1
|
Xie J, Zhang H, Sun L, Zhang Y, Guo Y. Identification of candidate leg chemosensory genes associated with nursing behavior in the Apis mellifera. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2025:101540. [PMID: 40425408 DOI: 10.1016/j.cbd.2025.101540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 05/14/2025] [Accepted: 05/19/2025] [Indexed: 05/29/2025]
Abstract
It is commonly recognized that legs play a vital role in the chemoreception of insects. The chemosensilla distributed on the legs of the worker bee Apis mellifera are involved in olfactory and gustatory detection. The responses of worker bees of different ages to various compounds were detected using an electrolegogram test on the legs. It was found that a high concentration of the larval starvation pheromone ocimene could trigger electrophysiological responses in 10-day-old worker bees (nurses). Through RNA transcriptome sequencing, the chemosensory proteins in the forelegs, middle legs, and hind legs of nurse bees that may be involved in adult close or contact chemical communication were studied. A total of 56 candidate chemosensory-related proteins, including 17 odorant-binding proteins (OBPs), 5 chemosensory proteins (CSPs), 6 gustatory receptors (GRs), 3 ionotropic receptors (IRs), 2 sensory neuron membrane proteins (SNMPs), and 23 odorant receptors (ORs), were identified from the assembled leg transcriptome. In general, the genes coding for OBPs and CSPs had significant but highly fluctuating TPM values, indicating high-level expression in the legs of nurses. In contrast, the chemosensory receptors ORs, GRs, and IRs showed low-level expression. In particular, AmelOBP21, AmelCSP3, AmelOR170, AmelGR3, AmelIR21, and AmelSNMP1, which were relatively highly expressed, may play olfactory and gustatory functions in the process of nurse bees recognizing larval starvation signals and initiating nursing behaviors. These results lay a foundation for further research on the chemoreception of legs in the honey bee A. mellifera.
Collapse
Affiliation(s)
- Jiaoxin Xie
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, China; Shanxi Key Laboratory of Animal Genetics Resource Utilization and Breeding, Jinzhong 030801, China
| | - Huiman Zhang
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, China
| | - Lele Sun
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, China
| | - Yu Zhang
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, China
| | - Yuan Guo
- College of Horticulture, Shanxi Agricultural University, Taiyuan 030031, China.
| |
Collapse
|
2
|
Marty S, Couto A, Dawson EH, Brard N, d'Ettorre P, Montgomery SH, Sandoz JC. Ancestral complexity and constrained diversification of the ant olfactory system. Proc Biol Sci 2025; 292:20250662. [PMID: 40300630 PMCID: PMC12040470 DOI: 10.1098/rspb.2025.0662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 03/27/2025] [Accepted: 03/27/2025] [Indexed: 05/01/2025] Open
Abstract
Communication is a cornerstone of social living, allowing the exchange of information to align goals and synchronize behaviour. Ants, a group of highly successful social insects, have heightened olfactory abilities that are integral to their evolutionary success. Essential for colony cohesion and cooperation, a female-specific olfactory subsystem processes information about nestmate recognition cues (cuticular hydrocarbons), including basiconic sensilla on the antenna and a cluster of specific glomeruli in the antennal lobe. While it has often been linked to ants' social lifestyle, the evolutionary origins and phylogenetic distribution of this system remain unknown. We conducted a comparative exploration of the ant olfactory system across eight major subfamilies, integrating neuroanatomical, chemical and behavioural analyses. Our findings reveal that sophistication of the ant olfactory system has deep evolutionary roots. Moreover, antennal lobe investment is not associated with social traits such as colony size, polygyny or foraging strategies, but correlates with cuticular hydrocarbon profile complexity. Despite neuroanatomical differences, different ant species consistently excel in nestmate discrimination, indicating adaptation to chemical diversity while maintaining reliable social recognition. This suggests that cuticular hydrocarbon profile and neuronal investment in olfactory neuropil have co-evolved to sustain discrimination performance.
Collapse
Affiliation(s)
- Simon Marty
- IDEEV, Université Paris-Saclay, CNRS, IRD, Evolution Genomes Behaviour and Ecology, 91190 Gif-sur-Yvette, France
| | - Antoine Couto
- IDEEV, Université Paris-Saclay, CNRS, IRD, Evolution Genomes Behaviour and Ecology, 91190 Gif-sur-Yvette, France
| | - Erika H. Dawson
- Laboratory of Experimental and Comparative Ethology, Université Sorbonne Paris Nord, 93430 Villetaneuse, France
| | - Neven Brard
- Laboratory of Experimental and Comparative Ethology, Université Sorbonne Paris Nord, 93430 Villetaneuse, France
| | - Patrizia d'Ettorre
- Laboratory of Experimental and Comparative Ethology, Université Sorbonne Paris Nord, 93430 Villetaneuse, France
| | | | - Jean-Christophe Sandoz
- IDEEV, Université Paris-Saclay, CNRS, IRD, Evolution Genomes Behaviour and Ecology, 91190 Gif-sur-Yvette, France
| |
Collapse
|
3
|
Zhang S, Yan S, Mei X, Wang G, Liu Y. Identification of a new lineage of pheromone receptors in mirid bugs (Heteroptera: Miridae). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2025; 208:106277. [PMID: 40015869 DOI: 10.1016/j.pestbp.2024.106277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 12/19/2024] [Accepted: 12/21/2024] [Indexed: 03/01/2025]
Abstract
Sex pheromones, typically released by females are crucial signals for the reductive biology of insects, primarily detected by sex pheromone receptors (PRs). A clade of PRs in three mirid bugs, Apolygus lucorum, Adelphocoris lineolatus, and Adelphocoris suturalis, has been found to respond to pheromones, (E)-2-hexenyl butyrate (E2HB) and hexyl butyrate (HB), with higher sensitivity to E2HB. In this study, we aimed to identify PRs responsible for the other two pheromone components, HB and (E)-4-oxo-2-hexenal (4-OHE), by using a combination of phylogenetic analyses, sequence similarity analyses, and in vitro functional studies. As a result, five new candidate PRs (AlucOR34, AlinOR9, AlinOR10, AsutOR9, and AsutOR10) positioned outside of the previously known PR clade were identified. All five PRs were found to respond to both E2HB and HB, with some PRs exhibiting a significant and sensitive binding to HB. However, PRs for 4-OHE remains unidentified. Overall, our study suggests that mirid bugs have evolved two distinct lineages of PRs with similar response profiles. This research offers valuable insights into sex pheromone recognition within the peripheral olfactory system and contributes to the identification of PRs in mirid bugs, providing new targets for developing the behavioral regulators for these insects.
Collapse
Affiliation(s)
- Sai Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Shuwei Yan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiangdong Mei
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guirong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| | - Yang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
4
|
Liebig J, Amsalem E. The Evolution of Queen Pheromone Production and Detection in the Reproductive Division of Labor in Social Insects. ANNUAL REVIEW OF ENTOMOLOGY 2025; 70:123-142. [PMID: 39259976 DOI: 10.1146/annurev-ento-022124-124437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Structurally diverse queen pheromones and fertility signals regulate the reproductive division of labor of social insects, such as ants, termites, some bees, and some wasps. The independent evolution of sociality in these taxa allows for the exploration of how natural history differences in sender and receiver properties led to the evolution of these complex communication systems. While describing the different effects and the structural diversity of queen pheromones, we identify two major syndromes that mostly separate ants and wasps from bees and termites in their use of different pheromone classes. We compare olfactory receptor evolution among these groups and review physiological and hormonal links to fecundity and pheromone production. We explore the cases in which queen pheromone evolution is conserved, convergent, or parallel and those in which queen pheromone responses are more likely to be learned or innate. More mechanistic information about the pathways linking fecundity to queen pheromone production and perception could help close major knowledge gaps.
Collapse
Affiliation(s)
- Juergen Liebig
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA;
| | - Etya Amsalem
- Department of Entomology, Pennsylvania State University, University Park, Pennsylvania, USA;
| |
Collapse
|
5
|
Mariette J, Carcaud J, Louis T, Lacassagne E, Servais I, Montagné N, Chertemps T, Jacquin-Joly E, Meslin C, Marion-Poll F, Sandoz JC. Evolution of queen pheromone receptor tuning in four honeybee species (Hymenoptera, Apidae, Apis). iScience 2024; 27:111243. [PMID: 39610706 PMCID: PMC11602622 DOI: 10.1016/j.isci.2024.111243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/30/2024] [Accepted: 10/22/2024] [Indexed: 11/30/2024] Open
Abstract
Honeybees (genus: Apis) use a plethora of pheromones for intraspecific communication. The primary compound produced by the queen's mandibular glands, 9-ODA, is involved in mating in all Apis species. It is the ligand of the most highly expressed olfactory receptor in males of Apis mellifera: AmelOR11. Putative orthologs are found in the genomes of other Apis species: Apis dorsata, Apis florea, and Apis cerana. Modeling of OR11 proteins shows high structure conservation except for AflorOR11. Using heterologous expression in Drosophila and calcium imaging, a broad odorant screening revealed that all OR11 respond predominantly to 9-ODA, but also to secondary ligands, except AflorOR11, which remains specific to 9-ODA. Secondary ligands were confirmed by optical imaging of male antennal lobes in A. mellifera. This work supports a conserved queen sex pheromone detection channel in honeybees, albeit with an extended response spectrum possibly playing a role in reproductive isolation among species.
Collapse
Affiliation(s)
- Julia Mariette
- Evolution, Genomes, Behaviour and Ecology, IDEEV, Université Paris-Saclay, CNRS, IRD, 12 Route 128, 91190 Gif-sur-Yvette, France
| | - Julie Carcaud
- Evolution, Genomes, Behaviour and Ecology, IDEEV, Université Paris-Saclay, CNRS, IRD, 12 Route 128, 91190 Gif-sur-Yvette, France
| | - Thierry Louis
- Evolution, Genomes, Behaviour and Ecology, IDEEV, Université Paris-Saclay, CNRS, IRD, 12 Route 128, 91190 Gif-sur-Yvette, France
| | - Eleanor Lacassagne
- Evolution, Genomes, Behaviour and Ecology, IDEEV, Université Paris-Saclay, CNRS, IRD, 12 Route 128, 91190 Gif-sur-Yvette, France
| | - Ilana Servais
- Evolution, Genomes, Behaviour and Ecology, IDEEV, Université Paris-Saclay, CNRS, IRD, 12 Route 128, 91190 Gif-sur-Yvette, France
| | - Nicolas Montagné
- Sorbonne Université, INRAE, CNRS, IRD, UPEC, Université de Paris, Institute of Ecology and Environmental Sciences of Paris (iEES-Paris), Paris, France
| | - Thomas Chertemps
- Sorbonne Université, INRAE, CNRS, IRD, UPEC, Université de Paris, Institute of Ecology and Environmental Sciences of Paris (iEES-Paris), Paris, France
| | - Emmanuelle Jacquin-Joly
- Sorbonne Université, INRAE, CNRS, IRD, UPEC, Université de Paris, Institute of Ecology and Environmental Sciences of Paris (iEES-Paris), Paris, France
| | - Camille Meslin
- Sorbonne Université, INRAE, CNRS, IRD, UPEC, Université de Paris, Institute of Ecology and Environmental Sciences of Paris (iEES-Paris), Paris, France
| | - Frédéric Marion-Poll
- Evolution, Genomes, Behaviour and Ecology, IDEEV, Université Paris-Saclay, CNRS, IRD, 12 Route 128, 91190 Gif-sur-Yvette, France
| | - Jean-Christophe Sandoz
- Evolution, Genomes, Behaviour and Ecology, IDEEV, Université Paris-Saclay, CNRS, IRD, 12 Route 128, 91190 Gif-sur-Yvette, France
| |
Collapse
|
6
|
Dikmen F, Dabak T, Özgişi BD, Özenirler Ç, Kuralay SC, Çay SB, Çınar YU, Obut O, Balcı MA, Akbaba P, Aksel EG, Zararsız G, Solares E, Eldem V. Transcriptome-wide analysis uncovers regulatory elements of the antennal transcriptome repertoire of bumblebee at different life stages. INSECT MOLECULAR BIOLOGY 2024; 33:571-588. [PMID: 38676460 DOI: 10.1111/imb.12914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/09/2024] [Indexed: 04/29/2024]
Abstract
Bumblebees are crucial pollinators, providing essential ecosystem services and global food production. The success of pollination services relies on the interaction between sensory organs and the environment. The antenna functions as a versatile multi-sensory organ, pivotal in mediating chemosensory/olfactory information, and governs adaptive responses to environmental changes. Despite an increasing number of RNA-sequencing studies on insect antenna, comprehensive antennal transcriptome studies at the different life stages were not elucidated systematically. Here, we quantified the expression profile and dynamics of coding/microRNA genes of larval head and antennal tissues from early- and late-stage pupa to the adult of Bombus terrestris as suitable model organism among pollinators. We further performed Pearson correlation analyses on the gene expression profiles of the antennal transcriptome from larval head tissue to adult stages, exploring both positive and negative expression trends. The positively correlated coding genes were primarily enriched in sensory perception of chemical stimuli, ion transport, transmembrane transport processes and olfactory receptor activity. Negatively correlated genes were mainly enriched in organic substance biosynthesis and regulatory mechanisms underlying larval body patterning and the formation of juvenile antennal structures. As post-transcriptional regulators, miR-1000-5p, miR-13b-3p, miR-263-5p and miR-252-5p showed positive correlations, whereas miR-315-5p, miR-92b-3p, miR-137-3p, miR-11-3p and miR-10-3p exhibited negative correlations in antennal tissue. Notably, based on the inverse expression relationship, positively and negatively correlated microRNA (miRNA)-mRNA target pairs revealed that differentially expressed miRNAs predictively targeted genes involved in antennal development, shaping antennal structures and regulating antenna-specific functions. Our data serve as a foundation for understanding stage-specific antennal transcriptomes and large-scale comparative analysis of transcriptomes in different insects.
Collapse
Affiliation(s)
- Fatih Dikmen
- Department of Biology, Istanbul University, İstanbul, Turkey
| | - Tunç Dabak
- Department of Biology, The Pennsylvania State University, State College, Pennsylvania, USA
| | | | | | | | | | | | - Onur Obut
- Department of Biology, Istanbul University, İstanbul, Turkey
| | | | - Pınar Akbaba
- Department of Biology, Istanbul University, İstanbul, Turkey
| | - Esma Gamze Aksel
- Faculty of Veterinary Medicine, Department of Genetics, Erciyes University, Kayseri, Turkey
| | - Gökmen Zararsız
- Department of Biostatistics, Erciyes University, Kayseri, Turkey
- Drug Application and Research Center (ERFARMA), Erciyes University, Kayseri, Turkey
| | - Edwin Solares
- Computer Science & Engineering Department, University of California, San Diego, California, USA
| | - Vahap Eldem
- Department of Biology, Istanbul University, İstanbul, Turkey
| |
Collapse
|
7
|
Sommer V, Seiler J, Sturm A, Köhnen S, Wagner A, Blut C, Rössler W, Goodwin SF, Grünewald B, Beye M. Dedicated developmental programing for group-supporting behaviors in eusocial honeybees. SCIENCE ADVANCES 2024; 10:eadp3953. [PMID: 39485851 PMCID: PMC11529710 DOI: 10.1126/sciadv.adp3953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 09/27/2024] [Indexed: 11/03/2024]
Abstract
The evolutionary changes from solitary to eusocial living in vertebrates and invertebrates are associated with the diversification of social interactions and the development of queen and worker castes. Despite strong innate patterns, our understanding of the mechanisms manifesting these sophisticated behaviors is still rudimentary. Here, we show that doublesex (dsx) manifests group-supporting behaviors in the honeybee (Apis mellifera) worker caste. Computer-based individual behavioral tracking of worker bees with biallelic stop mutations in colonies revealed that the dsx gene is required for the rate and duration of group-supporting behavior that scales the relationship between bees and their work. General sensorimotor functions remained unaffected. Unexpectedly, unlike in other insects, the dsx gene is required for the neuronal wiring of the mushroom body in which the gene is spatially restricted expressed. Together, our study establishes dedicated programming for group-supporting behaviors and provides insight into the connection between development in the neuronal circuitry and behaviors regulating the formation of a eusocial society.
Collapse
Affiliation(s)
- Vivien Sommer
- Institute of Evolutionary Genetics, Heinrich-Heine University, Düsseldorf 40225, Germany
| | - Jana Seiler
- Institute of Evolutionary Genetics, Heinrich-Heine University, Düsseldorf 40225, Germany
| | - Alina Sturm
- Institute of Evolutionary Genetics, Heinrich-Heine University, Düsseldorf 40225, Germany
| | - Sven Köhnen
- Institute of Evolutionary Genetics, Heinrich-Heine University, Düsseldorf 40225, Germany
| | - Anna Wagner
- Institute of Evolutionary Genetics, Heinrich-Heine University, Düsseldorf 40225, Germany
| | - Christina Blut
- Institute of Evolutionary Genetics, Heinrich-Heine University, Düsseldorf 40225, Germany
| | - Wolfgang Rössler
- Behavioral Physiology and Sociobiology (Zoology II), Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Stephen F. Goodwin
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford OX1 3SR, UK
| | - Bernd Grünewald
- Honeybee Research Center Oberursel, Polytechnische Gesellschaft, Goethe-University Frankfurt am Main, Karl-von-Frisch-Weg 2, D-61440 Oberursel, Germany
| | - Martin Beye
- Institute of Evolutionary Genetics, Heinrich-Heine University, Düsseldorf 40225, Germany
| |
Collapse
|
8
|
Maleszka R. Reminiscences on the honeybee genome project and the rise of epigenetic concepts in insect science. INSECT MOLECULAR BIOLOGY 2024; 33:444-456. [PMID: 38196200 DOI: 10.1111/imb.12888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 12/18/2023] [Indexed: 01/11/2024]
Abstract
The sequencing of the honeybee genome in 2006 was an important technological and logistic achievement experience. But what benefits have flown from the honeybee genome project? What does the annotated genomic assembly mean for the study of behavioural complexity and organismal function in honeybees? Here, I discuss several lines of research that have arisen from this project and highlight the rapidly expanding studies on insect epigenomics, emergent properties of royal jelly, the mechanism of nutritional control of development and the contribution of epigenomic regulation to the evolution of sociality. I also argue that the term 'insect epigenetics' needs to be carefully redefined to reflect the diversity of epigenomic toolkits in insects and the impact of lineage-specific innovations on organismal outcomes. The honeybee genome project helped pioneer advances in social insect molecular biology, and fuelled breakthrough research into the role of flexible epigenomic control systems in linking genotype to phenotype.
Collapse
Affiliation(s)
- Ryszard Maleszka
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| |
Collapse
|
9
|
Krishnan S, Karpe SD, Kumar H, Nongbri LB, Venkateswaran V, Sowdhamini R, Grosse-Wilde E, Hansson BS, Borges RM. Sensing volatiles throughout the body: geographic- and tissue-specific olfactory receptor expression in the fig wasp. INSECT SCIENCE 2024. [PMID: 39183553 DOI: 10.1111/1744-7917.13441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 07/02/2024] [Accepted: 07/22/2024] [Indexed: 08/27/2024]
Abstract
An essential adaptive strategy in insects is the evolution of olfactory receptors (ORs) to recognize important volatile environmental chemical cues. Our model species, Ceratosolen fusciceps, a specialist wasp pollinator of Ficus racemosa, likely possesses an OR repertoire that allows it to distinguish fig-specific volatiles in highly variable environments. Using a newly assembled genome-guided transcriptome, we annotated 63 ORs in the species and reconstructed the phylogeny of Ceratosolen ORs in conjunction with other hymenopteran species. Expression analysis showed that though ORs were mainly expressed in the female antennae, 20% were also expressed in nonantennal tissues such as the head, thorax, abdomen, legs, wings, and ovipositor. Specific upregulated expression was observed in OR30C in the head and OR60C in the wings. We identified OR expression from all major body parts of female C. fusciceps, suggesting novel roles of ORs throughout the body. Further examination of the OR expression of C. fusciceps in widely separated geographical locations, that is, South (urban) and Northeast (rural) India, revealed distinct OR expression levels in different locations. This discrepancy likely parallels the observed variation in fig volatiles between these regions and provides new insights into the evolution of insect ORs and their expression across geographical locations and tissues.
Collapse
Affiliation(s)
- Sushma Krishnan
- Centre for Ecological Sciences, Indian Institute of Science, Bangalore, Karnataka, India
| | - Snehal Dilip Karpe
- National Centre for Biological Sciences, Tata Institute for Fundamental Research, GKVK Campus, Bangalore, Karnataka, India
| | - Hithesh Kumar
- Genotypic Technology Pvt. Ltd., Bangalore, Karnataka, India
| | - Lucy B Nongbri
- Centre for Ecological Sciences, Indian Institute of Science, Bangalore, Karnataka, India
| | - Vignesh Venkateswaran
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Ramanathan Sowdhamini
- National Centre for Biological Sciences, Tata Institute for Fundamental Research, GKVK Campus, Bangalore, Karnataka, India
| | - Ewald Grosse-Wilde
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Praha, Suchdol, Czech Republic
| | - Bill S Hansson
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Renee M Borges
- Centre for Ecological Sciences, Indian Institute of Science, Bangalore, Karnataka, India
| |
Collapse
|
10
|
Balbuena MS, Latorre-Estivalis JM, Farina WM. Identification of chemosensory genes in the stingless bee Tetragonisca fiebrigi. G3 (BETHESDA, MD.) 2024; 14:jkae060. [PMID: 38498593 PMCID: PMC11075565 DOI: 10.1093/g3journal/jkae060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 01/15/2024] [Accepted: 03/02/2024] [Indexed: 03/20/2024]
Abstract
Reception of chemical information from the environment is crucial for insects' survival and reproduction. The chemosensory reception mainly occurs by the antennae and mouth parts of the insect, when the stimulus contacts the chemoreceptors located within the sensilla. Chemosensory receptor genes have been well-studied in some social hymenopterans such as ants, honeybees, and wasps. However, although stingless bees are the most representative group of eusocial bees, little is known about their odorant, gustatory, and ionotropic receptor genes. Here, we analyze the transcriptome of the proboscis and antennae of the stingless bee Tetragonisca fiebrigi. We identified and annotated 9 gustatory and 15 ionotropic receptors. Regarding the odorant receptors, we identified 204, and we were able to annotate 161 of them. In addition, we compared the chemosensory receptor genes of T. fiebrigi with those annotated for other species of Hymenoptera. We found that T. fiebrigi showed the largest number of odorant receptors compared with other bees. Genetic expansions were identified in the subfamilies 9-exon, which was also expanded in ants and paper wasps; in G02A, including receptors potentially mediating social behavior; and in GUnC, which has been related to pollen and nectar scent detection. Our study provides the first report of chemosensory receptor genes in T. fiebrigi and represents a resource for future molecular and physiological research in this and other stingless bee species.
Collapse
Affiliation(s)
- María Sol Balbuena
- Laboratorio de Insectos Sociales, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Universidad de Buenos Aires—CONICET, CABA C1428EGA, Argentina
- Laboratorio de Insectos Sociales, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, CABA C1428EGA, Argentina
| | - Jose M Latorre-Estivalis
- Laboratorio de Insectos Sociales, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Universidad de Buenos Aires—CONICET, CABA C1428EGA, Argentina
- Laboratorio de Insectos Sociales, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, CABA C1428EGA, Argentina
| | - Walter M Farina
- Laboratorio de Insectos Sociales, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Universidad de Buenos Aires—CONICET, CABA C1428EGA, Argentina
- Laboratorio de Insectos Sociales, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, CABA C1428EGA, Argentina
| |
Collapse
|
11
|
Ke H, D Bohbot J, Chi Y, Duan S, Ma X, Ren B, Wang Y. The dual coding of a single sex pheromone receptor in Asian honeybee Apis cerana. Commun Biol 2024; 7:502. [PMID: 38664580 PMCID: PMC11045764 DOI: 10.1038/s42003-024-06206-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
In Asian honeybees, virgin queens typically only mate during a single nuptial flight before founding a colony. This behavior is controlled by the queen-released mandibular pheromone (QMP). 9-oxo-(E)-2-decenoic acid (9-ODA), a key QMP component, acts as sex pheromone and attracts drones. However, how the queens prevent additional mating remains elusive. Here, we show that the secondary QMP component methyl p-hydroxybenzoate (HOB) released by mated queens inhibits male attraction to 9-ODA. Results from electrophysiology and in situ hybridization assay indicated that HOB alone significantly reduces the spontaneous spike activity of 9-ODA-sensitive neurons, and AcerOr11 is specifically expressed in sensilla placodea from the drone's antennae, which are the sensilla that narrowly respond to both 9-ODA and HOB. Deorphanization of AcerOr11 in Xenopus oocyte system showed 9-ODA induces robust inward (regular) currents, while HOB induces inverse currents in a dose-dependent manner. This suggests that HOB potentially acts as an inverse agonist against AcerOr11.
Collapse
Affiliation(s)
- Haoqin Ke
- Key Laboratory of Vegetation Ecology, MOE, Northeast Normal University, Changchun, China
| | - Jonathan D Bohbot
- Department of Entomology, The Hebrew University of Jerusalem, The Robert H. Smith Faculty of Agriculture, Food and Environment, Rehovot, Israel
| | - Yongjuan Chi
- Apiculture Science Institute of Jilin Province, Jilin, China
| | - Shiwen Duan
- Key Laboratory of Vegetation Ecology, MOE, Northeast Normal University, Changchun, China
| | - Xiaomei Ma
- Key Laboratory of Vegetation Ecology, MOE, Northeast Normal University, Changchun, China
| | - Bingzhong Ren
- Key Laboratory of Vegetation Ecology, MOE, Northeast Normal University, Changchun, China.
| | - Yinliang Wang
- Key Laboratory of Vegetation Ecology, MOE, Northeast Normal University, Changchun, China.
| |
Collapse
|
12
|
Ke H, Chen Y, Zhang B, Duan S, Ma X, Ren B, Wang Y. Odorant Receptors Expressing and Antennal Lobes Architecture Are Linked to Caste Dimorphism in Asian Honeybee, Apis cerana (Hymenoptera: Apidae). Int J Mol Sci 2024; 25:3934. [PMID: 38612745 PMCID: PMC11012130 DOI: 10.3390/ijms25073934] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/26/2024] [Accepted: 03/30/2024] [Indexed: 04/14/2024] Open
Abstract
Insects heavily rely on the olfactory system for food, mating, and predator evasion. However, the caste-related olfactory differences in Apis cerana, a eusocial insect, remain unclear. To explore the peripheral and primary center of the olfactory system link to the caste dimorphism in A. cerana, transcriptome and immunohistochemistry studies on the odorant receptors (ORs) and architecture of antennal lobes (ALs) were performed on different castes. Through transcriptomesis, we found more olfactory receptor genes in queens and workers than in drones, which were further validated by RT-qPCR, indicating caste dimorphism. Meanwhile, ALs structure, including volume, surface area, and the number of glomeruli, demonstrated a close association with caste dimorphism. Particularly, drones had more macroglomeruli possibly for pheromone recognition. Interestingly, we found that the number of ORs and glomeruli ratio was nearly 1:1. Also, the ORs expression distribution pattern was very similar to the distribution of glomeruli volume. Our results suggest the existence of concurrent plasticity in both the peripheral olfactory system and ALs among different castes of A. cerana, highlighting the role of the olfactory system in labor division in insects.
Collapse
Affiliation(s)
- Haoqin Ke
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, School of Life Science, Northeast Normal University, Changchun 130024, China; (H.K.); (Y.C.); (B.Z.); (S.D.); (X.M.); (B.R.)
- Key Laboratory of Vegetation Ecology, MOE, Northeast Normal University, Changchun 130024, China
| | - Yu Chen
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, School of Life Science, Northeast Normal University, Changchun 130024, China; (H.K.); (Y.C.); (B.Z.); (S.D.); (X.M.); (B.R.)
- Key Laboratory of Vegetation Ecology, MOE, Northeast Normal University, Changchun 130024, China
| | - Baoyi Zhang
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, School of Life Science, Northeast Normal University, Changchun 130024, China; (H.K.); (Y.C.); (B.Z.); (S.D.); (X.M.); (B.R.)
- Key Laboratory of Vegetation Ecology, MOE, Northeast Normal University, Changchun 130024, China
| | - Shiwen Duan
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, School of Life Science, Northeast Normal University, Changchun 130024, China; (H.K.); (Y.C.); (B.Z.); (S.D.); (X.M.); (B.R.)
- Key Laboratory of Vegetation Ecology, MOE, Northeast Normal University, Changchun 130024, China
| | - Xiaomei Ma
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, School of Life Science, Northeast Normal University, Changchun 130024, China; (H.K.); (Y.C.); (B.Z.); (S.D.); (X.M.); (B.R.)
- Key Laboratory of Vegetation Ecology, MOE, Northeast Normal University, Changchun 130024, China
| | - Bingzhong Ren
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, School of Life Science, Northeast Normal University, Changchun 130024, China; (H.K.); (Y.C.); (B.Z.); (S.D.); (X.M.); (B.R.)
- Key Laboratory of Vegetation Ecology, MOE, Northeast Normal University, Changchun 130024, China
| | - Yinliang Wang
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, School of Life Science, Northeast Normal University, Changchun 130024, China; (H.K.); (Y.C.); (B.Z.); (S.D.); (X.M.); (B.R.)
- Key Laboratory of Vegetation Ecology, MOE, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
13
|
Mariette J, Noël A, Louis T, Montagné N, Chertemps T, Jacquin-Joly E, Marion-Poll F, Sandoz JC. Transcuticular calcium imaging as a tool for the functional study of insect odorant receptors. Front Mol Neurosci 2023; 16:1182361. [PMID: 37645702 PMCID: PMC10461100 DOI: 10.3389/fnmol.2023.1182361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 07/12/2023] [Indexed: 08/31/2023] Open
Abstract
The primary actors in the detection of olfactory information in insects are odorant receptors (ORs), transmembrane proteins expressed at the dendrites of olfactory sensory neurons (OSNs). In order to decode the insect olfactome, many studies focus on the deorphanization of ORs (i.e., identification of their ligand), using various approaches involving heterologous expression coupled to neurophysiological recordings. The "empty neuron system" of the fruit fly Drosophila melanogaster is an appreciable host for insect ORs, because it conserves the cellular environment of an OSN. Neural activity is usually recorded using labor-intensive electrophysiological approaches (single sensillum recordings, SSR). In this study, we establish a simple method for OR deorphanization using transcuticular calcium imaging (TCI) at the level of the fly antenna. As a proof of concept, we used two previously deorphanized ORs from the cotton leafworm Spodoptera littoralis, a specialist pheromone receptor and a generalist plant odor receptor. We demonstrate that by co-expressing the GCaMP6s/m calcium probes with the OR of interest, it is possible to measure robust odorant-induced responses under conventional microscopy conditions. The tuning breadth and sensitivity of ORs as revealed using TCI were similar to those measured using single sensillum recordings (SSR). We test and discuss the practical advantages of this method in terms of recording duration and the simultaneous testing of several insects.
Collapse
Affiliation(s)
- Julia Mariette
- Evolution, Genomes, Behaviour and Ecology, IDEEV, CNRS, Université Paris-Saclay, IRD, Gif-sur-Yvette, France
| | - Amélie Noël
- Evolution, Genomes, Behaviour and Ecology, IDEEV, CNRS, Université Paris-Saclay, IRD, Gif-sur-Yvette, France
| | - Thierry Louis
- Evolution, Genomes, Behaviour and Ecology, IDEEV, CNRS, Université Paris-Saclay, IRD, Gif-sur-Yvette, France
| | - Nicolas Montagné
- Sorbonne Université, INRAE, CNRS, IRD, UPEC, Université Paris Cité, Institute of Ecology and Environmental Sciences of Paris (iEES-Paris), Paris, France
| | - Thomas Chertemps
- Sorbonne Université, INRAE, CNRS, IRD, UPEC, Université Paris Cité, Institute of Ecology and Environmental Sciences of Paris (iEES-Paris), Paris, France
| | - Emmanuelle Jacquin-Joly
- Sorbonne Université, INRAE, CNRS, IRD, UPEC, Université Paris Cité, Institute of Ecology and Environmental Sciences of Paris (iEES-Paris), Paris, France
| | - Frédéric Marion-Poll
- Evolution, Genomes, Behaviour and Ecology, IDEEV, CNRS, Université Paris-Saclay, IRD, Gif-sur-Yvette, France
| | - Jean-Christophe Sandoz
- Evolution, Genomes, Behaviour and Ecology, IDEEV, CNRS, Université Paris-Saclay, IRD, Gif-sur-Yvette, France
| |
Collapse
|
14
|
Marachlian E, Huerta R, Locatelli FF. Gain modulation and odor concentration invariance in early olfactory networks. PLoS Comput Biol 2023; 19:e1011176. [PMID: 37343029 DOI: 10.1371/journal.pcbi.1011176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 05/11/2023] [Indexed: 06/23/2023] Open
Abstract
The broad receptive field of the olfactory receptors constitutes the basis of a combinatorial code that allows animals to detect and discriminate many more odorants than the actual number of receptor types that they express. One drawback is that high odor concentrations recruit lower affinity receptors which can lead to the perception of qualitatively different odors. Here we addressed the contribution that signal-processing in the antennal lobe makes to reduce concentration dependence in odor representation. By means of calcium imaging and pharmacological approach we describe the contribution that GABA receptors play in terms of the amplitude and temporal profiles of the signals that convey odor information from the antennal lobes to higher brain centers. We found that GABA reduces the amplitude of odor elicited signals and the number of glomeruli that are recruited in an odor-concentration-dependent manner. Blocking GABA receptors decreases the correlation among glomerular activity patterns elicited by different concentrations of the same odor. In addition, we built a realistic mathematical model of the antennal lobe that was used to test the viability of the proposed mechanisms and to evaluate the processing properties of the AL network under conditions that cannot be achieved in physiology experiments. Interestingly, even though based on a rather simple topology and cell interactions solely mediated by GABAergic lateral inhibitions, the AL model reproduced key features of the AL response upon different odor concentrations and provides plausible solutions for concentration invariant recognition of odors by artificial sensors.
Collapse
Affiliation(s)
- Emiliano Marachlian
- Instituto de Fisiología Biología Molecular y Neurociencias (IFIByNE-UBA-CONICET) and Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ramón Huerta
- BioCircuits Institute, University of California San Diego, La Jolla, California, United States of America
| | - Fernando F Locatelli
- Instituto de Fisiología Biología Molecular y Neurociencias (IFIByNE-UBA-CONICET) and Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
15
|
Gomez Ramirez WC, Thomas NK, Muktar IJ, Riabinina O. The neuroecology of olfaction in bees. CURRENT OPINION IN INSECT SCIENCE 2023; 56:101018. [PMID: 36842606 DOI: 10.1016/j.cois.2023.101018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/30/2022] [Accepted: 02/20/2023] [Indexed: 05/03/2023]
Abstract
The focus of bee neuroscience has for a long time been on only a handful of social honeybee and bumblebee species, out of thousands of bees species that have been described. On the other hand, information about the chemical ecology of bees is much more abundant. Here we attempted to compile the scarce information about olfactory systems of bees across species. We also review the major categories of intra- and inter-specific olfactory behaviors of bees, with specific focus on recent literature. We finish by discussing the most promising avenues for bee olfactory research in the near future.
Collapse
|
16
|
Xu Q, Wu C, Xiao D, Jin Z, Zhang C, Hatt S, Guo X, Wang S. Ecological function of key volatiles in Vitex negundo infested by Aphis gossypii. FRONTIERS IN PLANT SCIENCE 2023; 13:1090559. [PMID: 36714696 PMCID: PMC9879570 DOI: 10.3389/fpls.2022.1090559] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/23/2022] [Indexed: 06/18/2023]
Abstract
Herbivore induced plant volatiles (HIPVs) are key components of plant-herbivorous-natural enemies communications. Indeed, plants respond to herbivores feeding by releasing HIPVs to attract natural enemies. The present study analyses the effect of HIPVs of Vitex negundo (Lamiaceae), an indigenous plant species in northern China, on the predatory ladybug species Harmonia axyridis. Y-tube olfactometer bioassay showed that H. axyridis adults were significantly attracted by V. negundo infested by the aphid Aphis gossypii. We analyzed and compared volatile profiles between healthy and A. gossypii infested V. negundo, screened out the candidate active HIPVs mediated by A. gossypii which could attract H. axyridis, and tested the olfactory behavior of the candidate active compounds on H. axyridis. The gas chromatography-mass spectrometry analysis showed that five volatile compounds were significantly up-regulated after V. negundo infestation by A. gossypii, and five substances were significantly down-regulated in the terpenoid biosynthesis pathway. The olfactory behavior response showed that H. axyridis has significant preference for sclareol, eucalyptol, nonanal and α-terpineol, indicating that this chemical compounds are the important volatiles released by V. negundo to attract H. axyridis. This study preliminarily clarified that V. negundo release HIPVs to attract natural enemies when infected by herbivorous insects. The description of the volatile emission profile enriches the theoretical system of insect-induced volatile-mediated plant defense function of woody plants. Applications in crop protection would lie in designing original strategies to naturally control aphids in orchards.
Collapse
Affiliation(s)
- Qingxuan Xu
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Changbing Wu
- Hubei Engineering Research Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, China
| | - Da Xiao
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Zhenyu Jin
- Hubei Engineering Research Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, China
| | - Changrong Zhang
- Institute of Plant Protection, Guizhou Academy of Agriculture Sciences, Guiyang, Guizhou, China
| | - Séverin Hatt
- Agroecology and Organic Farming, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
| | - Xiaojun Guo
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Su Wang
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
17
|
Abstract
Sex pheromones are pivotal for insect reproduction. However, the mechanism of sex pheromone communication remains enigmatic in hymenopteran parasitoids. Here we have identified the sex pheromone and elucidated the olfactory basis of sex pheromone communication in Campoletis chlorideae (Ichneumonidae), a solitary larval endoparasitoid of over 30 lepidopteran pests. Using coupled gas chromatography-electroantennogram detection, we identified two female-derived pheromone components, tetradecanal (14:Ald) and 2-heptadecanone (2-Hep) (1:4.6), eliciting strong antennal responses from males but weak responses from females. We observed that males but not females were attracted to both single components and the blend. The hexane-washed female cadavers failed to arouse males, and replenishing 14:Ald and 2-Hep could partially restore the sexual attraction of males. We further expressed six C. chlorideae male-biased odorant receptors in Drosophila T1 neurons and found that CchlOR18 and CchlOR47 were selectively tuned to 14:Ald and 2-Hep, respectively. To verify the biological significance of this data, we knocked down CchlOR18 and CchlOR47 individually or together in vivo and show that the attraction of C. chlorideae to their respective ligands was abolished. Moreover, the parasitoids defective in either of the receptors were less likely to court and copulate. Finally, we show that the sex pheromone and (Z)-jasmone, a potent female attractant, can synergistically affect behaviors of virgin males and virgin females and ultimately increase the parasitic efficiency of C. chlorideae. Our study provides new insights into the molecular mechanism of sex pheromone communication in C. chlorideae that may permit manipulation of parasitoid behavior for pest control.
Collapse
|
18
|
Du H, Su W, Huang J, Ding G. Sex-Biased Expression of Olfaction-Related Genes in the Antennae of Apis cerana (Hymenoptera: Apidae). Genes (Basel) 2022; 13:genes13101771. [PMID: 36292656 PMCID: PMC9602017 DOI: 10.3390/genes13101771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/23/2022] [Accepted: 09/27/2022] [Indexed: 11/04/2022] Open
Abstract
The olfactory system is essential for honeybees to adapt to complex and ever-changing environments and maintain cohesiveness. The Eastern honeybee Apis cerana is native to Asia and has a long history of managed beekeeping in China. In this study, we analysed the antennal transcriptomes of A. cerana workers and drones using Illumina sequencing. A total of 5262 differentially expressed genes (DEGs) (fold change > 2) were identified between these two castes, with 2359 upregulated and 2903 downregulated in drones compared with workers. We identified 242 candidate olfaction-related genes, including 15 odourant-binding proteins (OBPs), 5 chemosensory proteins (CSPs), 110 odourant receptors (ORs), 9 gustatory receptors (GRs), 8 ionotropic receptors (IRs), 2 sensory neuron membrane proteins (SNMPs) and 93 putative odourant-degrading enzymes (ODEs). More olfaction-related genes have worker-biased expression than drone-biased expression, with 26 genes being highly expressed in workers’ antennae and only 8 genes being highly expressed in drones’ antennae (FPKM > 30). Using real-time quantitative PCR (RT-qPCR), we verified the reliability of differential genes inferred by transcriptomics and compared the expression profiles of 6 ORs (AcOR10, AcOR11, AcOR13, AcOR18, AcOR79 and AcOR170) between workers and drones. These ORs were expressed at significantly higher levels in the antennae than in other tissues (p < 0.01). There were clear variations in the expression levels of all 6 ORs between differently aged workers and drones. The relative expression levels of AcOR10, AcOR11, AcOR13, AcOR18 and AcOR79 reached a high peak in 15-day-old drones. These results will contribute to future research on the olfaction mechanism of A. cerana and will help to better reveal the odourant reception variations between different biological castes of honeybees.
Collapse
Affiliation(s)
- Hanchao Du
- Key Laboratory of Pollinating Insect Biology of the Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Wenting Su
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong 030801, China
| | - Jiaxing Huang
- Key Laboratory of Pollinating Insect Biology of the Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Guiling Ding
- Key Laboratory of Pollinating Insect Biology of the Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
- Correspondence: ; Tel.: +86-010-62596906
| |
Collapse
|
19
|
Zhang Y, Feng K, Mei R, Li W, Tang F. Analysis of the Antennal Transcriptome and Identification of Tissue-specific Expression of Olfactory-related Genes in Micromelalopha troglodyta (Lepidoptera: Notodontidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2022; 22:8. [PMID: 36165424 PMCID: PMC9513789 DOI: 10.1093/jisesa/ieac056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Indexed: 06/16/2023]
Abstract
Micromelalopha troglodyta (Graeser) has been one of the most serious pests on poplars in China. We used Illumina HiSeq 2000 sequencing to construct an antennal transcriptome and identify olfactory-related genes. In total, 142 transcripts were identified, including 74 odorant receptors (ORs), 32 odorant-binding proteins (OBPs), 13 chemosensory proteins (CSPs), 20 ionotropic receptors (IRs), and 3 sensory neuron membrane proteins (SNMPs). The genetic relationships were obtained by the phylogenetic tree, and the tissue-specific expression of important olfactory-related genes was determined by quantitative real-time PCR (qRT-PCR). The results showed that most of these genes are abundantly expressed in the antennae and head. In most insects, olfaction plays a key role in foraging, host localization, and searching for mates. Our research lays the foundation for future research on the molecular mechanism of the olfactory system in M. troglodyta. In addition, this study provides a theoretical basis for exploring the relationship between M. troglodyta and their host plants, and for the biological control of M. troglodyta using olfactory receptor as targets.
Collapse
Affiliation(s)
| | | | - Ruolan Mei
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Wei Li
- College of Life Sciences, Yangtze University, Jingzhou 434025, Hubei Province, China
| | | |
Collapse
|
20
|
Sato A, Fukase T, Ebina K. 10-Hydroxy-2-decenoic acid-derived aldehydes attenuate anaphylactic hypothermia in vivo. PHARMANUTRITION 2022. [DOI: 10.1016/j.phanu.2022.100301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
21
|
Fleischer J, Rausch A, Dietze K, Erler S, Cassau S, Krieger J. A small number of male-biased candidate pheromone receptors are expressed in large subsets of the olfactory sensory neurons in the antennae of drones from the European honey bee Apis mellifera. INSECT SCIENCE 2022; 29:749-766. [PMID: 34346151 DOI: 10.1111/1744-7917.12960] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/21/2021] [Accepted: 07/29/2021] [Indexed: 06/13/2023]
Abstract
In the European honey bee (Apis mellifera), the olfactory system is essential for foraging and intraspecific communication via pheromones. Honey bees are equipped with a large repertoire of olfactory receptors belonging to the insect odorant receptor (OR) family. Previous studies have indicated that the transcription level of a few OR types including OR11, a receptor activated by the queen-released pheromone compound (2E)-9-oxodecenoic acid (9-ODA), is significantly higher in the antenna of males (drones) than in female workers. However, the number and distribution of antennal cells expressing male-biased ORs is elusive. Here, we analyzed antennal sections from bees by in situ hybridization for the expression of the male-biased receptors OR11, OR18, and OR170. Our results demonstrate that these receptors are expressed in only moderate numbers of cells in the antennae of females (workers and queens), whereas substantially higher cell numbers express these ORs in drones. Thus, the reported male-biased transcript levels are due to sex-specific differences in the number of antennal cells expressing these receptors. Detailed analyses for OR11 and OR18 in drone antennae revealed expression in two distinct subsets of olfactory sensory neurons (OSNs) that in total account for approximately 69% of the OR-positive cells. Such high percentages of OSNs expressing given receptors are reminiscent of male-biased ORs in moths that mediate the detection of female-released sex pheromone components. Collectively, our findings indicate remarkable similarities between male antennae of bees and moths and support the concept that male-biased ORs in bee drones serve the detection of female-emitted sex pheromones.
Collapse
Affiliation(s)
- Joerg Fleischer
- Martin Luther University Halle-Wittenberg, Institute of Biology/Zoology, Department of Animal Physiology, Halle (Saale)
| | - Alexander Rausch
- Martin Luther University Halle-Wittenberg, Institute of Biology/Zoology, Department of Animal Physiology, Halle (Saale)
| | - Kathrin Dietze
- Martin Luther University Halle-Wittenberg, Institute of Biology/Zoology, Department of Animal Physiology, Halle (Saale)
| | - Silvio Erler
- Institute for Bee Protection, Julius Kühn Institute (JKI)-Federal Research Centre for Cultivated Plants, Braunschweig, Germany
| | - Sina Cassau
- Martin Luther University Halle-Wittenberg, Institute of Biology/Zoology, Department of Animal Physiology, Halle (Saale)
| | - Jürgen Krieger
- Martin Luther University Halle-Wittenberg, Institute of Biology/Zoology, Department of Animal Physiology, Halle (Saale)
| |
Collapse
|
22
|
Guo L, Xu B, Zhao H, Guo Y, Jiang Y. Calmodulin Activity Affects the Function of the Odorant Receptor AcerOr2 in Honeybees. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.848150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Bees rely on their sensitive olfactory system to perform foraging activities in the surrounding environment. This ability is associated with the existence of olfactory receptors (ORs). In this study, we identified the AcerOr2 (ortholog to the Orco) protein in Apis cerana cerana, which contains a conserved, putative calmodulin (CaM)-binding site (CBS) indicating that CaM is involved in its function. We used immunofluorescence, Western blot, and Ca2 + imaging to monitor changes in the expression and activation of the signaling pathway associated with Ca2 + and Ca2 +/CaM-dependent protein kinase II (CaMKII) in Sf9 cells heterologously expressing AcerOr2 and a CaM-binding mutant. We used the synthetic Orco agonist VUAA1 to stimulate the cells or the antagonist W7 to inhibit CaM activity. The AcerOr2 CaM-binding mutant has a point mutation in the putative CBS (K331N). When heterologously expressed in Sf9 cells, the mutant should have less CaM activity. When the cells expressing AcerOr2 were treated with W7, the Ca2 + response of AceOr2 was similar to that of the mutant stimulated by VUAA1, and the expression of the CaM, CaMKII, and p-CaMKII has similar effects. Our results suggest that CaM activity affects the function of AceOr2 in vitro and can be used to further study the interaction between the AcerOr2 and calcium/CaM signaling pathway in the pollen collection behavior of bees.
Collapse
|
23
|
Tanaka K, Shimomura K, Hosoi A, Sato Y, Oikawa Y, Seino Y, Kuribara T, Yajima S, Tomizawa M. Antennal transcriptome analysis of chemosensory genes in the cowpea beetle, Callosobruchus maculatus (F.). PLoS One 2022; 17:e0262817. [PMID: 35045135 PMCID: PMC8769365 DOI: 10.1371/journal.pone.0262817] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/05/2022] [Indexed: 11/19/2022] Open
Abstract
Olfaction, one of the most important sensory systems governing insect behavior, is a possible target for pest management. Therefore, in this study, we analyzed the antennal transcriptome of the cowpea beetle, Callosobruchus maculatus (F.) (Coleoptera: Chrysomelidae: Bruchinae), which is a major pest of stored pulses and legumes. The de novo antennal RNA-seq assembly results identified 17 odorant, 2 gustatory, and 10 ionotropic receptors, 1 sensory neuron membrane protein, and 12 odorant-binding and 7 chemosensory proteins. Moreover, differential gene expression analysis of virgin male and female antennal samples followed by qRT-PCR revealed 1 upregulated and 4 downregulated odorant receptors in males. We also performed homology searches using the coding sequences built from previously proposed amino acid sequences derived from genomic data and identified additional chemosensory-related genes.
Collapse
Affiliation(s)
- Keisuke Tanaka
- NODAI Genome Research Center, Tokyo University of Agriculture, Setagaya-ku, Tokyo, Japan
| | - Kenji Shimomura
- Department of Chemistry for Life Sciences and Agriculture, Tokyo University of Agriculture, Setagaya-ku, Tokyo, Japan
| | - Akito Hosoi
- Department of Bioscience, Tokyo University of Agriculture, Setagaya-ku, Tokyo, Japan
| | - Yui Sato
- Department of Bioscience, Tokyo University of Agriculture, Setagaya-ku, Tokyo, Japan
| | - Yukari Oikawa
- Department of Bioscience, Tokyo University of Agriculture, Setagaya-ku, Tokyo, Japan
| | - Yuma Seino
- Department of Chemistry for Life Sciences and Agriculture, Tokyo University of Agriculture, Setagaya-ku, Tokyo, Japan
| | - Takuto Kuribara
- Department of Chemistry for Life Sciences and Agriculture, Tokyo University of Agriculture, Setagaya-ku, Tokyo, Japan
| | - Shunsuke Yajima
- NODAI Genome Research Center, Tokyo University of Agriculture, Setagaya-ku, Tokyo, Japan
- Department of Bioscience, Tokyo University of Agriculture, Setagaya-ku, Tokyo, Japan
| | - Motohiro Tomizawa
- Department of Chemistry for Life Sciences and Agriculture, Tokyo University of Agriculture, Setagaya-ku, Tokyo, Japan
| |
Collapse
|
24
|
Oi CA. Honeybee queen mandibular pheromone fails to regulate ovary activation in the common wasp. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2022; 208:297-302. [PMID: 35028724 DOI: 10.1007/s00359-021-01531-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 12/21/2022]
Abstract
The queen mandibular pheromone (QMP) identified from the honeybee is responsible for maintaining reproductive division of labour in the colony, and affects multiple behaviours. Interestingly, QMP inhibits reproduction not only in honeybee workers, but also in distantly related insect species such as fruit flies and bumblebees. This study examines whether QMP also affects worker reproduction in the common wasp Vespula vulgaris. Wasp workers were exposed to one of the following treatments: QMP, wasp queen pheromone (the hydrocarbon heptacosane n-C27), or acetone (solvent-only control). After dissecting the workers, no evidence that QMP inhibits development in V. vulgaris could be found. However, this study could confirm the inhibitory effect of the hydrocarbon heptacosane on ovary activation. The reason why non-social species such as the fruit fly and social species such as bumblebees and ants respond to the QMP, while the social wasp V. vulgaris does not, is unclear. The investigation of whether olfaction is key to sensing QMP in other insect species, and the detailed study of odorant receptors in other social insects, may provide insights into the mechanisms of response to this pheromone.
Collapse
Affiliation(s)
- Cintia Akemi Oi
- Laboratory of Socioecology and Social Evolution, KU Leuven, Leuven, Belgium.
| |
Collapse
|
25
|
Legan AW, Jernigan CM, Miller SE, Fuchs MF, Sheehan MJ. Expansion and Accelerated Evolution of 9-Exon Odorant Receptors in Polistes Paper Wasps. Mol Biol Evol 2021; 38:3832-3846. [PMID: 34151983 PMCID: PMC8383895 DOI: 10.1093/molbev/msab023] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Independent origins of sociality in bees and ants are associated with independent expansions of particular odorant receptor (OR) gene subfamilies. In ants, one clade within the OR gene family, the 9-exon subfamily, has dramatically expanded. These receptors detect cuticular hydrocarbons (CHCs), key social signaling molecules in insects. It is unclear to what extent 9-exon OR subfamily expansion is associated with the independent evolution of sociality across Hymenoptera, warranting studies of taxa with independently derived social behavior. Here, we describe OR gene family evolution in the northern paper wasp, Polistes fuscatus, and compare it to four additional paper wasp species spanning ∼40 million years of evolutionary divergence. We find 200 putatively functional OR genes in P. fuscatus, matching predictions from neuroanatomy, and more than half of these are in the 9-exon subfamily. Most OR gene expansions are tandemly arrayed at orthologous loci in Polistes genomes, and microsynteny analysis shows species-specific gain and loss of 9-exon ORs within tandem arrays. There is evidence of episodic positive diversifying selection shaping ORs in expanded subfamilies. Values of omega (dN/dS) are higher among 9-exon ORs compared to other OR subfamilies. Within the Polistes OR gene tree, branches in the 9-exon OR clade experience relaxed negative (relaxed purifying) selection relative to other branches in the tree. Patterns of OR evolution within Polistes are consistent with 9-exon OR function in CHC perception by combinatorial coding, with both natural selection and neutral drift contributing to interspecies differences in gene copy number and sequence.
Collapse
Affiliation(s)
- Andrew W Legan
- Laboratory for Animal Social Evolution and Recognition, Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Christopher M Jernigan
- Laboratory for Animal Social Evolution and Recognition, Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Sara E Miller
- Laboratory for Animal Social Evolution and Recognition, Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Matthieu F Fuchs
- Laboratory for Animal Social Evolution and Recognition, Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Michael J Sheehan
- Laboratory for Animal Social Evolution and Recognition, Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
26
|
Rath A, Benita M, Doron J, Scharf I, Gottlieb D. Social communication activates the circadian gene Tctimeless in Tribolium castaneum. Sci Rep 2021; 11:16152. [PMID: 34373551 PMCID: PMC8352895 DOI: 10.1038/s41598-021-95588-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 07/22/2021] [Indexed: 02/07/2023] Open
Abstract
Chemical communication via pheromones is an integral component in insect behavior, particularly for mate searching and reproduction. Aggregation pheromones, that attract conspecifics of both sexes, are particularly common and have been identified for hundreds of species. These pheromones are among the most ecologically selective pest suppression agents. In this study, we identified an activating effect of the aggregation pheromone of the red flour beetle, Tribolium castaneum (Herbst) (Coleoptera: Tenibroidae) on a highly conserved circadian clock gene (Tctimeless). Tribolium castaneum is one of the most damaging cosmopolitan pest of flour and other stored food products. Its male produced aggregation pheromone, 4,8-dimethyldecanal (DMD), attracts both conspecific males and females and is used for pest management via monitoring and mating disruption. The Tctimeless gene is an essential component for daily expression patterns of the circadian clock and plays vital roles in eclosion, egg production, and embryonic development. In this study, we demonstrate that constant exposure to the species-specific aggregation pheromone led to Tctimeless up-regulation and a different pattern of rhythmic locomotive behavior. We propose that changing the well-adapted "alarm clock", using DMD is liable to reduce fitness and can be highly useful for pest management.
Collapse
Affiliation(s)
- Animesha Rath
- Department of Food Science, Institute of Post-Harvest and Food Science, The Volcani Center, ARO, Rishon LeZion, Israel
| | - Miriam Benita
- Department of Food Science, Institute of Post-Harvest and Food Science, The Volcani Center, ARO, Rishon LeZion, Israel
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Josef Doron
- Department of Food Science, Institute of Post-Harvest and Food Science, The Volcani Center, ARO, Rishon LeZion, Israel
| | - Inon Scharf
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Daphna Gottlieb
- Department of Food Science, Institute of Post-Harvest and Food Science, The Volcani Center, ARO, Rishon LeZion, Israel.
| |
Collapse
|
27
|
Sasaki K, Okada Y, Shimoji H, Aonuma H, Miura T, Tsuji K. Social Evolution With Decoupling of Multiple Roles of Biogenic Amines Into Different Phenotypes in Hymenoptera. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.659160] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Convergent evolution of eusociality with the division of reproduction and its plastic transition in Hymenoptera has long attracted the attention of researchers. To explain the evolutionary scenario of the reproductive division of labor, several hypotheses had been proposed. Among these, we focus on the most basic concepts, i.e., the ovarian ground plan hypothesis (OGPH) and the split-function hypothesis (SFH). The OGPH assumes the physiological decoupling of ovarian cycles and behavior into reproductive and non-reproductive individuals, whereas the SFH assumes that the ancestral reproductive function of juvenile hormone (JH) became split into a dual function. Here, we review recent progress in the understanding of the neurohormonal regulation of reproduction and social behavior in eusocial hymenopterans, with an emphasis on biogenic amines. Biogenic amines are key substances involved in the switching of reproductive physiology and modulation of social behaviors. Dopamine has a pivotal role in the formation of reproductive skew irrespective of the social system, whereas octopamine and serotonin contribute largely to non-reproductive social behaviors. These decoupling roles of biogenic amines are seen in the life cycle of a single female in a solitary species, supporting OGPH. JH promotes reproduction with dopamine function in primitively eusocial species, whereas it regulates non-reproductive social behaviors with octopamine function in advanced eusocial species. The signal transduction networks between JH and the biogenic amines have been rewired in advanced eusocial species, which could regulate reproduction in response to various social stimuli independently of JH action.
Collapse
|
28
|
Abstract
Social behavior is one of the most fascinating and complex behaviors in humans and animals. A fundamental process of social behavior is communication among individuals. It relies on the capability of the nervous system to sense, process, and interpret various signals (e.g., pheromones) and respond with appropriate decisions and actions. Eusocial insects, including ants, some bees, some wasps, and termites, display intriguing cooperative social behavior. Recent advances in genetic and genomic studies have revealed key genes that are involved in pheromone synthesis, chemosensory perception, and physiological and behavioral responses to varied pheromones. In this review, we highlight the genes and pathways that regulate queen pheromone-mediated social communication, discuss the evolutionary changes in genetic systems, and outline prospects of functional studies in sociobiology.
Collapse
Affiliation(s)
- Hua Yan
- Department of Biology, University of Florida, Gainesville, Florida 32611, USA
- Center for Smell and Taste, University of Florida, Gainesville, Florida 32610, USA
| | - Jürgen Liebig
- School of Life Sciences, Arizona State University, Tempe, Arizona 85287, USA
| |
Collapse
|
29
|
Guo B, Hao E, Qiao H, Wang J, Wu W, Zhou J, Lu P. Antennal transcriptome analysis of olfactory genes and characterizations of odorant binding proteins in two woodwasps, Sirex noctilio and Sirex nitobei (Hymenoptera: Siricidae). BMC Genomics 2021; 22:172. [PMID: 33691636 PMCID: PMC7945326 DOI: 10.1186/s12864-021-07452-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 02/19/2021] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND The woodwasp Sirex noctilio Fabricius is a major quarantine pest worldwide that was first discovered in China in 2013 and mainly harms Pinus sylvestris var. mongolica Litv.. S. nitobei Matsumura is a native species in China and is closely related to S. noctilio. Recently, the two woodwasps species were found attacking the P. sylvestris var. mongolica Litv in succession. The olfactory system is the foundation of insect behavior. Olfactory genes were identified through antennal transcriptome analysis. The expression profiles odorant binding proteins (OBPs) were analyzed with RT-qPCR. RESULTS From our transcriptome analysis, 16 OBPs, 7 chemosensory proteins (CSPs), 41 odorant receptors (ORs), 8 gustatory receptors (GRs), 13 ionotropic receptors (IRs), and one sensory neuron membrane protein (SNMP) were identified in S. noctilio, while 15 OBPs, 6 CSPs, 43 ORs, 10 GRs, 16 IRs, and 1 SNMP were identified in S. nitobei. Most of the olfactory genes identified in two species were homologous. However, some species-specific olfactory genes were identified from the antennal transcriptomes, including SnocOBP13, SnocCSP6, SnocOR26, SnocGR2, SnocIR7 in S. noctilio and SnitGR9, SnitGR11, SnitIR17 in S. nitobei. In total, 14 OBPs were expressed primarily in the antennae. SnocOBP9 and SnitOBP9, identified as PBP homologues, were sex-biased expression in two siricid, but with different pattern. SnocOBP11 and SnitOBP11 were highly expressed in antennae and clearly expressed in external genitalia. SnocOBP7 and SnitOBP7 were highly expressed in male genitalia. SnocOBP3 and SnocOBP10 were highly expressed in female genitalia and male heads, while SnitOBP3 and SnitOBP10 did not show obvious tissue bias. CONCLUSION We analyzed 86 and 91 olfactory genes from S. noctilio and S. nitobei, respectively. Most of the olfactory genes identified were homologous, but also some species-specific olfactory genes were identified, which indicated the similarities and differences of the molecular mechanisms between the two closely-related species. Different expression in the antennae, external genitals or heads, exhibiting an obvious sex bias, suggested their different role in recognizing sex pheromones or plant volatiles. Species-specific expression for several OBPs genes may suggest that they strengthened or lost their original function during species differentiation, resulting in olfactory differences between the two species.
Collapse
Affiliation(s)
- Bing Guo
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, School of Forestry, Beijing Forestry University, 35 Qinghua Dong Road, Haidian District, Beijing, 100083, People's Republic of China
| | - Enhua Hao
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, School of Forestry, Beijing Forestry University, 35 Qinghua Dong Road, Haidian District, Beijing, 100083, People's Republic of China
| | - Haili Qiao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, People's Republic of China
| | - Jingzhen Wang
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, School of Forestry, Beijing Forestry University, 35 Qinghua Dong Road, Haidian District, Beijing, 100083, People's Republic of China
| | - Weiwei Wu
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, School of Forestry, Beijing Forestry University, 35 Qinghua Dong Road, Haidian District, Beijing, 100083, People's Republic of China
| | - Jingjiang Zhou
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, School of Forestry, Beijing Forestry University, 35 Qinghua Dong Road, Haidian District, Beijing, 100083, People's Republic of China
| | - Pengfei Lu
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, School of Forestry, Beijing Forestry University, 35 Qinghua Dong Road, Haidian District, Beijing, 100083, People's Republic of China.
| |
Collapse
|
30
|
Chen Z, Traniello IM, Rana S, Cash-Ahmed AC, Sankey AL, Yang C, Robinson GE. Neurodevelopmental and transcriptomic effects of CRISPR/Cas9-induced somatic orco mutation in honey bees. J Neurogenet 2021; 35:320-332. [PMID: 33666542 DOI: 10.1080/01677063.2021.1887173] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
In insects, odorant receptors facilitate olfactory communication and require the functionality of the highly conserved co-receptor gene orco. Genome editing studies in a few species of ants and moths have revealed that orco can also have a neurodevelopmental function, in addition to its canonical role in adult olfaction, discovered first in Drosophila melanogaster. To extend this analysis, we determined whether orco mutations also affect the development of the adult brain of the honey bee Apis mellifera, an important model system for social behavior and chemical communication. We used CRISPR/Cas9 to knock out orco and examined anatomical and molecular consequences. To increase efficiency, we coupled embryo microinjection with a laboratory egg collection and in vitro rearing system. This new workflow advances genomic engineering technologies in honey bees by overcoming restrictions associated with field studies. We used Sanger sequencing to quickly select individuals with complete orco knockout for neuroanatomical analyses and later validated and described the mutations with amplicon sequencing. Mutant bees had significantly fewer glomeruli, smaller total volume of all the glomeruli, and higher mean individual glomerulus volume in the antennal lobe compared to wild-type controls. RNA-Sequencing revealed that orco knockout also caused differential expression of hundreds of genes in the antenna, including genes related to neural development and genes encoding odorant receptors. The expression of other types of chemoreceptor genes was generally unaffected, reflecting specificity of CRISPR activity in this study. These results suggest that neurodevelopmental effects of orco are related to specific insect life histories.
Collapse
Affiliation(s)
- Zhenqing Chen
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Ian M Traniello
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Seema Rana
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Amy C Cash-Ahmed
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Alison L Sankey
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Che Yang
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Biochemistry Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Gene E Robinson
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
31
|
Shawer DMB, Rakha OM, Taha EKA, Al-Kahtani SN, Elnabawy EM. The impact of caging the queens during the flow season on some biological activities of honeybee colonies. Saudi J Biol Sci 2021; 28:2975-2979. [PMID: 34025174 PMCID: PMC8117163 DOI: 10.1016/j.sjbs.2021.02.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 01/26/2021] [Accepted: 02/08/2021] [Indexed: 11/17/2022] Open
Abstract
This study was achieved in a private apiary located in a banana farm in Sa El Hagar, Basioun, Gharbia, Egypt from August 15, 2019 to May 25, 2020, including the banana (Musa sp., Musaceae) flow season (August and September) and extend to Egyptian clover (Trifolium alexandrinum L., Fabaceae) flow season (May). The study aimed to evaluate the effect of confining the queen during the banana flow season on the brood rearing, honey yield, and activation of worker's ovaries. Also, we determined the negative impact of caging the queen during the banana flow season on the activity of the colony in brood rearing, storing pollen, and honey yield after releasing the queen on 5 October, extending to the next flow season in May. The obtained results showed that the honeybee colonies with the caged queen produced significantly more honey yield and less brood production than the free queen ones during the banana flow season. Also, the caging of the queen did not affect the colony strength after releasing the queen despite the partial development of the ovaries of some workers, but they did not lay eggs. In addition, releasing the queens suppressed the ovaries of the laying workers. It can be concluded that caging the queen during the banana flow season helps the colonies to produce more honey yield without effect on the colony strength after releasing the queen despite the ovaries development of few workers without egg-laying.
Collapse
Affiliation(s)
- Dalia M B Shawer
- Department of Economic Entomology, Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Osama M Rakha
- Department of Economic Entomology, Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - El-Kazafy A Taha
- Department of Economic Entomology, Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Saad N Al-Kahtani
- Arid Land Agriculture Department, College of Agricultural Sciences & Foods, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
| | - Elsaid M Elnabawy
- Department of Economic Entomology, Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| |
Collapse
|
32
|
Mariette J, Carcaud J, Sandoz JC. The neuroethology of olfactory sex communication in the honeybee Apis mellifera L. Cell Tissue Res 2021; 383:177-194. [PMID: 33447877 DOI: 10.1007/s00441-020-03401-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/14/2020] [Indexed: 12/11/2022]
Abstract
The honeybee Apis mellifera L. is a crucial pollinator as well as a prominent scientific model organism, in particular for the neurobiological study of olfactory perception, learning, and memory. A wealth of information is indeed available about how the worker bee brain detects, processes, and learns about odorants. Comparatively, olfaction in males (the drones) and queens has received less attention, although they engage in a fascinating mating behavior that strongly relies on olfaction. Here, we present our current understanding of the molecules, cells, and circuits underlying bees' sexual communication. Mating in honeybees takes place at so-called drone congregation areas and places high in the air where thousands of drones gather and mate in dozens with virgin queens. One major queen-produced olfactory signal-9-ODA, the major component of the queen pheromone-has been known for decades to attract the drones. Since then, some of the neural pathways responsible for the processing of this pheromone have been unraveled. However, olfactory receptor expression as well as brain neuroanatomical data point to the existence of three additional major pathways in the drone brain, hinting at the existence of 4 major odorant cues involved in honeybee mating. We discuss current evidence about additional not only queen- but also drone-produced pheromonal signals possibly involved in bees' sexual behavior. We also examine data revealing recent evolutionary changes in drone's olfactory system in the Apis genus. Lastly, we present promising research avenues for progressing in our understanding of the neural basis of bees mating behavior.
Collapse
Affiliation(s)
- Julia Mariette
- Evolution, Genomes, Behaviour and Ecology, Université Paris-Saclay, CNRS, IRD, 91198, Gif-sur-Yvette, France
| | - Julie Carcaud
- Evolution, Genomes, Behaviour and Ecology, Université Paris-Saclay, CNRS, IRD, 91198, Gif-sur-Yvette, France
| | - Jean-Christophe Sandoz
- Evolution, Genomes, Behaviour and Ecology, Université Paris-Saclay, CNRS, IRD, 91198, Gif-sur-Yvette, France.
| |
Collapse
|
33
|
Abstract
With less than a million neurons, the western honeybee Apis mellifera is capable of complex olfactory behaviors and provides an ideal model for investigating the neurophysiology of the olfactory circuit and the basis of olfactory perception and learning. Here, we review the most fundamental aspects of honeybee's olfaction: first, we discuss which odorants dominate its environment, and how bees use them to communicate and regulate colony homeostasis; then, we describe the neuroanatomy and the neurophysiology of the olfactory circuit; finally, we explore the cellular and molecular mechanisms leading to olfactory memory formation. The vastity of histological, neurophysiological, and behavioral data collected during the last century, together with new technological advancements, including genetic tools, confirm the honeybee as an attractive research model for understanding olfactory coding and learning.
Collapse
Affiliation(s)
- Marco Paoli
- Research Centre on Animal Cognition, Center for Integrative Biology, CNRS, University of Toulouse, 31062, Toulouse, France.
| | - Giovanni C Galizia
- Department of Neuroscience, University of Konstanz, 78457, Konstanz, Germany.
| |
Collapse
|
34
|
Basu S, Clark RE, Fu Z, Lee BW, Crowder DW. Insect alarm pheromones in response to predators: Ecological trade-offs and molecular mechanisms. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 128:103514. [PMID: 33359575 DOI: 10.1016/j.ibmb.2020.103514] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/11/2020] [Accepted: 12/17/2020] [Indexed: 06/12/2023]
Abstract
Insect alarm pheromones are chemical substances that are synthesized and released in response to predators to reduce predation risk. Alarm pheromones can also be perceived by predators, who take advantage of alarm cues to locate prey. While selection favors evolution of alarm pheromone signals that are not easily detectable by predators, predator evolution selects for better prey detection ability. Here, we review the diversity of alarm signals, and consider the behavioral and ecological conditions under which they have evolved. We show that components of alarm pheromones are similar across many insects, although aphids exhibit different behavioral responses to alarm cues compared to social insects. The effects of alarm pheromones on prey behavior depend on factors such as the concentration of pheromones and the density of conspecifics. We also discuss the molecular mechanisms of alarm pheromone perception underlying the evolutionary arms race between predators and prey, and the function of olfactory proteins and receptors in particular. Our review provides a novel synthesis of the diversity and function of insect alarm pheromones, while suggesting avenues that might better allow researchers to exploit population-level responses to alarm signaling for the sustainable management of pests and vector-borne pathogens.
Collapse
Affiliation(s)
- Saumik Basu
- Department of Entomology, Washington State University, Pullman, WA, USA.
| | - Robert E Clark
- Department of Entomology, Washington State University, Pullman, WA, USA
| | - Zhen Fu
- Department of Entomology, Washington State University, Pullman, WA, USA; Department of Entomology, Texas A&M University, College Station, TX, USA
| | - Benjamin W Lee
- Department of Entomology, Washington State University, Pullman, WA, USA
| | - David W Crowder
- Department of Entomology, Washington State University, Pullman, WA, USA
| |
Collapse
|
35
|
Gao J, Jin SS, He Y, Luo JH, Xu CQ, Wu YY, Hou CS, Wang Q, Diao QY. Physiological Analysis and Transcriptome Analysis of Asian Honey Bee ( Apis cerana cerana) in Response to Sublethal Neonicotinoid Imidacloprid. INSECTS 2020; 11:E753. [PMID: 33153109 PMCID: PMC7692690 DOI: 10.3390/insects11110753] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/23/2020] [Accepted: 10/30/2020] [Indexed: 12/17/2022]
Abstract
Asian honey bee (Apis cerana) is the most important Chinese indigenous species, while its toxicological characteristic against neonicotinoids is poorly known. Here, we combined physiological experiments with a genome-wide transcriptome analysis to understand the molecular basis of genetic variation that responds to sublethal imidacloprid at different exposure durations in A. cerana. We found that LC5 dose of imidacloprid had a negative impact on climbing ability and sucrose responsiveness in A. cerana. When bees were fed with LC5 dose of imidacloprid, the enzyme activities of P450 and CarE were decreased, while the GSTs activity was not influenced by the pesticide exposure. The dynamic transcriptomic profiles of A. cerana workers exposed to LC5 dose of imidacloprid for 1 h, 8 h, and 16 h were obtained by high-throughput RNA-sequencing. We performed the expression patterns of differentially expressed genes (DEGs) through trend analysis, and conducted the gene ontology analysis and KEGG pathway enrichment analysis with DEGs in up- and down-regulated pattern profiles. We observed that more genes involved in metabolism, catalytic activity, and structural molecule activity are down-regulated; while more up-regulated genes were enriched in terms associated with response to stimulus, transporter activity, and signal transducer activity. Additionally, genes related to the phenylalanine metabolism pathway, FoxO signaling pathway, and mTOR signaling pathway as indicated in the KEGG analysis were significantly up-related in the exposed bees. Our findings provide a comprehensive understanding of Asian honey bee in response to neonicotinoids sublethal toxicity, and could be used to further investigate the complex molecular mechanisms in Asian honey bee under pesticide stress.
Collapse
Affiliation(s)
- Jing Gao
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (J.G.); (S.-S.J.); (C.-Q.X.); (Y.-Y.W.); (C.-S.H.); (Q.W.)
| | - San-Sheng Jin
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (J.G.); (S.-S.J.); (C.-Q.X.); (Y.-Y.W.); (C.-S.H.); (Q.W.)
| | - Yan He
- National Maize Improvement Center of China, Beijing Key Laboratory of crop genetic Improvement, China Agricultural University, Beijing 100083, China; (Y.H.); (J.-H.L.)
| | - Jin-Hong Luo
- National Maize Improvement Center of China, Beijing Key Laboratory of crop genetic Improvement, China Agricultural University, Beijing 100083, China; (Y.H.); (J.-H.L.)
| | - Chun-Qin Xu
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (J.G.); (S.-S.J.); (C.-Q.X.); (Y.-Y.W.); (C.-S.H.); (Q.W.)
| | - Yan-Yan Wu
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (J.G.); (S.-S.J.); (C.-Q.X.); (Y.-Y.W.); (C.-S.H.); (Q.W.)
| | - Chun-Shen Hou
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (J.G.); (S.-S.J.); (C.-Q.X.); (Y.-Y.W.); (C.-S.H.); (Q.W.)
| | - Qiang Wang
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (J.G.); (S.-S.J.); (C.-Q.X.); (Y.-Y.W.); (C.-S.H.); (Q.W.)
| | - Qing-Yun Diao
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (J.G.); (S.-S.J.); (C.-Q.X.); (Y.-Y.W.); (C.-S.H.); (Q.W.)
| |
Collapse
|
36
|
Lovegrove MR, Knapp RA, Duncan EJ, Dearden PK. Drosophila melanogaster and worker honeybees (Apis mellifera) do not require olfaction to be susceptible to honeybee queen mandibular pheromone. JOURNAL OF INSECT PHYSIOLOGY 2020; 127:104154. [PMID: 33039409 DOI: 10.1016/j.jinsphys.2020.104154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/23/2020] [Accepted: 10/03/2020] [Indexed: 06/11/2023]
Abstract
Eusociality is characterised by the reproductive division of labour; a dominant female (queen) or females are responsible for the majority of reproduction, and subordinate females are reproductively constrained. Reproductive constraint can be due to behavioural aggression and/or chemical cues, so-called queen pheromones, produced by the dominant females. In the honeybee, Apis mellifera, this repressive queen pheromone is queen mandibular pheromone (QMP). The mechanism by which honeybee workers are susceptible to QMP is not yet completely understood, however it is thought to be through olfaction via the antennae and/or gustation via trophallaxis. We have investigated whether olfaction is key to sensing of QMP, using both Drosophila melanogaster- a tractable non-eusocial insect which is also reproductively repressed by QMP- and the target species, A. mellifera worker honeybees. D. melanogaster are still capable of sensing and responding to QMP without their antenna and maxillary palps, and therefore without olfactory receptors. When worker honeybees were exposed to QMP but unable to physically interact with it, therefore required to use olfaction, they were similarly not reproductively repressed. Combined, these findings support either a non-olfactory based mechanism for the repression of reproduction via QMP, or redundancy via non-olfactory mechanisms in both D. melanogaster and A. mellifera. This study furthers our understanding of how species are susceptible to QMP, and provides insight into the mechanisms governing QMP responsiveness in these diverse species.
Collapse
Affiliation(s)
- M R Lovegrove
- Genomics Aotearoa and Laboratory for Evolution and Development, Department of Biochemistry, University of Otago, Dunedin, New Zealand; School of Biology, Faculty of Biological Sciences, University of Leeds, LS2 9JT Leeds, United Kingdom
| | - R A Knapp
- School of Biology, Faculty of Biological Sciences, University of Leeds, LS2 9JT Leeds, United Kingdom
| | - E J Duncan
- School of Biology, Faculty of Biological Sciences, University of Leeds, LS2 9JT Leeds, United Kingdom
| | - P K Dearden
- Genomics Aotearoa and Laboratory for Evolution and Development, Department of Biochemistry, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
37
|
Ge J, Ge Z, Zhu D, Wang X. Pheromonal Regulation of the Reproductive Division of Labor in Social Insects. Front Cell Dev Biol 2020; 8:837. [PMID: 32974354 PMCID: PMC7468439 DOI: 10.3389/fcell.2020.00837] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/05/2020] [Indexed: 11/13/2022] Open
Abstract
The reproductive altruism in social insects is an evolutionary enigma that has been puzzling scientists starting from Darwin. Unraveling how reproductive skew emerges and maintains is crucial to understand the reproductive altruism involved in the consequent division of labor. The regulation of adult worker reproduction involves conspecific inhibitory signals, which are thought to be chemical signals by numerous studies. Despite the primary identification of few chemical ligands, the action modes of primer pheromones that regulate reproduction and their molecular causes and effects remain challenging. Here, these questions were elucidated by comprehensively reviewing recent advances. The coordination with other modalities of queen pheromones (QPs) and its context-dependent manner to suppress worker reproduction were discussed under the vast variation and plasticity of reproduction during colony development and across taxa. In addition to the effect of QPs, special attention was paid to recent studies revealing the regulatory effect of brood pheromones. Considering the correlation between pheromone and hormone, this study focused on the production and perception of pheromones under the endocrine control and highlighted the pivotal roles of nutrition-related pathways. The novel chemicals and gene pathways discovered by recent works provide new insights into the understanding of social regulation of reproductive division of labor in insects.
Collapse
Affiliation(s)
- Jin Ge
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Zhuxi Ge
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Dan Zhu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Xianhui Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
38
|
Liu Y, Cui Z, Si P, Liu Y, Zhou Q, Wang G. Characterization of a specific odorant receptor for linalool in the Chinese citrus fly Bactrocera minax (Diptera: Tephritidae). INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 122:103389. [PMID: 32360457 DOI: 10.1016/j.ibmb.2020.103389] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 04/18/2020] [Accepted: 04/19/2020] [Indexed: 06/11/2023]
Abstract
Insect sensing of odorants plays important roles in various behaviors, including host location, mate attraction, and oviposition site selection. The odorant receptor (OR) is a key protein in insect environmental odor recognition. Most Diptera studies of ORs have focused on Drosophila and mosquitos, so there little known about ORs in the agricultural pest insects Tephritidae. To understand the olfactory recognition mechanism of Bactrocera minax, we sequenced and analyzed 12 B. minax transcriptomes to identify a total of 59 OR genes. Semi-quantitative reverse transcription PCR (RT-PCR) showed that several BminORs were highly expressed in antennae. Available with a complete open reading frame and expressed in the antennae of both sexes at a higher level than those of other BminORs, BminOR24 was selected for further functional analyses. BminOR24/BminOrco expressed in Xenopus oocytes responded significantly to linalool. The identification of B. minax OR genes lays a foundation for further functional studies of OR genes, and functional characterization of BminOR24 provides insight for improving methods for controlling B. minax, a devastating pest insects.
Collapse
Affiliation(s)
- Yipeng Liu
- College of Life Sciences, Hunan Normal University, Changsha, 410081, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Zhongyi Cui
- College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Pinfa Si
- College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Yang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Qiong Zhou
- College of Life Sciences, Hunan Normal University, Changsha, 410081, China.
| | - Guirong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; Guangdong Laboratory of Lingnan Modern Agriculture, Shenzhen; Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China.
| |
Collapse
|
39
|
Jain R, Brockmann A. Sex-specific molecular specialization and activity rhythm-dependent gene expression in honey bee antennae. J Exp Biol 2020; 223:jeb217406. [PMID: 32393545 DOI: 10.1242/jeb.217406] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 05/05/2020] [Indexed: 12/17/2022]
Abstract
We performed an RNA-seq-based comparison of gene expression levels in the antennae of honey bee drones and time-trained foragers (workers) collected at different times of the day and different activity states. Interestingly, olfaction-related genes [i.e. odorant receptor (Or) genes, odorant binding protein (Obp) genes, carboxyl esterase (CEst) genes, etc.] showed stable gene expression differences between drone and worker antennae. Drone antennae showed higher expression of 24 Or genes, of which 21 belong to the clade X which comprises the receptor for the major queen pheromone compound 9-ODA. This high number of drone-biased Or genes suggests that more than previously thought play a role in sex-pheromone communication. In addition, we found higher expression levels for many non-olfaction-related genes including nitric oxide synthase (NOS), and the potassium channel Shaw In contrast, workers showed higher expression of 67 Or genes, which belong to different Or clades that are involved in pheromone communication as well as the perception of cuticular hydrocarbons and floral scents. Further, drone antennae showed higher expression of genes involved in energy metabolism, whereas worker antennae showed higher expression of genes involved in neuronal communication, consistent with earlier reports on peripheral olfactory plasticity. Finally, drones that perform mating flight in the afternoon (innate) and foragers that are trained to forage in the afternoon (adapted) showed similar daily changes in the expression of two major clock genes, period and cryptochrome2 Most of the other genes showing changes with time or onset of daily flight activity were specific to drones and foragers.
Collapse
Affiliation(s)
- Rikesh Jain
- National Centre for Biological Sciences - Tata Institute of Fundamental Research, Bangalore-560056, Karnataka, India
- SASTRA University, Thirumalaisamudram, Thanjavur-613401, Tamil Nadu, India
| | - Axel Brockmann
- National Centre for Biological Sciences - Tata Institute of Fundamental Research, Bangalore-560056, Karnataka, India
| |
Collapse
|
40
|
Abstract
The technique of two-electrode voltage-clamp (TEVC) recording from the heterologous expression system of olfactory receptors (ORs) in Xenopus laevis oocytes has been widely used to deorphanize insect ORs, that is to identify specific ligands for each of them. However, there is a controversial issue on whether ORs are activated by the odorant/OBP complex or the odorant alone. The mechanism of interaction among odorants, odorant-binding proteins (OBPs) and ORs remains largely unknown, due to the limitations in the use of scientific and innovative methods. In this chapter, the modified Xenopus oocytes expression system combined with TEVC technique is used to approach this issue. We describe the experimental strategies and provide detailed protocols for recording the signals generated by ORs in response to odorant/OBP complex at different concentrations. Results obtained by this approach have revealed that the presence of OBPs in the system affects the selectivity and sensitivity responses of ORs. Such studies help understanding the molecular mechanism of odorant detection in peripheral nervous system.
Collapse
Affiliation(s)
- Bing Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Song Cao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wei Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guirong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China; Guangdong Laboratory of Lingnan Modern Agriculture, Shenzhen, China; Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| |
Collapse
|
41
|
Liu Y, Cui Z, Wang G, Zhou Q, Liu Y. Cloning and Functional Characterization of Three Odorant Receptors From the Chinese Citrus fly Bactrocera minax (Diptera: Tephritidae). Front Physiol 2020; 11:246. [PMID: 32269531 PMCID: PMC7109250 DOI: 10.3389/fphys.2020.00246] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 03/03/2020] [Indexed: 02/06/2023] Open
Abstract
Insect olfactory sensing is crucial for finding food, mating, and oviposition preference. Odorant receptors (ORs) play a central role in the transmission of odorant signals into the environment by the peripheral olfactory system. Therefore, the identification and functional study of ORs are essential to better understand olfactory mechanisms in insects. OR studies on Diptera insects are primarily performed on Drosophila and mosquitoes, but few studies have been reported in Tephritidae. In this study, we examined three candidate ORs (BminOR3, BminOR12, and BminOR16) from Bactrocera minax. Our analysis of tissue expression revealed that the three BminORs were expressed in the antennae, with no difference between the male and female. In in vitro heterologous expression system of Xenopus oocytes. BminOR3/BminOrco responded strongly to 1-octen-3-ol, BminOR12/BminOrco responded to eight compounds [methyl salicylate, benzaldehyde, (Z)-3-hexenyl acetate, butyl acrylate, butyl propionate, 1-octanol, (S)-(+)-carvone and benzyl alcohol], and BminOR16/BminOrco slightly responded to undecanol. Our results concluded that BminOR3, BimOR12, and BminOR16 could play an important role in host-finding and oviposition positioning in B. minax.
Collapse
Affiliation(s)
- Yipeng Liu
- College of Life Sciences, Hunan Normal University, Changsha, China.,State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhongyi Cui
- College of Life Sciences, Hunan Normal University, Changsha, China
| | - Guirong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.,Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Qiong Zhou
- College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
42
|
Yan H, Jafari S, Pask G, Zhou X, Reinberg D, Desplan C. Evolution, developmental expression and function of odorant receptors in insects. J Exp Biol 2020; 223:jeb208215. [PMID: 32034042 PMCID: PMC7790194 DOI: 10.1242/jeb.208215] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Animals rely on their chemosensory system to discriminate among a very large number of attractive or repulsive chemical cues in the environment, which is essential to respond with proper action. The olfactory sensory systems in insects share significant similarities with those of vertebrates, although they also exhibit dramatic differences, such as the molecular nature of the odorant receptors (ORs): insect ORs function as heteromeric ion channels with a common Orco subunit, unlike the G-protein-coupled olfactory receptors found in vertebrates. Remarkable progress has recently been made in understanding the evolution, development and function of insect odorant receptor neurons (ORNs). These studies have uncovered the diversity of olfactory sensory systems among insect species, including in eusocial insects that rely extensively on olfactory sensing of pheromones for social communication. However, further studies, notably functional analyses, are needed to improve our understanding of the origins of the Orco-OR system, the mechanisms of ORN fate determination, and the extraordinary diversity of behavioral responses to chemical cues.
Collapse
Affiliation(s)
- Hua Yan
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
- Center for Smell and Taste (UFCST), University of Florida, Gainesville, FL 32610, USA
| | - Shadi Jafari
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden
- Department of Biology, New York University, New York, NY 10003, USA
| | - Gregory Pask
- Department of Biology, Bucknell University, Lewisburg, PA 17837, USA
| | - Xiaofan Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, 510642 Guangzhou, China
| | - Danny Reinberg
- Howard Hughes Medical Institute (HHMI), Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Claude Desplan
- Department of Biology, New York University, New York, NY 10003, USA
| |
Collapse
|
43
|
Wu F, Ma C, Han B, Meng L, Hu H, Fang Y, Feng M, Zhang X, Rueppell O, Li J. Behavioural, physiological and molecular changes in alloparental caregivers may be responsible for selection response for female reproductive investment in honey bees. Mol Ecol 2019; 28:4212-4227. [DOI: 10.1111/mec.15207] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 07/31/2019] [Accepted: 07/31/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Fan Wu
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology Ministry of Agriculture Chinese Academy of Agricultural Science Beijing China
| | - Chuan Ma
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology Ministry of Agriculture Chinese Academy of Agricultural Science Beijing China
| | - Bin Han
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology Ministry of Agriculture Chinese Academy of Agricultural Science Beijing China
| | - Lifeng Meng
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology Ministry of Agriculture Chinese Academy of Agricultural Science Beijing China
| | - Han Hu
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology Ministry of Agriculture Chinese Academy of Agricultural Science Beijing China
| | - Yu Fang
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology Ministry of Agriculture Chinese Academy of Agricultural Science Beijing China
| | - Mao Feng
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology Ministry of Agriculture Chinese Academy of Agricultural Science Beijing China
| | - Xufeng Zhang
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology Ministry of Agriculture Chinese Academy of Agricultural Science Beijing China
| | - Olav Rueppell
- Department of Biology University of North Carolina at Greensboro Greensboro NC USA
| | - Jianke Li
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology Ministry of Agriculture Chinese Academy of Agricultural Science Beijing China
| |
Collapse
|
44
|
|
45
|
Villar G, Hefetz A, Grozinger CM. Evaluating the Effect of Honey Bee (Apis mellifera) Queen Reproductive State on Pheromone-Mediated Interactions with Male Drone Bees. J Chem Ecol 2019; 45:588-597. [PMID: 31342233 DOI: 10.1007/s10886-019-01086-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 06/02/2019] [Accepted: 07/03/2019] [Indexed: 10/26/2022]
Abstract
Honey bee (Apis mellifera) queens produce pheromones responsible for mediating both male mating behavior and many critical facets of worker social organization within their colony. These pheromones are dynamic multi-component blends, allowing the communication of detailed information. Indeed, variation in the queen's mating and reproductive state is associated with significant changes in her pheromone profiles, and these different pheromone profiles elicit different behavioral and physiological responses in female workers. Here we evaluate behavioral responses of male drones to the chemical blends produced by two exocrine glands in queens, and determine if the blends and responses are altered by the queen's mating and reproductive state. We find that drone attraction to the chemical blends of mandibular glands produced by mated, laying queens versus virgin queens is reduced, suggesting that the queens produce a reliable signal of their mating receptivity. Interestingly, while the chemical blends of mating, laying queens and virgins queens largely overlap, mated, laying queens produce a greater number of chemicals and greater quantities of certain chemicals than virgin queens, suggesting that these chemicals may serve to inhibit behavioral responses of drones to mated, laying queens. Thus, our results highlight the importance of considering chemical cues and signals that serve to both stimulate and inhibit behavioral responses during social interactions in animals.
Collapse
Affiliation(s)
- Gabriel Villar
- Preanalytical Systems - R&D, Becton Dickinson and Co., 1 Becton Drive, Franklin Lakes, NJ, 07417, USA. .,Department of Entomology, Center for Pollinator Research, The Pennsylvania State University, University Park, PA, 16802, USA.
| | - Abraham Hefetz
- Department of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, 69978, Ramat Aviv, Israel
| | - Christina M Grozinger
- Department of Entomology, Center for Pollinator Research, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
46
|
Ma R, Rangel J, Grozinger CM. Honey bee (Apis mellifera) larval pheromones may regulate gene expression related to foraging task specialization. BMC Genomics 2019; 20:592. [PMID: 31324147 PMCID: PMC6642498 DOI: 10.1186/s12864-019-5923-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 06/21/2019] [Indexed: 12/22/2022] Open
Abstract
Background Foraging behavior in honey bees (Apis mellifera) is a complex phenotype that is regulated by physiological state and social signals. How these factors are integrated at the molecular level to modulate foraging behavior has not been well characterized. The transition of worker bees from nursing to foraging behaviors is mediated by large-scale changes in brain gene expression, which are influenced by pheromones produced by the queen and larvae. Larval pheromones can also stimulate foragers to leave the colony to collect pollen. However, the mechanisms underpinning this rapid behavioral plasticity in foragers that specialize in collecting pollen over nectar, and how larval pheromones impact these different behavioral states, remains to be determined. Here, we investigated the patterns of gene expression related to rapid behavioral plasticity and task allocation among honey bee foragers exposed to two larval pheromones, brood pheromone (BP) and (E)-beta-ocimene (EBO). We hypothesized that both pheromones would alter expression of genes in the brain related to foraging and would differentially impact brain gene expression depending on foraging specialization. Results Combining data reduction, clustering, and network analysis methods, we found that foraging preference (nectar vs. pollen) and pheromone exposure are each associated with specific brain gene expression profiles. Furthermore, pheromone exposure has a strong transcriptional effect on genes that are preferentially expressed in nectar foragers. Representation factor analysis between our study and previous landmark honey bee transcriptome studies revealed significant overlaps for both pheromone communication and foraging task specialization. Conclusions Our results suggest that, as social signals, pheromones alter expression patterns of foraging-related genes in the bee’s brain to increase pollen foraging at both long and short time scales. These results provide new insights into how social signals and task specialization are potentially integrated at the molecular level, and highlights the possible role that brain gene expression may play in honey bee behavioral plasticity across time scales. Electronic supplementary material The online version of this article (10.1186/s12864-019-5923-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rong Ma
- Department of Entomology, Center for Pollinator Research, Center for Chemical Ecology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA.
| | - Juliana Rangel
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | - Christina M Grozinger
- Department of Entomology, Center for Pollinator Research, Center for Chemical Ecology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
47
|
Galang KC, Croft JR, Thompson GJ, Percival-Smith A. Analysis of the Drosophila melanogaster anti-ovarian response to honey bee queen mandibular pheromone. INSECT MOLECULAR BIOLOGY 2019; 28:99-111. [PMID: 30159981 DOI: 10.1111/imb.12531] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Queen mandibular pheromone (QMP) is a potent reproductive signal to which honey bee workers respond by suppressing their ovaries and adopting alloparental roles within the colony. This anti-ovarian effect of QMP on workers can, surprisingly, be induced in other insects, including fruit flies, in which females exposed to synthetic QMP develop smaller ovaries with fewer eggs. In this study, we use the Drosophila melanogaster model to identify the components of synthetic QMP required for the anti-ovarian effect. We found that virgin females respond strongly to 9-oxo-2-decenoic acid and 10-hydroxy-2-decenoic acid (10HDA), suggesting that the decenoic acid components of QMP are essential for the anti-ovarian response. Further, a nuclear factor of activated T-cells reporter system revealed neurones expressing the olfactory receptors Or-56a, Or-49b and Or-98a are activated by QMP in the antenna. In addition, we used olfactory receptor GAL4 drivers and a neuronal activator (a neuronal activating bacterial sodium channel) to test whether the candidate neurones are potential labelled lines for a decenoic acid response. We identified Or-49b as a potential candidate receiver of the 10HDA signal. Finally, the anti-ovarian response to synthetic QMP is not mediated by decreasing the titre of the reproductive hormones ecdysone and juvenile hormone.
Collapse
Affiliation(s)
- K C Galang
- Department of Biology, The University of Western Ontario, London, ON, Canada
| | - J R Croft
- Department of Biology, The University of Western Ontario, London, ON, Canada
| | - G J Thompson
- Department of Biology, The University of Western Ontario, London, ON, Canada
| | - A Percival-Smith
- Department of Biology, The University of Western Ontario, London, ON, Canada
| |
Collapse
|
48
|
Ruel DM, Yakir E, Bohbot JD. Supersensitive Odorant Receptor Underscores Pleiotropic Roles of Indoles in Mosquito Ecology. Front Cell Neurosci 2019; 12:533. [PMID: 30733668 PMCID: PMC6353850 DOI: 10.3389/fncel.2018.00533] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 12/31/2018] [Indexed: 11/13/2022] Open
Abstract
Mosquitoes exhibit highly diverse and fast evolving odorant receptors (ORs). The indole-sensitive OR gene clade, comprised of Or2 and Or10 is a notable exception on account of its conservation in both mosquito subfamilies. This group of paralogous genes exhibits a complex developmental expression pattern in Aedes aegypti: AaegOr2 is expressed in both adults and larvae, AaegOr10 is adult-specific and a third member named AaegOr9 is larva-specific. OR2 and OR10 have been deorphanized and are selectively activated by indole and skatole, respectively. Using the two-electrode voltage clamp of Xenopus oocytes expressing Ae. aegypti ORs, we show that AaegOR9 is supersensitive and narrowly tuned to skatole. Our findings suggest that Ae. aegypti has evolved two distinct molecular strategies to detect skatole in aquatic and terrestrial environments, highlighting the central ecological roles of indolic compounds in the evolutionary and life histories of these insects.
Collapse
Affiliation(s)
| | | | - Jonathan D. Bohbot
- Department of Entomology, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
49
|
Tropea C, Lavarías SML, López Greco LS. Getting ready for mating: The importance of male touching as an accelerator of ovarian growth in a caridean shrimp. ZOOLOGY 2018; 130:57-66. [PMID: 30502839 DOI: 10.1016/j.zool.2018.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 08/22/2018] [Accepted: 08/27/2018] [Indexed: 11/30/2022]
Abstract
The present study was aimed at evaluating the effect of male presence on ovarian maturation in juvenile females and the role of potential chemical, visual and tactile cues emitted by males in that physiological process. A highly gregarious caridean shrimp with sexual dimorphism, Neocaridina davidi, was used as experimental model. We tested the hypothesis that male presence accelerates ovarian maturation, mainly through chemical cues. Two experiments were performed. In Experiment 1, juvenile females were reared with adult males, adult females or alone, allowing full contact among shrimps. In Experiment 2, these treatments were evaluated allowing chemical and visual communication, only visual communication, or only chemical communication among shrimps. In both experiments juvenile females were observed once a week under a stereomicroscope to determine ovarian growth rate. Although male presence was not necessary for ovarian maturation, it clearly accelerated the rate of ovarian growth, particularly in the last maturation phase. This lead to relatively longer mature ovaries with higher lipid content. On the contrary, the presence of adult females delayed ovarian maturation in juvenile females, while females reared alone showed an intermediate ovarian growth. All these results suggest that adult males release certain cues that stimulate ovarian maturation, while adult females release cues that delay this physiological process. Neither visual cues nor chemical cues released at a distance from females were responsible, either alone or in combination, for the observed effects. Ovarian growth was only influenced when shrimps were allowed to interact freely, probably because of the "mounting" behavior of males towards females. Tactile cues and/or potential chemical cues released by males during this behavior may mediate male stimulatory effect on ovarian growth. Altogether, present results partially support our initial hypothesis and contribute to increase the limited amount of information available on the role of intraspecific multimodal communication in non-behavioral reproductive processes in invertebrate species.
Collapse
Affiliation(s)
- Carolina Tropea
- Universidad de Buenos Aires, CONICET, Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Laboratorio de Biología de la Reproducción y el Crecimiento de Crustáceos Decápodos, Ciudad Universitaria, C1428EGA, Buenos Aires, Argentina.
| | - Sabrina María Luisa Lavarías
- Instituto de Limnología de La Plata "Dr. Raúl A. Ringuelet" (ILPLA), CCT CONICET La Plata, Universidad Nacional de La Plata (UNLP), La Plata, Argentina
| | - Laura Susana López Greco
- Universidad de Buenos Aires, CONICET, Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Laboratorio de Biología de la Reproducción y el Crecimiento de Crustáceos Decápodos, Ciudad Universitaria, C1428EGA, Buenos Aires, Argentina
| |
Collapse
|
50
|
Fleischer J, Krieger J. Insect Pheromone Receptors - Key Elements in Sensing Intraspecific Chemical Signals. Front Cell Neurosci 2018; 12:425. [PMID: 30515079 PMCID: PMC6255830 DOI: 10.3389/fncel.2018.00425] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 10/30/2018] [Indexed: 12/20/2022] Open
Abstract
Pheromones are chemicals that serve intraspecific communication. In animals, the ability to detect and discriminate pheromones in a complex chemical environment substantially contributes to the survival of the species. Insects widely use pheromones to attract mating partners, to alarm conspecifics or to mark paths to rich food sources. The various functional roles of pheromones for insects are reflected by the chemical diversity of pheromonal compounds. The precise detection of the relevant intraspecific signals is accomplished by specialized chemosensory neurons housed in hair-like sensilla located on the surface of body appendages. Current data indicate that the extraordinary sensitivity and selectivity of the pheromone-responsive neurons (PRNs) is largely based on specific pheromone receptors (PRs) residing in their ciliary membrane. Besides these key elements, proper ligand-induced responses of PR-expressing neurons appear to generally require a putative co-receptor, the so-called "sensory neuron membrane protein 1" (SNMP1). Regarding the PR-mediated chemo-electrical signal transduction processes in insect PRNs, ionotropic as well as metabotropic mechanisms may be involved. In this review, we summarize and discuss current knowledge on the peripheral detection of pheromones in the olfactory system of insects with a focus on PRs and their specific role in the recognition and transduction of volatile intraspecific chemical signals.
Collapse
Affiliation(s)
- Jörg Fleischer
- Department of Animal Physiology, Institute of Biology/Zoology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Jürgen Krieger
- Department of Animal Physiology, Institute of Biology/Zoology, Martin Luther University Halle-Wittenberg, Halle, Germany
| |
Collapse
|