1
|
Arthur MN, Hanson G, Broni E, Sakyi PO, Mensah-Brown H, Miller WA, Kwofie SK. Natural Product Identification and Molecular Docking Studies of Leishmania Major Pteridine Reductase Inhibitors. Pharmaceuticals (Basel) 2024; 18:6. [PMID: 39861069 PMCID: PMC11768234 DOI: 10.3390/ph18010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/16/2024] [Accepted: 11/23/2024] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: Pteridine reductase 1 (PTR1) has been one of the prime targets for discovering novel antileishmanial therapeutics in the fight against Leishmaniasis. This enzyme catalyzes the NADPH-dependent reduction of pterins to their tetrahydro forms. While chemotherapy remains the primary treatment, its effectiveness is constrained by drug resistance, unfavorable side effects, and substantial associated costs. Methods: This study addresses the urgent need for novel, cost-effective drugs by employing in silico techniques to identify potential lead compounds targeting the PTR1 enzyme. A library of 1463 natural compounds from AfroDb and NANPDB, prefiltered based on Lipinski's rules, was used to screen against the LmPTR1 target. The X-ray structure of LmPTR1 complexed with NADP and dihydrobiopterin (Protein Data Bank ID: 1E92) was identified to contain the critical residues Arg17, Leu18, Ser111, Phe113, Pro224, Gly225, Ser227, Leu229, and Val230 including the triad of residues Asp181-Tyr194-Lys198, which are critical for the catalytic process involving the reduction of dihydrofolate to tetrahydrofolate. Results: The docking yielded 155 compounds meeting the stringent criteria of -8.9 kcal/mol instead of the widely used -7.0 kcal/mol. These compounds demonstrated binding affinities comparable to the known inhibitors; methotrexate (-9.5 kcal/mol), jatrorrhizine (-9.0 kcal/mol), pyrimethamine (-7.3 kcal/mol), hardwickiic acid (-8.1 kcal/mol), and columbamine (-8.6 kcal/mol). Protein-ligand interactions and molecular dynamics (MD) simulation revealed favorable hydrophobic and hydrogen bonding with critical residues, such as Lys198, Arg17, Ser111, Tyr194, Asp181, and Gly225. Crucial to the drug development, the compounds were physiochemically and pharmacologically profiled, narrowing the selection to eight compounds, excluding those with potential toxicities. The five selected compounds ZINC000095486253, ZINC000095486221, ZINC000095486249, 8alpha-hydroxy-13-epi-pimar-16-en-6,18-olide, and pachycladin D were predicted to be antiprotozoal (Leishmania) with Pa values of 0.642, 0.297, 0.543, 0.431, and 0.350, respectively. Conclusions: This study identified five lead compounds that showed substantial binding affinity against LmPTR1 as well as critical residue interactions. A 100 ns MD combined with molecular mechanics Poisson-Boltzmann surface area (MM/PBSA) calculations confirmed the robust binding interactions and provided insights into the dynamics and stability of the protein-ligand complexes.
Collapse
Affiliation(s)
- Moses N. Arthur
- Department of Parasitology, Noguchi Memorial Institute for Medical Research (NMIMR), College of Health Sciences (CHS), University of Ghana, Legon, Accra P.O. Box LG 581, Ghana; (M.N.A.); (G.H.)
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627, USA
| | - George Hanson
- Department of Parasitology, Noguchi Memorial Institute for Medical Research (NMIMR), College of Health Sciences (CHS), University of Ghana, Legon, Accra P.O. Box LG 581, Ghana; (M.N.A.); (G.H.)
| | - Emmanuel Broni
- Department of Medicine, Loyola University Medical Center, Maywood, IL 60153, USA;
| | - Patrick O. Sakyi
- Department of Chemistry, School of Physical and Mathematical Sciences, College of Basic and Applied Sciences, University of Ghana, Legon, Accra P.O. Box LG 56, Ghana;
- Department of Chemical Sciences, School of Sciences, University of Energy and Natural Resources, Sunyani P.O. Box 214, Ghana
| | - Henrietta Mensah-Brown
- West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra P.O. Box LG 54, Ghana;
| | - Whelton A. Miller
- Department of Medicine, Loyola University Medical Center, Maywood, IL 60153, USA;
- Department of Molecular Pharmacology & Neuroscience, Loyola University Medical Center, Maywood, IL 60153, USA
| | - Samuel K. Kwofie
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic & Applied Sciences, University of Ghana, Legon, Accra P.O. Box LG 77, Ghana
| |
Collapse
|
2
|
Francesconi V, Rizzo M, Pozzi C, Tagliazucchi L, Konchie Simo CU, Saporito G, Landi G, Mangani S, Carbone A, Schenone S, Santarém N, Tavares J, Cordeiro-da-Silva A, Costi MP, Tonelli M. Identification of Innovative Folate Inhibitors Leveraging the Amino Dihydrotriazine Motif from Cycloguanil for Their Potential as Anti- Trypanosoma brucei Agents. ACS Infect Dis 2024; 10:2755-2774. [PMID: 38953453 PMCID: PMC11537224 DOI: 10.1021/acsinfecdis.4c00113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/06/2024] [Accepted: 06/11/2024] [Indexed: 07/04/2024]
Abstract
Folate enzymes, namely, dihydrofolate reductase (DHFR) and pteridine reductase (PTR1) are acknowledged targets for the development of antiparasitic agents against Trypanosomiasis and Leishmaniasis. Based on the amino dihydrotriazine motif of the drug Cycloguanil (Cyc), a known inhibitor of both folate enzymes, we have identified two novel series of inhibitors, the 2-amino triazino benzimidazoles (1) and 2-guanidino benzimidazoles (2), as their open ring analogues. Enzymatic screening was carried out against PTR1, DHFR, and thymidylate synthase (TS). The crystal structures of TbDHFR and TbPTR1 in complex with selected compounds experienced in both cases a substrate-like binding mode and allowed the rationalization of the main chemical features supporting the inhibitor ability to target folate enzymes. Biological evaluation of both series was performed against T. brucei and L. infantum and the toxicity against THP-1 human macrophages. Notably, the 5,6-dimethyl-2-guanidinobenzimidazole 2g resulted to be the most potent (Ki = 9 nM) and highly selective TbDHFR inhibitor, 6000-fold over TbPTR1 and 394-fold over hDHFR. The 5,6-dimethyl tricyclic analogue 1g, despite showing a lower potency and selectivity profile than 2g, shared a comparable antiparasitic activity against T. brucei in the low micromolar domain. The dichloro-substituted 2-guanidino benzimidazoles 2c and 2d revealed their potent and broad-spectrum antitrypanosomatid activity affecting the growth of T. brucei and L. infantum parasites. Therefore, both chemotypes could represent promising templates that could be valorized for further drug development.
Collapse
Affiliation(s)
- Valeria Francesconi
- Department
of Pharmacy, University of Genoa, viale Benedetto XV n.3, Genoa 16132, Italy
| | - Marco Rizzo
- Department
of Pharmacy, University of Genoa, viale Benedetto XV n.3, Genoa 16132, Italy
| | - Cecilia Pozzi
- Department
of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, Siena 53100, Italy
- Consorzio
Interuniversitario Risonanze Magnetiche di Metallo Proteine (CIMMP), Via Luigi Sacconi 6, Sesto Fiorentino (FI) 50019, Italy
| | - Lorenzo Tagliazucchi
- Department
of Life Science, University of Modena and
Reggio Emilia, via Campi 103, Modena 41125, Italy
- Doctorate
School in Clinical and Experimental Medicine (CEM), University of Modena and Reggio Emilia, Via Campi 287, Modena 41125, Italy
| | - Claude U. Konchie Simo
- Department
of Life Science, University of Modena and
Reggio Emilia, via Campi 103, Modena 41125, Italy
| | - Giulia Saporito
- Department
of Life Science, University of Modena and
Reggio Emilia, via Campi 103, Modena 41125, Italy
| | - Giacomo Landi
- Department
of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, Siena 53100, Italy
| | - Stefano Mangani
- Department
of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, Siena 53100, Italy
| | - Anna Carbone
- Department
of Pharmacy, University of Genoa, viale Benedetto XV n.3, Genoa 16132, Italy
| | - Silvia Schenone
- Department
of Pharmacy, University of Genoa, viale Benedetto XV n.3, Genoa 16132, Italy
| | - Nuno Santarém
- i3S
- Institute
for Research and Innovation in Health, University
of Porto, Rua Alfredo
Allen, 208, Porto 4200-135, Portugal
| | - Joana Tavares
- i3S
- Institute
for Research and Innovation in Health, University
of Porto, Rua Alfredo
Allen, 208, Porto 4200-135, Portugal
| | - Anabela Cordeiro-da-Silva
- i3S
- Institute
for Research and Innovation in Health, University
of Porto, Rua Alfredo
Allen, 208, Porto 4200-135, Portugal
- Department
of Life Science, Faculty of Pharmacy, University
of Porto, Rua de Jorge
Viterbo Ferreira, 228, Porto 4050-313, Portugal
| | - Maria Paola Costi
- Department
of Life Science, University of Modena and
Reggio Emilia, via Campi 103, Modena 41125, Italy
| | - Michele Tonelli
- Department
of Pharmacy, University of Genoa, viale Benedetto XV n.3, Genoa 16132, Italy
| |
Collapse
|
3
|
Adomako AK, Gasu EN, Mensah JO, Borquaye LS. Antileishmanial natural products as potential inhibitors of the Leishmania pteridine reductase: insights from molecular docking and molecular dynamics simulations. In Silico Pharmacol 2024; 12:70. [PMID: 39091898 PMCID: PMC11289227 DOI: 10.1007/s40203-024-00247-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 07/22/2024] [Indexed: 08/04/2024] Open
Abstract
Although many natural product-derived compounds possess anti-leishmanial activities in vitro and in vivo, their molecular targets in the Leishmania parasite remain elusive. This is a major challenge in optimizing these compounds into leads. The Leishmania pteridine reductase (PTR1) is peculiar for folate and pterin metabolism and has been validated as a drug target. In this study, 17 compounds with anti-leishmanial activities were screened against Leishmania major PTR1 (LmPTR1) using molecular docking and molecular dynamics (MD) simulations. All ligands were bound in the active site pocket of LmPTR1 with binding affinities ranging from -11.2 to -5.2 kcal/mol. Agnuside, betulin, betulinic acid, gerberinol, ismailin, oleanolic acid, pristimerin, and ursolic acid demonstrated binding affinities similar to a known inhibitor, methyl 1-(4-{[2,4-diaminopteridin-6-yl) methyl] amino} benzoyl) piperidine-4-carboxylate (DVP). MD simulations revealed that betulin, betulinic acid, ismailin, oleanolic acid, pristimerin, and ursolic acid formed stable complexes with LmPTR1. The binding free energies of the complexes were very good (-87 to -148 kJ/mol), and much higher than the complex of the standard DVP inhibitor and LmPTR1 (-27 kJ/mol). Betulin, betulinic acid, ismailin, oleanolic acid, pristimerin, and ursolic acid likely exert their antileishmanial action by inhibiting PTR1 and could thus be used as a basis for the development of potential antileishmanial chemotherapeutic agents. Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s40203-024-00247-8.
Collapse
Affiliation(s)
| | - Edward Ntim Gasu
- Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
- Central Laboratory, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | | | - Lawrence Sheringham Borquaye
- Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
- Central Laboratory, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| |
Collapse
|
4
|
de Oliveira Viana J, Sena Mendes M, Santos Castilho M, Olímpio de Moura R, Guimarães Barbosa E. Spiro-Acridine Compound as a Pteridine Reductase 1 Inhibitor: in silico Target Fishing and in vitro Studies. ChemMedChem 2024; 19:e202300545. [PMID: 38445815 DOI: 10.1002/cmdc.202300545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/20/2024] [Accepted: 03/05/2024] [Indexed: 03/07/2024]
Abstract
Among the many neglected tropical diseases, leishmaniasis ranks second in mortality rate and prevalence. In a previous study, acridine derivatives were synthesized and tested for their antileishmanial activity against L. chagasi. The most active compound identified in that study (1) showed a single digit IC50 value against the parasite (1.10 μg/mL), but its macromolecular target remained unknown. Aiming to overcome this limitation, this work exploited inverse virtual screening to identify compound 1's putative molecular mechanism of action. In vitro assays confirmed that compound 1 binds to Leishmania chagasi pteridine reductase 1 (LcPTR1), with moderate affinity (Kd=33,1 μM), according to differential scanning fluorimetry assay. Molecular dynamics simulations confirm the stability of LcPTR1-compound 1 complex, supporting a competitive mechanism of action. Therefore, the workflow presented in this work successfully identified PTR1 as a macromolecular target for compound 1, allowing the designing of novel potent antileishmanial compounds.
Collapse
Affiliation(s)
- Jéssika de Oliveira Viana
- Bioinformatics Multidisciplinary Environment, Federal University of Rio Grande do Norte, University Campus I-Lagoa Nova, Natal, RN, 59078-970
| | - Marina Sena Mendes
- Department of Pharmacy, Federal University of Bahia, University Campus Ondina - Ondina, Salvador, BA, 40170-110
| | - Marcelo Santos Castilho
- Department of Pharmacy, Federal University of Bahia, University Campus Ondina - Ondina, Salvador, BA, 40170-110
| | - Ricardo Olímpio de Moura
- Department of Pharmacy, State University of Paraíba, University Campus I - Universitário, Campina, Grande - PB, 58429-500
| | - Euzébio Guimarães Barbosa
- Bioinformatics Multidisciplinary Environment, Federal University of Rio Grande do Norte, University Campus I-Lagoa Nova, Natal, RN, 59078-970
- Department of Pharmacy, Federal University of Rio Grande do Norte, University Campus I - Petrópolis, Natal, RN, 59012-570
| |
Collapse
|
5
|
Marín M, López M, Gallego-Yerga L, Álvarez R, Peláez R. Experimental structure based drug design (SBDD) applications for anti-leishmanial drugs: A paradigm shift? Med Res Rev 2024; 44:1055-1120. [PMID: 38142308 DOI: 10.1002/med.22005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 11/14/2023] [Accepted: 11/27/2023] [Indexed: 12/25/2023]
Abstract
Leishmaniasis is a group of neglected tropical diseases caused by at least 20 species of Leishmania protozoa, which are spread by the bite of infected sandflies. There are three main forms of the disease: cutaneous leishmaniasis (CL, the most common), visceral leishmaniasis (VL, also known as kala-azar, the most serious), and mucocutaneous leishmaniasis. One billion people live in areas endemic to leishmaniasis, with an annual estimation of 30,000 new cases of VL and more than 1 million of CL. New treatments for leishmaniasis are an urgent need, as the existing ones are inefficient, toxic, and/or expensive. We have revised the experimental structure-based drug design (SBDD) efforts applied to the discovery of new drugs against leishmaniasis. We have grouped the explored targets according to the metabolic pathways they belong to, and the key achieved advances are highlighted and evaluated. In most cases, SBDD studies follow high-throughput screening campaigns and are secondary to pharmacokinetic optimization, due to the majoritarian belief that there are few validated targets for SBDD in leishmaniasis. However, some SBDD strategies have significantly contributed to new drug candidates against leishmaniasis and a bigger number holds promise for future development.
Collapse
Affiliation(s)
- Miguel Marín
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| | - Marta López
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| | - Laura Gallego-Yerga
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| | - Raquel Álvarez
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| | - Rafael Peláez
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| |
Collapse
|
6
|
Gonçalves RCR, Teixeira F, Peñalver P, Costa SPG, Morales JC, Raposo MMM. Designing Antitrypanosomal and Antileishmanial BODIPY Derivatives: A Computational and In Vitro Assessment. Molecules 2024; 29:2072. [PMID: 38731562 PMCID: PMC11085077 DOI: 10.3390/molecules29092072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
Leishmaniasis and Human African trypanosomiasis pose significant public health threats in resource-limited regions, accentuated by the drawbacks of the current antiprotozoal treatments and the lack of approved vaccines. Considering the demand for novel therapeutic drugs, a series of BODIPY derivatives with several functionalizations at the meso, 2 and/or 6 positions of the core were synthesized and characterized. The in vitro activity against Trypanosoma brucei and Leishmania major parasites was carried out alongside a human healthy cell line (MRC-5) to establish selectivity indices (SIs). Notably, the meso-substituted BODIPY, with 1-dimethylaminonaphthalene (1b) and anthracene moiety (1c), were the most active against L. major, displaying IC50 = 4.84 and 5.41 μM, with a 16 and 18-fold selectivity over MRC-5 cells, respectively. In contrast, the mono-formylated analogues 2b and 2c exhibited the highest toxicity (IC50 = 2.84 and 6.17 μM, respectively) and selectivity (SI = 24 and 11, respectively) against T. brucei. Further insights on the activity of these compounds were gathered from molecular docking studies. The results suggest that these BODIPYs act as competitive inhibitors targeting the NADPH/NADP+ linkage site of the pteridine reductase (PR) enzyme. Additionally, these findings unveil a range of quasi-degenerate binding complexes formed between the PRs and the investigated BODIPY derivatives. These results suggest a potential correlation between the anti-parasitic activity and the presence of multiple configurations that block the same site of the enzyme.
Collapse
Affiliation(s)
- Raquel C R Gonçalves
- Centre of Chemistry, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- Advanced (Magnetic) Theranostic Nanostructures Lab, International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal
| | - Filipe Teixeira
- Centre of Chemistry, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Pablo Peñalver
- Instituto de Parasitología y Biomedicina López Neyra, CSIC, PTS Granada, Avenida del Conocimiento, 17, 18016 Armilla, Granada, Spain
| | - Susana P G Costa
- Centre of Chemistry, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Juan C Morales
- Instituto de Parasitología y Biomedicina López Neyra, CSIC, PTS Granada, Avenida del Conocimiento, 17, 18016 Armilla, Granada, Spain
| | - M Manuela M Raposo
- Centre of Chemistry, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
7
|
Possart K, Herrmann FC, Jose J, Schmidt TJ. In Silico and In Vitro Search for Dual Inhibitors of the Trypanosoma brucei and Leishmania major Pteridine Reductase 1 and Dihydrofolate Reductase. Molecules 2023; 28:7526. [PMID: 38005256 PMCID: PMC10673058 DOI: 10.3390/molecules28227526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
The parasites Trypanosoma brucei (Tb) and Leishmania major (Lm) cause the tropical diseases sleeping sickness, nagana, and cutaneous leishmaniasis. Every year, millions of humans, as well as animals, living in tropical to subtropical climates fall victim to these illnesses' health threats. The parasites' frequent drug resistance and widely spread natural reservoirs heavily impede disease prevention and treatment. Due to pteridine auxotrophy, trypanosomatid parasites have developed a peculiar enzyme system consisting of dihydrofolate reductase-thymidylate synthase (DHFR-TS) and pteridine reductase 1 (PTR1) to support cell survival. Extending our previous studies, we conducted a comparative study of the T. brucei (TbDHFR, TbPTR1) and L. major (LmDHFR, LmPTR1) enzymes to identify lead structures with a dual inhibitory effect. A pharmacophore-based in silico screening of three natural product databases (approximately 4880 compounds) was performed to preselect possible inhibitors. Building on the in silico results, the inhibitory potential of promising compounds was verified in vitro against the recombinant DHFR and PTR1 of both parasites using spectrophotometric enzyme assays. Twelve compounds were identified as dual inhibitors against the Tb enzymes (0.2 μM < IC50 < 85.1 μM) and ten against the respective Lm enzymes (0.6 μM < IC50 < 84.5 μM). These highly promising results may represent the starting point for the future development of new leads and drugs utilizing the trypanosomatid pteridine metabolism as a target.
Collapse
Affiliation(s)
- Katharina Possart
- University of Muenster, Institute for Pharmaceutical Biology and Phytochemistry (IPBP), PharmaCampus, Corrensstrasse 48, D-48149 Muenster, Germany; (K.P.); (F.C.H.)
| | - Fabian C. Herrmann
- University of Muenster, Institute for Pharmaceutical Biology and Phytochemistry (IPBP), PharmaCampus, Corrensstrasse 48, D-48149 Muenster, Germany; (K.P.); (F.C.H.)
| | - Joachim Jose
- University of Muenster, Institute of Pharmaceutical and Medicinal Chemistry, PharmaCampus, Corrensstrasse 48, D-48149 Muenster, Germany;
| | - Thomas J. Schmidt
- University of Muenster, Institute for Pharmaceutical Biology and Phytochemistry (IPBP), PharmaCampus, Corrensstrasse 48, D-48149 Muenster, Germany; (K.P.); (F.C.H.)
| |
Collapse
|
8
|
Panecka-Hofman J, Poehner I. Structure and dynamics of pteridine reductase 1: the key phenomena relevant to enzyme function and drug design. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2023; 52:521-532. [PMID: 37608196 PMCID: PMC10618315 DOI: 10.1007/s00249-023-01677-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 07/08/2023] [Accepted: 07/24/2023] [Indexed: 08/24/2023]
Abstract
Pteridine reductase 1 (PTR1) is a folate and pterin pathway enzyme unique for pathogenic trypanosomatids. As a validated drug target, PTR1 has been the focus of recent research efforts aimed at finding more effective treatments against human parasitic diseases such as leishmaniasis or sleeping sickness. Previous PTR1-centered structural studies highlighted the enzyme characteristics, such as flexible regions around the active site, highly conserved structural waters, and species-specific differences in pocket properties and dynamics, which likely impacts the binding of natural substrates and inhibitors. Furthermore, several aspects of the PTR1 function, such as the substrate inhibition phenomenon and the level of ligand binding cooperativity in the enzyme homotetramer, likely related to the global enzyme dynamics, are poorly known at the molecular level. We postulate that future drug design efforts could greatly benefit from a better understanding of these phenomena through studying both the local and global PTR1 dynamics. This review highlights the key aspects of the PTR1 structure and dynamics relevant to structure-based drug design that could be effectively investigated by modeling approaches. Particular emphasis is given to the perspective of molecular dynamics, what has been accomplished in this area to date, and how modeling could impact the PTR1-targeted drug design in the future.
Collapse
Affiliation(s)
- Joanna Panecka-Hofman
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093, Warsaw, Poland.
| | - Ina Poehner
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1 C, 70211, Kuopio, Finland
| |
Collapse
|
9
|
Jamabo M, Mahlalela M, Edkins AL, Boshoff A. Tackling Sleeping Sickness: Current and Promising Therapeutics and Treatment Strategies. Int J Mol Sci 2023; 24:12529. [PMID: 37569903 PMCID: PMC10420020 DOI: 10.3390/ijms241512529] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/27/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
Human African trypanosomiasis is a neglected tropical disease caused by the extracellular protozoan parasite Trypanosoma brucei, and targeted for eradication by 2030. The COVID-19 pandemic contributed to the lengthening of the proposed time frame for eliminating human African trypanosomiasis as control programs were interrupted. Armed with extensive antigenic variation and the depletion of the B cell population during an infectious cycle, attempts to develop a vaccine have remained unachievable. With the absence of a vaccine, control of the disease has relied heavily on intensive screening measures and the use of drugs. The chemotherapeutics previously available for disease management were plagued by issues such as toxicity, resistance, and difficulty in administration. The approval of the latest and first oral drug, fexinidazole, is a major chemotherapeutic achievement for the treatment of human African trypanosomiasis in the past few decades. Timely and accurate diagnosis is essential for effective treatment, while poor compliance and resistance remain outstanding challenges. Drug discovery is on-going, and herein we review the recent advances in anti-trypanosomal drug discovery, including novel potential drug targets. The numerous challenges associated with disease eradication will also be addressed.
Collapse
Affiliation(s)
- Miebaka Jamabo
- Biotechnology Innovation Centre, Rhodes University, Makhanda 6139, South Africa; (M.J.); (M.M.)
| | - Maduma Mahlalela
- Biotechnology Innovation Centre, Rhodes University, Makhanda 6139, South Africa; (M.J.); (M.M.)
| | - Adrienne L. Edkins
- Department of Biochemistry and Microbiology, Biomedical Biotechnology Research Centre (BioBRU), Rhodes University, Makhanda 6139, South Africa;
| | - Aileen Boshoff
- Biotechnology Innovation Centre, Rhodes University, Makhanda 6139, South Africa; (M.J.); (M.M.)
| |
Collapse
|
10
|
Melfi F, Carradori S, Campestre C, Haloci E, Ammazzalorso A, Grande R, D'Agostino I. Emerging compounds and therapeutic strategies to treat infections from Trypanosoma brucei: an overhaul of the last 5-years patents. Expert Opin Ther Pat 2023; 33:247-263. [PMID: 36933190 DOI: 10.1080/13543776.2023.2193328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Abstract
INTRODUCTION Human African Trypanosomiasis is a neglected disease caused by infection from parasites belonging to the Trypanosoma brucei species. Only six drugs are currently available and employed depending on the stage of the infection: pentamidine, suramin, melarsoprol, eflornithine, nifurtimox, and fexinidazole. Joint research projects were launched in an attempt to find new therapeutic options for this severe and often lethal disease. AREAS COVERED After a brief description of the recent literature on the parasite and the disease, we searched for patents dealing with the proposal of new anti-trypanosomiasis agents and, following the PRISMA guidelines, we filtered the results to those published from 2018onwards returning suitable entries, which represent the contemporary landscape of compounds/strategies against Trypanosoma brucei. In addition, some relevant publications from the overall scientific literature were also discussed. EXPERT OPINION This review comprehensively covers and analyzes the most recent advances not only in the discovery of new inhibitors and their structure-activity relationships but also in the assessment of innovative biological targets opening new scenarios in the MedChem field. Lastly, also new vaccines and formulations recently patented were described. However, natural and synthetic compounds were analyzed in terms of inhibitory activity and selective toxicity against human cells.
Collapse
Affiliation(s)
- Francesco Melfi
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Simone Carradori
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Cristina Campestre
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Entela Haloci
- Department of Pharmacy, University of Medicine, Tirana, Albania
| | | | - Rossella Grande
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Ilaria D'Agostino
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
11
|
Istanbullu H, Bayraktar G, Karakaya G, Akbaba H, Perk NE, Cavus I, Podlipnik C, Yereli K, Ozbilgin A, Debelec Butuner B, Alptuzun V. Design, synthesis, in vitro - In vivo biological evaluation of novel thiazolopyrimidine compounds as antileishmanial agent with PTR1 inhibition. Eur J Med Chem 2023; 247:115049. [PMID: 36577215 DOI: 10.1016/j.ejmech.2022.115049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/15/2022] [Accepted: 12/21/2022] [Indexed: 12/25/2022]
Abstract
The leishmaniasis are a group of vector-borne diseases caused by a protozoan parasite from the genus Leishmania. In this study, a series of thiazolopyrimidine derivatives were designed and synthesized as novel antileishmanial agents with LmPTR1 inhibitory activity. The final compounds were evaluated for their in vitro antipromastigote activity, LmPTR1 and hDHFR enzyme inhibitory activities, and cytotoxicity on RAW264.7 and L929 cell lines. Based on the bioactivity results, three compounds, namely L24f, L24h and L25c, were selected for evaluation of their in vivo efficacy on CL and VL models in BALB/c mice. Among them, two promising compounds, L24h and L25c, showed in vitro antipromastigote activity against L. tropica with the IC50 values of 0.04 μg/ml and 6.68 μg/ml; against L. infantum with the IC50 values of 0.042 μg/ml and 6.77 μg/ml, respectively. Moreover, the title compounds were found to have low in vitro cytotoxicity on L929 and RAW264.7 cell lines with the IC50 14.08 μg/ml and 21.03 μg/ml, and IC50 15.02 μg/ml and 8.75 μg/ml, respectively. LmPTR1 enzyme inhibitory activity of these compounds was determined as 257.40 μg/ml and 59.12 μg/ml and their selectivity index (SI) over hDHFR was reported as 42.62 and 7.02, respectively. In vivo studies presented that L24h and L25c have a significant antileishmanial activity against footpad lesion development of CL and at weight measurement of VL group in comparison to the reference compound, Glucantime®. Also, docking studies were carried out with selected compounds and other potential Leishmania targets to detect the putative targets of the title compounds. Taken together, all these findings provide an important novel lead structure for the antileishmanial drug development.
Collapse
Affiliation(s)
- Huseyin Istanbullu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Izmir Katip Celebi University, Cigli, Izmir, Turkey.
| | - Gulsah Bayraktar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ege University, Bornova, Izmir, Turkey
| | - Gulsah Karakaya
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Izmir Katip Celebi University, Cigli, Izmir, Turkey
| | - Hasan Akbaba
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Ege University, Bornova, Izmir, Turkey
| | - Nami Ege Perk
- Department of Parasitology, Faculty of Medicine, Manisa Celal Bayar University, Manisa, Turkey
| | - Ibrahim Cavus
- Department of Parasitology, Faculty of Medicine, Manisa Celal Bayar University, Manisa, Turkey
| | - Crtomir Podlipnik
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, SI-1000, Ljubljana, Slovenia
| | - Kor Yereli
- Department of Parasitology, Faculty of Medicine, Manisa Celal Bayar University, Manisa, Turkey
| | - Ahmet Ozbilgin
- Department of Parasitology, Faculty of Medicine, Manisa Celal Bayar University, Manisa, Turkey
| | - Bilge Debelec Butuner
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Ege University, Bornova, Izmir, Turkey
| | - Vildan Alptuzun
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ege University, Bornova, Izmir, Turkey
| |
Collapse
|
12
|
Boakye A, Gasu EN, Mensah JO, Borquaye LS. Computational studies on potential small molecule inhibitors of Leishmania pteridine reductase 1. J Biomol Struct Dyn 2023; 41:12128-12141. [PMID: 36632757 DOI: 10.1080/07391102.2023.2166119] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 01/01/2023] [Indexed: 01/13/2023]
Abstract
Leishmaniasis is a neglected tropical disease of major public health concern. Challenges with current therapeutics have led to the exploration of plant medicine for potential antileishmanial agents. Despite the promising activity of some antileishmanial natural products, their protein targets have not been explored. The relevance of folate metabolism in the Leishmania parasite's existence presents crucial targets for the development of antileishmanial chemotherapy. Pteridine reductase 1 (PTR1), a crucial enzyme involved in DNA biosynthesis, is a validated target of the Leishmania parasite. Unearthing inhibitors of this enzyme is therefore an active research area. The goal of this work is to unearth small molecule inhibitors of PTR1 using molecular docking and molecular dynamic simulations. Thus, the interactions between selected antileishmanial natural products and PTR1 were examined. The binding affinities obtained from molecular docking ranged from -6.2 to -9.8 kcal/mol. When compared to the natural PTR1 substrate biopterin, compounds such as anonaine, chimanine D, corynantheine, grifolin, licochalcone A, piperogalin and xylopine produced better binding affinities, making interactions catalytic residues - Tyr194, Asp181, Phe113, Arg17 and Ser111. The PTR1- xylopine, -piperogalin, -grifolin, and -licochalcone A complexes exhibited remarkable stability under dynamic conditions during the entire 200 ns simulation period. The overall binding free energy of grifolin, piperogalin, and licochalcone A were observed to be -105.711, -103.567, and -105.646 kJ/mol respectively. The binding of these complexes was observed to be favorable and spontaneous and as such capable of inhibiting Leishmania PTR1. They could therefore be considered as candidates in the development of antileishmanial chemotherapy.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Aaron Boakye
- Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Edward Ntim Gasu
- Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
- Central Laboratory, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | | | - Lawrence Sheringham Borquaye
- Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
- Central Laboratory, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| |
Collapse
|
13
|
Cardona HRA, Froes TQ, Souza BCD, Leite FHA, Brandão HN, Buaruang J, Kijjoa A, Alves CQ. Thermal shift assays of marine-derived fungal metabolites from Aspergillus fischeri MMERU 23 against Leishmania major pteridine reductase 1 and molecular dynamics studies. J Biomol Struct Dyn 2022; 40:11968-11976. [PMID: 34415221 DOI: 10.1080/07391102.2021.1966510] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Marine-derived fungi are a promising source of bioactive molecules, especially species from extreme habitats. Although several secondary metabolites such as meroterpenoids and alkaloids have been isolated from cultures of Aspergillus fischeri, obtained from terrestrial habitats, there is no report on compounds isolated from marine-derived strains. Many metabolites isolated from marine-derived fungi exhibited a myriad of biological activities. Marine natural products have shown to be an important source of bioactive compounds and can assist in the discovery of molecules with affinity against validated targets from exclusive strains of parasites of medical importance such as pteridine reductase 1 (PTR1), from Leishmania major, which is essential for cell growth. Leishmaniasis is responsible for approximately 65,000 annual deaths. Despite the mortality data, drugs available for the treatment of patients are insufficient and have moderate therapeutic efficacy in addition to serious adverse effects, which make the development of new drugs urgent. The previously described aszonalenin (ASL), aszonapyrone A (ASP), acetylaszonalenin (ACZ), and helvolic acid (HAC) were isolated from the ethyl acetate extract of the culture of a marine sponge-associated A. fischeri MMERU 23 and their affinities against PTR1 were determined by ThermoFluor®. Among the tested compounds, only ACZ showed dose-dependent affinity against PTR1. Moreover, complementary molecular dynamics studies (t = 100 000 ps) have showed that this molecule performs hydrogen bonds with key residues at the active site for more than 60% of the productive trajectory time. The results indicate that ACZ could be a promising PTR1 inhibitor and a potential candidate for development of antileishmanial drug.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Thamires Q Froes
- Faculdade de Farmácia, Universidade Federal da Bahia, Salvador, Brazil
| | - Bruno C De Souza
- Departamento de Saúde, Universidade Estadual Feira de Santana, Bahia, Brazil
| | - Franco H A Leite
- Departamento de Saúde, Universidade Estadual Feira de Santana, Bahia, Brazil
| | - Hugo Neves Brandão
- Departamento de Saúde, Universidade Estadual Feira de Santana, Bahia, Brazil
| | - Jamrearn Buaruang
- Marine Microbe Environment Research Unit, Division of Environmental Science, Faculty of Science, Ramkhamhaeng University, Bangkok, Thailand
| | - Anake Kijjoa
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar and CIIMAR, Universidade do Porto, Porto, Portugal
| | - Clayton Q Alves
- Departamento de Ciências Exatas, Universidade Estadual de Feira de Santana, Bahia, Brazil
| |
Collapse
|
14
|
In vitro antileishmanial activity and molecular docking studies of lupeol and monostearin, isolated from Parkia biglobosa. SCIENTIFIC AFRICAN 2022. [DOI: 10.1016/j.sciaf.2022.e01464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
15
|
Panecka-Hofman J, Poehner I, Wade R. Anti-trypanosomatid structure-based drug design - lessons learned from targeting the folate pathway. Expert Opin Drug Discov 2022; 17:1029-1045. [PMID: 36073204 DOI: 10.1080/17460441.2022.2113776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Trypanosomatidic parasitic infections of humans and animals caused by Trypanosoma brucei, Trypanosoma cruzi, and Leishmania species pose a significant health and economic burden in developing countries. There are few effective and accessible treatments for these diseases, and the existing therapies suffer from problems such as parasite resistance and side effects. Structure-based drug design (SBDD) is one of the strategies that has been applied to discover new compounds targeting trypanosomatid-borne diseases. AREAS COVERED We review the current literature (mostly over the last 5 years, searched in PubMed database on Nov 11th 2021) on the application of structure-based drug design approaches to identify new anti-trypanosomatidic compounds that interfere with a validated target biochemical pathway, the trypanosomatid folate pathway. EXPERT OPINION The application of structure-based drug design approaches to perturb the trypanosomatid folate pathway has successfully provided many new inhibitors with good selectivity profiles, most of which are natural products or their derivatives or have scaffolds of known drugs. However, the inhibitory effect against the target protein(s) often does not translate to anti-parasitic activity. Further progress is hampered by our incomplete understanding of parasite biology and biochemistry, which is necessary to complement SBDD in a multiparameter optimization approach to discovering selective anti-parasitic drugs.
Collapse
Affiliation(s)
- Joanna Panecka-Hofman
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5a, 02-097 Warsaw, Poland
| | - Ina Poehner
- School of Pharmacy, University of Eastern Finland, Kuopio, Yliopistonranta 1C, PO Box 1627, FI-70211 Kuopio, Finland
| | - Rebecca Wade
- Center for Molecular Biology (ZMBH), Heidelberg University, Im Neuenheimer Feld 282, Heidelberg 69120, Germany.,Heidelberg Institute for Theoretical Studies (HITS), Schloß-Wolfsbrunnenweg 35, Heidelberg 69118, Germany.,DKFZ-ZMBH Alliance and Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Im Neuenheimer Feld 205, Heidelberg 69120, Germany
| |
Collapse
|
16
|
Shamshad H, Bakri R, Mirza AZ. Dihydrofolate reductase, thymidylate synthase, and serine hydroxy methyltransferase: successful targets against some infectious diseases. Mol Biol Rep 2022; 49:6659-6691. [PMID: 35253073 PMCID: PMC8898753 DOI: 10.1007/s11033-022-07266-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 02/15/2022] [Indexed: 12/13/2022]
Abstract
Parasitic diseases have a serious impact on the world in terms of health and economics and are responsible for worldwide mortality and morbidity. The present review features the hybrid targeting involving three main enzymes for the treatment of different parasitic diseases. The enzymes Dihydrofolate reductase, thymidylate synthase, and Serine hydroxy methyltransferase play an essential role in the folate pathway. The present review focuses on these enzymes, which can be targeted against several diseases. It shed light on the past, present, and future of these targets, and it can be assessed that these targets can play a significant role against several infectious diseases. For combating viral and protozoal infectious diseases, these targets in combination should be addressed.
Collapse
Affiliation(s)
- Hina Shamshad
- Faculty of Pharmacy, Jinnah University for Women, Karachi, Pakistan
| | - Rowaida Bakri
- College of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | | |
Collapse
|
17
|
Pöhner I, Quotadamo A, Panecka-Hofman J, Luciani R, Santucci M, Linciano P, Landi G, Di Pisa F, Dello Iacono L, Pozzi C, Mangani S, Gul S, Witt G, Ellinger B, Kuzikov M, Santarem N, Cordeiro-da-Silva A, Costi MP, Venturelli A, Wade RC. Multitarget, Selective Compound Design Yields Potent Inhibitors of a Kinetoplastid Pteridine Reductase 1. J Med Chem 2022; 65:9011-9033. [PMID: 35675511 PMCID: PMC9289884 DOI: 10.1021/acs.jmedchem.2c00232] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
![]()
The optimization
of compounds with multiple targets is a difficult
multidimensional problem in the drug discovery cycle. Here, we present
a systematic, multidisciplinary approach to the development of selective
antiparasitic compounds. Computational fragment-based design of novel
pteridine derivatives along with iterations of crystallographic structure
determination allowed for the derivation of a structure–activity
relationship for multitarget inhibition. The approach yielded compounds
showing apparent picomolar inhibition of T. brucei pteridine reductase 1 (PTR1), nanomolar inhibition of L.
major PTR1, and selective submicromolar inhibition of parasite
dihydrofolate reductase (DHFR) versus human DHFR. Moreover, by combining
design for polypharmacology with a property-based on-parasite optimization,
we found three compounds that exhibited micromolar EC50 values against T. brucei brucei while retaining
their target inhibition. Our results provide a basis for the further
development of pteridine-based compounds, and we expect our multitarget
approach to be generally applicable to the design and optimization
of anti-infective agents.
Collapse
Affiliation(s)
- Ina Pöhner
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), D-69118 Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, D-69120 Heidelberg, Germany
| | - Antonio Quotadamo
- Tydock Pharma srl, Strada Gherbella 294/B, 41126 Modena, Italy.,Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Joanna Panecka-Hofman
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), D-69118 Heidelberg, Germany.,Faculty of Physics, University of Warsaw, 02-093 Warsaw, Poland
| | - Rosaria Luciani
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Matteo Santucci
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Pasquale Linciano
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Giacomo Landi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Flavio Di Pisa
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Lucia Dello Iacono
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Cecilia Pozzi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Stefano Mangani
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Sheraz Gul
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Discovery Research ScreeningPort, Schnackenburgallee 114, D-22525 Hamburg, Germany
| | - Gesa Witt
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Discovery Research ScreeningPort, Schnackenburgallee 114, D-22525 Hamburg, Germany
| | - Bernhard Ellinger
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Discovery Research ScreeningPort, Schnackenburgallee 114, D-22525 Hamburg, Germany
| | - Maria Kuzikov
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Discovery Research ScreeningPort, Schnackenburgallee 114, D-22525 Hamburg, Germany
| | - Nuno Santarem
- Instituto de Investigação e Inovação em Saúde, Institute for Molecular and Cell Biology, Universidade do Porto, 4200-135 Porto, Portugal
| | - Anabela Cordeiro-da-Silva
- Instituto de Investigação e Inovação em Saúde, Institute for Molecular and Cell Biology, Universidade do Porto, 4200-135 Porto, Portugal.,Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Maria P Costi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Alberto Venturelli
- Tydock Pharma srl, Strada Gherbella 294/B, 41126 Modena, Italy.,Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Rebecca C Wade
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), D-69118 Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, D-69120 Heidelberg, Germany.,Center for Molecular Biology (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, D-69120 Heidelberg, Germany.,Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, D-69120 Heidelberg, Germany
| |
Collapse
|
18
|
Examination of multiple Trypanosoma cruzi targets in a new drug discovery approach for Chagas disease. Bioorg Med Chem 2022; 58:116577. [DOI: 10.1016/j.bmc.2021.116577] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 12/10/2021] [Accepted: 12/10/2021] [Indexed: 12/21/2022]
|
19
|
Possart K, Herrmann FC, Jose J, Costi MP, Schmidt TJ. Sesquiterpene Lactones with Dual Inhibitory Activity against the Trypanosoma brucei Pteridine Reductase 1 and Dihydrofolate Reductase. Molecules 2021; 27:149. [PMID: 35011381 PMCID: PMC8747069 DOI: 10.3390/molecules27010149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/15/2021] [Accepted: 12/21/2021] [Indexed: 12/19/2022] Open
Abstract
The parasite Trypanosoma brucei (T. brucei) is responsible for human African trypanosomiasis (HAT) and the cattle disease "Nagana" which to this day cause severe medical and socio-economic issues for the affected areas in Africa. So far, most of the available treatment options are accompanied by harmful side effects and are constantly challenged by newly emerging drug resistances. Since trypanosomatids are auxotrophic for folate, their pteridine metabolism provides a promising target for an innovative chemotherapeutic treatment. They are equipped with a unique corresponding enzyme system consisting of the bifunctional dihydrofolate reductase-thymidylate synthase (TbDHFR-TS) and the pteridine reductase 1 (TbPTR1). Previously, gene knockout experiments with PTR1 null mutants have underlined the importance of these enzymes for parasite survival. In a search for new chemical entities with a dual inhibitory activity against the TbPTR1 and TbDHFR, a multi-step in silico procedure was employed to pre-select promising candidates against the targeted enzymes from a natural product database. Among others, the sesquiterpene lactones (STLs) cynaropicrin and cnicin were identified as in silico hits. Consequently, an in-house database of 118 STLs was submitted to an in silico screening yielding 29 further virtual hits. Ten STLs were subsequently tested against the target enzymes in vitro in a spectrophotometric inhibition assay. Five compounds displayed an inhibition over 50% against TbPTR1 as well as three compounds against TbDHFR. Cynaropicrin turned out to be the most interesting hit since it inhibited both TbPTR1 and TbDHFR, reaching IC50 values of 12.4 µM and 7.1 µM, respectively.
Collapse
Affiliation(s)
- Katharina Possart
- Institute of Pharmaceutical Biology and Phytochemistry (IPBP), University of Muenster, PharmaCampus, Corrensstrasse 48, D-48149 Muenster, Germany; (K.P.); (F.C.H.)
| | - Fabian C. Herrmann
- Institute of Pharmaceutical Biology and Phytochemistry (IPBP), University of Muenster, PharmaCampus, Corrensstrasse 48, D-48149 Muenster, Germany; (K.P.); (F.C.H.)
| | - Joachim Jose
- Institute of Pharmaceutical and Medicinal Chemistry, University of Muenster, PharmaCampus, Corrensstrasse 48, D-48149 Muenster, Germany;
| | - Maria P. Costi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy;
| | - Thomas J. Schmidt
- Institute of Pharmaceutical Biology and Phytochemistry (IPBP), University of Muenster, PharmaCampus, Corrensstrasse 48, D-48149 Muenster, Germany; (K.P.); (F.C.H.)
| |
Collapse
|
20
|
Helesbeux JJ, Carro L, McCarthy FO, Moreira VM, Giuntini F, O’Boyle N, Matthews SE, Bayraktar G, Bertrand S, Rochais C, Marchand P. 29th Annual GP2A Medicinal Chemistry Conference. Pharmaceuticals (Basel) 2021; 14:ph14121278. [PMID: 34959677 PMCID: PMC8708472 DOI: 10.3390/ph14121278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 11/18/2021] [Indexed: 11/16/2022] Open
Abstract
The 29th Annual GP2A (Group for the Promotion of Pharmaceutical chemistry in Academia) Conference was a virtual event this year due to the COVID-19 pandemic and spanned three days from Wednesday 25 to Friday 27 August 2021. The meeting brought together an international delegation of researchers with interests in medicinal chemistry and interfacing disciplines. Abstracts of keynote lectures given by the 10 invited speakers, along with those of the 8 young researcher talks and the 50 flash presentation posters, are included in this report. Like previous editions, the conference was a real success, with high-level scientific discussions on cutting-edge advances in the fields of pharmaceutical chemistry.
Collapse
Affiliation(s)
| | - Laura Carro
- School of Pharmacy, University College London, London WC1N 1AX, UK;
| | - Florence O. McCarthy
- School of Chemistry, Analytical and Biological Chemistry Research Facility, University College Cork, College Road, T12 K8AF Cork, Ireland;
| | - Vânia M. Moreira
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
- Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
| | - Francesca Giuntini
- School of Pharmacy and Biomolecular Sciences, Byrom Street Campus, Liverpool John Moores University, Liverpool L3 3AF, UK;
| | - Niamh O’Boyle
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute, Trinity College Dublin, D02 R590 Dublin, Ireland;
| | - Susan E. Matthews
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK;
| | - Gülşah Bayraktar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ege University, Izmir 35100, Turkey;
| | - Samuel Bertrand
- Institut des Substances et Organismes de la Mer, ISOmer, Nantes Université, UR 2160, F-44000 Nantes, France;
| | - Christophe Rochais
- UNICAEN, CERMN (Centre d’Etudes et de Recherche sur le Médicament de Normandie), Normandie Univ., F-14032 Caen, France;
| | - Pascal Marchand
- Cibles et Médicaments des Infections et du Cancer, IICiMed, Nantes Université, UR 1155, F-44000 Nantes, France
- Correspondence: ; Tel.: +33-253-009-155
| |
Collapse
|
21
|
Santucci M, Luciani R, Gianquinto E, Pozzi C, Pisa FD, dello Iacono L, Landi G, Tagliazucchi L, Mangani S, Spyrakis F, Costi MP. Repurposing the Trypanosomatidic GSK Kinetobox for the Inhibition of Parasitic Pteridine and Dihydrofolate Reductases. Pharmaceuticals (Basel) 2021; 14:ph14121246. [PMID: 34959646 PMCID: PMC8704748 DOI: 10.3390/ph14121246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/25/2021] [Accepted: 11/25/2021] [Indexed: 11/20/2022] Open
Abstract
Three open-source anti-kinetoplastid chemical boxes derived from a whole-cell phenotypic screening by GlaxoSmithKline (Tres Cantos Anti-Kinetoplastid Screening, TCAKS) were exploited for the discovery of a novel core structure inspiring new treatments of parasitic diseases targeting the trypansosmatidic pteridine reductase 1 (PTR1) and dihydrofolate reductase (DHFR) enzymes. In total, 592 compounds were tested through medium-throughput screening assays. A subset of 14 compounds successfully inhibited the enzyme activity in the low micromolar range of at least one of the enzymes from both Trypanosoma brucei and Lesihmania major parasites (pan-inhibitors), or from both PTR1 and DHFR-TS of the same parasite (dual inhibitors). Molecular docking studies of the protein–ligand interaction focused on new scaffolds not reproducing the well-known antifolate core clearly explaining the experimental data. TCMDC-143249, classified as a benzenesulfonamide derivative by the QikProp descriptor tool, showed selective inhibition of PTR1 and growth inhibition of the kinetoplastid parasites in the 5 μM range. In our work, we enlarged the biological profile of the GSK Kinetobox and identified new core structures inhibiting selectively PTR1, effective against the kinetoplastid infectious protozoans. In perspective, we foresee the development of selective PTR1 and DHFR inhibitors for studies of drug combinations.
Collapse
Affiliation(s)
- Matteo Santucci
- Department of Life Science, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy; (M.S.); (R.L.); (L.T.)
| | - Rosaria Luciani
- Department of Life Science, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy; (M.S.); (R.L.); (L.T.)
| | - Eleonora Gianquinto
- Department of Drug Science and Technology, University of Turin, Via Giuria 9, 10125 Turin, Italy; (E.G.); (F.S.)
| | - Cecilia Pozzi
- Department of Biotechnology, Chemistry and Pharmacy—Department of Excellence 2018–2020, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (C.P.); (F.d.P.); (L.d.I.); (G.L.); (S.M.)
| | - Flavio di Pisa
- Department of Biotechnology, Chemistry and Pharmacy—Department of Excellence 2018–2020, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (C.P.); (F.d.P.); (L.d.I.); (G.L.); (S.M.)
| | - Lucia dello Iacono
- Department of Biotechnology, Chemistry and Pharmacy—Department of Excellence 2018–2020, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (C.P.); (F.d.P.); (L.d.I.); (G.L.); (S.M.)
| | - Giacomo Landi
- Department of Biotechnology, Chemistry and Pharmacy—Department of Excellence 2018–2020, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (C.P.); (F.d.P.); (L.d.I.); (G.L.); (S.M.)
| | - Lorenzo Tagliazucchi
- Department of Life Science, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy; (M.S.); (R.L.); (L.T.)
| | - Stefano Mangani
- Department of Biotechnology, Chemistry and Pharmacy—Department of Excellence 2018–2020, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (C.P.); (F.d.P.); (L.d.I.); (G.L.); (S.M.)
| | - Francesca Spyrakis
- Department of Drug Science and Technology, University of Turin, Via Giuria 9, 10125 Turin, Italy; (E.G.); (F.S.)
| | - Maria Paola Costi
- Department of Life Science, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy; (M.S.); (R.L.); (L.T.)
- Correspondence:
| |
Collapse
|
22
|
Mech D, Kurowska A, Trotsko N. The Bioactivity of Thiazolidin-4-Ones: A Short Review of the Most Recent Studies. Int J Mol Sci 2021; 22:11533. [PMID: 34768964 PMCID: PMC8584074 DOI: 10.3390/ijms222111533] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/22/2021] [Accepted: 10/22/2021] [Indexed: 01/28/2023] Open
Abstract
Thiazolidin-4-ones is an important heterocyclic ring system of a pharmacophore and a privileged scaffold in medicinal chemistry. This review is focused on the latest scientific reports regarding biological activities of thiazolidin-4-ones published in 2020 and 2021. The review covers recent information about antioxidant, anticancer, anti-inflammatory, analgesic, anticonvulsant, antidiabetic, antiparasitic, antimicrobial, antitubercular and antiviral properties of thiazolidin-4-ones. Additionally, the influence of different substituents in molecules on their biological activity was discussed in this paper. Thus, this study may help to optimize the structure of thiazolidin-4-one derivatives as more efficient drug agents. Presented information may be used as a practical hint for rational design of new small molecules with biological activity, especially among thiazolidin-4-ones.
Collapse
Affiliation(s)
| | | | - Nazar Trotsko
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Lublin, 20-093 Lublin, Poland; (D.M.); (A.K.)
| |
Collapse
|
23
|
Intramolecular oxidative rearrangement: I2/TBHP/DMSO-mediated metal free facile access to quinoxalinone derivatives. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
24
|
Soto-Sánchez J, Ospina-Villa JD. Current status of quinoxaline and quinoxaline 1,4-di-N-oxides derivatives as potential antiparasitic agents. Chem Biol Drug Des 2021; 98:683-699. [PMID: 34289242 DOI: 10.1111/cbdd.13921] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 06/19/2021] [Accepted: 06/26/2021] [Indexed: 11/29/2022]
Abstract
Parasitic diseases are a public health problem, especially in developing countries where millions of people are affected every year. Current treatments have several drawbacks: emerging resistance to the existing drugs, lack of efficacy, and toxic side effects. Therefore, new antiparasitic drugs are urgently needed to treat and control diseases that affect human health, such as malaria, Chagas disease, leishmaniasis, amebiasis, giardiasis schistosomiasis, and filariasis, among others. Quinoxaline is a compound containing a benzene ring and a pyrazine ring. The oxidation of both pyrazine ring nitrogens allows the obtention of quinoxaline 1,4-di-N-oxides (QdNOs) derivatives. By modifying the chemical structure of these compounds, it is possible to obtain a wide variety of biological properties. This review investigated the activity of quinoxaline derivatives and QdNOs against different protozoan parasites and helminths. We also cover the structure-activity relationship (SAR) and summarize the main findings related to their mechanisms of action from published works in recent years. However, further studies are needed to determine specific molecular targets. This review aims to highlight the new development of antiparasitic drugs with better pharmacological profiles than current treatments.
Collapse
Affiliation(s)
- Jacqueline Soto-Sánchez
- Sección de Estudios de Posgrado e Investigación, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Ciudad de México, México
| | | |
Collapse
|
25
|
Al Nasr IS, Hanachi R, Said RB, Rahali S, Tangour B, Abdelwahab SI, Farasani A, M E Taha M, Bidwai A, Koko WS, Khan TA, Schobert R, Biersack B. p-Trifluoromethyl- and p-pentafluorothio-substituted curcuminoids of the 2,6-di[(E)-benzylidene)]cycloalkanone type: Syntheses and activities against Leishmania major and Toxoplasma gondii parasites. Bioorg Chem 2021; 114:105099. [PMID: 34174635 DOI: 10.1016/j.bioorg.2021.105099] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/21/2021] [Accepted: 06/15/2021] [Indexed: 11/18/2022]
Abstract
A series of the title curcuminoids with structural variance in the heteroatom of the cycloalkanone and the p-substituents of the phenyl rings were tested for their activities against Leishmania major and Toxoplasma gondii parasites. The majority of them showed high activities against both parasite forms with EC50 values in the sub-micromolar concentration range. Bis(p-pentafluorothio)-substituted 3,5-di[(E)-benzylidene]piperidin-4-one 1b was not just noticeable antiparasitic, but also exhibited a considerable selectivity for L. major promastigotes over normal Vero cells. While derivatives differing only in the p-phenyl substituents being CF3 or SF5 showed similar antiparasitic activities, the cyclic ketone hub was more decisive both for the anti-parasitic activities and the selectivities for the parasites vs. normal cells. QSAR calculations confirmed the observed structure-activity relations and suggested structural variations for a further improvement of the antiparasitic activity. Docking studies based on DFT calculations revealed L. major pteridine reductase 1 as a likely molecular target protein of the title compounds.
Collapse
Affiliation(s)
- Ibrahim S Al Nasr
- Department of Biology, College of Science and Arts, Qassim University, Unaizah 51911, Saudi Arabia; Department of Science Laboratories, College of Science and Arts, Qassim University, King Abdelaziz Road, Ar Rass 51921, Saudi Arabia
| | - Riadh Hanachi
- Laboratoire de Caractérisations, Applications et Modélisations des Matériaux, Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunis 2092, Tunisia
| | - Ridha B Said
- Laboratoire de Caractérisations, Applications et Modélisations des Matériaux, Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunis 2092, Tunisia; Department of Chemistry, College of Science and Arts in Ar Rass, Qassim University, Ar Rass 51921, Saudi Arabia
| | - Seyfeddine Rahali
- Department of Chemistry, College of Science and Arts in Ar Rass, Qassim University, Ar Rass 51921, Saudi Arabia; IPEIEM, Research Unit on Fundamental Sciences and Didactics, Université de Tunis El Manar, Tunis 2092, Tunisia
| | - Bahoueddine Tangour
- IPEIEM, Research Unit on Fundamental Sciences and Didactics, Université de Tunis El Manar, Tunis 2092, Tunisia
| | | | - Abdullah Farasani
- Medical Research Center, Jazan University, Jazan 45142, Saudi Arabia; College of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Manal M E Taha
- Substance Abuse Research Center, Jazan University, Jazan 45142, Saudi Arabia
| | - Anil Bidwai
- College of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Waleed S Koko
- Department of Science Laboratories, College of Science and Arts, Qassim University, King Abdelaziz Road, Ar Rass 51921, Saudi Arabia
| | - Tariq A Khan
- Department of Clinical Nutrition, College of Applied Health Sciences, Qassim University, Ar Rass 51921, Saudi Arabia
| | - Rainer Schobert
- Organic Chemistry Laboratory, University Bayreuth, Universitätsstrasse 30, 95440 Bayreuth, Germany
| | - Bernhard Biersack
- Organic Chemistry Laboratory, University Bayreuth, Universitätsstrasse 30, 95440 Bayreuth, Germany.
| |
Collapse
|
26
|
Eosin Y as a direct hydrogen-atom transfer photocatalyst for the C3-H acylation of quinoxalin-2(1H)-ones. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.152915] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
27
|
Boniface PK, Sano CM, Elizabeth FI. Unveiling the Targets Involved in the Quest of Antileishmanial Leads Using In silico Methods. Curr Drug Targets 2021; 21:681-712. [PMID: 32003668 DOI: 10.2174/1389450121666200128112948] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 02/01/2023]
Abstract
BACKGROUND Leishmaniasis is a neglected tropical disease associated with several clinical manifestations, including cutaneous, mucocutaneous, and visceral forms. As currently available drugs have some limitations (toxicity, resistance, among others), the target-based identification has been an important approach to develop new leads against leishmaniasis. The present study aims to identify targets involved in the pharmacological action of potent antileishmanial compounds. METHODS The literature information regarding molecular interactions of antileishmanial compounds studied over the past half-decade is discussed. The information was obtained from databases such as Wiley, SciFinder, Science Direct, National Library of Medicine, American Chemical Society, Scientific Electronic Library Online, Scopus, Springer, Google Scholar, Web of Science, etc. Results: Numerous in vitro antileishmanial compounds showed affinity and selective interactions with enzymes such as arginase, pteridine reductase 1, trypanothione reductase, pyruvate kinase, among others, which are crucial for the survival and virulence of the Leishmania parasite. CONCLUSION The in-silico activity of small molecules (enzymes, proteins, among others) might be used as pharmacological tools to develop candidate compounds for the treatment of leishmaniasis. As some pharmacologically active compounds may act on more than one target, additional studies of the mechanism (s) of action of potent antileishmanial compounds might help to better understand their pharmacological action. Also, the optimization of promising antileishmanial compounds might improve their biological activity.
Collapse
Affiliation(s)
- Pone K Boniface
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Cinthya M Sano
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Ferreira I Elizabeth
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
28
|
Herrera-Acevedo C, Perdomo-Madrigal C, Muratov EN, Scotti L, Scotti MT. Discovery of Alternative Chemotherapy Options for Leishmaniasis through Computational Studies of Asteraceae. ChemMedChem 2021; 16:1234-1245. [PMID: 33336460 DOI: 10.1002/cmdc.202000862] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/15/2020] [Indexed: 12/12/2022]
Abstract
Leishmaniasis is a complex disease caused by over 20 Leishmania species that primarily affects populations with poor socioeconomic conditions. Currently available drugs for treating leishmaniasis include amphotericin B, paromomycin, and pentavalent antimonials, which have been associated with several limitations, such as low efficacy, the development of drug resistance, and high toxicity. Natural products are an interesting source of new drug candidates. The Asteraceae family includes more than 23 000 species worldwide. Secondary metabolites that can be found in species from this family have been widely explored as potential new treatments for leishmaniasis. Recently, computational tools have become more popular in medicinal chemistry to establish experimental designs, identify new drugs, and compare the molecular structures and activities of novel compounds. Herein, we review various studies that have used computational tools to examine various compounds identified in the Asteraceae family in the search for potential drug candidates against Leishmania.
Collapse
Affiliation(s)
- Chonny Herrera-Acevedo
- Post-Graduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, Cidade Universitária-Castelo Branco III, Joao Pessoa, PB, Brazil
| | - Camilo Perdomo-Madrigal
- School of Science, Universidad de Ciencias Aplicadas y Ambientales, Calle 222 n° 55-37, Bogotá D.C., Colombia
| | - Eugene N Muratov
- Post-Graduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, Cidade Universitária-Castelo Branco III, Joao Pessoa, PB, Brazil
| | - Luciana Scotti
- Post-Graduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, Cidade Universitária-Castelo Branco III, Joao Pessoa, PB, Brazil
| | - Marcus Tullius Scotti
- Post-Graduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, Cidade Universitária-Castelo Branco III, Joao Pessoa, PB, Brazil
| |
Collapse
|
29
|
Aganda KCC, Hong B, Lee A. Visible‐Light‐Promoted Switchable Synthesis of C‐3‐Functionalized Quinoxalin‐2(1
H
)‐ones. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001396] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Kim Christopher C. Aganda
- Department of Energy Science and Technology Myongji University Yongin 17058 Republic of Korea
- Department of Chemistry Jeonbuk National University Jeonju 54896 Republic of Korea
| | - Boseok Hong
- Department of Chemistry Myongji University Yongin 17058 Republic of Korea
| | - Anna Lee
- Department of Chemistry Jeonbuk National University Jeonju 54896 Republic of Korea
| |
Collapse
|
30
|
Shamshad H, Hafiz A, Althagafi II, Saeed M, Mirza AZ. Characterization of the Trypanosoma brucei Pteridine Reductase Active- Site using Computational Docking and Virtual Screening Techniques. Curr Comput Aided Drug Des 2020; 16:583-598. [DOI: 10.2174/1573409915666190827163327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 06/21/2019] [Accepted: 08/01/2019] [Indexed: 01/19/2023]
Abstract
Background:
Human African trypanosomiasis is a fatal disease prevalent in approximately
36 sub-Saharan countries. Emerging reports of drug resistance in Trypanosoma brucei are a serious
cause of concern as only limited drugs are available for the treatment of the disease. Pteridine reductase
is an enzyme of Trypanosoma brucei.
Methods:
It plays a critical role in the pterin metabolic pathway that is absolutely essential for its survival
in the human host. The success of finding a potent inhibitor in structure-based drug design lies
within the ability of computational tools to efficiently and accurately dock a ligand into the binding
cavity of the target protein. Here we report the computational characterization of Trypanosoma brucei
pteridine reductase (Tb-PR) active-site using twenty-four high-resolution co-crystal structures with various
drugs. Structurally, the Tb-PR active site can be grouped in two clusters; one with high Root Mean
Square Deviation (RMSD) of atomic positions and another with low RMSD of atomic positions. These
clusters provide fresh insight for rational drug design against Tb-PR. Henceforth, the effect of several
factors on docking accuracy, including ligand and protein flexibility were analyzed using Fred.
Results:
The online server was used to analyze the side chain flexibility and four proteins were selected
on the basis of results. The proteins were subjected to small-scale virtual screening using 85 compounds,
and statistics were calculated using Bedroc and roc curves. The enrichment factor was also calculated
for the proteins and scoring functions. The best scoring function was used to understand the ligand
protein interactions with top common compounds of four proteins. In addition, we made a 3D
structural comparison between the active site of Tb-PR and Leishmania major pteridine reductase (Lm-
PR). We described key structural differences between Tb-PR and Lm-PR that can be exploited for rational
drug design against these two human parasites.
Conclusion:
The results indicated that relying just on re-docking and cross-docking experiments for
virtual screening of libraries isn’t enough and results might be misleading. Hence it has been suggested
that small scale virtual screening should be performed prior to large scale screening.
Collapse
Affiliation(s)
- Hina Shamshad
- Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, University of Karachi, Karachi-75270, Pakistan
| | - Abdul Hafiz
- Department of Medical Parasitology, College of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ismail I. Althagafi
- Chemistry Department, Faculty of Applied Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Maria Saeed
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi- 75270, Pakistan
| | - Agha Zeeshan Mirza
- Chemistry Department, Faculty of Applied Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
31
|
Bibi M, Qureshi NA, Sadiq A, Farooq U, Hassan A, Shaheen N, Asghar I, Umer D, Ullah A, Khan FA, Salman M, Bibi A, Rashid U. Exploring the ability of dihydropyrimidine-5-carboxamide and 5-benzyl-2,4-diaminopyrimidine-based analogues for the selective inhibition of L. major dihydrofolate reductase. Eur J Med Chem 2020; 210:112986. [PMID: 33187806 DOI: 10.1016/j.ejmech.2020.112986] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 11/20/2022]
Abstract
To tackle leishmaniasis, search for efficient therapeutic drug targets should be pursued. Dihydrofolate reductase (DHFR) is considered as a key target for the treatment of leishmaniasis. In current study, we are interested in the design and synthesis of selective antifolates targeting DHFR from L. major. We focused on the development of new antifolates based on 3,4-dihydropyrimidine-2-one and 5-(3,5-dimethoxybenzyl)pyrimidine-2,4-diamine motif. Structure activity relationship (SAR) studies were performed on 4-phenyl ring of dihydropyrimidine (26-30) template. While for 5-(3,5-dimethoxybenzyl)pyrimidine-2,4-diamine, the impact of different amino acids (valine, tryptophan, phenylalanine, and glutamic acid) and two carbon linkers were explored (52-59). The synthesized compounds were assayed against LmDHFR. Compound 59 with the IC50 value of 0.10 μM appeared as potent inhibitors of L. major. Selectivity for parasite DHFR over human DHFR was also determined. Derivatives 55-59 demonstrated excellent selectivity for LmDHFR. Highest selectivity for LmDHFR was shown by compounds 56 (SI = 84.5) and 58 (SI = 87.5). Compounds Antileishmanial activity against L. major and L. donovani promastigotes was also performed. To explore the interaction pattern of the synthesized compounds with biological macromolecules, the docking studies were carried out against homology modelled LmDHFR and hDHFR targets.
Collapse
Affiliation(s)
- Maria Bibi
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, 22060, Pakistan
| | | | - Abdul Sadiq
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Chakdara, 18000, Dir (L), KP, Pakistan
| | - Umar Farooq
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, 22060, Pakistan
| | - Abbas Hassan
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Nargis Shaheen
- Department of Animal Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Irfa Asghar
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, 22060, Pakistan
| | - Duaa Umer
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, 22060, Pakistan
| | - Azmat Ullah
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, 22060, Pakistan
| | - Farhan A Khan
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, 22060, Pakistan
| | - Muhammad Salman
- Department of Microbiology, National Institute of Health (NIH), Islamabad, 45320, Pakistan
| | - Ahtaram Bibi
- Department of Chemistry, Faculty of Physical Sciences, Kohat University of Science and Technology, 26000, Kohat, KP, Pakistan
| | - Umer Rashid
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, 22060, Pakistan.
| |
Collapse
|
32
|
2-Amino-1,3,4-thiadiazoles as prospective agents in trypanosomiasis and other parasitoses. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2020; 70:259-290. [PMID: 32074064 DOI: 10.2478/acph-2020-0031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/24/2019] [Indexed: 01/19/2023]
Abstract
Parasitic diseases are a serious public health problem affecting hundreds of millions of people worldwide. African trypanosomiasis, American trypanosomiasis, leishmaniasis, malaria and toxoplasmosis are the main parasitic infections caused by protozoan parasites with over one million deaths each year. Due to old medications and drug resistance worldwide, there is an urgent need for new antiparasitic drugs. 1,3,4-Thiadiazoles have been widely studied for medical applications. The chemical, physical and pharmacokinetic properties recommend 1,3,4-thiadiazole ring as a target in drug development. Many scientific papers report the antiparasitic potential of 2-amino-1,3,4-thiadiazoles. This review presents synthetic 2-amino-1,3,4-thiadiazoles exhibiting antitrypanosomal, antimalarial and antitoxoplasmal activities. Although there are insufficient results to state the quality of 2-amino-1,3,4-thiadiazoles as a new class of antiparasitic agents, many reported derivatives can be considered as lead compounds for drug synthesis and a promise for the future treatment of parasitosis and provide a valid strategy for the development of potent antiparasitic drugs.
Collapse
|
33
|
Istanbullu H, Bayraktar G, Akbaba H, Cavus I, Coban G, Debelec Butuner B, Kilimcioglu AA, Ozbilgin A, Alptuzun V, Erciyas E. Design, synthesis, and in vitro biological evaluation of novel thiazolopyrimidine derivatives as antileishmanial compounds. Arch Pharm (Weinheim) 2020; 353:e1900325. [DOI: 10.1002/ardp.201900325] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 04/21/2020] [Accepted: 05/11/2020] [Indexed: 11/06/2022]
Affiliation(s)
- Huseyin Istanbullu
- Department of Pharmaceutical Chemistry, Faculty of PharmacyIzmir Katip Celebi University Cigli Izmir Turkey
| | - Gulsah Bayraktar
- Department of Pharmaceutical Chemistry, Faculty of PharmacyEge University Bornova Izmir Turkey
| | - Hasan Akbaba
- Department of Pharmaceutical Biotechnology, Faculty of PharmacyEge University Bornova Izmir Turkey
| | - Ibrahim Cavus
- Department of ParasitologyManisa Celal Bayar University Manisa Turkey
| | - Gunes Coban
- Department of Pharmaceutical Chemistry, Faculty of PharmacyEge University Bornova Izmir Turkey
| | - Bilge Debelec Butuner
- Department of Pharmaceutical Biotechnology, Faculty of PharmacyEge University Bornova Izmir Turkey
| | | | - Ahmet Ozbilgin
- Department of ParasitologyManisa Celal Bayar University Manisa Turkey
| | - Vildan Alptuzun
- Department of Pharmaceutical Chemistry, Faculty of PharmacyEge University Bornova Izmir Turkey
| | - Ercin Erciyas
- Department of Pharmaceutical Chemistry, Faculty of PharmacyEge University Bornova Izmir Turkey
| |
Collapse
|
34
|
Landi G, Linciano P, Tassone G, Costi MP, Mangani S, Pozzi C. High-resolution crystal structure of Trypanosoma brucei pteridine reductase 1 in complex with an innovative tricyclic-based inhibitor. Acta Crystallogr D Struct Biol 2020; 76:558-564. [PMID: 32496217 DOI: 10.1107/s2059798320004891] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 04/06/2020] [Indexed: 11/10/2022] Open
Abstract
The protozoan parasite Trypanosoma brucei is the etiological agent of human African trypanosomiasis (HAT). HAT, together with other neglected tropical diseases, causes serious health and economic issues, especially in tropical and subtropical areas. The classical antifolates targeting dihydrofolate reductase (DHFR) are ineffective towards trypanosomatid parasites owing to a metabolic bypass by the expression of pteridine reductase 1 (PTR1). The combined inhibition of PTR1 and DHFR activities in Trypanosoma parasites represents a promising strategy for the development of new effective treatments for HAT. To date, only monocyclic and bicyclic aromatic systems have been proposed as inhibitors of T. brucei PTR1 (TbPTR1); nevertheless, the size of the catalytic cavity allows the accommodation of expanded molecular cores. Here, an innovative tricyclic-based compound has been explored as a TbPTR1-targeting molecule and its potential application for the development of a new class of PTR1 inhibitors has been evaluated. 2,4-Diaminopyrimido[4,5-b]indol-6-ol (1) was designed and synthesized, and was found to be effective in blocking TbPTR1 activity, with a Ki in the low-micromolar range. The binding mode of 1 was clarified through the structural characterization of its ternary complex with TbPTR1 and the cofactor NADP(H), which was determined to 1.30 Å resolution. The compound adopts a substrate-like orientation inside the cavity that maximizes the binding contributions of hydrophobic and hydrogen-bond interactions. The binding mode of 1 was compared with those of previously reported bicyclic inhibitors, providing new insights for the design of innovative tricyclic-based molecules targeting TbPTR1.
Collapse
Affiliation(s)
- Giacomo Landi
- Department of Biotechnology, Chemistry and Pharmacy - Department of Excellence 2018-2022, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Pasquale Linciano
- Department of Life Science, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Giusy Tassone
- Department of Biotechnology, Chemistry and Pharmacy - Department of Excellence 2018-2022, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Maria Paola Costi
- Department of Life Science, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Stefano Mangani
- Department of Biotechnology, Chemistry and Pharmacy - Department of Excellence 2018-2022, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Cecilia Pozzi
- Department of Biotechnology, Chemistry and Pharmacy - Department of Excellence 2018-2022, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| |
Collapse
|
35
|
Antileishmanial activity evaluation of thiazolidine-2,4-dione against Leishmania infantum and Leishmania braziliensis. Parasitol Res 2020; 119:2263-2274. [PMID: 32462293 DOI: 10.1007/s00436-020-06706-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 05/05/2020] [Indexed: 01/04/2023]
Abstract
Leishmaniasis is responsible for approximately 65,000 annual deaths. Despite the mortality data, drugs available for the treatment of patients are insufficient and have moderate therapeutic efficacy in addition to serious adverse effects, which makes the development of new drugs urgent. To achieve this goal, the integration of kinetic and DSF assays against parasitic validated targets, along with phenotypic assays, can help the identification and optimization of bioactive compounds. Pteridine reductase 1 (PTR1), a validated target in Leishmania sp., is responsible for the reduction of folate and biopterin to tetrahydrofolate and tetrahydrobiopterin, respectively, both of which are essential for cell growth. In addition to the in vitro evaluation of 16 thiazolidine-2,4-dione derivatives against Leishmania major PTR1 (LmPTR1), using the differential scanning fluorimetry (ThermoFluor®), phenotypic assays were employed to evaluate the compound effect over Leishmania braziliensis (MHOM/BR/75/M2903) and Leishmania infantum (MHOM/BR/74/PP75) promastigotes viability. The ThermoFluor® results show that thiazolidine-2,4-dione derivatives have micromolar affinity to the target and equivalent activity on Leishmania cells. 2b is the most potent compound against L. infantum (EC50 = 23.45 ± 4.54 μM), whereas 2a is the most potent against L. braziliensis (EC50 = 44.16 ± 5.77 μM). This result suggests that lipophilic substituents on either-meta and/or-para positions of the benzylidene ring increase the potency against L. infantum. On the other hand, compound 2c (CE50 = 49.22 ± 7.71 μM) presented the highest selectivity index.
Collapse
|
36
|
Crentsil JA, Yamthe LRT, Anibea BZ, Broni E, Kwofie SK, Tetteh JKA, Osei-Safo D. Leishmanicidal Potential of Hardwickiic Acid Isolated From Croton sylvaticus. Front Pharmacol 2020; 11:753. [PMID: 32523532 PMCID: PMC7261830 DOI: 10.3389/fphar.2020.00753] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 05/06/2020] [Indexed: 01/31/2023] Open
Abstract
Leishmania is a parasitic protozoon responsible for the neglected tropical disease Leishmaniasis. Approximately, 350 million people are susceptible and close to 70,000 death cases globally are reported annually. The lack of effective leishmanicides, the emergence of drug resistance and toxicity concerns necessitate the pursuit for effective antileishmanial drugs. Natural compounds serve as reservoirs for discovering new drugs due to their chemical diversity. Hardwickiic acid (HA) isolated from the stembark of Croton sylvaticus was evaluated for its leishmanicidal potential against Leishmania donovani and L. major promastigotes. The susceptibility of the promastigotes to HA was determined using the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide/phenazine methosulfate colorimetric assay with Amphotericin B serving as positive control. HA showed a significant antileishmanial activity on L. donovani promastigotes with an IC50 value of 31.57± 0.06 µM with respect to the control drug, amphotericin B with IC50 of 3.35 ± 0.14 µM). The cytotoxic activity was observed to be CC50 = 247.83 ± 6.32 µM against 29.99 ± 2.82 µM for curcumin, the control, resulting in a selectivity index of SI = 7.85. Molecular modeling, docking and dynamics simulations of selected drug targets corroborated the observed antileishmanial activity of HA. Novel insights into the mechanisms of binding were obtained for trypanothione reductase (TR), pteridine reductase 1 (PTR1), and glutamate cysteine ligase (GCL). The binding affinity of HA to the drug targets LmGCL, LmPTR1, LdTR, LmTR, LdGCL, and LdPTR1 were obtained as -8.0, -7.8, -7.6, -7.5, -7.4 and -7.1 kcal/mol, respectively. The role of Lys16, Ser111, and Arg17 as critical residues required for binding to LdPTR1 was reinforced. HA was predicted as a Caspase-3 stimulant and Caspase-8 stimulant, implying a possible role in apoptosis, which was shown experimentally that HA induced parasite death by loss of membrane integrity. HA was also predicted as antileishmanial molecule corroborating the experimental activity. Therefore, HA is a promising antileishmanial molecule worthy of further development as a biotherapeutic agent.
Collapse
Affiliation(s)
- Justice Afrifa Crentsil
- Department of Chemistry, School of Physical and Mathematical Sciences, College of Basic and Applied Sciences (CBAS), University of Ghana, Accra, Ghana
| | - Lauve Rachel Tchokouaha Yamthe
- Institute for Medical Research and Medicinal Plants Studies, Yaoundé, Cameroon.,Department of Parasitology, College of Health Sciences, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana.,Antimicrobial and Biocontrol Agents Unit, Laboratory for Phytobiochemistry and Medicinal Plants Studies, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| | - Barbara Zenabu Anibea
- Department of Chemistry, School of Physical and Mathematical Sciences, College of Basic and Applied Sciences (CBAS), University of Ghana, Accra, Ghana
| | - Emmanuel Broni
- Department of Biomedical Engineering, School of Engineering Sciences, CBAS, University of Ghana, Accra, Ghana
| | - Samuel Kojo Kwofie
- Department of Biomedical Engineering, School of Engineering Sciences, CBAS, University of Ghana, Accra, Ghana.,West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, CBAS, University of Ghana, Accra, Ghana.,Department of Medicine, Loyola University Medical Center, Maywood, IL, United States.,Department of Physics and Engineering Science, Coastal Carolina University, Conway, SC, United States
| | - John Kweku Amissah Tetteh
- Department of Immunology, College of Health Sciences, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Dorcas Osei-Safo
- Department of Chemistry, School of Physical and Mathematical Sciences, College of Basic and Applied Sciences (CBAS), University of Ghana, Accra, Ghana
| |
Collapse
|
37
|
Lu J, He X, Cheng X, Zhang A, Xu G, Xuan J. Photoredox Catalyst Free, Visible Light‐Promoted C3−H Acylation of Quinoxalin‐2(1
H
)‐ones in Water. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000116] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Juan Lu
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, College of Chemistry & Chemical EngineeringAnhui University Hefei, Anhui 230601 People's Republic of China
| | - Xiang‐Kui He
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, College of Chemistry & Chemical EngineeringAnhui University Hefei, Anhui 230601 People's Republic of China
| | - Xiao Cheng
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, College of Chemistry & Chemical EngineeringAnhui University Hefei, Anhui 230601 People's Republic of China
| | - Ai‐Jun Zhang
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, College of Chemistry & Chemical EngineeringAnhui University Hefei, Anhui 230601 People's Republic of China
| | - Guo‐Yong Xu
- Institute of Physical Science and Information TechnologyAnhui University Hefei, Anhui 230601 People's Republic of China
| | - Jun Xuan
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, College of Chemistry & Chemical EngineeringAnhui University Hefei, Anhui 230601 People's Republic of China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University)Ministry of Education Hefei 230601 People's Republic of China
| |
Collapse
|
38
|
Linciano P, Cullia G, Borsari C, Santucci M, Ferrari S, Witt G, Gul S, Kuzikov M, Ellinger B, Santarém N, Cordeiro da Silva A, Conti P, Bolognesi ML, Roberti M, Prati F, Bartoccini F, Retini M, Piersanti G, Cavalli A, Goldoni L, Bertozzi SM, Bertozzi F, Brambilla E, Rizzo V, Piomelli D, Pinto A, Bandiera T, Costi MP. Identification of a 2,4-diaminopyrimidine scaffold targeting Trypanosoma brucei pteridine reductase 1 from the LIBRA compound library screening campaign. Eur J Med Chem 2020; 189:112047. [PMID: 31982652 DOI: 10.1016/j.ejmech.2020.112047] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 12/31/2019] [Accepted: 01/06/2020] [Indexed: 12/21/2022]
Abstract
The LIBRA compound library is a collection of 522 non-commercial molecules contributed by various Italian academic laboratories. These compounds have been designed and synthesized during different medicinal chemistry programs and are hosted by the Italian Institute of Technology. We report the screening of the LIBRA compound library against Trypanosoma brucei and Leishmania major pteridine reductase 1, TbPTR1 and LmPTR1. Nine compounds were active against parasitic PTR1 and were selected for cell-based parasite screening, as single agents and in combination with methotrexate (MTX). The most interesting TbPTR1 inhibitor identified was 4-(benzyloxy)pyrimidine-2,6-diamine (LIB_66). Subsequently, six new LIB_66 derivatives were synthesized to explore its Structure-Activity-Relationship (SAR) and absorption, distribution, metabolism, excretion and toxicity (ADMET) properties. The results indicate that PTR1 has a preference to bind inhibitors, which resemble its biopterin/folic acid substrates, such as the 2,4-diaminopyrimidine derivatives.
Collapse
Affiliation(s)
- Pasquale Linciano
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125, Modena, Italy
| | - Gregorio Cullia
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133, Milan, Italy
| | - Chiara Borsari
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125, Modena, Italy
| | - Matteo Santucci
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125, Modena, Italy
| | - Stefania Ferrari
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125, Modena, Italy
| | - Gesa Witt
- Fraunhofer Institute for Molecular Biology and Applied Ecology - ScreeningPort, Hamburg, Germany
| | - Sheraz Gul
- Fraunhofer Institute for Molecular Biology and Applied Ecology - ScreeningPort, Hamburg, Germany
| | - Maria Kuzikov
- Fraunhofer Institute for Molecular Biology and Applied Ecology - ScreeningPort, Hamburg, Germany
| | - Bernhard Ellinger
- Fraunhofer Institute for Molecular Biology and Applied Ecology - ScreeningPort, Hamburg, Germany
| | - Nuno Santarém
- Institute for Molecular and Cell Biology, 4150-180 Porto, Portugal and Instituto de Investigação e Inovação Em Saúde, Universidade Do Porto, 4150-180, Porto, Portugal
| | - Anabela Cordeiro da Silva
- Institute for Molecular and Cell Biology, 4150-180 Porto, Portugal and Instituto de Investigação e Inovação Em Saúde, Universidade Do Porto, 4150-180, Porto, Portugal; Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Portugal
| | - Paola Conti
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133, Milan, Italy
| | - Maria Laura Bolognesi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, I-40126, Bologna, Italy
| | - Marinella Roberti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, I-40126, Bologna, Italy
| | - Federica Prati
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, I-40126, Bologna, Italy
| | - Francesca Bartoccini
- Computational and Chemical Biology, Istituto Italiano di Tecnologia, Via Morego 30, I-16163, Genova, Italy
| | - Michele Retini
- Department of Biomolecular Sciences, Section of Chemistry, University of Urbino "Carlo Bo", Piazza Rinascimento 6, 61029, Urbino, Italy
| | - Giovanni Piersanti
- Department of Biomolecular Sciences, Section of Chemistry, University of Urbino "Carlo Bo", Piazza Rinascimento 6, 61029, Urbino, Italy
| | - Andrea Cavalli
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, I-40126, Bologna, Italy; Computational and Chemical Biology, Istituto Italiano di Tecnologia, Via Morego 30, I-16163, Genova, Italy
| | - Luca Goldoni
- Analytical Chemistry Lab, Istituto Italiano di Tecnologia, Via Morego 30, I-16163, Genova, Italy
| | - Sine Mandrup Bertozzi
- Analytical Chemistry Lab, Istituto Italiano di Tecnologia, Via Morego 30, I-16163, Genova, Italy
| | - Fabio Bertozzi
- PharmaChemistry Line, Istituto Italiano di Tecnologia, Via Morego 30, I-16163, Genova, Italy
| | - Enzo Brambilla
- PharmaChemistry Line, Istituto Italiano di Tecnologia, Via Morego 30, I-16163, Genova, Italy
| | - Vincenzo Rizzo
- PharmaChemistry Line, Istituto Italiano di Tecnologia, Via Morego 30, I-16163, Genova, Italy
| | - Daniele Piomelli
- Departments of Anatomy and Neurobiology, Pharmacology and Biological Chemistry, University of California, Irvine, 92697-4625, USA
| | - Andrea Pinto
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Via Celoria 2, 20133, Milan, Italy
| | - Tiziano Bandiera
- PharmaChemistry Line, Istituto Italiano di Tecnologia, Via Morego 30, I-16163, Genova, Italy
| | - Maria Paola Costi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125, Modena, Italy.
| |
Collapse
|
39
|
Ni H, Shi X, Li Y, Zhang X, Zhao J, Zhao F. Metal-free C3–H acylation of quinoxalin-2(1H)-ones with α-oxo-carboxylic acids. Org Biomol Chem 2020; 18:6558-6563. [DOI: 10.1039/d0ob01423k] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Direct C3–H acylation of quinoxalin-2(1H)-ones with α-oxocarboxylic acids under thermo conditions promoted by PIDA has been achieved in a moderate to good yield in a very fast manner.
Collapse
Affiliation(s)
- Hangcheng Ni
- Jinhua Branch
- Sichuan Industrial Institute of Antibiotics
- Chengdu University
- Jinhua 321007
- China
| | - Xingzi Shi
- Jinhua Branch
- Sichuan Industrial Institute of Antibiotics
- Chengdu University
- Jinhua 321007
- China
| | - Yu Li
- Jinhua Branch
- Sichuan Industrial Institute of Antibiotics
- Chengdu University
- Jinhua 321007
- China
| | - Xiaoning Zhang
- Jinhua Branch
- Sichuan Industrial Institute of Antibiotics
- Chengdu University
- Jinhua 321007
- China
| | - Jingwei Zhao
- Jinhua Branch
- Sichuan Industrial Institute of Antibiotics
- Chengdu University
- Jinhua 321007
- China
| | - Fei Zhao
- Jinhua Branch
- Sichuan Industrial Institute of Antibiotics
- Chengdu University
- Jinhua 321007
- China
| |
Collapse
|
40
|
Activated carbon/Brønsted acid-promoted aerobic benzylic oxidation under "on-water" condition: Green and efficient synthesis of 3-benzoylquinoxalinones as potent tubulin inhibitors. Eur J Med Chem 2019; 186:111894. [PMID: 31787361 DOI: 10.1016/j.ejmech.2019.111894] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 10/31/2019] [Accepted: 11/14/2019] [Indexed: 01/09/2023]
Abstract
Green chemistry is becoming the favored approach to preparing drug molecules in pharmaceutical industry. Herein, we developed a clean and efficient method to synthesize 3-benzoylquinoxalines via activated carbon promoted aerobic benzylic oxidation under "on-water" condition. Moreover, biological studies with this class of compounds reveal an antiproliferative profile. Further structure modifications are performed and the investigations exhibited that the most active 12a could inhibit the microtubule polymerization by binding to tubulin and thus induce multipolar mitosis, G2/M phase arrest, and apoptosis of cancer cells. In addition, molecular docking studies allow the rationalization of the pharmacodynamic properties observed. Our systematic studies provide not only guidance for applications of O2/AC/H2O system, but also a new scaffold targeting tubulin for antitumor agent discovery.
Collapse
|
41
|
Valente M, Vidal AE, González-Pacanowska D. Targeting Kinetoplastid and Apicomplexan Thymidylate Biosynthesis as an Antiprotozoal Strategy. Curr Med Chem 2019; 26:4262-4279. [PMID: 30259810 DOI: 10.2174/0929867325666180926154329] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 03/23/2018] [Accepted: 09/14/2018] [Indexed: 02/04/2023]
Abstract
Kinetoplastid and apicomplexan parasites comprise a group of protozoans responsible for human diseases, with a serious impact on human health and the socioeconomic growth of developing countries. Chemotherapy is the main option to control these pathogenic organisms and nucleotide metabolism is considered a promising area for the provision of antimicrobial therapeutic targets. Impairment of thymidylate (dTMP) biosynthesis severely diminishes the viability of parasitic protozoa and the absence of enzymatic activities specifically involved in the formation of dTMP (e.g. dUTPase, thymidylate synthase, dihydrofolate reductase or thymidine kinase) results in decreased deoxythymidine triphosphate (dTTP) levels and the so-called thymineless death. In this process, the ratio of deoxyuridine triphosphate (dUTP) versus dTTP in the cellular nucleotide pool has a crucial role. A high dUTP/dTTP ratio leads to uracil misincorporation into DNA, the activation of DNA repair pathways, DNA fragmentation and eventually cell death. The essential character of dTMP synthesis has stimulated interest in the identification and development of drugs that specifically block the biochemical steps involved in thymine nucleotide formation. Here, we review the available literature in relation to drug discovery studies targeting thymidylate biosynthesis in kinetoplastid (genera Trypanosoma and Leishmania) and apicomplexan (Plasmodium spp and Toxoplasma gondii) protozoans. The most relevant findings concerning novel inhibitory molecules with antiparasitic activity against these human pathogens are presented herein.
Collapse
Affiliation(s)
- María Valente
- Instituto de Parasitologia y Biomedicina "Lopez-Neyra", Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Antonio E Vidal
- Instituto de Parasitologia y Biomedicina "Lopez-Neyra", Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Dolores González-Pacanowska
- Instituto de Parasitologia y Biomedicina "Lopez-Neyra", Consejo Superior de Investigaciones Científicas, Granada, Spain
| |
Collapse
|
42
|
Targeting pteridine reductase 1 and dihydrofolate reductase: the old is a new trend for leishmaniasis drug discovery. Future Med Chem 2019; 11:2107-2130. [DOI: 10.4155/fmc-2018-0512] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Leishmaniasis is one of the major neglected tropical diseases in the world and it is considered endemic in 88 countries. This disease is transmitted by a Leishmania spp. infected sandfly and it may lead to cutaneous or systemic manifestations. The preconized treatment has low efficacy and there are cases of resistance to some drugs. Therefore, the search for new efficient molecular targets that can lead to the preparation of new drugs must be pursued. This review aims to evaluate both Leishmania enzymes PTR1 and DHFR-TS as potential drug targets, highlight their inhibitors and to discuss critically the use of chemoinformatics to elucidate interactions and propose new molecules against these enzymes.
Collapse
|
43
|
de Melo Mendes V, Tempone AG, Treiger Borborema SE. Antileishmanial activity of H1-antihistamine drugs and cellular alterations in Leishmania (L.) infantum. Acta Trop 2019; 195:6-14. [PMID: 31002807 DOI: 10.1016/j.actatropica.2019.04.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 04/08/2019] [Accepted: 04/15/2019] [Indexed: 12/13/2022]
Abstract
Leishmaniases are infectious diseases caused by protozoan parasites Leishmania and transmitted by sand flies. Drug repurposing is a therapeutic approach that has shown satisfactory results in their treatment. Analyses of antihistaminic drugs have revealed their in vitro and in vivo activity against trypanosomatids. In this way, this study evaluated the antileishmanial activity of H1-antihistamines and identified the cellular alterations in Leishmania (L.) infantum. Cinnarizine, cyproheptadine, and meclizine showed activity against promastigotes with 50% inhibitory concentration (IC50) values between 10-29 μM. These drugs also demonstrated activity and selectivity against intracellular amastigotes, with IC50 values between 20-35 μM. Fexofenadine and cetirizine lacked antileishmanial activity against both forms. Mammalian cytotoxicity studies revealed 50% cytotoxic concentration values between 52 - >200 μM. These drugs depolarized the mitochondria membrane of parasites and caused morphological alterations, including mitochondrial damage, disorganization of the intracellular content, and nuclear membrane detachment. In conclusion, the L. infantum death may be ascribed by the subcellular alterations followed by a pronounced decrease in the mitochondrial membrane potential, indicating dysfunction in the respiratory chain upon H1-antihistamine treatment. These H1-antihistamines could be used to explore new routes of cellular death in the parasite and the determination of the targets at a molecular level, would contribute to understanding the potential of these drugs as antileishmanial.
Collapse
|
44
|
Stank A, Kokh DB, Horn M, Sizikova E, Neil R, Panecka J, Richter S, Wade RC. TRAPP webserver: predicting protein binding site flexibility and detecting transient binding pockets. Nucleic Acids Res 2019; 45:W325-W330. [PMID: 28431137 PMCID: PMC5570179 DOI: 10.1093/nar/gkx277] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 04/12/2017] [Indexed: 01/07/2023] Open
Abstract
The TRAnsient Pockets in Proteins (TRAPP) webserver provides an automated workflow that allows users to explore the dynamics of a protein binding site and to detect pockets or sub-pockets that may transiently open due to protein internal motion. These transient or cryptic sub-pockets may be of interest in the design and optimization of small molecular inhibitors for a protein target of interest. The TRAPP workflow consists of the following three modules: (i) TRAPP structure— generation of an ensemble of structures using one or more of four possible molecular simulation methods; (ii) TRAPP analysis—superposition and clustering of the binding site conformations either in an ensemble of structures generated in step (i) or in PDB structures or trajectories uploaded by the user; and (iii) TRAPP pocket—detection, analysis, and visualization of the binding pocket dynamics and characteristics, such as volume, solvent-exposed area or properties of surrounding residues. A standard sequence conservation score per residue or a differential score per residue, for comparing on- and off-targets, can be calculated and displayed on the binding pocket for an uploaded multiple sequence alignment file, and known protein sequence annotations can be displayed simultaneously. The TRAPP webserver is freely available at http://trapp.h-its.org.
Collapse
Affiliation(s)
- Antonia Stank
- Molecular and Cellular Modeling group, Heidelberg Institute for Theoretical Studies (HITS), Heidelberg, Baden-Württemberg 69118, Germany.,Heidelberg Graduate School of Mathematical and Computational Methods for the Sciences, Heidelberg University, Heidelberg, Baden-Württemberg 69120, Germany
| | - Daria B Kokh
- Molecular and Cellular Modeling group, Heidelberg Institute for Theoretical Studies (HITS), Heidelberg, Baden-Württemberg 69118, Germany
| | - Max Horn
- Molecular and Cellular Modeling group, Heidelberg Institute for Theoretical Studies (HITS), Heidelberg, Baden-Württemberg 69118, Germany
| | - Elena Sizikova
- Molecular and Cellular Modeling group, Heidelberg Institute for Theoretical Studies (HITS), Heidelberg, Baden-Württemberg 69118, Germany
| | - Rebecca Neil
- Molecular and Cellular Modeling group, Heidelberg Institute for Theoretical Studies (HITS), Heidelberg, Baden-Württemberg 69118, Germany
| | - Joanna Panecka
- Molecular and Cellular Modeling group, Heidelberg Institute for Theoretical Studies (HITS), Heidelberg, Baden-Württemberg 69118, Germany
| | - Stefan Richter
- Molecular and Cellular Modeling group, Heidelberg Institute for Theoretical Studies (HITS), Heidelberg, Baden-Württemberg 69118, Germany
| | - Rebecca C Wade
- Molecular and Cellular Modeling group, Heidelberg Institute for Theoretical Studies (HITS), Heidelberg, Baden-Württemberg 69118, Germany.,Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Heidelberg, Baden-Württemberg 69120, Germany.,Center for Molecular Biology of the University of Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, Heidelberg, Baden-Württemberg 69120, Germany
| |
Collapse
|
45
|
Duschak VG. Major Kinds of Drug Targets in Chagas Disease or American Trypanosomiasis. Curr Drug Targets 2019; 20:1203-1216. [PMID: 31020939 DOI: 10.2174/1389450120666190423160804] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/12/2019] [Accepted: 04/12/2019] [Indexed: 11/22/2022]
Abstract
American Trypanosomiasis, a parasitic infection commonly named Chagas disease, affects millions of people all over Latin American countries. Presently, the World Health Organization (WHO) predicts that the number of international infected individuals extends to 7 to 8 million, assuming that more than 10,000 deaths occur annually. The transmission of the etiologic agent, Trypanosoma cruzi, through people migrating to non-endemic world nations makes it an emergent disease. The best promising targets for trypanocidal drugs may be classified into three main groups: Group I includes the main molecular targets that are considered among specific enzymes involved in the essential processes for parasite survival, principally Cruzipain, the major antigenic parasite cysteine proteinase. Group II involves biological pathways and their key specific enzymes, such as Sterol biosynthesis pathway, among others, specific antioxidant defense mechanisms, and bioenergetics ones. Group III includes the atypical organelles /structures present in the parasite relevant clinical forms, which are absent or considerably different from those present in mammals and biological processes related to them. These can be considered potential targets to develop drugs with extra effectiveness and fewer secondary effects than the currently used therapeutics. An improved distinction between the host and the parasite targets will help fight against this neglected disease.
Collapse
Affiliation(s)
- Vilma G Duschak
- National Council of Scientific and Technical Reasearch (CONICET) Researcher, Area of Protein Biochemistry and Parasite Glycobiology, Research Department, National Institute of Parasitology (INP), "Dr. Mario Fatala Chaben", ANLIS-Malbran, National Health Secretary, Av. Paseo Colon 568, Lab 506, Ciudad Autonoma de Buenos Aires (1063), Buenos Aires, Argentina
| |
Collapse
|
46
|
Quotadamo A, Linciano P, Costi MP, Venturelli A. Optimization of
N
‐alkylation in the Synthesis of Methotrexate and Pteridine‐based Derivatives Under Microwave‐Irradiation. ChemistrySelect 2019. [DOI: 10.1002/slct.201900721] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Antonio Quotadamo
- Dipartimento di Scienze della VitaUniversità degli Studi di Modena e Reggio Emilia, Via Campi 103, 41125 Modena Italy
- Clinical and Experimental Medicine PhD ProgramUniversity of Modena and Reggio Emilia, Via Campi 103 41125 Modena Italy
| | - Pasquale Linciano
- Dipartimento di Scienze della VitaUniversità degli Studi di Modena e Reggio Emilia, Via Campi 103, 41125 Modena Italy
| | - Maria Paola Costi
- Dipartimento di Scienze della VitaUniversità degli Studi di Modena e Reggio Emilia, Via Campi 103, 41125 Modena Italy
| | | |
Collapse
|
47
|
Serban G. Future Prospects in the Treatment of Parasitic Diseases: 2-Amino-1,3,4-Thiadiazoles in Leishmaniasis. Molecules 2019; 24:E1557. [PMID: 31010226 PMCID: PMC6514673 DOI: 10.3390/molecules24081557] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/14/2019] [Accepted: 04/17/2019] [Indexed: 02/08/2023] Open
Abstract
Neglected tropical diseases affect the lives of a billion people worldwide. Among them, the parasitic infections caused by protozoan parasites of the Trypanosomatidae family have a huge impact on human health. Leishmaniasis, caused by Leishmania spp., is an endemic parasitic disease in over 88 countries and is closely associated with poverty. Although significant advances have been made in the treatment of leishmaniasis over the last decade, currently available chemotherapy is far from satisfactory. The lack of an approved vaccine, effective medication and significant drug resistance worldwide had led to considerable interest in discovering new, inexpensive, efficient and safe antileishmanial agents. 1,3,4-Thiadiazole rings are found in biologically active natural products and medicinally important synthetic compounds. The thiadiazole ring exhibits several specific properties: it is a bioisostere of pyrimidine or benzene rings with prevalence in biologically active compounds; the sulfur atom increases lipophilicity and combined with the mesoionic character of thiadiazoles imparts good oral absorption and good cell permeability, resulting in good bioavailability. This review presents synthetic 2-amino-1,3,4-thiadiazole derivatives with antileishmanial activity. Many reported derivatives can be considered as lead compounds for the synthesis of future agents as an alternative to the treatment of leishmaniasis.
Collapse
Affiliation(s)
- Georgeta Serban
- Pharmaceutical Chemistry Department, Faculty of Medicine and Pharmacy, University of Oradea, 29 Nicolae Jiga, 410028 Oradea, Romania.
| |
Collapse
|
48
|
Linciano P, Pozzi C, Iacono LD, di Pisa F, Landi G, Bonucci A, Gul S, Kuzikov M, Ellinger B, Witt G, Santarem N, Baptista C, Franco C, Moraes CB, Müller W, Wittig U, Luciani R, Sesenna A, Quotadamo A, Ferrari S, Pöhner I, Cordeiro-da-Silva A, Mangani S, Costantino L, Costi MP. Enhancement of Benzothiazoles as Pteridine Reductase-1 Inhibitors for the Treatment of Trypanosomatidic Infections. J Med Chem 2019; 62:3989-4012. [DOI: 10.1021/acs.jmedchem.8b02021] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Pasquale Linciano
- Dipartimento di Scienze della Vita, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Cecilia Pozzi
- Dipartimento di Biotecnologie, Chimica e Farmacia, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Lucia dello Iacono
- Dipartimento di Biotecnologie, Chimica e Farmacia, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Flavio di Pisa
- Dipartimento di Biotecnologie, Chimica e Farmacia, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Giacomo Landi
- Dipartimento di Biotecnologie, Chimica e Farmacia, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Alessio Bonucci
- Dipartimento di Biotecnologie, Chimica e Farmacia, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Sheraz Gul
- Fraunhofer Institute for Molecular Biology and Applied Ecology Screening Port, 22525 Hamburg, Germany
| | - Maria Kuzikov
- Fraunhofer Institute for Molecular Biology and Applied Ecology Screening Port, 22525 Hamburg, Germany
| | - Bernhard Ellinger
- Fraunhofer Institute for Molecular Biology and Applied Ecology Screening Port, 22525 Hamburg, Germany
| | - Gesa Witt
- Fraunhofer Institute for Molecular Biology and Applied Ecology Screening Port, 22525 Hamburg, Germany
| | - Nuno Santarem
- Institute for Molecular and Cell Biology, 4150-180 Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto and Institute for Molecular and Cell Biology, 4150-180 Porto, Portugal
| | - Catarina Baptista
- Institute for Molecular and Cell Biology, 4150-180 Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto and Institute for Molecular and Cell Biology, 4150-180 Porto, Portugal
| | - Caio Franco
- Laboratório Nacional de Biociências (LNBio), Centro Nacional de Pesquisaem Energia e Materiais (CNPEM), 13083-100 Campinas, São Paulo, Brazil
| | - Carolina B. Moraes
- Laboratório Nacional de Biociências (LNBio), Centro Nacional de Pesquisaem Energia e Materiais (CNPEM), 13083-100 Campinas, São Paulo, Brazil
| | | | | | - Rosaria Luciani
- Dipartimento di Scienze della Vita, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Antony Sesenna
- Dipartimento di Scienze della Vita, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Antonio Quotadamo
- Dipartimento di Scienze della Vita, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Stefania Ferrari
- Dipartimento di Scienze della Vita, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | | | - Anabela Cordeiro-da-Silva
- Institute for Molecular and Cell Biology, 4150-180 Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto and Institute for Molecular and Cell Biology, 4150-180 Porto, Portugal
| | - Stefano Mangani
- Dipartimento di Biotecnologie, Chimica e Farmacia, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Luca Costantino
- Dipartimento di Scienze della Vita, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Maria Paola Costi
- Dipartimento di Scienze della Vita, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| |
Collapse
|
49
|
Kimuda MP, Laming D, Hoppe HC, Tastan Bishop Ö. Identification of Novel Potential Inhibitors of Pteridine Reductase 1 in Trypanosoma brucei via Computational Structure-Based Approaches and in Vitro Inhibition Assays. Molecules 2019; 24:molecules24010142. [PMID: 30609681 PMCID: PMC6337619 DOI: 10.3390/molecules24010142] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/20/2018] [Accepted: 12/24/2018] [Indexed: 11/16/2022] Open
Abstract
Pteridine reductase 1 (PTR1) is a trypanosomatid multifunctional enzyme that provides a mechanism for escape of dihydrofolate reductase (DHFR) inhibition. This is because PTR1 can reduce pterins and folates. Trypanosomes require folates and pterins for survival and are unable to synthesize them de novo. Currently there are no anti-folate based Human African Trypanosomiasis (HAT) chemotherapeutics in use. Thus, successful dual inhibition of Trypanosoma brucei dihydrofolate reductase (TbDHFR) and Trypanosoma brucei pteridine reductase 1 (TbPTR1) has implications in the exploitation of anti-folates. We carried out molecular docking of a ligand library of 5742 compounds against TbPTR1 and identified 18 compounds showing promising binding modes. The protein-ligand complexes were subjected to molecular dynamics to characterize their molecular interactions and energetics, followed by in vitro testing. In this study, we identified five compounds which showed low micromolar Trypanosome growth inhibition in in vitro experiments that might be acting by inhibition of TbPTR1. Compounds RUBi004, RUBi007, RUBi014, and RUBi018 displayed moderate to strong antagonism (mutual reduction in potency) when used in combination with the known TbDHFR inhibitor, WR99210. This gave an indication that the compounds might inhibit both TbPTR1 and TbDHFR. RUBi016 showed an additive effect in the isobologram assay. Overall, our results provide a basis for scaffold optimization for further studies in the development of HAT anti-folates.
Collapse
Affiliation(s)
- Magambo Phillip Kimuda
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, P.O. Box 94, Grahamstown 6140, South Africa.
- College of Veterinary Medicine, Animal Resources and Biosecurity (COVAB), Makerere University, P.O. Box 7062, Kampala 00256, Uganda.
| | - Dustin Laming
- Department of Biochemistry and Microbiology, Rhodes University, Grahamstown 6140, South Africa.
- Centre for Chemico- and Biomedicinal Research, Rhodes University, Grahamstown 6140, South Africa.
| | - Heinrich C Hoppe
- Department of Biochemistry and Microbiology, Rhodes University, Grahamstown 6140, South Africa.
- Centre for Chemico- and Biomedicinal Research, Rhodes University, Grahamstown 6140, South Africa.
| | - Özlem Tastan Bishop
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, P.O. Box 94, Grahamstown 6140, South Africa.
| |
Collapse
|
50
|
Carmona-Martínez V, Ruiz-Alcaraz AJ, Vera M, Guirado A, Martínez-Esparza M, García-Peñarrubia P. Therapeutic potential of pteridine derivatives: A comprehensive review. Med Res Rev 2018; 39:461-516. [PMID: 30341778 DOI: 10.1002/med.21529] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 07/07/2018] [Accepted: 07/10/2018] [Indexed: 12/19/2022]
Abstract
Pteridines are aromatic compounds formed by fused pyrazine and pyrimidine rings. Many living organisms synthesize pteridines, where they act as pigments, enzymatic cofactors, or immune system activation molecules. This variety of biological functions has motivated the synthesis of a huge number of pteridine derivatives with the aim of studying their therapeutic potential. This review gathers the state-of-the-art of pteridine derivatives, describing their biological activities and molecular targets. The antitumor activity of pteridine-based compounds is one of the most studied and advanced therapeutic potentials, for which several molecular targets have been identified. Nevertheless, pteridines are also considered as very promising therapeutics for the treatment of chronic inflammation-related diseases. On the other hand, many pteridine derivatives have been tested for antimicrobial activities but, although some of them resulted to be active in preliminary assays, a deeper research is needed in this area. Moreover, pteridines may be of use in the treatment of many other diseases, such as diabetes, osteoporosis, ischemia, or neurodegeneration, among others. Thus, the diversity of the biological activities shown by these compounds highlights the promising therapeutic use of pteridine derivatives. Indeed, methotrexate, pralatrexate, and triamterene are Food and Drug Administration approved pteridines, while many others are currently under study in clinical trials.
Collapse
Affiliation(s)
- Violeta Carmona-Martínez
- Departamento de Bioquímica, Biología Molecular (B) e Inmunología, Facultad de Medicina, IMIB and Regional Campus of International Excellence "Campus Mare Nostrum," Universidad de Murcia, Murcia, Spain
| | - Antonio J Ruiz-Alcaraz
- Departamento de Bioquímica, Biología Molecular (B) e Inmunología, Facultad de Medicina, IMIB and Regional Campus of International Excellence "Campus Mare Nostrum," Universidad de Murcia, Murcia, Spain
| | - María Vera
- Departamento de Química Orgánica, Universidad de Murcia, Campus de Espinardo, Murcia, Spain
| | - Antonio Guirado
- Departamento de Química Orgánica, Universidad de Murcia, Campus de Espinardo, Murcia, Spain
| | - María Martínez-Esparza
- Departamento de Bioquímica, Biología Molecular (B) e Inmunología, Facultad de Medicina, IMIB and Regional Campus of International Excellence "Campus Mare Nostrum," Universidad de Murcia, Murcia, Spain
| | - Pilar García-Peñarrubia
- Departamento de Bioquímica, Biología Molecular (B) e Inmunología, Facultad de Medicina, IMIB and Regional Campus of International Excellence "Campus Mare Nostrum," Universidad de Murcia, Murcia, Spain
| |
Collapse
|