1
|
Qian R, Zhao X, Lyu D, Xu Q, Yuan K, Luo X, Wang W, Wang Y, Liu Y, Cheng Y, Tan Y, Mou F, Yuan C, Yu S. Identification of Causal Genes and Potential Drug Targets for Restless Legs Syndrome: A Comprehensive Mendelian Randomization Study. Pharmaceuticals (Basel) 2024; 17:1626. [PMID: 39770468 PMCID: PMC11728827 DOI: 10.3390/ph17121626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/22/2024] [Accepted: 11/28/2024] [Indexed: 01/16/2025] Open
Abstract
Background: Restless legs syndrome (RLS) is a common sensorimotor sleep disorder that affects sleep quality of life. Much effort has been made to make progress in RLS pharmacotherapy; however, patients with RLS still report poor long-term symptom control. Methods: Comprehensive Mendelian randomization (MR) was performed to search for potential causal genes and drug targets using the cis-pQTL and RLS GWAS data. Robustness was validated using the summary-based Mendelian randomization (SMR) method and co-localization analysis. Further evidence of pleiotropy of the target genes and their potential side effects was provided by phenome-wide MR analysis (MR-PheWAS). Finally, molecular docking simulations were conducted on drug candidates corresponding to these targets, which revealed promising binding affinities and interaction patterns and underscored the druggable potential of the target gene. All of the analyses above were conducted in the context of Homo sapiens. Results:MAN1A2 showed a statistically significant result in the MR analysis, which was validated through SMR and co-localization analysis. The MR-PheWAS showed a low probability of pleiotropy and prospective side effects. Molecular docking was used to visualize the binding structure and fine affinity for MAN1A2 and the drugs predicted by DSigDB. Conclusions: Our study provides comprehensive evidence supporting MAN1A2 as a promising causal gene and therapeutic target for RLS, offering insights into the underlying molecular mechanisms and paving the way for future drug development efforts.
Collapse
Affiliation(s)
- Ruiyi Qian
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; (R.Q.); (X.Z.); (D.L.); (Q.X.); (X.L.); (W.W.); (Y.W.); (Y.L.); (Y.C.); (Y.T.); (F.M.)
| | - Xue Zhao
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; (R.Q.); (X.Z.); (D.L.); (Q.X.); (X.L.); (W.W.); (Y.W.); (Y.L.); (Y.C.); (Y.T.); (F.M.)
| | - Dongbin Lyu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; (R.Q.); (X.Z.); (D.L.); (Q.X.); (X.L.); (W.W.); (Y.W.); (Y.L.); (Y.C.); (Y.T.); (F.M.)
| | - Qingqing Xu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; (R.Q.); (X.Z.); (D.L.); (Q.X.); (X.L.); (W.W.); (Y.W.); (Y.L.); (Y.C.); (Y.T.); (F.M.)
| | - Kai Yuan
- State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, Institute of Digestive Disease, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR 999077, China;
| | - Xin Luo
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; (R.Q.); (X.Z.); (D.L.); (Q.X.); (X.L.); (W.W.); (Y.W.); (Y.L.); (Y.C.); (Y.T.); (F.M.)
| | - Wanying Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; (R.Q.); (X.Z.); (D.L.); (Q.X.); (X.L.); (W.W.); (Y.W.); (Y.L.); (Y.C.); (Y.T.); (F.M.)
| | - Yang Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; (R.Q.); (X.Z.); (D.L.); (Q.X.); (X.L.); (W.W.); (Y.W.); (Y.L.); (Y.C.); (Y.T.); (F.M.)
| | - Yutong Liu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; (R.Q.); (X.Z.); (D.L.); (Q.X.); (X.L.); (W.W.); (Y.W.); (Y.L.); (Y.C.); (Y.T.); (F.M.)
| | - Yu Cheng
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; (R.Q.); (X.Z.); (D.L.); (Q.X.); (X.L.); (W.W.); (Y.W.); (Y.L.); (Y.C.); (Y.T.); (F.M.)
| | - Yingting Tan
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; (R.Q.); (X.Z.); (D.L.); (Q.X.); (X.L.); (W.W.); (Y.W.); (Y.L.); (Y.C.); (Y.T.); (F.M.)
| | - Fan Mou
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; (R.Q.); (X.Z.); (D.L.); (Q.X.); (X.L.); (W.W.); (Y.W.); (Y.L.); (Y.C.); (Y.T.); (F.M.)
| | - Chengmei Yuan
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; (R.Q.); (X.Z.); (D.L.); (Q.X.); (X.L.); (W.W.); (Y.W.); (Y.L.); (Y.C.); (Y.T.); (F.M.)
| | - Shunying Yu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; (R.Q.); (X.Z.); (D.L.); (Q.X.); (X.L.); (W.W.); (Y.W.); (Y.L.); (Y.C.); (Y.T.); (F.M.)
| |
Collapse
|
2
|
Dong X, Wang Y, Liu Y, Li Y. Fear generalization modulated by shock intensity and protein synthesis inhibitor. Psychopharmacology (Berl) 2024; 241:2627-2637. [PMID: 39105767 DOI: 10.1007/s00213-024-06662-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/29/2024] [Indexed: 08/07/2024]
Abstract
RATIONALE Maladaptive fear responses, including sensitized threat reactions and overgeneralization, contribute to anxiety disorders such as generalized anxiety disorder and post-traumatic stress disorder. Although stress intensity influences the generation and extent of these maladaptive fears, the underlying mechanisms remain unclear. OBJECTIVES The present study examined whether varying footshock stress intensity and inhibition of protein synthesis have differential effect on fear sensitization and generalization in mice. METHODS Mice were subjected to a classic fear conditioning protocol involving five different levels of footshock intensities. Prior to fear acquisition, the protein synthesis inhibitor cycloheximide (CHX) was administered intraperitoneally. Fear sensitization to white noise and fear generalization to tones with frequencies differing from the conditioned tone were assessed at either 2 or 4 days after fear acquisition. RESULTS The results showed that, although varying shock intensities (except the lowest) led to a similar pattern of increased freezing during auditory cues in fear acquisition, the extent of both fear sensitization and generalization increased with the intensity of the footshock in the following days. As shock intensities increased, there was a proportional rise in sensitized fear to white noise and generalized freezing to tones with frequencies progressively closer to the conditioned stimulus. Mildest shocks did not induce discriminative conditioned fear memory, whereas the most intense shocks led to pronounced fear generalization. Administration of CHX before fear acquisition did not affect sensitized fear but reduced generalization of freezing to tones dissimilar from the conditioned stimulus in the group exposed to the most intense shock. CONCLUSIONS Our results suggest that maladaptive fear responses elicited by varying stress intensities exhibit distinct characteristics. The effect of CHX to prevent overgeneralization without affecting discriminative fear memory points to potential therapeutic approaches for fear-related disorders, suggesting the possibility of mitigating overgeneralization while preserving necessary fear discrimination.
Collapse
Affiliation(s)
- Xinwen Dong
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.
| | - Yunyun Wang
- Department of Neuroendocrine Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Yudan Liu
- Department of Neuroendocrine Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Yonghui Li
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Bai H, Zuo X, Zhao C, Zhang S, Feng X. Non-nutritive Sweetener Aspartame Disrupts Circadian Behavior and Causes Memory Impairment in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:23478-23492. [PMID: 39382230 DOI: 10.1021/acs.jafc.4c05394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
As a non-nutritive sweetener, aspartame is widely used in everyday life. However, its safety is highly controversial, especially its effects on neurobehavior. We evaluated the effects of chronic daily oral administration of aspartame-containing drinking water (at doses equivalent to 7-28% of the FDA-recommended human DIV) on memory and rhythm behaviors in mice and further investigated changes at the molecular level in the brains. Our results demonstrated that mice exposed to aspartame exhibited memory impairment. Disorders of hippocampal neurotransmitter metabolism and pathological damage may be responsible for the aspartame-induced memory impairment via inhibition of the BDNF/TrkB pathway. Furthermore, our findings suggested that disturbed clock gene expression in the hypothalamus after aspartame exposure led to altered rest-activity behavior, and this disruption of the circadian rhythm may exacerbate memory impairment. This study highlights the negative neurobehavioral effects of aspartame and provides valuable insights into its rational and safe use.
Collapse
Affiliation(s)
- Huijuan Bai
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Xiang Zuo
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Chengtian Zhao
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Shuhui Zhang
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Xizeng Feng
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China
| |
Collapse
|
4
|
Al-Smadi S, Padros A, Goss GG, Dickson CT. The translational inhibitor and amnestic agent emetine also suppresses ongoing hippocampal neural activity similarly to other blockers of protein synthesis. Hippocampus 2024; 34:380-392. [PMID: 38785391 DOI: 10.1002/hipo.23611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 04/19/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024]
Abstract
The consolidation of memory is thought to ultimately depend on the synthesis of new proteins, since translational inhibitors such as anisomycin and cycloheximide adversely affect the permanence of long-term memory. However, when applied directly in brain, these agents also profoundly suppress neural activity to an extent that is directly correlated to the degree of protein synthesis inhibition caused. Given that neural activity itself is likely to help mediate consolidation, this finding is a serious criticism of the strict de novo protein hypothesis of memory. Here, we test the neurophysiological effects of another translational inhibitor, emetine. Unilateral intra-hippocampal infusion of emetine suppressed ongoing local field and multiunit activity at ipsilateral sites as compared to the contralateral hippocampus in a fashion that was positively correlated to the degree of protein synthesis inhibition as confirmed by autoradiography. This suppression of activity was also specific to the circumscribed brain region in which protein synthesis inhibition took place. These experiments provide further evidence that ongoing protein synthesis is necessary and fundamental for neural function and suggest that the disruption of memory observed in behavioral experiments using translational inhibitors may be due, in large part, to neural suppression.
Collapse
Affiliation(s)
- S Al-Smadi
- Department of Physiology, University of Alberta, Edmonton, Canada
| | - A Padros
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - G G Goss
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | - C T Dickson
- Department of Physiology, University of Alberta, Edmonton, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
- Department of Anesthesiology and Pain Medicine, University of Alberta, Edmonton, Canada
- Department of Psychology, University of Alberta, Edmonton, Canada
| |
Collapse
|
5
|
Raymundi AM, Batista Sohn JM, Salemme BW, Cardoso NC, Silveira Guimarães F, Stern CA. Effects of delta-9 tetrahydrocannabinol on fear memory labilization and reconsolidation: A putative role of GluN2B-NMDA receptor within the dorsal hippocampus. Neuropharmacology 2023; 225:109386. [PMID: 36549374 DOI: 10.1016/j.neuropharm.2022.109386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/14/2022] [Accepted: 12/17/2022] [Indexed: 12/23/2022]
Abstract
Cannabis preparations could be an effective reconsolidation-based treatment for post-traumatic stress disorder. However, the effects of Δ9-tetrahydrocannabinol (THC) in fear memory labilization, a critical condition for retrieval-induced reconsolidation, are undetermined. We sought to investigate the effect of a conventional and an ultra-low dose of THC in memory labilization of adult male Wistar rats submitted to contextual fear conditioning. Pretreatment with THC 0.002, but not THC 0.3 mg/kg, i. p., before memory retrieval, did not change memory expression during the retrieval but impaired reconsolidation. No treatment changed freezing expression in an unpaired context. Before retrieval, THC 0.3, but not THC 0.002, decreased GluN2A-NMDA expression and the GluN2A/GluN2B ratio in the dorsal hippocampus (DH) 24 h later. No changes were observed immediately after retrieval. Pretreatment with THC 0.3 abolished the reconsolidation-impairing effect of anisomycin injected into the DH, suggesting an impairment in memory labilization. This effect was associated with an increased freezing expression in the unpaired context and was not observed with the THC ultra-low dose. The GluN2B-NMDA antagonism increased fear generalization in the anisomycin-treated group but restored its reconsolidation-impairing effect and reduced fear generalization when animals were pretreated with THC 0.3. GluN2A-NMDA antagonism or inhibition of the ubiquitin-proteasome system in the DH did not interfere with the effects of THC 0.3. Our findings indicate that THC causes a bidirectional effect on fear memory labilization that depends on hippocampal GluN2B-NMDA receptors' involvement in fear memory generalization.
Collapse
Affiliation(s)
- Ana Maria Raymundi
- Department of Pharmacology, Federal University of Parana, Curitiba, PR, Brazil
| | | | | | | | | | | |
Collapse
|
6
|
Shrestha P, Klann E. Spatiotemporally resolved protein synthesis as a molecular framework for memory consolidation. Trends Neurosci 2022; 45:297-311. [PMID: 35184897 PMCID: PMC8930706 DOI: 10.1016/j.tins.2022.01.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 01/21/2022] [Accepted: 01/25/2022] [Indexed: 01/25/2023]
Abstract
De novo protein synthesis is required for long-term memory consolidation. Dynamic regulation of protein synthesis occurs via a complex interplay of translation factors and modulators. Many components of the protein synthesis machinery have been targeted either pharmacologically or genetically to establish its requirement for memory. The combination of ligand/light-gating and genetic strategies, that is, chemogenetics and optogenetics, has begun to reveal the spatiotemporal resolution of protein synthesis in specific cell types during memory consolidation. This review summarizes current knowledge of the macroscopic and microscopic neural substrates for protein synthesis in memory consolidation. In addition, we highlight future directions for determining the localization and timing of de novo protein synthesis for memory consolidation with tools that permit unprecedented spatiotemporal precision.
Collapse
Affiliation(s)
- Prerana Shrestha
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY 11794, USA.
| | - Eric Klann
- Center for Neural Science, New York University, New York, NY 10012, USA; NYU Neuroscience Institute, New York University Langone Medical Center, New York, NY 10016, USA.
| |
Collapse
|
7
|
Troyner F, Bertoglio LJ. Nucleus reuniens of the thalamus controls fear memory reconsolidation. Neurobiol Learn Mem 2020; 177:107343. [PMID: 33242589 DOI: 10.1016/j.nlm.2020.107343] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/08/2020] [Accepted: 11/16/2020] [Indexed: 01/09/2023]
Abstract
The nucleus reuniens has been shown to support the acquisition, consolidation, maintenance, destabilization upon retrieval, and extinction of aversive memories. However, the direct participation of this thalamic subregion in memory reconsolidation is yet to be examined. The present study addressed this question in contextually fear-conditioned rats. Post-reactivation infusion of the GABAA receptor agonist muscimol, the glutamate N2A-containing NMDA receptor antagonist TCN-201, or the protein synthesis inhibitor anisomycin into the NR induced significant impairments in memory reconsolidation. Administering muscimol or TCN-201 and anisomycin locally, or associating locally infused muscimol or TCN-201 with systemically administered clonidine, an α2-receptor adrenergic agonist that attenuates the noradrenergic tonus associated with memory reconsolidation, produced no further reduction in freezing times when compared with the muscimol-vehicle, TCN-201-vehicle, vehicle-anisomycin, and vehicle-clonidine groups. This pattern of results indicates that such treatment combinations produced no additive/synergistic effects on reconsolidation. It is plausible that NR inactivation and antagonism of glutamate N2A-containing NMDA receptors weakened/prevented the subsequent action of anisomycin and clonidine because they disrupted the early stages of signal transduction pathways involved in memory reconsolidation. It is noteworthy that these pharmacological interventions, either alone or combined, induced no contextual memory specificity changes, as assessed in a later test in a novel and unpaired context. Besides, omitting memory reactivation precluded the impairing effects of muscimol, TCN-201, anisomycin, and clonidine on reconsolidation. Together, the present findings demonstrate interacting mechanisms through which the NR can regulate contextual fear memory restabilization.
Collapse
Affiliation(s)
- Fernanda Troyner
- Departamento de Farmacologia, Universidade Federal de Santa Catarina, Florianopolis, SC, Brazil
| | - Leandro Jose Bertoglio
- Departamento de Farmacologia, Universidade Federal de Santa Catarina, Florianopolis, SC, Brazil.
| |
Collapse
|
8
|
Infralimbic cortex controls fear memory generalization and susceptibility to extinction during consolidation. Sci Rep 2020; 10:15827. [PMID: 32985565 PMCID: PMC7522076 DOI: 10.1038/s41598-020-72856-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 09/03/2020] [Indexed: 01/22/2023] Open
Abstract
Lesioning or inactivating the infralimbic (IL) subregion of the medial prefrontal cortex before acquisition produces more generalized and extinction-resistant fear memories. However, whether and how it modulates memory specificity and extinction susceptibility while consolidation takes place is still unknown. The present study aims to investigate these questions using muscimol-induced temporary inactivation and anisomycin-induced protein synthesis inhibition in the rat IL following contextual fear conditioning. Results indicate that the IL activity immediately after acquisition, but not six hours later, controls memory generalization over a week, regardless of its strength. Such IL function depends on the context-shock pairing since muscimol induced no changes in animals exposed to immediate shocks or the conditioning context only. Animals in which the IL was inactivated during consolidation extinguished similarly to controls within the session but were unable to recall the extinction memory the following day. Noteworthy, these post-acquisition IL inactivation-induced effects were not associated with changes in anxiety, as assessed in the elevated plus-maze test. Anisomycin results indicate that the IL protein synthesis during consolidation contributes more to producing extinction-sensitive fear memories than memory specificity. Collectively, present results provide evidence for the IL's role in controlling generalization and susceptibility to extinction during fear memory consolidation.
Collapse
|
9
|
Rafiq S, Batool Z, Liaquat L, Haider S. Blockade of muscarinic receptors impairs reconsolidation of older fear memory by decreasing cholinergic neurotransmission: A study in rat model of PTSD. Life Sci 2020; 256:118014. [DOI: 10.1016/j.lfs.2020.118014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 06/21/2020] [Accepted: 06/22/2020] [Indexed: 12/25/2022]
|
10
|
Prado-Alcalá RA, González-Salinas S, Antaramián A, Quirarte GL, Bello-Medina PC, Medina AC. Imbalance in cerebral protein homeostasis: Effects on memory consolidation. Behav Brain Res 2020; 393:112767. [DOI: 10.1016/j.bbr.2020.112767] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/15/2020] [Accepted: 06/07/2020] [Indexed: 01/29/2023]
|
11
|
Fear memory is impaired in hypobaric hypoxia: Role of synaptic plasticity and neuro-modulators in limbic region. Life Sci 2020; 254:117555. [DOI: 10.1016/j.lfs.2020.117555] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 03/05/2020] [Accepted: 03/13/2020] [Indexed: 12/19/2022]
|
12
|
Cossenza M, Socodato R, Mejía-García TA, Domith I, Portugal CC, Gladulich LFH, Duarte-Silva AT, Khatri L, Antoine S, Hofmann F, Ziff EB, Paes-de-Carvalho R. Protein synthesis inhibition promotes nitric oxide generation and activation of CGKII-dependent downstream signaling pathways in the retina. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118732. [PMID: 32360667 DOI: 10.1016/j.bbamcr.2020.118732] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 04/15/2020] [Accepted: 04/26/2020] [Indexed: 01/28/2023]
Abstract
Nitric oxide is an important neuromodulator in the CNS, and its production within neurons is modulated by NMDA receptors and requires a fine-tuned availability of L-arginine. We have previously shown that globally inhibiting protein synthesis mobilizes intracellular L-arginine "pools" in retinal neurons, which concomitantly enhances neuronal nitric oxide synthase-mediated nitric oxide production. Activation of NMDA receptors also induces local inhibition of protein synthesis and L-arginine intracellular accumulation through calcium influx and stimulation of eucariotic elongation factor type 2 kinase. We hypothesized that protein synthesis inhibition might also increase intracellular L-arginine availability to induce nitric oxide-dependent activation of downstream signaling pathways. Here we show that nitric oxide produced by inhibiting protein synthesis (using cycloheximide or anisomycin) is readily coupled to AKT activation in a soluble guanylyl cyclase and cGKII-dependent manner. Knockdown of cGKII prevents cycloheximide or anisomycin-induced AKT activation and its nuclear accumulation. Moreover, in retinas from cGKII knockout mice, cycloheximide was unable to enhance AKT phosphorylation. Indeed, cycloheximide also produces an increase of ERK phosphorylation which is abrogated by a nitric oxide synthase inhibitor. In summary, we show that inhibition of protein synthesis is a previously unanticipated driving force for nitric oxide generation and activation of downstream signaling pathways including AKT and ERK in cultured retinal cells. These results may be important for the regulation of synaptic signaling and neuronal development by NMDA receptors as well as for solving conflicting data observed when using protein synthesis inhibitors for studying neuronal survival during development as well in behavior and memory studies.
Collapse
Affiliation(s)
- Marcelo Cossenza
- Program of Neurosciences, Institute of Biology, Fluminense Federal University, Niterói, RJ, Brazil; Department of Physiology and Pharmacology, Biomedical Institute, Fluminense Federal University, Niterói, RJ, Brazil.
| | - Renato Socodato
- Program of Neurosciences, Institute of Biology, Fluminense Federal University, Niterói, RJ, Brazil; Instituto de Investigação e Inovação em Saúde (i3S) and Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Telmo A Mejía-García
- Program of Neurosciences, Institute of Biology, Fluminense Federal University, Niterói, RJ, Brazil
| | - Ivan Domith
- Program of Neurosciences, Institute of Biology, Fluminense Federal University, Niterói, RJ, Brazil
| | - Camila C Portugal
- Program of Neurosciences, Institute of Biology, Fluminense Federal University, Niterói, RJ, Brazil; Instituto de Investigação e Inovação em Saúde (i3S) and Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Luis F H Gladulich
- Program of Neurosciences, Institute of Biology, Fluminense Federal University, Niterói, RJ, Brazil
| | - Aline T Duarte-Silva
- Department of Neurobiology, Institute of Biology, Fluminense Federal University, Niterói, RJ, Brazil
| | - Latika Khatri
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, United States
| | - Shannon Antoine
- Graduate Program in Neuroscience & Physiology, New York University School of Medicine, New York, NY, United States
| | - Franz Hofmann
- Institut für Pharmakologie und Toxikologie der TU-München, Munich, Germany
| | - Edward B Ziff
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, United States
| | - Roberto Paes-de-Carvalho
- Program of Neurosciences, Institute of Biology, Fluminense Federal University, Niterói, RJ, Brazil; Department of Neurobiology, Institute of Biology, Fluminense Federal University, Niterói, RJ, Brazil.
| |
Collapse
|
13
|
Helfer P, Shultz TR. A computational model of systems memory consolidation and reconsolidation. Hippocampus 2019; 30:659-677. [PMID: 31872960 DOI: 10.1002/hipo.23187] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 10/05/2019] [Accepted: 12/04/2019] [Indexed: 12/27/2022]
Abstract
In the mammalian brain, newly acquired memories depend on the hippocampus (HPC) for maintenance and recall, but over time, the neocortex takes over these functions, rendering memories HPC-independent. The process responsible for this transformation is called systems memory consolidation. Reactivation of a well-consolidated memory can trigger a temporary return to a HPC-dependent state, a phenomenon known as systems memory reconsolidation. The neural mechanisms underlying systems memory consolidation and reconsolidation are not well understood. Here, we propose a neural model based on well-documented mechanisms of synaptic plasticity and stability and describe a computational implementation that demonstrates the model's ability to account for a range of findings from the systems consolidation and reconsolidation literature. We derive several predictions from the computational model and suggest experiments that may test its validity.
Collapse
Affiliation(s)
- Peter Helfer
- Department of Psychology, McGill University, 2001 McGill College, Montreal, QC, Canada
| | - Thomas R Shultz
- Department of Psychology, McGill University, 2001 McGill College, Montreal, QC, Canada
| |
Collapse
|
14
|
Inhibition of transcription and translation in dorsal hippocampus does not interfere with consolidation of memory of intense training. Neurobiol Learn Mem 2019; 166:107092. [DOI: 10.1016/j.nlm.2019.107092] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 08/23/2019] [Accepted: 09/14/2019] [Indexed: 01/01/2023]
|
15
|
Scavuzzo CJ, LeBlancq MJ, Nargang F, Lemieux H, Hamilton TJ, Dickson CT. The amnestic agent anisomycin disrupts intrinsic membrane properties of hippocampal neurons via a loss of cellular energetics. J Neurophysiol 2019; 122:1123-1135. [PMID: 31291154 PMCID: PMC6766744 DOI: 10.1152/jn.00370.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/08/2019] [Accepted: 07/08/2019] [Indexed: 12/20/2022] Open
Abstract
The nearly axiomatic idea that de novo protein synthesis is necessary for long-term memory consolidation is based heavily on behavioral studies using translational inhibitors such as anisomycin. Although inhibiting protein synthesis has been shown to disrupt the expression of memory, translational inhibitors also have been found to profoundly disrupt basic neurobiological functions, including the suppression of ongoing neural activity in vivo. In the present study, using transverse hippocampal brain slices, we monitored the passive and active membrane properties of hippocampal CA1 pyramidal neurons using intracellular whole cell recordings during a brief ~30-min exposure to fast-bath-perfused anisomycin. Anisomycin suppressed protein synthesis to 46% of control levels as measured using incorporation of radiolabeled amino acids and autoradiography. During its application, anisomycin caused a significant depolarization of the membrane potential, without any changes in apparent input resistance or membrane time constant. Anisomycin-treated neurons also showed significant decreases in firing frequencies and spike amplitudes, and showed increases in spike width across spike trains, without changes in spike threshold. Because these changes indicated a loss of cellular energetics contributing to maintenance of ionic gradients across the membrane, we confirmed that anisomycin impaired mitochondrial function by reduced staining with 2,3,5-triphenyltetrazolium chloride and also impaired cytochrome c oxidase (complex IV) activity as indicated through high-resolution respirometry. These findings emphasize that anisomycin-induced alterations in neural activity and metabolism are a likely consequence of cell-wide translational inhibition. Critical reevaluation of studies using translational inhibitors to promote the protein synthesis dependent idea of long-term memory is absolutely necessary.NEW & NOTEWORTHY Memory consolidation is thought to be dependent on the synthesis of new proteins because translational inhibitors produce amnesia when administered just after learning. However, these agents also disrupt basic neurobiological functions. We show that blocking protein synthesis disrupts basic membrane properties of hippocampal neurons that correspond to induced disruptions of mitochondrial function. It is likely that translational inhibitors cause amnesia through their disruption of neural activity as a result of dysfunction of intracellular energetics.
Collapse
Affiliation(s)
- C. J. Scavuzzo
- Department of Psychology, University of Alberta, Edmonton, Alberta, Canada
| | - M. J. LeBlancq
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - F. Nargang
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - H. Lemieux
- Faculty Saint-Jean, Department of Medicine, Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
| | - T. J. Hamilton
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
- Department of Psychology, MacEwan University, Edmonton, Alberta, Canada
| | - C. T. Dickson
- Department of Psychology, University of Alberta, Edmonton, Alberta, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
16
|
Effects of anisomycin infusions into the dorsal striatum on memory consolidation of intense training and neurotransmitter activity. Brain Res Bull 2019; 150:250-260. [DOI: 10.1016/j.brainresbull.2019.06.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/24/2019] [Accepted: 06/07/2019] [Indexed: 01/26/2023]
|
17
|
Gisquet-Verrier P, Riccio DC. Memory integration: An alternative to the consolidation/reconsolidation hypothesis. Prog Neurobiol 2018; 171:15-31. [PMID: 30343034 DOI: 10.1016/j.pneurobio.2018.10.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 09/11/2018] [Accepted: 10/13/2018] [Indexed: 10/28/2022]
Abstract
The original concept of consolidation considers that memory requires time to be fixed. Since 2000, a comparable protein-dependent re-stabilization phase, called reconsolidation, has been assumed to take place after memory retrieval. This consolidation/reconsolidation hypothesis, has dominated the literature for more than 50 years, despite compelling evidence that is inconsistent with it. In this review, we present an historical overview and explain how, despite serious criticisms, this hypothesis has persisted for decades and become accepted as a dogma. Based on both older and more recent evidence, we next propose the concept of memory integration which involves the linkage or embedding of new material into an already existing representation. We believe integration provides a viable explanation for retrograde amnesia in place of the consolidation/reconsolidation hypothesis. Integration can further be the basis for several major cases of memory alteration such as time dependent memory enhancement, interference, counter-conditioning, updating and other instances of memory malleability. In a final section we consider the implications this new concept may have for memory processes and its translational applications.
Collapse
Affiliation(s)
- Pascale Gisquet-Verrier
- Neuro-PSI, Université Paris-Sud, CNRS UMR9197, Université Paris-Saclay, Bât 446, Orsay, F-91405, France.
| | - David C Riccio
- Department of Psychological Sciences, Kent State University, Kent, OH, 44242, USA
| |
Collapse
|
18
|
Patihis L. The Historical Significance of the Discovery of Long-Term Potentiation: An Overview and Evaluation for Nonexperts. AMERICAN JOURNAL OF PSYCHOLOGY 2018. [DOI: 10.5406/amerjpsyc.131.3.0369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Abstract
This article evaluates, in nontechnical language for those not familiar with neuroscience jargon, the historical significance of Bliss and Lømo’s (1973) landmark discovery of long term potentiation (LTP) by establishing precedent context, describing the finding, and then looking at the subsequent decades of LTP research. To set the LTP discovery in context, the article briefly reviews the precedent theories of synaptic information storage and the empirical precedents of frequency potentiation, synaptic facilitation, and the identification of the hippocampal area as being memory related. I then discuss and explain Bliss and Lømo’s initial work whereby they found synaptic strengthening that lasted for hours. To better evaluate the importance of their discovery, the article discusses the confirmatory evidence of the decades of LTP research that followed. In this way the article evaluates the replicability, generalizability, and mechanisms behind the phenomena. Perhaps most importantly, I discuss the evidence for LTP being an important mechanism that explains some aspects of learning and memory. The article concludes that at this time Bliss and Lømo’s discovery looks to be a profound discovery in the history of science.
Supplementary color figures are available at https://www.press.uillinois.edu/journals/ajp/media/patihis/long_term_potentiation
Collapse
|
19
|
Tiunova AA, Bezriadnov DV, Komissarova NV, Anokhin KV. Recovery of Impaired Memory: Expression of c-Fos and Egr-1 Transcription Factors during Restoration of Damaged Engram in the Chick Brain. BIOCHEMISTRY (MOSCOW) 2018; 83:1117-1123. [DOI: 10.1134/s0006297918090134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Protein Translation in the Nucleus Accumbens Is Dysregulated during Cocaine Withdrawal and Required for Expression of Incubation of Cocaine Craving. J Neurosci 2018; 38:2683-2697. [PMID: 29431650 DOI: 10.1523/jneurosci.2412-17.2018] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 01/08/2018] [Accepted: 01/31/2018] [Indexed: 01/11/2023] Open
Abstract
Exposure to drug-associated cues can induce drug craving and relapse in abstinent addicts. Cue-induced craving that progressively intensifies ("incubates") during withdrawal from cocaine has been observed in both rats and humans. Building on recent evidence that aberrant protein translation underlies incubation-related adaptations in the NAc, we used male rats to test the hypothesis that translation is dysregulated during cocaine withdrawal and/or when rats express incubated cocaine craving. We found that intra-NAc infusion of anisomycin, a general protein translation inhibitor, or rapamycin, an inhibitor of mammalian target of rapamycin, reduced the expression of incubated cocaine craving, consistent with previous results showing that inhibition of translation in slices normalized the adaptations that maintain incubation. We then examined signaling pathways involved in protein translation using NAc synaptoneurosomes prepared after >47 d of withdrawal from cocaine or saline self-administration, or after withdrawal plus a cue-induced seeking test. The most robust changes were observed following seeking tests. Most notably, we found that eukaryotic elongation factor 2 (eEF2) and eukaryotic initiation factor 2α (eIF2α) are dephosphorylated when cocaine rats undergo a cue-induced seeking test; both effects are consistent with increased translation during the test. Blocking eIF2α dephosphorylation and thereby restoring its inhibitory influence on translation, via intra-NAc injection of Sal003 just before the test, substantially reduced cocaine seeking. These results are consistent with dysregulation of protein translation in the NAc during cocaine withdrawal, enabling cocaine cues to elicit an aberrant increase in translation that is required for the expression of incubated cocaine craving.SIGNIFICANCE STATEMENT Cue-induced cocaine craving progressively intensifies (incubates) during withdrawal in both humans and rats. This may contribute to persistent vulnerability to relapse. We previously demonstrated a role for protein translation in synaptic adaptations in the NAc closely linked to incubation. Here, we tested the hypothesis that translation is dysregulated during cocaine withdrawal, and this contributes to incubated craving. Analysis of signaling pathways regulating translation suggested that translation is enhanced when "incubated" rats undergo a cue-induced seeking test. Furthermore, intra-NAc infusions of drugs that inhibit protein translation through different mechanisms reduced expression of incubated cue-induced cocaine seeking. These results demonstrate that the expression of incubation depends on an acute increase in translation that may result from dysregulation of several pathways.
Collapse
|
21
|
Influence of cued-fear conditioning and its impairment on NREM sleep. Neurobiol Learn Mem 2017; 144:155-165. [PMID: 28733208 DOI: 10.1016/j.nlm.2017.07.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 05/30/2017] [Accepted: 07/15/2017] [Indexed: 01/03/2023]
Abstract
Many studies suggest that fear conditioning influences sleep. It is, however, not known if the changes in sleep architecture after fear conditioning are essentially associated with the consolidation of fearful memory or with fear itself. Here, we have observed that within sleep, NREM sleep consistently remained augmented after the consolidation of cued fear-conditioned memory. But a similar change did not occur after impairing memory consolidation by blocking new protein synthesis and glutamate transmission between glial-neuronal loop in the lateral amygdala (LA). Anisomycin (a protein synthesis inhibitor) and DL-α-amino-adipic acid (DL- α -AA) (a glial glutamine synthetase enzyme inhibitor) were microinjected into the LA soon after cued fear-conditioning to induce memory impairment. On the post-conditioning day, animals in both the groups exhibited significantly less freezing. In memory-consolidated groups (vehicle groups), NREM sleep significantly increased during 2nd to 5th hours after training compared to their baseline days. However, in memory impaired groups (anisomycin and DL- α -AA microinjected groups), similar changes were not observed. Our results thus suggest that changes in sleep architecture after cued fear-conditioning are indeed a consolidation dependent event.
Collapse
|
22
|
ZIP It: Neural Silencing Is an Additional Effect of the PKM-Zeta Inhibitor Zeta-Inhibitory Peptide. J Neurosci 2017; 36:6193-8. [PMID: 27277798 DOI: 10.1523/jneurosci.4563-14.2016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 04/25/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Protein kinase M ζ (PKMζ), an atypical isoform of protein kinase C, has been suggested to be necessary and sufficient for the maintenance of long-term potentiation (LTP) and long-term memory (LTM). This evidence is heavily based on the use of ζ inhibitory peptide (ZIP), a supposed specific inhibitor of PKMζ that interferes with both LTP and LTM. Problematically, both LTP and LTM are unaffected in both constitutive and conditional PKMζ knock-out mice, yet both are still impaired by ZIP application, suggesting a nonspecific mechanism of action. Because translational interference can disrupt neural activity, we assessed network activity after a unilateral intrahippocampal infusion of ZIP in anesthetized rats. ZIP profoundly reduced spontaneous hippocampal local field potentials, comparable in magnitude to infusions of lidocaine, but with a slower onset and longer duration. Our results highlight a serious confound in interpreting the behavioral effects of ZIP. We suggest that future molecular approaches in neuroscience consider the intervening level of cellular and systems neurophysiology before claiming influences on behavior. SIGNIFICANCE STATEMENT Long-term memory in the brain is thought to arise from a sustained molecular process that can maintain changes in synaptic plasticity. A so-called candidate for the title of "the memory molecule" is protein kinase M ζ (PKMζ), mainly because its inhibition by ζ inhibitory peptide (ZIP) interferes with previously established synaptic plasticity and memory. We show that brain applications of ZIP that can impair memory actually profoundly suppress spontaneous brain activity directly or can cause abnormal seizure activity. We suggest that normal brain activity occurring after learning may be a more primary element of memory permanence.
Collapse
|
23
|
Roesler R. Molecular mechanisms controlling protein synthesis in memory reconsolidation. Neurobiol Learn Mem 2017; 142:30-40. [DOI: 10.1016/j.nlm.2017.04.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 04/27/2017] [Accepted: 04/28/2017] [Indexed: 10/19/2022]
|
24
|
Prado-Alcalá RA, Medina AC, Bello-Medina PC, Quirarte GL. Inhibition of transcription and translation in the striatum after memory reactivation: Lack of evidence of reconsolidation. Neurobiol Learn Mem 2017; 142:21-29. [DOI: 10.1016/j.nlm.2016.12.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 12/22/2016] [Accepted: 12/24/2016] [Indexed: 01/22/2023]
|
25
|
Synaptic Plasticity, Engrams, and Network Oscillations in Amygdala Circuits for Storage and Retrieval of Emotional Memories. Neuron 2017; 94:731-743. [DOI: 10.1016/j.neuron.2017.03.022] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 03/09/2017] [Accepted: 03/13/2017] [Indexed: 12/12/2022]
|
26
|
Ozawa T, Yamada K, Ichitani Y. Differential requirements of hippocampal de novo protein and mRNA synthesis in two long-term spatial memory tests: Spontaneous place recognition and delay-interposed radial maze performance in rats. PLoS One 2017; 12:e0171629. [PMID: 28178292 PMCID: PMC5298318 DOI: 10.1371/journal.pone.0171629] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 01/24/2017] [Indexed: 11/18/2022] Open
Abstract
Hippocampal de novo mRNA and protein synthesis has been suggested to be critical for long-term spatial memory. However, its requirement in each memory process (i.e. encoding, consolidation and retrieval) and the differences in the roles of de novo mRNA and protein synthesis in different situations where spatial memory is tested have not been thoroughly investigated. To address these questions, we examined the effects of hippocampal administration of the protein synthesis inhibitors, anisomycin (ANI) and emetine (EME), as well as that of an mRNA synthesis inhibitor, 5,6-dichlorobenzimidazole 1-β-D-ribofuranoside (DRB), on rat performance in two long-term spatial memory tests. In a spontaneous place recognition test with a 6 h delay, ANI, administered either before or immediately after the sample phase, but not before the test phase, eliminated the exploratory preference for the object in a novel place. This amnesic effect was replicated by both EME and DRB. In a 6 h delay-interposed radial maze task, however, administering ANI before the first-half and before the second-half, but not immediately or 2 h after the first-half, impaired performance in the second-half. This disruptive effect of ANI was successfully replicated by EME. However, DRB administered before the first-half performance did not impair the second-half performance, while it did impair it if injected before the second-half. None of these drugs caused amnesic effects during the short (5 min)/non-delayed conditions in either tests. These results suggest that 1) hippocampal protein synthesis is required for the consolidation of spatial memory, while mRNA synthesis is not necessarily required, and 2) hippocampal mRNA and protein synthesis requirement for spatial memory retrieval depends on the types of memory tested, probably because their demands are different.
Collapse
Affiliation(s)
- Takaaki Ozawa
- Institute of Psychology and Behavioral Neuroscience, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Kazuo Yamada
- Institute of Psychology and Behavioral Neuroscience, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yukio Ichitani
- Institute of Psychology and Behavioral Neuroscience, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
27
|
Schiffino FL, Holland PC. Consolidation of altered associability information by amygdala central nucleus. Neurobiol Learn Mem 2016; 133:204-213. [PMID: 27427328 PMCID: PMC4987260 DOI: 10.1016/j.nlm.2016.07.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 07/13/2016] [Accepted: 07/14/2016] [Indexed: 12/26/2022]
Abstract
The surprising omission of a reinforcer can enhance the associability of the stimuli that were present when the reward prediction error was induced, so that they more readily enter into new associations in the future. Previous research from this laboratory identified brain circuit elements critical to the enhancement of stimulus associability by the omission of an expected event and to the subsequent expression of that altered associability in more rapid learning. These elements include the amygdala, the midbrain substantia nigra, the basal forebrain substantia innominata, the dorsolateral striatum, the secondary visual cortex, and the posterior parietal cortex. Here, we found that consolidation of a surprise-enhanced associability memory in a serial prediction task depends on processing in the amygdala central nucleus (CeA) after completion of sessions that included the surprising omission of an expected event. Post-surprise infusions of anisomycin, lidocaine, or muscimol prevented subsequent display of surprise-enhanced associability. Because previous studies indicated that CeA function is unnecessary for the expression of associability enhancements that were induced previously when CeA function was intact (Holland & Gallagher, 2006), we interpreted these results as indicating that post-surprise activity of CeA ("surprise replay") is necessary for the consolidation of altered associability memories elsewhere in the brain, such as the posterior parietal cortex (Schiffino et al., 2014a).
Collapse
Affiliation(s)
- Felipe L Schiffino
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Peter C Holland
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
28
|
Marshall P, Bredy TW. Cognitive neuroepigenetics: the next evolution in our understanding of the molecular mechanisms underlying learning and memory? NPJ SCIENCE OF LEARNING 2016; 1:16014. [PMID: 27512601 PMCID: PMC4977095 DOI: 10.1038/npjscilearn.2016.14] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 06/02/2016] [Accepted: 06/21/2016] [Indexed: 05/02/2023]
Abstract
A complete understanding of the fundamental mechanisms of learning and memory continues to elude neuroscientists. Although many important discoveries have been made, the question of how memories are encoded and maintained at the molecular level remains. To date, this issue has been framed within the context of one of the most dominant concepts in molecular biology, the central dogma, and the result has been a protein-centric view of memory. Here we discuss the evidence supporting a role for neuroepigenetic mechanisms, which constitute dynamic and reversible, state-dependent modifications at all levels of control over cellular function, and their role in learning and memory. This neuroepigenetic view suggests that DNA, RNA and protein each influence one another to produce a holistic cellular state that contributes to the formation and maintenance of memory, and predicts a parallel and distributed system for the consolidation, storage and retrieval of the engram.
Collapse
Affiliation(s)
- Paul Marshall
- Department of Neurobiology and Behavior and Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine, CA, USA
| | - Timothy W Bredy
- Department of Neurobiology and Behavior and Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine, CA, USA
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
29
|
Manral A, Meena P, Saini V, Siraj F, Shalini S, Tiwari M. DADS Analogues Ameliorated the Cognitive Impairments of Alzheimer-Like Rat Model Induced by Scopolamine. Neurotox Res 2016; 30:407-26. [PMID: 27149969 DOI: 10.1007/s12640-016-9625-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 04/17/2016] [Accepted: 04/20/2016] [Indexed: 10/21/2022]
Abstract
The development of agents that affect two or more relevant targets has drawn considerable attention in treatment of AD. Diallyl disulfide (DADS), an active principle of garlic, has been reported to prevent APP processing by amyloidogenic pathway. Recently, we have reported a new series of DADS derivatives and our findings revealed that compound 7k and 7l could provide good templates for developing new multifunctional agents for AD treatment. Thus, the present study was constructed to investigate the neuroprotective effect of DADS analogues (7k and 7l) against Aβ-induced neurotoxicity in SH-SY5Y human neuroblastoma cells and in ameliorating the cognition deficit induced by scopolamine in rat model. The results indicated that compound 7k and 7l significantly inhibited Aβ1-42-induced neuronal cell death by inhibiting ROS generation. Moreover, they prevented apoptosis, in response to ROS, by restoring normal Bax/Bcl-2 ratio. Furthermore, it was observed that scopolamine-induced memory impairment was coupled by alterations in neurotransmitters, acetylcholinesterase activity and oxidative stress markers. Histological analysis revealed severe damaging effects of scopolamine on the structure of cerebral cortex and hippocampus. Administration of compounds 7k and 7l at 5 mg/kg significantly reversed scopolamine-induced behavioural, biochemical, neurochemical and histological changes in a manner comparable to standard donepezil. Together the present findings and previous studies indicate that compounds 7k and 7l have neuroprotective and cognition-enhancing effects, which makes them a promising multi-target candidate for addressing the complex nature of AD.
Collapse
Affiliation(s)
- Apra Manral
- Bio-Organic Chemistry Laboratory, Dr. B. R. Ambedkar Centre for Biomedical Research, University of Delhi, Delhi, 110007, India
| | - Poonam Meena
- Bio-Organic Chemistry Laboratory, Dr. B. R. Ambedkar Centre for Biomedical Research, University of Delhi, Delhi, 110007, India
| | - Vikas Saini
- Bio-Organic Chemistry Laboratory, Dr. B. R. Ambedkar Centre for Biomedical Research, University of Delhi, Delhi, 110007, India
| | - Fouzia Siraj
- Department of Histopathology, National Institute of Pathology, Indian Council of Medical Research, New Delhi, India
| | - Shruti Shalini
- Bio-Organic Chemistry Laboratory, Dr. B. R. Ambedkar Centre for Biomedical Research, University of Delhi, Delhi, 110007, India
| | - Manisha Tiwari
- Bio-Organic Chemistry Laboratory, Dr. B. R. Ambedkar Centre for Biomedical Research, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
30
|
Signor C, Temp FR, Mello CF, Oliveira MS, Girardi BA, Gais MA, Funck VR, Rubin MA. Intrahippocampal infusion of spermidine improves memory persistence: Involvement of protein kinase A. Neurobiol Learn Mem 2016; 131:18-25. [DOI: 10.1016/j.nlm.2016.03.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 02/25/2016] [Accepted: 03/04/2016] [Indexed: 12/28/2022]
|
31
|
Canto-de-Souza L, Mattioli R. The consolidation of inhibitory avoidance memory in mice depends on the intensity of the aversive stimulus: The involvement of the amygdala, dorsal hippocampus and medial prefrontal cortex. Neurobiol Learn Mem 2016; 130:44-51. [PMID: 26851130 DOI: 10.1016/j.nlm.2016.01.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 01/13/2016] [Accepted: 01/26/2016] [Indexed: 01/10/2023]
Abstract
Several studies using inhibitory avoidance models have demonstrated the importance of limbic structures, such as the amygdala, dorsal hippocampus and medial prefrontal cortex, in the consolidation of emotional memory. However, we aimed to investigate the role of the amygdala (AMG), dorsal hippocampus (DH) and medial prefrontal cortex (mPFC) of mice in the consolidation of step-down inhibitory avoidance and whether this avoidance would be conditioned relative to the intensity of the aversive stimulus. To test this, we bilaterally infused anisomycin (ANI-40μg/μl, a protein synthesis inhibitor) into one of these three brain areas in mice. These mice were then exposed to one of two different intensities (moderate: 0.5mA or intense: 1.5mA) in a step-down inhibitory avoidance task. We found that consolidation of both of the aversive experiences was mPFC dependent, while the AMG and DH were only required for the consolidation of the intense experience. We suggest that in moderately aversive situations, which do not represent a severe physical risk to the individual, the consolidation of aversive experiences does not depend on protein synthesis in the AMG or the DH, but only the mPFC. However, for intense aversive stimuli all three of these limbic structures are essential for the consolidation of the experience.
Collapse
Affiliation(s)
- L Canto-de-Souza
- Laboratório de Neurociências, Departamento de Fisioterapia, Centro de Ciências Biológicas e Saúde, Universidade Federal de São Carlos, Rod. Washington Luis, Km 235, 13565-905 São Carlos, Brazil; Programa de Pós-Graduação em Psicobiologia, Universidade de São Paulo, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Departamento de Psicologia, Avenida Bandeirantes, 3900, Monte Alegre, CEP 14040-901, Ribeirão Preto, SP, Brazil; INeC, Instituto de Neurociências e Comportamento, Avenida Bandeirantes, 3900, CEP 14040-901, Monte Alegre, Ribeirão Preto, SP, Brazil.
| | - R Mattioli
- Laboratório de Neurociências, Departamento de Fisioterapia, Centro de Ciências Biológicas e Saúde, Universidade Federal de São Carlos, Rod. Washington Luis, Km 235, 13565-905 São Carlos, Brazil; Programa de Pós-Graduação em Psicobiologia, Universidade de São Paulo, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Departamento de Psicologia, Avenida Bandeirantes, 3900, Monte Alegre, CEP 14040-901, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
32
|
Cognition Enhancing and Neuromodulatory Propensity of Bacopa monniera Extract Against Scopolamine Induced Cognitive Impairments in Rat Hippocampus. Neurochem Res 2015; 41:985-99. [DOI: 10.1007/s11064-015-1780-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 10/30/2015] [Accepted: 11/17/2015] [Indexed: 12/31/2022]
|
33
|
Girardi BA, Ribeiro DA, Signor C, Muller M, Gais MA, Mello CF, Rubin MA. Spermidine-induced improvement of reconsolidation of memory involves calcium-dependent protein kinase in rats. ACTA ACUST UNITED AC 2015; 23:21-8. [PMID: 26670183 PMCID: PMC4749837 DOI: 10.1101/lm.039396.115] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 10/28/2015] [Indexed: 11/24/2022]
Abstract
In this study, we determined whether the calcium-dependent protein kinase (PKC) signaling pathway is involved in the improvement of fear memory reconsolidation induced by the intrahippocampal administration of spermidine in rats. Male Wistar rats were trained in a fear conditioning apparatus using a 0.4-mA footshock as an unconditioned stimulus. Twenty-four hours after training, animals were re-exposed to the apparatus in the absence of shock (reactivation session). Immediately after the reactivation session, spermidine (2–200 pmol/site), the PKC inhibitor 3-[1-(dimethylaminopropyl)indol-3-yl]-4-(indol-3-yl) maleimide hydrochloride (GF 109203X, 0.3–30 pg/site), the antagonist of the polyamine-binding site at the NMDA receptor, arcaine (0.2–200 pmol/site), or the PKC activator phorbol 12-myristate 13-acetate (PMA, 0.02–2 nmol/site) was injected. While the post-reactivation administration of spermidine (20 and 200 pmol/site) and PMA (2 nmol/site) improved memory reconsolidation, GF 109203X (1, 10, and 30 pg/site) and arcaine (200 pmol/site) impaired it. GF 109203X (0.3 pg/site) impaired memory reconsolidation in the presence of spermidine (200 pmol/site). PMA (0.2 nmol/site) prevented the arcaine (200 pmol/site)-induced impairment of memory reconsolidation. Anisomycin (2 µg/site) also impaired memory reconsolidation in the presence of spermidine (200 pmol/site). Drugs had no effect when they were administered in the absence of reactivation. These results suggest that the spermidine-induced enhancement of memory reconsolidation involves PKC activation.
Collapse
Affiliation(s)
- Bruna Amanda Girardi
- Graduate Program in Pharmacology, Center of Health Sciences, Federal University of Santa Maria, Santa Maria, RS 97105-900, Brazil
| | - Daniela Aymone Ribeiro
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Center of Exact and Natural Sciences, Federal University of Santa Maria, Santa Maria, RS 97105-900, Brazil
| | - Cristiane Signor
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Center of Exact and Natural Sciences, Federal University of Santa Maria, Santa Maria, RS 97105-900, Brazil
| | - Michele Muller
- Undergraduate in Pharmacy, Center of Health Sciences, Federal University of Santa Maria, Santa Maria, RS 97105-900, Brazil
| | - Mayara Ana Gais
- Undergraduate in Pharmacy, Center of Health Sciences, Federal University of Santa Maria, Santa Maria, RS 97105-900, Brazil
| | - Carlos Fernando Mello
- Graduate Program in Pharmacology, Center of Health Sciences, Federal University of Santa Maria, Santa Maria, RS 97105-900, Brazil
| | - Maribel Antonello Rubin
- Graduate Program in Pharmacology, Center of Health Sciences, Federal University of Santa Maria, Santa Maria, RS 97105-900, Brazil Graduate Program in Biological Sciences: Toxicological Biochemistry, Center of Exact and Natural Sciences, Federal University of Santa Maria, Santa Maria, RS 97105-900, Brazil
| |
Collapse
|
34
|
Dubue JD, McKinney TL, Treit D, Dickson CT. Intrahippocampal Anisomycin Impairs Spatial Performance on the Morris Water Maze. J Neurosci 2015; 35:11118-24. [PMID: 26245972 PMCID: PMC6605282 DOI: 10.1523/jneurosci.1857-15.2015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 06/26/2015] [Accepted: 07/03/2015] [Indexed: 12/21/2022] Open
Abstract
New memories are thought to be solidified (consolidated) by de novo synthesis of proteins in the period subsequent to learning. This view stems from the observation that protein synthesis inhibitors, such as anisomycin (ANI), administered during this consolidation period cause memory impairments. However, in addition to blocking protein synthesis, intrahippocampal infusions of ANI cause the suppression of evoked and spontaneous neural activity, suggesting that ANI could impair memory expression by simply preventing activity-dependent brain functions. Here, we evaluated the influence of intrahippocampal ANI infusions on allocentric spatial navigation using the Morris water maze, a task well known to require dorsal hippocampal integrity. Young, adult male Sprague Dawley rats were implanted with bilateral dorsal hippocampal cannulae, and their ability to learn the location of a hidden platform was assessed before and following infusions of ANI, TTX, or vehicle (PBS). Before infusion, all groups demonstrated normal spatial navigation (training on days 1 and 2), whereas 30 min following infusions (day 3) both the ANI and TTX groups showed significant impairments in allocentric navigation, but not visually cued navigation, when compared with PBS-treated animals. Spatial navigational deficits appeared to resolve on day 4 in the ANI and TTX groups, 24 h following infusion. These results show that ANI and TTX inhibit the on-line function of the dorsal hippocampus in a similar fashion and highlight the importance of neural activity as an intervening factor between molecular and behavioral processes. SIGNIFICANCE STATEMENT The permanence of memories has long thought to be mediated by the production of new proteins, because protein synthesis inhibitors can block retrieval of recently learned information. However, protein synthesis inhibitors may have additional detrimental effects on neurobiological function. Here we show that anisomycin, a commonly used protein synthesis inhibitor in memory research, impairs on-line brain function in a way similar to an agent that eliminates electrical neural activity. Since disruption of neural activity can also lead to memory loss, it may be that memory permanence is mediated by neural rehearsal following learning.
Collapse
Affiliation(s)
- Jonathan D Dubue
- Department of Psychology, University of Alberta, Edmonton, Alberta, Canada T6G 2E9
| | - Ty L McKinney
- Department of Psychology, University of Alberta, Edmonton, Alberta, Canada T6G 2E9
| | - Dallas Treit
- Department of Psychology, University of Alberta, Edmonton, Alberta, Canada T6G 2E9, Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada T6G 2E1
| | - Clayton T Dickson
- Department of Psychology, University of Alberta, Edmonton, Alberta, Canada T6G 2E9, Department of Physiology, University of Alberta, Edmonton, Alberta, Canada T6G 2H7, and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada T6G 2E1
| |
Collapse
|
35
|
González-Salinas S, Medina AC, Marín-Vignando V, Ruiz-López CX, Quirarte GL, Prado-Alcalá RA. Protein synthesis is not required for acquisition, consolidation, and extinction of high foot-shock active avoidance training. Behav Brain Res 2015; 287:8-14. [DOI: 10.1016/j.bbr.2015.03.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 03/11/2015] [Accepted: 03/16/2015] [Indexed: 01/01/2023]
|
36
|
Kindt M, Soeter M, Sevenster D. Disrupting reconsolidation of fear memory in humans by a noradrenergic β-blocker. J Vis Exp 2014:52151. [PMID: 25549103 PMCID: PMC4396967 DOI: 10.3791/52151] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The basic design used in our human fear-conditioning studies on disrupting reconsolidation includes testing over different phases across three consecutive days. On day 1 - the fear acquisition phase, healthy participants are exposed to a series of picture presentations. One picture stimulus (CS1+) is repeatedly paired with an aversive electric stimulus (US), resulting in the acquisition of a fear association, whereas another picture stimulus (CS2-) is never followed by an US. On day 2 - the memory reactivation phase, the participants are re-exposed to the conditioned stimulus without the US (CS1-), which typically triggers a conditioned fear response. After the memory reactivation we administer an oral dose of 40 mg of propranolol HCl, a β-adrenergic receptor antagonist that indirectly targets the protein synthesis required for reconsolidation by inhibiting the noradrenaline-stimulated CREB phosphorylation. On day 3 - the test phase, the participants are again exposed to the unreinforced conditioned stimuli (CS1- and CS2-) in order to measure the fear-reducing effect of the manipulation. This retention test is followed by an extinction procedure and the presentation of situational triggers to test for the return of fear. Potentiation of the eye blink startle reflex is measured as an index for conditioned fear responding. Declarative knowledge of the fear association is measured through online US expectancy ratings during each CS presentation. In contrast to extinction learning, disrupting reconsolidation targets the original fear memory thereby preventing the return of fear. Although the clinical applications are still in their infancy, disrupting reconsolidation of fear memory seems to be a promising new technique with the prospect to persistently dampen the expression of fear memory in patients suffering from anxiety disorders and other psychiatric disorders.
Collapse
Affiliation(s)
- Merel Kindt
- Department of Clinical Psychology, University of Amsterdam;
| | - Marieke Soeter
- Department of Clinical Psychology, University of Amsterdam
| | | |
Collapse
|
37
|
Rudy JW. Variation in the persistence of memory: An interplay between actin dynamics and AMPA receptors. Brain Res 2014; 1621:29-37. [PMID: 25511990 DOI: 10.1016/j.brainres.2014.12.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 12/02/2014] [Accepted: 12/03/2014] [Indexed: 10/24/2022]
Abstract
William James noted that memories could persist from minutes to weeks. This essay attempts to explain this variation by situating the explanation in the biochemistry of dendritic spines. Two outcomes are critical to generate the synaptic basis of memory: (1) the actin cytoskeleton in the spine must be degraded to permit (2) additional AMPA receptors (GluA1s) to enter new "hot spots" in the postsynaptic density. These initial outcomes can support short-lasting memories. The threshold for these events is low but the underlying synaptic changes cannot resist the endocytic processes that remove the added AMPA receptors. For the memory to persist the degraded actin cytoskeleton must be rebuilt and the vacated "hot spots" refilled with GluA2 receptors. A primary claim is that it is the stabilization of an enlarged actin cytoskeleton that is the target outcome that consolidates the synaptic basis of memory (see Lynch et al., 2007). The stabilized actin cytoskeleton has properties that enable it to garner the synaptic proteins it needs to self sustain the potentiated state and to benefit from activation of memory modulation systems. This article is part of a Special Issue entitled Brain and Memory.
Collapse
Affiliation(s)
- Jerry W Rudy
- Department of Psychology and Neuroscience University of Colorado, Boulder, CO 80309, United States.
| |
Collapse
|
38
|
Lynch G, Kramár EA, Gall CM. Protein synthesis and consolidation of memory-related synaptic changes. Brain Res 2014; 1621:62-72. [PMID: 25485773 DOI: 10.1016/j.brainres.2014.11.060] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Accepted: 11/27/2014] [Indexed: 10/24/2022]
Abstract
Although sometimes disputed, it has been assumed for several decades that new proteins synthesized following a learning event are required for consolidation of subsequent memory. Published findings and new results described here challenge this idea. Protein synthesis inhibitors did not prevent Theta Bust Stimulation (TBS) from producing extremely stable long-term potentiation (LTP) in experiments using standard hippocampal slice protocols. However, the inhibitors were effective under conditions that likely depleted protein levels prior to attempts to induce the potentiation effect. Experiments showed that induction of LTP at one input, and thus a prior episode of protein synthesis, eliminated the effects of inhibitors on potentiation of a second input even in depleted slices. These observations suggest that a primary role of translation and transcription processes initiated by learning events is to prepare neurons to support future learning. Other work has provided support for an alternative theory of consolidation. Specifically, if the synaptic changes that support memory are to endure, learning events/TBS must engage a complex set of signaling processes that reorganize and re-stabilize the spine actin cytoskeleton. This is accomplished in fast (10 min) and slow (50 min) stages with the first requiring integrin activation and the second a recovery of integrin functioning. These results align with, and provide mechanisms for, the long-held view that memories are established and consolidated over a set of temporally distinct phases. This article is part of a Special Issue entitled SI: Brain and Memory.
Collapse
Affiliation(s)
- Gary Lynch
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA 92697, USA; Department of Anatomy and Neurobiology, University of California, Irvine, CA 92697, USA.
| | - Enikö A Kramár
- Department of Anatomy and Neurobiology, University of California, Irvine, CA 92697, USA
| | - Christine M Gall
- Department of Anatomy and Neurobiology, University of California, Irvine, CA 92697, USA; Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, USA
| |
Collapse
|
39
|
Pena RR, Pereira-Caixeta AR, Moraes MFD, Pereira GS. Anisomycin administered in the olfactory bulb and dorsal hippocampus impaired social recognition memory consolidation in different time-points. Brain Res Bull 2014; 109:151-7. [PMID: 25451454 DOI: 10.1016/j.brainresbull.2014.10.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 10/13/2014] [Accepted: 10/19/2014] [Indexed: 12/31/2022]
Abstract
To identify an individual as familiar, rodents form a specific type of memory named social recognition memory. The olfactory bulb (OB) is an important structure for social recognition memory, while the hippocampus recruitment is still controversial. The present study was designed to elucidate the OB and the dorsal hippocampus contribution to the consolidation of social memory. For that purpose, we tested the effect of anisomycin (ANI), which one of the effects is the inhibition of protein synthesis, on the consolidation of social recognition memory. Swiss adult mice with cannulae implanted into the CA1 region of the dorsal hippocampus or into the OB were exposed to a juvenile during 5 min (training session; TR), and once again 1.5 h or 24 h later to test social short-term memory (S-STM) or social long-term memory (S-LTM), respectively. To study S-LTM consolidation, mice received intra-OB or intra-CA1 infusion of saline or ANI immediately, 3, 6 or 18 h after TR. ANI impaired S-LTM consolidation in the OB, when administered immediately or 6h after TR. In the dorsal hippocampus, ANI was amnesic only if administered 3 h after TR. Furthermore, the infusion of ANI in either OB or CA1, immediately after training, did not affect S-STM. Moreover, ANI administered into the OB did not alter the animal's performance in the buried food-finding task. Altogether, our results suggest the consolidation of S-LTM requires both OB and hippocampus participation, although in different time points. This study may help shedding light on the specific roles of the OB and dorsal hippocampus in social recognition memory.
Collapse
Affiliation(s)
- R R Pena
- Núcleo de Neurociências, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627-CEP, Campus Pampulha, 31270-901 Belo Horizonte, MG, Brazil
| | - A R Pereira-Caixeta
- Núcleo de Neurociências, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627-CEP, Campus Pampulha, 31270-901 Belo Horizonte, MG, Brazil
| | - M F D Moraes
- Núcleo de Neurociências, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627-CEP, Campus Pampulha, 31270-901 Belo Horizonte, MG, Brazil
| | - G S Pereira
- Núcleo de Neurociências, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627-CEP, Campus Pampulha, 31270-901 Belo Horizonte, MG, Brazil.
| |
Collapse
|
40
|
Greenberg A, Ward-Flanagan R, Dickson CT, Treit D. ANI inactivation: Unconditioned anxiolytic effects of anisomycin in the ventral hippocampus. Hippocampus 2014; 24:1308-16. [DOI: 10.1002/hipo.22312] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2014] [Indexed: 12/22/2022]
Affiliation(s)
| | | | - Clayton T. Dickson
- Centre for Neuroscience; University of Alberta; Edmonton Alberta
- Department of Psychology; University of Alberta; Edmonton Alberta
- Department of Physiology; University of Alberta; Edmonton Alberta
| | - Dallas Treit
- Centre for Neuroscience; University of Alberta; Edmonton Alberta
- Department of Psychology; University of Alberta; Edmonton Alberta
| |
Collapse
|
41
|
Remaud J, Ceccom J, Carponcy J, Dugué L, Menchon G, Pech S, Halley H, Francés B, Dahan L. Anisomycin injection in area CA3 of the hippocampus impairs both short-term and long-term memories of contextual fear. Learn Mem 2014; 21:311-5. [PMID: 25171422 PMCID: PMC4024620 DOI: 10.1101/lm.033969.113] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Protein synthesis is involved in the consolidation of short-term memory into long-term memory. Previous electrophysiological data concerning LTP in CA3 suggest that protein synthesis in that region might also be necessary for short-term memory. We tested this hypothesis by locally injecting the protein synthesis inhibitor anisomycin in hippocampal area CA1 or CA3 immediately after contextual fear conditioning. As previously shown, injections in CA1 impaired long-term memory but spared short-term memory. Conversely, injections in CA3 impaired both long-term and short-term memories. We conclude that early steps of experience-induced plasticity occurring in CA3 and underlying short-term memory require protein synthesis.
Collapse
Affiliation(s)
- Jessica Remaud
- Université de Toulouse (UPS), Centre de Recherches sur la Cognition Animale, 31062 Toulouse, France Centre National de la Recherche Scientifique (CNRS), Centre de Recherches sur la Cognition Animale, 31062 Toulouse, France
| | - Johnatan Ceccom
- Université de Toulouse (UPS), Centre de Recherches sur la Cognition Animale, 31062 Toulouse, France Centre National de la Recherche Scientifique (CNRS), Centre de Recherches sur la Cognition Animale, 31062 Toulouse, France
| | - Julien Carponcy
- Université de Toulouse (UPS), Centre de Recherches sur la Cognition Animale, 31062 Toulouse, France Centre National de la Recherche Scientifique (CNRS), Centre de Recherches sur la Cognition Animale, 31062 Toulouse, France
| | - Laura Dugué
- Université de Toulouse (UPS), Centre de Recherches sur la Cognition Animale, 31062 Toulouse, France Centre National de la Recherche Scientifique (CNRS), Centre de Recherches sur la Cognition Animale, 31062 Toulouse, France
| | - Gregory Menchon
- Université de Toulouse (UPS), Centre de Recherches sur la Cognition Animale, 31062 Toulouse, France Centre National de la Recherche Scientifique (CNRS), Centre de Recherches sur la Cognition Animale, 31062 Toulouse, France
| | - Stéphane Pech
- Université de Toulouse (UPS), Centre de Recherches sur la Cognition Animale, 31062 Toulouse, France Centre National de la Recherche Scientifique (CNRS), Centre de Recherches sur la Cognition Animale, 31062 Toulouse, France
| | - Helene Halley
- Université de Toulouse (UPS), Centre de Recherches sur la Cognition Animale, 31062 Toulouse, France Centre National de la Recherche Scientifique (CNRS), Centre de Recherches sur la Cognition Animale, 31062 Toulouse, France
| | - Bernard Francés
- Université de Toulouse (UPS), Centre de Recherches sur la Cognition Animale, 31062 Toulouse, France Centre National de la Recherche Scientifique (CNRS), Centre de Recherches sur la Cognition Animale, 31062 Toulouse, France
| | - Lionel Dahan
- Université de Toulouse (UPS), Centre de Recherches sur la Cognition Animale, 31062 Toulouse, France Centre National de la Recherche Scientifique (CNRS), Centre de Recherches sur la Cognition Animale, 31062 Toulouse, France
| |
Collapse
|
42
|
Biradar SM, Joshi H, Chheda TK. Biochanin-A ameliorates behavioural and neurochemical derangements in cognitive-deficit mice for the betterment of Alzheimer’s disease. Hum Exp Toxicol 2013; 33:369-82. [DOI: 10.1177/0960327113497772] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Biochanin-A (BCA), a potent phytoconstituent, has been previously used as an antitumour, a dopaminergic neuron protective agent, an antioxidant, an anticholinergic and on other pharmacological activities including neuroprotection. The present study was aimed to evaluate the behavioural and neurochemical evidence of BCA in cognitive-deficit mice in scopolamine challenged and natural aged-induced amnesia models in young and aged mice, respectively. BCA has exhibited decrease in the transfer latency and increase in step through latency significantly ( p < 0.001) in scopolamine-treated and natural aged mice of exteroceptive behavioural models such as elevated plus maze and passive shock avoidance paradigm, respectively. A decrease in acetylcholinesterase activity of whole brain was seen in scopolamine and aged mice with standard piracetam (Pira; p < 0.001) and BCA in dose-dependent manner. The antioxidant property of BCA was proven by increase in GSH ( p < 0.01) and decrease in thiobarbituric acid reactive substances level significantly in a scopolamine-challenged and aged mice. The scopolamine-treated mice exhibited significant ( p < 0.01) increase in the content of noradrenalin and dopamine, which is a sign of dementia, and these excess increased neurotransmitters were reversed by BCA 40 mg kg−1 ( p < 0.05), BCA 20 mg kg−1 ( p > 0.05), BCA 10 mg kg−1 ( p < 0.05) and standard Pira ( p < 0.05) when compared with scopolamine group. Furthermore, in histopathology of hippocampus, the Pira and BCA-treated mice were protected from the formation of pyknotic neurons, increases in the viable cells count and decreases in the number of degenerative cells compared with the scopolamine group. Hence, BCA could be potential enough for the betterment of Alzheimer’s disease.
Collapse
Affiliation(s)
- SM Biradar
- Department of Pharmacology, Postgraduate Studies and Research Center, SET’s College of Pharmacy, Dharwad, Karnataka, India
| | - H Joshi
- Department of Pharmacognosy, Sarada Vilas College of Pharmacy, Mysore, Karnataka, India
| | - TK Chheda
- Department of Pharmacology, Postgraduate Studies and Research Center, SET’s College of Pharmacy, Dharwad, Karnataka, India
| |
Collapse
|
43
|
Panja D, Bramham CR. BDNF mechanisms in late LTP formation: A synthesis and breakdown. Neuropharmacology 2013; 76 Pt C:664-76. [PMID: 23831365 DOI: 10.1016/j.neuropharm.2013.06.024] [Citation(s) in RCA: 242] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 06/21/2013] [Accepted: 06/23/2013] [Indexed: 12/12/2022]
Abstract
Unraveling the molecular mechanisms governing long-term synaptic plasticity is a key to understanding how the brain stores information in neural circuits and adapts to a changing environment. Brain-derived neurotrophic factor (BDNF) has emerged as a regulator of stable, late phase long-term potentiation (L-LTP) at excitatory glutamatergic synapses in the adult brain. However, the mechanisms by which BDNF triggers L-LTP are controversial. Here, we distill and discuss the latest advances along three main lines: 1) TrkB receptor-coupled translational control underlying dendritic protein synthesis and L-LTP, 2) Mechanisms for BDNF-induced rescue of L-LTP when protein synthesis is blocked, and 3) BDNF-TrkB regulation of actin cytoskeletal dynamics in dendritic spines. Finally, we explore the inter-relationships between BDNF-regulated mechanisms, how these mechanisms contribute to different forms of L-LTP in the hippocampus and dentate gyrus, and outline outstanding issues for future research. This article is part of the Special Issue entitled 'BDNF Regulation of Synaptic Structure, Function, and Plasticity'.
Collapse
Affiliation(s)
- Debabrata Panja
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway; KG Jebsen Centre for Research on Neuropsychiatric Disorders, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
| | | |
Collapse
|
44
|
Abstract
Episodic memory is relevant for auto-consciousness in humans. In nonhuman animals, episodic-like memory is defined when the "what-where-when" content of a unique event forms an integrated cognitive representation that is then deployed during memory retrieval. Here, we aimed at testing episodic-like memories of mice under experimental conditions that allow the analysis of whether and how mice process what-where-when information. Using an ecologically relevant paradigm for spontaneous learning and memory, we show that mice modulate their behavior based on the what, where, and when components of past unique episodes, specifically on previous encounters of conspecifics at a defined location and at a specific time of the day. We also show that learning during this paradigm activated Arc/Arg3.1 mRNA expression in the hippocampus and that stereotactic injection of anisomycin into this region impairs memory consolidation. Thus, hippocampus-dependent episodic-like memories of single experiences are spontaneously created in mice. These findings extend our knowledge of the cognitive capacities of the mouse and suggest that this species can be used as model for studying the mechanisms underlying human episodic memory and related neurological disorders.
Collapse
|
45
|
Li C, Timbers TA, Rose JK, Bozorgmehr T, McEwan A, Rankin CH. The FMRFamide-related neuropeptide FLP-20 is required in the mechanosensory neurons during memory for massed training in C. elegans. Learn Mem 2013; 20:103-8. [PMID: 23325727 DOI: 10.1101/lm.028993.112] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Lasting memories are likely to result from a lasting change in neurotransmission. In the nematode Caenorhabditis elegans, spaced training with a tap stimulus induces habituation to the tap that lasts for >24 h and is dependent on glutamate transmission, postsynaptic AMPA receptors, and CREB. Here we describe a distinct, presynaptic mechanism for a shorter lasting memory for tap habituation induced by massed training. We report that a FMRFamide-related peptide (FMRF = Phe-Met-Arg-Phe-NH(2)), FLP-20, is critical for memory lasting 12 h following massed training, but is not required for other forms of memory. Massed training correlated with a flp-20-dependent increase in synaptobrevin tagged with green fluorescent protein in the presynaptic terminals of the PLM mechanosensory neurons that followed the timeline of the memory trace. We also demonstrated that flp-20 is required specifically in the mechanosensory neurons for memory 12 h after massed training. These findings show that within the same species and form of learning, memory is induced by distinct mechanisms to create a lasting alteration in neurotransmission that is dependent upon the temporal pattern of training: memory of spaced training results from postsynaptic changes in the interneurons of the neural circuit, whereas memory of massed training results from presynaptic changes in the mechanosensory neurons of the neural circuit.
Collapse
Affiliation(s)
- Chris Li
- Department of Biology, City College of the City University of New York, NY 10031, USA.
| | | | | | | | | | | |
Collapse
|
46
|
West EA, Forcelli PA, Murnen AT, McCue DL, Gale K, Malkova L. Transient inactivation of basolateral amygdala during selective satiation disrupts reinforcer devaluation in rats. Behav Neurosci 2012; 126:563-74. [PMID: 22845705 DOI: 10.1037/a0029080] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Basolateral amygdala (BLA) function is critical for flexible, goal-directed behavior, including performance on reinforcer devaluation tasks. Here we tested, in rats, the hypothesis that BLA is critical for conditioned reinforcer devaluation during the period when the primary reinforcer (food) is being devalued (by feeding it to satiety), but not thereafter for guiding behavioral choices. We used a spatially independent task that used two visual cues, each predicting one of two foods. An instrumental action (lever press) was required for reinforcer delivery. After training, rats received BLA or sham lesions, or cannulae implanted in BLA. Under control conditions (sham lesions, saline infusions), devaluation of one food significantly decreased responding to the cue associated with that food, when both cues were presented simultaneously during extinction. BLA lesions impaired this devaluation effect. Transient inactivation of BLA by microinfusion of the γ-aminobutyric acid receptor type A agonist muscimol resulted in an impairment only when BLA was inactivated during satiation. When muscimol was infused after satiation and therefore, BLA was inactivated only during the choice test, rats showed no impairment. Thus, BLA is necessary for registering or updating cues to reflect updated reinforcer values, but not for guiding choices once the value has been updated. Our results are the first to describe the contribution of rat BLA to specific components of reinforcer devaluation and are the first to show impairment in reinforcer devaluation following transient inactivation in the rat.
Collapse
Affiliation(s)
- Elizabeth A West
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC 20007, USA
| | | | | | | | | | | |
Collapse
|
47
|
Lin JY, Amodeo LR, Arthurs J, Reilly S. Anisomycin infusions in the parabrachial nucleus and taste neophobia. Neurobiol Learn Mem 2012; 98:348-53. [PMID: 23063932 DOI: 10.1016/j.nlm.2012.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2012] [Revised: 09/27/2012] [Accepted: 10/01/2012] [Indexed: 01/11/2023]
Abstract
To investigate whether de novo protein synthesis in the parabrachial nucleus (PBN) is required for recovery from taste neophobia, anisomycin (a protein synthesis inhibitor) was infused immediately after consumption of a novel saccharin solution (Experiment 1). Unexpectedly, this PBN treatment caused a reduction in saccharin intake. In addition, we found that the anisomycin-induced suppression of tastant intake was attenuated by prior intra-PBN infusions of lidocaine (Experiment 2). This pattern of results raises concerns about using anisomycin to investigate memory consolidation processes in the PBN. Thus, a different manipulation may be needed to examine the nature of the neuroplastic changes that occur in the PBN during taste memory formation.
Collapse
Affiliation(s)
- Jian-You Lin
- Department of Psychology, University of Illinois at Chicago, Chicago, IL 60607, USA.
| | | | | | | |
Collapse
|
48
|
Einarsson EÖ, Nader K. Involvement of the anterior cingulate cortex in formation, consolidation, and reconsolidation of recent and remote contextual fear memory. Learn Mem 2012; 19:449-52. [PMID: 22984282 DOI: 10.1101/lm.027227.112] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
It has been suggested that memories become more stable and less susceptible to the disruption of reconsolidation over weeks after learning. Here, we test this by targeting the anterior cingulate cortex (ACC) and test its involvement in the formation, consolidation, and reconsolidation of recent and remote contextual fear memory. We found that inhibiting NMDAR-NR2B activity disrupts memory formation, and that infusion of the protein-synthesis inhibitor anisomycin impairs memory consolidation and reconsolidation of recent and remote memory. Our findings demonstrate for the first time that the ACC plays an important role in reconsolidation of contextual fear memory at recent and remote time points.
Collapse
Affiliation(s)
- Einar Ö Einarsson
- Department of Psychology, McGill University, Montreal, Quebec, Canada
| | | |
Collapse
|
49
|
Gold PE, Wrenn SM. Cycloheximide impairs and enhances memory depending on dose and footshock intensity. Behav Brain Res 2012; 233:293-7. [PMID: 22610049 DOI: 10.1016/j.bbr.2012.05.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 05/05/2012] [Accepted: 05/10/2012] [Indexed: 12/17/2022]
Abstract
This experiment examined the effects on memory of interactions of cycloheximide dose and training foot shock intensity. Mice received injections of cycloheximide (120 mg/kg, s.c.) or saline 30 min prior to inhibitory avoidance training with shock intensities of 100, 150, 250 or 300 μA (1 s duration). Memory was tested 48 h later. The saline control mice showed increasing memory latencies as a function of shock intensity. The ability of cycloheximide to impair memory increased as the training shock intensity increased. In a second experiment, mice were trained with a 200 μA (1 s duration) shock and received injections of saline or cycloheximide at one of several doses (30, 60 or 120 mg/kg). Under these training conditions, cycloheximide enhanced memory in an inverted-U dose-response manner. These findings are consistent with prior findings suggesting that protein synthesis inhibitors act on memory by altering modulators of memory formation as a secondary consequence of the inhibition of protein synthesis rather than by interfering with training-initiated synthesis of proteins required for memory formation.
Collapse
Affiliation(s)
- Paul E Gold
- Department of Biology, Life Sciences Complex, Syracuse University, Syracuse, NY 13244, USA.
| | | |
Collapse
|
50
|
Neuropharmacological effect of Mangiferin on brain cholinesterase and brain biogenic amines in the management of Alzheimer's disease. Eur J Pharmacol 2012; 683:140-7. [DOI: 10.1016/j.ejphar.2012.02.042] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Revised: 02/17/2012] [Accepted: 02/26/2012] [Indexed: 02/07/2023]
|