1
|
Borisova TV, Cherdonova AM, Pshennikova VG, Teryutin FM, Morozov IV, Bondar AA, Baturina OA, Kabilov MR, Romanov GP, Solovyev AV, Fedorova SA, Barashkov NA. High prevalence of m.1555A > G in patients with hearing loss in the Baikal Lake region of Russia as a result of founder effect. Sci Rep 2024; 14:15342. [PMID: 38961196 PMCID: PMC11222474 DOI: 10.1038/s41598-024-66254-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/01/2024] [Indexed: 07/05/2024] Open
Abstract
Mitochondrial forms account approximately 1-2% of all nonsyndromic cases of hearing loss (HL). One of the most common causative variants of mtDNA is the m.1555A > G variant of the MT-RNR1 gene (OMIM 561000). Currently the detection of the m.1555A > G variant of the MT-RNR1 gene is not included in all research protocols. In this study this variant was screened among 165 patients with HL from the Republic of Buryatia, located in the Baikal Lake region of Russia. In our study, the total contribution of the m.1555A > G variant to the etiology of HL was 12.7% (21/165), while the update global prevalence of this variant is 1.8% (863/47,328). The m.1555A > G variant was notably more prevalent in Buryat (20.2%) than in Russian patients (1.3%). Mitogenome analysis in 14 unrelated Buryat families carrying the m.1555A > G variant revealed a predominant lineage: in 13 families, a cluster affiliated with sub-haplogroup A5b (92.9%) was identified, while one family had the D5a2a1 lineage (7.1%). In a Russian family with the m.1555A > G variant the lineage affiliated with sub-haplogroup F1a1d was found. Considering that more than 90% of Buryat families with the m.1555A > G variant belong to the single maternal lineage cluster we conclude that high prevalence of this variant in patients with HL in the Baikal Lake region can be attributed to a founder effect.
Collapse
Affiliation(s)
- Tuyara V Borisova
- Laboratory of Molecular Biology, Institute of Natural Sciences, M.K. Ammosov North-Eastern Federal University, Kulakovskogo 46, 677013, Yakutsk, Russia
| | - Aleksandra M Cherdonova
- Laboratory of Molecular Biology, Institute of Natural Sciences, M.K. Ammosov North-Eastern Federal University, Kulakovskogo 46, 677013, Yakutsk, Russia
| | - Vera G Pshennikova
- Laboratory of Molecular Biology, Institute of Natural Sciences, M.K. Ammosov North-Eastern Federal University, Kulakovskogo 46, 677013, Yakutsk, Russia
- Laboratory of Molecular Genetics, Yakut Science Centre of Complex Medical Problems, Yaroslavskogo 6/3, 677000, Yakutsk, Russia
| | - Fedor M Teryutin
- Laboratory of Molecular Biology, Institute of Natural Sciences, M.K. Ammosov North-Eastern Federal University, Kulakovskogo 46, 677013, Yakutsk, Russia
- Laboratory of Molecular Genetics, Yakut Science Centre of Complex Medical Problems, Yaroslavskogo 6/3, 677000, Yakutsk, Russia
| | - Igor V Morozov
- SB RAS Genomics Core Facility, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Prospekt Akademika Lavrentieva 8, 630090, Novosibirsk, Russia
- Novosibirsk State University, 630090, Novosibirsk, Russia
| | - Alexander A Bondar
- SB RAS Genomics Core Facility, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Prospekt Akademika Lavrentieva 8, 630090, Novosibirsk, Russia
| | - Olga A Baturina
- SB RAS Genomics Core Facility, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Prospekt Akademika Lavrentieva 8, 630090, Novosibirsk, Russia
| | - Marsel R Kabilov
- SB RAS Genomics Core Facility, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Prospekt Akademika Lavrentieva 8, 630090, Novosibirsk, Russia
| | - Georgii P Romanov
- Laboratory of Molecular Biology, Institute of Natural Sciences, M.K. Ammosov North-Eastern Federal University, Kulakovskogo 46, 677013, Yakutsk, Russia
| | - Aisen V Solovyev
- Laboratory of Molecular Biology, Institute of Natural Sciences, M.K. Ammosov North-Eastern Federal University, Kulakovskogo 46, 677013, Yakutsk, Russia
| | - Sardana A Fedorova
- Laboratory of Molecular Biology, Institute of Natural Sciences, M.K. Ammosov North-Eastern Federal University, Kulakovskogo 46, 677013, Yakutsk, Russia
- Laboratory of Molecular Genetics, Yakut Science Centre of Complex Medical Problems, Yaroslavskogo 6/3, 677000, Yakutsk, Russia
| | - Nikolay A Barashkov
- Laboratory of Molecular Biology, Institute of Natural Sciences, M.K. Ammosov North-Eastern Federal University, Kulakovskogo 46, 677013, Yakutsk, Russia.
- Laboratory of Molecular Genetics, Yakut Science Centre of Complex Medical Problems, Yaroslavskogo 6/3, 677000, Yakutsk, Russia.
| |
Collapse
|
2
|
Adeyemo AA, Adedokun B, Adeolu J, Akinyemi JO, Omotade OO, Oluwatosin OM. Re-telling the story of aminoglycoside ototoxicity: tales from sub-Saharan Africa. Front Neurol 2024; 15:1412645. [PMID: 39006231 PMCID: PMC11239550 DOI: 10.3389/fneur.2024.1412645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/12/2024] [Indexed: 07/16/2024] Open
Abstract
Background Aminoglycosides, such as Streptomycin, are cheap, potent antibiotics widely used Sub-Saharan Africa. However, aminoglycosides are the commonest cause of ototoxicity. The limited prospective epidemiological studies on aminoglycoside ototoxicity from Sub-Saharan Africa motivated this study to provide epidemiological information on Streptomycin-induced ototoxicity, identify risk factors and predictors of ototoxicity. Method A longitudinal study of 153 adults receiving Streptomycin-based anti-tuberculous drugs was done. All participants underwent extended frequency audiometry and had normal hearing thresholds at baseline. Hearing thresholds were assessed weekly for 2 months, then monthly for the subsequent 6 months. Ototoxicity was determined using the ASHA criteria. Descriptive statistics were used to analyze socio-demographic variables. Ototoxicity incidence rate was calculated, and Kaplan-Meier estimate used to determine cumulative probability of ototoxicity. Chi-square test was done to determine parameters associated with ototoxicity and Cox regression models were used to choose the predictors of ototoxicity. Results Age of participants was 41.43 ± 12.66 years, with a male-to-female ratio of 1:0.6. Ototoxicity was found in 34.6% of the participants, giving an incidence of 17.26 per 1,000-person-week. The mean onset time to ototoxicity was 28.0 ± 0.47 weeks. By 28th week, risk of developing ototoxicity for respondents below 40 years of age was 0.29, and for those above 40 years was 0.77. At the end of the follow-up period, the overall probability of developing ototoxicity in the study population was 0.74. A significant difference in onset of ototoxicity was found between the age groups: the longest onset was seen in <40 years, followed by 40-49 years, and shortest onset in ≥50 years. Hazard of ototoxicity was significantly higher in participants aged ≥50 years compared to participants aged ≤40 years (HR = 3.76, 95% CI = 1.84-7.65). The probability of ototoxicity at 40 g, 60 g and 80 g cumulative dose of Streptomycin was 0.08, 0.43 and 2.34, respectively. Age and cumulative dose were significant predictors of ototoxicity. Conclusion The mean onset time to Streptomycin-induced ototoxicity was 28 weeks after commencement of therapy. Age and cumulative dose can reliably predict the onset of Streptomycin-induced ototoxicity. Medium to long term monitoring of hearing is advised for patients on aminoglycoside therapy.
Collapse
Affiliation(s)
- Adebolajo A Adeyemo
- Institute of Child Health, College of Medicine, University of Ibadan, Ibadan, Nigeria
- Department of Otolaryngology, University College Hospital, Ibadan, Nigeria
| | - Babatunde Adedokun
- Department of Epidemiology and Medical Statistics, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Josephine Adeolu
- Institute of Child Health, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Joshua O Akinyemi
- Department of Epidemiology and Medical Statistics, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Olayemi O Omotade
- Institute of Child Health, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Odunayo M Oluwatosin
- Department of Surgery, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
3
|
Zou T, Xie R, Huang S, Lu D, Liu J. Potential role of modulating autophagy levels in sensorineural hearing loss. Biochem Pharmacol 2024; 222:116115. [PMID: 38460910 DOI: 10.1016/j.bcp.2024.116115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/20/2024] [Accepted: 03/06/2024] [Indexed: 03/11/2024]
Abstract
In recent years, extensive research has been conducted on the pathogenesis of sensorineural hearing loss (SNHL). Apoptosis and necrosis have been identified to play important roles in hearing loss, but they cannot account for all hearing loss. Autophagy, a cellular process responsible for cell self-degradation and reutilization, has emerged as a significant factor contributing to hearing loss, particularly in cases of autophagy deficiency. Autophagy plays a crucial role in maintaining cell health by exerting cytoprotective and metabolically homeostatic effects in organisms. Consequently, modulating autophagy levels can profoundly impact the survival, death, and regeneration of cells in the inner ear, including hair cells (HCs) and spiral ganglion neurons (SGNs). Abnormal mitochondrial autophagy has been demonstrated in animal models of SNHL. These findings indicate the profound significance of comprehending autophagy while suggesting that our perspective on this cellular process holds promise for advancing the treatment of SNHL. Thus, this review aims to clarify the pathogenic mechanisms of SNHL and the role of autophagy in the developmental processes of various cochlear structures, including the greater epithelial ridge (GER), SGNs, and the ribbon synapse. The pathogenic mechanisms of age-related hearing loss (ARHL), also known as presbycusis, and the latest research on autophagy are also discussed. Furthermore, we underscore recent findings on the modulation of autophagy in SNHL induced by ototoxic drugs. Additionally, we suggest further research that might illuminate the complete potential of autophagy in addressing SNHL, ultimately leading to the formulation of pioneering therapeutic strategies and approaches for the treatment of deafness.
Collapse
Affiliation(s)
- Ting Zou
- Department of Otorhinolaryngology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Renwei Xie
- Department of Otorhinolaryngology, Renhe Hospital, Baoshan District, Shanghai, China
| | - Sihan Huang
- Department of Otorhinolaryngology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Dingkun Lu
- Cardiac Arrhythmia Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jun Liu
- Department of Otorhinolaryngology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| |
Collapse
|
4
|
Janky K, Steyger PS. Mechanisms and Impact of Aminoglycoside-Induced Vestibular Deficits. Am J Audiol 2023; 32:746-760. [PMID: 37319406 PMCID: PMC10721243 DOI: 10.1044/2023_aja-22-00199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/26/2023] [Accepted: 03/06/2023] [Indexed: 06/17/2023] Open
Abstract
PURPOSE Acquired vestibulotoxicity from hospital-prescribed medications such as aminoglycoside antibiotics affects as many as 40,000 people each year in North America. However, there are no current federally approved drugs to prevent or treat the debilitating and permanent loss of vestibular function caused by bactericidal aminoglycoside antibiotics. This review will cover our current understanding of the impact of, and mechanisms underlying, aminoglycoside-induced vestibulotoxicity and highlight the gaps in our knowledge that remain. CONCLUSIONS Aminoglycoside-induced vestibular deficits have long-term impacts on patients across the lifespan. Additionally, the prevalence of aminoglycoside-induced vestibulotoxicity appears to be greater than cochleotoxicity. Thus, monitoring for vestibulotoxicity should be independent of auditory monitoring and encompass patients of all ages from young children to older adults before, during, and after aminoglycoside therapy.
Collapse
Affiliation(s)
- Kristen Janky
- Department of Audiology, Boys Town National Research Hospital, Omaha, NE
| | - Peter S. Steyger
- Bellucci Translational Hearing Center, Creighton University, Omaha, NE
| |
Collapse
|
5
|
Jana S, Rajasekaran P, Haldimann K, Vasella A, Böttger EC, Hobbie SN, Crich D. Synthesis of Gentamicins C1, C2, and C2a and Antiribosomal and Antibacterial Activity of Gentamicins B1, C1, C1a, C2, C2a, C2b, and X2. ACS Infect Dis 2023; 9:1622-1633. [PMID: 37481733 PMCID: PMC10425985 DOI: 10.1021/acsinfecdis.3c00233] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Indexed: 07/25/2023]
Abstract
Complementing our earlier syntheses of the gentamicins B1, C1a, C2b, and X2, we describe the synthesis of gentamicins C1, C2, and C2a characterized by methyl substitution at the 6'-position, and so present an alternative access to previous chromatographic methods for accessing these sought-after compounds. We describe the antiribosomal activity of our full set of synthetic gentamicin congeners against bacterial ribosomes and hybrid ribosomes carrying the decoding A site of the human mitochondrial, A1555G mutant mitochondrial, and cytoplasmic ribosomes and establish structure-activity relationships with the substitution pattern around ring I to antiribosomal activity, antibacterial resistance due to the presence of aminoglycoside acetyl transferases acting on the 6'-position in ring I, and literature cochlear toxicity data.
Collapse
Affiliation(s)
- Santanu Jana
- Department
of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, Georgia 30602, United States
- Complex
Carbohydrate Research Center, University
of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - Parasuraman Rajasekaran
- Department
of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, Georgia 30602, United States
- Complex
Carbohydrate Research Center, University
of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - Klara Haldimann
- Institute
of Medical Microbiology, University of Zurich, Gloriastrasse 30, 8006 Zürich, Switzerland
| | - Andrea Vasella
- Organic
Chemistry Laboratory, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, 8093 Zürich, Switzerland
| | - Erik C. Böttger
- Institute
of Medical Microbiology, University of Zurich, Gloriastrasse 30, 8006 Zürich, Switzerland
| | - Sven N. Hobbie
- Institute
of Medical Microbiology, University of Zurich, Gloriastrasse 30, 8006 Zürich, Switzerland
| | - David Crich
- Department
of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, Georgia 30602, United States
- Complex
Carbohydrate Research Center, University
of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
- Department
of Chemistry, University of Georgia, 302 East Campus Road, Athens, Georgia 30602, United States
| |
Collapse
|
6
|
Vila-Sanjurjo A, Mallo N, Atkins JF, Elson JL, Smith PM. Our current understanding of the toxicity of altered mito-ribosomal fidelity during mitochondrial protein synthesis: What can it tell us about human disease? Front Physiol 2023; 14:1082953. [PMID: 37457031 PMCID: PMC10349377 DOI: 10.3389/fphys.2023.1082953] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 02/28/2023] [Indexed: 07/18/2023] Open
Abstract
Altered mito-ribosomal fidelity is an important and insufficiently understood causative agent of mitochondrial dysfunction. Its pathogenic effects are particularly well-known in the case of mitochondrially induced deafness, due to the existence of the, so called, ototoxic variants at positions 847C (m.1494C) and 908A (m.1555A) of 12S mitochondrial (mt-) rRNA. It was shown long ago that the deleterious effects of these variants could remain dormant until an external stimulus triggered their pathogenicity. Yet, the link from the fidelity defect at the mito-ribosomal level to its phenotypic manifestation remained obscure. Recent work with fidelity-impaired mito-ribosomes, carrying error-prone and hyper-accurate mutations in mito-ribosomal proteins, have started to reveal the complexities of the phenotypic manifestation of mito-ribosomal fidelity defects, leading to a new understanding of mtDNA disease. While much needs to be done to arrive to a clear picture of how defects at the level of mito-ribosomal translation eventually result in the complex patterns of disease observed in patients, the current evidence indicates that altered mito-ribosome function, even at very low levels, may become highly pathogenic. The aims of this review are three-fold. First, we compare the molecular details associated with mito-ribosomal fidelity to those of general ribosomal fidelity. Second, we gather information on the cellular and organismal phenotypes associated with defective translational fidelity in order to provide the necessary grounds for an understanding of the phenotypic manifestation of defective mito-ribosomal fidelity. Finally, the results of recent experiments directly tackling mito-ribosomal fidelity are reviewed and future paths of investigation are discussed.
Collapse
Affiliation(s)
- Antón Vila-Sanjurjo
- Grupo GIBE, Departamento de Bioloxía e Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña (UDC), A Coruña, Spain
| | - Natalia Mallo
- Grupo GIBE, Departamento de Bioloxía e Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña (UDC), A Coruña, Spain
| | - John F Atkins
- Schools of Biochemistry and Microbiology, University College Cork, Cork, Ireland
| | - Joanna L Elson
- The Bioscience Institute, Newcastle University, Newcastle uponTyne, United Kingdom
- Human Metabolomics, North-West University, Potchefstroom, South Africa
| | - Paul M Smith
- Department of Paediatrics, Raigmore Hospital, Inverness, Scotland, United Kingdom
| |
Collapse
|
7
|
Vila-Sanjurjo A, Mallo N, Elson JL, Smith PM, Blakely EL, Taylor RW. Structural analysis of mitochondrial rRNA gene variants identified in patients with deafness. Front Physiol 2023; 14:1163496. [PMID: 37362424 PMCID: PMC10285412 DOI: 10.3389/fphys.2023.1163496] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/18/2023] [Indexed: 06/28/2023] Open
Abstract
The last few years have witnessed dramatic advances in our understanding of the structure and function of the mammalian mito-ribosome. At the same time, the first attempts to elucidate the effects of mito-ribosomal fidelity (decoding accuracy) in disease have been made. Hence, the time is right to push an important frontier in our understanding of mitochondrial genetics, that is, the elucidation of the phenotypic effects of mtDNA variants affecting the functioning of the mito-ribosome. Here, we have assessed the structural and functional role of 93 mitochondrial (mt-) rRNA variants thought to be associated with deafness, including those located at non-conserved positions. Our analysis has used the structural description of the human mito-ribosome of the highest quality currently available, together with a new understanding of the phenotypic manifestation of mito-ribosomal-associated variants. Basically, any base change capable of inducing a fidelity phenotype may be considered non-silent. Under this light, out of 92 previously reported mt-rRNA variants thought to be associated with deafness, we found that 49 were potentially non-silent. We also dismissed a large number of reportedly pathogenic mtDNA variants, 41, as polymorphisms. These results drastically update our view on the implication of the primary sequence of mt-rRNA in the etiology of deafness and mitochondrial disease in general. Our data sheds much-needed light on the question of how mt-rRNA variants located at non-conserved positions may lead to mitochondrial disease and, most notably, provide evidence of the effect of haplotype context in the manifestation of some mt-rRNA variants.
Collapse
Affiliation(s)
- Antón Vila-Sanjurjo
- Grupo GIBE. Departamento de Bioloxía e Centro Interdisciplinar de Química e Bioloxía (CICA), Universidade da Coruña (UDC), A Coruña, Spain
| | - Natalia Mallo
- Grupo GIBE. Departamento de Bioloxía e Centro Interdisciplinar de Química e Bioloxía (CICA), Universidade da Coruña (UDC), A Coruña, Spain
| | - Joanna L. Elson
- The Bioscience Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- Human Metabolomics, North-West University, Potchefstroom, South Africa
| | - Paul M. Smith
- Department of Paediatrics, Raigmore Hospital, Inverness, United Kingdom
| | - Emma L. Blakely
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Robert W. Taylor
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
8
|
Mohamad-Ramshan R, Ande C, Matsushita T, Haldimann K, Vasella A, Hobbie SN, Crich D. Synthesis of 4- O-(4-Amino-4-deoxy-β-D-xylopyranosyl)paromomycin and 4- S-(β-D-Xylopyranosyl)-4-deoxy-4'-thio-paromomycin and Evaluation of their Antiribosomal and Antibacterial Activity. Tetrahedron 2023; 135:133330. [PMID: 37035443 PMCID: PMC10081503 DOI: 10.1016/j.tet.2023.133330] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
The design, synthesis and antiribosomal and antibacterial activity of two novel glycosides of the aminoglycoside antibiotic paromomycin are described. The first carries of 4-amino-4-deoxy-β-D-xylopyranosyl moiety at the paromomycin 4'-position and is approximately two-fold more active than the corresponding β-D-xylopyranosyl derivative. The second is a 4'-(β-D-xylopyranosylthio) derivative of 4'-deoxyparomomycin that is unexpectedly less active than the simple β-D-xylopyranosyl derivative, perhaps because of the insertion of the conformationally more mobile thioglycosidic linkage.
Collapse
Affiliation(s)
| | - Chennaiah Ande
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, GA 30602, USA
| | - Takahiko Matsushita
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI 48202, USA
| | - Klara Haldimann
- Institute of Medical Microbiology, University of Zurich, Gloriastrasse 30, 8006 Zürich, Switzerland
| | - Andrea Vasella
- Organic Chemistry Laboratory, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, 8093 Zürich, Switzerland
| | - Sven N Hobbie
- Institute of Medical Microbiology, University of Zurich, Gloriastrasse 30, 8006 Zürich, Switzerland
| | - David Crich
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI 48202, USA
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, GA 30602, USA
- Department of Chemistry, University of Georgia, 302 East Campus Road, Athens, GA 30602, USA
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
| |
Collapse
|
9
|
Lubriks D, Haldimann K, Hobbie SN, Vasella A, Suna E, Crich D. Synthesis, Antibacterial and Antiribosomal Activity of the 3 C-Aminoalkyl Modification in the Ribofuranosyl Ring of Apralogs (5- O-Ribofuranosyl Apramycins). Antibiotics (Basel) 2022; 12:antibiotics12010025. [PMID: 36671225 PMCID: PMC9854789 DOI: 10.3390/antibiotics12010025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
The synthesis and antiribosomal and antibacterial activity of both anomers of a novel apralog, 5-O-(5-amino-3-C-dimethylaminopropyl-D-ribofuranosyl)apramycin, are reported. Both anomers show excellent activity for the inhibition of bacterial ribosomes and that of MRSA and various wild-type Gram negative pathogens. The new compounds retain activity in the presence of the aminoglycoside phosphoryltransferase aminoglycoside modifying enzymes that act on the primary hydroxy group of typical 4,5-(2-deoxystreptamine)-type aminoglycoside and related apramycin derivatives. Unexpectedly, the two anomers have comparable activity both for the inhibition of bacterial ribosomes and of the various bacterial strains tested.
Collapse
Affiliation(s)
- Dmitrijs Lubriks
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia
| | - Klara Haldimann
- Institute of Medical Microbiology, University of Zurich, Gloriastrasse 30, 8006 Zürich, Switzerland
| | - Sven N. Hobbie
- Institute of Medical Microbiology, University of Zurich, Gloriastrasse 30, 8006 Zürich, Switzerland
| | - Andrea Vasella
- Organic Chemistry Laboratory, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, 8093 Zürich, Switzerland
| | - Edgars Suna
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia
- Correspondence: (E.S.); (D.C.); Tel.: +37-16-701-4895 (E.S.); Tel.: +1-706-542-5605 (D.C.)
| | - David Crich
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, GA 30602, USA
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
- Department of Chemistry, University of Georgia, 302 East Campus Road, Athens, GA 30602, USA
- Correspondence: (E.S.); (D.C.); Tel.: +37-16-701-4895 (E.S.); Tel.: +1-706-542-5605 (D.C.)
| |
Collapse
|
10
|
Kuan SW, Chua KH, Tan EW, Tan LK, Loch A, Kee BP. Whole mitochondrial genome sequencing of Malaysian patients with cardiomyopathy. PeerJ 2022; 10:e13265. [PMID: 35441061 PMCID: PMC9013480 DOI: 10.7717/peerj.13265] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/23/2022] [Indexed: 01/13/2023] Open
Abstract
Cardiomyopathy (CMP) constitutes a diverse group of myocardium diseases affecting the pumping ability of the heart. Genetic predisposition is among the major factors affecting the development of CMP. Globally, there are over 100 genes in autosomal and mitochondrial DNA (mtDNA) that have been reported to be associated with the pathogenesis of CMP. However, most of the genetic studies have been conducted in Western countries, with limited data being available for the Asian population. Therefore, this study aims to investigate the mutation spectrum in the mitochondrial genome of 145 CMP patients in Malaysia. Long-range PCR was employed to amplify the entire mtDNA, and whole mitochondrial genome sequencing was conducted on the MiSeq platform. Raw data was quality checked, mapped, and aligned to the revised Cambridge Reference Sequence (rCRS). Variants were named, annotated, and filtered. The sequencing revealed 1,077 variants, including 18 novel and 17 CMP and/or mitochondrial disease-associated variants after filtering. In-silico predictions suggested that three of the novel variants (m.8573G>C, m.11916T>A and m.11918T>G) in this study are potentially pathogenic. Two confirmed pathogenic variants (m.1555A>G and m.11778G>A) were also found in the CMP patients. The findings of this study shed light on the distribution of mitochondrial mutations in Malaysian CMP patients. Further functional studies are required to elucidate the role of these variants in the development of CMP.
Collapse
Affiliation(s)
- Sheh Wen Kuan
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kek Heng Chua
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - E-Wei Tan
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Lay Koon Tan
- National Heart Institute, Kuala Lumpur, Malaysia
| | - Alexander Loch
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Boon Pin Kee
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
11
|
Quirke JCK, Sati GC, Sonousi A, Gysin M, Haldimann K, Bottger EC, Vasella A, Hobbie SN, Crich D. Structure-Activity Relationships for 5''-Modifications of 4,5-Aminoglycoside Antibiotics. ChemMedChem 2022; 17:e202200120. [PMID: 35385605 DOI: 10.1002/cmdc.202200120] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/06/2022] [Indexed: 11/08/2022]
Abstract
Modification at the 5''-position of 4,5-disubstituted aminoglycoside antibiotics (AGAs) to circumvent inactivation by the APH(3',5'') class of aminoglycoside modifying enzymes (AMEs) has been widely reported. Such modifications, however, impact activity against wild type bacteria and affect target selectivity in unpredictable ways thereby hindering drug development. We present a systematic survey of modifications to the 5''-position of the 4,5-AGAs and of the related 5- O -furanosyl apramycin derivatives. In the neomycin and the apralog series, all modifications were well-tolerated, but other 4,5-AGAs require the presence of a hydrogen bonding group at the 5''-position for maintenance of high antibacterial activity. Though the 5''-amino modification resulted in comparable activity to the parent compounds, reduced selectivity against the human cytosolic decoding A site renders this modification generally unfavorable in paromomycin, propylamycin, and ribostamycin. Installation of a 5''-formamido group and, to a lesser degree, a 5''-ureido group resulted in comparable activity to the parents without the selectivity cost of the 5''-amino modification. The lessons learned from this work will aid in the design of next-generation AGAs capable of circumventing susceptibility to AMEs while maintaining high antibacterial activity and target selectivity.
Collapse
Affiliation(s)
| | | | - Amr Sonousi
- Cairo University, Pharmaceutical Organic Chemistry, EGYPT
| | - Marina Gysin
- University of Zurich: Universitat Zurich, Medical Microbiology, SWITZERLAND
| | | | - Erik C Bottger
- University of Zurich: Universitat Zurich, Medical Microbiology, SWITZERLAND
| | - Andrea Vasella
- ETH-Zürich LOC: Eidgenossische Technische Hochschule Zurich Laboratorium fur Organische Chemie, Chemistry, SWITZERLAND
| | - Sven N Hobbie
- University of Zurich: Universitat Zurich, Medical Microbiology, SWITZERLAND
| | - David Crich
- University of Georgia, Pharmaceutical and Biomedical Sciences, 240 West Green Street, 30602, Athens, UNITED STATES
| |
Collapse
|
12
|
Abstract
Ototoxicity refers to damage to the inner ear that leads to functional hearing loss or vestibular disorders by selected pharmacotherapeutics as well as a variety of environmental exposures (eg, lead, cadmium, solvents). This article reviews the fundamental mechanisms underlying ototoxicity by clinically relevant, hospital-prescribed medications (ie, aminoglycoside antibiotics or cisplatin, as illustrative examples). Also reviewed are current strategies to prevent prescribed medication-induced ototoxicity, with several clinical or candidate interventional strategies being discussed.
Collapse
Affiliation(s)
- Peter S Steyger
- Translational Hearing Center, Biomedical Sciences, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA.
| |
Collapse
|
13
|
Steyger PS. Mechanisms of Aminoglycoside- and Cisplatin-Induced Ototoxicity. Am J Audiol 2021; 30:887-900. [PMID: 34415784 PMCID: PMC9126111 DOI: 10.1044/2021_aja-21-00006] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 04/30/2021] [Accepted: 05/14/2021] [Indexed: 12/11/2022] Open
Abstract
Purpose This review article summarizes our current understanding of the mechanisms underlying acquired hearing loss from hospital-prescribed medications that affects as many as 1 million people each year in Western Europe and North America. Yet, there are currently no federally approved drugs to prevent or treat the debilitating and permanent hearing loss caused by the life-saving platinum-based anticancer drugs or the bactericidal aminoglycoside antibiotics. Hearing loss has long-term impacts on quality-of-life measures, especially in young children and older adults. This review article also highlights some of the current knowledge gaps regarding iatrogenic causes of hearing loss. Conclusion Further research is urgently needed to further refine clinical practice and better ameliorate iatrogenic drug-induced hearing loss.
Collapse
Affiliation(s)
- Peter S. Steyger
- Translational Hearing Center, Creighton University, Omaha, NE
- National Center for Rehabilitative Auditory Research, VA Portland Health Care System, OR
| |
Collapse
|
14
|
Lubriks D, Zogota R, Sarpe VA, Matsushita T, Sati GC, Haldimann K, Gysin M, Böttger EC, Vasella A, Suna E, Hobbie SN, Crich D. Synthesis and Antibacterial Activity of Propylamycin Derivatives Functionalized at the 5''- and Other Positions with a View to Overcoming Resistance Due to Aminoglycoside Modifying Enzymes. ACS Infect Dis 2021; 7:2413-2424. [PMID: 34114793 DOI: 10.1021/acsinfecdis.1c00158] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Propylamycin (4'-deoxy-4'-propylparomomycin) is a next generation aminoglycoside antibiotic that displays increased antibacterial potency over the parent, coupled with reduced susceptibility to resistance determinants and reduced ototoxicity in the guinea pig model. Propylamycin nevertheless is inactivated by APH(3')-Ia, a specific aminoglycoside phosphotransferase isozyme that acts on the primary hydroxy group of the ribofuranosyl moiety (at the 5''-position). To overcome this problem, we have prepared and studied the antibacterial and antiribosomal activity of various propylamycin derivatives carrying amino or substituted amino groups at the 5''-position in place of the vulnerable hydroxy group. We find that the introduction of an additional basic amino group at this position, while overcoming the action of the aminoglycoside phosphoryltransferase isozymes acting at the 5''-position as anticipated, results in a significant drop in selectivity for the bacterial over the eukaryotic ribosomes that is predictive of increased ototoxicity. In contrast, 5''-deoxy-5''-formamidopropylamycin retains the excellent across-the-board levels of antibacterial activity of propylamycin itself, while circumventing the action of the offending aminoglycoside phosphotransferase isozymes and affording even greater selectivity for the bacterial over the eukaryotic ribosomes. Other modifications to address the susceptibility of propylamycin to the APH(3')-Ia isozyme including deoxygenation at the 3'-position and incorporation of a 6',5''-bis(hydroxyethylamino) modification offer no particular advantage.
Collapse
Affiliation(s)
| | - Rimants Zogota
- Latvian Institute of Organic Synthesis, Riga, Latvia LV-1006
| | - Vikram A. Sarpe
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, Georgia 30602, United States
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - Takahiko Matsushita
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Girish C. Sati
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Klara Haldimann
- Institute of Medical Microbiology, University of Zurich, Gloriastrasse 28, 8006 Zürich, Switzerland
| | - Marina Gysin
- Institute of Medical Microbiology, University of Zurich, Gloriastrasse 28, 8006 Zürich, Switzerland
| | - Erik C. Böttger
- Institute of Medical Microbiology, University of Zurich, Gloriastrasse 28, 8006 Zürich, Switzerland
| | - Andrea Vasella
- Organic Chemistry Laboratory, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, 8093 Zürich, Switzerland
| | - Edgars Suna
- Latvian Institute of Organic Synthesis, Riga, Latvia LV-1006
| | - Sven N. Hobbie
- Institute of Medical Microbiology, University of Zurich, Gloriastrasse 28, 8006 Zürich, Switzerland
| | - David Crich
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, Georgia 30602, United States
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
- Department of Chemistry, University of Georgia, 140 Cedar Street, Athens, Georgia 30602, United States
| |
Collapse
|
15
|
Martins-Dias P, Romão L. Nonsense suppression therapies in human genetic diseases. Cell Mol Life Sci 2021; 78:4677-4701. [PMID: 33751142 PMCID: PMC11073055 DOI: 10.1007/s00018-021-03809-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 02/06/2021] [Accepted: 03/05/2021] [Indexed: 02/06/2023]
Abstract
About 11% of all human disease-associated gene lesions are nonsense mutations, resulting in the introduction of an in-frame premature translation-termination codon (PTC) into the protein-coding gene sequence. When translated, PTC-containing mRNAs originate truncated and often dysfunctional proteins that might be non-functional or have gain-of-function or dominant-negative effects. Therapeutic strategies aimed at suppressing PTCs to restore deficient protein function-the so-called nonsense suppression (or PTC readthrough) therapies-have the potential to provide a therapeutic benefit for many patients and in a broad range of genetic disorders, including cancer. These therapeutic approaches comprise the use of translational readthrough-inducing compounds that make the translational machinery recode an in-frame PTC into a sense codon. However, most of the mRNAs carrying a PTC can be rapidly degraded by the surveillance mechanism of nonsense-mediated decay (NMD), thus decreasing the levels of PTC-containing mRNAs in the cell and their availability for PTC readthrough. Accordingly, the use of NMD inhibitors, or readthrough-compound potentiators, may enhance the efficiency of PTC suppression. Here, we review the mechanisms of PTC readthrough and their regulation, as well as the recent advances in the development of novel approaches for PTC suppression, and their role in personalized medicine.
Collapse
Affiliation(s)
- Patrícia Martins-Dias
- Department of Human Genetics, Instituto Nacional de Saúde Doutor Ricardo Jorge, Av. Padre Cruz, 1649-016, Lisbon, Portugal
- Faculty of Sciences, BioISI-Biosystems and Integrative Sciences Institute, University of Lisboa, 1749-016, Lisbon, Portugal
| | - Luísa Romão
- Department of Human Genetics, Instituto Nacional de Saúde Doutor Ricardo Jorge, Av. Padre Cruz, 1649-016, Lisbon, Portugal.
- Faculty of Sciences, BioISI-Biosystems and Integrative Sciences Institute, University of Lisboa, 1749-016, Lisbon, Portugal.
| |
Collapse
|
16
|
Sonousi A, Quirke JCK, Waduge P, Janusic T, Gysin M, Haldimann K, Xu S, Hobbie SN, Sha SH, Schacht J, Chow CS, Vasella A, Böttger EC, Crich D. An Advanced Apralog with Increased in vitro and in vivo Activity toward Gram-negative Pathogens and Reduced ex vivo Cochleotoxicity. ChemMedChem 2021; 16:335-339. [PMID: 33007139 PMCID: PMC7855274 DOI: 10.1002/cmdc.202000726] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Indexed: 12/13/2022]
Abstract
We describe the convergent synthesis of a 5-O-β-D-ribofuranosyl-based apramycin derivative (apralog) that displays significantly improved antibacterial activity over the parent apramycin against wild-type ESKAPE pathogens. In addition, the new apralog retains excellent antibacterial activity in the presence of the only aminoglycoside modifying enzyme (AAC(3)-IV) acting on the parent, without incurring susceptibility to the APH(3') mechanism that disables other 5-O-β-D-ribofuranosyl 2-deoxystreptamine type aminoglycosides by phosphorylation at the ribose 5-position. Consistent with this antibacterial activity, the new apralog has excellent 30 nM activity (IC50 ) for the inhibition of protein synthesis by the bacterial ribosome in a cell-free translation assay, while retaining the excellent across-the-board selectivity of the parent for inhibition of bacterial over eukaryotic ribosomes. Overall, these characteristics translate into excellent in vivo efficacy against E. coli in a mouse thigh infection model and reduced ototoxicity vis à vis the parent in mouse cochlear explants.
Collapse
Affiliation(s)
- Amr Sonousi
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI, 48202, USA
| | - Jonathan C K Quirke
- Department of Pharmacy and Biomedical Sciences and Department of Chemistry and Complex Carbohydrate Research Center, University of Georgia, 250 West Green Street, Athens, GA, 30602, USA
| | - Prabuddha Waduge
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI, 48202, USA
| | - Tanja Janusic
- Institute of Medical Microbiology, University of Zurich, Gloriastrasse 28, 8006, Zürich, Switzerland
| | - Marina Gysin
- Institute of Medical Microbiology, University of Zurich, Gloriastrasse 28, 8006, Zürich, Switzerland
| | - Klara Haldimann
- Institute of Medical Microbiology, University of Zurich, Gloriastrasse 28, 8006, Zürich, Switzerland
| | - Shan Xu
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Walton Research Building, Room 403-E, 39 Sabin Street, Charleston, SC, 29425, USA
| | - Sven N Hobbie
- Institute of Medical Microbiology, University of Zurich, Gloriastrasse 28, 8006, Zürich, Switzerland
| | - Su-Hua Sha
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Walton Research Building, Room 403-E, 39 Sabin Street, Charleston, SC, 29425, USA
| | - Jochen Schacht
- Kresge Hearing Research Institute, Department of Otolaryngology, University of Michigan, 1150 West Medical Center Drive, Ann Arbor, MI, 48109, USA
| | - Christine S Chow
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI, 48202, USA
| | - Andrea Vasella
- Organic Chemistry Laboratory, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, 8093, Zürich, Switzerland
| | - Erik C Böttger
- Institute of Medical Microbiology, University of Zurich, Gloriastrasse 28, 8006, Zürich, Switzerland
| | - David Crich
- Department of Pharmacy and Biomedical Sciences and Department of Chemistry and Complex Carbohydrate Research Center, University of Georgia, 250 West Green Street, Athens, GA, 30602, USA
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI, 48202, USA
| |
Collapse
|
17
|
Vila-Sanjurjo A, Smith PM, Elson JL. Heterologous Inferential Analysis (HIA) and Other Emerging Concepts: In Understanding Mitochondrial Variation In Pathogenesis: There is no More Low-Hanging Fruit. Methods Mol Biol 2021; 2277:203-245. [PMID: 34080154 DOI: 10.1007/978-1-0716-1270-5_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Here we summarize our latest efforts to elucidate the role of mtDNA variants affecting the mitochondrial translation machinery, namely variants mapping to the mt-rRNA and mt-tRNA genes. Evidence is accumulating to suggest that the cellular response to interference with mitochondrial translation is different from that occurring as a result of mutations in genes encoding OXPHOS proteins. As a result, it appears safe to state that a complete view of mitochondrial disease will not be obtained until we understand the effect of mt-rRNA and mt-tRNA variants on mitochondrial protein synthesis. Despite the identification of a large number of potentially pathogenic variants in the mitochondrially encoded rRNA (mt-rRNA) genes, we lack direct methods to firmly establish their pathogenicity. In the absence of such methods, we have devised an indirect approach named heterologous inferential analysis (HIA ) that can be used to make predictions concerning the disruptive potential of a large subset of mt-rRNA variants. We have used HIA to explore the mutational landscape of 12S and 16S mt-rRNA genes. Our HIA studies include a thorough classification of all rare variants reported in the literature as well as others obtained from studies performed in collaboration with physicians. HIA has also been used with non-mammalian mt-rRNA genes to elucidate how mitotypes influence the interaction of the individual and the environment. Regarding mt-tRNA variations, rapidly growing evidence shows that the spectrum of mutations causing mitochondrial disease might differ between the different mitochondrial haplogroups seen in human populations.
Collapse
Affiliation(s)
- Antón Vila-Sanjurjo
- Departamento de Bioloxía, Facultade de Ciencias, Centro de Investigacións en Ciencias Avanzadas (CICA), Universidade da Coruña, A Coruña, Spain.
| | - Paul M Smith
- Department of Paediatrics, Royal Aberdeen Children's Hospital, Aberdeen, UK
| | - Joanna L Elson
- Biosciences Institute Newcastle, Newcastle University, Newcastle upon Tyne, UK.
- Human Metabolomics, North-West University, Potchefstroom, South Africa.
| |
Collapse
|
18
|
Zada SL, Baruch BB, Simhaev L, Engel H, Fridman M. Chemical Modifications Reduce Auditory Cell Damage Induced by Aminoglycoside Antibiotics. J Am Chem Soc 2020; 142:3077-3087. [PMID: 31958945 DOI: 10.1021/jacs.9b12420] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Although aminoglycoside antibiotics are effective against Gram-negative infections, these drugs often cause irreversible hearing damage. Binding to the decoding site of the eukaryotic ribosomes appears to result in ototoxicity, but there is evidence that other effects are involved. Here, we show how chemical modifications of apramycin and geneticin, considered among the least and most toxic aminoglycosides, respectively, reduce auditory cell damage. Using molecular dynamics simulations, we studied how modified aminoglycosides influence the essential freedom of movement of the decoding site of the ribosome, the region targeted by aminoglycosides. By determining the ratio of a protein translated in mitochondria to that of a protein translated in the cytoplasm, we showed that aminoglycosides can paradoxically elevate rather than reduce protein levels. We showed that certain aminoglycosides induce rapid plasma membrane permeabilization and that this nonribosomal effect can also be reduced through chemical modifications. The results presented suggest a new paradigm for the development of safer aminoglycoside antibiotics.
Collapse
Affiliation(s)
- Sivan Louzoun Zada
- School of Chemistry, Raymond and Beverley Sackler Faculty of Exact Sciences , Tel Aviv University , Tel Aviv , Israel , 6997801
| | - Bar Ben Baruch
- School of Chemistry, Raymond and Beverley Sackler Faculty of Exact Sciences , Tel Aviv University , Tel Aviv , Israel , 6997801
| | - Luba Simhaev
- Blavatnik Center for Drug Discovery , Tel Aviv University , Tel Aviv , 6997801 , Israel
| | - Hamutal Engel
- Blavatnik Center for Drug Discovery , Tel Aviv University , Tel Aviv , 6997801 , Israel
| | - Micha Fridman
- School of Chemistry, Raymond and Beverley Sackler Faculty of Exact Sciences , Tel Aviv University , Tel Aviv , Israel , 6997801
| |
Collapse
|
19
|
Quirke JCK, Rajasekaran P, Sarpe VA, Sonousi A, Osinnii I, Gysin M, Haldimann K, Fang QJ, Shcherbakov D, Hobbie SN, Sha SH, Schacht J, Vasella A, Böttger EC, Crich D. Apralogs: Apramycin 5- O-Glycosides and Ethers with Improved Antibacterial Activity and Ribosomal Selectivity and Reduced Susceptibility to the Aminoacyltranserferase (3)-IV Resistance Determinant. J Am Chem Soc 2019; 142:530-544. [PMID: 31790244 DOI: 10.1021/jacs.9b11601] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Apramycin is a structurally unique member of the 2-deoxystreptamine class of aminoglycoside antibiotics characterized by a monosubstituted 2-deoxystreptamine ring that carries an unusual bicyclic eight-carbon dialdose moiety. Because of its unusual structure, apramycin is not susceptible to the most prevalent mechanisms of aminoglycoside resistance including the aminoglycoside-modifying enzymes and the ribosomal methyltransferases whose widespread presence severely compromises all aminoglycosides in current clinical practice. These attributes coupled with minimal ototoxocity in animal models combine to make apramycin an excellent starting point for the development of next-generation aminoglycoside antibiotics for the treatment of multidrug-resistant bacterial infections, particularly the ESKAPE pathogens. With this in mind, we describe the design, synthesis, and evaluation of three series of apramycin derivatives, all functionalized at the 5-position, with the goals of increasing the antibacterial potency without sacrificing selectivity between bacterial and eukaryotic ribosomes and of overcoming the rare aminoglycoside acetyltransferase (3)-IV class of aminoglycoside-modifying enzymes that constitutes the only documented mechanism of antimicrobial resistance to apramycin. We show that several apramycin-5-O-β-d-ribofuranosides, 5-O-β-d-eryrthofuranosides, and even simple 5-O-aminoalkyl ethers are effective in this respect through the use of cell-free translation assays with wild-type bacterial and humanized bacterial ribosomes and of extensive antibacterial assays with wild-type and resistant Gram negative bacteria carrying either single or multiple resistance determinants. Ex vivo studies with mouse cochlear explants confirm the low levels of ototoxicity predicted on the basis of selectivity at the target level, while the mouse thigh infection model was used to demonstrate the superiority of an apramycin-5-O-glycoside in reducing the bacterial burden in vivo.
Collapse
Affiliation(s)
- Jonathan C K Quirke
- Department of Pharmaceutical and Biomedical Sciences , University of Georgia , 250 West Green Street , Athens , Georgia 30602 , United States.,Department of Chemistry , University of Georgia , 140 Cedar Street , Athens , Georgia 30602 , United States.,Complex Carbohydrate Research Center , University of Georgia , 315 Riverbend Road , Athens , Georgia 30602 , United States.,Department of Chemistry , Wayne State University , 5101 Cass Avenue , Detroit , Michigan 48202 , United States
| | - Parasuraman Rajasekaran
- Department of Pharmaceutical and Biomedical Sciences , University of Georgia , 250 West Green Street , Athens , Georgia 30602 , United States.,Complex Carbohydrate Research Center , University of Georgia , 315 Riverbend Road , Athens , Georgia 30602 , United States.,Department of Chemistry , Wayne State University , 5101 Cass Avenue , Detroit , Michigan 48202 , United States
| | - Vikram A Sarpe
- Department of Pharmaceutical and Biomedical Sciences , University of Georgia , 250 West Green Street , Athens , Georgia 30602 , United States.,Complex Carbohydrate Research Center , University of Georgia , 315 Riverbend Road , Athens , Georgia 30602 , United States.,Department of Chemistry , Wayne State University , 5101 Cass Avenue , Detroit , Michigan 48202 , United States
| | - Amr Sonousi
- Department of Chemistry , Wayne State University , 5101 Cass Avenue , Detroit , Michigan 48202 , United States
| | - Ivan Osinnii
- Institute of Medical Microbiology , University of Zurich , Gloriastrasse 28 , 8006 Zürich , Switzerland
| | - Marina Gysin
- Institute of Medical Microbiology , University of Zurich , Gloriastrasse 28 , 8006 Zürich , Switzerland
| | - Klara Haldimann
- Institute of Medical Microbiology , University of Zurich , Gloriastrasse 28 , 8006 Zürich , Switzerland
| | - Qiao-Jun Fang
- Department of Pathology and Laboratory Medicine , Medical University of South Carolina , Walton Research Building, Room 403-E, 39 Sabin Street , Charleston , South Carolina 29425 , United States
| | - Dimitri Shcherbakov
- Institute of Medical Microbiology , University of Zurich , Gloriastrasse 28 , 8006 Zürich , Switzerland
| | - Sven N Hobbie
- Institute of Medical Microbiology , University of Zurich , Gloriastrasse 28 , 8006 Zürich , Switzerland
| | - Su-Hua Sha
- Department of Pathology and Laboratory Medicine , Medical University of South Carolina , Walton Research Building, Room 403-E, 39 Sabin Street , Charleston , South Carolina 29425 , United States
| | - Jochen Schacht
- Kresge Hearing Research Institute, Department of Otolaryngology , University of Michigan , 1150 West Medical Center Drive , Ann Arbor , Michigan 48109 , United States
| | - Andrea Vasella
- Organic Chemistry Laboratory , ETH Zürich , Vladimir-Prelog-Weg 1-5/10 , 8093 Zürich , Switzerland
| | - Erik C Böttger
- Institute of Medical Microbiology , University of Zurich , Gloriastrasse 28 , 8006 Zürich , Switzerland
| | - David Crich
- Department of Pharmaceutical and Biomedical Sciences , University of Georgia , 250 West Green Street , Athens , Georgia 30602 , United States.,Department of Chemistry , University of Georgia , 140 Cedar Street , Athens , Georgia 30602 , United States.,Complex Carbohydrate Research Center , University of Georgia , 315 Riverbend Road , Athens , Georgia 30602 , United States.,Department of Chemistry , Wayne State University , 5101 Cass Avenue , Detroit , Michigan 48202 , United States
| |
Collapse
|
20
|
Waduge P, Sati GC, Crich D, Chow CS. Use of a fluorescence assay to determine relative affinities of semisynthetic aminoglycosides to small RNAs representing bacterial and mitochondrial A sites. Bioorg Med Chem 2019; 27:115121. [PMID: 31610941 PMCID: PMC6961810 DOI: 10.1016/j.bmc.2019.115121] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/02/2019] [Accepted: 09/12/2019] [Indexed: 10/26/2022]
Abstract
The off-target binding of aminoglycosides (AGs) to the A site of human mitochondrial ribosomes in addition to bacterial ribosomes causes ototoxicity and limits their potential as antibiotics. A fluorescence assay was employed to determine relative binding affinities of classical and improved AG compounds to synthetic RNA constructs representing the bacterial and mitochondrial A sites. Results compared well with previously reported in vitro translation assays with engineered ribosomes. Therefore, the minimal RNA motifs and fluorescence assay are shown here to be useful for assessing the selectivity of new compounds.
Collapse
Affiliation(s)
- Prabuddha Waduge
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA
| | - Girish C Sati
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA
| | - David Crich
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA
| | - Christine S Chow
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA.
| |
Collapse
|
21
|
Kros CJ, Steyger PS. Aminoglycoside- and Cisplatin-Induced Ototoxicity: Mechanisms and Otoprotective Strategies. Cold Spring Harb Perspect Med 2019; 9:cshperspect.a033548. [PMID: 30559254 DOI: 10.1101/cshperspect.a033548] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ototoxicity refers to damage of inner ear structures (i.e., the cochlea and vestibule) and their function (hearing and balance) following exposure to specific in-hospital medications (i.e., aminoglycoside antibiotics, platinum-based drugs), as well as a variety of environmental or occupational exposures (e.g., metals and solvents). This review provides a narrative derived from relevant papers describing factors contributing to (or increasing the risk of) aminoglycoside and cisplatin-induced ototoxicity. We also review current strategies to protect against ototoxicity induced by these indispensable pharmacotherapeutic treatments for life-threatening infections and solid tumors. We end by highlighting several interventional strategies that are currently in development, as well as the diverse challenges that still need to be overcome to prevent drug-induced hearing loss.
Collapse
Affiliation(s)
- Corné J Kros
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, United Kingdom
| | - Peter S Steyger
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, Oregon 97239.,National Center for Rehabilitative Auditory Research, VA Portland Health Care System, Portland, Oregon 97239
| |
Collapse
|
22
|
Sati GC, Sarpe VA, Furukawa T, Mondal S, Mantovani M, Hobbie SN, Vasella A, Böttger EC, Crich D. Modification at the 2'-Position of the 4,5-Series of 2-Deoxystreptamine Aminoglycoside Antibiotics To Resist Aminoglycoside Modifying Enzymes and Increase Ribosomal Target Selectivity. ACS Infect Dis 2019; 5:1718-1730. [PMID: 31436080 PMCID: PMC6788953 DOI: 10.1021/acsinfecdis.9b00128] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
![]()
A series
of derivatives of the 4,5-disubstituted class of 2-deoxystreptamine
aminoglycoside antibiotics neomycin, paromomycin, and ribostamycin
was prepared and assayed for (i) their ability to inhibit protein
synthesis by bacterial ribosomes and by engineered bacterial ribosomes
carrying eukaryotic decoding A sites, (ii) antibacterial activity
against wild type Gram negative and positive pathogens, and (iii)
overcoming resistance due to the presence of aminoacyl transferases
acting at the 2′-position. The presence of five suitably positioned
residual basic amino groups was found to be necessary for activity
to be retained upon removal or alkylation of the 2′-position
amine. As alkylation of the 2′-amino group overcomes the action
of resistance determinants acting at that position and in addition
results in increased selectivity for the prokaryotic over eukaryotic
ribosomes, it constitutes an attractive modification for introduction
into next generation aminoglycosides. In the neomycin series, the
installation of small (formamide) or basic (glycinamide) amido groups
on the 2′-amino group is tolerated.
Collapse
Affiliation(s)
- Girish C. Sati
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Vikram A. Sarpe
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Takayuki Furukawa
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Sujit Mondal
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Matilde Mantovani
- Institute of Medical Microbiology, University of Zurich, 28 Gloriastrasse, 8006 Zürich, Switzerland
| | - Sven N. Hobbie
- Institute of Medical Microbiology, University of Zurich, 28 Gloriastrasse, 8006 Zürich, Switzerland
| | - Andrea Vasella
- Organic Chemistry Laboratory, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, 8093 Zürich, Switzerland
| | - Erik C. Böttger
- Institute of Medical Microbiology, University of Zurich, 28 Gloriastrasse, 8006 Zürich, Switzerland
| | - David Crich
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| |
Collapse
|
23
|
Matsushita T, Sati GC, Kondasinghe N, Pirrone MG, Kato T, Waduge P, Kumar HS, Sanchon AC, Dobosz-Bartoszek M, Shcherbakov D, Juhas M, Hobbie SN, Schrepfer T, Chow CS, Polikanov YS, Schacht J, Vasella A, Böttger EC, Crich D. Design, Multigram Synthesis, and in Vitro and in Vivo Evaluation of Propylamycin: A Semisynthetic 4,5-Deoxystreptamine Class Aminoglycoside for the Treatment of Drug-Resistant Enterobacteriaceae and Other Gram-Negative Pathogens. J Am Chem Soc 2019; 141:5051-5061. [PMID: 30793894 DOI: 10.1021/jacs.9b01693] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Infectious diseases due to multidrug-resistant pathogens, particularly carbapenem-resistant Enterobacteriaceae (CREs), present a major and growing threat to human health and society, providing an urgent need for the development of improved potent antibiotics for their treatment. We describe the design and development of a new class of aminoglycoside antibiotics culminating in the discovery of propylamycin. Propylamycin is a 4'-deoxy-4'-alkyl paromomycin whose alkyl substituent conveys excellent activity against a broad spectrum of ESKAPE pathogens and other Gram-negative infections, including CREs, in the presence of numerous common resistance determinants, be they aminoglycoside modifying enzymes or rRNA methyl transferases. Importantly, propylamycin is demonstrated not to be susceptible to the action of the ArmA resistance determinant whose presence severely compromises the action of plazomicin and all other 4,6-disubstituted 2-deoxystreptamine aminoglycosides. The lack of susceptibility to ArmA, which is frequently encoded on the same plasmid as carbapenemase genes, ensures that propylamycin will not suffer from problems of cross-resistance when used in combination with carbapenems. Cell-free translation assays, quantitative ribosome footprinting, and X-ray crystallography support a model in which propylamycin functions by interference with bacterial protein synthesis. Cell-free translation assays with humanized bacterial ribosomes were used to optimize the selectivity of propylamycin, resulting in reduced ototoxicity in guinea pigs. In mouse thigh and septicemia models of Escherichia coli, propylamycin shows excellent efficacy, which is better than paromomycin. Overall, a simple novel deoxy alkyl modification of a readily available aminoglycoside antibiotic increases the inherent antibacterial activity, effectively combats multiple mechanisms of aminoglycoside resistance, and minimizes one of the major side effects of aminoglycoside therapy.
Collapse
Affiliation(s)
- Takahiko Matsushita
- Department of Chemistry , Wayne State University , 5101 Cass Avenue , Detroit , Michigan 48202 , United States
| | - Girish C Sati
- Department of Chemistry , Wayne State University , 5101 Cass Avenue , Detroit , Michigan 48202 , United States
| | - Nuwan Kondasinghe
- Department of Chemistry , Wayne State University , 5101 Cass Avenue , Detroit , Michigan 48202 , United States
| | - Michael G Pirrone
- Department of Chemistry , Wayne State University , 5101 Cass Avenue , Detroit , Michigan 48202 , United States
| | - Takayuki Kato
- Department of Chemistry , Wayne State University , 5101 Cass Avenue , Detroit , Michigan 48202 , United States
| | - Prabuddha Waduge
- Department of Chemistry , Wayne State University , 5101 Cass Avenue , Detroit , Michigan 48202 , United States
| | - Harshitha Santhosh Kumar
- Institut für Medizinische Mikrobiologie , Universität Zürich , 28 Gloriastrasse , 8006 Zürich , Switzerland
| | - Adrian Cortes Sanchon
- Institut für Medizinische Mikrobiologie , Universität Zürich , 28 Gloriastrasse , 8006 Zürich , Switzerland
| | - Malgorzata Dobosz-Bartoszek
- Department of Biological Sciences , University of Illinois at Chicago , 900 South Ashland Avenue , Chicago , Illinois 60607 , United States
| | - Dimitri Shcherbakov
- Institut für Medizinische Mikrobiologie , Universität Zürich , 28 Gloriastrasse , 8006 Zürich , Switzerland
| | - Mario Juhas
- Institut für Medizinische Mikrobiologie , Universität Zürich , 28 Gloriastrasse , 8006 Zürich , Switzerland
| | - Sven N Hobbie
- Institut für Medizinische Mikrobiologie , Universität Zürich , 28 Gloriastrasse , 8006 Zürich , Switzerland
| | - Thomas Schrepfer
- Kresge Hearing Research Institute, Department of Otolaryngology , University of Michigan , 1150 West Medical Center Drive , Ann Arbor , Michigan 48109 , United States
| | - Christine S Chow
- Department of Chemistry , Wayne State University , 5101 Cass Avenue , Detroit , Michigan 48202 , United States
| | - Yury S Polikanov
- Department of Biological Sciences , University of Illinois at Chicago , 900 South Ashland Avenue , Chicago , Illinois 60607 , United States.,Department of Medicinal Chemistry and Pharmacognosy , University of Illinois at Chicago , 900 South Ashland Avenue , Chicago , Illinois 60607 , United States
| | - Jochen Schacht
- Kresge Hearing Research Institute, Department of Otolaryngology , University of Michigan , 1150 West Medical Center Drive , Ann Arbor , Michigan 48109 , United States
| | - Andrea Vasella
- Laboratorium für Organische Chemie , ETH Zürich , Vladimir-Prelog-Weg 1-5/10 , 8093 Zürich , Switzerland
| | - Erik C Böttger
- Institut für Medizinische Mikrobiologie , Universität Zürich , 28 Gloriastrasse , 8006 Zürich , Switzerland
| | - David Crich
- Department of Chemistry , Wayne State University , 5101 Cass Avenue , Detroit , Michigan 48202 , United States
| |
Collapse
|
24
|
Abstract
Sensorineural hearing impairment is the most common sensory disorder and a major health and socio-economic issue in industrialized countries. It is primarily due to the degeneration of mechanosensory hair cells and spiral ganglion neurons in the cochlea via complex pathophysiological mechanisms. These occur following acute and/or chronic exposure to harmful extrinsic (e.g., ototoxic drugs, noise...) and intrinsic (e.g., aging, genetic) causative factors. No clinical therapies currently exist to rescue the dying sensorineural cells or regenerate these cells once lost. Recent studies have, however, provided renewed hope, with insights into the therapeutic targets allowing the prevention and treatment of ototoxic drug- and noise-induced, age-related hearing loss as well as cochlear cell degeneration. Moreover, genetic routes involving the replacement or corrective editing of mutant sequences or defected genes are showing promise, as are cell-replacement therapies to repair damaged cells for the future restoration of hearing in deaf people. This review begins by recapitulating our current understanding of the molecular pathways that underlie cochlear sensorineural damage, as well as the survival signaling pathways that can provide endogenous protection and tissue rescue. It then guides the reader through to the recent discoveries in pharmacological, gene and cell therapy research towards hearing protection and restoration as well as their potential clinical application.
Collapse
Affiliation(s)
- Jing Wang
- INSERM UMR 1051, Institute for Neurosciences of Montpellier, Montpellier, France; and University of Montpellier, Montpellier, France
| | - Jean-Luc Puel
- INSERM UMR 1051, Institute for Neurosciences of Montpellier, Montpellier, France; and University of Montpellier, Montpellier, France
| |
Collapse
|
25
|
Akbergenov R, Duscha S, Fritz AK, Juskeviciene R, Oishi N, Schmitt K, Shcherbakov D, Teo Y, Boukari H, Freihofer P, Isnard-Petit P, Oettinghaus B, Frank S, Thiam K, Rehrauer H, Westhof E, Schacht J, Eckert A, Wolfer D, Böttger EC. Mutant MRPS5 affects mitoribosomal accuracy and confers stress-related behavioral alterations. EMBO Rep 2018; 19:embr.201846193. [PMID: 30237157 PMCID: PMC6216279 DOI: 10.15252/embr.201846193] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 08/21/2018] [Accepted: 08/24/2018] [Indexed: 12/30/2022] Open
Abstract
The 1555 A to G substitution in mitochondrial 12S A‐site rRNA is associated with maternally transmitted deafness of variable penetrance in the absence of otherwise overt disease. Here, we recapitulate the suggested A1555G‐mediated pathomechanism in an experimental model of mitoribosomal mistranslation by directed mutagenesis of mitoribosomal protein MRPS5. We first establish that the ratio of cysteine/methionine incorporation and read‐through of mtDNA‐encoded MT‐CO1 protein constitute reliable measures of mitoribosomal misreading. Next, we demonstrate that human HEK293 cells expressing mutant V336Y MRPS5 show increased mitoribosomal mistranslation. As for immortalized lymphocytes of individuals with the pathogenic A1555G mutation, we find little changes in the transcriptome of mutant V336Y MRPS5 HEK cells, except for a coordinated upregulation of transcripts for cytoplasmic ribosomal proteins. Homozygous knock‐in mutant Mrps5 V338Y mice show impaired mitochondrial function and a phenotype composed of enhanced susceptibility to noise‐induced hearing damage and anxiety‐related behavioral alterations. The experimental data in V338Y mutant mice point to a key role of mitochondrial translation and function in stress‐related behavioral and physiological adaptations.
Collapse
Affiliation(s)
- Rashid Akbergenov
- Institut für Medizinische Mikrobiologie, Universität Zürich, Zürich, Switzerland
| | - Stefan Duscha
- Institut für Medizinische Mikrobiologie, Universität Zürich, Zürich, Switzerland
| | - Ann-Kristina Fritz
- Anatomisches Institut, Universität Zürich, Zürich, Switzerland.,Institut für Bewegungswissenschaften und Sport, ETH Zürich, Zürich, Switzerland
| | - Reda Juskeviciene
- Institut für Medizinische Mikrobiologie, Universität Zürich, Zürich, Switzerland
| | - Naoki Oishi
- Department of Otolaryngology, Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI, USA
| | - Karen Schmitt
- Transfaculty Research Platform Molecular and Cognitive Neurosciences, Universitäre Psychiatrische Kliniken Basel, Basel, Switzerland
| | - Dimitri Shcherbakov
- Institut für Medizinische Mikrobiologie, Universität Zürich, Zürich, Switzerland
| | - Youjin Teo
- Institut für Medizinische Mikrobiologie, Universität Zürich, Zürich, Switzerland
| | - Heithem Boukari
- Institut für Medizinische Mikrobiologie, Universität Zürich, Zürich, Switzerland
| | - Pietro Freihofer
- Institut für Medizinische Mikrobiologie, Universität Zürich, Zürich, Switzerland
| | | | - Björn Oettinghaus
- Neuro- und Ophthalmopathologie, Universitätsspital Basel, Basel, Switzerland
| | - Stephan Frank
- Neuro- und Ophthalmopathologie, Universitätsspital Basel, Basel, Switzerland
| | | | - Hubert Rehrauer
- Functional Genomics Center Zurich, ETH Zürich und Universität Zürich, Zürich, Switzerland
| | - Eric Westhof
- Institut de biologie moléculaire et cellulaire du CNRS, Université de Strasbourg, Strasbourg, France
| | - Jochen Schacht
- Department of Otolaryngology, Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI, USA
| | - Anne Eckert
- Transfaculty Research Platform Molecular and Cognitive Neurosciences, Universitäre Psychiatrische Kliniken Basel, Basel, Switzerland
| | - David Wolfer
- Anatomisches Institut, Universität Zürich, Zürich, Switzerland.,Institut für Bewegungswissenschaften und Sport, ETH Zürich, Zürich, Switzerland
| | - Erik C Böttger
- Institut für Medizinische Mikrobiologie, Universität Zürich, Zürich, Switzerland
| |
Collapse
|
26
|
Sonousi A, Sarpe VA, Brilkova M, Schacht J, Vasella A, Böttger EC, Crich D. Effects of the 1- N-(4-Amino-2 S-hydroxybutyryl) and 6'- N-(2-Hydroxyethyl) Substituents on Ribosomal Selectivity, Cochleotoxicity, and Antibacterial Activity in the Sisomicin Class of Aminoglycoside Antibiotics. ACS Infect Dis 2018; 4:1114-1120. [PMID: 29708331 DOI: 10.1021/acsinfecdis.8b00052] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Syntheses of the 6'- N-(2-hydroxyethyl) and 1- N-(4-amino-2 S-hydroxybutyryl) derivatives of the 4,6-aminoglycoside sisomicin and that of the doubly modified 1- N-(4-amino-2 S-hydroxybutyryl)-6'- N-(2-hydroxyethyl) derivative known as plazomicin are reported together with their antibacterial and antiribosomal activities and selectivities. The 6'- N-(2-hydroxyethyl) modification results in a moderate increase in prokaryotic/eukaryotic ribosomal selectivity, whereas the 1- N-(4-amino-2 S-hydroxybutyryl) modification has the opposite effect. When combined in plazomicin, the effects of the two groups on ribosomal selectivity cancel each other out, leading to the prediction that plazomicin will exhibit ototoxicity comparable to those of the parent and the current clinical aminoglycoside antibiotics gentamicin and tobramycin, as borne out by ex vivo studies with mouse cochlear explants. The 6'- N-(2-hydroxyethyl) modification restores antibacterial activity in the presence of the AAC(6') aminoglycoside-modifying enzymes, while the 1- N-(4-amino-2 S-hydroxybutyryl) modification overcomes resistance to the AAC(2') class but is still affected to some extent by the AAC(3) class. Neither modification is able to circumvent the ArmA ribosomal methyltransferase-induced aminoglycoside resistance. The use of phenyltriazenyl protection for the secondary amino group of sisomicin facilitates the synthesis of each derivative and their characterization through the provision of sharp NMR spectra for all intermediates.
Collapse
Affiliation(s)
- Amr Sonousi
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Vikram A. Sarpe
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Margarita Brilkova
- Institut für Medizinische Mikrobiologie, Universität Zürich, Gloriastrasse 28/30, 8006 Zürich, Switzerland
| | - Jochen Schacht
- Kresge Hearing Research Institute, Department of Otolaryngology, University of Michigan, 1150 West Medical Center Drive, Ann Arbor, Michigan 48109, United States
| | - Andrea Vasella
- Laboratorium für Organische Chemie, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, 8093 Zürich, Switzerland
| | - Erik C. Böttger
- Institut für Medizinische Mikrobiologie, Universität Zürich, Gloriastrasse 28/30, 8006 Zürich, Switzerland
| | - David Crich
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| |
Collapse
|
27
|
Bieri P, Greber BJ, Ban N. High-resolution structures of mitochondrial ribosomes and their functional implications. Curr Opin Struct Biol 2018; 49:44-53. [DOI: 10.1016/j.sbi.2017.12.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 12/08/2017] [Accepted: 12/22/2017] [Indexed: 01/06/2023]
|
28
|
|
29
|
Abstract
Aminoglycoside antibiotics are known toxins to cochlear hair cells, causing permanent hearing loss. Using the zebrafish lateral line system as a platform for drug screen and subsequent validation in the rat cochlea in vivo, Chowdhury et al. characterized a novel otoprotectant working against aminoglycoside-induced hearing loss.
Collapse
Affiliation(s)
- Mary E O'Sullivan
- Stanford University , 801 Welch Road, Palo Alto, California 94305, United States
| | - Alan G Cheng
- Stanford University , 801 Welch Road, Palo Alto, California 94305, United States
| |
Collapse
|
30
|
Mandhapati AR, Yang G, Kato T, Shcherbakov D, Hobbie SN, Vasella A, Böttger EC, Crich D. Structure-Based Design and Synthesis of Apramycin-Paromomycin Analogues: Importance of the Configuration at the 6'-Position and Differences between the 6'-Amino and Hydroxy Series. J Am Chem Soc 2017; 139:14611-14619. [PMID: 28892368 PMCID: PMC5647259 DOI: 10.1021/jacs.7b07754] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The preparation of a series of four analogues of the aminoglycoside antibiotics neomycin and paromomycin is described in which ring I, involved in critical binding interactions with the ribosomal target, is replaced by an apramycin-like dioxabicyclo[4.4.0]octane system. The effect of this modification is to lock the hydroxymethyl side chain of the neomycin or paromomycin ring I, as part of the dioxabicyclooctane ring, into either the gauche-gauche or the gauche-trans conformation (respectively, axial or equatorial to the bicyclic system). The antiribosomal activity of these compounds is investigated with cell-free translation assays using both bacterial ribosomes and recombinant hybrid ribosomes carrying eukaryotic decoding A site cassettes. Compounds substituted with an equatorial hydroxyl or amino group in the newly formed ring are considerably more active than their axial diastereomers, lending strong support to crystallographically derived models of aminoglycoside-ribosome interactions. One such bicyclic compound carrying an equatorial hydroxyl group has activity equal to that of the parent yet displays better ribosomal selectivity, predictive of an enhanced therapeutic index. A paromomycin analog lacking the hydroxymethyl ring I side chain is considerably less active than the parent. Antibacterial activity against model Gram negative and Gram positive bacteria is reported for selected compounds, as is activity against ESKAPE pathogens and recombinant bacteria carrying specific resistance determinants. Analogues with a bicyclic ring I carrying equatorial amino or hydroxyl groups mimicking the bound side chains of neomycin and paromomycin, respectively, show excellent activity and, by virtue of their novel structure, retain this activity in strains that are insensitive to the parent compounds.
Collapse
Affiliation(s)
- Appi Reddy Mandhapati
- Department of Chemistry, Wayne State University , Detroit, Michigan 48202, United States
| | - Guanyu Yang
- Department of Chemistry, Wayne State University , Detroit, Michigan 48202, United States
| | - Takayuki Kato
- Department of Chemistry, Wayne State University , Detroit, Michigan 48202, United States
| | - Dimitri Shcherbakov
- Institute of Medical Microbiology, University of Zurich , 8006 Zurich, Switzerland
| | - Sven N Hobbie
- Institute of Medical Microbiology, University of Zurich , 8006 Zurich, Switzerland
| | - Andrea Vasella
- Organic Chemistry Laboratory, ETH Zurich , 8093 Zurich, Switzerland
| | - Erik C Böttger
- Institute of Medical Microbiology, University of Zurich , 8006 Zurich, Switzerland
| | - David Crich
- Department of Chemistry, Wayne State University , Detroit, Michigan 48202, United States
| |
Collapse
|
31
|
Jiang M, Karasawa T, Steyger PS. Aminoglycoside-Induced Cochleotoxicity: A Review. Front Cell Neurosci 2017; 11:308. [PMID: 29062271 PMCID: PMC5640705 DOI: 10.3389/fncel.2017.00308] [Citation(s) in RCA: 185] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 09/15/2017] [Indexed: 12/20/2022] Open
Abstract
Aminoglycoside antibiotics are used as prophylaxis, or urgent treatment, for many life-threatening bacterial infections, including tuberculosis, sepsis, respiratory infections in cystic fibrosis, complex urinary tract infections and endocarditis. Although aminoglycosides are clinically-essential antibiotics, the mechanisms underlying their selective toxicity to the kidney and inner ear continue to be unraveled despite more than 70 years of investigation. The following mechanisms each contribute to aminoglycoside-induced toxicity after systemic administration: (1) drug trafficking across endothelial and epithelial barrier layers; (2) sensory cell uptake of these drugs; and (3) disruption of intracellular physiological pathways. Specific factors can increase the risk of drug-induced toxicity, including sustained exposure to higher levels of ambient sound, and selected therapeutic agents such as loop diuretics and glycopeptides. Serious bacterial infections (requiring life-saving aminoglycoside treatment) induce systemic inflammatory responses that also potentiate the degree of ototoxicity and permanent hearing loss. We discuss prospective clinical strategies to protect auditory and vestibular function from aminoglycoside ototoxicity, including reduced cochlear or sensory cell uptake of aminoglycosides, and otoprotection by ameliorating intracellular cytotoxicity.
Collapse
Affiliation(s)
- Meiyan Jiang
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR, United States
| | - Takatoshi Karasawa
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR, United States
| | - Peter S Steyger
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR, United States.,National Center for Rehabilitative Auditory Research, Portland VA Medical Center (VHA), Portland, OR, United States
| |
Collapse
|
32
|
Sati GC, Shcherbakov D, Hobbie SN, Vasella A, Böttger EC, Crich D. N6', N6''', and O4' Modifications to Neomycin Affect Ribosomal Selectivity without Compromising Antibacterial Activity. ACS Infect Dis 2017; 3:368-377. [PMID: 28343384 PMCID: PMC5526222 DOI: 10.1021/acsinfecdis.6b00214] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The synthesis of a series of neomycin derivatives carrying the 2-hydroxyethyl substituent on N6' and/or N6‴ both alone and in combination with a 4'-O-ethyl group is described. By means of cell-free translation assays with wild-type bacterial ribosomes and their hybrids with eukaryotic decoding A sites, we investigate how individual substituents and their combinations affect activity and selectivity at the target level. In principle, and as shown by cell-free translation assays, modifications of the N6' and N6‴ positions allow enhancement of target selectivity without compromising antibacterial activity. As with the 6'OH aminoglycoside paromomycin, the 4'-O-ethyl modification affects the ribosomal activity, selectivity, and antibacterial profile of neomycin and its 6'-N-(2-hydroxyethyl) derivatives. The modified aminoglycosides show good antibacterial activity against model Gram-positive and Gram-negative microbes including the ESKAPE pathogens Staphylococcus aureus, Klebsiella pneumoniae, Enterobacter cloacae, and Acinetobacter baumannii.
Collapse
Affiliation(s)
- Girish C Sati
- Department of Chemistry, Wayne State University , Detroit, Michigan 48202, United States
| | - Dimitri Shcherbakov
- Institute of Medical Microbiology, University of Zurich , 8006 Zurich, Switzerland
| | - Sven N Hobbie
- Institute of Medical Microbiology, University of Zurich , 8006 Zurich, Switzerland
| | - Andrea Vasella
- Organic Chemistry Laboratory, ETH Zurich , 8093 Zurich, Switzerland
| | - Erik C Böttger
- Institute of Medical Microbiology, University of Zurich , 8006 Zurich, Switzerland
| | - David Crich
- Department of Chemistry, Wayne State University , Detroit, Michigan 48202, United States
| |
Collapse
|
33
|
O’Sullivan ME, Perez A, Lin R, Sajjadi A, Ricci AJ, Cheng AG. Towards the Prevention of Aminoglycoside-Related Hearing Loss. Front Cell Neurosci 2017; 11:325. [PMID: 29093664 PMCID: PMC5651232 DOI: 10.3389/fncel.2017.00325] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 09/30/2017] [Indexed: 01/08/2023] Open
Abstract
Aminoglycosides are potent antibiotics deployed worldwide despite their known side-effect of sensorineural hearing loss. The main etiology of this sensory deficit is death of inner ear sensory hair cells selectively triggered by aminoglycosides. For decades, research has sought to unravel the molecular events mediating sensory cell demise, emphasizing the roles of reactive oxygen species and their potentials as therapeutic targets. Studies in recent years have revealed candidate transport pathways including the mechanotransducer channel for drug entry into sensory cells. Once inside sensory cells, intracellular targets of aminoglycosides, such as the mitochondrial ribosomes, are beginning to be elucidated. Based on these results, less ototoxic aminoglycoside analogs are being generated and may serve as alternate antimicrobial agents. In this article, we review the latest findings on mechanisms of aminoglycoside entry into hair cells, their intracellular actions and potential therapeutic targets for preventing aminoglycoside ototoxicity.
Collapse
Affiliation(s)
- Mary E. O’Sullivan
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Adela Perez
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Randy Lin
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Autefeh Sajjadi
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Anthony J. Ricci
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, United States
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, United States
- *Correspondence: Anthony J. Ricci Alan G. Cheng
| | - Alan G. Cheng
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, United States
- *Correspondence: Anthony J. Ricci Alan G. Cheng
| |
Collapse
|
34
|
Adeyemo AA, Oluwatosin O, Omotade OO. Study of streptomycin-induced ototoxicity: protocol for a longitudinal study. SPRINGERPLUS 2016; 5:758. [PMID: 27386243 PMCID: PMC4912548 DOI: 10.1186/s40064-016-2429-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Accepted: 05/26/2016] [Indexed: 11/22/2022]
Abstract
Hearing impairment is due to various causes including ototoxicity from aminoglycosides. The susceptibility to aminoglycosides increases in the presence of certain mitochondria gene mutations. There is unrestrained use of aminoglycosides in many developing nations which may worsen the burden of hearing impairment in these countries but there is lack of data to drive required policy changes. Streptomycin (an aminoglycoside) is part of the drug regimen in re-treatment of tuberculosis. Exploring the impact of streptomycin ototoxicity in tuberculosis patients provides a unique opportunity to study aminoglycoside ototoxicity within the population thus providing data that can inform policy. Also, since streptomycin ototoxicity could adversely affect treatment adherence in tuberculosis patients this study could enable better pre-treatment counseling with subsequent better treatment adherence. Patients on tuberculosis re-treatment will be recruited longitudinally from Direct Observation Therapy-Short course centers. A baseline full audiologic assessment will be done before commencement of treatment and after completion of treatment. Early detection of ototoxicity will be determined using the American Speech and Hearing Association criteria and genetic analysis to determine relevant mitochondria gene mutations will be done. The incidence of ototoxicity in the cohort will be analyzed. Both Kaplan–Meier survival curve and Cox proportional hazards tests will be utilized to determine factors associated with development of ototoxicity and to examine association between genotype status and ototoxicity. This study will provide data on the burden and associated predictors of developing aminoglycoside induced ototoxicity. This will inform public health strategies to regulate aminoglycoside usage and optimization of treatment adherence and the management of drug-induced ototoxicity among TB patients. Furthermore the study will describe mitochondrial gene mutations associated with ototoxicity in the African population.
Collapse
Affiliation(s)
- Adebolajo A Adeyemo
- Institute of Child Health, College of Medicine, University of Ibadan, PMB 5017, Ibadan, Nigeria
| | - Odunayo Oluwatosin
- Department of Surgery, College of Medicine, University of Ibadan, PMB 5017, Ibadan, Nigeria
| | - Olayemi O Omotade
- Institute of Child Health, College of Medicine, University of Ibadan, PMB 5017, Ibadan, Nigeria
| |
Collapse
|
35
|
Abstract
Mitochondrial ribosomes (mitoribosomes) perform protein synthesis inside mitochondria, the organelles responsible for energy conversion and adenosine triphosphate production in eukaryotic cells. Throughout evolution, mitoribosomes have become functionally specialized for synthesizing mitochondrial membrane proteins, and this has been accompanied by large changes to their structure and composition. We review recent high-resolution structural data that have provided unprecedented insight into the structure and function of mitoribosomes in mammals and fungi.
Collapse
Affiliation(s)
- Basil J Greber
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, CH-8093 Zurich, Switzerland; .,*Present address: California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, California 94720-3220
| | - Nenad Ban
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, CH-8093 Zurich, Switzerland;
| |
Collapse
|
36
|
Abe J, Yamada Y, Harashima H. Validation of a Strategy for Cancer Therapy: Delivering Aminoglycoside Drugs to Mitochondria in HeLa Cells. J Pharm Sci 2016; 105:734-740. [PMID: 26523487 DOI: 10.1002/jps.24686] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 09/17/2015] [Accepted: 09/21/2015] [Indexed: 12/12/2022]
Abstract
Mitochondria in human cancer cells have been implicated in cancer cell proliferation, invasion, metastasis, and even drug-resistance mechanisms, making them a potential target organelle for the treatment of human malignancies. Gentamicin (GM), an aminoglycoside drug (AG), is a small molecule that functions as an antibiotic and has ototoxic and nephrotoxic characteristics. Thus, the delivery of GM to mitochondria in cancer cells would be an innovative anticancer therapeutic strategy. In this study, we attempted mitochondrial delivery of GM in HeLa cells derived from a human cervical cancer. For the mitochondrial delivery, we used MITO-Porter, a liposomal nanocarrier for mitochondrial delivery via membrane fusion. We first encapsulated GM in the aqueous phase of the carrier to construct GM-MITO-Porter. Flow cytometry analysis and fluorescent microscopy observations permitted us to confirm that the GM-MITO-Porter was efficiently taken up by HeLa cells and accumulated in mitochondria, whereas naked GM was not taken up by the cells. Moreover, cell viability assays using HeLa cells showed that the GM-MITO-Porter induced strong cytotoxic effects related to mitochondrial disorder. This finding is the first report of the mitochondrial delivery of an AG to cancer cells for cancer therapeutic strategy.
Collapse
Affiliation(s)
- Jiro Abe
- Department of Pediatrics, Graduate School of Medicine, Hokkaido University, Kita-ku, Sapporo 060-8638, Japan; Laboratory for Molecular Design of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo 060-0812, Japan
| | - Yuma Yamada
- Laboratory for Molecular Design of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo 060-0812, Japan
| | - Hideyoshi Harashima
- Laboratory for Molecular Design of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo 060-0812, Japan.
| |
Collapse
|
37
|
Arenz S, Wilson DN. Blast from the Past: Reassessing Forgotten Translation Inhibitors, Antibiotic Selectivity, and Resistance Mechanisms to Aid Drug Development. Mol Cell 2015; 61:3-14. [PMID: 26585390 DOI: 10.1016/j.molcel.2015.10.019] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Protein synthesis is a major target within the bacterial cell for antibiotics. Investigations into ribosome-targeting antibiotics have provided much needed functional and structural insight into their mechanism of action. However, the increasing prevalence of multi-drug-resistant bacteria has limited the utility of our current arsenal of clinically relevant antibiotics, highlighting the need for the development of new classes. Recent structural studies have characterized a number of antibiotics discovered decades ago that have unique chemical scaffolds and/or utilize novel modes of action to interact with the ribosome and inhibit translation. Additionally, structures of eukaryotic cytoplasmic and mitochondrial ribosomes have provided further structural insight into the basis for specificity and toxicity of antibiotics. Together with our increased understanding of bacterial resistance mechanisms, revisiting our treasure trove of "forgotten" antibiotics could pave the way for the next generation of antimicrobial agents.
Collapse
Affiliation(s)
- Stefan Arenz
- Gene Center and Department of Biochemistry, Feodor-Lynenstr. 25, University of Munich, 81377 Munich, Germany
| | - Daniel N Wilson
- Gene Center and Department of Biochemistry, Feodor-Lynenstr. 25, University of Munich, 81377 Munich, Germany; Center for integrated Protein Science Munich, Feodor-Lynenstr. 25, University of Munich, 81377 Munich, Germany.
| |
Collapse
|
38
|
Lee S, Rose S, Metodiev MD, Becker L, Vernaleken A, Klopstock T, Gailus-Durner V, Fuchs H, Hrabě De Angelis M, Douthwaite S, Larsson NG. Overexpression of the mitochondrial methyltransferase TFB1M in the mouse does not impact mitoribosomal methylation status or hearing. Hum Mol Genet 2015; 24:7286-94. [PMID: 26464487 PMCID: PMC4664167 DOI: 10.1093/hmg/ddv427] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 10/05/2015] [Indexed: 12/30/2022] Open
Abstract
Mitochondrial dysfunction is a well-established cause of sensorineural deafness, but the pathophysiological events are poorly understood. Non-syndromic deafness and predisposition to aminoglycoside-induced deafness can be caused by specific mutations in the 12S rRNA gene of mtDNA and are thus maternally inherited traits. The pathophysiology induced by mtDNA mutations has traditionally been attributed to deficient oxidative phosphorylation, which causes energy crisis with functional impairment of multiple cellular processes. In contrast, it was recently reported that signaling induced by ‘hypermethylation’ of two conserved adenosines of 12S rRNA in the mitoribosome is of key pathophysiological importance in sensorineural deafness. In support for this concept, it was reported that overexpression of the essential mitochondrial methyltransferase TFB1M in the mouse was sufficient to induce mitoribosomal hypermethylation and deafness. At variance with this model, we show here that 12S rRNA is near fully methylated in vivo in the mouse and thus cannot be further methylated to any significant extent. Furthermore, bacterial artificial chromosome transgenic mice overexpressing TFB1M have no increase of 12S rRNA methylation levels and hear normally. We thus conclude that therapies directed against mitoribosomal methylation are unlikely to be beneficial to patients with sensorineural hearing loss or other types of mitochondrial disease.
Collapse
Affiliation(s)
- Seungmin Lee
- Department of Laboratory Medicine, Karolinska Institutet, Retzius väg 8, 171 77 Stockholm, Sweden
| | - Simon Rose
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Metodi D Metodiev
- INSERM U1163, Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, 75015 Paris, France
| | - Lore Becker
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, 85764 Munich/Neuherberg, Germany, Department of Neurology, Friedrich-Baur-Institute, Ludwig-Maximilians-University, Munich, Germany
| | - Alexandra Vernaleken
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, 85764 Munich/Neuherberg, Germany, Department of Neurology, Friedrich-Baur-Institute, Ludwig-Maximilians-University, Munich, Germany, German Center for Vertigo and Balance Disorders, Munich, Germany
| | - Thomas Klopstock
- Department of Neurology, Friedrich-Baur-Institute, Ludwig-Maximilians-University, Munich, Germany, German Center for Vertigo and Balance Disorders, Munich, Germany
| | - Valerie Gailus-Durner
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, 85764 Munich/Neuherberg, Germany
| | - Helmut Fuchs
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, 85764 Munich/Neuherberg, Germany
| | - Martin Hrabě De Angelis
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, 85764 Munich/Neuherberg, Germany, German Center for Vertigo and Balance Disorders, Munich, Germany, Chair of Experimental Genetics, Center of Life and Food Sciences Weihenstephan, Technische Universität München, 85354 Freising-Weihenstephan, Germany, German Center for Diabetes Research (DZD), Ingostaedter Landstr. 1, 85764 Neuherberg, Germany and
| | - Stephen Douthwaite
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Nils-Göran Larsson
- Department of Laboratory Medicine, Karolinska Institutet, Retzius väg 8, 171 77 Stockholm, Sweden, Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9b, 50931 Cologne, Germany
| |
Collapse
|
39
|
Kato T, Yang G, Teo Y, Juskeviciene R, Perez-Fernandez D, Shinde HM, Salian S, Bernet B, Vasella A, Böttger EC, Crich D. Synthesis and Antiribosomal Activities of 4'-O-, 6'-O-, 4″-O-, 4',6'-O- and 4″,6″-O-Derivatives in the Kanamycin Series Indicate Differing Target Selectivity Patterns between the 4,5- and 4,6-Series of Disubstituted 2-Deoxystreptamine Aminoglycoside Antibiotics. ACS Infect Dis 2015; 1:479-86. [PMID: 27623314 DOI: 10.1021/acsinfecdis.5b00069] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Chemistry for the efficient modification of the kanamycin class of 4,6-aminoglycosides at the 4'-position is presented. In all kanamycins but kanamycin B, 4'-O-alkylation is strongly detrimental to antiribosomal and antibacterial activity. Ethylation of kanamycin B at the 4″-position entails little loss of antiribosomal and antibacterial activity, but no increase of ribosomal selectivity. These results are contrasted with those for the 4,5-aminoglycosides, where 4'-O-alkylation of paromomycin causes only a minimal loss of activity but results in a significant increase in selectivity with a concomitant loss of ototoxicity.
Collapse
Affiliation(s)
- Takayuki Kato
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Guanyu Yang
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Youjin Teo
- Institut für Medizinische Mikrobiologie, Universität Zürich, 8006 Zürich, Switzerland
| | - Reda Juskeviciene
- Institut für Medizinische Mikrobiologie, Universität Zürich, 8006 Zürich, Switzerland
| | | | - Harish M. Shinde
- Laboratorium für Organische Chemie, ETH Zürich, 8093 Zürich, Switzerland
| | - Sumanth Salian
- Laboratorium für Organische Chemie, ETH Zürich, 8093 Zürich, Switzerland
| | - Bruno Bernet
- Laboratorium für Organische Chemie, ETH Zürich, 8093 Zürich, Switzerland
| | - Andrea Vasella
- Laboratorium für Organische Chemie, ETH Zürich, 8093 Zürich, Switzerland
| | - Erik C. Böttger
- Institut für Medizinische Mikrobiologie, Universität Zürich, 8006 Zürich, Switzerland
| | - David Crich
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| |
Collapse
|
40
|
Matsushita T, Chen W, Juskeviciene R, Teo Y, Shcherbakov D, Vasella A, Böttger EC, Crich D. Influence of 4'-O-Glycoside Constitution and Configuration on Ribosomal Selectivity of Paromomycin. J Am Chem Soc 2015; 137:7706-17. [PMID: 26024064 DOI: 10.1021/jacs.5b02248] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A series of 20 4'-O-glycosides of the aminoglycoside antibiotic paromomycin were synthesized and evaluated for their ability to inhibit protein synthesis by bacterial, mitochondrial and cytosolic ribosomes. Target selectivity, i.e., inhibition of the bacterial ribosome over eukaryotic mitochondrial and cytosolic ribosomes, which is predictive of antibacterial activity with reduced ototoxicity and systemic toxicity, was greater for the equatorial than for the axial pyranosides, and greater for the d-pentopyranosides than for the l-pentopyranosides and d-hexopyranosides. In particular, 4'-O-β-d-xylopyranosyl paromomycin shows antibacterioribosomal activity comparable to that of paromomycin, but is significantly more selective showing considerably reduced affinity for the cytosolic ribosome and for the A1555G mutant mitochondrial ribosome associated with hypersusceptibility to drug-induced ototoxicity. Compound antibacterioribosomal activity correlates with antibacterial activity, and the ribosomally more active compounds show activity against Escherichia coli, Klebsiella pneumonia, Enterobacter cloacae, Acinetobacter baumannii, and methicillin-resistant Staphylococcus aureus (MRSA). The paromomycin glycosides retain activity against clinical strains of MRSA that are resistant to paromomycin, which is demonstrated to be a consequence of 4'-O-glycosylation blocking the action of 4'-aminoglycoside nucleotidyl transferases by the use of recombinant E. coli carrying the specific resistance determinant.
Collapse
Affiliation(s)
- Takahiko Matsushita
- †Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Weiwei Chen
- †Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Reda Juskeviciene
- ‡Institut für Medizinische Mikrobiologie, Universität Zürich, 8006 Zürich, Switzerland
| | - Youjin Teo
- ‡Institut für Medizinische Mikrobiologie, Universität Zürich, 8006 Zürich, Switzerland
| | - Dimitri Shcherbakov
- ‡Institut für Medizinische Mikrobiologie, Universität Zürich, 8006 Zürich, Switzerland
| | - Andrea Vasella
- §Laboratorium für Organische Chemie, ETH Zürich, 8093 Zürich, Switzerland
| | - Erik C Böttger
- ‡Institut für Medizinische Mikrobiologie, Universität Zürich, 8006 Zürich, Switzerland
| | - David Crich
- †Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| |
Collapse
|
41
|
Hong S, Harris KA, Fanning KD, Sarachan KL, Frohlich KM, Agris PF. Evidence That Antibiotics Bind to Human Mitochondrial Ribosomal RNA Has Implications for Aminoglycoside Toxicity. J Biol Chem 2015; 290:19273-86. [PMID: 26060252 DOI: 10.1074/jbc.m115.655092] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Indexed: 12/11/2022] Open
Abstract
Aminoglycosides are a well known antibiotic family used to treat bacterial infections in humans and animals, but which can be toxic. By binding to the decoding site of helix44 of the small subunit RNA of the bacterial ribosome, the aminoglycoside antibiotics inhibit protein synthesis, cause misreading, or obstruct peptidyl-tRNA translocation. Although aminoglycosides bind helix69 of the bacterial large subunit RNA as well, little is known about their interaction with the homologous human helix69. To probe the role this binding event plays in toxicity, changes to thermal stability, base stacking, and conformation upon aminoglycoside binding to the human cytoplasmic helix69 were compared with those of the human mitochondrial and Escherichia coli helix69. Surprisingly, binding of gentamicin and kanamycin A to the chemically synthesized terminal hairpins of the human cytoplasmic, human mitochondrial, and E. coli helix69 revealed similar dissociation constants (1.3-1.7 and 4.0-5.4 μM, respectively). In addition, aminoglycoside binding enhanced conformational stability of the human mitochondrial helix69 by increasing base stacking. Proton one-dimensional and two-dimensional NMR suggested significant and specific conformational changes of human mitochondrial and E. coli helix69 upon aminoglycoside binding, as compared with human cytoplasmic helix69. The conformational changes and similar aminoglycoside binding affinities observed for human mitochondrial helix69 and E. coli helix69, as well as the increase in structural stability shown for the former, suggest that this binding event is important to understanding aminoglycoside toxicity.
Collapse
Affiliation(s)
- Seoyeon Hong
- From The RNA Institute and the Department of Biological Sciences, University at Albany, Albany, New York 12222
| | - Kimberly A Harris
- From The RNA Institute and the Department of Biological Sciences, University at Albany, Albany, New York 12222
| | - Kathryn D Fanning
- From The RNA Institute and the Department of Biological Sciences, University at Albany, Albany, New York 12222
| | - Kathryn L Sarachan
- From The RNA Institute and the Department of Biological Sciences, University at Albany, Albany, New York 12222
| | - Kyla M Frohlich
- From The RNA Institute and the Department of Biological Sciences, University at Albany, Albany, New York 12222
| | - Paul F Agris
- From The RNA Institute and the Department of Biological Sciences, University at Albany, Albany, New York 12222
| |
Collapse
|
42
|
Ibekwe TS, Bhimrao SK, Westerberg BD, Kozak FK. A meta-analysis and systematic review of the prevalence of mitochondrially encoded 12S RNA in the general population: Is there a role for screening neonates requiring aminoglycosides? Afr J Paediatr Surg 2015; 12:105-13. [PMID: 26168747 PMCID: PMC4955414 DOI: 10.4103/0189-6725.160342] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND This was a meta-analysis and systematic review to determine the global prevalence of the mitochondrially encoded 12S RNA (MT-RNR1) genetic mutation in order to assess the need for neonatal screening prior to aminoglycoside therapy. MATERIALS AND METHODS A comprehensive search of MEDLINE, EMBASE, Ovid, Database of Abstracts of Reviews of Effect, Cochrane Library, Clinical Evidence and Cochrane Central Register of Trials was performed including cross-referencing independently by 2 assessors. Selections were restricted to human studies in English. Meta-analysis was done with MetaXL 2013. RESULTS Forty-five papers out of 295 met the criteria. Pooled prevalence in the general population for MT-RNR1 gene mutations (A1555G, C1494T, A7445G) was 2% (1-4%) at 99%. CONCLUSION Routine screening for MT-RNR1 mutations in the general population prior to treatment with aminoglycosides appear desirable but poorly supported by the weak level of evidence available in the literature. Routine screening in high-risk (Chinese and Spanish) populations appear justified.
Collapse
Affiliation(s)
- Titus S Ibekwe
- Department of ENT, University of Abuja Teaching Hospital and College of Health Sciences, University of Abuja, Abuja, Nigeria
| | | | | | | |
Collapse
|
43
|
|
44
|
O'Sullivan M, Rutland P, Lucas D, Ashton E, Hendricks S, Rahman S, Bitner-Glindzicz M. Mitochondrial m.1584A 12S m62A rRNA methylation in families with m.1555A>G associated hearing loss. Hum Mol Genet 2014; 24:1036-44. [PMID: 25305075 PMCID: PMC4986548 DOI: 10.1093/hmg/ddu518] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The mitochondrial DNA mutation m.1555A>G predisposes to hearing loss following aminoglycoside antibiotic exposure in an idiosyncratic dose-independent manner. However, it may also cause maternally inherited hearing loss in the absence of aminoglycoside exposure or any other clinical features (non-syndromic hearing loss). Although m.1555A>G was identified as a cause of deafness more than twenty years ago, the pathogenic mechanism of this mutation of ribosomal RNA remains controversial. Different mechanistic concepts have been proposed. Most recently, evidence from cell lines and animal models suggested that patients with m.1555A>G may have more 12S rRNA N6, N6-dimethyladenosine (m(6) 2A) methylation than controls, so-called 'hypermethylation'. This has been implicated as a pathogenic mechanism of mitochondrial dysfunction but has yet to be validated in patients. 12S m(6) 2A rRNA methylation, by the mitochondrial transcription factor 1 (TFB1M) enzyme, occurs at two successive nucleotides (m.1584A and m.1583A) in close proximity to m.1555A>G. We examined m(6) 2A methylation in 14 patients with m.1555A>G, and controls, and found all detectable 12S rRNA transcripts to be methylated in both groups. Moreover, different RNA samples derived from the same patient (lymphocyte, fibroblast and lymphoblast) revealed that only transformed cells contained some unmethylated 12S rRNA transcripts, with all detectable 12S rRNA transcripts derived from primary samples m(6) 2A-methylated. Our data indicate that TFB1M 12S m(6) 2A rRNA hypermethylation is unlikely to be a pathogenic mechanism and may be an artefact of previous experimental models studied. We propose that RNA methylation studies in experimental models should be validated in primary clinical samples to ensure that they are applicable to the human situation.
Collapse
Affiliation(s)
- Mary O'Sullivan
- Genetics and Genomic Medicine, UCL Institute of Child Health, London WC1N 1EH, UK
| | - Paul Rutland
- Genetics and Genomic Medicine, UCL Institute of Child Health, London WC1N 1EH, UK
| | - Deirdre Lucas
- Nuffield Hearing and Speech Centre, Royal National Throat Nose and Ear Hospital, London WC1X 8DA, UK
| | | | - Sebastian Hendricks
- Barnet and Chase Farm Hospitals NHS Trust, Enfield, Middlesex EN2 8JL, UK and
| | - Shamima Rahman
- Genetics and Genomic Medicine, UCL Institute of Child Health, London WC1N 1EH, UK, Metabolic Department, Great Ormond Street Hospital for Children NHS Trust, London WC1N 3JH, UK
| | - Maria Bitner-Glindzicz
- Genetics and Genomic Medicine, UCL Institute of Child Health, London WC1N 1EH, UK, Centre for Auditory Research, UCL Ear Institute, London WC1X 8EE, UK
| |
Collapse
|
45
|
Duscha S, Boukari H, Shcherbakov D, Salian S, Silva S, Kendall A, Kato T, Akbergenov R, Perez-Fernandez D, Bernet B, Vaddi S, Thommes P, Schacht J, Crich D, Vasella A, Böttger EC. Identification and evaluation of improved 4'-O-(alkyl) 4,5-disubstituted 2-deoxystreptamines as next-generation aminoglycoside antibiotics. mBio 2014; 5:e01827-14. [PMID: 25271289 PMCID: PMC4196235 DOI: 10.1128/mbio.01827-14] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 08/29/2014] [Indexed: 01/15/2023] Open
Abstract
UNLABELLED The emerging epidemic of drug resistance places the development of efficacious and safe antibiotics in the spotlight of current research. Here, we report the design of next-generation aminoglycosides. Discovery efforts were driven by rational synthesis focusing on 4' alkylations of the aminoglycoside paromomycin, with the goal to alleviate the most severe and disabling side effect of aminoglycosides-irreversible hearing loss. Compounds were evaluated for target activity in in vitro ribosomal translation assays, antibacterial potency against selected pathogens, cytotoxicity against mammalian cells, and in vivo ototoxicity. The results of this study produced potent compounds with excellent selectivity at the ribosomal target, promising antibacterial activity, and little, if any, ototoxicity upon chronic administration. The favorable biocompatibility profile combined with the promising antibacterial activity emphasizes the potential of next-generation aminoglycosides in the treatment of infectious diseases without the risk of ototoxicity. IMPORTANCE The ever-widening epidemic of multidrug-resistant infectious diseases and the paucity of novel antibacterial agents emerging from modern screening platforms mandate the reinvestigation of established drugs with an emphasis on improved biocompatibility and overcoming resistance mechanisms. Here, we describe the preparation and evaluation of derivatives of the established aminoglycoside antibiotic paromomycin that effectively remove its biggest deficiency, ototoxicity, and overcome certain bacterial resistance mechanisms.
Collapse
Affiliation(s)
- Stefan Duscha
- Institut für Medizinische Mikrobiologie, Universität Zürich, Zürich, Switzerland
| | - Heithem Boukari
- Institut für Medizinische Mikrobiologie, Universität Zürich, Zürich, Switzerland
| | - Dimitri Shcherbakov
- Institut für Medizinische Mikrobiologie, Universität Zürich, Zürich, Switzerland
| | - Sumantha Salian
- Laboratorium für Organische Chemie, ETH Zürich, Zürich, Switzerland
| | - Sandrina Silva
- Laboratorium für Organische Chemie, ETH Zürich, Zürich, Switzerland
| | - Ann Kendall
- Department of Otolaryngology, Kresge Hearing Research Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Takayuki Kato
- Department of Chemistry, Wayne State University, Detroit, Michigan, USA
| | - Rashid Akbergenov
- Institut für Medizinische Mikrobiologie, Universität Zürich, Zürich, Switzerland
| | | | - Bruno Bernet
- Laboratorium für Organische Chemie, ETH Zürich, Zürich, Switzerland
| | | | - Pia Thommes
- Euprotec Limited, Manchester, United Kingdom
| | - Jochen Schacht
- Department of Otolaryngology, Kresge Hearing Research Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - David Crich
- Department of Chemistry, Wayne State University, Detroit, Michigan, USA
| | - Andrea Vasella
- Laboratorium für Organische Chemie, ETH Zürich, Zürich, Switzerland
| | - Erik C. Böttger
- Institut für Medizinische Mikrobiologie, Universität Zürich, Zürich, Switzerland
| |
Collapse
|
46
|
Fosso MY, Li Y, Garneau-Tsodikova S. New trends in aminoglycosides use. MEDCHEMCOMM 2014; 5:1075-1091. [PMID: 25071928 PMCID: PMC4111210 DOI: 10.1039/c4md00163j] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Despite their inherent toxicity and the acquired bacterial resistance that continuously threaten their long-term clinical use, aminoglycosides (AGs) still remain valuable components of the antibiotic armamentarium. Recent literature shows that the AGs' role has been further expanded as multi-tasking players in different areas of study. This review aims at presenting some of the new trends observed in the use of AGs in the past decade, along with the current understanding of their mechanisms of action in various bacterial and eukaryotic cellular processes.
Collapse
Affiliation(s)
- Marina Y. Fosso
- University of Kentucky, Department of Pharmaceutical Sciences, College of Pharmacy, BioPharm Complex, Room 423, 789 South Limestone Street, Lexington, KY, 40536-0596, U.S.A
| | - Yijia Li
- University of Kentucky, Department of Pharmaceutical Sciences, College of Pharmacy, BioPharm Complex, Room 423, 789 South Limestone Street, Lexington, KY, 40536-0596, U.S.A
| | - Sylvie Garneau-Tsodikova
- University of Kentucky, Department of Pharmaceutical Sciences, College of Pharmacy, BioPharm Complex, Room 423, 789 South Limestone Street, Lexington, KY, 40536-0596, U.S.A
| |
Collapse
|
47
|
Mandhapati AR, Shcherbakov D, Duscha S, Vasella A, Böttger EC, Crich D. Importance of the 6'-hydroxy group and its configuration for apramycin activity. ChemMedChem 2014; 9:2074-83. [PMID: 25045149 DOI: 10.1002/cmdc.201402146] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Indexed: 01/08/2023]
Abstract
A series of apramycin derivatives was prepared and investigated for antibacterial activity and the ability to inhibit protein synthesis in cell-free translation assays. The effect of various modifications at the 6'- and N7'-positions on antiribosomal activity is discussed in terms of their influence on drug binding to specific residues in the decoding A-site. These studies contribute to the development of a structure-activity relationship for the antibacterial activity of the apramycin class of aminoglycosides and to the future design and development of more active and less toxic antibiotics.
Collapse
Affiliation(s)
- Appi Reddy Mandhapati
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI 48202 (USA)
| | | | | | | | | | | |
Collapse
|
48
|
Lee RE, Hurdle JG, Liu J, Bruhn DF, Matt T, Scherman MS, Vaddady PK, Zheng Z, Qi J, Akbergenov R, Das S, Madhura DB, Rathi C, Trivedi A, Villellas C, Lee RB, Rakesh, Waidyarachchi SL, Sun D, McNeil MR, Ainsa JA, Boshoff HI, Gonzalez-Juarrero M, Meibohm B, Böttger EC, Lenaerts AJ. Spectinamides: a new class of semisynthetic antituberculosis agents that overcome native drug efflux. Nat Med 2014; 20:152-158. [PMID: 24464186 PMCID: PMC3972818 DOI: 10.1038/nm.3458] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 12/19/2013] [Indexed: 12/15/2022]
Abstract
Although the classical antibiotic spectinomycin is a potent bacterial protein synthesis inhibitor, poor antimycobacterial activity limits its clinical application for treating tuberculosis. Using structure-based design, we generated a new semisynthetic series of spectinomycin analogs with selective ribosomal inhibition and excellent narrow-spectrum antitubercular activity. In multiple murine infection models, these spectinamides were well tolerated, significantly reduced lung mycobacterial burden and increased survival. In vitro studies demonstrated a lack of cross resistance with existing tuberculosis therapeutics, activity against multidrug-resistant (MDR) and extensively drug-resistant tuberculosis and an excellent pharmacological profile. Key to their potent antitubercular properties was their structural modification to evade the Rv1258c efflux pump, which is upregulated in MDR strains and is implicated in macrophage-induced drug tolerance. The antitubercular efficacy of spectinamides demonstrates that synthetic modifications to classical antibiotics can overcome the challenge of intrinsic efflux pump-mediated resistance and expands opportunities for target-based tuberculosis drug discovery.
Collapse
Affiliation(s)
- Richard E Lee
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Julian G Hurdle
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Jiuyu Liu
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - David F Bruhn
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Tanja Matt
- Institut für Medizinische Mikrobiologie, Nationales Zentrum für Mykobakterien, Universität Zürich, Zürich, Switzerland
| | - Michael S Scherman
- Mycobacterial Research Laboratories, Department of Microbiology, Colorado State University, Fort Collins, Colorado, USA
| | - Pavan K Vaddady
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Zhong Zheng
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Jianjun Qi
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Rashid Akbergenov
- Institut für Medizinische Mikrobiologie, Nationales Zentrum für Mykobakterien, Universität Zürich, Zürich, Switzerland
| | - Sourav Das
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Dora B Madhura
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Chetan Rathi
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Ashit Trivedi
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Cristina Villellas
- Departamento de Microbiología, Medicina Preventiva y Salud Pública, Universidad de Zaragoza, Zaragoza, and CIBER Enfermedades Respiratorias (CIBERES), Spain
| | - Robin B Lee
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Rakesh
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Samanthi L Waidyarachchi
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Dianqing Sun
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Michael R McNeil
- Mycobacterial Research Laboratories, Department of Microbiology, Colorado State University, Fort Collins, Colorado, USA
| | - Jose A Ainsa
- Departamento de Microbiología, Medicina Preventiva y Salud Pública, Universidad de Zaragoza, Zaragoza, and CIBER Enfermedades Respiratorias (CIBERES), Spain
| | - Helena I Boshoff
- Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, National Institute for Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, USA
| | - Mercedes Gonzalez-Juarrero
- Mycobacterial Research Laboratories, Department of Microbiology, Colorado State University, Fort Collins, Colorado, USA
| | - Bernd Meibohm
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Erik C Böttger
- Institut für Medizinische Mikrobiologie, Nationales Zentrum für Mykobakterien, Universität Zürich, Zürich, Switzerland
| | - Anne J Lenaerts
- Mycobacterial Research Laboratories, Department of Microbiology, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
49
|
Chen W, Matsushita T, Shcherbakov D, Boukari H, Vasella A, Böttger EC, Crich D. Synthesis, antiribosomal and antibacterial activity of 4′-O-glycopyranosyl paromomycin aminoglycoside antibiotics. MEDCHEMCOMM 2014. [DOI: 10.1039/c4md00119b] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
4′-O-Glycopyranosylation of the aminoglycoside paromomycin affects differentially the inhibition of prokaryotic and eukaryotic ribosomes and influences antibacterial activity against MRSA.
Collapse
Affiliation(s)
- Weiwei Chen
- Department of Chemistry
- Wayne State University
- Detroit
- USA
| | | | - Dimitri Shcherbakov
- Institut für Medizinische Mikrobiologie
- Universität Zürich
- 8006 Zürich
- Switzerland
| | - Heithem Boukari
- Institut für Medizinische Mikrobiologie
- Universität Zürich
- 8006 Zürich
- Switzerland
| | - Andrea Vasella
- Laboratorium für Organische Chemie
- ETH Zürich
- 8093 Zürich
- Switzerland
| | - Erik C. Böttger
- Institut für Medizinische Mikrobiologie
- Universität Zürich
- 8006 Zürich
- Switzerland
| | - David Crich
- Department of Chemistry
- Wayne State University
- Detroit
- USA
| |
Collapse
|
50
|
Perez-Fernandez D, Shcherbakov D, Matt T, Leong NC, Kudyba I, Duscha S, Boukari H, Patak R, Dubbaka SR, Lang K, Meyer M, Akbergenov R, Freihofer P, Vaddi S, Thommes P, Ramakrishnan V, Vasella A, Böttger EC. 4'-O-substitutions determine selectivity of aminoglycoside antibiotics. Nat Commun 2014; 5:3112. [PMID: 24473108 PMCID: PMC3942853 DOI: 10.1038/ncomms4112] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 12/16/2013] [Indexed: 02/04/2023] Open
Abstract
Clinical use of 2-deoxystreptamine aminoglycoside antibiotics, which target the bacterial ribosome, is compromised by adverse effects related to limited drug selectivity. Here we present a series of 4',6'-O-acetal and 4'-O-ether modifications on glucopyranosyl ring I of aminoglycosides. Chemical modifications were guided by measuring interactions between the compounds synthesized and ribosomes harbouring single point mutations in the drug-binding site, resulting in aminoglycosides that interact poorly with the drug-binding pocket of eukaryotic mitochondrial or cytosolic ribosomes. Yet, these compounds largely retain their inhibitory activity for bacterial ribosomes and show antibacterial activity. Our data indicate that 4'-O-substituted aminoglycosides possess increased selectivity towards bacterial ribosomes and little activity for any of the human drug-binding pockets.
Collapse
Affiliation(s)
- Déborah Perez-Fernandez
- Laboratorium für Organische Chemie, ETH Zürich, Wolfgang-Pauli-Strasse 10, 8093 Zürich, Switzerland
- These authors contributed equally to this work
| | - Dmitri Shcherbakov
- Institut für Medizinische Mikrobiologie, Universität Zürich, Gloriastrasse 30/32, 8006 Zürich, Switzerland
- These authors contributed equally to this work
| | - Tanja Matt
- Institut für Medizinische Mikrobiologie, Universität Zürich, Gloriastrasse 30/32, 8006 Zürich, Switzerland
| | - Ng Chyan Leong
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
- These authors contributed equally to this work
| | - Iwona Kudyba
- Laboratorium für Organische Chemie, ETH Zürich, Wolfgang-Pauli-Strasse 10, 8093 Zürich, Switzerland
| | - Stefan Duscha
- Institut für Medizinische Mikrobiologie, Universität Zürich, Gloriastrasse 30/32, 8006 Zürich, Switzerland
| | - Heithem Boukari
- Institut für Medizinische Mikrobiologie, Universität Zürich, Gloriastrasse 30/32, 8006 Zürich, Switzerland
| | - Rashmi Patak
- Laboratorium für Organische Chemie, ETH Zürich, Wolfgang-Pauli-Strasse 10, 8093 Zürich, Switzerland
| | - Srinivas Reddy Dubbaka
- Laboratorium für Organische Chemie, ETH Zürich, Wolfgang-Pauli-Strasse 10, 8093 Zürich, Switzerland
| | - Kathrin Lang
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Martin Meyer
- Institut für Medizinische Mikrobiologie, Universität Zürich, Gloriastrasse 30/32, 8006 Zürich, Switzerland
| | - Rashid Akbergenov
- Institut für Medizinische Mikrobiologie, Universität Zürich, Gloriastrasse 30/32, 8006 Zürich, Switzerland
| | - Pietro Freihofer
- Institut für Medizinische Mikrobiologie, Universität Zürich, Gloriastrasse 30/32, 8006 Zürich, Switzerland
| | - Swapna Vaddi
- Euprotec Limited, Unit 12 Williams House, Manchester Science Park, Lloyd Street North, Manchester M15 6SE, UK
| | - Pia Thommes
- Euprotec Limited, Unit 12 Williams House, Manchester Science Park, Lloyd Street North, Manchester M15 6SE, UK
| | - V. Ramakrishnan
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Andrea Vasella
- Laboratorium für Organische Chemie, ETH Zürich, Wolfgang-Pauli-Strasse 10, 8093 Zürich, Switzerland
| | - Erik C. Böttger
- Institut für Medizinische Mikrobiologie, Universität Zürich, Gloriastrasse 30/32, 8006 Zürich, Switzerland
| |
Collapse
|