1
|
Lebok L, Buchert F. The chloroplast ATP synthase redox domain in Chlamydomonas reinhardtii eludes activity regulation for heterotrophic dark metabolism. Proc Natl Acad Sci U S A 2024; 121:e2412589121. [PMID: 39503884 PMCID: PMC11573611 DOI: 10.1073/pnas.2412589121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 10/03/2024] [Indexed: 11/21/2024] Open
Abstract
To maintain CO2 fixation in the Calvin-Benson-Bassham cycle, multistep regulation of the chloroplast ATP synthase (CF1Fo) is crucial to balance the ATP output of photosynthesis with protection of the apparatus. A well-studied mechanism is thiol modulation; a light/dark regulation through reversible cleavage of a disulfide in the CF1Fo γ-subunit. The disulfide hampers ATP synthesis and hydrolysis reactions in dark-adapted CF1Fo from land plants by increasing the required transmembrane electrochemical proton gradient ([Formula: see text]). Here, we show in Chlamydomonas reinhardtii that algal CF1Fo is differently regulated in vivo. A specific hairpin structure in the γ-subunit redox domain disconnects activity regulation from disulfide formation in the dark. Electrochromic shift measurements suggested that the hairpin kept wild-type CF1Fo active, whereas the enzyme was switched off in algal mutant cells expressing a plant-like hairpin structure. The hairpin segment swap resulted in an elevated [Formula: see text] threshold to activate plant-like CF1Fo, increased by ~1.4 photosystem (PS) I charge separations. The resulting dark-equilibrated [Formula: see text] dropped in the mutants by ~2.7 PSI charge separation equivalents. Photobioreactor experiments showed no phenotypes in autotrophic aerated mutant cultures. In contrast, chlorophyll fluorescence measurements under heterotrophic dark conditions point to an altered dark metabolism in cells with the plant-like CF1Fo as the result of bioenergetic deviations from wild-type. Our results suggest that the lifestyle of C. reinhardtii requires a specific CF1Fo dark regulation that partakes in metabolic coupling between the chloroplast and acetate-fueled mitochondria.
Collapse
Affiliation(s)
- Lando Lebok
- Institute of Plant Biology and Biotechnology, Department of Biology, University of Münster, Münster48143, Germany
| | - Felix Buchert
- Institute of Plant Biology and Biotechnology, Department of Biology, University of Münster, Münster48143, Germany
| |
Collapse
|
2
|
Fages‐Lartaud M, Hundvin K, Hohmann‐Marriott MF. Mechanisms governing codon usage bias and the implications for protein expression in the chloroplast of Chlamydomonas reinhardtii. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:919-945. [PMID: 36071273 PMCID: PMC9828097 DOI: 10.1111/tpj.15970] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 05/30/2023]
Abstract
Chloroplasts possess a considerably reduced genome that is decoded via an almost minimal set of tRNAs. These features make an excellent platform for gaining insights into fundamental mechanisms that govern protein expression. Here, we present a comprehensive and revised perspective of the mechanisms that drive codon selection in the chloroplast of Chlamydomonas reinhardtii and the functional consequences for protein expression. In order to extract this information, we applied several codon usage descriptors to genes with different expression levels. We show that highly expressed genes strongly favor translationally optimal codons, while genes with lower functional importance are rather affected by directional mutational bias. We demonstrate that codon optimality can be deduced from codon-anticodon pairing affinity and, for a small number of amino acids (leucine, arginine, serine, and isoleucine), tRNA concentrations. Finally, we review, analyze, and expand on the impact of codon usage on protein yield, secondary structures of mRNA, translation initiation and termination, and amino acid composition of proteins, as well as cotranslational protein folding. The comprehensive analysis of codon choice provides crucial insights into heterologous gene expression in the chloroplast of C. reinhardtii, which may also be applicable to other chloroplast-containing organisms and bacteria.
Collapse
Affiliation(s)
- Maxime Fages‐Lartaud
- Department of BiotechnologyNorwegian University of Science and TechnologyTrondheimN‐7491Norway
| | - Kristoffer Hundvin
- Department of BiotechnologyNorwegian University of Science and TechnologyTrondheimN‐7491Norway
| | | |
Collapse
|
3
|
Cutolo EA, Mandalà G, Dall’Osto L, Bassi R. Harnessing the Algal Chloroplast for Heterologous Protein Production. Microorganisms 2022; 10:743. [PMID: 35456794 PMCID: PMC9025058 DOI: 10.3390/microorganisms10040743] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 02/04/2023] Open
Abstract
Photosynthetic microbes are gaining increasing attention as heterologous hosts for the light-driven, low-cost production of high-value recombinant proteins. Recent advances in the manipulation of unicellular algal genomes offer the opportunity to establish engineered strains as safe and viable alternatives to conventional heterotrophic expression systems, including for their use in the feed, food, and biopharmaceutical industries. Due to the relatively small size of their genomes, algal chloroplasts are excellent targets for synthetic biology approaches, and are convenient subcellular sites for the compartmentalized accumulation and storage of products. Different classes of recombinant proteins, including enzymes and peptides with therapeutical applications, have been successfully expressed in the plastid of the model organism Chlamydomonas reinhardtii, and of a few other species, highlighting the emerging potential of transplastomic algal biotechnology. In this review, we provide a unified view on the state-of-the-art tools that are available to introduce protein-encoding transgenes in microalgal plastids, and discuss the main (bio)technological bottlenecks that still need to be addressed to develop robust and sustainable green cell biofactories.
Collapse
Affiliation(s)
| | | | | | - Roberto Bassi
- Laboratory of Photosynthesis and Bioenergy, Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy; (E.A.C.); (G.M.); (L.D.)
| |
Collapse
|
4
|
Macedo-Osorio KS, Martínez-Antonio A, Badillo-Corona JA. Pas de Trois: An Overview of Penta-, Tetra-, and Octo-Tricopeptide Repeat Proteins From Chlamydomonas reinhardtii and Their Role in Chloroplast Gene Expression. FRONTIERS IN PLANT SCIENCE 2021; 12:775366. [PMID: 34868174 PMCID: PMC8635915 DOI: 10.3389/fpls.2021.775366] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/26/2021] [Indexed: 05/05/2023]
Abstract
Penta-, Tetra-, and Octo-tricopeptide repeat (PPR, TPR, and OPR) proteins are nucleus-encoded proteins composed of tandem repeats of 35, 34, and 38-40 amino acids, respectively. They form helix-turn-helix structures that interact with mRNA or other proteins and participate in RNA stabilization, processing, maturation, and act as translation enhancers of chloroplast and mitochondrial mRNAs. These helical repeat proteins are unevenly present in plants and algae. While PPR proteins are more abundant in plants than in algae, OPR proteins are more abundant in algae. In Arabidopsis, maize, and rice there have been 450, 661, and 477 PPR proteins identified, respectively, which contrasts with only 14 PPR proteins identified in Chlamydomonas reinhardtii. Likewise, more than 120 OPR proteins members have been predicted from the nuclear genome of C. reinhardtii and only one has been identified in Arabidopsis thaliana. Due to their abundance in land plants, PPR proteins have been largely characterized making it possible to elucidate their RNA-binding code. This has even allowed researchers to generate engineered PPR proteins with defined affinity to a particular target, which has served as the basis to develop tools for gene expression in biotechnological applications. However, fine elucidation of the helical repeat proteins code in Chlamydomonas is a pending task. In this review, we summarize the current knowledge on the role PPR, TPR, and OPR proteins play in chloroplast gene expression in the green algae C. reinhardtii, pointing to relevant similarities and differences with their counterparts in plants. We also recapitulate on how these proteins have been engineered and shown to serve as mRNA regulatory factors for biotechnological applications in plants and how this could be used as a starting point for applications in algae.
Collapse
Affiliation(s)
- Karla S. Macedo-Osorio
- Instituto Politécnico Nacional, Unidad Profesional Interdisciplinaria de Biotecnología, México City, México
- Biological Engineering Laboratory, Genetic Engineering Department, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional-Unidad Irapuato, Irapuato, México
- División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana-Xochimilco, México City, México
- *Correspondence: Karla S. Macedo-Osorio,
| | - Agustino Martínez-Antonio
- Biological Engineering Laboratory, Genetic Engineering Department, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional-Unidad Irapuato, Irapuato, México
| | - Jesús A. Badillo-Corona
- Instituto Politécnico Nacional, Unidad Profesional Interdisciplinaria de Biotecnología, México City, México
- Jesús A. Badillo-Corona,
| |
Collapse
|
5
|
Ozawa SI, Cavaiuolo M, Jarrige D, Kuras R, Rutgers M, Eberhard S, Drapier D, Wollman FA, Choquet Y. The OPR Protein MTHI1 Controls the Expression of Two Different Subunits of ATP Synthase CFo in Chlamydomonas reinhardtii. THE PLANT CELL 2020; 32:1179-1203. [PMID: 31988263 PMCID: PMC7145495 DOI: 10.1105/tpc.19.00770] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 01/02/2020] [Accepted: 01/27/2020] [Indexed: 05/19/2023]
Abstract
In the green alga Chlamydomonas (Chlamydomonas r einhardtii), chloroplast gene expression is tightly regulated posttranscriptionally by gene-specific trans-acting protein factors. Here, we report the identification of the octotricopeptide repeat protein MTHI1, which is critical for the biogenesis of chloroplast ATP synthase oligomycin-sensitive chloroplast coupling factor. Unlike most trans-acting factors characterized so far in Chlamydomonas, which control the expression of a single gene, MTHI1 targets two distinct transcripts: it is required for the accumulation and translation of atpH mRNA, encoding a subunit of the selective proton channel, but it also enhances the translation of atpI mRNA, which encodes the other subunit of the channel. MTHI1 targets the 5' untranslated regions of both the atpH and atpI genes. Coimmunoprecipitation and small RNA sequencing revealed that MTHI1 binds specifically a sequence highly conserved among Chlorophyceae and the Ulvale clade of Ulvophyceae at the 5' end of triphosphorylated atpH mRNA. A very similar sequence, located ∼60 nucleotides upstream of the atpI initiation codon, was also found in some Chlorophyceae and Ulvale algae species and is essential for atpI mRNA translation in Chlamydomonas. Such a dual-targeted trans-acting factor provides a means to coregulate the expression of the two proton hemi-channels.
Collapse
Affiliation(s)
- Shin-Ichiro Ozawa
- Unité Mixte de Recherche 7141, Centre National de la Recherche Scientifique and Sorbonne Université, Institut de Biologie Physico-Chimique, F-75005 Paris, France
| | - Marina Cavaiuolo
- Unité Mixte de Recherche 7141, Centre National de la Recherche Scientifique and Sorbonne Université, Institut de Biologie Physico-Chimique, F-75005 Paris, France
| | - Domitille Jarrige
- Unité Mixte de Recherche 7141, Centre National de la Recherche Scientifique and Sorbonne Université, Institut de Biologie Physico-Chimique, F-75005 Paris, France
| | - Richard Kuras
- Unité Mixte de Recherche 7141, Centre National de la Recherche Scientifique and Sorbonne Université, Institut de Biologie Physico-Chimique, F-75005 Paris, France
| | - Mark Rutgers
- Unité Mixte de Recherche 7141, Centre National de la Recherche Scientifique and Sorbonne Université, Institut de Biologie Physico-Chimique, F-75005 Paris, France
| | - Stephan Eberhard
- Unité Mixte de Recherche 7141, Centre National de la Recherche Scientifique and Sorbonne Université, Institut de Biologie Physico-Chimique, F-75005 Paris, France
| | - Dominique Drapier
- Unité Mixte de Recherche 7141, Centre National de la Recherche Scientifique and Sorbonne Université, Institut de Biologie Physico-Chimique, F-75005 Paris, France
| | - Francis-André Wollman
- Unité Mixte de Recherche 7141, Centre National de la Recherche Scientifique and Sorbonne Université, Institut de Biologie Physico-Chimique, F-75005 Paris, France
| | - Yves Choquet
- Unité Mixte de Recherche 7141, Centre National de la Recherche Scientifique and Sorbonne Université, Institut de Biologie Physico-Chimique, F-75005 Paris, France
| |
Collapse
|
6
|
Rochaix JD. The Dynamics of the Photosynthetic Apparatus in Algae. PHOTOSYNTHESIS IN ALGAE: BIOCHEMICAL AND PHYSIOLOGICAL MECHANISMS 2020. [DOI: 10.1007/978-3-030-33397-3_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
7
|
Viola S, Cavaiuolo M, Drapier D, Eberhard S, Vallon O, Wollman FA, Choquet Y. MDA1, a nucleus-encoded factor involved in the stabilization and processing of the atpA transcript in the chloroplast of Chlamydomonas. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 98:1033-1047. [PMID: 30809889 DOI: 10.1111/tpj.14300] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/11/2019] [Accepted: 02/18/2019] [Indexed: 05/21/2023]
Abstract
In Chlamydomonas reinhardtii, chloroplast gene expression is tightly regulated post-transcriptionally by gene-specific trans-acting protein factors. Here, we report the molecular identification of an OctotricoPeptide Repeat (OPR) protein, MDA1, which governs the maturation and accumulation of the atpA transcript, encoding subunit α of the chloroplast ATP synthase. As does TDA1, another OPR protein required for the translation of the atpA mRNA, MDA1 targets the atpA 5'-untranslated region (UTR). Unexpectedly, it binds within a region of approximately 100 nt in the middle of the atpA 5'-UTR, at variance with the stabilization factors characterized so far, which bind to the 5'-end of their target mRNA to protect it from 5' → 3' exonucleases. It binds the same region as TDA1, with which it forms a high-molecular-weight complex that also comprises the atpA mRNA. This complex dissociates upon translation, promoting degradation of the atpA mRNA. We suggest that atpA transcripts, once translated, enter the degradation pathway because they cannot reassemble with MDA1 and TDA1, which preferentially bind to de novo transcribed mRNAs.
Collapse
Affiliation(s)
- Stefania Viola
- Laboratoire de Physiologie Membranaire et Moléculaire du Chloroplaste -UMR7141, IBPC, CNRS-Sorbonne Université, 13, rue Pierre et Marie Curie, 75005, Paris, France
| | - Marina Cavaiuolo
- Laboratoire de Physiologie Membranaire et Moléculaire du Chloroplaste -UMR7141, IBPC, CNRS-Sorbonne Université, 13, rue Pierre et Marie Curie, 75005, Paris, France
| | - Dominique Drapier
- Laboratoire de Physiologie Membranaire et Moléculaire du Chloroplaste -UMR7141, IBPC, CNRS-Sorbonne Université, 13, rue Pierre et Marie Curie, 75005, Paris, France
| | - Stephan Eberhard
- Laboratoire de Physiologie Membranaire et Moléculaire du Chloroplaste -UMR7141, IBPC, CNRS-Sorbonne Université, 13, rue Pierre et Marie Curie, 75005, Paris, France
| | - Olivier Vallon
- Laboratoire de Physiologie Membranaire et Moléculaire du Chloroplaste -UMR7141, IBPC, CNRS-Sorbonne Université, 13, rue Pierre et Marie Curie, 75005, Paris, France
| | - Francis-André Wollman
- Laboratoire de Physiologie Membranaire et Moléculaire du Chloroplaste -UMR7141, IBPC, CNRS-Sorbonne Université, 13, rue Pierre et Marie Curie, 75005, Paris, France
| | - Yves Choquet
- Laboratoire de Physiologie Membranaire et Moléculaire du Chloroplaste -UMR7141, IBPC, CNRS-Sorbonne Université, 13, rue Pierre et Marie Curie, 75005, Paris, France
| |
Collapse
|
8
|
Melonek J, Zhou R, Bayer PE, Edwards D, Stein N, Small I. High intraspecific diversity of Restorer-of-fertility-like genes in barley. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 97:281-295. [PMID: 30276910 PMCID: PMC7380019 DOI: 10.1111/tpj.14115] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 09/25/2018] [Accepted: 09/26/2018] [Indexed: 05/24/2023]
Abstract
Nuclear restorer of fertility (Rf) genes suppress the effects of mitochondrial genes causing cytoplasmic male sterility (CMS), a condition in which plants fail to produce viable pollen. Rf genes, many of which encode RNA-binding pentatricopeptide repeat (PPR) proteins, are applied in hybrid breeding to overcome CMS used to block self-pollination of the seed parent. Here, we characterise the repertoire of restorer-of-fertility-like (RFL) PPR genes in barley (Hordeum vulgare). We found 26 RFL genes in the reference genome ('Morex') and an additional 51 putative orthogroups (POGs) in a re-sequencing data set from 262 barley genotypes and landraces. Whereas the sequences of some POGs are highly conserved across hundreds of barley accessions, the sequences of others are much more variable. High sequence variation strongly correlates with genomic location - the most variable genes are found in a cluster on chromosome 1H. A much higher likelihood of diversifying selection was found for genes within this cluster than for genes present as singlets. This work includes a comprehensive analysis of the patterns of intraspecific variation of RFL genes. The RFL sequences characterised in this study will be useful for the development of new markers for fertility restoration loci.
Collapse
Affiliation(s)
- Joanna Melonek
- ARC Centre of Excellence in Plant Energy BiologySchool of Molecular SciencesThe University of Western AustraliaCrawleyWAAustralia
| | - Ruonan Zhou
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)SeelandGermany
| | - Philipp E. Bayer
- School of Biological SciencesThe University of Western AustraliaCrawleyWAAustralia
| | - David Edwards
- School of Biological SciencesThe University of Western AustraliaCrawleyWAAustralia
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)SeelandGermany
- School of Agriculture and EnvironmentUniversity of Western AustraliaCrawleyWAAustralia
| | - Ian Small
- ARC Centre of Excellence in Plant Energy BiologySchool of Molecular SciencesThe University of Western AustraliaCrawleyWAAustralia
| |
Collapse
|
9
|
Watson SJ, Sowden RG, Jarvis P. Abiotic stress-induced chloroplast proteome remodelling: a mechanistic overview. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:2773-2781. [PMID: 29547945 DOI: 10.1093/jxb/ery053] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 02/08/2018] [Indexed: 05/22/2023]
Abstract
The chloroplast houses photosynthesis in all green plants, and is therefore of fundamental importance to the viability and productivity of plants, ecosystems, and agriculture. Chloroplasts are, however, extremely vulnerable to environmental stress, on account of the inherent volatility of oxygenic photosynthesis. To counteract this sensitivity, sophisticated systems of chloroplast stress acclimation have evolved, and many of these involve broad proteome changes. Here, we provide an overview of the interlocking and mutually dependent mechanisms of abiotic stress-induced chloroplast proteome remodelling. Topics that are covered in this context include: nucleus to chloroplast signalling mechanisms, with a particular emphasis on the nuclear control of the chloroplast genome; chloroplast to nucleus signalling; and the roles of chloroplast pre-protein import regulation and chloroplast proteases.
Collapse
Affiliation(s)
- Samuel J Watson
- Department of Plant Sciences, University of Oxford, Oxford, UK
| | - Robert G Sowden
- Department of Plant Sciences, University of Oxford, Oxford, UK
| | | |
Collapse
|
10
|
RNA-stabilization factors in chloroplasts of vascular plants. Essays Biochem 2018; 62:51-64. [PMID: 29453323 PMCID: PMC5897788 DOI: 10.1042/ebc20170061] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 01/02/2018] [Accepted: 01/12/2018] [Indexed: 12/23/2022]
Abstract
In contrast to the cyanobacterial ancestor, chloroplast gene expression is predominantly governed on the post-transcriptional level such as modifications of the RNA sequence, decay rates, exo- and endonucleolytic processing as well as translational events. The concerted function of numerous chloroplast RNA-binding proteins plays a fundamental and often essential role in all these processes but our understanding of their impact in regulation of RNA degradation is only at the beginning. Moreover, metabolic processes and post-translational modifications are thought to affect the function of RNA protectors. These protectors contain a variety of different RNA-recognition motifs, which often appear as multiple repeats. They are required for normal plant growth and development as well as diverse stress responses and acclimation processes. Interestingly, most of the protectors are plant specific which reflects a fast-evolving RNA metabolism in chloroplasts congruent with the diverging RNA targets. Here, we mainly focused on the characteristics of known chloroplast RNA-binding proteins that protect exonuclease-sensitive sites in chloroplasts of vascular plants.
Collapse
|
11
|
Legen J, Ruf S, Kroop X, Wang G, Barkan A, Bock R, Schmitz-Linneweber C. Stabilization and translation of synthetic operon-derived mRNAs in chloroplasts by sequences representing PPR protein-binding sites. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 94:8-21. [PMID: 29418028 DOI: 10.1111/tpj.13863] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 12/28/2017] [Accepted: 01/17/2018] [Indexed: 05/08/2023]
Abstract
The chloroplast is a prime target for genetic engineering in plants, offering various advantages over nuclear transformation. For example, chloroplasts allow the expression of polycistronic transcripts and thus to engineer complex metabolic pathways. Each cistron within such a longer transcript needs its own expression elements. Within the 5'-UTR, such expression elements are needed for stabilizing mRNAs and for translation of the downstream reading frame. One of the few effective expression elements used so far in transplastomic approaches is the intercistronic expression element (IEE). The IEE is derived from the psbT-psbH intergenic region and includes a target sequence of the RNA binding protein HCF107. We here show that excessive expression of the IEE can lead to specific defects of endogenous chloroplast mRNA stabilization, likely via depletion of HCF107. Key players in chloroplast transcript stabilization and translation are pentatricopeptide repeat (PPR) proteins, which are structurally related to HCF107. PPR proteins that stabilize mRNAs leave behind short RNA footprints that are indicators of their activity. We identified such sRNAs in tobacco, and demonstrate that they are sufficient to stabilize and stimulate translation of mRNAs from synthetic dicistronic transgenes in chloroplasts. Thus, minimal sequence elements are generally adequate to support key steps in chloroplast gene expression, i.e. RNA stability and translation. Furthermore, our analysis expands the repertoire of available expression elements to facilitate the assembly and expression of multi-gene ensembles in the chloroplast.
Collapse
Affiliation(s)
- Julia Legen
- Institut für Biologie, Humboldt-Universität Berlin, Philippstr. 13, Rhoda-Erdmann-Haus, Berlin, 10115, Germany
| | - Stephanie Ruf
- Max-Planck-Institut für Molekulare Pflanzenphysiologie (MPI-MP), Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
| | - Xenia Kroop
- Max-Planck-Institut für Molekulare Pflanzenphysiologie (MPI-MP), Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
| | - Gongwei Wang
- Institut für Biologie, Humboldt-Universität Berlin, Philippstr. 13, Rhoda-Erdmann-Haus, Berlin, 10115, Germany
| | - Alice Barkan
- Institute of Molecular Biology, University of Oregon, Eugene, OR, 97403, USA
| | - Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie (MPI-MP), Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
| | | |
Collapse
|
12
|
A γ-subunit point mutation in Chlamydomonas reinhardtii chloroplast F1Fo-ATP synthase confers tolerance to reactive oxygen species. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2017; 1858:966-974. [DOI: 10.1016/j.bbabio.2017.09.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 08/11/2017] [Accepted: 09/05/2017] [Indexed: 11/23/2022]
|
13
|
Cavaiuolo M, Kuras R, Wollman F, Choquet Y, Vallon O. Small RNA profiling in Chlamydomonas: insights into chloroplast RNA metabolism. Nucleic Acids Res 2017; 45:10783-10799. [PMID: 28985404 PMCID: PMC5737564 DOI: 10.1093/nar/gkx668] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 07/18/2017] [Accepted: 07/28/2017] [Indexed: 12/20/2022] Open
Abstract
In Chlamydomonas reinhardtii, regulation of chloroplast gene expression is mainly post-transcriptional. It requires nucleus-encoded trans-acting protein factors for maturation/stabilization (M factors) or translation (T factors) of specific target mRNAs. We used long- and small-RNA sequencing to generate a detailed map of the transcriptome. Clusters of sRNAs marked the 5' end of all mature mRNAs. Their absence in M-factor mutants reflects the protection of transcript 5' end by the cognate factor. Enzymatic removal of 5'-triphosphates allowed identifying those cosRNA that mark a transcription start site. We detected another class of sRNAs derived from low abundance transcripts, antisense to mRNAs. The formation of antisense sRNAs required the presence of the complementary mRNA and was stimulated when translation was inhibited by chloramphenicol or lincomycin. We propose that they derive from degradation of double-stranded RNAs generated by pairing of antisense and sense transcripts, a process normally hindered by the traveling of the ribosomes. In addition, chloramphenicol treatment, by freezing ribosomes on the mRNA, caused the accumulation of 32-34 nt ribosome-protected fragments. Using this 'in vivo ribosome footprinting', we identified the function and molecular target of two candidate trans-acting factors.
Collapse
Affiliation(s)
- Marina Cavaiuolo
- Unité Mixte de Recherche 7141, CNRS/UPMC, Institut de Biologie Physico-Chimique, F-75005 Paris, France
| | - Richard Kuras
- Unité Mixte de Recherche 7141, CNRS/UPMC, Institut de Biologie Physico-Chimique, F-75005 Paris, France
| | - Francis‐André Wollman
- Unité Mixte de Recherche 7141, CNRS/UPMC, Institut de Biologie Physico-Chimique, F-75005 Paris, France
| | - Yves Choquet
- Unité Mixte de Recherche 7141, CNRS/UPMC, Institut de Biologie Physico-Chimique, F-75005 Paris, France
| | - Olivier Vallon
- Unité Mixte de Recherche 7141, CNRS/UPMC, Institut de Biologie Physico-Chimique, F-75005 Paris, France
| |
Collapse
|
14
|
Yerramsetty P, Agar EM, Yim WC, Cushman JC, Berry JO. An rbcL mRNA-binding protein is associated with C3 to C4 evolution and light-induced production of Rubisco in Flaveria. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:4635-4649. [PMID: 28981775 PMCID: PMC5853808 DOI: 10.1093/jxb/erx264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 07/07/2017] [Indexed: 06/07/2023]
Abstract
Nuclear-encoded RLSB protein binds chloroplastic rbcL mRNA encoding the Rubisco large subunit. RLSB is highly conserved across all groups of land plants and is associated with positive post-transcriptional regulation of rbcL expression. In C3 leaves, RLSB and Rubisco occur in all chlorenchyma cell chloroplasts, while in C4 leaves these accumulate only within bundle sheath (BS) chloroplasts. RLSB's role in rbcL expression makes modification of its localization a likely prerequisite for the evolutionary restriction of Rubisco to BS cells. Taking advantage of evolutionarily conserved RLSB orthologs in several C3, C3-C4, C4-like, and C4 photosynthetic types within the genus Flaveria, we show that low level RLSB sequence divergence and modification to BS specificity coincided with ontogeny of Rubisco specificity and Kranz anatomy during C3 to C4 evolution. In both C3 and C4 species, Rubisco production reflected RLSB production in all cell types, tissues, and conditions examined. Co-localization occurred only in photosynthetic tissues, and both proteins were co-ordinately induced by light at post-transcriptional levels. RLSB is currently the only mRNA-binding protein to be associated with rbcL gene regulation in any plant, with variations in sequence and acquisition of cell type specificity reflecting the progression of C4 evolution within the genus Flaveria.
Collapse
Affiliation(s)
- Pradeep Yerramsetty
- Department of Biological Sciences, State University of New York, Buffalo, NY, USA
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, USA
| | - Erin M Agar
- Department of Biological Sciences, State University of New York, Buffalo, NY, USA
| | - Won C Yim
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, USA
| | - John C Cushman
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, USA
| | - James O Berry
- Department of Biological Sciences, State University of New York, Buffalo, NY, USA
| |
Collapse
|
15
|
Cline SG, Laughbaum IA, Hamel PP. CCS2, an Octatricopeptide-Repeat Protein, Is Required for Plastid Cytochrome c Assembly in the Green Alga Chlamydomonas reinhardtii. FRONTIERS IN PLANT SCIENCE 2017. [PMID: 28824661 DOI: 10.3389/fpls.2017.0130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
In bacteria and energy generating organelles, c-type cytochromes are a class of universal electron carriers with a heme cofactor covalently linked via one or two thioether bonds to a heme binding site. The covalent attachment of heme to apocytochromes is a catalyzed process, taking place via three evolutionarily distinct assembly pathways (Systems I, II, III). System II was discovered in the green alga Chlamydomonas reinhardtii through the genetic analysis of the ccs mutants (cytochrome csynthesis), which display a block in the apo- to holo- form conversion of cytochrome f and c6, the thylakoid lumen resident c-type cytochromes functioning in photosynthesis. Here we show that the gene corresponding to the CCS2 locus encodes a 1,719 amino acid polypeptide and identify the molecular lesions in the ccs2-1 to ccs2-5 alleles. The CCS2 protein displays seven degenerate amino acid repeats, which are variations of the octatricopeptide-repeat motif (OPR) recently recognized in several nuclear-encoded proteins controlling the maturation, stability, or translation of chloroplast transcripts. A plastid site of action for CCS2 is inferred from the finding that GFP fused to the first 100 amino acids of the algal protein localizes to chloroplasts in Nicotiana benthamiana. We discuss the possible functions of CCS2 in the heme attachment reaction.
Collapse
Affiliation(s)
- Sara G Cline
- Department of Molecular Genetics and Department of Biological Chemistry and Pharmacology, The Ohio State University, ColumbusOH, United States
- Plant Cellular and Molecular Biology Graduate Program, The Ohio State University, ColumbusOH, United States
| | - Isaac A Laughbaum
- Department of Molecular Genetics and Department of Biological Chemistry and Pharmacology, The Ohio State University, ColumbusOH, United States
| | - Patrice P Hamel
- Department of Molecular Genetics and Department of Biological Chemistry and Pharmacology, The Ohio State University, ColumbusOH, United States
- Plant Cellular and Molecular Biology Graduate Program, The Ohio State University, ColumbusOH, United States
| |
Collapse
|
16
|
Cline SG, Laughbaum IA, Hamel PP. CCS2, an Octatricopeptide-Repeat Protein, Is Required for Plastid Cytochrome c Assembly in the Green Alga Chlamydomonas reinhardtii. FRONTIERS IN PLANT SCIENCE 2017; 8:1306. [PMID: 28824661 PMCID: PMC5541062 DOI: 10.3389/fpls.2017.01306] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Accepted: 07/12/2017] [Indexed: 05/19/2023]
Abstract
In bacteria and energy generating organelles, c-type cytochromes are a class of universal electron carriers with a heme cofactor covalently linked via one or two thioether bonds to a heme binding site. The covalent attachment of heme to apocytochromes is a catalyzed process, taking place via three evolutionarily distinct assembly pathways (Systems I, II, III). System II was discovered in the green alga Chlamydomonas reinhardtii through the genetic analysis of the ccs mutants (cytochrome csynthesis), which display a block in the apo- to holo- form conversion of cytochrome f and c6, the thylakoid lumen resident c-type cytochromes functioning in photosynthesis. Here we show that the gene corresponding to the CCS2 locus encodes a 1,719 amino acid polypeptide and identify the molecular lesions in the ccs2-1 to ccs2-5 alleles. The CCS2 protein displays seven degenerate amino acid repeats, which are variations of the octatricopeptide-repeat motif (OPR) recently recognized in several nuclear-encoded proteins controlling the maturation, stability, or translation of chloroplast transcripts. A plastid site of action for CCS2 is inferred from the finding that GFP fused to the first 100 amino acids of the algal protein localizes to chloroplasts in Nicotiana benthamiana. We discuss the possible functions of CCS2 in the heme attachment reaction.
Collapse
Affiliation(s)
- Sara G. Cline
- Department of Molecular Genetics and Department of Biological Chemistry and Pharmacology, The Ohio State University, ColumbusOH, United States
- Plant Cellular and Molecular Biology Graduate Program, The Ohio State University, ColumbusOH, United States
| | - Isaac A. Laughbaum
- Department of Molecular Genetics and Department of Biological Chemistry and Pharmacology, The Ohio State University, ColumbusOH, United States
| | - Patrice P. Hamel
- Department of Molecular Genetics and Department of Biological Chemistry and Pharmacology, The Ohio State University, ColumbusOH, United States
- Plant Cellular and Molecular Biology Graduate Program, The Ohio State University, ColumbusOH, United States
- *Correspondence: Patrice P. Hamel,
| |
Collapse
|
17
|
Yerramsetty P, Stata M, Siford R, Sage TL, Sage RF, Wong GKS, Albert VA, Berry JO. Evolution of RLSB, a nuclear-encoded S1 domain RNA binding protein associated with post-transcriptional regulation of plastid-encoded rbcL mRNA in vascular plants. BMC Evol Biol 2016; 16:141. [PMID: 27356975 PMCID: PMC4928308 DOI: 10.1186/s12862-016-0713-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 06/14/2016] [Indexed: 11/16/2022] Open
Abstract
Background RLSB, an S-1 domain RNA binding protein of Arabidopsis, selectively binds rbcL mRNA and co-localizes with Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) within chloroplasts of C3 and C4 plants. Previous studies using both Arabidopsis (C3) and maize (C4) suggest RLSB homologs are post-transcriptional regulators of plastid-encoded rbcL mRNA. While RLSB accumulates in all Arabidopsis leaf chlorenchyma cells, in C4 leaves RLSB-like proteins accumulate only within Rubisco-containing bundle sheath chloroplasts of Kranz-type species, and only within central compartment chloroplasts in the single cell C4 plant Bienertia. Our recent evidence implicates this mRNA binding protein as a primary determinant of rbcL expression, cellular localization/compartmentalization, and photosynthetic function in all multicellular green plants. This study addresses the hypothesis that RLSB is a highly conserved Rubisco regulatory factor that occurs in the chloroplasts all higher plants. Results Phylogenetic analysis has identified RLSB orthologs and paralogs in all major plant groups, from ancient liverworts to recent angiosperms. RLSB homologs were also identified in algae of the division Charophyta, a lineage closely related to land plants. RLSB-like sequences were not identified in any other algae, suggesting that it may be specific to the evolutionary line leading to land plants. The RLSB family occurs in single copy across most angiosperms, although a few species with two copies were identified, seemingly randomly distributed throughout the various taxa, although perhaps correlating in some cases with known ancient whole genome duplications. Monocots of the order Poales (Poaceae and Cyperaceae) were found to contain two copies, designated here as RLSB-a and RLSB-b, with only RLSB-a implicated in the regulation of rbcL across the maize developmental gradient. Analysis of microsynteny in angiosperms revealed high levels of conservation across eudicot species and for both paralogs in grasses, highlighting the possible importance of maintaining this gene and its surrounding genomic regions. Conclusions Findings presented here indicate that the RLSB family originated as a unique gene in land plant evolution, perhaps in the common ancestor of charophytes and higher plants. Purifying selection has maintained this as a highly conserved single- or two-copy gene across most extant species, with several conserved gene duplications. Together with previous findings, this study suggests that RLSB has been sustained as an important regulatory protein throughout the course of land plant evolution. While only RLSB-a has been directly implicated in rbcL regulation in maize, RLSB-b could have an overlapping function in the co-regulation of rbcL, or may have diverged as a regulator of one or more other plastid-encoded mRNAs. This analysis confirms that RLSB is an important and unique photosynthetic regulatory protein that has been continuously expressed in land plants as they emerged and diversified from their ancient common ancestor. Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0713-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pradeep Yerramsetty
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, 14260, USA
| | - Matt Stata
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, M5S3B2, Canada
| | - Rebecca Siford
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, 14260, USA
| | - Tammy L Sage
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, M5S3B2, Canada
| | - Rowan F Sage
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, M5S3B2, Canada
| | - Gane Ka-Shu Wong
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada.,Department of Medicine, University of Alberta, Edmonton, AB, T6G 2E1, Canada.,BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen, 518083, China
| | - Victor A Albert
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, 14260, USA.
| | - James O Berry
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, 14260, USA.
| |
Collapse
|
18
|
Ruwe H, Wang G, Gusewski S, Schmitz-Linneweber C. Systematic analysis of plant mitochondrial and chloroplast small RNAs suggests organelle-specific mRNA stabilization mechanisms. Nucleic Acids Res 2016; 44:7406-17. [PMID: 27235415 PMCID: PMC5009733 DOI: 10.1093/nar/gkw466] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 05/14/2016] [Indexed: 11/13/2022] Open
Abstract
Land plant organellar genomes encode a small number of genes, many of which are essential for respiration and photosynthesis. Organellar gene expression is characterized by a multitude of RNA processing events that lead to stable, translatable transcripts. RNA binding proteins (RBPs), have been shown to generate and protect transcript termini and eventually induce the accumulation of short RNA footprints. We applied knowledge of such RBP-derived footprints to develop software (sRNA miner) that enables identification of RBP footprints, or other clusters of small RNAs, in organelles. We used this tool to determine mitochondrial and chloroplast cosRNAs (clustered organellar sRNAs) in Arabidopsis. We found that in mitochondria, cosRNAs coincide with transcript 3'-ends, but are largely absent from 5'-ends. In chloroplasts this bias is absent, suggesting a different mode of 5' processing, possibly owing to different sets of RNases. Furthermore, we identified a large number of cosRNAs that represent silenced insertions of mitochondrial DNA in the nuclear genome of Arabidopsis. Steady-state RNA analyses demonstrate that cosRNAs display differential accumulation during development. Finally, we demonstrate that the chloroplast RBP PPR10 associates in vivo with its cognate cosRNA. A hypothetical role of cosRNAs as competitors of mRNAs for PPR proteins is discussed.
Collapse
Affiliation(s)
- Hannes Ruwe
- Molekulare Genetik, Institut für Biologie, Humboldt-Universität zu Berlin, Philippstr. 11-13, 10115 Berlin, Germany
| | - Gongwei Wang
- Molekulare Genetik, Institut für Biologie, Humboldt-Universität zu Berlin, Philippstr. 11-13, 10115 Berlin, Germany
| | - Sandra Gusewski
- Molekulare Genetik, Institut für Biologie, Humboldt-Universität zu Berlin, Philippstr. 11-13, 10115 Berlin, Germany FU-Berlin, Fachbereich Biologie, Chemie, Pharmazie, Takustr. 3, 14195 Berlin, Germany
| | - Christian Schmitz-Linneweber
- Molekulare Genetik, Institut für Biologie, Humboldt-Universität zu Berlin, Philippstr. 11-13, 10115 Berlin, Germany
| |
Collapse
|
19
|
Douchi D, Qu Y, Longoni P, Legendre-Lefebvre L, Johnson X, Schmitz-Linneweber C, Goldschmidt-Clermont M. A Nucleus-Encoded Chloroplast Phosphoprotein Governs Expression of the Photosystem I Subunit PsaC in Chlamydomonas reinhardtii. THE PLANT CELL 2016; 28:1182-99. [PMID: 27113776 PMCID: PMC4904667 DOI: 10.1105/tpc.15.00725] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 04/25/2016] [Indexed: 05/05/2023]
Abstract
The nucleo-cytoplasmic compartment exerts anterograde control on chloroplast gene expression through numerous proteins that intervene at posttranscriptional steps. Here, we show that the maturation of psaC mutant (mac1) of Chlamydomonas reinhardtii is defective in photosystem I and fails to accumulate psaC mRNA. The MAC1 locus encodes a member of the Half-A-Tetratricopeptide (HAT) family of super-helical repeat proteins, some of which are involved in RNA transactions. The Mac1 protein localizes to the chloroplast in the soluble fraction. MAC1 acts through the 5' untranslated region of psaC transcripts and is required for their stability. Small RNAs that map to the 5'end of psaC RNA in the wild type but not in the mac1 mutant are inferred to represent footprints of MAC1-dependent protein binding, and Mac1 expressed in bacteria binds RNA in vitro. A coordinate response to iron deficiency, which leads to dismantling of the photosynthetic electron transfer chain and in particular of photosystem I, also causes a decrease of Mac1. Overexpression of Mac1 leads to a parallel increase in psaC mRNA but not in PsaC protein, suggesting that Mac1 may be limiting for psaC mRNA accumulation but that other processes regulate protein accumulation. Furthermore, Mac 1 is differentially phosphorylated in response to iron availability and to conditions that alter the redox balance of the electron transfer chain.
Collapse
Affiliation(s)
- Damien Douchi
- Department of Botany and Plant Biology and Department of Molecular Biology, University of Geneva, 1211 Geneva 4, Switzerland
| | - Yujiao Qu
- Institute of Biology, Molecular Genetics, Humboldt University of Berlin, D-10115 Berlin, Germany
| | - Paolo Longoni
- Department of Botany and Plant Biology and Department of Molecular Biology, University of Geneva, 1211 Geneva 4, Switzerland
| | - Linnka Legendre-Lefebvre
- Department of Botany and Plant Biology and Department of Molecular Biology, University of Geneva, 1211 Geneva 4, Switzerland
| | - Xenie Johnson
- Unité Mixte de Recherche 7141, CNRS/Université Pierre et Marie Curie, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | | | - Michel Goldschmidt-Clermont
- Department of Botany and Plant Biology and Department of Molecular Biology, University of Geneva, 1211 Geneva 4, Switzerland
| |
Collapse
|
20
|
Wang F, Johnson X, Cavaiuolo M, Bohne AV, Nickelsen J, Vallon O. Two Chlamydomonas OPR proteins stabilize chloroplast mRNAs encoding small subunits of photosystem II and cytochrome b6 f. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 82:861-73. [PMID: 25898982 DOI: 10.1111/tpj.12858] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 03/17/2015] [Accepted: 04/09/2015] [Indexed: 05/08/2023]
Abstract
In plants and algae, chloroplast gene expression is controlled by nucleus-encoded proteins that bind to mRNAs in a specific manner, stabilizing mRNAs or promoting their splicing, editing, or translation. Here, we present the characterization of two mRNA stabilization factors of the green alga Chlamydomonas reinhardtii, which both belong to the OctotricoPeptide Repeat (OPR) family. MCG1 is necessary to stabilize the petG mRNA, encoding a small subunit of the cytochrome b6 f complex, while MBI1 stabilizes the psbI mRNA, coding for a small subunit of photosystem II. In the mcg1 mutant, the small RNA footprint corresponding to the 5'-end of the petG transcript is reduced in abundance. In both cases, the absence of the small subunit perturbs assembly of the cognate complex. Whereas PetG is essential for formation of a functional cytochrome b6 f dimer, PsbI appears partly dispensable as a low level of PSII activity can still be measured in its absence. Thus, nuclear control of chloroplast gene expression is not only exerted on the major core subunits of the complexes, but also on small subunits with a single transmembrane helix. While OPR proteins have thus far been involved in translation or trans-splicing of plastid mRNAs, our results expand the potential roles of this repeat family to their stabilization.
Collapse
Affiliation(s)
- Fei Wang
- UMR 7141, Centre National de la Recherche Scientifique/Université Pierre et Marie Curie, Institut de Biologie Physico-Chimique, Paris, 75005, France
- Biozentrum Ludwig-Maximilians-Universität München, D-82152, Planegg-Martinsried, Germany
| | - Xenie Johnson
- UMR 7141, Centre National de la Recherche Scientifique/Université Pierre et Marie Curie, Institut de Biologie Physico-Chimique, Paris, 75005, France
| | - Marina Cavaiuolo
- UMR 7141, Centre National de la Recherche Scientifique/Université Pierre et Marie Curie, Institut de Biologie Physico-Chimique, Paris, 75005, France
| | - Alexandra-Viola Bohne
- Biozentrum Ludwig-Maximilians-Universität München, D-82152, Planegg-Martinsried, Germany
| | - Joerg Nickelsen
- Biozentrum Ludwig-Maximilians-Universität München, D-82152, Planegg-Martinsried, Germany
| | - Olivier Vallon
- UMR 7141, Centre National de la Recherche Scientifique/Université Pierre et Marie Curie, Institut de Biologie Physico-Chimique, Paris, 75005, France
| |
Collapse
|
21
|
Sun Y, Zerges W. Translational regulation in chloroplasts for development and homeostasis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:809-20. [PMID: 25988717 DOI: 10.1016/j.bbabio.2015.05.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 04/13/2015] [Accepted: 05/10/2015] [Indexed: 11/16/2022]
Abstract
Chloroplast genomes encode 100-200 proteins which function in photosynthesis, the organellar genetic system, and other pathways and processes. These proteins are synthesized by a complete translation system within the chloroplast, with bacterial-type ribosomes and translation factors. Here, we review translational regulation in chloroplasts, focusing on changes in translation rates which occur in response to requirements for proteins encoded by the chloroplast genome for development and homeostasis. In addition, we delineate the developmental and physiological contexts and model organisms in which translational regulation in chloroplasts has been studied. This article is part of a Special Issue entitled: Chloroplast biogenesis.
Collapse
Affiliation(s)
- Yi Sun
- Biology Department and Center for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke W., Montreal, Quebec H4B 1R6, Canada
| | - William Zerges
- Biology Department and Center for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke W., Montreal, Quebec H4B 1R6, Canada.
| |
Collapse
|
22
|
Schöttler MA, Tóth SZ, Boulouis A, Kahlau S. Photosynthetic complex stoichiometry dynamics in higher plants: biogenesis, function, and turnover of ATP synthase and the cytochrome b6f complex. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:2373-400. [PMID: 25540437 DOI: 10.1093/jxb/eru495] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
During plant development and in response to fluctuating environmental conditions, large changes in leaf assimilation capacity and in the metabolic consumption of ATP and NADPH produced by the photosynthetic apparatus can occur. To minimize cytotoxic side reactions, such as the production of reactive oxygen species, photosynthetic electron transport needs to be adjusted to the metabolic demand. The cytochrome b6f complex and chloroplast ATP synthase form the predominant sites of photosynthetic flux control. Accordingly, both respond strongly to changing environmental conditions and metabolic states. Usually, their contents are strictly co-regulated. Thereby, the capacity for proton influx into the lumen, which is controlled by electron flux through the cytochrome b6f complex, is balanced with proton efflux through ATP synthase, which drives ATP synthesis. We discuss the environmental, systemic, and metabolic signals triggering the stoichiometry adjustments of ATP synthase and the cytochrome b6f complex. The contribution of transcriptional and post-transcriptional regulation of subunit synthesis, and the importance of auxiliary proteins required for complex assembly in achieving the stoichiometry adjustments is described. Finally, current knowledge on the stability and turnover of both complexes is summarized.
Collapse
Affiliation(s)
- Mark Aurel Schöttler
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Szilvia Z Tóth
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Alix Boulouis
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Sabine Kahlau
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| |
Collapse
|
23
|
Boulouis A, Drapier D, Razafimanantsoa H, Wostrikoff K, Tourasse NJ, Pascal K, Girard-Bascou J, Vallon O, Wollman FA, Choquet Y. Spontaneous dominant mutations in chlamydomonas highlight ongoing evolution by gene diversification. THE PLANT CELL 2015; 27:984-1001. [PMID: 25804537 PMCID: PMC4558696 DOI: 10.1105/tpc.15.00010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 02/10/2015] [Accepted: 03/05/2015] [Indexed: 05/04/2023]
Abstract
We characterized two spontaneous and dominant nuclear mutations in the unicellular alga Chlamydomonas reinhardtii, ncc1 and ncc2 (for nuclear control of chloroplast gene expression), which affect two octotricopeptide repeat (OPR) proteins encoded in a cluster of paralogous genes on chromosome 15. Both mutations cause a single amino acid substitution in one OPR repeat. As a result, the mutated NCC1 and NCC2 proteins now recognize new targets that we identified in the coding sequences of the chloroplast atpA and petA genes, respectively. Interaction of the mutated proteins with these targets leads to transcript degradation; however, in contrast to the ncc1 mutation, the ncc2 mutation requires on-going translation to promote the decay of the petA mRNA. Thus, these mutants reveal a mechanism by which nuclear factors act on chloroplast mRNAs in Chlamydomonas. They illustrate how diversifying selection can allow cells to adapt the nuclear control of organelle gene expression to environmental changes. We discuss these data in the wider context of the evolution of regulation by helical repeat proteins.
Collapse
Affiliation(s)
- Alix Boulouis
- Unité Mixte de Recherche 7141, CNRS/UPMC, Institut de Biologie Physico-Chimique, F-75005 Paris, France
| | - Dominique Drapier
- Unité Mixte de Recherche 7141, CNRS/UPMC, Institut de Biologie Physico-Chimique, F-75005 Paris, France
| | - Hélène Razafimanantsoa
- Unité Mixte de Recherche 7141, CNRS/UPMC, Institut de Biologie Physico-Chimique, F-75005 Paris, France
| | - Katia Wostrikoff
- Unité Mixte de Recherche 7141, CNRS/UPMC, Institut de Biologie Physico-Chimique, F-75005 Paris, France
| | - Nicolas J Tourasse
- Unité Mixte de Recherche 7141, CNRS/UPMC, Institut de Biologie Physico-Chimique, F-75005 Paris, France
| | - Kevin Pascal
- Unité Mixte de Recherche 7141, CNRS/UPMC, Institut de Biologie Physico-Chimique, F-75005 Paris, France
| | - Jacqueline Girard-Bascou
- Unité Mixte de Recherche 7141, CNRS/UPMC, Institut de Biologie Physico-Chimique, F-75005 Paris, France
| | - Olivier Vallon
- Unité Mixte de Recherche 7141, CNRS/UPMC, Institut de Biologie Physico-Chimique, F-75005 Paris, France
| | - Francis-André Wollman
- Unité Mixte de Recherche 7141, CNRS/UPMC, Institut de Biologie Physico-Chimique, F-75005 Paris, France
| | - Yves Choquet
- Unité Mixte de Recherche 7141, CNRS/UPMC, Institut de Biologie Physico-Chimique, F-75005 Paris, France
| |
Collapse
|
24
|
Chen H, Zou W, Zhao J. Ribonuclease J is required for chloroplast and embryo development in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:2079-91. [PMID: 25871650 PMCID: PMC4378637 DOI: 10.1093/jxb/erv010] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 12/18/2014] [Accepted: 12/19/2014] [Indexed: 05/20/2023]
Abstract
Chloroplasts perform many essential metabolic functions and their proper development is critically important in embryogenesis. However, little is known about how chloroplasts function in embryogenesis and more relevant components need to be characterized. In this study, we show that Arabidopsis Ribonuclease J (RNase J) is required for chloroplast and embryo development. Mutation of AtRNJ led to albino ovules containing aborted embryos; the morphological development of rnj embryos was disturbed after the globular stage. Observation of ultrastructures indicated that these aborted embryos may result from impaired chloroplast development. Furthermore, by analyzing the molecular markers of cell fate decisions (STM, FIL, ML1, SCR, and WOX5) in rnj embryos, we found that this impairment of chloroplast development may lead to aberrant embryo patterning along the apical-basal axis, indicating that AtRNJ is important in initiating and maintaining the organization of shoot apical meristems (SAMs), cotyledons, and hypocotyls. Moreover, the transport and response of auxin in rnj embryos was found to be disrupted, suggesting that AtRNJ may be involved in auxin-mediated pathways during embryogenesis. Therefore, we speculate that RNJ plays a vital role in embryo morphogenesis and apical-basal pattern formation by regulating chloroplast development.
Collapse
Affiliation(s)
- Hongyu Chen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Wenxuan Zou
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jie Zhao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
25
|
Lefebvre-Legendre L, Choquet Y, Kuras R, Loubéry S, Douchi D, Goldschmidt-Clermont M. A nucleus-encoded chloroplast protein regulated by iron availability governs expression of the photosystem I subunit PsaA in Chlamydomonas reinhardtii. PLANT PHYSIOLOGY 2015; 167:1527-40. [PMID: 25673777 PMCID: PMC4378161 DOI: 10.1104/pp.114.253906] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The biogenesis of the photosynthetic electron transfer chain in the thylakoid membranes requires the concerted expression of genes in the chloroplast and the nucleus. Chloroplast gene expression is subjected to anterograde control by a battery of nucleus-encoded proteins that are imported in the chloroplast, where they mostly intervene at posttranscriptional steps. Using a new genetic screen, we identify a nuclear mutant that is required for expression of the PsaA subunit of photosystem I (PSI) in the chloroplast of Chlamydomonas reinhardtii. This mutant is affected in the stability and translation of psaA messenger RNA. The corresponding gene, TRANSLATION OF psaA1 (TAA1), encodes a large protein with two domains that are thought to mediate RNA binding: an array of octatricopeptide repeats (OPR) and an RNA-binding domain abundant in apicomplexans (RAP) domain. We show that as expected for its function, TAA1 is localized in the chloroplast. It was previously shown that when mixotrophic cultures of C. reinhardtii (which use both photosynthesis and mitochondrial respiration for growth) are shifted to conditions of iron limitation, there is a strong decrease in the accumulation of PSI and that this is rapidly reversed when iron is resupplied. Under these conditions, TAA1 protein is also down-regulated through a posttranscriptional mechanism and rapidly reaccumulates when iron is restored. These observations reveal a concerted regulation of PSI and of TAA1 in response to iron availability.
Collapse
Affiliation(s)
- Linnka Lefebvre-Legendre
- Department of Botany and Plant Biology and Department of Molecular Biology, University of Geneva, 1211 Geneva 4, Switzerland (L.L.-L., S.L., D.D., M.G.-C.); andUnité Mixte de Recherche 7141, Centre National de la Recherche Scientifique/Université Pierre et Marie Curie, Institut de Biologie Physico-Chimique, 75005 Paris, France (Y.C., R.K.)
| | - Yves Choquet
- Department of Botany and Plant Biology and Department of Molecular Biology, University of Geneva, 1211 Geneva 4, Switzerland (L.L.-L., S.L., D.D., M.G.-C.); andUnité Mixte de Recherche 7141, Centre National de la Recherche Scientifique/Université Pierre et Marie Curie, Institut de Biologie Physico-Chimique, 75005 Paris, France (Y.C., R.K.)
| | - Richard Kuras
- Department of Botany and Plant Biology and Department of Molecular Biology, University of Geneva, 1211 Geneva 4, Switzerland (L.L.-L., S.L., D.D., M.G.-C.); andUnité Mixte de Recherche 7141, Centre National de la Recherche Scientifique/Université Pierre et Marie Curie, Institut de Biologie Physico-Chimique, 75005 Paris, France (Y.C., R.K.)
| | - Sylvain Loubéry
- Department of Botany and Plant Biology and Department of Molecular Biology, University of Geneva, 1211 Geneva 4, Switzerland (L.L.-L., S.L., D.D., M.G.-C.); andUnité Mixte de Recherche 7141, Centre National de la Recherche Scientifique/Université Pierre et Marie Curie, Institut de Biologie Physico-Chimique, 75005 Paris, France (Y.C., R.K.)
| | - Damien Douchi
- Department of Botany and Plant Biology and Department of Molecular Biology, University of Geneva, 1211 Geneva 4, Switzerland (L.L.-L., S.L., D.D., M.G.-C.); andUnité Mixte de Recherche 7141, Centre National de la Recherche Scientifique/Université Pierre et Marie Curie, Institut de Biologie Physico-Chimique, 75005 Paris, France (Y.C., R.K.)
| | - Michel Goldschmidt-Clermont
- Department of Botany and Plant Biology and Department of Molecular Biology, University of Geneva, 1211 Geneva 4, Switzerland (L.L.-L., S.L., D.D., M.G.-C.); andUnité Mixte de Recherche 7141, Centre National de la Recherche Scientifique/Université Pierre et Marie Curie, Institut de Biologie Physico-Chimique, 75005 Paris, France (Y.C., R.K.)
| |
Collapse
|
26
|
Jalal A, Schwarz C, Schmitz-Linneweber C, Vallon O, Nickelsen J, Bohne AV. A small multifunctional pentatricopeptide repeat protein in the chloroplast of Chlamydomonas reinhardtii. MOLECULAR PLANT 2015; 8:412-26. [PMID: 25702521 DOI: 10.1016/j.molp.2014.11.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 11/10/2014] [Accepted: 11/24/2014] [Indexed: 05/21/2023]
Abstract
Organellar biogenesis is mainly regulated by nucleus-encoded factors, which act on various steps of gene expression including RNA editing, processing, splicing, stabilization, and translation initiation. Among these regulatory factors, pentatricopeptide repeat (PPR) proteins form the largest family of RNA binding proteins, with hundreds of members in flowering plants. In striking contrast, the genome of the unicellular green alga Chlamydomonas reinhardtii encodes only 14 such proteins. In this study, we analyzed PPR7, the smallest and most highly expressed PPR protein in C. reinhardtii. Green fluorescent protein-based localization and gel-filtration analysis revealed that PPR7 forms a part of a high-molecular-weight ribonucleoprotein complex in the chloroplast stroma. RIP-chip analysis of PPR7-bound RNAs demonstrated that the protein associates with a diverse set of chloroplast transcripts in vivo, i.e. rrnS, psbH, rpoC2, rbcL, atpA, cemA-atpH, tscA, and atpI-psaJ. Furthermore, the investigation of PPR7 RNAi strains revealed that depletion of PPR7 results in a light-sensitive phenotype, accompanied by altered levels of its target RNAs that are compatible with the defects in their maturation or stabilization. PPR7 is thus an unusual type of small multifunctional PPR protein, which interacts, probably in conjunction with other RNA binding proteins, with numerous target RNAs to promote a variety of post-transcriptional events.
Collapse
Affiliation(s)
- Abdullah Jalal
- Molecular Plant Sciences, Ludwig-Maximillians-University, Grosshaderner Straße 2-4, 82152 Planegg-Martinsried, Germany
| | - Christian Schwarz
- Molecular Plant Sciences, Ludwig-Maximillians-University, Grosshaderner Straße 2-4, 82152 Planegg-Martinsried, Germany
| | | | - Olivier Vallon
- UMR7141 CNRS/Université Pierre et Marie Curie, Institut de Biologie Physico-Chimique, 13 Rue Pierre et Marie Curie, 75005 Paris, France
| | - Jörg Nickelsen
- Molecular Plant Sciences, Ludwig-Maximillians-University, Grosshaderner Straße 2-4, 82152 Planegg-Martinsried, Germany
| | - Alexandra-Viola Bohne
- Molecular Plant Sciences, Ludwig-Maximillians-University, Grosshaderner Straße 2-4, 82152 Planegg-Martinsried, Germany.
| |
Collapse
|
27
|
Liu Z, Franks RG. Molecular basis of fruit development. FRONTIERS IN PLANT SCIENCE 2015; 6:28. [PMID: 25699063 PMCID: PMC4318284 DOI: 10.3389/fpls.2015.00028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 01/12/2015] [Indexed: 05/13/2023]
Affiliation(s)
- Zhongchi Liu
- Department of Cell Biology and Molecular Genetics, University of MarylandCollege Park, MD, USA
- *Correspondence: ;
| | - Robert G. Franks
- Department of Plant and Microbial Biology, North Carolina State UniversityRaleigh, NC, USA
- *Correspondence: ;
| |
Collapse
|
28
|
Young REB, Purton S. Cytosine deaminase as a negative selectable marker for the microalgal chloroplast: a strategy for the isolation of nuclear mutations that affect chloroplast gene expression. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 80:915-25. [PMID: 25234691 PMCID: PMC4282525 DOI: 10.1111/tpj.12675] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 09/04/2014] [Accepted: 09/16/2014] [Indexed: 05/09/2023]
Abstract
Negative selectable markers are useful tools for forward-genetic screens aimed at identifying trans-acting factors that are required for expression of specific genes. Transgenic lines harbouring the marker fused to a gene element, such as a promoter, may be mutagenized to isolate loss-of-function mutants able to survive under selection. Such a strategy allows the molecular dissection of factors that are essential for expression of the gene. Expression of individual chloroplast genes in plants and algae typically requires one or more nuclear-encoded factors that act at the post-transcriptional level, often through interaction with the 5' UTR of the mRNA. To study such nuclear control further, we have developed the Escherichia coli cytosine deaminase gene codA as a conditional negative selectable marker for use in the model green alga Chlamydomonas reinhardtii. We show that a codon-optimized variant of codA with three amino acid substitutions confers sensitivity to 5-fluorocytosine (5-FC) when expressed in the chloroplast under the control of endogenous promoter/5' UTR elements from the photosynthetic genes psaA or petA. UV mutagenesis of the psaA transgenic line allowed recovery of 5-FC-resistant, photosynthetically deficient lines harbouring mutations in the nuclear gene for the factor TAA1 that is required for psaA translation. Similarly, the petA line was used to isolate mutants of the petA mRNA stability factor MCA1 and the translation factor TCA1. The codA marker may be used to identify critical residues in known nuclear factors and to aid the discovery of additional factors required for expression of chloroplast genes.
Collapse
Affiliation(s)
- Rosanna E B Young
- Algal Research Group, Institute of Structural and Molecular Biology, University College LondonGower Street, London, WC1E 6BT, UK
| | - Saul Purton
- Algal Research Group, Institute of Structural and Molecular Biology, University College LondonGower Street, London, WC1E 6BT, UK
| |
Collapse
|
29
|
Ahmad T, Venkataraman S, Hefferon K, AbouHaidar MG. Viral and chloroplastic signals essential for initiation and efficiency of translation in Agrobacterium tumefaciens. Biochem Biophys Res Commun 2014; 452:14-20. [PMID: 25117444 DOI: 10.1016/j.bbrc.2014.07.135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 07/29/2014] [Indexed: 10/24/2022]
Abstract
The construction of high-level protein expression vectors using the CaMV 35S promoter in concert with highly efficient translation initiation signals for Agrobacterium tumefaciens is a relatively less explored field compared to that of Escherichia coli. In the current study, we experimentally investigated the capacity of the CaMV 35S promoter to direct GFP gene expression in A. tumefaciens in the context of different viral and chloroplastic translation initiation signals. GFP expression and concomitant translational efficiency was monitored by confocal microscopy and Western blot analysis. Among all of the constructs, the highest level of translation was observed for the construct containing the phage T7 translation initiation region followed by the chloroplastic Rubisco Large Subunit (rbcL) 58-nucleotide 5' leader region including its SD-like sequence (GGGAGGG). Replacing the SD-like (GGGAGGG) with non SD-like (TTTATTT) or replacing the remaining 52 nucleotides of rbcL with nonspecific sequence completely abolished translation. In addition, this 58 nucleotide region of rbcL serves as a translational enhancer in plants when located within the 5' UTR of mRNA corresponding to GFP. Other constructs, including those containing sequences upstream of the coat proteins of Alfalfa Mosaic Virus, or the GAGG sequence of T4 phage or the chloroplastic atpI and/or PsbA 5' UTR sequence, supported low levels of GFP expression or none at all. From these studies, we propose that we have created high expression vectors in A. tumefaciens and/or plants which contain the CaMV 35S promoter, followed by the translationally strong T7 SD plus RBS translation initiation region or the rbcL 58-nucleotide 5' leader region upstream of the gene of interest.
Collapse
Affiliation(s)
- Tauqeer Ahmad
- Department of Cell and Systems Biology, University of Toronto, St. George Campus, 25 Willcocks Street, Toronto, ON M5S3B2, Canada
| | - Srividhya Venkataraman
- Department of Cell and Systems Biology, University of Toronto, St. George Campus, 25 Willcocks Street, Toronto, ON M5S3B2, Canada
| | - Kathleen Hefferon
- Department of Cell and Systems Biology, University of Toronto, St. George Campus, 25 Willcocks Street, Toronto, ON M5S3B2, Canada
| | - Mounir G AbouHaidar
- Department of Cell and Systems Biology, University of Toronto, St. George Campus, 25 Willcocks Street, Toronto, ON M5S3B2, Canada.
| |
Collapse
|
30
|
Lefebvre-Legendre L, Merendino L, Rivier C, Goldschmidt-Clermont M. On the Complexity of Chloroplast RNA Metabolism: psaA Trans-splicing Can be Bypassed in Chlamydomonas. Mol Biol Evol 2014; 31:2697-707. [DOI: 10.1093/molbev/msu215] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
31
|
Abstract
Pentatricopeptide repeat (PPR) proteins constitute one of the largest protein families in land plants, with more than 400 members in most species. Over the past decade, much has been learned about the molecular functions of these proteins, where they act in the cell, and what physiological roles they play during plant growth and development. A typical PPR protein is targeted to mitochondria or chloroplasts, binds one or several organellar transcripts, and influences their expression by altering RNA sequence, turnover, processing, or translation. Their combined action has profound effects on organelle biogenesis and function and, consequently, on photosynthesis, respiration, plant development, and environmental responses. Recent breakthroughs in understanding how PPR proteins recognize RNA sequences through modular base-specific contacts will help match proteins to potential binding sites and provide a pathway toward designing synthetic RNA-binding proteins aimed at desired targets.
Collapse
Affiliation(s)
- Alice Barkan
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97405;
| | | |
Collapse
|
32
|
Wei L, Derrien B, Gautier A, Houille-Vernes L, Boulouis A, Saint-Marcoux D, Malnoë A, Rappaport F, de Vitry C, Vallon O, Choquet Y, Wollman FA. Nitric oxide-triggered remodeling of chloroplast bioenergetics and thylakoid proteins upon nitrogen starvation in Chlamydomonas reinhardtii. THE PLANT CELL 2014; 26:353-72. [PMID: 24474630 PMCID: PMC3963581 DOI: 10.1105/tpc.113.120121] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 12/04/2013] [Accepted: 01/10/2014] [Indexed: 05/18/2023]
Abstract
Starving microalgae for nitrogen sources is commonly used as a biotechnological tool to boost storage of reduced carbon into starch granules or lipid droplets, but the accompanying changes in bioenergetics have been little studied so far. Here, we report that the selective depletion of Rubisco and cytochrome b6f complex that occurs when Chlamydomonas reinhardtii is starved for nitrogen in the presence of acetate and under normoxic conditions is accompanied by a marked increase in chlororespiratory enzymes, which converts the photosynthetic thylakoid membrane into an intracellular matrix for oxidative catabolism of reductants. Cytochrome b6f subunits and most proteins specifically involved in their biogenesis are selectively degraded, mainly by the FtsH and Clp chloroplast proteases. This regulated degradation pathway does not require light, active photosynthesis, or state transitions but is prevented when respiration is impaired or under phototrophic conditions. We provide genetic and pharmacological evidence that NO production from intracellular nitrite governs this degradation pathway: Addition of a NO scavenger and of two distinct NO producers decrease and increase, respectively, the rate of cytochrome b6f degradation; NO-sensitive fluorescence probes, visualized by confocal microscopy, demonstrate that nitrogen-starved cells produce NO only when the cytochrome b6f degradation pathway is activated.
Collapse
Affiliation(s)
- Lili Wei
- Unité Mixte de Recherche 7141,
CNRS/Université Pierre et Marie Curie, Institut de Biologie
Physico-Chimique, F-75005 Paris, France
| | - Benoit Derrien
- Unité Mixte de Recherche 7141,
CNRS/Université Pierre et Marie Curie, Institut de Biologie
Physico-Chimique, F-75005 Paris, France
| | - Arnaud Gautier
- École Normale Supérieure,
Département de Chimie, Unité Mixte de Recherche, CNRS–Ecole
Normale Supérieure–Université Pierre et Marie Curie 8640,
75231 Paris Cedex 05, France
| | - Laura Houille-Vernes
- Unité Mixte de Recherche 7141,
CNRS/Université Pierre et Marie Curie, Institut de Biologie
Physico-Chimique, F-75005 Paris, France
| | - Alix Boulouis
- Unité Mixte de Recherche 7141,
CNRS/Université Pierre et Marie Curie, Institut de Biologie
Physico-Chimique, F-75005 Paris, France
| | - Denis Saint-Marcoux
- Unité Mixte de Recherche 7141,
CNRS/Université Pierre et Marie Curie, Institut de Biologie
Physico-Chimique, F-75005 Paris, France
| | - Alizée Malnoë
- Unité Mixte de Recherche 7141,
CNRS/Université Pierre et Marie Curie, Institut de Biologie
Physico-Chimique, F-75005 Paris, France
| | - Fabrice Rappaport
- Unité Mixte de Recherche 7141,
CNRS/Université Pierre et Marie Curie, Institut de Biologie
Physico-Chimique, F-75005 Paris, France
| | - Catherine de Vitry
- Unité Mixte de Recherche 7141,
CNRS/Université Pierre et Marie Curie, Institut de Biologie
Physico-Chimique, F-75005 Paris, France
| | - Olivier Vallon
- Unité Mixte de Recherche 7141,
CNRS/Université Pierre et Marie Curie, Institut de Biologie
Physico-Chimique, F-75005 Paris, France
| | - Yves Choquet
- Unité Mixte de Recherche 7141,
CNRS/Université Pierre et Marie Curie, Institut de Biologie
Physico-Chimique, F-75005 Paris, France
| | - Francis-André Wollman
- Unité Mixte de Recherche 7141,
CNRS/Université Pierre et Marie Curie, Institut de Biologie
Physico-Chimique, F-75005 Paris, France
| |
Collapse
|
33
|
Pesaresi P, Mizzotti C, Colombo M, Masiero S. Genetic regulation and structural changes during tomato fruit development and ripening. FRONTIERS IN PLANT SCIENCE 2014; 5:124. [PMID: 24795731 PMCID: PMC4006027 DOI: 10.3389/fpls.2014.00124] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 03/14/2014] [Indexed: 05/18/2023]
Abstract
Fruits are an important evolutionary acquisition of angiosperms, which afford protection for seeds and ensure their optimal dispersal in the environment. Fruits can be divided into dry or fleshy. Dry fruits are the more ancient and provide for mechanical seed dispersal. In contrast, fleshy fruits develop soft tissues in which flavor compounds and pigments accumulate during the ripening process. These serve to attract animals that eat them and disseminate the indigestible seeds. Fruit maturation is accompanied by several striking cytological modifications. In particular, plastids undergo significant structural alterations, including the dedifferentiation of chloroplasts into chromoplasts. Chloroplast biogenesis, their remodeling in response to environmental constraints and their conversion into alternative plastid types are known to require communication between plastids and the nucleus in order to coordinate the expression of their respective genomes. In this review, we discuss the role of plastid modifications in the context of fruit maturation and ripening, and consider the possible involvement of organelle-nucleus crosstalk via retrograde (plastid to nucleus) and anterograde (nucleus to plastid) signaling in the process.
Collapse
Affiliation(s)
- Paolo Pesaresi
- Dipartimento di Bioscienze, Università degli Studi di MilanoMilano, Italy
| | - Chiara Mizzotti
- Dipartimento di Bioscienze, Università degli Studi di MilanoMilano, Italy
| | - Monica Colombo
- Research and Innovation Centre, Fondazione Edmund MachSan Michele all’Adige (Trento), Italy
| | - Simona Masiero
- Dipartimento di Bioscienze, Università degli Studi di MilanoMilano, Italy
- *Correspondence: Simona Masiero, Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy e-mail:
| |
Collapse
|
34
|
Loizeau K, Qu Y, Depp S, Fiechter V, Ruwe H, Lefebvre-Legendre L, Schmitz-Linneweber C, Goldschmidt-Clermont M. Small RNAs reveal two target sites of the RNA-maturation factor Mbb1 in the chloroplast of Chlamydomonas. Nucleic Acids Res 2013; 42:3286-97. [PMID: 24335082 PMCID: PMC3950674 DOI: 10.1093/nar/gkt1272] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Many chloroplast transcripts are protected against exonucleolytic degradation by RNA-binding proteins. Such interactions can lead to the accumulation of short RNAs (sRNAs) that represent footprints of the protein partner. By mining existing data sets of Chlamydomonas reinhardtii small RNAs, we identify chloroplast sRNAs. Two of these correspond to the 5′-ends of the mature psbB and psbH messenger RNAs (mRNAs), which are both stabilized by the nucleus-encoded protein Mbb1, a member of the tetratricopeptide repeat family. Accordingly, we find that the two sRNAs are absent from the mbb1 mutant. Using chloroplast transformation and site-directed mutagenesis to survey the psbB 5′ UTR, we identify a cis-acting element that is essential for mRNA accumulation. This sequence is also found in the 5′ UTR of psbH, where it plays a role in RNA processing. The two sRNAs are centered on these cis-acting elements. Furthermore, RNA binding assays in vitro show that Mbb1 associates with the two elements specifically. Taken together, our data identify a conserved cis-acting element at the extremity of the psbH and psbB 5′ UTRs that plays a role in the processing and stability of the respective mRNAs through interactions with the tetratricopeptide repeat protein Mbb1 and leads to the accumulation of protected sRNAs.
Collapse
Affiliation(s)
- Karen Loizeau
- Department of Botany and Plant Biology and Institute of Genetics and Genomics in Geneva University of Geneva, CH-1211 Geneva 4, Switzerland and Institute of Biology, Molecular Genetics, Humboldt University of Berlin, D-10115 Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Hertel S, Zoschke R, Neumann L, Qu Y, Axmann IM, Schmitz-Linneweber C. Multiple checkpoints for the expression of the chloroplast-encoded splicing factor MatK. PLANT PHYSIOLOGY 2013; 163:1686-98. [PMID: 24174638 PMCID: PMC3850197 DOI: 10.1104/pp.113.227579] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 10/24/2013] [Indexed: 05/08/2023]
Abstract
The chloroplast genome of land plants contains only a single gene for a splicing factor, Maturase K (MatK). To better understand the regulation of matK gene expression, we quantitatively investigated the expression of matK across tobacco (Nicotiana tabacum) development at the transcriptional, posttranscriptional, and protein levels. We observed striking discrepancies of MatK protein and matK messenger RNA levels in young tissue, suggestive of translational regulation or altered protein stability. We furthermore found increased matK messenger RNA stability in mature tissue, while other chloroplast RNAs tested showed little changes. Finally, we quantitatively measured MatK-intron interactions and found selective changes in the interaction of MatK with specific introns during plant development. This is evidence for a direct role of MatK in the regulation of chloroplast gene expression via splicing. We furthermore modeled a simplified matK gene expression network mathematically. The model reflects our experimental data and suggests future experimental perturbations to pinpoint regulatory checkpoints.
Collapse
Affiliation(s)
| | | | | | - Yujiao Qu
- Institute for Theoretical Biology, Charité-Universitätsmedizin Berlin, D-10115 Berlin, Germany (S.H., I.M.A.); and
- Molecular Genetics, Institute of Biology, Humboldt-University Berlin, D-10115 Berlin, Germany (R.Z., L.N., Y.Q., C.S.-L.)
| | - Ilka M. Axmann
- Institute for Theoretical Biology, Charité-Universitätsmedizin Berlin, D-10115 Berlin, Germany (S.H., I.M.A.); and
- Molecular Genetics, Institute of Biology, Humboldt-University Berlin, D-10115 Berlin, Germany (R.Z., L.N., Y.Q., C.S.-L.)
| | | |
Collapse
|
36
|
Berry JO, Yerramsetty P, Zielinski AM, Mure CM. Photosynthetic gene expression in higher plants. PHOTOSYNTHESIS RESEARCH 2013; 117:91-120. [PMID: 23839301 DOI: 10.1007/s11120-013-9880-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 06/26/2013] [Indexed: 05/08/2023]
Abstract
Within the chloroplasts of higher plants and algae, photosynthesis converts light into biological energy, fueling the assimilation of atmospheric carbon dioxide into biologically useful molecules. Two major steps, photosynthetic electron transport and the Calvin-Benson cycle, require many gene products encoded from chloroplast as well as nuclear genomes. The expression of genes in both cellular compartments is highly dynamic and influenced by a diverse range of factors. Light is the primary environmental determinant of photosynthetic gene expression. Working through photoreceptors such as phytochrome, light regulates photosynthetic genes at transcriptional and posttranscriptional levels. Other processes that affect photosynthetic gene expression include photosynthetic activity, development, and biotic and abiotic stress. Anterograde (from nucleus to chloroplast) and retrograde (from chloroplast to nucleus) signaling insures the highly coordinated expression of the many photosynthetic genes between these different compartments. Anterograde signaling incorporates nuclear-encoded transcriptional and posttranscriptional regulators, such as sigma factors and RNA-binding proteins, respectively. Retrograde signaling utilizes photosynthetic processes such as photosynthetic electron transport and redox signaling to influence the expression of photosynthetic genes in the nucleus. The basic C3 photosynthetic pathway serves as the default form used by most of the plant species on earth. High temperature and water stress associated with arid environments have led to the development of specialized C4 and CAM photosynthesis, which evolved as modifications of the basic default expression program. The goal of this article is to explain and summarize the many gene expression and regulatory processes that work together to support photosynthetic function in plants.
Collapse
Affiliation(s)
- James O Berry
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, 14260, USA,
| | | | | | | |
Collapse
|
37
|
Bowman SM, Patel M, Yerramsetty P, Mure CM, Zielinski AM, Bruenn JA, Berry JO. A novel RNA binding protein affects rbcL gene expression and is specific to bundle sheath chloroplasts in C4 plants. BMC PLANT BIOLOGY 2013; 13:138. [PMID: 24053212 PMCID: PMC3849040 DOI: 10.1186/1471-2229-13-138] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 09/16/2013] [Indexed: 05/22/2023]
Abstract
BACKGROUND Plants that utilize the highly efficient C4 pathway of photosynthesis typically possess kranz-type leaf anatomy that consists of two morphologically and functionally distinct photosynthetic cell types, the bundle sheath (BS) and mesophyll (M) cells. These two cell types differentially express many genes that are required for C4 capability and function. In mature C4 leaves, the plastidic rbcL gene, encoding the large subunit of the primary CO2 fixation enzyme Rubisco, is expressed specifically within BS cells. Numerous studies have demonstrated that BS-specific rbcL gene expression is regulated predominantly at post-transcriptional levels, through the control of translation and mRNA stability. The identification of regulatory factors associated with C4 patterns of rbcL gene expression has been an elusive goal for many years. RESULTS RLSB, encoded by the nuclear RLSB gene, is an S1-domain RNA binding protein purified from C4 chloroplasts based on its specific binding to plastid-encoded rbcL mRNA in vitro. Co-localized with LSU to chloroplasts, RLSB is highly conserved across many plant species. Most significantly, RLSB localizes specifically to leaf bundle sheath (BS) cells in C4 plants. Comparative analysis using maize (C4) and Arabidopsis (C3) reveals its tight association with rbcL gene expression in both plants. Reduced RLSB expression (through insertion mutation or RNA silencing, respectively) led to reductions in rbcL mRNA accumulation and LSU production. Additional developmental effects, such as virescent/yellow leaves, were likely associated with decreased photosynthetic function and disruption of associated signaling networks. CONCLUSIONS Reductions in RLSB expression, due to insertion mutation or gene silencing, are strictly correlated with reductions in rbcL gene expression in both maize and Arabidopsis. In both plants, accumulation of rbcL mRNA as well as synthesis of LSU protein were affected. These findings suggest that specific accumulation and binding of the RLSB binding protein to rbcL mRNA within BS chloroplasts may be one determinant leading to the characteristic cell type-specific localization of Rubisco in C4 plants. Evolutionary modification of RLSB expression, from a C3 "default" state to BS cell-specificity, could represent one mechanism by which rbcL expression has become restricted to only one cell type in C4 plants.
Collapse
Affiliation(s)
- Shaun M Bowman
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260, USA
- Current Address: Biology Department, Clarke University, Dubuque, IA 52001, USA
| | - Minesh Patel
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260, USA
- Current Address: Department of Crop Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Pradeep Yerramsetty
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260, USA
| | - Christopher M Mure
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260, USA
| | - Amy M Zielinski
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260, USA
| | - Jeremy A Bruenn
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260, USA
| | - James O Berry
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260, USA
| |
Collapse
|
38
|
Abstract
Using the repeat finding algorithm FT-Rep, we have identified 154 pentatricopeptide repeat (PPR) proteins in nine fully sequenced genomes from green algae (with a total of 1201 repeats) and grouped them in 47 orthologous groups. All data are available in a database, PPRdb, accessible online at http://giavap-genomes.ibpc.fr/ppr. Based on phylogenetic trees generated from the repeats, we propose evolutionary scenarios for PPR proteins. Two PPRs are clearly conserved in the entire green lineage: MRL1 is a stabilization factor for the rbcL mRNA, while HCF152 binds in plants to the psbH-petB intergenic region. MCA1 (the stabilization factor for petA) and PPR7 (a short PPR also acting on chloroplast mRNAs) are conserved across the entire Chlorophyta. The other PPRs are clade-specific, with evidence for gene losses, duplications, and horizontal transfer. In some PPR proteins, an additional domain found at the C terminus provides clues as to possible functions. PPR19 and PPR26 possess a methyltransferase_4 domain suggesting involvement in RNA guanosine methylation. PPR18 contains a C-terminal CBS domain, similar to the CBSPPR1 protein found in nucleoids. PPR16, PPR29, PPR37, and PPR38 harbor a SmR (MutS-related) domain similar to that found in land plants pTAC2, GUN1, and SVR7. The PPR-cyclins PPR3, PPR4, and PPR6, in addition, contain a cyclin domain C-terminal to their SmR domain. PPR31 is an unusual PPR-cyclin containing at its N terminus an OctotricoPeptide Repeat (OPR) and a RAP domain. We consider the possibility that PPR proteins with a SmR domain can introduce single-stranded nicks in the plastid chromosome.
Collapse
Affiliation(s)
- Nicolas J Tourasse
- UMR 7141 CNRS/UPMC; Institut de Biologie Physico-Chimique; F-75005 Paris, France
| | - Yves Choquet
- UMR 7141 CNRS/UPMC; Institut de Biologie Physico-Chimique; F-75005 Paris, France
| | - Olivier Vallon
- UMR 7141 CNRS/UPMC; Institut de Biologie Physico-Chimique; F-75005 Paris, France
| |
Collapse
|
39
|
Lyska D, Meierhoff K, Westhoff P. How to build functional thylakoid membranes: from plastid transcription to protein complex assembly. PLANTA 2013; 237:413-28. [PMID: 22976450 PMCID: PMC3555230 DOI: 10.1007/s00425-012-1752-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 08/10/2012] [Indexed: 05/06/2023]
Abstract
Chloroplasts are the endosymbiotic descendants of cyanobacterium-like prokaryotes. Present genomes of plant and green algae chloroplasts (plastomes) contain ~100 genes mainly encoding for their transcription-/translation-machinery, subunits of the thylakoid membrane complexes (photosystems II and I, cytochrome b (6) f, ATP synthase), and the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase. Nevertheless, proteomic studies have identified several thousand proteins in chloroplasts indicating that the majority of the plastid proteome is not encoded by the plastome. Indeed, plastid and host cell genomes have been massively rearranged in the course of their co-evolution, mainly through gene loss, horizontal gene transfer from the cyanobacterium/chloroplast to the nucleus of the host cell, and the emergence of new nuclear genes. Besides structural components of thylakoid membrane complexes and other (enzymatic) complexes, the nucleus provides essential factors that are involved in a variety of processes inside the chloroplast, like gene expression (transcription, RNA-maturation and translation), complex assembly, and protein import. Here, we provide an overview on regulatory factors that have been described and characterized in the past years, putting emphasis on mechanisms regulating the expression and assembly of the photosynthetic thylakoid membrane complexes.
Collapse
Affiliation(s)
- Dagmar Lyska
- Entwicklungs- und Molekularbiologie der Pflanzen, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, Düsseldorf, Germany.
| | | | | |
Collapse
|
40
|
Wang Y, Zhang X, Lu S, Wang M, Wang L, Wang W, Cao F, Chen H, Wang J, Zhang J, Tu J. Inhibition of a basal transcription factor 3-like gene Osj10gBTF3 in rice results in significant plant miniaturization and typical pollen abortion. PLANT & CELL PHYSIOLOGY 2012; 53:2073-2089. [PMID: 23147221 DOI: 10.1093/pcp/pcs146] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
BTF3, which was originally recognized as a basal transcription factor, has been known to be involved in transcription initiation, translational regulation and protein localization in many eukaryotic organisms. However, its function remains largely unknown in plant species. In the present study, we analyzed a BTF3-related sequence in Oryza sativa L. subsp. japonica, which shares the conserved domain of a nascent polypeptide-associated complex with human BTF3, and was referred to as Osj10gBTF3. The expression of Osj10gBTF3 was primarily constitutive and generally modulated by salt, high temperature and exogenous phytohormone stress. The Osj10gBTF3::EGFP (enhanced green fluorescence protein) fusion protein was localized in both the nucleus and cytoplasmic membrane system. Inhibition of Osj10gBTF3 led to significant morphological changes in all detected tissues and organs, with a reduced size of between 25% and 52%. Furthermore, the pollen that developed was completely sterile, which was correlated with the altered expression of two Rf (fertility restorer)-like genes that encode pentatricopeptide repeat-containing proteins OsPPR676 and OsPPR920, translational initiation factors OseIF3e and OseIF3h, and the heat shock protein OsHSP82. These findings were verified through a yeast two-hybrid assay using a Nipponbare callus cDNA library as bait followed by the reverse transcription-PCR analysis of total leaf or anther RNAs. Our demonstration of the important role of Osj10gBTF3 in rice growth and development provides new insights showing that more complex regulatory functions are associated with BTF3 in plants.
Collapse
Affiliation(s)
- Ya Wang
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Herrmann JM, Woellhaf MW, Bonnefoy N. Control of protein synthesis in yeast mitochondria: the concept of translational activators. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1833:286-94. [PMID: 22450032 DOI: 10.1016/j.bbamcr.2012.03.007] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 03/01/2012] [Accepted: 03/08/2012] [Indexed: 12/18/2022]
Abstract
Mitochondria contain their own genome which codes for a small number of proteins. Most mitochondrial translation products are part of the membrane-embedded reaction centers of the respiratory chain complexes. In the yeast Saccharomyces cerevisiae, the expression of these proteins is regulated by translational activators that bind mitochondrial mRNAs, in most cases to their 5'-untranslated regions, and each mitochondrial mRNA appears to have its own translational activator(s). Recent studies showed that these translational activators can be part of feedback control loops which only permit translation if the downstream assembly of nascent translation products can occur. In several cases, the accumulation of a non-assembled protein prevents further synthesis of this protein but not translation in general. These control loops prevent the synthesis of potentially harmful assembly intermediates of the reaction centers of mitochondrial enzymes. Since such regulatory feedback loops only work if translation occurs in the compartment in which the complexes of the respiratory chain are assembled, these control mechanisms require the presence of a translation machinery in mitochondria. This might explain why eukaryotic cells maintained DNA in mitochondria during the last two billion years of evolution. This review gives an overview of the mitochondrial translation system and summarizes the current knowledge on translational activators and their role in the regulation of mitochondrial protein synthesis. This article is part of a Special Issue entitled: Protein import and quality control in mitochondria and plastids.
Collapse
Affiliation(s)
- Johannes M Herrmann
- Cell Biology, Erwin-Schrödinger-Strasse 13, University of Kaiserslautern, 67663 Kaiserslautern, Germany.
| | | | | |
Collapse
|
42
|
|
43
|
Novel shuttle markers for nuclear transformation of the green alga Chlamydomonas reinhardtii. EUKARYOTIC CELL 2011; 10:1670-8. [PMID: 22002656 DOI: 10.1128/ec.05043-11] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The green alga Chlamydomonas reinhardtii today is a premier model organism for the study of green algae and plants. Yet the efficient engineering of its nuclear genome requires development of new antibiotic resistance markers. We have recoded, based on codon usage in the nuclear genome, the AadA marker that has been used previously for chloroplast transformation. The recoded AadA gene, placed under the control of the HSP70A-RBCS2 hybrid promoter and preceded by the RbcS2 chloroplast-targeting peptide, can be integrated into the nuclear genome by electroporation, conferring resistance to spectinomycin and streptomycin. Transformation efficiency is markedly increased when vector sequences are completely eliminated from the transforming DNA. Antibiotic resistance is stable for several months in the absence of selection pressure. Shuttle markers allowing selection in both Chlamydomonas and Escherichia coli would also be a useful asset. By placing an artificial bacterial promoter and Shine-Dalgarno sequence in frame within the AadA coding sequence, we generated such a shuttle marker. To our surprise, we found that the classical AphVIII construct already functions as a shuttle marker. Finally, we developed a method to introduce the AadA and AphVIII markers into the vector part of the bacterial artificial chromosomes (BACs) of the Chlamydomonas genomic DNA library. Our aim was to facilitate complementation studies whenever the test gene cannot be selected for directly. After transformation of a petC mutant with a modified BAC carrying the AphVIII marker along with the PETC gene in the insert, almost half of the paromomycin-resistant transformants obtained showed restoration of phototrophy, indicating successful integration of the unselected test gene. With AadA, cotransformation was also observed, but with a lower efficiency.
Collapse
|
44
|
Eberhard S, Loiselay C, Drapier D, Bujaldon S, Girard-Bascou J, Kuras R, Choquet Y, Wollman FA. Dual functions of the nucleus-encoded factor TDA1 in trapping and translation activation of atpA transcripts in Chlamydomonas reinhardtii chloroplasts. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 67:1055-66. [PMID: 21623973 DOI: 10.1111/j.1365-313x.2011.04657.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
After endosymbiosis, organelles lost most of their initial genome. Moreover, expression of the few remaining genes became tightly controlled by the nucleus through trans-acting protein factors that are required for post-transcriptional expression (maturation/stability or translation) of a single (or a few) specific organelle target mRNA(s). Here, we characterize the nucleus-encoded TDA1 factor, which is specifically required for translation of the chloroplast atpA transcript that encodes subunit α of ATP synthase in Chlamydomonas reinhardtii. The sequence of TDA1 contains eight copies of a degenerate 38-residue motif, that we named octotrico peptide repeat (OPR), which has been previously described in a few other trans-acting factors targeted to the C. reinhardtii chloroplast. Interestingly, a proportion of the untranslated atpA transcripts are sequestered into high-density, non-polysomic, ribonucleoprotein complexes. Our results suggest that TDA1 has a dual function: (i) trapping a subset of untranslated atpA transcripts into non-polysomic complexes, and (ii) translational activation of these transcripts. We discuss these results in light of our previous observation that only a proportion of atpA transcripts are translated at any given time in the chloroplast of C. reinhardtii.
Collapse
Affiliation(s)
- Stephan Eberhard
- Unité Mixte de Recherche (UMR) 7141, Centre National de la Recherche Scientifique (CNRS) and Université Pierre et Marie Curie (UPMC - Paris 06), Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, F-75005 Paris, France.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Stoppel R, Lezhneva L, Schwenkert S, Torabi S, Felder S, Meierhoff K, Westhoff P, Meurer J. Recruitment of a ribosomal release factor for light- and stress-dependent regulation of petB transcript stability in Arabidopsis chloroplasts. THE PLANT CELL 2011; 23:2680-95. [PMID: 21771930 PMCID: PMC3226201 DOI: 10.1105/tpc.111.085324] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Revised: 06/17/2011] [Accepted: 07/06/2011] [Indexed: 05/20/2023]
Abstract
Land plant genomes encode four functional ribosomal peptide chain release factors (Prf) of eubacterial origin, two (PrfA and PrfB homologs) for each endosymbiotic organelle. Formerly, we have shown that the Arabidopsis thaliana chloroplast-localized PrfB homolog, PrfB1, is required not only for termination of translation but also for stabilization of UGA stop codon-containing chloroplast transcripts. A previously undiscovered PrfB-like protein, PrfB3, is localized to the chloroplast stroma in a petB RNA-containing complex and found only in vascular plants. Highly conserved positions of introns unequivocally indicate that PrfB3 arose from a duplication of PrfB1. Notably, PrfB3 is lacking the two most important tripeptide motifs characteristic for all eubacterial and organellar PrfB homologs described so far: the stop codon recognition motif SPF and the catalytic center GGQ for peptidyl-tRNA hydrolysis. Complementation studies, as well as functional and molecular analyses of two allelic mutations in Arabidopsis, both of which lead to a specific deficiency of the cytochrome b₆f complex, revealed that PrfB3 is essentially required for photoautotrophic growth. Plastid transcript, polysome, and translation analyses indicate that PrfB3 has been recruited in vascular plants for light- and stress-dependent regulation of stability of 3' processed petB transcripts to adjust cytochrome b₆ levels.
Collapse
Affiliation(s)
- Rhea Stoppel
- Biozentrum der Ludwig-Maximilians-Universität, Plant Molecular Biology/Botany, 82152 Planegg-Martinsried, Germany
| | - Lina Lezhneva
- Biozentrum der Ludwig-Maximilians-Universität, Plant Molecular Biology/Botany, 82152 Planegg-Martinsried, Germany
| | - Serena Schwenkert
- Biozentrum der Ludwig-Maximilians-Universität, Plant Molecular Biology/Botany, 82152 Planegg-Martinsried, Germany
| | - Salar Torabi
- Biozentrum der Ludwig-Maximilians-Universität, Plant Molecular Biology/Botany, 82152 Planegg-Martinsried, Germany
| | - Susanne Felder
- Heinrich-Heine-Universität, Institut für Entwicklungs- und Molekularbiologie der Pflanzen, 40225 Duesseldorf, Germany
| | - Karin Meierhoff
- Heinrich-Heine-Universität, Institut für Entwicklungs- und Molekularbiologie der Pflanzen, 40225 Duesseldorf, Germany
| | - Peter Westhoff
- Heinrich-Heine-Universität, Institut für Entwicklungs- und Molekularbiologie der Pflanzen, 40225 Duesseldorf, Germany
| | - Jörg Meurer
- Biozentrum der Ludwig-Maximilians-Universität, Plant Molecular Biology/Botany, 82152 Planegg-Martinsried, Germany
- Address correspondence to
| |
Collapse
|
46
|
Johnson X. Manipulating RuBisCO accumulation in the green alga, Chlamydomonas reinhardtii. PLANT MOLECULAR BIOLOGY 2011; 76:397-405. [PMID: 21607658 DOI: 10.1007/s11103-011-9783-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Accepted: 04/27/2011] [Indexed: 05/03/2023]
Abstract
The nuclear factor, Maturation/stability of RbcL (MRL1), regulates the accumulation of the chloroplast rbcL gene transcript in Chlamydomonas reinhardtii by stabilising the mRNA via its 5' UTR. An absence of MRL1 in algal mrl1 mutants leads to a complete absence of RuBisCO large subunit protein and thus a lack of accumulation of the RuBisCO holoenzyme. By complementing mrl1 mutants by random transformation of the nuclear genome with the MRL1 cDNA, different levels of rbcL transcript accumulate. We also observe that RuBisCO Large Subunit accumulation is perturbed. Complemented strains accumulating as little as 15% RuBisCO protein can grow phototrophically while RuBisCO in this range is limiting for phototrophic growth. We also observe that photosynthetic activity, here measured by the quantum yield of PSII, appears to be a determinant for phototrophic growth. In some strains that accumulate less RuBisCO, a strong production of reactive oxygen species is detected. In the absence of RuBisCO, oxygen possibly acts as the PSI terminal electron acceptor. These results show that random transformation of MRL1 into mrl1 mutants can change RuBisCO accumulation allowing a range of phototrophic growth phenotypes. Furthermore, this technique allows for the isolation of strains with low RuBisCO, within the range of acceptable photosynthetic growth and reasonably low ROS production. MRL1 is thus a potential tool for applications to divert electrons away from photosynthetic carbon metabolism towards alternative pathways.
Collapse
Affiliation(s)
- Xenie Johnson
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7141/Université Pierre et Marie Curie, Institut de Biologie Physico-Chimique, 75005 Paris, France.
| |
Collapse
|
47
|
Salvador ML, Suay L, Klein U. Messenger RNA degradation is initiated at the 5' end and follows sequence- and condition-dependent modes in chloroplasts. Nucleic Acids Res 2011; 39:6213-22. [PMID: 21507888 PMCID: PMC3152361 DOI: 10.1093/nar/gkr226] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Using reporter gene constructs, consisting of the bacterial uidA (GUS) coding region flanked by the 5′ and 3′ regions of the Chlamydomonas rbcL and psaB genes, respectively, we studied the degradation of mRNAs in the chloroplast of Chlamydomonas reinhardtii in vivo. Extending the 5′ terminus of transcripts of the reporter gene by more than 6 nucleotides triggered rapid degradation. Placing a poly(G) tract, known to pause exoribonucleases, in various positions downstream of the 5′ terminus blocked rapid degradation of the transcripts. In all these cases the 5′ ends of the accumulating GUS transcripts were found to be trimmed to the 5′ end of the poly(G) tracts indicating that a 5′→3′ exoribonuclease is involved in the degradation process. Several unstable variants of the GUS transcript could not be rescued from rapid degradation by a poly(G) tract showing that sequence/structure-dependent modes of mRNA breakdown exist in the Chlamydomonas chloroplast. Furthermore, degradation of poly(G)-stabilized transcripts that accumulated in cells maintained in the dark could be augmented by illuminating the cells, implying a photo-activated mode of mRNA degradation that is not blocked by a poly(G) tract. These results suggest sequence- and condition-dependent 5′→3′ mRNA-degrading pathways in the chloroplast of C. reinhardtii.
Collapse
Affiliation(s)
- Maria L Salvador
- Department of Biochemistry and Molecular Biology, University of Valencia, Dr Moliner 50, Burjassot, Valencia 46100, Spain
| | | | | |
Collapse
|
48
|
Affiliation(s)
- Jean-David Rochaix
- Department of Molecular Biology, University of Geneva, 1211 Geneva 4, Switzerland.
| |
Collapse
|
49
|
Jacobs J, Kück U. Function of chloroplast RNA-binding proteins. Cell Mol Life Sci 2011; 68:735-48. [PMID: 20848156 PMCID: PMC11115000 DOI: 10.1007/s00018-010-0523-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Revised: 08/25/2010] [Accepted: 08/30/2010] [Indexed: 12/18/2022]
Abstract
Chloroplasts are eukaryotic organelles which represent evolutionary chimera with proteins that have been derived from either a prokaryotic endosymbiont or a eukaryotic host. Chloroplast gene expression starts with transcription of RNA and is followed by multiple post-transcriptional processes which are mediated mainly by an as yet unknown number of RNA-binding proteins. Here, we review the literature to date on the structure and function of these chloroplast RNA-binding proteins. For example, the functional protein domains involved in RNA binding, such as the RNA-recognition motifs, the chloroplast RNA-splicing and ribosome maturation domains, and the pentatricopeptide-repeat motifs, are summarized. We also describe biochemical and forward genetic approaches that led to the identification of proteins modifying RNA stability or carrying out RNA splicing or editing. Such data will greatly contribute to a better understanding of the biogenesis of a unique organelle found in all photosynthetic organisms.
Collapse
Affiliation(s)
- Jessica Jacobs
- Department for General and Molecular Biology, Ruhr-University Bochum, Universitätsstraße 150, Bochum, Germany.
| | | |
Collapse
|
50
|
Boulouis A, Raynaud C, Bujaldon S, Aznar A, Wollman FA, Choquet Y. The nucleus-encoded trans-acting factor MCA1 plays a critical role in the regulation of cytochrome f synthesis in Chlamydomonas chloroplasts. THE PLANT CELL 2011; 23:333-49. [PMID: 21216944 PMCID: PMC3051260 DOI: 10.1105/tpc.110.078170] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 11/26/2010] [Accepted: 12/07/2010] [Indexed: 05/18/2023]
Abstract
Organelle gene expression is characterized by nucleus-encoded trans-acting factors that control posttranscriptional steps in a gene-specific manner. As a typical example, in Chlamydomonas reinhardtii, expression of the chloroplast petA gene encoding cytochrome f, a major subunit of the cytochrome b(6)f complex, depends on MCA1 and TCA1, required for the accumulation and translation of the petA mRNA. Here, we show that these two proteins associate in high molecular mass complexes that also contain the petA mRNA. We demonstrate that MCA1 is degraded upon interaction with unassembled cytochrome f that transiently accumulates during the biogenesis of the cytochrome b(6)f complex. Strikingly, this interaction relies on the very same residues that form the repressor motif involved in the Control by Epistasy of cytochrome f Synthesis (CES), a negative feedback mechanism that downregulates cytochrome f synthesis when its assembly within the cytochrome b(6)f complex is compromised. Based on these new findings, we present a revised picture for the CES regulation of petA mRNA translation that involves proteolysis of the translation enhancer MCA1, triggered by its interaction with unassembled cytochrome f.
Collapse
Affiliation(s)
| | | | | | | | | | - Yves Choquet
- Unité Mixte de Recherche 7141, Centre National de la Recherche Scientifique/Université Pierre et Marie Curie, Institut de Biologie Physico-Chimique, F-75005 Paris, France
| |
Collapse
|