors that control the decision between crossover and non-crossover formation in meiosis, including DNA elements that determine the positioning of meiotic DSBs, and the generation and processing of recombination intermediates. In this review, we focus on the factors that influence DSB positioning, the proteins required for the formation of recombination intermediates and how the processing of these structures generates either a crossover or non-crossover in various organisms. A discussion of crossover interference, assurance and homeostasis, which influence crossing over on a chromosome-wide and genome-wide scale – in addition to current models for the generation of interference – is also included. This Commentary aims to highlight recent advances in our understanding of the factors that promote or prevent meiotic crossing over.
Collapse
Affiliation(s)
- Jillian L. Youds
- DNA Damage Response Laboratory, Cancer Research UK, London Research Institute, Clare Hall, Blanche Lane, South Mimms EN6 3LD, UK
| | - Simon J. Boulton
- DNA Damage Response Laboratory, Cancer Research UK, London Research Institute, Clare Hall, Blanche Lane, South Mimms EN6 3LD, UK
| |
Collapse
|
30
|
Lemmens BBLG, Tijsterman M. DNA double-strand break repair in Caenorhabditis elegans. Chromosoma 2011; 120:1-21. [PMID: 21052706 PMCID: PMC3028100 DOI: 10.1007/s00412-010-0296-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Revised: 10/14/2010] [Accepted: 10/15/2010] [Indexed: 10/25/2022]
Abstract
Faithful repair of DNA double-strand breaks (DSBs) is vital for animal development, as inappropriate repair can cause gross chromosomal alterations that result in cellular dysfunction, ultimately leading to cancer, or cell death. Correct processing of DSBs is not only essential for maintaining genomic integrity, but is also required in developmental programs, such as gametogenesis, in which DSBs are deliberately generated. Accordingly, DSB repair deficiencies are associated with various developmental disorders including cancer predisposition and infertility. To avoid this threat, cells are equipped with an elaborate and evolutionarily well-conserved network of DSB repair pathways. In recent years, Caenorhabditis elegans has become a successful model system in which to study DSB repair, leading to important insights in this process during animal development. This review will discuss the major contributions and recent progress in the C. elegans field to elucidate the complex networks involved in DSB repair, the impact of which extends well beyond the nematode phylum.
Collapse
Affiliation(s)
- Bennie B. L. G. Lemmens
- Department of Toxicogenetics, Leids Universitair Medisch Centrum Gebouw 2, Postzone S-4 Postbus 9600, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Marcel Tijsterman
- Department of Toxicogenetics, Leids Universitair Medisch Centrum Gebouw 2, Postzone S-4 Postbus 9600, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| |
Collapse
|
31
|
Krupa R, Sobczuk A, Popławski T, Wozniak K, Blasiak J. DNA damage and repair in endometrial cancer in correlation with the hOGG1 and RAD51 genes polymorphism. Mol Biol Rep 2010; 38:1163-70. [PMID: 20602259 PMCID: PMC3024515 DOI: 10.1007/s11033-010-0214-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Accepted: 06/11/2010] [Indexed: 02/03/2023]
Abstract
The cellular reaction to the DNA-damaging agents may modulate individual's cancer susceptibility. This reaction is mainly determined by the efficacy of DNA repair, which in turn, may be influenced by the variability of DNA repair genes, expressed by their polymorphism. The hOGG1 gene encodes a glycosylase of base excision repair and RAD51 specifies a key protein in homologues recombination repair. Both proteins can be involved in the repair of DNA lesions, which are known to contribute to endometrial cancer. In the present work we determined the extent of basal DNA damage and the efficacy of removal of DNA damage induced by hydrogen peroxide and N-methyl-N'-nitro N-nitrosoguanidyne (MNNG) in peripheral blood lymphocytes of 30 endometrial cancer patients and 30 individuals without cancer. The results from DNA damage and repair study were correlated with the genotypes of two common polymorphisms of the hOGG1 and RAD51 genes: a G>C transversion at 1245 position of the hOGG1 gene producing a Ser → Cys substitution at the codon 326 (the Ser326Cys polymorphism) and a G>C substitution at 135 position of the RAD51 gene (the 135G>C polymorphism). DNA damage and repair were evaluated by alkaline single cell gel electrophoresis and genotypes were determined by restriction fragment length polymorphism PCR. We observed a strong association between endometrial cancer and the C/C genotype of the 135G>C polymorphism of the RAD51 gene. Moreover, there was a strong correlation between that genotype and endometrial cancer occurrence in subjects with a high level of basal DNA damage. We did not observe any correlation between the Ser326Cys polymorphism of the hOGG1 gene and endometrial cancer. Our result suggest that the 135G>C polymorphism of the RAD51 gene may be linked to endometrial cancer and can be considered as an additional marker of this disease.
Collapse
Affiliation(s)
- Renata Krupa
- Laboratory of DNA Repair, Department of Molecular Genetics, University of Lodz, Banacha 12/16, 90-237, Lodz, Poland
| | | | | | | | | |
Collapse
|
32
|
Chen LT, Wang AHJ. A rationally designed peptide enhances homologous recombination in vitro and resistance to DNA damaging agents in vivo. Nucleic Acids Res 2010; 38:4361-71. [PMID: 20308162 PMCID: PMC2910059 DOI: 10.1093/nar/gkq182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The RecA family of proteins is essential in homologous recombination, a critical step in DNA repair. Here, we report that a rationally-designed small peptide based on the crystal structure of Escherichia coli RecA–DNA complex can promote homologous recombination through the enhancement of both RecA-mediated strand assimilation and three-strand exchange activity. Among 17 peptides tested, peptide #3 with the amino acid sequence of IRFLTARRR has the most potent activity in promoting the RecA-mediated D-loop formation by ∼7.2-fold at 37°C. Other peptides such as IRFLTAKKK and IRLLTARRR also have similar, albeit lower, activities. Therefore, hydrophobicity and poly-positive charges, and the space between them in those small peptides are crucial features for such activities. The enhancement of recombination by these peptides appears to be a general phenomenon as similar results were seen by using different plasmids. Remarkably, peptide #3 alone without RecA can also promote the D-loop formation at elevated temperature. Cell viability assays showed that the peptide elevates mammalian cell resistance to two cytotoxic DNA drugs, cisplatin and doxorubicin. The rescue of viability may result from increased DNA repair efficiency. Such peptides may find future biological applications.
Collapse
Affiliation(s)
- Li-Tzu Chen
- Institute of Biochemical Sciences, National Taiwan University, Taipei 106, Taiwan
| | | |
Collapse
|
33
|
Ward JD, Muzzini DM, Petalcorin MIR, Martinez-Perez E, Martin JS, Plevani P, Cassata G, Marini F, Boulton SJ. Overlapping mechanisms promote postsynaptic RAD-51 filament disassembly during meiotic double-strand break repair. Mol Cell 2010; 37:259-72. [PMID: 20122407 DOI: 10.1016/j.molcel.2009.12.026] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Revised: 09/28/2009] [Accepted: 10/30/2009] [Indexed: 12/17/2022]
Abstract
Homologous recombination (HR) is essential for repair of meiotic DNA double-strand breaks (DSBs). Although the mechanisms of RAD-51-DNA filament assembly and strand exchange are well characterized, the subsequent steps of HR are less well defined. Here, we describe a synthetic lethal interaction between the C. elegans helicase helq-1 and RAD-51 paralog rfs-1, which results in a block to meiotic DSB repair after strand invasion. Whereas RAD-51-ssDNA filaments assemble at meiotic DSBs with normal kinetics in helq-1, rfs-1 double mutants, persistence of RAD-51 foci and genetic interactions with rtel-1 suggest a failure to disassemble RAD-51 from strand invasion intermediates. Indeed, purified HELQ-1 and RFS-1 independently bind to and promote the disassembly of RAD-51 from double-stranded, but not single-stranded, DNA filaments via distinct mechanisms in vitro. These results indicate that two compensating activities are required to promote postsynaptic RAD-51 filament disassembly, which are collectively essential for completion of meiotic DSB repair.
Collapse
Affiliation(s)
- Jordan D Ward
- DNA Damage Response Laboratory, Cancer Research UK, Clare Hall Laboratories, South Mimms EN6 3LD, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Carreira A, Kowalczykowski SC. BRCA2: Shining light on the regulation of DNA-binding selectivity by RAD51. Cell Cycle 2009; 8:3445-7. [PMID: 19838057 DOI: 10.4161/cc.8.21.9748] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
35
|
Shivji MKK, Mukund SR, Rajendra E, Chen S, Short JM, Savill J, Klenerman D, Venkitaraman AR. The BRC repeats of human BRCA2 differentially regulate RAD51 binding on single- versus double-stranded DNA to stimulate strand exchange. Proc Natl Acad Sci U S A 2009; 106:13254-9. [PMID: 19628690 PMCID: PMC2714763 DOI: 10.1073/pnas.0906208106] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Indexed: 12/26/2022] Open
Abstract
The breast and ovarian cancer suppressor BRCA2 controls the enzyme RAD51 during homologous DNA recombination (HDR) to preserve genome stability. BRCA2 binds to RAD51 through 8 conserved BRC repeat motifs dispersed in an 1127-residue region (BRCA2([BRC1-8])). Here, we show that BRCA2([BRC1-8]) exerts opposing effects on the binding of RAD51 to single-stranded (ss) versus double-stranded (ds) DNA substrates, enhancing strand exchange. BRCA2([BRC1-8]) alters the electrophoretic mobility of RAD51 bound to an ssDNA substrate, accompanied by an increase in ssDNA-bound protein assemblies, revealed by electron microscopy. Single-molecule fluorescence spectroscopy shows that BRCA2([BRC1-8]) promotes RAD51 loading onto ssDNA. In contrast, BRCA2([BRC1-8]) has a different effect on RAD51 assembly on dsDNA; it suppresses and slows this process. When homologous ssDNA and dsDNA are both present, BRCA2([BRC1-8]) stimulates strand exchange, with delayed RAD51 loading onto dsDNA accompanying the appearance of joint molecules representing recombination products. Collectively, our findings suggest that BRCA2([BRC1-8]) targets RAD51 to ssDNA while inhibiting dsDNA binding and that these contrasting activities together bolster one another to stimulate HDR. Our work provides fresh insight into the mechanism of HDR in humans, and its regulation by the BRCA2 tumor suppressor.
Collapse
Affiliation(s)
- Mahmud K. K. Shivji
- The Medical Research Council Cancer Cell Unit, Hutchison/MRC Research Centre, Hills Road, Cambridge CB2 0XZ,United Kingdom
| | - Shreyas R. Mukund
- The Medical Research Council Cancer Cell Unit, Hutchison/MRC Research Centre, Hills Road, Cambridge CB2 0XZ,United Kingdom
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom; and
| | - Eeson Rajendra
- The Medical Research Council Cancer Cell Unit, Hutchison/MRC Research Centre, Hills Road, Cambridge CB2 0XZ,United Kingdom
| | - Shaoxia Chen
- The Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, United Kingdom
| | - Judith M. Short
- The Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, United Kingdom
| | - Jane Savill
- The Medical Research Council Cancer Cell Unit, Hutchison/MRC Research Centre, Hills Road, Cambridge CB2 0XZ,United Kingdom
| | - David Klenerman
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom; and
| | - Ashok R. Venkitaraman
- The Medical Research Council Cancer Cell Unit, Hutchison/MRC Research Centre, Hills Road, Cambridge CB2 0XZ,United Kingdom
| |
Collapse
|
36
|
Structural transitions within human Rad51 nucleoprotein filaments. Proc Natl Acad Sci U S A 2009; 106:12688-93. [PMID: 19622740 DOI: 10.1073/pnas.0811465106] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Rad51 is a core component of the eukaryotic homologous recombination machinery and is responsible for key mechanistic steps during strand invasion. Higher order oligomers of Rad51 display a remarkable degree of structural variation, forming rings, compressed filaments, and elongated filaments. It is unclear whether Rad51 can transition directly between these different oligomeric structures without disassembling first into monomers. We have used single-molecule microscopy to investigate the behavior of human Rad51 assembled on double-stranded DNA. Our results show that human Rad51 can form elongated nucleoprotein filaments on DNA, but ATP hydrolysis causes a decrease in their length without concomitant dissociation of protein. Compressed Rad51 filaments can re-elongate when presented with either ATP or the non-hydrolyzable analog AMP-PNP, and these cycles of elongation and compression are reversible. A Rad51 mutant deficient in ATP hydrolysis is locked into an extended conformation that is incapable of transitioning to a compressed filament. Similarly, wild-type Rad51 bound to DNA in the presence of AMP-PNP was trapped in the elongated state. Proteins incapable of transitioning to the compressed state were also highly resistant to dissociation from the DNA. Taken together, our results indicate that nucleotide hydrolysis by human Rad51 triggers a reversible structural transition leading to filaments with reduced helical pitch.
Collapse
|
37
|
Zhou Q, Kojic M, Holloman WK. DNA-binding Domain within the Brh2 N Terminus Is the Primary Interaction Site for Association with DNA. J Biol Chem 2009; 284:8265-73. [PMID: 19182269 PMCID: PMC2659184 DOI: 10.1074/jbc.m809226200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Revised: 01/27/2009] [Indexed: 12/24/2022] Open
Abstract
The C-terminal region of Brh2 (Brh2(CT)), the BRCA2 homolog in Ustilago maydis, is highly conserved and aligns with the DSS1/DNA-binding domain (DBD) of mammalian BRCA2, while the N-terminal region (Brh2(NT)) is poorly conserved and has no obvious functional domain except for the single Rad51-interacting BRC element. Paradoxically, Brh2(NT), but not Brh2(CT), complements the DNA repair and recombination deficiency of the brh2 mutant. We show here that Brh2(NT) exhibits an unexpected DNA binding activity with properties similar to that of the full-length protein. Deletion mapping localized the region responsible for the DNA binding activity to a stretch of residues between the BRC element and the canonical DBD. A heterologous DNA-binding domain from the large subunit of replication protein A substituted for the endogenous binding region within Brh2(NT) in supporting DNA repair. Rad51-promoted strand invasion was stimulated by Brh2(NT), but required the presence of the BRC element. The findings suggest a model in which Brh2(NT) serves as the principal site for association with DNA, while the Brh2(CT) provides a means for regulation.
Collapse
Affiliation(s)
- Qingwen Zhou
- Department of Microbiology and Immunology, Cornell University Weill Medical College, New York, New York 10021
| | | | | |
Collapse
|
38
|
Takaku M, Machida S, Hosoya N, Nakayama S, Takizawa Y, Sakane I, Shibata T, Miyagawa K, Kurumizaka H. Recombination activator function of the novel RAD51- and RAD51B-binding protein, human EVL. J Biol Chem 2009; 284:14326-36. [PMID: 19329439 DOI: 10.1074/jbc.m807715200] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The RAD51 protein is a central player in homologous recombinational repair. The RAD51B protein is one of five RAD51 paralogs that function in the homologous recombinational repair pathway in higher eukaryotes. In the present study, we found that the human EVL (Ena/Vasp-like) protein, which is suggested to be involved in actin-remodeling processes, unexpectedly binds to the RAD51 and RAD51B proteins and stimulates the RAD51-mediated homologous pairing and strand exchange. The EVL knockdown cells impaired RAD51 assembly onto damaged DNA after ionizing radiation or mitomycin C treatment. The EVL protein alone promotes single-stranded DNA annealing, and the recombination activities of the EVL protein are further enhanced by the RAD51B protein. The expression of the EVL protein is not ubiquitous, but it is significantly expressed in breast cancer-derived MCF7 cells. These results suggest that the EVL protein is a novel recombination factor that may be required for repairing specific DNA lesions, and that may cause tumor malignancy by its inappropriate expression.
Collapse
Affiliation(s)
- Motoki Takaku
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, and Consolidated Research Institute for Advanced Science and Medical Care, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Carreira A, Hilario J, Amitani I, Baskin RJ, Shivji MKK, Venkitaraman AR, Kowalczykowski SC. The BRC repeats of BRCA2 modulate the DNA-binding selectivity of RAD51. Cell 2009; 136:1032-43. [PMID: 19303847 PMCID: PMC2669112 DOI: 10.1016/j.cell.2009.02.019] [Citation(s) in RCA: 194] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2008] [Revised: 01/14/2009] [Accepted: 02/09/2009] [Indexed: 12/14/2022]
Abstract
The breast cancer susceptibility protein, BRCA2, is essential for recombinational DNA repair. BRCA2 delivers RAD51 to double-stranded DNA (dsDNA) breaks through interaction with eight conserved, approximately 35 amino acid motifs, the BRC repeats. Here we show that the solitary BRC4 promotes assembly of RAD51 onto single-stranded DNA (ssDNA), but not dsDNA, to stimulate DNA strand exchange. BRC4 acts by blocking ATP hydrolysis and thereby maintaining the active ATP-bound form of the RAD51-ssDNA filament. Single-molecule visualization shows that BRC4 does not disassemble RAD51-dsDNA filaments but rather blocks nucleation of RAD51 onto dsDNA. Furthermore, this behavior is manifested by a domain of BRCA2 comprising all eight BRC repeats. These results establish that the BRC repeats modulate RAD51-DNA interaction in two opposing but functionally reinforcing ways: targeting active RAD51 to ssDNA and prohibiting RAD51 nucleation onto dsDNA. Thus, BRCA2 recruits RAD51 to DNA breaks and, we propose, the BRC repeats regulate DNA-binding selectivity.
Collapse
Affiliation(s)
- Aura Carreira
- Department of Microbiology, University of California, Davis, CA 95616, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Breast cancers with BRCA2 mutations exhibit DNA repair defects and are particularly sensitive to radiation. BRCA2 interacts with Rad51 in a complex manner involving internal BRC and C-terminal TR2 domains which play a key role in homologous recombination. BRCA2 expression also modulates Rad51 protein levels such that Rad51 protein is relatively decreased in BRCA2-defective cancer cells. This is mediated in part through BRCA2's capacity to protect Rad51 from caspase-3 proteolytic degradation. In order to distinguish between functional and expression related roles for BRCA2 we studied the results of Rad51 overexpression in mouse and human cells with inactivating BRCA2 mutations. The results show that overexpression of wild-type Rad51 partially rescues BRCA2 deficiency but that overexpression of a caspase-3 resistant Rad51 completely complements the BRCA2 defect in radiation responsiveness. These results indicate that Rad51 can compensate for some aspects of a BRCA2 gene defect and suggest that Rad51 expression levels may be an important modifier of the BRCA2 defective genotype.
Collapse
Affiliation(s)
- Erika T Brown
- Department of Pathology, University of Colorado Health Sciences Center, RC-1 South Tower, 12801 East 17th Avenue, Aurora, Colorado 80010-7163, USA
| | | |
Collapse
|
41
|
Youds JL, Barber LJ, Boulton SJ. C. elegans: a model of Fanconi anemia and ICL repair. Mutat Res 2008; 668:103-16. [PMID: 19059419 DOI: 10.1016/j.mrfmmm.2008.11.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Revised: 10/09/2008] [Accepted: 11/07/2008] [Indexed: 11/29/2022]
Abstract
Fanconi anemia (FA) is a severe recessive disorder with a wide range of clinical manifestations [M. Levitus, H. Joenje, J.P. de Winter, The Fanconi anemia pathway of genomic maintenance, Cell Oncol. 28 (2006) 3-29]. In humans, 13 complementation groups have been identified to underlie FA: A, B, C, D1, D2, E, F, G, I, J, L, M, and N [W. Wang, Emergence of a DNA-damage response network consisting of Fanconi anaemia and BRCA proteins, Nat. Rev. Genet. 8 (2007) 735-748]. Cells defective for any of these genes display chromosomal aberrations and sensitivity to DNA interstrand cross-links (ICLs). It has therefore been suggested that the 13 FA proteins constitute a pathway for the repair of ICLs, and that a deficiency in this repair process causes genomic instability leading to the different clinical phenotypes. However, the exact nature of this repair pathway, or even whether all 13 FA proteins are involved at some stage of a linear repair process, remains to be defined. Undoubtedly, the recent identification and characterisation of FA homologues in model organisms, such as Caenorhabditis elegans, will help facilitate an understanding of the function of the FA proteins by providing new analytical tools. To date, sequence homologues of five FA genes have been identified in C. elegans. Three of these homologues have been confirmed: brc-2 (FANCD1/BRCA2), fcd-2 (FANCD2), and dog-1 (FANCJ/BRIP1); and two remain to be characterised: W02D3.10 (FANCI) and drh-3 (FANCM). Here we review how the nematode can be used to study FA-associated DNA repair, focusing on what is known about the ICL repair genes in C. elegans and which important questions remain for the field.
Collapse
Affiliation(s)
- Jillian L Youds
- DNA Damage Response laboratory, London Research Institute, Cancer Research UK, Clare Hall Laboratories, Blanche Lane, South Mimms EN6 3LD, UK
| | | | | |
Collapse
|
42
|
A chemical compound that stimulates the human homologous recombination protein RAD51. Proc Natl Acad Sci U S A 2008; 105:15848-53. [PMID: 18840682 DOI: 10.1073/pnas.0808046105] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
RAD51 and other members of the RecA family of strand exchange proteins assemble on ssDNA to form presynaptic filaments, which carry out the central steps of homologous recombination. A microplate-based assay was developed for high-throughput measurement of hRAD51 filament formation on ssDNA. With this method, a 10,000 compound library was screened, leading to the identification of a small molecule (RS-1) that enhances hRAD51 binding in a wide range of biochemical conditions. Salt titration experiments showed that RS-1 can enhance filament stability. Ultrastructural analysis of filaments formed on ssDNA showed that RS-1 can increase both protein-DNA complex lengths and the pitch of helical filament turns. RS-1 stimulated hRAD51-mediated homologous strand assimilation (D-loop) activity by at least 5- to 11-fold, depending on the condition. This D-loop stimulation occurred even in the presence of Ca(2+) or adenylyl-imidodiphosphate, indicating that the mechanism of stimulation was distinct from that conferred by Ca(2+) and/or inhibition of ATPase. No D-loop activity was observed in the absence of a nucleotide triphosphate cofactor, indicating that the compound does not substitute for this requirement. These results indicate that RS-1 enhances the homologous recombination activity of hRAD51 by promoting the formation of active presynaptic filaments. Cell survival assays in normal neonatal human dermal fibroblasts demonstrated that RS-1 promotes a dose-dependent resistance to the cross-linking chemotherapeutic drug cisplatin. Given that RAD51-dependent recombination is a major determinant of cisplatin resistance, RS-1 seems to function in vivo to stimulate homologous recombination repair proficiency. RS-1 has many potential applications in both research and medical settings.
Collapse
|
43
|
Abstract
Homologous recombination (HR) serves to eliminate deleterious lesions, such as double-stranded breaks and interstrand crosslinks, from chromosomes. HR is also critical for the preservation of replication forks, for telomere maintenance, and chromosome segregation in meiosis I. As such, HR is indispensable for the maintenance of genome integrity and the avoidance of cancers in humans. The HR reaction is mediated by a conserved class of enzymes termed recombinases. Two recombinases, Rad51 and Dmc1, catalyze the pairing and shuffling of homologous DNA sequences in eukaryotic cells via a filamentous intermediate on ssDNA called the presynaptic filament. The assembly of the presynaptic filament is a rate-limiting process that is enhanced by recombination mediators, such as the breast tumor suppressor BRCA2. HR accessory factors that facilitate other stages of the Rad51- and Dmc1-catalyzed homologous DNA pairing and strand exchange reaction have also been identified. Recent progress on elucidating the mechanisms of action of Rad51 and Dmc1 and their cohorts of ancillary factors is reviewed here.
Collapse
Affiliation(s)
- Joseph San Filippo
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | |
Collapse
|
44
|
Sheridan SD, Yu X, Roth R, Heuser JE, Sehorn MG, Sung P, Egelman EH, Bishop DK. A comparative analysis of Dmc1 and Rad51 nucleoprotein filaments. Nucleic Acids Res 2008; 36:4057-66. [PMID: 18535008 PMCID: PMC2475612 DOI: 10.1093/nar/gkn352] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The eukaryotic RecA homologs Rad51 and Dmc1 are essential for strand exchange between homologous chromosomes during meiosis. All members of the RecA family of recombinases polymerize on DNA to form helical nucleoprotein filaments, which is the active form of the protein. Here we compare the filament structures of the Rad51 and Dmc1 proteins from both human and budding yeast. Previous studies of Dmc1 filaments suggested that they might be structurally distinct from filaments of other members of the RecA family, including Rad51. The data presented here indicate that Rad51 and Dmc1 filaments are essentially identical with respect to several structural parameters, including persistence length, helical pitch, filament diameter, DNA base pairs per helical turn and helical handedness. These data, together with previous studies demonstrating similar in vitro recombinase activity for Dmc1 and Rad51, support the view that differences in the meiotic function of Rad51 and Dmc1 are more likely to result from the influence of distinct sets of accessory proteins than from intrinsic differences in filament structure.
Collapse
Affiliation(s)
- Sean D Sheridan
- Committee on Genetics, University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Hartley CL, McCulloch R. Trypanosoma brucei BRCA2 acts in antigenic variation and has undergone a recent expansion in BRC repeat number that is important during homologous recombination. Mol Microbiol 2008; 68:1237-51. [PMID: 18430140 PMCID: PMC2408642 DOI: 10.1111/j.1365-2958.2008.06230.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2008] [Indexed: 12/12/2022]
Abstract
Antigenic variation in Trypanosoma brucei has selected for the evolution of a massive archive of silent Variant Surface Glycoprotein (VSG) genes, which are activated by recombination into specialized expression sites. Such VSG switching can occur at rates substantially higher than background mutation and is dependent on homologous recombination, a core DNA repair reaction. A key regulator of homologous recombination is BRCA2, a protein that binds RAD51, the enzyme responsible for DNA strand exchange. Here, we show that T. brucei BRCA2 has undergone a recent, striking expansion in the number of BRC repeats, a sequence element that mediates interaction with RAD51. T. brucei BRCA2 mutants are shown to be significantly impaired in antigenic variation and display genome instability. By generating BRCA2 variants with reduced BRC repeat numbers, we show that the BRC expansion is crucial in determining the efficiency of T. brucei homologous recombination and RAD51 localization. Remarkably, however, this appears not to be a major determinant of the activation of at least some VSG genes.
Collapse
Affiliation(s)
- Claire L Hartley
- The Wellcome Centre for Molecular Parasitology and Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow Biomedical Research Centre120 University Place, Glasgow G12 8TA, UK
| | - Richard McCulloch
- The Wellcome Centre for Molecular Parasitology and Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow Biomedical Research Centre120 University Place, Glasgow G12 8TA, UK
| |
Collapse
|
46
|
Klein HL. The consequences of Rad51 overexpression for normal and tumor cells. DNA Repair (Amst) 2008; 7:686-93. [PMID: 18243065 PMCID: PMC2430071 DOI: 10.1016/j.dnarep.2007.12.008] [Citation(s) in RCA: 267] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2007] [Accepted: 12/12/2007] [Indexed: 12/19/2022]
Abstract
The Rad51 recombinase is an essential factor for homologous recombination and the repair of DNA double strand breaks, binding transiently to both single stranded and double stranded DNA during the recombination reaction. The use of a homologous recombination mechanism to repair DNA damage is controlled at several levels, including the binding of Rad51 to single stranded DNA to form the Rad51 nucleofilament, which is controlled through the action of DNA helicases that can counteract nucleofilament formation. Overexpression of Rad51 in different organisms and cell types has a wide assortment of consequences, ranging from increased homologous recombination and increased resistance to DNA damaging agents to disruption of the cell cycle and apoptotic cell death. Rad51 expression is increased in p53-negative cells, and since p53 is often mutated in tumor cells, there is a tendency for Rad51 to be overexpressed in tumor cells, leading to increased resistance to DNA damage and drugs used in chemotherapies. As cells with increased Rad51 levels are more resistant to DNA damage, there is a selection for tumor cells to have higher Rad51 levels. While increased Rad51 can provide drug resistance, it also leads to increased genomic instability and may contribute to carcinogenesis.
Collapse
Affiliation(s)
- Hannah L Klein
- Department of Biochemistry, New York University School of Medicine, NYU Medical Center, 550 First Avenue, New York, NY 10016, United States.
| |
Collapse
|
47
|
Kanaar R, Wyman C, Rothstein R. Quality control of DNA break metabolism: in the 'end', it's a good thing. EMBO J 2008; 27:581-8. [PMID: 18285819 DOI: 10.1038/emboj.2008.11] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Accepted: 01/14/2008] [Indexed: 12/27/2022] Open
Abstract
DNA ends pose specific problems in the control of genetic information quality. Ends of broken DNA need to be rejoined to avoid genome rearrangements, whereas natural DNA ends of linear chromosomes, telomeres, need to be stable and hidden from the DNA damage response. Efficient DNA end metabolism, either at induced DNA breaks or telomeres, does not result from the machine-like precision of molecular reactions, but rather from messier, more stochastic processes. The necessary molecular interactions are dynamically unstable, with constructive and destructive processes occurring in competition. In the end, quality control comes from the constant building up and tearing down of inappropriate, but also appropriate reaction steps in combination with factors that only slightly shift the equilibrium to eventually favour appropriate events. Thus, paradoxically, enzymes antagonizing DNA end metabolism help to ensure that genome maintenance becomes a robust process.
Collapse
Affiliation(s)
- Roland Kanaar
- Department of Cell Biology and Genetics, Erasmus Medical Center, Rotterdam, The Netherlands.
| | | | | |
Collapse
|
48
|
Abstract
Homologous recombination has a dual role in eukaryotic organisms. Firstly, it is responsible for the creation of genetic variability during meiosis by directing the formation of reciprocal crossovers that result in random combinations of alleles and traits. Secondly, in mitotic cells, it maintains the integrity of the genome by promoting the faithful repair of DNA double-strand breaks (DSBs). In vertebrates, it therefore plays a key role in tumour avoidance. Mutations in the tumour suppressor protein BRCA2 are associated with predisposition to breast and ovarian cancers, and loss of BRCA2 function leads to genetic instability. BRCA2 protein interacts directly with the RAD51 recombinase and regulates recombination-mediated DSB repair, accounting for the high levels of spontaneous chromosomal aberrations seen in BRCA2-defective cells. Recent observations indicate that BRCA2 also plays a critical role in meiotic recombination, this time through direct interactions with the meiosis-specific recombinase DMC1. The interactions of BRCA2 with RAD51 and DMC1 lead us to suggest that the BRCA2 tumour suppressor is a universal regulator of recombinase actions.
Collapse
|
49
|
DOG-1 is the Caenorhabditis elegans BRIP1/FANCJ homologue and functions in interstrand cross-link repair. Mol Cell Biol 2007; 28:1470-9. [PMID: 18086896 DOI: 10.1128/mcb.01641-07] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fanconi anemia (FA) is a cancer susceptibility syndrome characterized by defective DNA interstrand cross-link (ICL) repair. Here, we show that DOG-1 is the Caenorhabditis elegans homologue of FANCJ, a helicase mutated in FA-J patients. DOG-1 performs a conserved role in ICL repair, as dog-1 mutants are hypersensitive to ICL-inducing agents, but not to UVC irradiation or X rays. Genetic analysis indicated that dog-1 is epistatic with fcd-2 (C. elegans FANCD2) but is nonepistatic with brc-1 (C. elegans BRCA1), thus establishing the existence of two distinct pathways of ICL repair in worms. Furthermore, DOG-1 is dispensable for FCD-2 and RAD-51 focus formation, suggesting that DOG-1 operates downstream of FCD-2 and RAD-51 in ICL repair. DOG-1 was previously implicated in poly(G)/poly(C) (G/C) tract maintenance during DNA replication. G/C tracts remain stable in the absence of ATL-1, CLK-2 (FA pathway activators), FCD-2, BRC-2, and MLH-1 (associated FA components), implying that DOG-1 is the sole FA component required for G/C tract maintenance in a wild-type background. However, FCD-2 is required to promote deletion-free repair at G/C tracts in dog-1 mutants, consistent with a role for FA factors at the replication fork. The functional conservation between DOG-1 and FANCJ suggests a possible role for FANCJ in G/C tract maintenance in human cells.
Collapse
|
50
|
Min J, Park PG, Ko E, Choi E, Lee H. Identification of Rad51 regulation by BRCA2 using Caenorhabditis elegans BRCA2 and bimolecular fluorescence complementation analysis. Biochem Biophys Res Commun 2007; 362:958-64. [PMID: 17767921 DOI: 10.1016/j.bbrc.2007.08.083] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2007] [Accepted: 08/15/2007] [Indexed: 10/22/2022]
Abstract
BRCA2 is involved in double-stranded DNA break repair by binding and regulating Rad51-mediated homologous recombination. Insights as to how BRCA2 regulates Rad51-mediated DNA repair arose from in vitro biochemical studies on fragments of BRCA2. However, the large 400-kDa BRCA2 protein has hampered our ability to understand the entire process by which full-length BRCA2 regulates Rad51. Here, we show that CeBRC-2, which is only one tenth the size of mammalian BRCA2, complemented BRCA2-deficiency in Rad51 regulation. CeBRC-2 was able to bind to mammalian Rad51 (mRad51) and form distinct nuclear foci when they interacted. In our bimolecular fluorescence complementation analysis (BiFC), we show that the strength of the interaction between CeBRC-2 and mRad51 increased markedly after DNA damage. The BRC motif of CeBRC-2 was responsible for binding mRad51, but without the OB fold, the complex was unable to target damaged DNA. When CeBRC-2 was introduced into BRCA2-deficient cells, it restored Rad51 foci after DNA damage. Our study suggests a mode of action for BRCA2 with regard to DNA repair.
Collapse
Affiliation(s)
- Jaewon Min
- School of Biological Sciences and Research Center for Functional Cellulomics, College of Natural Sciences, Seoul National University, San 56-1, Shillin-Dong, Gwanak-Ku, Seoul 151-742, South Korea
| | | | | | | | | |
Collapse
|