1
|
Kulkarni V, Jayakumar S, Mohan M, Kulkarni S. Aid or Antagonize: Nuclear Long Noncoding RNAs Regulate Host Responses and Outcomes of Viral Infections. Cells 2023; 12:987. [PMID: 37048060 PMCID: PMC10093752 DOI: 10.3390/cells12070987] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 03/12/2023] [Accepted: 03/15/2023] [Indexed: 04/14/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) are transcripts measuring >200 bp in length and devoid of protein-coding potential. LncRNAs exceed the number of protein-coding mRNAs and regulate cellular, developmental, and immune pathways through diverse molecular mechanisms. In recent years, lncRNAs have emerged as epigenetic regulators with prominent roles in health and disease. Many lncRNAs, either host or virus-encoded, have been implicated in critical cellular defense processes, such as cytokine and antiviral gene expression, the regulation of cell signaling pathways, and the activation of transcription factors. In addition, cellular and viral lncRNAs regulate virus gene expression. Viral infections and associated immune responses alter the expression of host lncRNAs regulating immune responses, host metabolism, and viral replication. The influence of lncRNAs on the pathogenesis and outcomes of viral infections is being widely explored because virus-induced lncRNAs can serve as diagnostic and therapeutic targets. Future studies should focus on thoroughly characterizing lncRNA expressions in virus-infected primary cells, investigating their role in disease prognosis, and developing biologically relevant animal or organoid models to determine their suitability for specific therapeutic targeting. Many cellular and viral lncRNAs localize in the nucleus and epigenetically modulate viral transcription, latency, and host responses to infection. In this review, we provide an overview of the role of nuclear lncRNAs in the pathogenesis and outcomes of viral infections, such as the Influenza A virus, Sendai Virus, Respiratory Syncytial Virus, Hepatitis C virus, Human Immunodeficiency Virus, and Herpes Simplex Virus. We also address significant advances and barriers in characterizing lncRNA function and explore the potential of lncRNAs as therapeutic targets.
Collapse
Affiliation(s)
- Viraj Kulkarni
- Disease Intervention and Prevention Program, Texas Biomedical Research Institute, San Antonio, TX 78227, USA;
| | - Sahana Jayakumar
- Host-Pathogen Interaction Program, Texas Biomedical Research Institute, San Antonio, TX 78227, USA; (S.J.); (M.M.)
| | - Mahesh Mohan
- Host-Pathogen Interaction Program, Texas Biomedical Research Institute, San Antonio, TX 78227, USA; (S.J.); (M.M.)
| | - Smita Kulkarni
- Host-Pathogen Interaction Program, Texas Biomedical Research Institute, San Antonio, TX 78227, USA; (S.J.); (M.M.)
| |
Collapse
|
2
|
Ballmer D, Tardat M, Ortiz R, Graff-Meyer A, Ozonov E, Genoud C, Peters A, Fanourgakis G. HP1 proteins regulate nucleolar structure and function by secluding pericentromeric constitutive heterochromatin. Nucleic Acids Res 2022; 51:117-143. [PMID: 36533441 PMCID: PMC9841413 DOI: 10.1093/nar/gkac1159] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/29/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Nucleoli are nuclear compartments regulating ribosome biogenesis and cell growth. In embryonic stem cells (ESCs), nucleoli containing transcriptionally active ribosomal genes are spatially separated from pericentromeric satellite repeat sequences packaged in largely repressed constitutive heterochromatin (PCH). To date, mechanisms underlying such nuclear partitioning and the physiological relevance thereof are unknown. Here we show that repressive chromatin at PCH ensures structural integrity and function of nucleoli during cell cycle progression. Loss of heterochromatin proteins HP1α and HP1β causes deformation of PCH, with reduced H3K9 trimethylation (H3K9me3) and HP1γ levels, absence of H4K20me3 and upregulated major satellites expression. Spatially, derepressed PCH aberrantly associates with nucleoli accumulating severe morphological defects during S/G2 cell cycle progression. Hp1α/β deficiency reduces cell proliferation, ribosomal RNA biosynthesis and mobility of Nucleophosmin, a major nucleolar component. Nucleolar integrity and function require HP1α/β proteins to be recruited to H3K9me3-marked PCH and their ability to dimerize. Correspondingly, ESCs deficient for both Suv39h1/2 H3K9 HMTs display similar nucleolar defects. In contrast, Suv4-20h1/2 mutant ESCs lacking H4K20me3 at PCH do not. Suv39h1/2 and Hp1α/β deficiency-induced nucleolar defects are reminiscent of those defining human ribosomopathy disorders. Our results reveal a novel role for SUV39H/HP1-marked repressive constitutive heterochromatin in regulating integrity, function and physiology of nucleoli.
Collapse
Affiliation(s)
- Daniel Ballmer
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland,Faculty of Sciences, University of Basel, 4056 Basel, Switzerland
| | - Mathieu Tardat
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Raphael Ortiz
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Alexandra Graff-Meyer
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Evgeniy A Ozonov
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Christel Genoud
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | | | - Grigorios Fanourgakis
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| |
Collapse
|
3
|
Chen YL, He W, Kirmizialtin S, Pollack L. Insights into the structural stability of major groove RNA triplexes by WAXS-guided MD simulations. CELL REPORTS. PHYSICAL SCIENCE 2022; 3:100971. [PMID: 35936555 PMCID: PMC9351628 DOI: 10.1016/j.xcrp.2022.100971] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
RNA triple helices are commonly observed tertiary motifs that are associated with critical biological functions, including signal transduction. Because the recognition of their biological importance is relatively recent, their full range of structural properties has not yet been elucidated. The integration of solution wide-angle X-ray scattering (WAXS) with molecular dynamics (MD) simulations, described here, provides a new way to capture the structures of major-groove RNA triplexes that evade crystallographic characterization. This method yields excellent agreement between measured and computed WAXS profiles and allows for an atomically detailed visualization of these motifs. Using correlation maps, the relationship between well-defined features in the scattering profiles and real space characteristics of RNA molecules is defined, including the subtle conformational variations in the double-stranded RNA upon the incorporation of a third strand by base triples. This readily applicable approach has the potential to provide insight into interactions that stabilize RNA tertiary structure that enables function.
Collapse
Affiliation(s)
- Yen-Lin Chen
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA
- These authors contributed equally
| | - Weiwei He
- Department of Chemistry, New York University, New York, NY 10003, USA
- Chemistry Program, Science Division, New York University Abu Dhabi, Abu Dhabi 129188, UAE
- These authors contributed equally
| | - Serdal Kirmizialtin
- Chemistry Program, Science Division, New York University Abu Dhabi, Abu Dhabi 129188, UAE
| | - Lois Pollack
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA
- Lead contact
| |
Collapse
|
4
|
Martin SE, Gan H, Toomer G, Sridhar N, Sztuba-Solinska J. The m 6A landscape of polyadenylated nuclear (PAN) RNA and its related methylome in the context of KSHV replication. RNA (NEW YORK, N.Y.) 2021; 27:1102-1125. [PMID: 34187903 PMCID: PMC8370742 DOI: 10.1261/rna.078777.121] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/25/2021] [Indexed: 05/10/2023]
Abstract
Polyadenylated nuclear (PAN) RNA is a long noncoding transcript involved in Kaposi's sarcoma-associated herpesvirus (KSHV) lytic reactivation and regulation of cellular and viral gene expression. We have previously shown that PAN RNA has dynamic secondary structure and protein binding profiles that can be influenced by epitranscriptomic modifications. N6-methyladenosine (m6A) is one of the most abundant chemical signatures found in viral RNA genomes and virus-encoded RNAs. Here, we combined antibody-independent next-generation mapping with direct RNA sequencing to address the epitranscriptomic status of PAN RNA in KSHV infected cells. We showed that PAN m6A status is dynamic, reaching the highest number of modifications at the late lytic stages of KSHV infection. Using a newly developed method, termed selenium-modified deoxythymidine triphosphate (SedTTP)-reverse transcription (RT) and ligation assisted PCR analysis of m6A (SLAP), we gained insight into the fraction of modification at identified sites. By applying comprehensive proteomic approaches, we identified writers and erasers that regulate the m6A status of PAN, and readers that can convey PAN m6A phenotypic effects. We verified the temporal and spatial subcellular availability of the methylome components for PAN modification by performing confocal microscopy analysis. Additionally, the RNA biochemical probing (SHAPE-MaP) outlined local and global structural alterations invoked by m6A in the context of full-length PAN RNA. This work represents the first comprehensive overview of the dynamic interplay that takes place between the cellular epitranscriptomic machinery and a specific viral RNA in the context of KSHV infected cells.
Collapse
MESH Headings
- Adenosine/analogs & derivatives
- Adenosine/genetics
- Adenosine/metabolism
- Alpha-Ketoglutarate-Dependent Dioxygenase FTO/genetics
- Alpha-Ketoglutarate-Dependent Dioxygenase FTO/metabolism
- Base Pairing
- Base Sequence
- Cell Line, Tumor
- Endonucleases/genetics
- Endonucleases/metabolism
- Epigenesis, Genetic
- Herpesvirus 8, Human/genetics
- Herpesvirus 8, Human/metabolism
- Heterogeneous-Nuclear Ribonucleoprotein Group C/genetics
- Heterogeneous-Nuclear Ribonucleoprotein Group C/metabolism
- Host-Pathogen Interactions/genetics
- Humans
- Lymphocytes/metabolism
- Lymphocytes/virology
- Methylation
- Methyltransferases/genetics
- Methyltransferases/metabolism
- Nucleic Acid Conformation
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Nuclear/genetics
- RNA, Nuclear/metabolism
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Reverse Transcription
- Sequence Analysis, RNA
- Transcriptome
Collapse
Affiliation(s)
| | - Huachen Gan
- Department of Biological Sciences, Auburn University, Auburn, Alabama 36849, USA
| | - Gabriela Toomer
- Department of Biological Sciences, Auburn University, Auburn, Alabama 36849, USA
| | - Nikitha Sridhar
- Department of Biological Sciences, Auburn University, Auburn, Alabama 36849, USA
| | | |
Collapse
|
5
|
Torabi SF, Chen YL, Zhang K, Wang J, DeGregorio SJ, Vaidya AT, Su Z, Pabit SA, Chiu W, Pollack L, Steitz JA. Structural analyses of an RNA stability element interacting with poly(A). Proc Natl Acad Sci U S A 2021; 118:e2026656118. [PMID: 33785601 PMCID: PMC8040590 DOI: 10.1073/pnas.2026656118] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Cis-acting RNA elements are crucial for the regulation of polyadenylated RNA stability. The element for nuclear expression (ENE) contains a U-rich internal loop flanked by short helices. An ENE stabilizes RNA by sequestering the poly(A) tail via formation of a triplex structure that inhibits a rapid deadenylation-dependent decay pathway. Structure-based bioinformatic studies identified numerous ENE-like elements in evolutionarily diverse genomes, including a subclass containing two ENE motifs separated by a short double-helical region (double ENEs [dENEs]). Here, the structure of a dENE derived from a rice transposable element (TWIFB1) before and after poly(A) binding (∼24 kDa and ∼33 kDa, respectively) is investigated. We combine biochemical structure probing, small angle X-ray scattering (SAXS), and cryo-electron microscopy (cryo-EM) to investigate the dENE structure and its local and global structural changes upon poly(A) binding. Our data reveal 1) the directionality of poly(A) binding to the dENE, and 2) that the dENE-poly(A) interaction involves a motif that protects the 3'-most seven adenylates of the poly(A). Furthermore, we demonstrate that the dENE does not undergo a dramatic global conformational change upon poly(A) binding. These findings are consistent with the recently solved crystal structure of a dENE+poly(A) complex [S.-F. Torabi et al., Science 371, eabe6523 (2021)]. Identification of additional modes of poly(A)-RNA interaction opens new venues for better understanding of poly(A) tail biology.
Collapse
Affiliation(s)
- Seyed-Fakhreddin Torabi
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06536
- HHMI, Yale University School of Medicine, New Haven, CT 06536
| | - Yen-Lin Chen
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853
| | - Kaiming Zhang
- Department of Bioengineering, Stanford University, Stanford, CA 94305
- James H. Clark Center, Stanford University, Stanford, CA 94305
| | - Jimin Wang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06536
| | - Suzanne J DeGregorio
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06536
- HHMI, Yale University School of Medicine, New Haven, CT 06536
| | - Anand T Vaidya
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06536
- HHMI, Yale University School of Medicine, New Haven, CT 06536
- Tata Institute of Fundamental Research Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, 10 500046 Hyderabad, India
| | - Zhaoming Su
- Department of Bioengineering, Stanford University, Stanford, CA 94305
- James H. Clark Center, Stanford University, Stanford, CA 94305
| | - Suzette A Pabit
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853
| | - Wah Chiu
- Department of Bioengineering, Stanford University, Stanford, CA 94305;
- James H. Clark Center, Stanford University, Stanford, CA 94305
- Division of CryoEM and Bioimaging, Stanford Synchrotron Radiation Lightsource, Stanford Linear Accelerator Center National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025
| | - Lois Pollack
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853;
| | - Joan A Steitz
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06536;
- HHMI, Yale University School of Medicine, New Haven, CT 06536
| |
Collapse
|
6
|
Torabi SF, Vaidya AT, Tycowski KT, DeGregorio SJ, Wang J, Shu MD, Steitz TA, Steitz JA. RNA stabilization by a poly(A) tail 3'-end binding pocket and other modes of poly(A)-RNA interaction. Science 2021; 371:science.abe6523. [PMID: 33414189 DOI: 10.1126/science.abe6523] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/20/2020] [Indexed: 12/16/2022]
Abstract
Polyadenylate [poly(A)] tail addition to the 3' end of a wide range of RNAs is a highly conserved modification that plays a central role in cellular RNA function. Elements for nuclear expression (ENEs) are cis-acting RNA elements that stabilize poly(A) tails by sequestering them in RNA triplex structures. A crystal structure of a double ENE from a rice hAT transposon messenger RNA complexed with poly(A)28 at a resolution of 2.89 angstroms reveals multiple modes of interaction with poly(A), including major-groove triple helices, extended minor-groove interactions with RNA double helices, a quintuple-base motif that transitions poly(A) from minor-groove associations to major-groove triple helices, and a poly(A) 3'-end binding pocket. Our findings both expand the repertoire of motifs involved in long-range RNA interactions and provide insights into how polyadenylation can protect an RNA's extreme 3' end.
Collapse
Affiliation(s)
- Seyed-Fakhreddin Torabi
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06536, USA.,Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Anand T Vaidya
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06536, USA.,Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06536, USA.,TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Hyderabad 500046, India
| | - Kazimierz T Tycowski
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06536, USA.,Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Suzanne J DeGregorio
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06536, USA.,Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Jimin Wang
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Mei-Di Shu
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06536, USA.,Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Thomas A Steitz
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06536, USA.,Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Joan A Steitz
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06536, USA. .,Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06536, USA
| |
Collapse
|
7
|
Brown JA. Unraveling the structure and biological functions of RNA triple helices. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 11:e1598. [PMID: 32441456 PMCID: PMC7583470 DOI: 10.1002/wrna.1598] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 04/06/2020] [Accepted: 04/15/2020] [Indexed: 02/06/2023]
Abstract
It has been nearly 63 years since the first characterization of an RNA triple helix in vitro by Gary Felsenfeld, David Davies, and Alexander Rich. An RNA triple helix consists of three strands: A Watson–Crick RNA double helix whose major‐groove establishes hydrogen bonds with the so‐called “third strand”. In the past 15 years, it has been recognized that these major‐groove RNA triple helices, like single‐stranded and double‐stranded RNA, also mediate prominent biological roles inside cells. Thus far, these triple helices are known to mediate catalysis during telomere synthesis and RNA splicing, bind to ligands and ions so that metabolite‐sensing riboswitches can regulate gene expression, and provide a clever strategy to protect the 3′ end of RNA from degradation. Because RNA triple helices play important roles in biology, there is a renewed interest in better understanding the fundamental properties of RNA triple helices and developing methods for their high‐throughput discovery. This review provides an overview of the fundamental biochemical and structural properties of major‐groove RNA triple helices, summarizes the structure and function of naturally occurring RNA triple helices, and describes prospective strategies to isolate RNA triple helices as a means to establish the “triplexome”. This article is categorized under:RNA Structure and Dynamics > RNA Structure and Dynamics RNA Structure and Dynamics > RNA Structure, Dynamics and Chemistry RNA Structure and Dynamics > Influence of RNA Structure in Biological Systems
Collapse
Affiliation(s)
- Jessica A Brown
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| |
Collapse
|
8
|
Garland W, Jensen TH. Nuclear sorting of RNA. WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 11:e1572. [PMID: 31713323 DOI: 10.1002/wrna.1572] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/30/2019] [Accepted: 10/08/2019] [Indexed: 12/27/2022]
Abstract
The majority of the mammalian genome is transcribed by RNA polymerase II, yielding a vast amount of noncoding RNA (ncRNA) in addition to the standard production of mRNA. The typical nuclear biogenesis of mRNA relies on the tightly controlled coupling of co- and post-transcriptional processing events, which ultimately results in the export of transcripts into the cytoplasm. These processes are subject to surveillance by nuclear RNA decay pathways to prevent the export of aberrant, or otherwise "non-optimal," transcripts. However, unlike mRNA, many long ncRNAs are nuclear retained and those that maintain enduring functions must employ precautions to evade decay. Proper sorting and localization of RNA is therefore an essential activity in eukaryotic cells and the formation of ribonucleoprotein complexes during early stages of RNA synthesis is central to deciding such transcript fate. This review details our current understanding of the pathways and factors that direct RNAs towards a particular destiny and how transcripts combat the adverse conditions of the nucleus. This article is categorized under: RNA Export and Localization > Nuclear Export/Import RNA Turnover and Surveillance > Turnover/Surveillance Mechanisms RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- William Garland
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C., Denmark
| | - Torben Heick Jensen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C., Denmark
| |
Collapse
|
9
|
Ruiz JC, Hunter OV, Conrad NK. Kaposi's sarcoma-associated herpesvirus ORF57 protein protects viral transcripts from specific nuclear RNA decay pathways by preventing hMTR4 recruitment. PLoS Pathog 2019; 15:e1007596. [PMID: 30785952 PMCID: PMC6398867 DOI: 10.1371/journal.ppat.1007596] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/04/2019] [Accepted: 01/25/2019] [Indexed: 12/15/2022] Open
Abstract
Nuclear RNAs are subject to a number of RNA decay pathways that serve quality control and regulatory functions. As a result, any virus that expresses its genes in the nucleus must have evolved mechanisms that avoid these pathways, but the how viruses evade nuclear RNA decay remains largely unknown. The multifunctional Kaposi’s sarcoma-associated herpesvirus (KSHV) ORF57 (Mta) protein is required for the nuclear stability of viral transcripts. In the absence of ORF57, we show that viral transcripts are subject to degradation by two specific nuclear RNA decay pathways, PABPN1 and PAPα/γ-mediated RNA decay (PPD) in which decay factors are recruited through poly(A) tails, and an ARS2-mediated RNA decay pathway dependent on the 5ʹ RNA cap. In transcription pulse chase assays, ORF57 appears to act primarily by inhibiting the ARS2-mediated RNA decay pathway. In the context of viral infection in cultured cells, inactivation of both decay pathways by RNAi is necessary for the restoration of ORF57-dependent viral genes produced from an ORF57-null bacmid. Mechanistically, we demonstrate that ORF57 protects viral transcripts by preventing the recruitment of the exosome co-factor hMTR4. In addition, our data suggest that ORF57 recruitment of ALYREF inhibits hMTR4 association with some viral RNAs, whereas other KSHV transcripts are stabilized by ORF57 in an ALYREF-independent fashion. In conclusion, our studies show that KSHV RNAs are subject to nuclear degradation by two specific host pathways, PPD and ARS2-mediated decay, and ORF57 protects viral transcripts from decay by inhibiting hMTR4 recruitment. Eukaryotic cells contain numerous nuclear RNA quality control (QC) systems that ensure transcriptome fidelity by detecting and degrading aberrant RNAs. Some viral RNAs are also predicted to be degraded by these RNA QC systems, so viruses have evolved mechanisms that counter host RNA QC pathways. Previous studies showed that the Kaposi’s sarcoma-associated herpesvirus (KSHV) expresses the ORF57 protein to protect its RNAs from nuclear decay. However, neither the specific host pathways that degrade KSHV RNAs nor the mechanisms describing ORF57 protection of viral RNAs were known. Our data suggest that ORF57 protects viral RNAs from two different nuclear RNA QC pathways, PABPN1 and PAPα/γ-mediated RNA decay (PPD) and an ARS2-mediated RNA decay pathway. Mechanistically, we show that ORF57 binds directly to viral RNAs and prevents the recruitment of hMTR4, a cellular factor whose function is to recruit the exosome, the complex responsible for RNA decay, to the transcript. We conclude that by preventing hMTR4 recruitment, ORF57 protects viral RNAs from degradation resulting in robust expression of viral genes.
Collapse
Affiliation(s)
- Julio C. Ruiz
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Olga V. Hunter
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Nicholas K. Conrad
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas
- * E-mail:
| |
Collapse
|
10
|
Brown JA, Steitz JA. Intronless β-Globin Reporter: A Tool for Studying Nuclear RNA Stability Elements. Methods Mol Biol 2017; 1428:77-92. [PMID: 27236793 DOI: 10.1007/978-1-4939-3625-0_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The intronless β-globin reporter, whose mRNA is intrinsically unstable due to the lack of introns, is a useful tool to study RNA stability elements in a heterologous transcript. Insertion of a stability element leads to the accumulation of intronless β-globin mRNA that can be visualized by conventional Northern blot analyses. In this chapter, we explain how to perform the β-globin reporter assay using the ENE (expression and nuclear retention element), a triple-helix-forming RNA stability element that protects reporter mRNA from 3'- 5' decay. A list of considerations is included for the use of ENEs as a tool to stabilize other RNAs. In this chapter, we provide a brief description of how to insert an ENE sequence into the 3'-untranslated region of an intronless β-globin reporter plasmid using basic cloning technology. Then, we provide a detailed protocol for quantitative measurements of steady-state levels of β-globin mRNA. This entails the transient transfection of mammalian cells with β-globin reporter plasmids, isolation of total cellular RNA, and detection of reporter mRNA via Northern blot. This methodology can be applied for the study of any nuclear RNA stability element using the intronless β-globin reporter.
Collapse
Affiliation(s)
- Jessica A Brown
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University School of Medicine, 295 Congress Avenue, New Haven, CT, 06536, USA.
| | - Joan A Steitz
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University School of Medicine, 295 Congress Avenue, New Haven, CT, 06536, USA
| |
Collapse
|
11
|
Sztuba-Solinska J, Rausch JW, Smith R, Miller JT, Whitby D, Le Grice SFJ. Kaposi's sarcoma-associated herpesvirus polyadenylated nuclear RNA: a structural scaffold for nuclear, cytoplasmic and viral proteins. Nucleic Acids Res 2017; 45:6805-6821. [PMID: 28383682 PMCID: PMC5499733 DOI: 10.1093/nar/gkx241] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 03/30/2017] [Indexed: 01/04/2023] Open
Abstract
Kaposi's sarcoma-associated herpes virus (KSHV) polyadenylated nuclear (PAN) RNA facilitates lytic infection, modulating the cellular immune response by interacting with viral and cellular proteins and DNA. Although a number nucleoprotein interactions involving PAN have been implicated, our understanding of binding partners and PAN RNA binding motifs remains incomplete. Herein, we used SHAPE-mutational profiling (SHAPE-MaP) to probe PAN in its nuclear, cytoplasmic or viral environments or following cell/virion lysis and removal of proteins. We thus characterized and put into context discrete RNA structural elements, including the cis-acting Mta responsive element and expression and nuclear retention element (1,2). By comparing mutational profiles in different biological contexts, we identified sites on PAN either protected from chemical modification by protein binding or characterized by a loss of structure. While some protein binding sites were selectively localized, others were occupied in all three biological contexts. Individual binding sites of select KSHV gene products on PAN RNA were also identified in in vitro experiments. This work constitutes the most extensive structural characterization of a viral lncRNA and interactions with its protein partners in discrete biological contexts, providing a broad framework for understanding the roles of PAN RNA in KSHV infection.
Collapse
Affiliation(s)
- Joanna Sztuba-Solinska
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Jason W Rausch
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Rodman Smith
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Jennifer T Miller
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Denise Whitby
- Viral Oncology Section, AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Stuart F J Le Grice
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| |
Collapse
|
12
|
Lewis CJT, Pan T, Kalsotra A. RNA modifications and structures cooperate to guide RNA-protein interactions. Nat Rev Mol Cell Biol 2017; 18:202-210. [PMID: 28144031 PMCID: PMC5542016 DOI: 10.1038/nrm.2016.163] [Citation(s) in RCA: 218] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
An emerging body of evidence indicates that post-transcriptional gene regulation relies not only on the sequence of mRNAs but also on their folding into intricate secondary structures and on the chemical modifications of the RNA bases. These features, which are highly dynamic and interdependent, exert direct control over the transcriptome and thereby influence many aspects of cell function. Here, we consider how the coupling of RNA modifications and structures shapes RNA-protein interactions at different steps of the gene expression process.
Collapse
Affiliation(s)
| | - Tao Pan
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637, USA
| | - Auinash Kalsotra
- Department of Biochemistry, University of Illinois
- Institute of Genomic Biology, University of Illinois, Urbana-Champaign, Illinois 61801, USA
| |
Collapse
|
13
|
Tycowski KT, Shu MD, Steitz JA. Myriad Triple-Helix-Forming Structures in the Transposable Element RNAs of Plants and Fungi. Cell Rep 2016; 15:1266-76. [PMID: 27134163 DOI: 10.1016/j.celrep.2016.04.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 02/25/2016] [Accepted: 03/28/2016] [Indexed: 01/08/2023] Open
Abstract
The ENE (element for nuclear expression) is a cis-acting RNA structure that protects viral or cellular noncoding RNAs (ncRNAs) from nuclear decay through triple-helix formation with the poly(A) tail or 3'-terminal A-rich tract. We expanded the roster of nine known ENEs by bioinformatic identification of ∼200 distinct ENEs that reside in transposable elements (TEs) of numerous non-metazoan and one fish species and in four Dicistrovirus genomes. Despite variation within the ENE core, none of the predicted triple-helical stacks exceeds five base triples. Increased accumulation of reporter transcripts in human cells demonstrated functionality for representative ENEs. Location close to the poly(A) tail argues that ENEs are active in TE transcripts. Their presence in intronless, but not intron-containing, hAT transposase genes supports the idea that TEs acquired ENEs to counteract the RNA-destabilizing effects of intron loss, a potential evolutionary consequence of TE horizontal transfer in organisms that couple RNA silencing to splicing deficits.
Collapse
Affiliation(s)
- Kazimierz T Tycowski
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA
| | - Mei-Di Shu
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA
| | - Joan A Steitz
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA.
| |
Collapse
|
14
|
Rutenberg-Schoenberg M, Sexton AN, Simon MD. The Properties of Long Noncoding RNAs That Regulate Chromatin. Annu Rev Genomics Hum Genet 2016; 17:69-94. [PMID: 27147088 DOI: 10.1146/annurev-genom-090314-024939] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Beyond coding for proteins, RNA molecules have well-established functions in the posttranscriptional regulation of gene expression. Less clear are the upstream roles of RNA in regulating transcription and chromatin-based processes in the nucleus. RNA is transcribed in the nucleus, so it is logical that RNA could play diverse and broad roles that would impact human physiology. Indeed, this idea is supported by well-established examples of noncoding RNAs that affect chromatin structure and function. There has been dramatic growth in studies focused on the nuclear roles of long noncoding RNAs (lncRNAs). Although little is known about the biochemical mechanisms of these lncRNAs, there is a developing consensus regarding the challenges of defining lncRNA function and mechanism. In this review, we examine the definition, discovery, functions, and mechanisms of lncRNAs. We emphasize areas where challenges remain and where consensus among laboratories has underscored the exciting ways in which human lncRNAs may affect chromatin biology.
Collapse
Affiliation(s)
- Michael Rutenberg-Schoenberg
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511; , , .,Chemical Biology Institute, Yale University, West Haven, Connecticut 06516
| | - Alec N Sexton
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511; , , .,Chemical Biology Institute, Yale University, West Haven, Connecticut 06516
| | - Matthew D Simon
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511; , , .,Chemical Biology Institute, Yale University, West Haven, Connecticut 06516
| |
Collapse
|
15
|
Akiyama BM, Eiler D, Kieft JS. Structured RNAs that evade or confound exonucleases: function follows form. Curr Opin Struct Biol 2016; 36:40-7. [PMID: 26797676 DOI: 10.1016/j.sbi.2015.12.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 12/17/2015] [Indexed: 12/30/2022]
Abstract
Cells contain powerful RNA decay machinery to eliminate unneeded RNA from the cell, and this process is an important and regulated part of controlling gene expression. However, certain structured RNAs have been found that can robustly resist degradation and extend the lifetime of an RNA. In this review, we present three RNA structures that use a specific three-dimensional fold to provide protection from RNA degradation, and discuss how the recently-solved structures of these RNAs explain their function. Specifically, we describe the Xrn1-resistant RNAs from arthropod-borne flaviviruses, exosome-resistant long non-coding RNAs associated with lung cancer metastasis and found in Kaposi's sarcoma-associated herpesvirus, and tRNA-like sequences occurring in certain plant viruses. These three structures reveal three different mechanisms to protect RNAs from decay and suggest RNA structure-based nuclease resistance may be a widespread mechanism of regulation.
Collapse
Affiliation(s)
- Benjamin M Akiyama
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, CO 80045, USA
| | - Daniel Eiler
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, CO 80045, USA
| | - Jeffrey S Kieft
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, CO 80045, USA.
| |
Collapse
|
16
|
Wilusz JE. Long noncoding RNAs: Re-writing dogmas of RNA processing and stability. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1859:128-38. [PMID: 26073320 PMCID: PMC4676738 DOI: 10.1016/j.bbagrm.2015.06.003] [Citation(s) in RCA: 168] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 05/16/2015] [Accepted: 06/04/2015] [Indexed: 12/14/2022]
Abstract
Most of the human genome is transcribed, yielding a complex network of transcripts that includes tens of thousands of long noncoding RNAs. Many of these transcripts have a 5' cap and a poly(A) tail, yet some of the most abundant long noncoding RNAs are processed in unexpected ways and lack these canonical structures. Here, I highlight the mechanisms by which several of these well-characterized noncoding RNAs are generated, stabilized, and function. The MALAT1 and MEN β (NEAT1_2) long noncoding RNAs each accumulate to high levels in the nucleus, where they play critical roles in cancer progression and the formation of nuclear paraspeckles, respectively. Nevertheless, MALAT1 and MEN β are not polyadenylated as the tRNA biogenesis machinery generates their mature 3' ends. In place of a poly(A) tail, these transcripts are stabilized by highly conserved triple helical structures. Sno-lncRNAs likewise lack poly(A) tails and instead have snoRNA structures at their 5' and 3' ends. Recent work has additionally identified a number of abundant circular RNAs generated by the pre-mRNA splicing machinery that are resistant to degradation by exonucleases. As these various transcripts use non-canonical strategies to ensure their stability, it is becoming increasingly clear that long noncoding RNAs may often be regulated by unique post-transcriptional control mechanisms. This article is part of a Special Issue entitled: Clues to long noncoding RNA taxonomy1, edited by Dr. Tetsuro Hirose and Dr. Shinichi Nakagawa.
Collapse
Affiliation(s)
- Jeremy E Wilusz
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, United States.
| |
Collapse
|
17
|
Abstract
Over 12 % of all human cancers are caused by oncoviruses, primarily including Epstein-Barr virus (EBV), high-risk human papillomaviruses (HPVs), hepatitis B and C viruses (HBV and HCV, respectively), and Kaposi's sarcoma herpesvirus (KSHV). In addition to viral oncoproteins, a variety of noncoding RNAs (ncRNAs) produced by oncoviruses have been recognized as important cofactors that contribute to the oncogenic events. In this chapter, we will focus on the recent understanding of the long and short noncoding RNAs, as well as microRNAs of the viruses, and discuss their roles in the biology of multistep oncogenesis mediated by established human oncoviruses.
Collapse
|
18
|
Conrad NK. New insights into the expression and functions of the Kaposi's sarcoma-associated herpesvirus long noncoding PAN RNA. Virus Res 2015; 212:53-63. [PMID: 26103097 DOI: 10.1016/j.virusres.2015.06.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Revised: 06/04/2015] [Accepted: 06/12/2015] [Indexed: 12/12/2022]
Abstract
The Kaposi's sarcoma-associated herpesvirus (KSHV) is a clinically relevant pathogen associated with several human diseases that primarily affect immunocompromised individuals. KSHV encodes a noncoding polyadenylated nuclear (PAN) RNA that is essential for viral propagation and viral gene expression. PAN RNA is the most abundant viral transcript produced during lytic replication. The accumulation of PAN RNA depends on high levels of transcription driven by the Rta protein, a KSHV transcription factor necessary and sufficient for latent-to-lytic phase transition. In addition, KSHV uses several posttranscriptional mechanisms to stabilize PAN RNA. A cis-acting element, called the ENE, prevents PAN RNA decay by forming a triple helix with its poly(A) tail. The viral ORF57 and the cellular PABPC1 proteins further contribute to PAN RNA stability during lytic phase. PAN RNA functions are only beginning to be uncovered, but PAN RNA has been proposed to control gene expression by several different mechanisms. PAN RNA associates with the KSHV genome and may regulate gene expression by recruiting chromatin-modifying factors. Moreover, PAN RNA binds the viral latency-associated nuclear antigen (LANA) protein and decreases its repressive activity by sequestering it from the viral genome. Surprisingly, PAN RNA was found to associate with translating ribosomes, so this noncoding RNA may be additionally used to produce viral peptides. In this review, I highlight the mechanisms of PAN RNA accumulation and describe recent insights into potential functions of PAN RNA.
Collapse
Affiliation(s)
- Nicholas K Conrad
- Department of Microbiology, UT Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390, United States.
| |
Collapse
|
19
|
Abstract
Kaposi’s sarcoma-associated herpesvirus (KSHV) ORF57 protein (also known as mRNA transcript accumulation (Mta)) is a potent posttranscriptional regulator essential for the efficient expression of KSHV lytic genes and productive KSHV replication. ORF57 possesses numerous activities that promote the expression of viral genes, including the three major functions of enhancement of RNA stability, promotion of RNA splicing, and stimulation of protein translation. The multifunctional nature of ORF57 is driven by its ability to interact with an array of cellular cofactors. These interactions are required for the formation of ORF57-containing ribonucleoprotein complexes at specific binding sites in the target transcripts, referred as Mta-responsive elements (MREs). Understanding of the ORF57 protein conformation has led to the identification of two structurally-distinct domains within the ORF57 polypeptide: an unstructured intrinsically disordered N-terminal domain and a structured α-helix-rich C-terminal domain. The distinct structures of the domains serve as the foundation for their unique binding affinities: the N-terminal domain mediates ORF57 interactions with cellular cofactors and target RNAs, and the C-terminal domain mediates ORF57 homodimerization. In addition, each domain has been found to contribute to the stability of ORF57 protein in infected cells by counteracting caspase- and proteasome-mediated degradation pathways. Together, these new findings provide insight into the function and biological properties of ORF57 in the KSHV life cycle and pathogenesis.
Collapse
Affiliation(s)
- Vladimir Majerciak
- Tumor Virus RNA Biology Section, Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, National Institutes of Health, 1050 Boyles Street, Frederick, MD 21702, USA.
| | - Zhi-Ming Zheng
- Tumor Virus RNA Biology Section, Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, National Institutes of Health, 1050 Boyles Street, Frederick, MD 21702, USA.
| |
Collapse
|
20
|
Campbell M, Kung HJ, Izumiya Y. Long non-coding RNA and epigenetic gene regulation of KSHV. Viruses 2014; 6:4165-77. [PMID: 25375882 PMCID: PMC4246214 DOI: 10.3390/v6114165] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 10/21/2014] [Accepted: 10/22/2014] [Indexed: 12/22/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV/human herpesvirus 8) is a γ-herpesvirus linked to Kaposi's sarcoma (KS) and two lymphoproliferative disorders, primary effusion lymphoma (PEL or body-cavity B-lymphoma [BCBL]) and a subset of Multicentric Castleman's Disease. During lytic growth, pervasive viral transcription generating a variety of transcripts with uncertain protein-coding potential has been described on a genome-wide scale in β- and γ-herpesviruses. One class of such RNAs is called long non-coding RNAs (lncRNAs). KSHV encodes a viral lncRNA known as polyadenylated nuclear RNA (PAN RNA), a copious early gene product. PAN RNA has been implicated in KSHV gene expression, replication, and immune modulation. PAN RNA expression is required for optimal expression of the entire KSHV lytic gene expression program. Latent KSHV episomes are coated with viral latency-associated nuclear antigen (LANA). LANA rapidly dissociates from episomes during reactivation. Here we review recent studies suggesting that PAN RNA may function as a viral lncRNA, including a role in the facilitation of LANA-episomal dissociation during lytic replication.
Collapse
Affiliation(s)
- Mel Campbell
- Department of Dermatology, University of California, Davis, CA 95616, USA.
| | - Hsing-Jien Kung
- UC Davis Comprehensive Cancer Center, University of California, Davis, CA 95616, USA.
| | - Yoshihiro Izumiya
- Department of Dermatology, University of California, Davis, CA 95616, USA.
| |
Collapse
|
21
|
PAN's Labyrinth: Molecular biology of Kaposi's sarcoma-associated herpesvirus (KSHV) PAN RNA, a multifunctional long noncoding RNA. Viruses 2014; 6:4212-26. [PMID: 25375885 PMCID: PMC4246217 DOI: 10.3390/v6114212] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 10/23/2014] [Accepted: 10/24/2014] [Indexed: 12/23/2022] Open
Abstract
Kaposi’s sarcoma-associated herpesvirus (KSHV) is an oncogenic γ-herpesivrus, the causative agent of Kaposi’s sarcoma and body cavity lymphomas. During infection KSHV produces a highly abundant long non-coding polyadenylated RNA that is retained in the nucleus known as PAN RNA. Long noncoding RNAs (lncRNA) are key regulators of gene expression and are known to interact with specific chromatin modification complexes, working in cis and trans to regulate gene expression. Data strongly supports a model where PAN RNA is a multifunctional regulatory transcript that controls KSHV gene expression by mediating the modification of chromatin by targeting the KSHV repressed genome.
Collapse
|
22
|
Brown JA, Bulkley D, Wang J, Valenstein ML, Yario TA, Steitz TA, Steitz JA. Structural insights into the stabilization of MALAT1 noncoding RNA by a bipartite triple helix. Nat Struct Mol Biol 2014; 21:633-40. [PMID: 24952594 PMCID: PMC4096706 DOI: 10.1038/nsmb.2844] [Citation(s) in RCA: 198] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 05/21/2014] [Indexed: 12/29/2022]
Abstract
Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is a highly abundant nuclear long noncoding RNA that promotes malignancy. A 3'-stem-loop structure is predicted to confer stability by engaging a downstream A-rich tract in a triple helix, similar to the expression and nuclear retention element (ENE) from the KSHV polyadenylated nuclear RNA. The 3.1-Å-resolution crystal structure of the human MALAT1 ENE and A-rich tract reveals a bipartite triple helix containing stacks of five and four U•A-U triples separated by a C+•G-C triplet and C-G doublet, extended by two A-minor interactions. In vivo decay assays indicate that this blunt-ended triple helix, with the 3' nucleotide in a U•A-U triple, inhibits rapid nuclear RNA decay. Interruption of the triple helix by the C-G doublet induces a 'helical reset' that explains why triple-helical stacks longer than six do not occur in nature.
Collapse
Affiliation(s)
- Jessica A. Brown
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT USA
| | - David Bulkley
- Department of Chemistry, Yale University, New Haven, CT USA
| | - Jimin Wang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT USA
| | - Max L. Valenstein
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT USA
| | - Therese A. Yario
- Howard Hughes Medical Institute, Yale University, New Haven, CT USA
| | - Thomas A. Steitz
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT USA
- Department of Chemistry, Yale University, New Haven, CT USA
- Howard Hughes Medical Institute, Yale University, New Haven, CT USA
| | - Joan A. Steitz
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT USA
- Howard Hughes Medical Institute, Yale University, New Haven, CT USA
| |
Collapse
|
23
|
Zhang B, Gunawardane L, Niazi F, Jahanbani F, Chen X, Valadkhan S. A novel RNA motif mediates the strict nuclear localization of a long noncoding RNA. Mol Cell Biol 2014; 34:2318-29. [PMID: 24732794 PMCID: PMC4054287 DOI: 10.1128/mcb.01673-13] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 01/06/2014] [Accepted: 04/03/2014] [Indexed: 12/14/2022] Open
Abstract
The ubiquitous presence of long noncoding RNAs (lncRNAs) in eukaryotes points to the importance of understanding how their sequences impact function. As many lncRNAs regulate nuclear events and thus must localize to nuclei, we analyzed the sequence requirements for nuclear localization in an intergenic lncRNA named BORG (BMP2-OP1-responsive gene), which is both spliced and polyadenylated but is strictly localized in nuclei. Subcellular localization of BORG was not dependent on the context or level of its expression or decay but rather depended on the sequence of the mature, spliced transcript. Mutational analyses indicated that nuclear localization of BORG was mediated through a novel RNA motif consisting of the pentamer sequence AGCCC with sequence restrictions at positions -8 (T or A) and -3 (G or C) relative to the first nucleotide of the pentamer. Mutation of the motif to a scrambled sequence resulted in complete loss of nuclear localization, while addition of even a single copy of the motif to a cytoplasmically localized RNA was sufficient to impart nuclear localization. Further, the presence of this motif in other cellular RNAs showed a direct correlation with nuclear localization, suggesting that the motif may act as a general nuclear localization signal for cellular RNAs.
Collapse
Affiliation(s)
- Bing Zhang
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Lalith Gunawardane
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Farshad Niazi
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Fereshteh Jahanbani
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Xin Chen
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Saba Valadkhan
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| |
Collapse
|
24
|
The human nuclear poly(a)-binding protein promotes RNA hyperadenylation and decay. PLoS Genet 2013; 9:e1003893. [PMID: 24146636 PMCID: PMC3798265 DOI: 10.1371/journal.pgen.1003893] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 09/05/2013] [Indexed: 12/05/2022] Open
Abstract
Control of nuclear RNA stability is essential for proper gene expression, but the mechanisms governing RNA degradation in mammalian nuclei are poorly defined. In this study, we uncover a mammalian RNA decay pathway that depends on the nuclear poly(A)-binding protein (PABPN1), the poly(A) polymerases (PAPs), PAPα and PAPγ, and the exosome subunits RRP6 and DIS3. Using a targeted knockdown approach and nuclear RNA reporters, we show that PABPN1 and PAPα, redundantly with PAPγ, generate hyperadenylated decay substrates that are recognized by the exosome and degraded. Poly(A) tail extension appears to be necessary for decay, as cordycepin treatment or point mutations in the PAP-stimulating domain of PABPN1 leads to the accumulation of stable transcripts with shorter poly(A) tails than controls. Mechanistically, these data suggest that PABPN1-dependent promotion of PAP activity can stimulate nuclear RNA decay. Importantly, efficiently exported RNAs are unaffected by this decay pathway, supporting an mRNA quality control function for this pathway. Finally, analyses of both bulk poly(A) tails and specific endogenous transcripts reveals that a subset of nuclear RNAs are hyperadenylated in a PABPN1-dependent fashion, and this hyperadenylation can be either uncoupled or coupled with decay. Our results highlight a complex relationship between PABPN1, PAPα/γ, and nuclear RNA decay, and we suggest that these activities may play broader roles in the regulation of human gene expression. In eukaryotes, mRNAs include a stretch of adenosine nucleotides at their 3′ end termed the poly(A) tail. In the cytoplasm, the poly(A) tail stimulates translation of the mRNA into protein, and protects the transcript from degradation. Evidence suggests that poly(A) tails may play distinct roles in RNA metabolism in the nucleus, but little is known about these functions and mechanisms. We show here that poly(A) tails can stimulate transcript decay in the nucleus, a function mediated by the ubiquitous nuclear poly(A) binding protein PABPN1. We find that PABPN1 is required for the degradation of a viral nuclear noncoding RNA as well as an inefficiently exported human mRNA. Importantly, the targeting of RNAs to this decay pathway requires the PABPN1 and poly(A) polymerase-dependent extension of the poly(A) tail. Nuclear transcripts with longer poly(A) tails are then selectively degraded by components of the nuclear exosome. These studies elucidate mechanisms that mammalian cells use to ensure proper mRNA “quality control” and may be important to regulate the expression of nuclear noncoding RNAs. Furthermore, our results suggest that the poly(A) tail has diverse and context-specific roles in gene expression.
Collapse
|
25
|
Conrad NK. The emerging role of triple helices in RNA biology. WILEY INTERDISCIPLINARY REVIEWS-RNA 2013; 5:15-29. [PMID: 24115594 DOI: 10.1002/wrna.1194] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 07/31/2013] [Accepted: 08/06/2013] [Indexed: 12/19/2022]
Abstract
The ability of RNA to form sophisticated secondary and tertiary structures enables it to perform a wide variety of cellular functions. One tertiary structure, the RNA triple helix, was first observed in vitro over 50 years ago, but biological activities for triple helices are only beginning to be appreciated. The recent determination of several RNA structures has implicated triple helices in distinct biological functions. For example, the SAM-II riboswitch forms a triple helix that creates a highly specific binding pocket for S-adenosylmethionine. In addition, a triple helix in the conserved pseudoknot domain of the telomerase-associated RNA TER is essential for telomerase activity. A viral RNA cis-acting RNA element called the ENE contributes to the nuclear stability of a viral noncoding RNA by forming a triple helix with the poly(A) tail. Finally, a cellular noncoding RNA, MALAT1, includes a triple helix at its 3'-end that contributes to RNA stability, but surprisingly also supports translation. These examples highlight the diverse roles that RNA triple helices play in biology. Moreover, the dissection of triple helix mechanisms has the potential to uncover fundamental pathways in cell biology.
Collapse
Affiliation(s)
- Nicholas K Conrad
- Department of Microbiology, UT Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
26
|
Moss WN, Steitz JA. Genome-wide analyses of Epstein-Barr virus reveal conserved RNA structures and a novel stable intronic sequence RNA. BMC Genomics 2013; 14:543. [PMID: 23937650 PMCID: PMC3751371 DOI: 10.1186/1471-2164-14-543] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 08/07/2013] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Epstein-Barr virus (EBV) is a human herpesvirus implicated in cancer and autoimmune disorders. Little is known concerning the roles of RNA structure in this important human pathogen. This study provides the first comprehensive genome-wide survey of RNA and RNA structure in EBV. RESULTS Novel EBV RNAs and RNA structures were identified by computational modeling and RNA-Seq analyses of EBV. Scans of the genomic sequences of four EBV strains (EBV-1, EBV-2, GD1, and GD2) and of the closely related Macacine herpesvirus 4 using the RNAz program discovered 265 regions with high probability of forming conserved RNA structures. Secondary structure models are proposed for these regions based on a combination of free energy minimization and comparative sequence analysis. The analysis of RNA-Seq data uncovered the first observation of a stable intronic sequence RNA (sisRNA) in EBV. The abundance of this sisRNA rivals that of the well-known and highly expressed EBV-encoded non-coding RNAs (EBERs). CONCLUSION This work identifies regions of the EBV genome likely to generate functional RNAs and RNA structures, provides structural models for these regions, and discusses potential functions suggested by the modeled structures. Enhanced understanding of the EBV transcriptome will guide future experimental analyses of the discovered RNAs and RNA structures.
Collapse
Affiliation(s)
- Walter N Moss
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| | - Joan A Steitz
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| |
Collapse
|
27
|
Formation of triple-helical structures by the 3'-end sequences of MALAT1 and MENβ noncoding RNAs. Proc Natl Acad Sci U S A 2012; 109:19202-7. [PMID: 23129630 DOI: 10.1073/pnas.1217338109] [Citation(s) in RCA: 235] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Stability of the long noncoding-polyadenylated nuclear (PAN) RNA from Kaposi's sarcoma-associated herpesvirus is conferred by an expression and nuclear retention element (ENE). The ENE protects PAN RNA from a rapid deadenylation-dependent decay pathway via formation of a triple helix between the U-rich internal loop of the ENE and the 3'-poly(A) tail. Because viruses borrow molecular mechanisms from their hosts, we searched highly abundant human long-noncoding RNAs and identified putative ENE-like structures in metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) and multiple endocrine neoplasia-β (MENβ) RNAs. Unlike the PAN ENE, the U-rich internal loops of both predicted cellular ENEs are interrupted by G and C nucleotides and reside upstream of genomically encoded A-rich tracts. We confirmed the ability of MALAT1 and MENβ sequences containing the predicted ENE and A-rich tract to increase the levels of an intronless β-globin reporter RNA. UV thermal denaturation profiles at different pH values support formation of a triple-helical structure composed of multiple U•A-U base triples and a single C•G-C base triple. Additional analyses of the MALAT1 ENE revealed that robust stabilization activity requires an intact triple helix, strong stems at the duplex-triplex junctions, a G-C base pair flanking the triplex to mediate potential A-minor interactions, and the 3'-terminal A of the A-rich tract to form a blunt-ended triplex lacking unpaired nucleotides at the duplex-triplex junction. These examples of triple-helical, ENE-like structures in cellular noncoding RNAs, are unique.
Collapse
|
28
|
Conservation of a triple-helix-forming RNA stability element in noncoding and genomic RNAs of diverse viruses. Cell Rep 2012; 2:26-32. [PMID: 22840393 DOI: 10.1016/j.celrep.2012.05.020] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 04/19/2012] [Accepted: 05/23/2012] [Indexed: 01/17/2023] Open
Abstract
Abundant expression of the long noncoding (lnc) PAN (polyadenylated nuclear) RNA by the human oncogenic gammaherpesvirus Kaposi's sarcoma-associated herpesvirus (KSHV) depends on a cis-element called the expression and nuclear retention element (ENE). The ENE upregulates PAN RNA by inhibiting its rapid nuclear decay through triple-helix formation with the poly(A) tail. Using structure-based bioinformatics, we identified six ENE-like elements in evolutionarily diverse viral genomes. Five are in double-stranded DNA viruses, including mammalian herpesviruses, insect polydnaviruses, and a protist mimivirus. One is in an insect picorna-like positive-strand RNA virus, suggesting that the ENE can counteract cytoplasmic as well as nuclear RNA decay pathways. Functionality of four of the ENEs was demonstrated by increased accumulation of an intronless polyadenylated reporter transcript in human cells. Identification of these ENEs enabled the discovery of PAN RNA homologs in two additional gammaherpesviruses, RRV and EHV2. Our findings demonstrate that searching for structural elements can lead to rapid identification of lncRNAs.
Collapse
|
29
|
Grammel M, Hang H, Conrad NK. Chemical reporters for monitoring RNA synthesis and poly(A) tail dynamics. Chembiochem 2012; 13:1112-5. [PMID: 22513998 DOI: 10.1002/cbic.201200091] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2012] [Indexed: 11/11/2022]
Abstract
A versatile "clickable" nucleoside: Metabolic labeling of cells is useful in studying the dynamics of biological molecules. N(6) pA can be utilized by all three mammalian RNA polymerases, as well as poly(A) polymerase. Because of its alkyne modification, RNA labeled with N(6) pA can be visualized and purified by using click chemistry.
Collapse
Affiliation(s)
- Markus Grammel
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, 1230 York Avenue Box 250, New York, NY 10065, USA
| | | | | |
Collapse
|
30
|
Abstract
TREX is a conserved multiprotein complex that is necessary for efficient mRNA export to the cytoplasm. In Saccharomyces cerevisiae, the TREX complex is additionally implicated in RNA quality control pathways, but it is unclear whether this function is conserved in mammalian cells. The Kaposi's sarcoma-associated herpesvirus (KSHV) ORF57 protein binds and recruits the TREX component REF/Aly to viral mRNAs. Here, we demonstrate that REF/Aly is recruited to the KSHV noncoding polyadenylated nuclear (PAN) RNA by ORF57. This recruitment correlates with ORF57-mediated stabilization of PAN RNA, suggesting that REF/Aly promotes nuclear RNA stability. Further supporting this idea, tethering REF/Aly to PAN RNA is sufficient to increase the nuclear abundance and half-life of PAN RNA but is not sufficient to promote its export. Interestingly, REF/Aly appears to protect the poly(A) tail from deadenylation, and REF/Aly-stabilized transcripts are further adenylated over time, consistent with previous reports linking poly(A) tail length with nuclear RNA surveillance. These studies show that REF/Aly can stabilize nuclear RNAs independently of their export and support a broader conservation of RNA quality control mechanisms from yeast to humans.
Collapse
|
31
|
Export and stability of naturally intronless mRNAs require specific coding region sequences and the TREX mRNA export complex. Proc Natl Acad Sci U S A 2011; 108:17985-90. [PMID: 22010220 DOI: 10.1073/pnas.1113076108] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A great deal is known about the export of spliced mRNAs, but little is known about the export of mRNAs encoded by human cellular genes that naturally lack introns. Here, we investigated the requirements for export of three naturally intronless mRNAs (HSPB3, IFN-α1, and IFN-β1). Significantly, we found that all three mRNAs are stable and accumulate in the cytoplasm, whereas size-matched random RNAs are unstable and detected only in the nucleus. A portion of the coding region confers this stability and cytoplasmic localization on the naturally intronless mRNAs and a cDNA transcript, which is normally retained in the nucleus and degraded. A polyadenylation signal, TREX mRNA export components, and the mRNA export receptor TAP are required for accumulation of the naturally intronless mRNAs in the cytoplasm. We conclude that naturally intronless mRNAs contain specific sequences that result in efficient packaging into the TREX mRNA export complex, thereby supplanting the splicing requirement for efficient mRNA export.
Collapse
|
32
|
Massimelli MJ, Kang JG, Majerciak V, Le SY, Liewehr DJ, Steinberg SM, Zheng ZM. Stability of a long noncoding viral RNA depends on a 9-nt core element at the RNA 5' end to interact with viral ORF57 and cellular PABPC1. Int J Biol Sci 2011; 7:1145-60. [PMID: 22043172 PMCID: PMC3204405 DOI: 10.7150/ijbs.7.1145] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 10/15/2011] [Indexed: 12/15/2022] Open
Abstract
Kaposi sarcoma-associated herpesvirus (KSHV) ORF57, also known as Mta (mRNA transcript accumulation), enhances viral intron-less transcript accumulation and promotes splicing of intron-containing viral RNA transcripts. In this study, we identified KSHV PAN, a long non-coding polyadenylated nuclear RNA as a main target of ORF57 by a genome-wide CLIP (cross-linking and immunoprecipitation) approach. KSHV genome lacking ORF57 expresses only a minimal amount of PAN. In cotransfection experiments, ORF57 alone increased PAN expression by 20-30-fold when compared to vector control. This accumulation function of ORF57 was dependent on a structured RNA element in the 5' PAN, named MRE (Mta responsive element), but not much so on an ENE (expression and nuclear retention element) in the 3' PAN previously reported by other studies. We showed that the major function of the 5' PAN MRE is increasing the RNA half-life of PAN in the presence of ORF57. Further mutational analyses revealed a core motif consisting of 9 nucleotides in the MRE-II , which is responsible for ORF57 interaction and function. The 9-nt core in the MRE-II also binds cellular PABPC1, but not the E1B-AP5 which binds another region of the MRE-II. In addition, we found that PAN RNA is partially exportable in the presence of ORF57. Together, our data provide compelling evidence as to how ORF57 functions to accumulate a non-coding viral RNA in the course of virus lytic infection.
Collapse
Affiliation(s)
- Maria J Massimelli
- Tumor Virus RNA Biology Laboratory, HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-1868, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Borah S, Darricarrère N, Darnell A, Myoung J, Steitz JA. A viral nuclear noncoding RNA binds re-localized poly(A) binding protein and is required for late KSHV gene expression. PLoS Pathog 2011; 7:e1002300. [PMID: 22022268 PMCID: PMC3192849 DOI: 10.1371/journal.ppat.1002300] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2011] [Accepted: 08/19/2011] [Indexed: 01/01/2023] Open
Abstract
During the lytic phase of infection, the gamma herpesvirus Kaposi's Sarcoma-Associated Herpesvirus (KSHV) expresses a highly abundant, 1.1 kb nuclear noncoding RNA of unknown function. We observe that this polyadenylated nuclear (PAN) RNA avidly binds host poly(A)-binding protein C1 (PABPC1), which normally functions in the cytoplasm to bind the poly(A) tails of mRNAs, regulating mRNA stability and translation efficiency. During the lytic phase of KSHV infection, PABPC1 is re-localized to the nucleus as a consequence of expression of the viral shutoff exonuclease (SOX) protein; SOX also mediates the host shutoff effect in which host mRNAs are downregulated while viral mRNAs are selectively expressed. We show that whereas PAN RNA is not required for the host shutoff effect or for PABPC1 re-localization, SOX strongly upregulates the levels of PAN RNA in transient transfection experiments. This upregulation is destroyed by the same SOX mutation that ablates the host shutoff effect and PABPC1 nuclear re-localization or by removal of the poly(A) tail of PAN. In cells induced into the KSHV lytic phase, depletion of PAN RNA using RNase H-targeting antisense oligonucleotides reveals that it is necessary for the production of late viral proteins from mRNAs that are themselves polyadenylated. Our results add to the repertoire of functions ascribed to long noncoding RNAs and suggest a mechanism of action for nuclear noncoding RNAs in gamma herpesvirus infection. Almost all eukaryotic messenger RNAs (mRNAs) have a string of 150–200 adenylates at the 3′ end. This poly(A) tail has been implicated as important for regulating mRNA translation, stability and export. During the lytic phase of infection of Kaposi's Sarcoma-Associated Herpesvirus (KSHV), a noncoding viral RNA is synthesized that resembles an mRNA in that it is transcribed by RNA polymerase II, is methyl-G capped at the 5′ end, and is polyadenylated at the 3′ end; yet this RNA is never exported to the cytoplasm for translation. Rather, it builds up in the nucleus to exceedingly high levels. We present evidence that the function of this abundant, polyadenylated nuclear (PAN) RNA is to bind poly(A) binding protein, which normally binds poly(A) tails of mRNAs in the cytoplasm but is re-localized into the nucleus during lytic KSHV infection. The interaction between PAN RNA and re-localized poly(A) binding protein is important for formation of new virus, in particular for the synthesis of proteins made late in infection. Our study provides new insight into the function of this noncoding RNA during KSHV infection and expands recent discoveries regarding re-localization of poly(A) binding protein during many viral infections.
Collapse
Affiliation(s)
- Sumit Borah
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University, New Haven, Connecticut, United States of America
| | - Nicole Darricarrère
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Alicia Darnell
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University, New Haven, Connecticut, United States of America
| | - Jinjong Myoung
- Department of Microbiology and Immunology, Howard Hughes Medical Institute, University of California, San Francisco, California, United States of America
| | - Joan A. Steitz
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
34
|
Sei E, Conrad NK. Delineation of a core RNA element required for Kaposi's sarcoma-associated herpesvirus ORF57 binding and activity. Virology 2011; 419:107-16. [PMID: 21889182 DOI: 10.1016/j.virol.2011.08.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 07/14/2011] [Accepted: 08/11/2011] [Indexed: 11/28/2022]
Abstract
The Kaposi's sarcoma-associated herpesvirus (KSHV) ORF57 protein is an essential multifunctional regulator of gene expression. ORF57 interaction with RNA is necessary for ORF57-mediated posttranscriptional functions, but little is known about the RNA elements that drive ORF57-RNA specificity. Here, we investigate the cis-acting factors on the KSHV PAN RNA that dictate ORF57 binding and activity. We show that ORF57 binds directly to the 5' end of PAN RNA in KSHV-infected cells. Furthermore, we employ in vitro and cell-based assays to define a 30-nucleotide (nt) core ORF57-responsive element (ORE) that is necessary and sufficient for ORF57 binding and activity. Mutational analysis of the core ORE further suggests that a 9-nt sequence is a specific binding site for ORF57. These studies provide insight into ORF57 specificity determinants and lay a foundation for future analyses of cellular and viral ORF57 targets.
Collapse
Affiliation(s)
- Emi Sei
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9048, USA
| | | |
Collapse
|
35
|
Dickson AM, Wilusz J. Strategies for viral RNA stability: live long and prosper. Trends Genet 2011; 27:286-93. [PMID: 21640425 PMCID: PMC3123725 DOI: 10.1016/j.tig.2011.04.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Revised: 04/21/2011] [Accepted: 04/26/2011] [Indexed: 12/23/2022]
Abstract
Eukaryotic cells have a powerful RNA decay machinery that plays an important and diverse role in regulating both the quantity and the quality of gene expression. Viral RNAs need to successfully navigate around this cellular machinery to initiate and maintain a highly productive infection. Recent work has shown that viruses have developed a variety of strategies to accomplish this, including inherent RNA shields, hijacking host RNA stability factors, incapacitating the host decay machinery and changing the entire landscape of RNA stability in cells using virally encoded nucleases. In addition to maintaining the stability of viral transcripts, these strategies can also contribute to the regulation and complexity of viral gene expression as well as to viral RNA evolution.
Collapse
|
36
|
Mitton-Fry RM, DeGregorio SJ, Wang J, Steitz TA, Steitz JA. Poly(A) tail recognition by a viral RNA element through assembly of a triple helix. Science 2010; 330:1244-7. [PMID: 21109672 DOI: 10.1126/science.1195858] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Kaposi's sarcoma-associated herpesvirus produces a highly abundant, nuclear noncoding RNA, polyadenylated nuclear (PAN) RNA, which contains an element that prevents its decay. The 79-nucleotide expression and nuclear retention element (ENE) was proposed to adopt a secondary structure like that of a box H/ACA small nucleolar RNA (snoRNA), with a U-rich internal loop that hybridizes to and protects the PAN RNA poly(A) tail. The crystal structure of a complex between the 40-nucleotide ENE core and oligo(A)(9) RNA at 2.5 angstrom resolution reveals that unlike snoRNAs, the U-rich loop of the ENE engages its target through formation of a major-groove triple helix. A-minor interactions extend the binding interface. Deadenylation assays confirm the functional importance of the triple helix. Thus, the ENE acts as an intramolecular RNA clamp, sequestering the PAN poly(A) tail and preventing the initiation of RNA decay.
Collapse
Affiliation(s)
- Rachel M Mitton-Fry
- Department of Molecular Biophysics and Biochemistry (MB&B), Howard Hughes Medical Institute (HHMI), Yale University School of Medicine, Boyer Center for Molecular Medicine, 295 Congress Avenue, New Haven, CT 06536-9812, USA
| | | | | | | | | |
Collapse
|
37
|
Recombination of 5' subgenomic RNA3a with genomic RNA3 of Brome mosaic bromovirus in vitro and in vivo. Virology 2010; 410:129-41. [PMID: 21111438 PMCID: PMC7111948 DOI: 10.1016/j.virol.2010.10.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Revised: 08/28/2010] [Accepted: 10/29/2010] [Indexed: 01/03/2023]
Abstract
RNA-RNA recombination salvages viral RNAs and contributes to their genomic variability. A recombinationally-active subgenomic promoter (sgp) has been mapped in Brome mosaic bromovirus (BMV) RNA3 (Wierzchoslawski et al., 2004. J. Virol.78, 8552-8864) and mRNA-like 5' sgRNA3a was characterized (Wierzchoslawski et al., 2006. J. Virol. 80, 12357-12366). In this paper we describe sgRNA3a-mediated recombination in both in vitro and in vivo experiments. BMV replicase-directed co-copying of (-) RNA3 with wt sgRNA3a generated RNA3 recombinants in vitro, but it failed to when 3'-truncated sgRNA3a was substituted, demonstrating a role for the 3' polyA tail. Barley protoplast co-transfections revealed that (i) wt sgRNA3a recombines at the 3' and the internal sites; (ii) 3'-truncated sgRNA3as recombine more upstream; and (iii) 5'-truncated sgRNA3 recombine at a low rate. In planta co-inoculations confirmed the RNA3-sgRNA3a crossovers. In summary, the non-replicating sgRNA3a recombines with replicating RNA3, most likely via primer extension and/or internal template switching.
Collapse
|
38
|
Zhang X, Virtanen A, Kleiman FE. To polyadenylate or to deadenylate: that is the question. Cell Cycle 2010; 9:4437-49. [PMID: 21084869 DOI: 10.4161/cc.9.22.13887] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
mRNA polyadenylation and deadenylation are important processes that allow rapid regulation of gene expression in response to different cellular conditions. Almost all eukaryotic mRNA precursors undergo a co-transcriptional cleavage followed by polyadenylation at the 3' end. After the signals are selected, polyadenylation occurs to full extent, suggesting that this first round of polyadenylation is a default modification for most mRNAs. However, the length of these poly(A) tails changes by the activation of deadenylation, which might regulate gene expression by affecting mRNA stability, mRNA transport, or translation initiation. The mechanisms behind deadenylation activation are highly regulated and associated with cellular conditions such as development, mRNA surveillance, DNA damage response, cell differentiation and cancer. After deadenylation, depending on the cellular response, some mRNAs might undergo an extension of the poly(A) tail or degradation. The polyadenylation/deadenylation machinery itself, miRNAs, or RNA binding factors are involved in the regulation of polyadenylation/deadenylation. Here, we review the mechanistic connections between polyadenylation and deadenylation and how the two processes are regulated in different cellular conditions. It is our conviction that further studies of the interplay between polyadenylation and deadenylation will provide critical information required for a mechanistic understanding of several diseases, including cancer development.
Collapse
Affiliation(s)
- Xiaokan Zhang
- Chemistry Department, Hunter College, City University of New York, NY, USA
| | | | | |
Collapse
|
39
|
Gaglia MM, Glaunsinger BA. Viruses and the cellular RNA decay machinery. WILEY INTERDISCIPLINARY REVIEWS-RNA 2010; 1:47-59. [PMID: 21956906 PMCID: PMC7169783 DOI: 10.1002/wrna.3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The ability to control cellular and viral gene expression, either globally or selectively, is central to a successful viral infection, and it is also crucial for the host to respond and eradicate pathogens. In eukaryotes, regulation of message stability contributes significantly to the control of gene expression and plays a prominent role in the normal physiology of a cell as well as in its response to environmental and pathogenic stresses. Not surprisingly, emerging evidence indicates that there are significant interactions between the eukaryotic RNA turnover machinery and a wide variety of viruses. Interestingly, in many cases viruses have evolved mechanisms not only to evade eradication by these pathways, but also to manipulate them for enhanced viral replication and gene expression. Given our incomplete understanding of how many of these pathways are normally regulated, viruses should be powerful tools to help deconstruct the complex networks and events governing eukaryotic RNA stability. Copyright © 2010 John Wiley & Sons, Ltd. This article is categorized under:
RNA Turnover and Surveillance > Turnover/Surveillance Mechanisms RNA in Disease and Development > RNA in Disease
Collapse
Affiliation(s)
- Marta Maria Gaglia
- Department of Plant and Microbiology, University of California, Berkeley, CA 94720‐3102, USA
| | - Britt A. Glaunsinger
- Department of Plant and Microbiology, University of California, Berkeley, CA 94720‐3102, USA
| |
Collapse
|
40
|
Kaposi's sarcoma-associated herpesvirus ORF57 protein binds and protects a nuclear noncoding RNA from cellular RNA decay pathways. PLoS Pathog 2010; 6:e1000799. [PMID: 20221435 PMCID: PMC2832700 DOI: 10.1371/journal.ppat.1000799] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Accepted: 01/28/2010] [Indexed: 02/07/2023] Open
Abstract
The control of RNA stability is a key determinant in cellular gene expression. The stability of any transcript is modulated through the activity of cis- or trans-acting regulatory factors as well as cellular quality control systems that ensure the integrity of a transcript. As a result, invading viral pathogens must be able to subvert cellular RNA decay pathways capable of destroying viral transcripts. Here we report that the Kaposi's sarcoma-associated herpesvirus (KSHV) ORF57 protein binds to a unique KSHV polyadenylated nuclear RNA, called PAN RNA, and protects it from degradation by cellular factors. ORF57 increases PAN RNA levels and its effects are greatest on unstable alleles of PAN RNA. Kinetic analysis of transcription pulse assays shows that ORF57 protects PAN RNA from a rapid cellular RNA decay process, but ORF57 has little effect on transcription or PAN RNA localization based on chromatin immunoprecipitation and in situ hybridization experiments, respectively. Using a UV cross-linking technique, we further demonstrate that ORF57 binds PAN RNA directly in living cells and we show that binding correlates with function. In addition, we define an ORF57-responsive element (ORE) that is necessary for ORF57 binding to PAN RNA and sufficient to confer ORF57-response to a heterologous intronless beta-globin mRNA, but not its spliced counterparts. We conclude that ORF57 binds to viral transcripts in the nucleus and protects them from a cellular RNA decay pathway. We propose that KSHV ORF57 protein functions to enhance the nuclear stability of intronless viral transcripts by protecting them from a cellular RNA quality control pathway.
Collapse
|
41
|
Wilusz JE, Spector DL. An unexpected ending: noncanonical 3' end processing mechanisms. RNA (NEW YORK, N.Y.) 2010; 16:259-266. [PMID: 20007330 PMCID: PMC2811654 DOI: 10.1261/rna.1907510] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Proper 3' end processing of a nascent transcript is critical for the functionality of the mature RNA. Although it has long been thought that virtually all long RNA polymerase II transcripts terminate in a poly(A) tail that is generated by endonucleolytic cleavage followed by polyadenylation, noncanonical 3' end processing mechanisms have recently been identified at several gene loci. Unexpectedly, enzymes with well-characterized roles in other RNA processing events, such as tRNA biogenesis and pre-mRNA splicing, cleave these nascent transcripts to generate their mature 3' ends despite the presence of nearby polyadenylation signals. In fact, the presence of multiple potential 3' end cleavage sites is the norm at many human genes, and recent work suggests that the choice among sites is regulated during development and in response to cellular cues. It is, therefore, becoming increasing clear that the selection of a proper 3' end cleavage site represents an important step in the regulation of gene expression and that the mature 3' ends of RNA polymerase II transcripts can be generated via multiple mechanisms.
Collapse
Affiliation(s)
- Jeremy E Wilusz
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | |
Collapse
|
42
|
Conrad NK. Posttranscriptional gene regulation in Kaposi's sarcoma-associated herpesvirus. ADVANCES IN APPLIED MICROBIOLOGY 2009; 68:241-61. [PMID: 19426857 DOI: 10.1016/s0065-2164(09)01206-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is the causative agent of Kaposi's sarcoma, primary effusion lymphoma and some cases of multicentric Castleman's disease. To understand the pathogenesis and life cycle of KSHV, significant focus has been placed on determining how KSHV factors influence viral and cellular gene expression. The importance of transcriptional regulation by KSHV is well documented, but several KSHV posttranscriptional regulators are also essential for KSHV replication and pathogenesis. KSHV miRNAs regulate translation and stability of cellular mRNAs that may be important for tumorigenesis. The ORF57 protein has been reported to enhance several posttranscriptional processes including viral mRNA export, RNA stability and pre-mRNA splicing. SOX, Kaposin B and the PAN-ENE regulate the stability of viral or cellular transcripts. Together, these observations point to the importance of posttranscriptional regulation in KSHV. With the growing appreciation of posttranscriptional regulation in cellular gene expression, it seems likely that the list of viral posttranscriptional regulatory schemes will expand as new details of KSHV gene regulation are uncovered.
Collapse
Affiliation(s)
- Nicholas K Conrad
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9048, USA.
| |
Collapse
|
43
|
Pawlicki JM, Steitz JA. Primary microRNA transcript retention at sites of transcription leads to enhanced microRNA production. ACTA ACUST UNITED AC 2008; 182:61-76. [PMID: 18625843 PMCID: PMC2447899 DOI: 10.1083/jcb.200803111] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
MicroRNAs (miRNAs) are noncoding RNAs with important roles in regulating gene expression. In studying the earliest nuclear steps of miRNA biogenesis, we observe that primary miRNA (pri-miRNA) transcripts retained at transcription sites due to the deletion of 3′-end processing signals are converted more efficiently into precursor miRNAs (pre-miRNAs) than pri-miRNAs that are cleaved, polyadenylated, and released. Flanking exons, which also increase retention at transcription sites, likewise contribute to increased levels of intronic pri-miRNAs. Consistently, efficiently processed endogenous pri-miRNAs are enriched in chromatin-associated nuclear fractions. In contrast, pri-miRNAs that accumulate to high nuclear levels after cleavage and polyadenylation because of the presence of a viral RNA element (the ENE of the Kaposi's sarcoma–associated herpes virus polyadenylated nuclear RNA) are not efficiently processed to precursor or mature miRNAs. Exogenous pri-miRNAs unexpectedly localize to nuclear foci containing splicing factor SC35; yet these foci are unlikely to represent sites of miRNA transcription or processing. Together, our results suggest that pri-miRNA processing is enhanced by coupling to transcription.
Collapse
Affiliation(s)
- Jan M Pawlicki
- Department of Pharmacology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06536, USA
| | | |
Collapse
|
44
|
Abstract
Dynamic changes of the lengths of mRNA poly(A) tails are catalysed by diverse deadenylase enzymes. Modulating the length of the poly(A) tail of an mRNA is a widespread means of controlling protein production and mRNA stability. Recent insights illuminate the specialized activities, biological functions and regulation of deadenylases. We propose that the recruitment of multifunctional deadenylase complexes provides unique opportunities to control mRNAs and that the heterogeneity of the deadenylase complexes is exploited to control translation and mRNA stability.
Collapse
|
45
|
Li H. Unveiling substrate RNA binding to H/ACA RNPs: one side fits all. Curr Opin Struct Biol 2008; 18:78-85. [PMID: 18178425 PMCID: PMC2481233 DOI: 10.1016/j.sbi.2007.11.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2007] [Revised: 11/08/2007] [Accepted: 11/26/2007] [Indexed: 11/15/2022]
Abstract
The H/ACA RNP pseudouridylases function on a large number of extraordinarily complex RNA substrates including pre-ribosomal and small nuclear RNAs. Recent structural data show that H/ACA RNPs capture their RNA substrates via a simple one-sided attachment model. However, the precise placement of each RNA substrate into the active site of the catalytic subunit relies on the essential functions of the RNP proteins. The specific roles of each H/ACA RNP protein are being elucidated by a combination of structural and biochemical studies.
Collapse
Affiliation(s)
- Hong Li
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA.
| |
Collapse
|
46
|
Conrad NK. Chapter 15. Co-immunoprecipitation techniques for assessing RNA-protein interactions in vivo. Methods Enzymol 2008; 449:317-42. [PMID: 19215765 DOI: 10.1016/s0076-6879(08)02415-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
From the moment a nascent transcript emerges from an RNA polymerase until its ultimate destruction, an RNA is bound by proteins that govern its fate. Thus, in order to understand posttranscriptional regulation of gene expression, it is essential to ascertain which proteins bind a given RNA in vivo. This chapter describes three immunoprecipitation-based assays designed to query the in vivo makeup of RNA-protein complexes. Two of these, UV cross-linking and RNA immunoprecipitation (RIP), include cross-linking steps that trap complexes formed in vivo. A third, a cell mixing experiment, verifies that an interaction occurs in vivo by controlling for RNA-protein association subsequent to cell lysis. Using these protocols, this chapter presents evidence that the abundant nuclear RNA-binding protein hnRNP C interacts with the Kaposi's sarcoma-associated herpesvirus polyadenylated nuclear RNA in vivo.
Collapse
Affiliation(s)
- Nicholas K Conrad
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|