1
|
Kosovsky GY, Glazko GV, Skobel OI. Bos taurus and Bison bison conservative retrotransposon recombination products. Front Vet Sci 2025; 12:1516731. [PMID: 40370818 PMCID: PMC12075945 DOI: 10.3389/fvets.2025.1516731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 04/07/2025] [Indexed: 05/16/2025] Open
Abstract
Background Without identifying and studying the genomic characteristics associated with domestication, managing farm animal genetic resources becomes overwhelmingly difficult. Accumulated data confirm that mobile genetic elements participate in the domestication process and, in particular, generate widely abundant microRNAs. Methods The recombination products were compared in silico between the long interspersed nuclear element (LINE) and the endogenous retrovirus (ERV), forming the LINE/ERV/LINE sequence, located in a closely linked conserved block of 12 genes, as well as the microRNAs formed by these recombination products in domesticated-wild pairs of mammals. For this comparison, the reference genomes of domesticated cattle (Bos taurus) and its closely related wild species counterpart, bison (Bison bison), were used. Results It was found that the above-noted highly conserved recombination products (with more than 81.5% identity) were present in the corresponding block of 12 genes in bison. These recombination products served as sources of 51 microRNAs in bison and 129 microRNAs in cattle, including 50 microRNAs that were similar in both species. A total of 79 microRNAs were found only in cattle trinomial recombination products, with 98% belonging to the mir-30 family, including the cattle-specific bta-miR-30a-5p and bta-miR-30e-5p. The mir-30 family is closely associated with biological processes influencing the quantity and quality of agricultural products. Conclusion Trinomial retrotransposon recombination products were fixed in both the cattle genome and the genome of its closely related wild species, the bison. It was found that these products may be involved in the response to intensive artificial selection and the domestication process since interspecific differentiation of microRNAs is associated with regulatory networks that have a significant impact on the formation of economically important traits.
Collapse
Affiliation(s)
- Gleb Yu. Kosovsky
- Department of Biotechnology, Afanas‘ev Research Institute of Fur-Bearing Animal Breeding and Rabbit Breeding, Moscow, Russia
| | - Galina V. Glazko
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Olga I. Skobel
- Department of Biotechnology, Afanas‘ev Research Institute of Fur-Bearing Animal Breeding and Rabbit Breeding, Moscow, Russia
| |
Collapse
|
2
|
Bargues-Carot A, Prado-Rico J, Kawasawa YI, Cai J, Yanosky JD, Zenitsky G, Jin H, Lewis M, Ma P, Anantharam V, Kanthasamy A, Rico ALG, Hall MA, Mailman RB, Kanthasamy AG, Huang X. MicroRNA Expression in Asymptomatic Welders: Implications for Biomarker Discovery for Environmentally-Linked Neurodegenerative Disorders. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.02.10.25322027. [PMID: 39990579 PMCID: PMC11844587 DOI: 10.1101/2025.02.10.25322027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Chronic occupational exposure to metals in welding fumes has been implicated in the etiology of neurodegenerative diseases (NDDs), including Parkinson's disease (PD) and Alzheimer's disease (AD). Changes in microRNA (miRNA) expression have been associated with various neurodegenerative conditions. Circulating miRNAs, in particular, have emerged as promising, minimally invasive biomarkers for diagnosing and monitoring disease progression. This study was designed to characterize the expression of miRNAs in neuronally-enriched serum extracellular vesicles (EVs) among welders and non-welders to explore their potential link to metal concentrations and welding exposure measures and their potential as early diagnostic biomarkers for neurodegeneration. Serum samples from 39 welders and 27 healthy individuals were collected, and EV-enclosed miRNAs were extracted and analyzed. Also, whole blood metal concentrations and welding exposure measurements were obtained. Fifty miRNAs were found to be dysregulated in welders vs. non-welders, of which three (miR-16-5p, miR-93-5p, miR-486-5p) showing reduced expression and two (miR-4281 and miR-4417) exhibiting positive correlations with blood metal concentrations as well as with long- and short-term welding exposure measures. The dysregulation of these miRNAs suggests that exposure to metals could disrupt important biological processes, possibly contributing to an elevated risk of NDDs. These findings highlight the need for further research to validate the causal relationship between exposure to metals in welding fumes, the dysregulation of circulating miRNAs, and their role in neurodegenerative disease development, with implications for miRNA-based biomarkers in early disease detection and prevention.
Collapse
Affiliation(s)
- Alejandra Bargues-Carot
- Isakson Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, Athens, GA, USA
| | - Janina Prado-Rico
- Departments of Neurology and of Neuroscience & Experimental Therapeutics, Translational Brain Research Center, Pennsylvania State University College of Medicine and Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Yuka Imamura Kawasawa
- Departments of Neurology and of Neuroscience & Experimental Therapeutics, Translational Brain Research Center, Pennsylvania State University College of Medicine and Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Jiazhang Cai
- Department of Public Health Sciences, Pennsylvania State University College of Medicine and Milton S. Hershey Medical Center, Hershey, PA, USA. Department of Statistics, University of Georgia, Athens, GA, USA
| | - Jeff D. Yanosky
- Department of Public Health Sciences, Pennsylvania State University College of Medicine and Milton S. Hershey Medical Center, Hershey, PA, USA. Department of Statistics, University of Georgia, Athens, GA, USA
| | - Gary Zenitsky
- Isakson Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, Athens, GA, USA
| | - Huajun Jin
- Isakson Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, Athens, GA, USA
| | - Mechelle Lewis
- Departments of Neurology and of Neuroscience & Experimental Therapeutics, Translational Brain Research Center, Pennsylvania State University College of Medicine and Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Ping Ma
- Department of Public Health Sciences, Pennsylvania State University College of Medicine and Milton S. Hershey Medical Center, Hershey, PA, USA. Department of Statistics, University of Georgia, Athens, GA, USA
| | - Vellareddy Anantharam
- Isakson Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, Athens, GA, USA
| | - Arthi Kanthasamy
- Isakson Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, Athens, GA, USA
| | | | - Molly A. Hall
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | - Richard B. Mailman
- Departments of Neurology and of Neuroscience & Experimental Therapeutics, Translational Brain Research Center, Pennsylvania State University College of Medicine and Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Anumantha G. Kanthasamy
- Isakson Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, Athens, GA, USA
| | - Xuemei Huang
- Departments of Neurology and of Neuroscience & Experimental Therapeutics, Translational Brain Research Center, Pennsylvania State University College of Medicine and Milton S. Hershey Medical Center, Hershey, PA, USA
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
3
|
Hiramuki Y, Hosokawa M, Osawa K, Shirakawa T, Watanabe Y, Hanajima R, Kugoh H, Awano H, Matsuo M, Kazuki Y. Titin fragment is a sensitive biomarker in Duchenne muscular dystrophy model mice carrying full-length human dystrophin gene on human artificial chromosome. Sci Rep 2025; 15:1778. [PMID: 39805937 PMCID: PMC11730604 DOI: 10.1038/s41598-025-85369-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 01/02/2025] [Indexed: 01/16/2025] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked recessive disorder caused by mutations of the dystrophin gene, which spans 2.4 Mb on the X chromosome. Creatine kinase (CK) activity in blood and titin fragment levels in urine have been identified as biomarkers in DMD to monitor disease progression and evaluate therapeutic intervention. However, the difference in the sensitivity of these biomarkers in DMD remains unclear. Previously, we generated transchromosomic mice carrying the full-length human dystrophin gene on a human artificial chromosome (DYS-HAC1) vector. The human dystrophin derived from DYS-HAC1 improved pathological phenotypes observed in DMD-null mice, which lack the entire 2.4 Mb of the dystrophin gene. In this study, we compared the values of plasma CK activity and urine/plasma titin fragment levels in wild-type (WT), DYS-HAC1, DMD-null, and DYS-HAC1; DMD-null mice. Plasma CK activity and urine/plasma titin fragment levels in DMD-null mice were significantly higher than those in WT mice. Although plasma CK activity showed no significant difference between WT and DYS-HAC1; DMD-null mice, urine/plasma titin fragment levels in DYS-HAC1; DMD-null mice were higher than those in WT mice. Human dystrophin in DYS-HAC1; DMD-null mice drastically improved muscular dystrophy phenotypes seen in DMD-null mice; however, the proportion of myofibers with central nuclei in DYS-HAC1; DMD-null mice had a tendency to be slightly higher than that in WT mice. These results suggest that urine/plasma titin fragment levels could be a more sensitive biomarker than plasma CK activity.
Collapse
Affiliation(s)
- Yosuke Hiramuki
- Department of Chromosome Biomedical Engineering, School of Life Science, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683‑8503, Japan
| | - Miwa Hosokawa
- Department of Chromosome Biomedical Engineering, Graduate School of Medical Science, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683‑8503, Japan
| | - Kayo Osawa
- Faculty of Health Sciences, Kobe Tokiwa University, 2-6-2 Otani-cho, Nagata, Kobe, 653-0838, Japan
| | - Taku Shirakawa
- Faculty of Health Sciences, Kobe Tokiwa University, 2-6-2 Otani-cho, Nagata, Kobe, 653-0838, Japan
| | - Yasuhiro Watanabe
- Division of Neurology, Department of Brain and Neurosciences, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683‑8503, Japan
| | - Ritsuko Hanajima
- Division of Neurology, Department of Brain and Neurosciences, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683‑8503, Japan
| | - Hiroyuki Kugoh
- Department of Chromosome Biomedical Engineering, School of Life Science, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683‑8503, Japan
- Department of Chromosome Biomedical Engineering, Graduate School of Medical Science, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683‑8503, Japan
| | - Hiroyuki Awano
- Research Initiative Center, Organization for Research Initiative and Promotion, Tottori University, 86 Nishi-cho, Yonago, 683-8503, Japan
| | - Masafumi Matsuo
- Faculty of Health Sciences, Kobe Tokiwa University, 2-6-2 Otani-cho, Nagata, Kobe, 653-0838, Japan
- Graduate School of Science and Technology and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada, Kobe, 657-8501, Japan
| | - Yasuhiro Kazuki
- Department of Chromosome Biomedical Engineering, School of Life Science, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683‑8503, Japan.
- Department of Chromosome Biomedical Engineering, Graduate School of Medical Science, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683‑8503, Japan.
- Chromosome Engineering Research Group, The Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, 444-8787, Okazaki, Aichi, Japan.
| |
Collapse
|
4
|
Shin HE, Won CW, Kim M. Circulating small non-coding RNA profiling for identification of older adults with low muscle strength and physical performance: A preliminary study. Exp Gerontol 2024; 197:112598. [PMID: 39343252 DOI: 10.1016/j.exger.2024.112598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/16/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Small non-coding RNAs (ncRNAs) have recently emerged as potential biomarkers of sarcopenia. However, previous studies have rarely explored the association of small ncRNAs with sarcopenic components, especially muscle strength and physical performance. We aimed to examine circulating small ncRNA profiles to detect low muscle strength and physical performance in older adults. METHODS Ninety-eight older adults were randomly selected from Korean Frailty and Aging Cohort Study and classified into the "Normal," "Low muscle strength (MS) only," "Low physical performance (PP) only," and "Low MS and PP" groups by Asian Working Group for Sarcopenia 2019 criteria. We used high-throughput sequencing to delineate small ncRNA profiles in plasma. Differentially expressed small ncRNAs were analyzed to reveal distinct patterns based on muscle strength and physical performance status. RESULTS In "Low MS and PP" group, 119 miRNAs, 86 piRNAs, 92 snoRNAs, 106 snRNAs, and 15 tRNAs were differentially expressed compared to "Normal" group (p < 0.05). After Benjamini-Hochberg adjustment, 39 miRNAs, 2 piRNAs, 75 snoRNAs, 48 snRNAs, and 15 tRNAs showed differential expression in "Low MS and PP" group compared to than "Normal" group (adjusted p < 0.05). No significant differences were observed in comparisons between the other groups (adjusted p > 0.05). CONCLUSION The expression of circulating small ncRNAs were comprehensively characterized, revealing distinct signatures in older adults with both low muscle strength and physical performance compared to normal individuals. Although preliminary, this characterization can advance small ncRNA research on age-related declines in muscle strength and physical performance by providing foundational data for further investigation.
Collapse
Affiliation(s)
- Hyung Eun Shin
- Department of Orthopaedics, Emory Musculoskeletal Institute, Emory University School of Medicine, Atlanta, GA 30329, USA; Department of Health Sciences and Technology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Chang Won Won
- Elderly Frailty Research Center, Department of Family Medicine, College of Medicine, Kyung Hee University, Kyung Hee University Medical Center, Seoul 02447, Republic of Korea
| | - Miji Kim
- Department of Health Sciences and Technology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea.
| |
Collapse
|
5
|
Qiu D, Zhang Y, Ni P, Wang Z, Yang L, Li F. Muscle-enriched microRNA-486-mediated regulation of muscular atrophy and exercise. J Physiol Biochem 2024; 80:795-809. [PMID: 39222208 DOI: 10.1007/s13105-024-01043-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 08/14/2024] [Indexed: 09/04/2024]
Abstract
The objectives of this review were to understand the impact of microRNA-486 on myogenesis and muscle atrophy, and the change of microRNA-486 following exercise, and provide valuable information for improving muscle atrophy based on exercise intervention targeting microRNA-486. Muscle-enriched microRNAs (miRNAs), also referred to as myomiRs, control various processes in skeletal muscles, from myogenesis and muscle homeostasis to different responses to environmental stimuli such as exercise. MicroRNA-486 is a miRNA in which a stem-loop sequence is embedded within the ANKYRIN1 (ANK1) locus and is strictly conserved across mammals. MicroRNA-486 is involved in the development of muscle atrophy caused by aging, immobility, prolonged exposure to microgravity, or muscular and neuromuscular disorders. PI3K/AKT signaling is a positive pathway, as it increases muscle mass by increasing protein synthesis and decreasing protein degradation. MicroRNA-486 can activate this pathway by inhibiting phosphatase and tensin homolog (PTEN), it may also indirectly inhibit the HIPPO signaling pathway to promote cell growth. Exercises regulate microRNA-486 expression both in blood and muscle. This review focused on the recent elucidation of sarcopenia regulation by microRNA-486 and its effects on pathological states, including primary muscular disease, secondary muscular disorders, and age-related sarcopenia. Additionally, the role of exercise in regulating skeletal muscle-enriched microRNA-486 was highlighted, along with its physiological significance. Growing evidence indicates that microRNA-486 significantly impacts the development of muscle atrophy. MicroRNA-486 has great potential to become a therapeutic target for improving muscle atrophy through exercise intervention.
Collapse
Affiliation(s)
- Dayong Qiu
- School of Physical and Health Education, Nanjing Normal University Taizhou College, No. 96, Jichuan East Road, Hailing District, Taizhou, 225300, P.R. China
| | - Yan Zhang
- School of Sport Sciences, Nanjing Normal University, No. 1 Wenyuan Road, Qixia District, Nanjing, 210046, P.R. China
| | - Pinshi Ni
- School of Sport Sciences, Nanjing Normal University, No. 1 Wenyuan Road, Qixia District, Nanjing, 210046, P.R. China
| | - Zhuangzhi Wang
- School of Sport Sciences, Nanjing Normal University, No. 1 Wenyuan Road, Qixia District, Nanjing, 210046, P.R. China
| | - Luodan Yang
- Laboratory of Exercise and Neurobiology, College of Physical Education and Sports Science, South China Normal University, University Town, Guangzhou, 510006, P.R. China
- Department of Neurology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71103, USA
| | - Fanghui Li
- Zhaoqing University, 526061, Guangdong, Zhaoqing, P.R. China.
| |
Collapse
|
6
|
Shin HE, Jang JY, Jung H, Won CW, Kim M. MicroRNAs as commonly expressed biomarkers for sarcopenia and frailty: A systematic review. Exp Gerontol 2024; 197:112600. [PMID: 39349187 DOI: 10.1016/j.exger.2024.112600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/03/2024] [Accepted: 09/27/2024] [Indexed: 10/02/2024]
Abstract
BACKGROUND Coexistent sarcopenia and frailty is more strongly associated with adverse health outcomes than each condition alone. As the importance of coexistent sarcopenia and frailty increases, exploring their underlying mechanisms is warranted. Recently, noncoding ribonucleic acids (RNAs) have been suggested as potential biomarkers of sarcopenia and frailty. This systematic review aimed to summarize noncoding RNAs commonly expressed in sarcopenia and frailty, and to search the predicted target genes and biological pathways of them. METHODS We systematically searched the literatures on PubMed, Embase, Cochrane Library, Web of Science, and Scopus for literature published till November 15, 2023. A total of 7,202 literatures were initially retrieved. After de-duplication, 34 studies (26 sarcopenia-related and 8 frailty-related) were full-text reviewed, and 15 studies (11 sarcopenia-related and 4 frailty-related) were finally included. RESULTS miR-29a-3p, miR-29b-3p, and miR-328 were identified as commonly expressed in same direction in sarcopenia and frailty. These microRNAs (miRNAs), identified in the literature search using PubMed, modulate transforming growth factor-β signaling via extracellular matrix components and calcineurin/nuclear factor of activated T cells 3 signaling via sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 2a, which are involved in regulating skeletal muscle fibrosis and the growth of slow-twitch muscle fibers, respectively. miR-155-5p, miR-486, and miR-23a-3p were also commonly expressed in two conditions, although in different or conflicting directions. CONCLUSION In this systematic review, we highlight the potential of shared miRNAs that exhibit consistent expression patterns as biomarkers for the early diagnosis and progression assessment of both sarcopenia and frailty.
Collapse
Affiliation(s)
- Hyung Eun Shin
- Department of Orthopaedics, Emory Musculoskeletal Institute, Emory University School of Medicine, Atlanta, GA 30329, USA; Department of Health Sciences and Technology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jae Young Jang
- Department of Biomedical Science and Technology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Heeeun Jung
- KHU-KIST Department of Converging Science and Technology, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Chang Won Won
- Elderly Frailty Research Center, Department of Family Medicine, College of Medicine, Kyung Hee University, Kyung Hee University Medical Center, Seoul 02447, Republic of Korea
| | - Miji Kim
- Department of Health Sciences and Technology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea.
| |
Collapse
|
7
|
McCormack NM, Calabrese KA, Sun CM, Tully CB, Heier CR, Fiorillo AA. Deletion of miR-146a enhances therapeutic protein restoration in model of dystrophin exon skipping. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102228. [PMID: 38975000 PMCID: PMC11225849 DOI: 10.1016/j.omtn.2024.102228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 05/22/2024] [Indexed: 07/09/2024]
Abstract
Duchenne muscular dystrophy (DMD) is a progressive muscle disease caused by the absence of dystrophin protein. One current DMD therapeutic strategy, exon skipping, produces a truncated dystrophin isoform using phosphorodiamidate morpholino oligomers (PMOs). However, the potential of exon skipping therapeutics has not been fully realized as increases in dystrophin protein have been minimal in clinical trials. Here, we investigate how miR-146a-5p, which is highly elevated in dystrophic muscle, impacts dystrophin protein levels. We find inflammation strongly induces miR-146a in dystrophic, but not wild-type myotubes. Bioinformatics analysis reveals that the dystrophin 3' UTR harbors a miR-146a binding site, and subsequent luciferase assays demonstrate miR-146a binding inhibits dystrophin translation. In dystrophin-null mdx52 mice, co-injection of miR-146a reduces dystrophin restoration by an exon 51 skipping PMO. To directly investigate how miR-146a impacts therapeutic dystrophin rescue, we generated mdx52 with body-wide miR-146a deletion (146aX). Administration of an exon skipping PMO via intramuscular or intravenous injection markedly increases dystrophin protein levels in 146aX vs. mdx52 muscles while skipped dystrophin transcript levels are unchanged supporting a post-transcriptional mechanism of action. Together, these data show that miR-146a expression opposes therapeutic dystrophin restoration, suggesting miR-146a inhibition warrants further research as a potential DMD exon skipping co-therapy.
Collapse
Affiliation(s)
- Nikki M. McCormack
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC, USA
| | - Kelsey A. Calabrese
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC, USA
| | - Christina M. Sun
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC, USA
| | - Christopher B. Tully
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC, USA
| | - Christopher R. Heier
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC, USA
| | - Alyson A. Fiorillo
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC, USA
| |
Collapse
|
8
|
Li M, Li Y, Wang Z, Cui F, Yang F, Wang H, Shi Q, Huang X. microRNA-mRNA expression profiles in the skeletal muscle of myotonic dystrophy type 1. Neurol Res 2024; 46:613-625. [PMID: 38810890 DOI: 10.1080/01616412.2024.2339102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/30/2024] [Indexed: 05/31/2024]
Abstract
OBJECTIVES Myotonic dystrophy type 1 (DM1) is the most common muscular dystrophy in adults, yet there are currently no disease-modifying treatments. Disrupted miRNA expressions may lead to dysregulation of target mRNAs and dysfunction involved in DM1 pathogenic mechanism. METHODS We used microarray platforms to examine the miRNA/mRNA expression profiles in skeletal muscle biopsies derived from DM1 patients and matched controls. Bioinformatics analysis and dual-luciferase reporter assay were conducted to provide insight into miRNA-mRNA regulatory networks altered in DM1. RESULTS Twenty-three differentially expressed miRNAs and 135 differentially expressed genes were identified. qPCR confirmed that miR-3201, myogenic factor 5 (MYF5), myogenic differentiation 1 (MYOD1), CUGBP, Elav-like family member 1 (CELF1), and CELF2 were significantly up-regulated, while miR-196a, miR-200c, and miR-146a were significantly down-regulated. Enriched functions and pathways such as multicellular organismal development, RNA splicing, cell differentiation, and spliceosome are relevant to DM1. The miRNA-mRNA interaction network revealed that miR-182, miR-30c-2, and miR-200c were the critical nodes that potentially interacted with hub genes. Luciferase reporter assay confirmed the direct interaction between miR-196a and CELF2. CONCLUSION Those results implied that the observed miRNA/mRNA dysregulation could contribute to specific functions and pathways related to DM1 pathogenesis, highlighting the dysfunction of miR-196a and CELF2.
Collapse
Affiliation(s)
- Mao Li
- Department of Neurology of the First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yifan Li
- Geriatric Neurological Department of the Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Zhanjun Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Fang Cui
- Department of Neurology of the First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Fei Yang
- Department of Neurology of the First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Hongfen Wang
- Department of Neurology of the First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Qiang Shi
- Department of Neurology of the First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Xusheng Huang
- Department of Neurology of the First Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
9
|
Artigas-Arias M, Curi R, Marzuca-Nassr GN. Myogenic microRNAs as Therapeutic Targets for Skeletal Muscle Mass Wasting in Breast Cancer Models. Int J Mol Sci 2024; 25:6714. [PMID: 38928418 PMCID: PMC11204047 DOI: 10.3390/ijms25126714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/31/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Breast cancer is the type of cancer with the highest prevalence in women worldwide. Skeletal muscle atrophy is an important prognostic factor in women diagnosed with breast cancer. This atrophy stems from disrupted skeletal muscle homeostasis, triggered by diminished anabolic signalling and heightened inflammatory conditions, culminating in an upregulation of skeletal muscle proteolysis gene expression. The importance of delving into research on modulators of skeletal muscle atrophy, such as microRNAs (miRNAs), which play a crucial role in regulating cellular signalling pathways involved in skeletal muscle protein synthesis and degradation, has been recognised. This holds true for conditions of homeostasis as well as pathologies like cancer. However, the determination of specific miRNAs that modulate skeletal muscle atrophy in breast cancer conditions has not yet been explored. In this narrative review, we aim to identify miRNAs that could directly or indirectly influence skeletal muscle atrophy in breast cancer models to gain an updated perspective on potential therapeutic targets that could be modulated through resistance exercise training, aiming to mitigate the loss of skeletal muscle mass in breast cancer patients.
Collapse
Affiliation(s)
- Macarena Artigas-Arias
- Programa de Doctorado en Ciencias Mención Biología Celular y Molecular Aplicada, Universidad de La Frontera, Temuco 4811230, Chile;
| | - Rui Curi
- Interdisciplinary Post-graduate Program in Health Sciences, Universidade Cruzeiro do Sul, São Paulo 01506-000, Brazil;
| | - Gabriel Nasri Marzuca-Nassr
- Departamento de Ciencias de la Rehabilitación, Facultad de Medicina, Universidad de La Frontera, Temuco 4811230, Chile
| |
Collapse
|
10
|
Zhou H, Chen X, Deng X, Zhang X, Zeng X, Xu K, Chen H. Transcriptome Analysis of miRNA and mRNA in Porcine Skeletal Muscle following Glaesserella parasuis Challenge. Genes (Basel) 2024; 15:359. [PMID: 38540418 PMCID: PMC10970282 DOI: 10.3390/genes15030359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/10/2024] [Accepted: 03/12/2024] [Indexed: 06/14/2024] Open
Abstract
Glaesserella parasuis (G. parasuis) causes systemic infection in pigs, but its effects on skeletal muscle and underlying mechanisms are poorly understood. We investigated G. parasuis infection in colostrum-deprived piglets, observing decreased daily weight gain and upregulation of inflammatory factors in skeletal muscle. Muscle fiber area and diameter were significantly reduced in the treated group (n = 3) compared to the control group (n = 3), accompanied by increased expression of FOXO1, FBXO32, TRIM63, CTSL, and BNIP3. Based on mRNA and microRNA (miRNA) sequencing, we identified 1642 differentially expressed (DE) mRNAs and 19 known DE miRNAs in skeletal muscle tissues between the two groups. We predicted target genes with opposite expression patterns to the 19 miRNAs and found significant enrichment and activation of the FoxO signaling pathway. We found that the upregulated core effectors FOXO1 and FOXO4 were targeted by downregulated ssc-miR-486, ssc-miR-370, ssc-miR-615, and ssc-miR-224. Further investigation showed that their downstream upregulated genes involved in protein degradation were also targeted by the downregulated ssc-miR-370, ssc-miR-615, ssc-miR-194a-5p, and ssc-miR-194b-5p. These findings suggest that G. parasuis infection causes skeletal muscle atrophy in piglets through accelerated protein degradation mediated by the "miRNAs-FOXO1/4" axis, while further research is necessary to validate the regulatory relationships. Our results provide new insights into the understanding of systemic inflammation growth mechanisms caused by G. parasuis and the role of miRNAs in bacterial infection pathogenesis.
Collapse
Affiliation(s)
- Huanhuan Zhou
- Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (H.Z.); (X.C.); (K.X.)
- Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xuexue Chen
- Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (H.Z.); (X.C.); (K.X.)
- Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xiangwei Deng
- Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (H.Z.); (X.C.); (K.X.)
- Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xiaoyu Zhang
- Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (H.Z.); (X.C.); (K.X.)
- Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xinqi Zeng
- Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (H.Z.); (X.C.); (K.X.)
- Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan Polytechnic University, Wuhan 430023, China
| | - Ke Xu
- Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (H.Z.); (X.C.); (K.X.)
- Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan Polytechnic University, Wuhan 430023, China
| | - Hongbo Chen
- Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (H.Z.); (X.C.); (K.X.)
- Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan Polytechnic University, Wuhan 430023, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| |
Collapse
|
11
|
La Sala L, Carlini V, Conte C, Macas-Granizo MB, Afzalpour E, Martin-Delgado J, D'Anzeo M, Pedretti RFE, Naselli A, Pontiroli AE, Cappato R. Metabolic disorders affecting the liver and heart: Therapeutic efficacy of miRNA-based therapies? Pharmacol Res 2024; 201:107083. [PMID: 38309383 DOI: 10.1016/j.phrs.2024.107083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/09/2024] [Accepted: 01/25/2024] [Indexed: 02/05/2024]
Abstract
Liver and heart disease are major causes of death worldwide. It is known that metabolic alteration causing type 2 diabetes (T2D) and Nonalcoholic fatty liver (NAFLD) coupled with a derangement in lipid homeostasis, may exacerbate hepatic and cardiovascular diseases. Some pharmacological treatments can mitigate organ dysfunctions but the important side effects limit their efficacy leading often to deterioration of the tissues. It needs to develop new personalized treatment approaches and recent progresses of engineered RNA molecules are becoming increasingly viable as alternative treatments. This review outlines the current use of antisense oligonucleotides (ASOs), RNA interference (RNAi) and RNA genome editing as treatment for rare metabolic disorders. However, the potential for small non-coding RNAs to serve as therapeutic agents for liver and heart diseases is yet to be fully explored. Although miRNAs are recognized as biomarkers for many diseases, they are also capable of serving as drugs for medical intervention; several clinical trials are testing miRNAs as therapeutics for type 2 diabetes, nonalcoholic fatty liver as well as cardiac diseases. Recent advances in RNA-based therapeutics may potentially facilitate a novel application of miRNAs as agents and as druggable targets. In this work, we sought to summarize the advancement and advantages of miRNA selective therapy when compared to conventional drugs. In particular, we sought to emphasise druggable miRNAs, over ASOs or other RNA therapeutics or conventional drugs. Finally, we sought to address research questions related to efficacy, side-effects, and range of use of RNA therapeutics. Additionally, we covered hurdles and examined recent advances in the use of miRNA-based RNA therapy in metabolic disorders such as diabetes, liver, and heart diseases.
Collapse
Affiliation(s)
- Lucia La Sala
- IRCCS MultiMedica, 20138 Milan, Italy; Dept. of Biomedical Sciences for Health, University of Milan, Milan, Italy.
| | | | - Caterina Conte
- IRCCS MultiMedica, 20138 Milan, Italy; Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Rome, Italy
| | | | - Elham Afzalpour
- Dept. of Biomedical Sciences and Clinic, University of Milan, Milan, Italy
| | - Jimmy Martin-Delgado
- Hospital Luis Vernaza, Junta de Beneficiencia de Guayaquil, 090603 Guayaquil, Ecuador; Instituto de Investigacion e Innovacion en Salud Integral, Universidad Catolica de Santiago de Guayaquil, Guayaquil 090603, Ecuador
| | - Marco D'Anzeo
- AUO delle Marche, SOD Medicina di Laboratorio, Ancona, Italy
| | | | | | | | | |
Collapse
|
12
|
Lopes LO, Cury SS, de Moraes D, Oliveira JS, de Oliveira G, Cabral-Marques O, Fernandez GJ, Hirata MH, Wang DZ, Dal-Pai-Silva M, Carvalho RF, Freire PP. The Impact of miR-155-5p on Myotube Differentiation: Elucidating Molecular Targets in Skeletal Muscle Disorders. Int J Mol Sci 2024; 25:1777. [PMID: 38339055 PMCID: PMC10855706 DOI: 10.3390/ijms25031777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/11/2023] [Accepted: 12/16/2023] [Indexed: 02/12/2024] Open
Abstract
MicroRNAs are small regulatory molecules that control gene expression. An emerging property of muscle miRNAs is the cooperative regulation of transcriptional and epitranscriptional events controlling muscle phenotype. miR-155 has been related to muscular dystrophy and muscle cell atrophy. However, the function of miR-155 and its molecular targets in muscular dystrophies remain poorly understood. Through in silico and in vitro approaches, we identify distinct transcriptional profiles induced by miR-155-5p in muscle cells. The treated myotubes changed the expression of 359 genes (166 upregulated and 193 downregulated). We reanalyzed muscle transcriptomic data from dystrophin-deficient patients and detected overlap with gene expression patterns in miR-155-treated myotubes. Our analysis indicated that miR-155 regulates a set of transcripts, including Aldh1l, Nek2, Bub1b, Ramp3, Slc16a4, Plce1, Dync1i1, and Nr1h3. Enrichment analysis demonstrates 20 targets involved in metabolism, cell cycle regulation, muscle cell maintenance, and the immune system. Moreover, digital cytometry confirmed a significant increase in M2 macrophages, indicating miR-155's effects on immune response in dystrophic muscles. We highlight a critical miR-155 associated with disease-related pathways in skeletal muscle disorders.
Collapse
Affiliation(s)
- Letícia Oliveira Lopes
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (L.O.L.); (S.S.C.); (D.d.M.); (J.S.O.); (G.d.O.); (G.J.F.); (M.D.-P.-S.)
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (O.C.-M.); (M.H.H.)
| | - Sarah Santiloni Cury
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (L.O.L.); (S.S.C.); (D.d.M.); (J.S.O.); (G.d.O.); (G.J.F.); (M.D.-P.-S.)
| | - Diogo de Moraes
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (L.O.L.); (S.S.C.); (D.d.M.); (J.S.O.); (G.d.O.); (G.J.F.); (M.D.-P.-S.)
| | - Jakeline Santos Oliveira
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (L.O.L.); (S.S.C.); (D.d.M.); (J.S.O.); (G.d.O.); (G.J.F.); (M.D.-P.-S.)
| | - Grasieli de Oliveira
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (L.O.L.); (S.S.C.); (D.d.M.); (J.S.O.); (G.d.O.); (G.J.F.); (M.D.-P.-S.)
| | - Otavio Cabral-Marques
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (O.C.-M.); (M.H.H.)
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
- Network of Immunity in Infection, Malignancy, and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), São Paulo 05508-000, Brazil
- Department of Medicine, Division of Molecular Medicine, University of São Paulo School of Medicine, São Paulo 05403-010, Brazil
- Laboratory of Medical Investigation 29, University of São Paulo School of Medicine, São Paulo 05403-010, Brazil
- Interunit Postgraduate Program on Bioinformatics, Institute of Mathematics and Statistics (IME), University of São Paulo, São Paulo 05508-090, Brazil
| | - Geysson Javier Fernandez
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (L.O.L.); (S.S.C.); (D.d.M.); (J.S.O.); (G.d.O.); (G.J.F.); (M.D.-P.-S.)
- College of Medicine, University of Antioquia, UdeA, Medellín 53-108, Colombia
| | - Mario Hiroyuki Hirata
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (O.C.-M.); (M.H.H.)
| | - Da-Zhi Wang
- Health Heart Institute, Center for Regenerative Medicine, University of South Florida, Tampa, FL 33612, USA;
| | - Maeli Dal-Pai-Silva
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (L.O.L.); (S.S.C.); (D.d.M.); (J.S.O.); (G.d.O.); (G.J.F.); (M.D.-P.-S.)
| | - Robson Francisco Carvalho
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (L.O.L.); (S.S.C.); (D.d.M.); (J.S.O.); (G.d.O.); (G.J.F.); (M.D.-P.-S.)
| | - Paula Paccielli Freire
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (L.O.L.); (S.S.C.); (D.d.M.); (J.S.O.); (G.d.O.); (G.J.F.); (M.D.-P.-S.)
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (O.C.-M.); (M.H.H.)
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| |
Collapse
|
13
|
Magri F, Napoli L, Ripolone M, Ciscato P, Moggio M, Corti S, Comi GP, Sciacco M, Zanotti S. The Profiling of 179 miRNA Expression in Serum from Limb Girdle Muscular Dystrophy Patients and Healthy Controls. Int J Mol Sci 2023; 24:17402. [PMID: 38139231 PMCID: PMC10743601 DOI: 10.3390/ijms242417402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Limb girdle muscular dystrophies (LGMDs) are a group of genetically inherited neuromuscular diseases with a very variable clinical presentation and overlapping traits. Over the last few years there has been an increasing interest in the use of non-invasive circulating biomarkers to monitor disease progression and to evaluate the efficacy of therapeutic approaches. Our aim was to identify the miRNA signature with potential value for LGMD patient screening and stratification. Using miRCURY LNA miRNA qPCR Serum/Plasma Panel, we analyzed 179 miRNAs from 16 patients, divided in four pools based on their genetic diagnosis, and from healthy controls. The miRNAs analysis showed a total of 107 dysregulated miRNAs in LGMD patients when compared to the healthy controls. After filtering via skeletal tissue expression and gene/pathways target analysis, the number of dysregulated miRNAs drastically reduced. Six selected miRNAs-let-7f-5p (in LGMDR1), miR-20a-5p (in LGMDR2), miR-130b-5p, miR-378a-5p (both in LGMDR3), miR-376c-3p and miR-382-5p (both in LGMDR4)-whose expression was significantly lower compared to controls in the different LGMD pools, were further investigated. The bioinformatic analysis of the target genes in each selected miRNA revealed ECM-receptor interaction and TGF-beta signaling as the most involved pathways. The correlation analysis showed a good correlation of let-7f-5p with fibrosis and with the cross sectional area of type I and type II fibers, while miR-130b-5p showed a good correlation with the age of onset of the disease. The receiver operating characteristic curves showed how single miRNAs were able to discriminate a specific group of LGMD patients and how the combination of six miRNAs was able to discriminate LGMD patients from controls.
Collapse
Affiliation(s)
- Francesca Magri
- Neurology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Laura Napoli
- Neuromuscular and Rare Disease Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy (M.M.)
| | - Michela Ripolone
- Neuromuscular and Rare Disease Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy (M.M.)
| | - Patrizia Ciscato
- Neuromuscular and Rare Disease Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy (M.M.)
| | - Maurizio Moggio
- Neuromuscular and Rare Disease Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy (M.M.)
| | - Stefania Corti
- Neuromuscular and Rare Disease Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy (M.M.)
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), University of Milan, 20122 Milan, Italy
| | - Giacomo Pietro Comi
- Neurology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), University of Milan, 20122 Milan, Italy
| | - Monica Sciacco
- Neuromuscular and Rare Disease Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy (M.M.)
| | - Simona Zanotti
- Neuromuscular and Rare Disease Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy (M.M.)
| |
Collapse
|
14
|
Oliveira MTDJS, da Silva Santana TAB, Costa MCM, Borges GF, de Miranda FS, Slaibi-Filho J, Luiz WB, Campos LCG. MicroRNA as potential biomarker for severity, progression, and therapeutic monitoring in animal models of limb-girdle muscular dystrophy: a systematic review. Front Cell Neurosci 2023; 17:1233181. [PMID: 38130868 PMCID: PMC10733523 DOI: 10.3389/fncel.2023.1233181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 11/13/2023] [Indexed: 12/23/2023] Open
Abstract
Limb-girdle muscular dystrophies (LGMD) constitute a heterogeneous group of neuromuscular disorders in which there are alterations in proteins responsible for the preservation of muscle architecture and function, leading to proximal and progressive muscle weakness. There is, however, significant phenotypic and genotypic variation, as well as difficulty in establishing biomarkers that help to define pathogenic mechanisms and assess disease severity and progression. In this field, there is special attention to microRNAs, small non-coding RNA molecules related to the regulation of gene expression and, consequently, the production of proteins. Thus, this research aimed to verify the correlation between the expression of microRNAs and the severity, progression, and therapeutic response of LGMD animal models. A search was carried out in the PubMed, Embase, Scopus, ScienceDirect, Cochrane, and SciELO databases, with articles in English and without a time limit. The PRISMA 2020 checklist was used, and the protocol of this review was submitted to PROSPERO. The bibliographic survey of the 434 records found that 5 original articles met the inclusion criteria. The studies explored myomicroRNAs or miRNA panels with gene expression analysis. The analysis demonstrates that miR-1, 133a, and 206 are differentially expressed in serum and muscle. They change according to the degree of inflammation, fibrosis, muscle regeneration, and progression of the dystrophic process. MicroRNAs are up-regulated in dystrophic muscles, which are reversed after treatment in a dose-dependent manner. The present study inferred that miRs are essential in severity, progression, and therapeutic response in LGMD models and may be a useful biomarker in clinical research and prognosis. However, the practical application of these findings should be further explored.
Collapse
Affiliation(s)
- Mayala Thayrine de Jesus Santos Oliveira
- Department of Health Sciences, State University of Santa Cruz, Ilhéus, Brazil
- Laboratory of Applied Pathology and Genetics, State University of Santa Cruz, Ilhéus, Brazil
| | - Talita Araújo Barbosa da Silva Santana
- Department of Health Sciences, State University of Santa Cruz, Ilhéus, Brazil
- Laboratory of Applied Pathology and Genetics, State University of Santa Cruz, Ilhéus, Brazil
| | | | - Grasiely Faccin Borges
- Public Policies and Social Technologies Center, Federal University of Southern Bahia, Itabuna, Brazil
| | - Felipe Silva de Miranda
- Laboratory of Applied Pathology and Genetics, State University of Santa Cruz, Ilhéus, Brazil
- Department of Biological Science, State University of Santa Cruz, Ilhéus, Brazil
| | - José Slaibi-Filho
- Department of Health Sciences, State University of Santa Cruz, Ilhéus, Brazil
- Laboratory of Applied Pathology and Genetics, State University of Santa Cruz, Ilhéus, Brazil
| | - Wilson Barros Luiz
- Laboratory of Applied Pathology and Genetics, State University of Santa Cruz, Ilhéus, Brazil
- Department of Biological Science, State University of Santa Cruz, Ilhéus, Brazil
| | - Luciene Cristina Gastalho Campos
- Department of Health Sciences, State University of Santa Cruz, Ilhéus, Brazil
- Laboratory of Applied Pathology and Genetics, State University of Santa Cruz, Ilhéus, Brazil
- Department of Biological Science, State University of Santa Cruz, Ilhéus, Brazil
| |
Collapse
|
15
|
Ho TL, Lai YL, Hsu CJ, Su CM, Tang CH. High-mobility group box-1 impedes skeletal muscle regeneration via downregulation of Pax-7 synthesis by increasing miR-342-5p expression. Aging (Albany NY) 2023; 15:12618-12632. [PMID: 37963838 PMCID: PMC10683625 DOI: 10.18632/aging.205202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/15/2023] [Indexed: 11/16/2023]
Abstract
High mobility group box-1 (HMGB1) is a driver of inflammation in various muscular diseases. In a previous study, we determined that HMGB1 induced the atrophy of skeletal muscle by impairing myogenesis. Skeletal muscle regeneration after injury is dependent on pair box 7 (Pax-7)-mediated myogenic differentiation. In the current study, we determined that the HMGB1-induced downregulation of Pax-7 expression in myoblasts inhibited the regeneration of skeletal muscle. We also determined that HMGB1 inhibits Pax-7 and muscle differentiation by increasing miR-342-5p synthesis via receptors for advanced glycation end-products (RAGE), toll-like receptor (TLR) 2, TLR4, and c-Src signaling pathways. In a mouse model involving glycerol-induced muscle injury, the therapeutic inhibition of HMGB1 was shown to rescue Pax-7 expression and muscle regeneration. The HMGB1/Pax-7 axis is a promising therapeutic target to promote muscular regeneration.
Collapse
Affiliation(s)
- Trung-Loc Ho
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung, Taiwan
| | - Yu-Liang Lai
- Department of Physical Medicine and Rehabilitation, China Medical University Hsinchu Hospital, Hsinchu, Taiwan
- Department of Physical Therapy and Graduate Institute of Rehabilitation Science, China Medical University, Taichung, Taiwan
- Department of Physical Medicine and Rehabilitation, China Medical University Hospital, Taichung, Taiwan
| | - Chin-Jung Hsu
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Chen-Ming Su
- Department of Sports Medicine, China Medical University, Taichung, Taiwan
| | - Chih-Hsin Tang
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung, Taiwan
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, College of Health Science, Asia University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hsinchu Hospital, Hsinchu, Taiwan
| |
Collapse
|
16
|
Pettorossi F, Gasparotto M, Ghirardello A, Franco C, Ceolotto G, Giannella A, Iaccarino L, Zanatta E, Doria A, Gatto M. MicroRNAs in idiopathic inflammatory myopathies: state-of-the-art and future perspectives. Curr Opin Rheumatol 2023; 35:374-382. [PMID: 37582051 DOI: 10.1097/bor.0000000000000960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
PURPOSE OF REVIEW Idiopathic inflammatory myopathies (IIMs) are a group of rare autoimmune disorders characterized by muscle weakness and inflammation. MicroRNAs (miRNAs) are the main class of small noncoding RNAs regulating a wide range of physiological and pathological processes and play a role in mediating autoimmunity and inflammation. In this review, we summarize the latest knowledge on the role of miRNAs in systemic autoimmune diseases with particular focus on IIMs. RECENT FINDINGS Study on miRNA expression in IIMs is helping in understanding the pathogenetic basis of the disease at a tissue and systemic level. Several miRNAs, even with a muscle-specific expression (myomiRs), have been shown to be involved in immune and nonimmune mechanisms of myofiber damage. MiRNAs modulate and orchestrate the local inflammatory infiltrate and could be used as potential biomarkers as they correlate with disease activity and response to therapy. SUMMARY IIMs comprise different clinical phenotypes and still little is known about the molecular signature of each subset. Further research about miRNA profiling will provide additional insights in the disease characterization with an expected impact on the therapeutic strategies.
Collapse
Affiliation(s)
- Federico Pettorossi
- Division of Rheumatology, Department of Medicine, University of Padua, Padua
| | - Michela Gasparotto
- Division of Rheumatology, Department of Medicine, University of Padua, Padua
- Department of Medical Surgical and Health Sciences, University of Trieste, Cattinara Teaching Hospital, Trieste
| | - Anna Ghirardello
- Division of Rheumatology, Department of Medicine, University of Padua, Padua
| | - Chiara Franco
- Division of Rheumatology, Department of Medicine, University of Padua, Padua
| | | | - Alessandra Giannella
- Division of Thrombotic and Hemorrhagic Diseases, Department of Medicine, University of Padua, Padua
| | - Luca Iaccarino
- Division of Rheumatology, Department of Medicine, University of Padua, Padua
| | - Elisabetta Zanatta
- Division of Rheumatology, Department of Medicine, University of Padua, Padua
| | - Andrea Doria
- Division of Rheumatology, Department of Medicine, University of Padua, Padua
| | - Mariele Gatto
- Division of Rheumatology, Department of Medicine, University of Padua, Padua
- Unit of Rheumatology, Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| |
Collapse
|
17
|
Yang Y, GuangXuan H, GenMeng W, MengHuan L, Bo C, XueJie Y. Idiopathic inflammatory myopathy and non-coding RNA. Front Immunol 2023; 14:1227945. [PMID: 37744337 PMCID: PMC10512060 DOI: 10.3389/fimmu.2023.1227945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/11/2023] [Indexed: 09/26/2023] Open
Abstract
Idiopathic inflammatory myopathies (IIMs) are common autoimmune diseases that affect skeletal muscle quality and function. The lack of an early diagnosis and treatment can lead to irreversible muscle damage. Non-coding RNAs (ncRNAs) play an important role in inflammatory transfer, muscle regeneration, differentiation, and regulation of specific antibody levels and pain in IIMs. ncRNAs can be detected in blood and hair; therefore, ncRNAs detection has great potential for diagnosing, preventing, and treating IIMs in conjunction with other methods. However, the specific roles and mechanisms underlying the regulation of IIMs and their subtypes remain unclear. Here, we review the mechanisms by which micro RNAs and long non-coding RNA-messenger RNA networks regulate IIMs to provide a basis for ncRNAs use as diagnostic tools and therapeutic targets for IIMs.
Collapse
Affiliation(s)
- Yang Yang
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Hu GuangXuan
- School of Physical Education, Liaoning Normal University, Dalian, Liaoning, China
| | - Wan GenMeng
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| | - Li MengHuan
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| | - Chang Bo
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| | - Yi XueJie
- Social Science Research Center, Shenyang Sport University, Shenyang, Liaoning, China
| |
Collapse
|
18
|
Muñoz-Braceras S, Pinal-Fernandez I, Casal-Dominguez M, Pak K, Milisenda JC, Lu S, Gadina M, Naz F, Gutierrez-Cruz G, Dell’Orso S, Torres-Ruiz J, Grau-Junyent JM, Selva-O’Callaghan A, Paik JJ, Albayda J, Christopher-Stine L, Lloyd TE, Corse AM, Mammen AL. Identification of Unique microRNA Profiles in Different Types of Idiopathic Inflammatory Myopathy. Cells 2023; 12:2198. [PMID: 37681930 PMCID: PMC10487266 DOI: 10.3390/cells12172198] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/25/2023] [Accepted: 08/29/2023] [Indexed: 09/09/2023] Open
Abstract
Dermatomyositis (DM), antisynthetase syndrome (AS), immune-mediated necrotizing myopathy (IMNM), and inclusion body myositis (IBM) are four major types of idiopathic inflammatory myopathy (IIM). Muscle biopsies from each type of IIM have unique transcriptomic profiles. MicroRNAs (miRNAs) target messenger RNAs (mRNAs), thereby regulating their expression and modulating transcriptomic profiles. In this study, 18 DM, 12 IMNM, 6 AS, 6 IBM, and 6 histologically normal muscle biopsies underwent miRNA profiling using the NanoString nCounter system. Eleven miRNAs were exclusively differentially expressed in DM compared to controls, seven miRNAs were only differentially expressed in AS, and nine miRNAs were specifically upregulated in IBM. No differentially expressed miRNAs were identified in IMNM. We also analyzed miRNA-mRNA associations to identify putative targets of differentially expressed miRNAs. In DM and AS, these were predominantly related to inflammation and cell cycle progression. Moreover, our analysis showed an association between miR-30a-3p, miR-30e-3p, and miR-199b-5p downregulation in DM and the upregulation of target genes induced by type I interferon. In conclusion, we show that muscle biopsies from DM, AS, and IBM patients have unique miRNA signatures and that these miRNAs might play a role in regulating the expression of genes known to be involved in IIM pathogenesis.
Collapse
Affiliation(s)
- Sandra Muñoz-Braceras
- Muscle Disease Unit, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (I.P.-F.); (M.C.-D.); (K.P.); (J.C.M.); (J.T.-R.)
| | - Iago Pinal-Fernandez
- Muscle Disease Unit, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (I.P.-F.); (M.C.-D.); (K.P.); (J.C.M.); (J.T.-R.)
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (L.C.-S.); (T.E.L.); (A.M.C.)
| | - Maria Casal-Dominguez
- Muscle Disease Unit, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (I.P.-F.); (M.C.-D.); (K.P.); (J.C.M.); (J.T.-R.)
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (L.C.-S.); (T.E.L.); (A.M.C.)
| | - Katherine Pak
- Muscle Disease Unit, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (I.P.-F.); (M.C.-D.); (K.P.); (J.C.M.); (J.T.-R.)
| | - José César Milisenda
- Muscle Disease Unit, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (I.P.-F.); (M.C.-D.); (K.P.); (J.C.M.); (J.T.-R.)
- Muscle Research Unit, Internal Medicine Service, Hospital Clinic de Barcelona, 08036 Barcelona, Spain;
- CIBERER, IDIBAPS, University of Barcelona, 08036 Barcelona, Spain
| | - Shajia Lu
- Translational Immunology Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (S.L.); (M.G.)
| | - Massimo Gadina
- Translational Immunology Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (S.L.); (M.G.)
| | - Faiza Naz
- Genomic Technology Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (F.N.); (G.G.-C.)
| | - Gustavo Gutierrez-Cruz
- Genomic Technology Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (F.N.); (G.G.-C.)
| | - Stefania Dell’Orso
- Genomic Technology Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (F.N.); (G.G.-C.)
| | - Jiram Torres-Ruiz
- Muscle Disease Unit, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (I.P.-F.); (M.C.-D.); (K.P.); (J.C.M.); (J.T.-R.)
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Josep Maria Grau-Junyent
- Muscle Research Unit, Internal Medicine Service, Hospital Clinic de Barcelona, 08036 Barcelona, Spain;
- CIBERER, IDIBAPS, University of Barcelona, 08036 Barcelona, Spain
| | - Albert Selva-O’Callaghan
- Systemic Autoimmune Diseases Unit, Vall d’Hebron General Hospital, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain;
| | - Julie J. Paik
- Division of Rheumatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (J.J.P.); (J.A.)
| | - Jemima Albayda
- Division of Rheumatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (J.J.P.); (J.A.)
| | - Lisa Christopher-Stine
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (L.C.-S.); (T.E.L.); (A.M.C.)
- Division of Rheumatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (J.J.P.); (J.A.)
| | - Thomas E. Lloyd
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (L.C.-S.); (T.E.L.); (A.M.C.)
| | - Andrea M. Corse
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (L.C.-S.); (T.E.L.); (A.M.C.)
| | - Andrew L. Mammen
- Muscle Disease Unit, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (I.P.-F.); (M.C.-D.); (K.P.); (J.C.M.); (J.T.-R.)
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (L.C.-S.); (T.E.L.); (A.M.C.)
- Division of Rheumatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (J.J.P.); (J.A.)
| |
Collapse
|
19
|
McCormack NM, Calabrese KA, Sun CM, Tully CB, Heier CR, Fiorillo AA. Deletion of miR-146a enhances therapeutic protein restoration in model of dystrophin exon skipping. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.09.540042. [PMID: 37214870 PMCID: PMC10197665 DOI: 10.1101/2023.05.09.540042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Duchenne muscular dystrophy (DMD) is a progressive muscle disease caused by the absence of dystrophin protein. One current DMD therapeutic strategy, exon skipping, produces a truncated dystrophin isoform using phosphorodiamidate morpholino oligomers (PMOs). However, the potential of exon skipping therapeutics has not been fully realized as increases in dystrophin protein have been minimal in clinical trials. Here, we investigate how miR-146a-5p, which is highly elevated in dystrophic muscle, impacts dystrophin protein levels. We find inflammation strongly induces miR-146a in dystrophic, but not wild-type myotubes. Bioinformatics analysis reveals that the dystrophin 3'UTR harbors a miR-146a binding site, and subsequent luciferase assays demonstrate miR-146a binding inhibits dystrophin translation. In dystrophin-null mdx52 mice, co-injection of miR-146a reduces dystrophin restoration by an exon 51 skipping PMO. To directly investigate how miR-146a impacts therapeutic dystrophin rescue, we generated mdx52 with body-wide miR-146a deletion (146aX). Administration of an exon skipping PMO via intramuscular or intravenous injection markedly increases dystrophin protein levels in 146aX versus mdx52 muscles; skipped dystrophin transcript levels are unchanged, suggesting a post-transcriptional mechanism-of-action. Together, these data show that miR-146a expression opposes therapeutic dystrophin restoration, suggesting miR-146a inhibition warrants further research as a potential DMD exon skipping co-therapy.
Collapse
Affiliation(s)
- Nikki M. McCormack
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, District of Columbia, USA
| | - Kelsey A. Calabrese
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, District of Columbia, USA
| | - Christina M. Sun
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, District of Columbia, USA
| | - Christopher B. Tully
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, District of Columbia, USA
| | - Christopher R. Heier
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, District of Columbia, USA
- Department of Genomics and Precision Medicine, George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Alyson A. Fiorillo
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, District of Columbia, USA
- Department of Genomics and Precision Medicine, George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| |
Collapse
|
20
|
Lucchini M, De Arcangelis V, Santoro M, Morosetti R, Broccolini A, Mirabella M. Serum-Circulating microRNAs in Sporadic Inclusion Body Myositis. Int J Mol Sci 2023; 24:11139. [PMID: 37446317 DOI: 10.3390/ijms241311139] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/25/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND Sporadic inclusion body myositis (s-IBM) represents a unique disease within idiopathic inflammatory myopathies with a dual myodegenerative-autoimmune physiopathology and a lack of an efficacious treatment. Circulating miRNA expression could expand our knowledge of s-IBM patho-mechanisms and provide new potential disease biomarkers. To evaluate the expression of selected pre-amplified miRNAs in the serum of s-IBM patients compared to those of a sex- and age-matched healthy control group, we enrolled 14 consecutive s-IBM patients and 8 sex- and age-matched healthy controls. By using two different normalization approaches, we found one downregulated and three upregulated miRNAs. hsa-miR-192-5p was significantly downregulated, while hsa-miR-372-3p was found to be upregulated more in the s-IBM patients compared to the level of the controls. The other two miRNAs had a very low expression levels (raw Ct data > 29). hsa-miR-192-5p and hsa-miR-372-3p were found to be significantly dysregulated in the serum of s-IBM patients. These miRNAs are involved in differentiation and regeneration processes, thus possibly reflecting pathological mechanisms in s-IBM muscles and potentially representing disease biomarkers.
Collapse
Affiliation(s)
- Matteo Lucchini
- UOC Neurologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento di Neuroscienze, Sezione di Neurologia, Catholic University of Sacred Heart, 00168 Rome, Italy
| | - Valeria De Arcangelis
- UOC Neurologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Massimo Santoro
- Energy and Sustainable Economic Development, Division of Health Protection Technologies ENEA-Italian National Agency for New Technologies, 00123 Rome, Italy
| | - Roberta Morosetti
- UOC Neurologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Aldobrando Broccolini
- UOC Neurologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento di Neuroscienze, Sezione di Neurologia, Catholic University of Sacred Heart, 00168 Rome, Italy
| | - Massimiliano Mirabella
- UOC Neurologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento di Neuroscienze, Sezione di Neurologia, Catholic University of Sacred Heart, 00168 Rome, Italy
| |
Collapse
|
21
|
Oxidative stress, mitochondrial dysfunction, and respiratory chain enzyme defects in inflammatory myopathies. Autoimmun Rev 2023; 22:103308. [PMID: 36822387 DOI: 10.1016/j.autrev.2023.103308] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 02/19/2023] [Indexed: 02/24/2023]
Abstract
We investigated the relationship between oxidative stress and inflammatory myopathies. We searched in the current literature the role of mitochondria and respiratory chain defects as sources of oxidative stress and reactive oxygen species production that led to muscle weakness and fatigue. Different molecules and pathways contribute to redox milieu, reactive oxygen species generation, accumulation of misfolded and carbonylated proteins that lose their ability to fulfil cellular activities. Small peptides and physical techniques proved, in mice models, to reduce oxidative stress. We focused on inclusion body myositis, as a major expression of myopathy related to oxidative stress, where mitochondrial abnormalities are causative agents as well. We described the effect of physical exercise in inclusion body myositis that showed to increase strength and to reduce beta amyloid accumulation with subsequent improvement of the mitochondrial functions. We illustrated the influence of epigenetic control on the immune system by non-coding genetic material in the interaction between oxidative stress and inflammatory myopathies.
Collapse
|
22
|
Loganathan T, Doss C GP. Non-coding RNAs in human health and disease: potential function as biomarkers and therapeutic targets. Funct Integr Genomics 2023; 23:33. [PMID: 36625940 PMCID: PMC9838419 DOI: 10.1007/s10142-022-00947-4] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 01/11/2023]
Abstract
Human diseases have been a critical threat from the beginning of human history. Knowing the origin, course of action and treatment of any disease state is essential. A microscopic approach to the molecular field is a more coherent and accurate way to explore the mechanism, progression, and therapy with the introduction and evolution of technology than a macroscopic approach. Non-coding RNAs (ncRNAs) play increasingly important roles in detecting, developing, and treating all abnormalities related to physiology, pathology, genetics, epigenetics, cancer, and developmental diseases. Noncoding RNAs are becoming increasingly crucial as powerful, multipurpose regulators of all biological processes. Parallel to this, a rising amount of scientific information has revealed links between abnormal noncoding RNA expression and human disorders. Numerous non-coding transcripts with unknown functions have been found in addition to advancements in RNA-sequencing methods. Non-coding linear RNAs come in a variety of forms, including circular RNAs with a continuous closed loop (circRNA), long non-coding RNAs (lncRNA), and microRNAs (miRNA). This comprises specific information on their biogenesis, mode of action, physiological function, and significance concerning disease (such as cancer or cardiovascular diseases and others). This study review focuses on non-coding RNA as specific biomarkers and novel therapeutic targets.
Collapse
Affiliation(s)
- Tamizhini Loganathan
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore- 632014, Tamil Nadu, India
| | - George Priya Doss C
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore- 632014, Tamil Nadu, India.
| |
Collapse
|
23
|
Fortunato F, Ferlini A. Biomarkers in Duchenne Muscular Dystrophy: Current Status and Future Directions. J Neuromuscul Dis 2023; 10:987-1002. [PMID: 37545256 PMCID: PMC10657716 DOI: 10.3233/jnd-221666] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2023] [Indexed: 08/08/2023]
Abstract
Duchenne muscular dystrophy is a severe, X-linked disease characterized by decreased muscle mass and function in children. Genetic and biochemical research over the years has led to the characterization of the cause and the pathophysiology of the disease. Moreover, the elucidation of genetic mechanisms underlining Duchenne muscular dystrophy has allowed for the design of innovative personalized therapies.The identification of specific, accurate, and sensitive biomarkers is becoming crucial for evaluating muscle disease progression and response to therapies, disease monitoring, and the acceleration of drug development and related regulatory processes.This review illustrated the up-to-date progress in the development of candidate biomarkers in DMD at the level of proteins, metabolites, micro-RNAs (miRNAs) and genetic modifiers also highlighting the complexity of translating research results to clinical practice.We highlighted the challenges encountered in translating biomarkers into the clinical context and the existing bottlenecks hampering the adoption of biomarkers as surrogate endpoints. These challenges could be overcome by national and international collaborative efforts, multicenter data sharing, definition of public biobanks and patients' registries, and creation of large cohorts of patients. Novel statistical tools/ models suitable to analyze small patient numbers are also required.Finally, collaborations with pharmaceutical companies would greatly benefit biomarker discovery and their translation in clinical trials.
Collapse
Affiliation(s)
- Fernanda Fortunato
- Unit of Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Alessandra Ferlini
- Unit of Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| |
Collapse
|
24
|
García-Giménez JL, García-Trevijano ER, Avilés-Alía AI, Ibañez-Cabellos JS, Bovea-Marco M, Bas T, Pallardó FV, Viña JR, Zaragozá R. Identification of circulating miRNAs differentially expressed in patients with Limb-girdle, Duchenne or facioscapulohumeral muscular dystrophies. Orphanet J Rare Dis 2022; 17:450. [PMID: 36575500 PMCID: PMC9793535 DOI: 10.1186/s13023-022-02603-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 12/19/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Limb-girdle muscular dystrophy (LGMD) is a rare neuromuscular disease including a growing and heterogeneous number of subtypes with variable phenotype. Their clinical and histopathological characteristics frequently overlap with other neuromuscular dystrophies. Our goal was to identify, by a non-invasive method, a molecular signature including biochemical and epigenetic parameters with potential value for patient prognosis and stratification. RESULTS Circulating miRNome was obtained by smallRNA-seq in plasma from LGMD patients (n = 6) and matched-controls (n = 6). Data, validated by qPCR in LGMD samples, were also examined in other common muscular dystrophies: Duchenne (DMD) (n = 5) and facioscapulohumeral muscular dystrophy (FSHD) (n = 4). Additionally, biochemical and clinical parameters were analyzed. miRNome analysis showed that thirteen differentially expressed miRs could separate LGMD vs control group by hierarchical clustering. Most of differentially expressed miRs in LGMD patients were up-regulated (miR-122-5p, miR-122b-3p, miR-6511a-3p, miR-192-5p, miR-574-3p, mir-885-3p, miR-29a-3p, miR-4646-3p, miR-203a-3p and miR-203b-5p) whilst only three of sequenced miRs were significantly down-regulated (miR-19b-3p, miR-7706, miR-323b-3p) when compared to matched controls. Bioinformatic analysis of target genes revealed cell cycle, muscle tissue development, regeneration and senescence as the most affected pathways. Four of these circulating miRs (miR-122-5p, miR-192-5p, miR-19b-3p and miR-323b-3p), together with the myomiR miR-206, were further analysed by qPCR in LGMD, DMD and FSHD. The receiver operating characteristic curves (ROC) revealed high area under the curve (AUC) values for selected miRs in all groups, indicating that these miRs have good sensitivity and specificity to distinguish LGMD, DMD and FSHD patients from healthy controls. miR-122-5p, miR-192-5p and miR-323-3p were differentially expressed compared to matched-controls in all groups but apparently, each type of muscular dystrophy showed a specific pattern of miR expression. Finally, a strong correlation between miRs and biochemical data was only found in LGMD patients: while miR-192-5p and miR-122-5p negatively correlated with CK, miR-192-5p positively correlated with vitamin D3 and ALP. CONCLUSIONS Although limited by the small number of patients included in this study, we propose here a specific combination of circulating miR-122-5p/miR-192-5p/miR-323-3 and biochemical parameters as a potential molecular signature whose clinical value for LGMD patient prognosis and stratification should be further confirmed in a larger cohort of patients.
Collapse
Affiliation(s)
- José Luis García-Giménez
- grid.413448.e0000 0000 9314 1427Center for Biomedical Network Research On Rare Diseases (CIBERER), Institute of Health Carlos III, Valencia, Spain ,grid.429003.c0000 0004 7413 8491INCLIVA Health Research Institute, Valencia, Spain ,grid.5338.d0000 0001 2173 938XDepartment of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain ,EpiDisease S.L. (Spin-Off CIBERER), Valencia, Spain
| | - Elena R. García-Trevijano
- grid.429003.c0000 0004 7413 8491INCLIVA Health Research Institute, Valencia, Spain ,grid.5338.d0000 0001 2173 938XDepartment of Biochemistry and Molecular Biology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | - Ana I. Avilés-Alía
- grid.5338.d0000 0001 2173 938XDepartment of Biochemistry and Molecular Biology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | | | | | - Teresa Bas
- Institute for Health Research La Fe, IISLaFe, Valencia, Spain ,grid.84393.350000 0001 0360 9602Spine Surgery Unit, Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | - Federico V. Pallardó
- grid.413448.e0000 0000 9314 1427Center for Biomedical Network Research On Rare Diseases (CIBERER), Institute of Health Carlos III, Valencia, Spain ,grid.429003.c0000 0004 7413 8491INCLIVA Health Research Institute, Valencia, Spain ,grid.5338.d0000 0001 2173 938XDepartment of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | - Juan R. Viña
- grid.429003.c0000 0004 7413 8491INCLIVA Health Research Institute, Valencia, Spain ,grid.5338.d0000 0001 2173 938XDepartment of Biochemistry and Molecular Biology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | - Rosa Zaragozá
- INCLIVA Health Research Institute, Valencia, Spain. .,Department of Human Anatomy and Embryology, Faculty of Medicine and Dentistry, University of Valencia, Avda. Blasco Ibañez 15, 46010, Valencia, Spain.
| |
Collapse
|
25
|
Kaplan KM, Morgan KG. The importance of dystrophin and the dystrophin associated proteins in vascular smooth muscle. Front Physiol 2022; 13:1059021. [PMID: 36505053 PMCID: PMC9732661 DOI: 10.3389/fphys.2022.1059021] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/14/2022] [Indexed: 11/26/2022] Open
Abstract
This review details the role of dystrophin and the dystrophin associated proteins (DAPs) in the vascular smooth muscle. Dystrophin is most comprehensively studied in the skeletal muscle due to serious symptoms found related to the skeletal muscle of patients with muscular dystrophy. Mutations in the dystrophin gene, or DAPs genes, result in a wide range of muscular dystrophies. In skeletal muscle, dystrophin is known to act to as a cytoskeletal stabilization protein and protects cells against contraction-induced damage. In skeletal muscle, dystrophin stabilizes the plasma membrane by transmitting forces generated by sarcomeric contraction to the extracellular matrix (ECM). Dystrophin is a scaffold that binds the dystroglycan complex (DGC) and has many associated proteins (DAPs). These DAPs include sarcoglycans, syntrophins, dystroglycans, dystrobrevin, neuronal nitric oxide synthase, and caveolins. The DAPs provide biomechanical support to the skeletal or cardiac plasma membrane during contraction, and loss of one or several of these DAPs leads to plasma membrane fragility. Dystrophin is expressed near the plasma membrane of all muscles, including cardiac and vascular smooth muscle, and some neurons. Dystrophic mice have noted biomechanical irregularities in the carotid arteries and spontaneous motor activity in portal vein altered when compared to wild type mice. Additionally, some studies suggest the vasculature of patients and animal models with muscular dystrophy is abnormal. Although the function of dystrophin and the DAPs in vascular smooth muscle is not thoroughly established in the field, this review makes the point that these proteins are expressed, and important and further study is warranted.
Collapse
|
26
|
Johari M, Vihola A, Palmio J, Jokela M, Jonson PH, Sarparanta J, Huovinen S, Savarese M, Hackman P, Udd B. Comprehensive transcriptomic analysis shows disturbed calcium homeostasis and deregulation of T lymphocyte apoptosis in inclusion body myositis. J Neurol 2022; 269:4161-4173. [PMID: 35237874 PMCID: PMC9293871 DOI: 10.1007/s00415-022-11029-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 02/09/2022] [Accepted: 02/13/2022] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Inclusion body myositis (IBM) has an unclear molecular etiology exhibiting both characteristic inflammatory T-cell activity and rimmed-vacuolar degeneration of muscle fibers. Using in-depth gene expression and splicing studies, we aimed at understanding the different components of the molecular pathomechanisms in IBM. METHODS We performed RNA-seq on RNA extracted from skeletal muscle biopsies of clinically and histopathologically defined IBM (n = 24), tibial muscular dystrophy (n = 6), and histopathologically normal group (n = 9). In a comprehensive transcriptomics analysis, we analyzed the differential gene expression, differential splicing and exon usage, downstream pathway analysis, and the interplay between coding and non-coding RNAs (micro RNAs and long non-coding RNAs). RESULTS We observe dysregulation of genes involved in calcium homeostasis, particularly affecting the T-cell activity and regulation, causing disturbed Ca2+-induced apoptotic pathways of T cells in IBM muscles. Additionally, LCK/p56, which is an essential gene in regulating the fate of T-cell apoptosis, shows increased expression and altered splicing usage in IBM muscles. INTERPRETATION Our analysis provides a novel understanding of the molecular mechanisms in IBM by showing a detailed dysregulation of genes involved in calcium homeostasis and its effect on T-cell functioning in IBM muscles. Loss of T-cell regulation is hypothesized to be involved in the consistent observation of no response to immune therapies in IBM patients. Our results show that loss of apoptotic control of cytotoxic T cells could indeed be one component of their abnormal cytolytic activity in IBM muscles.
Collapse
Affiliation(s)
- Mridul Johari
- Folkhälsan Research Center, Helsinki, Finland.
- Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, Finland.
| | - Anna Vihola
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, Finland
- Neuromuscular Research Center, Department of Genetics, Fimlab Laboratories, Tampere, Finland
| | - Johanna Palmio
- Neuromuscular Research Center, Department of Neurology, Tampere University and University Hospital, Tampere, Finland
| | - Manu Jokela
- Neuromuscular Research Center, Department of Genetics, Fimlab Laboratories, Tampere, Finland
- Division of Clinical Neurosciences, Department of Neurology, Turku University Hospital, Turku, Finland
| | - Per Harald Jonson
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Jaakko Sarparanta
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Sanna Huovinen
- Department of Pathology, Fimlab Laboratories, Tampere University Hospital, Tampere, Finland
| | - Marco Savarese
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Peter Hackman
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Bjarne Udd
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, Finland
- Neuromuscular Research Center, Department of Neurology, Tampere University and University Hospital, Tampere, Finland
- Department of Neurology, Vaasa Central Hospital, Vaasa, Finland
| |
Collapse
|
27
|
Gagliardi D, Rizzuti M, Brusa R, Ripolone M, Zanotti S, Minuti E, Parente V, Dioni L, Cazzaniga S, Bettica P, Bresolin N, Comi GP, Corti S, Magri F, Velardo D. MicroRNAs as serum biomarkers in Becker muscular dystrophy. J Cell Mol Med 2022; 26:4678-4685. [PMID: 35880500 PMCID: PMC9443944 DOI: 10.1111/jcmm.17462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/19/2022] [Accepted: 06/07/2022] [Indexed: 11/30/2022] Open
Abstract
Becker muscular dystrophy (BMD) is an X‐linked neuromuscular disorder due to mutation in the DMD gene, encoding dystrophin. Despite a wide clinical variability, BMD is characterized by progressive muscle degeneration and proximal muscle weakness. Interestingly, a dysregulated expression of muscle‐specific microRNAs (miRNAs), called myomirs, has been found in patients affected with muscular dystrophies, although few studies have been conducted in BMD. We analysed the serum expression levels of a subset of myomirs in a cohort of 29 ambulant individuals affected by BMD and further classified according to the degree of alterations at muscle biopsy and in 11 age‐matched healthy controls. We found a significant upregulation of serum miR‐1, miR‐133a, miR‐133b and miR‐206 in our cohort of BMD patients, supporting the role of these miRNAs in the pathophysiology of the disease, and we identified serum cut‐off levels discriminating patients from healthy controls, confiming the potential of circulating miRNAs as promising noninvasive biomarkers. Moreover, serum levels of miR‐133b were found to be associated with fibrosis at muscle biopsy and with patients' motor performances, suggesting that miR‐133b might be a useful prognostic marker for BMD patients. Taken together, our data showed that these serum myomirs may represent an effective tool that may support stratification of BMD patients, providing the opportunity of both monitoring disease progression and assessing the treatment efficacy in the context of clinical trials.
Collapse
Affiliation(s)
- Delia Gagliardi
- Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, Dino Ferrari Center, University of Milan, Milan, Italy
| | - Mafalda Rizzuti
- Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Roberta Brusa
- Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Michela Ripolone
- Neuromuscular and Rare Diseases Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Simona Zanotti
- Neuromuscular and Rare Diseases Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Elisa Minuti
- Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Valeria Parente
- Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Laura Dioni
- EPIGET Lab, Unit of Occupational Medicine, Department of Clinical Sciences and Community Health, IRCCS Ca' Granda Foundation Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | | | | | - Nereo Bresolin
- Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, Dino Ferrari Center, University of Milan, Milan, Italy
| | - Giacomo Pietro Comi
- Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, Dino Ferrari Center, University of Milan, Milan, Italy.,Neuromuscular and Rare Diseases Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Stefania Corti
- Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, Dino Ferrari Center, University of Milan, Milan, Italy
| | - Francesca Magri
- Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Neuromuscular and Rare Diseases Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Daniele Velardo
- Neuromuscular and Rare Diseases Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
28
|
MicroRNAs in Dystrophinopathy. Int J Mol Sci 2022; 23:ijms23147785. [PMID: 35887128 PMCID: PMC9318410 DOI: 10.3390/ijms23147785] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 11/17/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD), which represent the range of dystrophinopathies, account for nearly 80% of muscle dystrophy. DMD and BMD result from the loss of a functional dystrophin protein, and the leading cause of death in these patients is cardiac remodeling and heart failure. The pathogenesis and progression of the more severe form of DMD have been extensively studied and are controlled by many determinants, including microRNAs (miRNAs). The regulatory role of miRNAs in muscle function and the differential miRNA expression in muscular dystrophy indicate the clinical significance of miRNAs. This review discusses the relevant microRNAs as potential biomarkers and therapeutic targets for DMD and DMD cardiomyopathy as examples of dystrophinopathies.
Collapse
|
29
|
Lopez MA, Si Y, Hu X, Williams V, Qushair F, Carlyle J, Alesce L, Conklin M, Gilbert S, Bamman MM, Alexander MS, King PH. Smad8 Is Increased in Duchenne Muscular Dystrophy and Suppresses miR-1, miR-133a, and miR-133b. Int J Mol Sci 2022; 23:7515. [PMID: 35886863 PMCID: PMC9323105 DOI: 10.3390/ijms23147515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/23/2022] [Accepted: 06/29/2022] [Indexed: 12/10/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked recessive disease characterized by skeletal muscle instability, progressive muscle wasting, and fibrosis. A major driver of DMD pathology stems from aberrant upregulation of transforming growth factor β (TGFβ) signaling. In this report, we investigated the major transducers of TGFβ signaling, i.e., receptor Smads (R-Smads), in DMD patient skeletal muscle and observed a 48-fold increase in Smad8 mRNA. Smad1, Smad2, Smad3, and Smad5 mRNA were only minimally increased. A similar pattern was observed in the muscle from the mdx5cv mouse. Western blot analysis showed upregulation of phosphorylated Smad1, Smad5, and Smad8 compared to total Smad indicating activation of this pathway. In parallel, we observed a profound diminishment of muscle-enriched microRNAs (myomiRs): miR-1, miR-133a, and miR-133b. The pattern of Smad8 induction and myomiR suppression was recapitulated in C2C12 muscle cells after stimulation with bone morphogenetic protein 4 (BMP4), a signaling factor that we found upregulated in DMD muscle. Silencing Smad8 in C2C12 myoblasts derepressed myomiRs and promoted myoblast differentiation; there was also a concomitant upregulation of myogenic regulatory factors (myogenin and myocyte enhancer factor 2D) and suppression of a pro-inflammatory cytokine (interleukin-6). Our data suggest that Smad8 is a negative regulator of miR-1, miR-133a, and miR-133b in muscle cells and that the BMP4-Smad8 axis is a driver of dystrophic pathology in DMD.
Collapse
Affiliation(s)
- Michael A. Lopez
- Children’s of Alabama, Birmingham, AL 35233, USA; (M.C.); (S.G.); (M.S.A.)
- Department of Pediatrics, University of Alabama at Birmingham (UAB), CHB314, 1600 7th Avenue South, Birmingham, AL 35233, USA; (X.H.); (V.W.); (F.Q.); (J.C.)
- Department of Neurology, University of Alabama at Birmingham (UAB), Civitan 545C, 1530 3rd Avenue South, Birmingham, AL 35294, USA; (Y.S.); (L.A.); (M.M.B.)
- UAB Center for Exercise Medicine (UCEM), University of Alabama at Birmingham (UAB), Birmingham, AL 35233, USA
| | - Ying Si
- Department of Neurology, University of Alabama at Birmingham (UAB), Civitan 545C, 1530 3rd Avenue South, Birmingham, AL 35294, USA; (Y.S.); (L.A.); (M.M.B.)
- Birmingham Veterans Affairs Medical Center, Birmingham, AL 35233, USA
| | - Xianzhen Hu
- Department of Pediatrics, University of Alabama at Birmingham (UAB), CHB314, 1600 7th Avenue South, Birmingham, AL 35233, USA; (X.H.); (V.W.); (F.Q.); (J.C.)
| | - Valentyna Williams
- Department of Pediatrics, University of Alabama at Birmingham (UAB), CHB314, 1600 7th Avenue South, Birmingham, AL 35233, USA; (X.H.); (V.W.); (F.Q.); (J.C.)
| | - Fuad Qushair
- Department of Pediatrics, University of Alabama at Birmingham (UAB), CHB314, 1600 7th Avenue South, Birmingham, AL 35233, USA; (X.H.); (V.W.); (F.Q.); (J.C.)
| | - Jackson Carlyle
- Department of Pediatrics, University of Alabama at Birmingham (UAB), CHB314, 1600 7th Avenue South, Birmingham, AL 35233, USA; (X.H.); (V.W.); (F.Q.); (J.C.)
| | - Lyndsy Alesce
- Department of Neurology, University of Alabama at Birmingham (UAB), Civitan 545C, 1530 3rd Avenue South, Birmingham, AL 35294, USA; (Y.S.); (L.A.); (M.M.B.)
| | - Michael Conklin
- Children’s of Alabama, Birmingham, AL 35233, USA; (M.C.); (S.G.); (M.S.A.)
- Department of Orthopedic Surgery, University of Alabama at Birmingham (UAB), Birmingham, AL 35233, USA
| | - Shawn Gilbert
- Children’s of Alabama, Birmingham, AL 35233, USA; (M.C.); (S.G.); (M.S.A.)
- Department of Orthopedic Surgery, University of Alabama at Birmingham (UAB), Birmingham, AL 35233, USA
| | - Marcas M. Bamman
- Department of Neurology, University of Alabama at Birmingham (UAB), Civitan 545C, 1530 3rd Avenue South, Birmingham, AL 35294, USA; (Y.S.); (L.A.); (M.M.B.)
- UAB Center for Exercise Medicine (UCEM), University of Alabama at Birmingham (UAB), Birmingham, AL 35233, USA
- Department of Cell, Development and Integrative Biology, Birmingham, AL 35233, USA
| | - Matthew S. Alexander
- Children’s of Alabama, Birmingham, AL 35233, USA; (M.C.); (S.G.); (M.S.A.)
- Department of Pediatrics, University of Alabama at Birmingham (UAB), CHB314, 1600 7th Avenue South, Birmingham, AL 35233, USA; (X.H.); (V.W.); (F.Q.); (J.C.)
- UAB Center for Exercise Medicine (UCEM), University of Alabama at Birmingham (UAB), Birmingham, AL 35233, USA
- UAB Civitan International Research Center (CIRC), Birmingham, AL 35233, USA
- Department of Genetics, University of Alabama at Birmingham (UAB), Birmingham, AL 35233, USA
| | - Peter H. King
- Department of Neurology, University of Alabama at Birmingham (UAB), Civitan 545C, 1530 3rd Avenue South, Birmingham, AL 35294, USA; (Y.S.); (L.A.); (M.M.B.)
- Birmingham Veterans Affairs Medical Center, Birmingham, AL 35233, USA
| |
Collapse
|
30
|
Damian L, Login CC, Solomon C, Belizna C, Encica S, Urian L, Jurcut C, Stancu B, Vulturar R. Inclusion Body Myositis and Neoplasia: A Narrative Review. Int J Mol Sci 2022; 23:ijms23137358. [PMID: 35806366 PMCID: PMC9266341 DOI: 10.3390/ijms23137358] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/28/2022] [Accepted: 06/28/2022] [Indexed: 02/04/2023] Open
Abstract
Inclusion body myositis (IBM) is an acquired, late-onset inflammatory myopathy, with both inflammatory and degenerative pathogenesis. Although idiopathic inflammatory myopathies may be associated with malignancies, IBM is generally not considered paraneoplastic. Many studies of malignancy in inflammatory myopathies did not include IBM patients. Indeed, IBM is often diagnosed only after around 5 years from onset, while paraneoplastic myositis is generally defined as the co-occurrence of malignancy and myopathy within 1 to 3 years of each other. Nevertheless, a significant association with large granular lymphocyte leukemia has been recently described in IBM, and there are reports of cancer-associated IBM. We review the pathogenic mechanisms supposed to be involved in IBM and outline the common mechanisms in IBM and malignancy, as well as the therapeutic perspectives. The terminally differentiated, CD8+ highly cytotoxic T cells expressing NK features are central in the pathogenesis of IBM and, paradoxically, play a role in some cancers as well. Interferon gamma plays a central role, mostly during the early stages of the disease. The secondary mitochondrial dysfunction, the autophagy and cell cycle dysregulation, and the crosstalk between metabolic and mitogenic pathways could be shared by IBM and cancer. There are intermingled subcellular mechanisms in IBM and neoplasia, and probably their co-existence is underestimated. The link between IBM and cancers deserves further interest, in order to search for efficient therapies in IBM and to improve muscle function, life quality, and survival in both diseases.
Collapse
Affiliation(s)
- Laura Damian
- Centre for Rare Autoimmune and Autoinflammatory Diseases (ERN-ReCONNET), Department of Rheumatology, Emergency Clinical County Hospital Cluj, 400347 Cluj-Napoca, Romania;
- CMI Reumatologie Dr. Damian, 6-8 Petru Maior St., 400002 Cluj-Napoca, Romania
| | - Cristian Cezar Login
- Department of Physiology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
- Correspondence:
| | - Carolina Solomon
- Radiology Department, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania;
- Radiology Department, Emergency Clinical County Hospital Cluj, 400006 Cluj-Napoca, Romania
| | - Cristina Belizna
- UMR CNRS 6015—INSERM U1083, University of Angers, 49100 Angers, France;
- Internal Medicine Department Clinique de l’Anjou, Angers and Vascular and Coagulation Department, University Hospital Angers, 49100 Angers, France
| | - Svetlana Encica
- Department of Pathology, “Niculae Stancioiu” Heart Institute Cluj-Napoca, 19-21 Calea Moților St., 400001 Cluj-Napoca, Romania;
| | - Laura Urian
- Department of Hematology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400004 Cluj-Napoca, Romania;
- Department of Hematology, Ion Chiricuta Clinical Cancer Center, 400014 Cluj-Napoca, Romania
| | - Ciprian Jurcut
- Department of Internal Medicine, “Carol Davila” Central Military Emergency University Hospital, Calea Plevnei No 134, 010825 Bucharest, Romania;
| | - Bogdan Stancu
- 2nd Surgical Department, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Romana Vulturar
- Department of Molecular Sciences, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania;
- Cognitive Neuroscience Laboratory, University “Babes-Bolyai” Cluj-Napoca, 400294 Cluj-Napoca, Romania
| |
Collapse
|
31
|
Douvris A, Viñas J, Burns KD. miRNA-486-5p: signaling targets and role in non-malignant disease. Cell Mol Life Sci 2022; 79:376. [PMID: 35731367 PMCID: PMC9217846 DOI: 10.1007/s00018-022-04406-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/27/2022] [Accepted: 05/29/2022] [Indexed: 11/30/2022]
Abstract
MicroRNAs (miRNAs) are short non-coding RNAs, highly conserved between species, that are powerful regulators of gene expression. Aberrant expression of miRNAs alters biological processes and pathways linked to human disease. miR-486-5p is a muscle-enriched miRNA localized to the cytoplasm and nucleus, and is highly abundant in human plasma and enriched in small extracellular vesicles. Studies of malignant and non-malignant diseases, including kidney diseases, have found correlations with circulating miR-486-5p levels, supporting its role as a potential biomarker. Pre-clinical studies of non-malignant diseases have identified miR-486-5p targets that regulate major signaling pathways involved in cellular proliferation, migration, angiogenesis, and apoptosis. Validated miR-486-5p targets include phosphatase and tensin homolog (PTEN) and FoXO1, whose suppression activates phosphatidyl inositol-3-kinase (PI3K)/Akt signaling. Targeting of Smad1/2/4 and IGF-1 by miR-486-5p inhibits transforming growth factor (TGF)-β and insulin-like growth factor-1 (IGF-1) signaling, respectively. Other miR-486-5p targets include matrix metalloproteinase-19 (MMP-19), Sp5, histone acetyltransferase 1 (HAT1), and nuclear factor of activated T cells-5 (NFAT5). In this review, we examine the biogenesis, regulation, validated gene targets and biological effects of miR-486-5p in non-malignant diseases.
Collapse
Affiliation(s)
- Adrianna Douvris
- Division of Nephrology, Department of Medicine and Kidney Research Centre, The Ottawa Hospital Research Institute, University of Ottawa, 1967 Riverside Dr., Rm. 535, Ottawa, ON, K1H 7W9, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Jose Viñas
- Division of Nephrology, Department of Medicine and Kidney Research Centre, The Ottawa Hospital Research Institute, University of Ottawa, 1967 Riverside Dr., Rm. 535, Ottawa, ON, K1H 7W9, Canada
| | - Kevin D Burns
- Division of Nephrology, Department of Medicine and Kidney Research Centre, The Ottawa Hospital Research Institute, University of Ottawa, 1967 Riverside Dr., Rm. 535, Ottawa, ON, K1H 7W9, Canada. .,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
32
|
Zaharieva IT, Scoto M, Aragon-Gawinska K, Ridout D, Doreste B, Servais L, Muntoni F, Zhou H. Response of plasma microRNAs to nusinersen treatment in patients with SMA. Ann Clin Transl Neurol 2022; 9:1011-1026. [PMID: 35584175 PMCID: PMC9268869 DOI: 10.1002/acn3.51579] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE Spinal muscular atrophy (SMA) is a common genetic cause of infant mortality. Nusinersen treatment ameliorates the clinical outcome of SMA, however, some patients respond well, while others have limited response. We investigated microRNAs in blood samples from SMA patients and their response to nusinersen treatment evaluating the potential of circulating microRNAs as biomarkers for SMA. METHODS In a discovery cohort study, microRNA next-generation sequencing was performed in blood samples from SMA patients (SMA type 2, n = 10; SMA type 3, n = 10) and controls (n = 7). The dysregulated microRNAs were further analysed in the therapeutic response cohort comprised of SMA type 1 patients (n = 22) who had received nusinersen treatment, at three time points along the treatment course (baseline, 2 and 6 months of treatment). The levels of the studied microRNAs were correlated to the SMA clinical outcome measures. RESULTS In the discovery cohort, 69 microRNAs were dysregulated between SMA patients and controls. In the therapeutic response cohort, the baseline plasma levels of miR-107, miR-142-5p, miR-335-5p, miR-423-3p, miR-660-5p, miR-378a-3p and miR-23a-3p were associated with the 2 and 6 months response to nusinersen treatment. Furthermore, the levels of miR-107, miR-142-5p, miR-335-5p, miR-423-3p, miR-660-5p and miR-378-3p at 2 months of treatment were associated with the response after 6 months of nusinersen treatment. INTERPRETATION Blood microRNAs could be used as biomarkers to indicate SMA patients' response to nusinersen and to monitor the efficacy of the therapeutic intervention. In addition, some of these microRNAs provide insight into processes involved in SMA that could be exploited as novel therapeutic targets.
Collapse
Affiliation(s)
- Irina T Zaharieva
- Developmental Neurosciences Research and Teaching Department, Dubowitz Neuromuscular Centre, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Mariacristina Scoto
- Developmental Neurosciences Research and Teaching Department, Dubowitz Neuromuscular Centre, Great Ormond Street Institute of Child Health, University College London, London, UK.,Great Ormond Street Hospital, London, UK
| | - Karolina Aragon-Gawinska
- Institute I-Motion, Hôpital Armand Trousseau, Paris, France.,Neurology Department, Medical University of Warsaw, Warsaw, Poland
| | - Deborah Ridout
- Population, Policy & Practice Department, UCL Great Ormond Street Institute of Child Health, London, UK.,NIHR Great Ormond Street Hospital Biomedical Research Centre, London, UK
| | - Bruno Doreste
- Developmental Neurosciences Research and Teaching Department, Dubowitz Neuromuscular Centre, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Laurent Servais
- Institute I-Motion, Hôpital Armand Trousseau, Paris, France.,Department of Paediatrics, MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford, UK.,Department of Paediatrics, Neuromuscular Reference Center, Centre Hospitalier Universitaire de Liège, Liège, Belgium
| | - Francesco Muntoni
- Developmental Neurosciences Research and Teaching Department, Dubowitz Neuromuscular Centre, Great Ormond Street Institute of Child Health, University College London, London, UK.,Great Ormond Street Hospital, London, UK.,NIHR Great Ormond Street Hospital Biomedical Research Centre, London, UK
| | - Haiyan Zhou
- NIHR Great Ormond Street Hospital Biomedical Research Centre, London, UK.,Genetics and Genomic Medicine Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, London, UK
| |
Collapse
|
33
|
Li X, Du L, Liu Q, Lu Z. MicroRNAs: Novel players in the diagnosis and treatment of cancer cachexia (Review). Exp Ther Med 2022; 24:446. [PMID: 35720622 PMCID: PMC9199081 DOI: 10.3892/etm.2022.11373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 05/03/2022] [Indexed: 12/02/2022] Open
Abstract
Cachexia denotes a complex metabolic syndrome featuring severe loss of weight, fatigue and anorexia. In total, 50-80% of patients suffering from advanced cancer are diagnosed with cancer cachexia, which contributes to 40% of cancer-associated mortalities. MicroRNAs (miRNAs) are non-coding RNAs capable of regulating gene expression. Dysregulated miRNA expression has been observed in muscle tissue, adipose tissue and blood samples from patients with cancer cachexia compared with that of samples from patients with cancer without cachexia or healthy controls. In addition, miRNAs promote and maintain the malignant state of systemic inflammation, while inflammation contributes to cancer cachexia. The present review discusses the role of miRNAs in the progression of cancer cachexia, and assess their diagnostic value and potential therapeutic value.
Collapse
Affiliation(s)
- Xin Li
- Department of Oncology, Affiliated Hospital of Weifang Medical College, Weifang, Shandong 261000, P.R. China
| | - Lidong Du
- Graduate School, Weifang Medical College, Weifang, Shandong 261000, P.R. China
| | - Qiang Liu
- Graduate School, Weifang Medical College, Weifang, Shandong 261000, P.R. China
| | - Zhong Lu
- Department of Oncology, Affiliated Hospital of Weifang Medical College, Weifang, Shandong 261000, P.R. China
| |
Collapse
|
34
|
Chinniah R, Adimulam T, Nandlal L, Arumugam T, Ramsuran V. The Effect of miRNA Gene Regulation on HIV Disease. Front Genet 2022; 13:862642. [PMID: 35601502 PMCID: PMC9117004 DOI: 10.3389/fgene.2022.862642] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/13/2022] [Indexed: 12/24/2022] Open
Abstract
Over many years, research on HIV/AIDS has advanced with the introduction of HAART. Despite these advancements, significant gaps remain with respect to aspects in HIV life cycle, with specific attention to virus-host interactions. Investigating virus-host interactions may lead to the implementation of novel therapeutic strategies against HIV/AIDS. Notably, host gene silencing can be facilitated by cellular small non-coding RNAs such as microRNAs paving the way for epigenetic anti-viral therapies. Numerous studies have elucidated the importance of microRNAs in HIV pathogenesis. Some microRNAs can either promote viral infection, while others can be detrimental to viral replication. This is accomplished by targeting the HIV-proviral genome or by regulating host genes required for viral replication and immune responses. In this review, we report on 1) the direct association of microRNAs with HIV infection; 2) the indirect association of known human genetic factors with HIV infection; 3) the regulation of human genes by microRNAs in other diseases that can be explored experimentally to determine their effect on HIV-1 infection; and 4) therapeutic interactions of microRNA against HIV infection.
Collapse
Affiliation(s)
- Romona Chinniah
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Theolan Adimulam
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Louansha Nandlal
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
| | - Thilona Arumugam
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Veron Ramsuran
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
35
|
Lei Q, Hu X, Han H, Wang J, Liu W, Zhou Y, Cao D, Li F, Liu J. Integrative analysis of circRNA, miRNA, and mRNA profiles to reveal ceRNA regulation in chicken muscle development from the embryonic to post-hatching periods. BMC Genomics 2022; 23:342. [PMID: 35505302 PMCID: PMC9063329 DOI: 10.1186/s12864-022-08525-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 03/29/2022] [Indexed: 12/13/2022] Open
Abstract
Background The growth and development of skeletal muscle are regulated by protein-coding genes and non-coding RNA. Circular RNA (circRNA) is a type of non-coding RNA involved in a variety of biological processes, especially in post-transcriptional regulation. To better understand the regulatory mechanism of circRNAs during the development of muscle in chicken, we performed RNA-seq with linear RNA depletion for chicken breast muscle in 12 (E 12) and17 (E 17) day embryos, and 1 (D 1), 14 (D 14), 56 (D 56), and 98 (D 98) days post-hatch. Results We identified 5755 differentially expressed (DE)-circRNAs during muscle development. We profiled the expression of DE-circRNAs and mRNAs (identified in our previous study) at up to six time points during chicken muscle development and uncovered a significant profile (profile 16) for circRNA upregulation during aging in muscle tissues. To investigate competing endogenous RNA (ceRNA) regulation in muscle and identify muscle-related circRNAs, we constructed a circRNA-miRNA-mRNA regulatory network using the circRNAs and mRNAs from profile 16 and miRNAs identified in our previous study, which included 361 miRNAs, 68 circRNAs, 599 mRNAs, and 31,063 interacting pairs. Functional annotation showed that upregulated circRNAs might contribute to glycolysis/gluconeogenesis, biosynthesis of amino acids, pyruvate metabolism, carbon metabolism, glycogen and sucrose metabolism through the ceRNA network, and thus affected postnatal muscle development by regulating muscle protein deposition. Of them, circRNA225 and circRNA226 from the same host gene might be key circRNAs that could regulate muscle development by interacting with seven common miRNAs and 207 mRNAs. Our experiments also demonstrated that there were interactions among circRNA225, gga-miR-1306-5p, and heat shock protein alpha 8 (HSPA8). Conclusions Our results suggest that adequate supply of nutrients such as energy and protein after hatching may be a key factor in ensuring chicken yield, and provide several candidate circRNAs for future studies concerning ceRNA regulation during chicken muscle development. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08525-5.
Collapse
Affiliation(s)
- Qiuxia Lei
- Poultry Institute, Shandong Academy of Agricultural Sciences, Ji'nan, 250023, China.,Poultry Breeding Engineering Technology Center of Shandong Province, Ji'nan, 250023, China
| | - Xin Hu
- Poultry Institute, Shandong Academy of Agricultural Sciences, Ji'nan, 250023, China.,Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,Molecular and Cellular Biology, Gembloux Agro-Bio Tech, University of Liège, 5030, Gembloux, Belgium
| | - Haixia Han
- Poultry Institute, Shandong Academy of Agricultural Sciences, Ji'nan, 250023, China
| | - Jie Wang
- Poultry Institute, Shandong Academy of Agricultural Sciences, Ji'nan, 250023, China
| | - Wei Liu
- Poultry Institute, Shandong Academy of Agricultural Sciences, Ji'nan, 250023, China
| | - Yan Zhou
- Poultry Institute, Shandong Academy of Agricultural Sciences, Ji'nan, 250023, China
| | - Dingguo Cao
- Poultry Institute, Shandong Academy of Agricultural Sciences, Ji'nan, 250023, China
| | - Fuwei Li
- Poultry Institute, Shandong Academy of Agricultural Sciences, Ji'nan, 250023, China
| | - Jie Liu
- Poultry Institute, Shandong Academy of Agricultural Sciences, Ji'nan, 250023, China. .,Poultry Breeding Engineering Technology Center of Shandong Province, Ji'nan, 250023, China.
| |
Collapse
|
36
|
Ye L, Zuo Y, Chen F, Peng Q, Lu X, Wang G, Shu X. miR-18a-3p and Its Target Protein HuR May Regulate Myogenic Differentiation in Immune-Mediated Necrotizing Myopathy. Front Immunol 2022; 12:780237. [PMID: 35069550 PMCID: PMC8766969 DOI: 10.3389/fimmu.2021.780237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 12/13/2021] [Indexed: 11/18/2022] Open
Abstract
Immune-mediated necrotizing myopathy (IMNM) is characterized by manifestation of myonecrosis and regeneration of muscle fibers; however, the underlying pathogenesis remains unclear. This study aimed to investigate the role and mechanism of miR-18a-3p and its target RNA-binding protein HuR in IMNM. HuR and miR-18a-3p levels were detected in the skeletal muscles of 18 patients with IMNM using quantitative reverse-transcription real-time polymerase chain reaction (qRT-PCR) and western blotting analysis. Human myoblasts were transfected with small interfering RNA targeting HuR and miR-18a-3p mimic or inhibitor. Myogenic differentiation markers, myogenin and myosin heavy chain, were analyzed by qRT-PCR, western blotting analysis, and immunofluorescence staining. The results showed that miR-18a-3p was upregulated (p=0.0002), whereas HuR was downregulated (p=0.002) in the skeletal muscles of patients with IMNM. The expression of miR-18a-3p in patients with IMNM was negatively correlated with those of HuR (r = -0.512, p = 0.029). We also found that disease activity was positively correlated with HuR expression (r = 0.576, p = 0.012) but muscle activity was negatively correlated with miR-18a-3p expression (r = -0.550, p = 0.017). Besides, bioinformatics analysis and dual-luciferase reporter assays suggested that miR-18a-3p could directly target HuR. Cellular experiments showed that overexpression of miR-18a-3p inhibited myogenic differentiation by targeting HuR, whereas inhibition of miR-18a-3p led to opposite results. Therefore, miR-18a-3p and its target protein HuR may be responsible for modulating the myogenic process in IMNM and can thus be therapeutic targets for the same.
Collapse
Affiliation(s)
- Lifang Ye
- Department of Rheumatology, Key Laboratory of Myositis, China-Japan Friendship Hospital, Beijing, China.,Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yu Zuo
- Department of Rheumatology, Key Laboratory of Myositis, China-Japan Friendship Hospital, Beijing, China
| | - Fang Chen
- Department of Rheumatology, Key Laboratory of Myositis, China-Japan Friendship Hospital, Beijing, China
| | - Qinglin Peng
- Department of Rheumatology, Key Laboratory of Myositis, China-Japan Friendship Hospital, Beijing, China
| | - Xin Lu
- Department of Rheumatology, Key Laboratory of Myositis, China-Japan Friendship Hospital, Beijing, China
| | - Guochun Wang
- Department of Rheumatology, Key Laboratory of Myositis, China-Japan Friendship Hospital, Beijing, China.,Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaoming Shu
- Department of Rheumatology, Key Laboratory of Myositis, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
37
|
Role of MicroRNAs and Long Non-Coding RNAs in Sarcopenia. Cells 2022; 11:cells11020187. [PMID: 35053303 PMCID: PMC8773898 DOI: 10.3390/cells11020187] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/23/2021] [Accepted: 01/04/2022] [Indexed: 12/12/2022] Open
Abstract
Sarcopenia is an age-related pathological process characterized by loss of muscle mass and function, which consequently affects the quality of life of the elderly. There is growing evidence that non-coding RNAs, including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), play a key role in skeletal muscle physiology. Alterations in the expression levels of miRNAs and lncRNAs contribute to muscle atrophy and sarcopenia by regulating various signaling pathways. This review summarizes the recent findings regarding non-coding RNAs associated with sarcopenia and provides an overview of sarcopenia pathogenesis promoted by multiple non-coding RNA-mediated signaling pathways. In addition, we discuss the impact of exercise on the expression patterns of non-coding RNAs involved in sarcopenia. Identifying non-coding RNAs associated with sarcopenia and understanding the molecular mechanisms that regulate skeletal muscle dysfunction during aging will provide new insights to develop potential treatment strategies.
Collapse
|
38
|
Postnikov PV, Efimova YA, Pronina IV. Circulating MicroRNAs as a New Class of Biomarkers of Physiological Reactions of the Organism to the Intake of Dietary Supplements and Drugs. Microrna 2022; 11:25-35. [PMID: 35466889 DOI: 10.2174/2211536611666220422123437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/24/2021] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND The analysis of individual microRNAs (miRNAs) as a diagnostic and prognostic tool for the effective treatment of various diseases has aroused particular interest in the scientific community. The determination of circulating miRNAs makes it possible to assess biological changes associated with nutritional processes, the intake of dietary supplements and drugs, etc. The profile of circulating miRNAs reflects the individual adaptation of the organism to the effect of specific environmental conditions. OBJECTIVE The objective of this study is to systematize the data and show the importance of circulating miRNAs as new potential biomarkers of the organism's response to the intake of various dietary supplements, drugs, and consider the possibility of their use in doping control. METHODS A systematic analysis of scientific publications (ncbi.nlm.nih.gov) on the miRNA expression profile in response to the intake of dietary supplements and drugs most often used by athletes, and supposed their role as potential markers in modern doping control was carried out. RESULTS The profile of circulating miRNAs is highly dependent on the intake of a particular drug, and, therefore, may be used as a marker of the effects of biologically active supplements and drugs including the substances from the Prohibited List of the World Anti-Doping Agency (WADA). CONCLUSION Monitoring of circulating miRNAs can serve as a high-precision marker for detecting doping abuse in elite sports. However, it is necessary to conduct additional studies on the effect of complex drugs on the profile of circulating miRNAs and individual circulating miRNAs on a particular biological process.
Collapse
Affiliation(s)
- Pavel V Postnikov
- National Antidoping Laboratory (Institute), M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Yulia A Efimova
- Department of Analytical Chemistry, M.V. Lomonosov Institute of Fine Chemical Technologies, MIREA - Russian Technological University, Moscow, Russia
| | - Irina V Pronina
- National Antidoping Laboratory (Institute), M.V. Lomonosov Moscow State University, Moscow, Russia
- Laboratory of Transcriptomics and Pathogenomics, Federal State Budgetary Scientific Institution \'Institute of General Pathology and Pathophysiology", Moscow, Russia
| |
Collapse
|
39
|
Narayanaswami P, Živković S. Molecular and Genetic Therapies. Neuromuscul Disord 2022. [DOI: 10.1016/b978-0-323-71317-7.00011-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
40
|
Catellani C, Ravegnini G, Sartori C, Righi B, Lazzeroni P, Bonvicini L, Poluzzi S, Cirillo F, Predieri B, Iughetti L, Giorgi Rossi P, Angelini S, Street ME. Specific miRNAs Change After 3 Months of GH treatment and Contribute to Explain the Growth Response After 12 Months. Front Endocrinol (Lausanne) 2022; 13:896640. [PMID: 35813630 PMCID: PMC9256936 DOI: 10.3389/fendo.2022.896640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/21/2022] [Indexed: 11/20/2022] Open
Abstract
CONTEXT There is growing evidence of the role of epigenetic regulation of growth, and miRNAs potentially play a role. OBJECTIVE The aim of this study is to identify changes in circulating miRNAs following GH treatment in subjects with isolated idiopathic GH deficiency (IIGHD) after the first 3 months of treatment, and verify whether these early changes can predict growth response. DESIGN AND METHODS The expression profiles of 384 miRNAs were analyzed in serum in 10 prepubertal patients with IIGHD (5 M, 5 F) at two time points before starting GH treatment (t-3, t0), and at 3 months on treatment (t+3). MiRNAs with a fold change (FC) >+1.5 or <-1.5 at t+3 were considered as differentially expressed. In silico analysis of target genes and pathways led to a validation step on 8 miRNAs in 25 patients. Clinical and biochemical parameters were collected at baseline, and at 6 and 12 months. Simple linear regression analysis and multiple stepwise linear regression models were used to explain the growth response. RESULTS Sixteen miRNAs were upregulated and 2 were downregulated at t+3 months. MiR-199a-5p (p = 0.020), miR-335-5p (p = 0.001), and miR-494-3p (p = 0.026) were confirmed to be upregulated at t+3. Changes were independent of GH peak values at testing, and levels stabilized after 12 months. The predicted growth response at 12 months was considerably improved compared with models using the common clinical and biochemical parameters. CONCLUSIONS MiR-199a-5p, miR-335-5p, and miR-494-3p changed after 3 months of GH treatment and likely reflected both the degree of GH deficiency and the sensitivity to treatment. Furthermore, they were of considerable importance to predict growth response.
Collapse
Affiliation(s)
- Cecilia Catellani
- Department of Mother and Child, Azienda Unità Sanitaria Locale – IRCCS di Reggio Emilia, Reggio Emilia, Italy
- PhD Program in Clinical and Experimental Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Gloria Ravegnini
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Chiara Sartori
- Department of Mother and Child, Azienda Unità Sanitaria Locale – IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Beatrice Righi
- Department of Mother and Child, Azienda Unità Sanitaria Locale – IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Pietro Lazzeroni
- Department of Mother and Child, Azienda Unità Sanitaria Locale – IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Laura Bonvicini
- Epidemiology Unit, Azienda Unità Sanitaria Locale – IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Silvia Poluzzi
- Department of Medical and Surgical Sciences of the Mother, Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Francesca Cirillo
- Department of Mother and Child, Azienda Unità Sanitaria Locale – IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Barbara Predieri
- Department of Medical and Surgical Sciences of the Mother, Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Lorenzo Iughetti
- Department of Medical and Surgical Sciences of the Mother, Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Paolo Giorgi Rossi
- Epidemiology Unit, Azienda Unità Sanitaria Locale – IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Sabrina Angelini
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Maria Elisabeth Street
- Department of Mother and Child, Azienda Unità Sanitaria Locale – IRCCS di Reggio Emilia, Reggio Emilia, Italy
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- *Correspondence: Maria Elisabeth Street,
| |
Collapse
|
41
|
Freire PP, Cury SS, Lopes LO, Fernandez GJ, Liu J, de Moraes LN, de Oliveira G, Oliveira JS, de Moraes D, Cabral-Marques O, Dal-Pai-Silva M, Hu X, Wang DZ, Carvalho RF. Decreased miR-497-5p Suppresses IL-6 Induced Atrophy in Muscle Cells. Cells 2021; 10:3527. [PMID: 34944037 PMCID: PMC8700610 DOI: 10.3390/cells10123527] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/24/2021] [Accepted: 12/01/2021] [Indexed: 12/11/2022] Open
Abstract
Interleukin-6 (IL-6) is a pro-inflammatory cytokine associated with skeletal muscle wasting in cancer cachexia. The control of gene expression by microRNAs (miRNAs) in muscle wasting involves the regulation of thousands of target transcripts. However, the miRNA-target networks associated with IL6-induced muscle atrophy remain to be characterized. Here, we show that IL-6 promotes the atrophy of C2C12 myotubes and changes the expression of 20 miRNAs (5 up-regulated and 15 down-regulated). Gene Ontology analysis of predicted miRNAs targets revealed post-transcriptional regulation of genes involved in cell differentiation, apoptosis, migration, and catabolic processes. Next, we performed a meta-analysis of miRNA-published data that identified miR-497-5p, a down-regulated miRNAs induced by IL-6, also down-regulated in other muscle-wasting conditions. We used miR-497-5p mimics and inhibitors to explore the function of miR-497-5p in C2C12 myoblasts and myotubes. We found that miR-497-5p can regulate the expression of the cell cycle genes CcnD2 and CcnE1 without affecting the rate of myoblast cellular proliferation. Notably, miR-497-5p mimics induced myotube atrophy and reduced Insr expression. Treatment with miR-497-5p inhibitors did not change the diameter of the myotubes but increased the expression of its target genes Insr and Igf1r. These genes are known to regulate skeletal muscle regeneration and hypertrophy via insulin-like growth factor pathway and were up-regulated in cachectic muscle samples. Our miRNA-regulated network analysis revealed a potential role for miR-497-5p during IL6-induced muscle cell atrophy and suggests that miR-497-5p is likely involved in a compensatory mechanism of muscle atrophy in response to IL-6.
Collapse
Affiliation(s)
- Paula P. Freire
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, UNESP, Botucatu 18618-689, Brazil; (P.P.F.); (S.S.C.); (L.O.L.); (G.J.F.); (L.N.d.M.); (G.d.O.); (J.S.O.); (D.d.M.); (M.D.-P.-S.)
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil;
| | - Sarah S. Cury
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, UNESP, Botucatu 18618-689, Brazil; (P.P.F.); (S.S.C.); (L.O.L.); (G.J.F.); (L.N.d.M.); (G.d.O.); (J.S.O.); (D.d.M.); (M.D.-P.-S.)
| | - Letícia O. Lopes
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, UNESP, Botucatu 18618-689, Brazil; (P.P.F.); (S.S.C.); (L.O.L.); (G.J.F.); (L.N.d.M.); (G.d.O.); (J.S.O.); (D.d.M.); (M.D.-P.-S.)
| | - Geysson J. Fernandez
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, UNESP, Botucatu 18618-689, Brazil; (P.P.F.); (S.S.C.); (L.O.L.); (G.J.F.); (L.N.d.M.); (G.d.O.); (J.S.O.); (D.d.M.); (M.D.-P.-S.)
- Faculty of Medicine, University of Antioquia, UdeA, Medellín 050010, Colombia
| | - Jianming Liu
- Department of Cardiology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (J.L.); (X.H.); (D.-Z.W.)
| | - Leonardo Nazario de Moraes
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, UNESP, Botucatu 18618-689, Brazil; (P.P.F.); (S.S.C.); (L.O.L.); (G.J.F.); (L.N.d.M.); (G.d.O.); (J.S.O.); (D.d.M.); (M.D.-P.-S.)
| | - Grasieli de Oliveira
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, UNESP, Botucatu 18618-689, Brazil; (P.P.F.); (S.S.C.); (L.O.L.); (G.J.F.); (L.N.d.M.); (G.d.O.); (J.S.O.); (D.d.M.); (M.D.-P.-S.)
| | - Jakeline S. Oliveira
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, UNESP, Botucatu 18618-689, Brazil; (P.P.F.); (S.S.C.); (L.O.L.); (G.J.F.); (L.N.d.M.); (G.d.O.); (J.S.O.); (D.d.M.); (M.D.-P.-S.)
| | - Diogo de Moraes
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, UNESP, Botucatu 18618-689, Brazil; (P.P.F.); (S.S.C.); (L.O.L.); (G.J.F.); (L.N.d.M.); (G.d.O.); (J.S.O.); (D.d.M.); (M.D.-P.-S.)
| | - Otavio Cabral-Marques
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil;
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
- Network of Immunity in Infection, Malignancy, and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), São Paulo 05508-000, Brazil
| | - Maeli Dal-Pai-Silva
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, UNESP, Botucatu 18618-689, Brazil; (P.P.F.); (S.S.C.); (L.O.L.); (G.J.F.); (L.N.d.M.); (G.d.O.); (J.S.O.); (D.d.M.); (M.D.-P.-S.)
| | - Xiaoyun Hu
- Department of Cardiology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (J.L.); (X.H.); (D.-Z.W.)
| | - Da-Zhi Wang
- Department of Cardiology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (J.L.); (X.H.); (D.-Z.W.)
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Robson F. Carvalho
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, UNESP, Botucatu 18618-689, Brazil; (P.P.F.); (S.S.C.); (L.O.L.); (G.J.F.); (L.N.d.M.); (G.d.O.); (J.S.O.); (D.d.M.); (M.D.-P.-S.)
| |
Collapse
|
42
|
Huang HY, Lin YCD, Cui S, Huang Y, Tang Y, Xu J, Bao J, Li Y, Wen J, Zuo H, Wang W, Li J, Ni J, Ruan Y, Li L, Chen Y, Xie Y, Zhu Z, Cai X, Chen X, Yao L, Chen Y, Luo Y, LuXu S, Luo M, Chiu CM, Ma K, Zhu L, Cheng GJ, Bai C, Chiang YC, Wang L, Wei F, Lee TY, Huang HD. miRTarBase update 2022: an informative resource for experimentally validated miRNA-target interactions. Nucleic Acids Res 2021; 50:D222-D230. [PMID: 34850920 PMCID: PMC8728135 DOI: 10.1093/nar/gkab1079] [Citation(s) in RCA: 528] [Impact Index Per Article: 132.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/09/2021] [Accepted: 10/25/2021] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs (miRNAs) are noncoding RNAs with 18–26 nucleotides; they pair with target mRNAs to regulate gene expression and produce significant changes in various physiological and pathological processes. In recent years, the interaction between miRNAs and their target genes has become one of the mainstream directions for drug development. As a large-scale biological database that mainly provides miRNA–target interactions (MTIs) verified by biological experiments, miRTarBase has undergone five revisions and enhancements. The database has accumulated >2 200 449 verified MTIs from 13 389 manually curated articles and CLIP-seq data. An optimized scoring system is adopted to enhance this update’s critical recognition of MTI-related articles and corresponding disease information. In addition, single-nucleotide polymorphisms and disease-related variants related to the binding efficiency of miRNA and target were characterized in miRNAs and gene 3′ untranslated regions. miRNA expression profiles across extracellular vesicles, blood and different tissues, including exosomal miRNAs and tissue-specific miRNAs, were integrated to explore miRNA functions and biomarkers. For the user interface, we have classified attributes, including RNA expression, specific interaction, protein expression and biological function, for various validation experiments related to the role of miRNA. We also used seed sequence information to evaluate the binding sites of miRNA. In summary, these enhancements render miRTarBase as one of the most research-amicable MTI databases that contain comprehensive and experimentally verified annotations. The newly updated version of miRTarBase is now available at https://miRTarBase.cuhk.edu.cn/.
Collapse
Affiliation(s)
- Hsi-Yuan Huang
- The Genetics Laboratory, Longgang District Maternity & Child Healthcare Hospital of Shenzhen City, Shenzhen, Guangdong518172, China.,School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong518172, China.,Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong518172, China
| | - Yang-Chi-Dung Lin
- The Genetics Laboratory, Longgang District Maternity & Child Healthcare Hospital of Shenzhen City, Shenzhen, Guangdong518172, China.,School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong518172, China.,Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong518172, China
| | - Shidong Cui
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong518172, China.,Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong518172, China
| | - Yixian Huang
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong518172, China.,Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong518172, China
| | - Yun Tang
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong518172, China.,Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong518172, China
| | - Jiatong Xu
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong518172, China.,Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong518172, China
| | - Jiayang Bao
- Division of Biological Sciences, Section of Bioinformatics, University of California, San Diego, San Diego, CA 92093, USA
| | - Yulin Li
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong518172, China.,Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong518172, China
| | - Jia Wen
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong518172, China.,Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong518172, China
| | - Huali Zuo
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong518172, China.,Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong518172, China.,School of Computer Science and Technology, University of Science and Technology of China, Hefei 230027, China
| | - Weijuan Wang
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong518172, China.,Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong518172, China
| | - Jing Li
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong518172, China.,Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong518172, China
| | - Jie Ni
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong518172, China
| | - Yini Ruan
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong518172, China
| | - Liping Li
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong518172, China
| | - Yidan Chen
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong518172, China.,Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong518172, China
| | - Yueyang Xie
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong518172, China
| | - Zihao Zhu
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong518172, China.,Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong518172, China
| | - Xiaoxuan Cai
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong518172, China.,Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong518172, China
| | - Xinyi Chen
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong518172, China.,Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong518172, China
| | - Lantian Yao
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong518172, China.,School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong 518172, China
| | - Yigang Chen
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong518172, China.,Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong518172, China
| | - Yijun Luo
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong518172, China.,Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong518172, China
| | - Shupeng LuXu
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong518172, China.,Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong518172, China
| | - Mengqi Luo
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong518172, China.,Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong518172, China
| | - Chih-Min Chiu
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong518172, China.,Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong518172, China
| | - Kun Ma
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong518172, China
| | - Lizhe Zhu
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong518172, China.,Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong518172, China
| | - Gui-Juan Cheng
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong518172, China.,Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong518172, China
| | - Chen Bai
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong518172, China.,Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong518172, China
| | - Ying-Chih Chiang
- Kobilka Institute of Innovative Drug Discovery, School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong 518172, China
| | - Liping Wang
- Department of Reproductive Medicine Centre, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518035, China
| | - Fengxiang Wei
- The Genetics Laboratory, Longgang District Maternity & Child Healthcare Hospital of Shenzhen City, Shenzhen, Guangdong518172, China.,Department of Cell Biology, Jiamusi University, Jiamusi, Heilongjiang 154007, China.,Shenzhen Children's Hospital of China Medical University, Shenzhen, Guangdong518172, China
| | - Tzong-Yi Lee
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong518172, China.,Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong518172, China
| | - Hsien-Da Huang
- The Genetics Laboratory, Longgang District Maternity & Child Healthcare Hospital of Shenzhen City, Shenzhen, Guangdong518172, China.,School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong518172, China.,Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong518172, China
| |
Collapse
|
43
|
Huang B, Jiao Y, Zhu Y, Ning Z, Ye Z, Li QX, Hu C, Wang C. Putative MicroRNA-mRNA Networks Upon Mdfi Overexpression in C2C12 Cell Differentiation and Muscle Fiber Type Transformation. Front Mol Biosci 2021; 8:675993. [PMID: 34738011 PMCID: PMC8560695 DOI: 10.3389/fmolb.2021.675993] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 10/04/2021] [Indexed: 11/24/2022] Open
Abstract
Mdfi, an inhibitor of myogenic regulatory factors, is involved in myoblast myogenic development and muscle fiber type transformation. However, the regulatory network of Mdfi regulating myoblasts has not been revealed. In this study, we performed microRNAs (miRNAs)-seq on Mdfi overexpression (Mdfi-OE) and wild-type (WT) C2C12 cells to establish the regulatory networks. Comparative analyses of Mdfi-OE vs. WT identified 66 differentially expressed miRNAs (DEMs). Enrichment analysis of the target genes suggested that DEMs may be involved in myoblast differentiation and muscle fiber type transformation through MAPK, Wnt, PI3K-Akt, mTOR, and calcium signaling pathways. miRNA-mRNA interaction networks were suggested along with ten hub miRNAs and five hub genes. We also identified eight hub miRNAs and eleven hub genes in the networks of muscle fiber type transformation. Hub miRNAs mainly play key regulatory roles in muscle fiber type transformation through the PI3K-Akt, MAPK, cAMP, and calcium signaling pathways. Particularly, the three hub miRNAs (miR-335-3p, miR-494-3p, and miR-709) may be involved in both myogenic differentiation and muscle fiber type transformation. These hub miRNAs and genes might serve as candidate biomarkers for the treatment of muscle- and metabolic-related diseases.
Collapse
Affiliation(s)
- Bo Huang
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yiren Jiao
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yifan Zhu
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zuocheng Ning
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zijian Ye
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Chingyuan Hu
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Chong Wang
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
44
|
Yedigaryan L, Sampaolesi M. Therapeutic Implications of miRNAs for Muscle-Wasting Conditions. Cells 2021; 10:cells10113035. [PMID: 34831256 PMCID: PMC8616481 DOI: 10.3390/cells10113035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/28/2021] [Accepted: 10/30/2021] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRNAs) are small, non-coding RNA molecules that are mainly involved in translational repression by binding to specific messenger RNAs. Recently, miRNAs have emerged as biomarkers, relevant for a multitude of pathophysiological conditions, and cells can selectively sort miRNAs into extracellular vesicles for paracrine and endocrine effects. In the overall context of muscle-wasting conditions, a multitude of miRNAs has been implied as being responsible for the typical dysregulation of anabolic and catabolic pathways. In general, chronic muscle disorders are associated with the main characteristic of a substantial loss in muscle mass. Muscular dystrophies (MDs) are a group of genetic diseases that cause muscle weakness and degeneration. Typically, MDs are caused by mutations in those genes responsible for upholding the integrity of muscle structure and function. Recently, the dysregulation of miRNA levels in such pathological conditions has been reported. This revelation is imperative for both MDs and other muscle-wasting conditions, such as sarcopenia and cancer cachexia. The expression levels of miRNAs have immense potential for use as potential diagnostic, prognostic and therapeutic biomarkers. Understanding the role of miRNAs in muscle-wasting conditions may lead to the development of novel strategies for the improvement of patient management.
Collapse
Affiliation(s)
- Laura Yedigaryan
- Translational Cardiomyology Laboratory, Stem Cell Biology and Embryology, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium;
| | - Maurilio Sampaolesi
- Translational Cardiomyology Laboratory, Stem Cell Biology and Embryology, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium;
- Histology and Medical Embryology Unit, Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, 00185 Rome, Italy
- Correspondence:
| |
Collapse
|
45
|
Yazid MD, Hung-Chih C. Perturbation of PI3K/Akt signaling affected autophagy modulation in dystrophin-deficient myoblasts. Cell Commun Signal 2021; 19:105. [PMID: 34706731 PMCID: PMC8554905 DOI: 10.1186/s12964-021-00785-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 09/06/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The absence of dystrophin has gave a massive impact on myotube development in Muscular Dystrophy pathogenesis. One of the conserved signaling pathways involved in skeletal muscle differentiation is the PI3K/Akt/mTOR pathway that plays a vital role in autophagy regulation. To further understand and establish targeted therapy in dystrophin-deficient myoblasts, protein expression profiling has been determined which provides information on perturbed autophagy modulation and activation. METHODS In this study, a dystrophin-deficient myoblast cell line established from the skeletal muscle of a dystrophic (mdx) mouse was used as a model. The dfd13 (dystrophin-deficient) and C2C12 (non-dystrophic) myoblasts were cultured in low mitogen conditions for 10 days to induce differentiation. The cells were subjected to total protein extraction prior to Western blotting assay technique. Protein sub-fractionation has been conducted to determine protein localization. The live-cell analysis of autophagy assay was done using a flow cytometer. RESULTS In our culture system, the dfd13 myoblasts did not achieve terminal differentiation. PTEN expression was profoundly increased in dfd13 myoblasts throughout the differentiation day subsequently indicates perturbation of PI3K/Akt/mTOR regulation. In addition, rictor-mTORC2 was also found inactivated in this event. This occurrence has caused FoxO3 misregulation leads to higher activation of autophagy-related genes in dfd13 myoblasts. Autophagosome formation was increased as LC3B-I/II showed accumulation upon differentiation. However, the ratio of LC3B lipidation and autophagic flux were shown decreased which exhibited dystrophic features. CONCLUSION Perturbation of the PTEN-PI3K/Akt pathway triggers excessive autophagosome formation and subsequently reduced autophagic flux within dystrophin-deficient myoblasts where these findings are of importance to understand Duchenne Muscular Dystrophy (DMD) patients. We believe that some manipulation within its regulatory signaling reported in this study could help restore muscle homeostasis and attenuate disease progression. Video Abstract.
Collapse
Affiliation(s)
- Muhammad Dain Yazid
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, UKM Medical Centre, Jalan Yaacob Latiff, 56000 Cheras, Kuala Lumpur, Malaysia
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT UK
| | - Chen Hung-Chih
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT UK
- Academia Sinica, No. 28, Lane 70, Section 2, Yanjiuyuan Rd, Nangang District, Taipei City, 115 Taiwan
| |
Collapse
|
46
|
Schorr AL, Mangone M. miRNA-Based Regulation of Alternative RNA Splicing in Metazoans. Int J Mol Sci 2021; 22:ijms222111618. [PMID: 34769047 PMCID: PMC8584187 DOI: 10.3390/ijms222111618] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 12/15/2022] Open
Abstract
Alternative RNA splicing is an important regulatory process used by genes to increase their diversity. This process is mainly executed by specific classes of RNA binding proteins that act in a dosage-dependent manner to include or exclude selected exons in the final transcripts. While these processes are tightly regulated in cells and tissues, little is known on how the dosage of these factors is achieved and maintained. Several recent studies have suggested that alternative RNA splicing may be in part modulated by microRNAs (miRNAs), which are short, non-coding RNAs (~22 nt in length) that inhibit translation of specific mRNA transcripts. As evidenced in tissues and in diseases, such as cancer and neurological disorders, the dysregulation of miRNA pathways disrupts downstream alternative RNA splicing events by altering the dosage of splicing factors involved in RNA splicing. This attractive model suggests that miRNAs can not only influence the dosage of gene expression at the post-transcriptional level but also indirectly interfere in pre-mRNA splicing at the co-transcriptional level. The purpose of this review is to compile and analyze recent studies on miRNAs modulating alternative RNA splicing factors, and how these events contribute to transcript rearrangements in tissue development and disease.
Collapse
Affiliation(s)
- Anna L. Schorr
- Molecular and Cellular Biology Graduate Program, School of Life Sciences, 427 East Tyler Mall, Tempe, AZ 85287, USA;
| | - Marco Mangone
- Virginia G. Piper Center for Personalized Diagnostics, The Biodesign Institute at Arizona State University, 1001 S McAllister Ave., Tempe, AZ 85287, USA
- Correspondence: ; Tel.: +1-480-965-7957
| |
Collapse
|
47
|
Shu J, Liu Y, Shan Y, Ji G, Ju X, Tu Y, Shi S, Sheng Z, Zhang M, Zou J. Deep sequencing microRNA profiles associated with wooden breast in commercial broilers. Poult Sci 2021; 100:101496. [PMID: 34695627 PMCID: PMC8555438 DOI: 10.1016/j.psj.2021.101496] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 06/25/2021] [Accepted: 09/16/2021] [Indexed: 11/29/2022] Open
Abstract
Wooden breast (WB) is a muscle disorder affecting modern commercial broiler chickens that leads to a palpable firm pectoralis major muscle and causes severe reduction in meat quality, resulting in substantial economic losses for the poultry industry. Most studies have focused on the regulatory mechanisms underlying this defect with respect to the gene and protein expression levels as well as the levels of metabolites. MicroRNAs (miRNAs) play critical roles in human muscular disorders, such as the Duchenne muscular dystrophy, by regulating the muscle regeneration or fibrosis processes. In this study, we investigated the miRNAs and related pathways that play important roles in the development of WB. We generated the miRNA expression profiles of the pectoralis major muscle samples from 3 WB-affected and 3 nonaffected chickens selected from a commercial broiler population via small RNA sequencing. A total of 578 miRNAs were identified in the chicken breast muscles from the initial analysis of the sequencing data. Of these, 23 miRNAs were significantly differentially expressed (false discovery rate [FDR] <0.05, log2|Foldchange| >1), including 20 upregulated and 3 downregulated miRNAs in the WB group compared to the normal group. Moreover, functional enrichment of the predicted target genes of differential miRNAs indicated that these miRNAs were involved in biological processes and pathways related to energy metabolism, apoptosis, focal adhesion, and development of blood vessels. Four differentially expressed miRNAs were validated by quantitative real-time polymerase chain reaction (qRT-PCR). We also highlighted several differentially expressed miRNAs, such as gga-miR-155, gga-miR-29c, and gga-miR-133, for their potential roles in the regulation of the development of WB. To the best of our knowledge, this is the first study investigating the miRNA expression profile of the breast muscle associated with WB. The findings of this study can be used to explore the potential molecular mechanisms of other muscle disorders in broilers and provide valuable information for chicken breeding.
Collapse
Affiliation(s)
- Jingting Shu
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Jiangsu Institute of Poultry Science, Yangzhou 225125, Jiangsu, China.
| | - Yifan Liu
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Jiangsu Institute of Poultry Science, Yangzhou 225125, Jiangsu, China
| | - Yanju Shan
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Jiangsu Institute of Poultry Science, Yangzhou 225125, Jiangsu, China
| | - Gaige Ji
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Jiangsu Institute of Poultry Science, Yangzhou 225125, Jiangsu, China
| | - Xiaojun Ju
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Jiangsu Institute of Poultry Science, Yangzhou 225125, Jiangsu, China
| | - Yunjie Tu
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Jiangsu Institute of Poultry Science, Yangzhou 225125, Jiangsu, China
| | - Shiying Shi
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Jiangsu Institute of Poultry Science, Yangzhou 225125, Jiangsu, China
| | - Zhongwei Sheng
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Jiangsu Institute of Poultry Science, Yangzhou 225125, Jiangsu, China
| | - Ming Zhang
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Jiangsu Institute of Poultry Science, Yangzhou 225125, Jiangsu, China
| | - Jianmin Zou
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Jiangsu Institute of Poultry Science, Yangzhou 225125, Jiangsu, China
| |
Collapse
|
48
|
Hu J, Stojanović J, Yasamineh S, Yasamineh P, Karuppannan SK, Hussain Dowlath MJ, Serati-Nouri H. The potential use of microRNAs as a therapeutic strategy for SARS-CoV-2 infection. Arch Virol 2021; 166:2649-2672. [PMID: 34278528 PMCID: PMC8286877 DOI: 10.1007/s00705-021-05152-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 03/21/2021] [Indexed: 02/06/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). To date, there is no effective therapeutic approach for treating SARS-CoV-2 infections. MicroRNAs (miRNAs) have been recognized to target the viral genome directly or indirectly, thereby inhibiting viral replication. Several studies have demonstrated that host miRNAs target different sites in SARS-CoV-2 RNA and constrain the production of essential viral proteins. Furthermore, miRNAs have lower toxicity, are more immunogenic, and are more diverse than protein-based and even plasmid-DNA-based therapeutic agents. In this review, we emphasize the role of miRNAs in viral infection and their potential use as therapeutic agents against COVID-19 disease. The potential of novel miRNA delivery strategies, especially EDV™ nanocells, for targeting lung tissue for treatment of SARS-CoV-2 infection is also discussed.
Collapse
Affiliation(s)
- Jiulue Hu
- Zhang Zhongjing College of Chinese Medicine, Nanyang Institute of Technology, Nanyang, 473004, Henan, China
| | - Jelena Stojanović
- Faculty of Mathematics and Computer Science in Belgrade, ALFA BK University, Belgrade, Serbia
| | - Saman Yasamineh
- Young Researcher and Elite Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran.
| | - Pooneh Yasamineh
- Young Researcher and Elite Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Sathish Kumar Karuppannan
- Center for Environmental Nuclear Research, Directorate of Research and Virtual Education, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, 603203, Kanchipuram, Chennai, Tamil Nadu, India
| | - Mohammed Junaid Hussain Dowlath
- Center for Environmental Nuclear Research, Directorate of Research and Virtual Education, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, 603203, Kanchipuram, Chennai, Tamil Nadu, India
| | - Hamed Serati-Nouri
- Stem cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
49
|
Vu Hong A, Sanson M, Richard I, Israeli D. A revised model for mitochondrial dysfunction in Duchenne muscular dystrophy. Eur J Transl Myol 2021; 31. [PMID: 34533019 PMCID: PMC8495359 DOI: 10.4081/ejtm.2021.10012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/12/2021] [Indexed: 12/27/2022] Open
Abstract
We recently identified a signaling pathway that links the upregulation of miR-379 with a mitochondrial response in dystrophic muscle. In the present commentary, we explain the significance that this pathway may have in mitochondrial dysfunction in Duchenne muscular dystrophy (DMD). We identified the upregulation of miR-379 in the serum and muscles of DMD animal models and patients. We found that miR-379 is one of very few miRNAs whose expression was normalized in DMD patients treated with glucocorticoid. We identified EIF4G2 as a miR-379 target, which may promote mitochondrial oxidative phosphorylation (OxPhos) in the skeletal muscle. We found enriched EIF4G2 expression in oxidative fibers, and identified the mitochondrial ATP synthase subunit DAPIT as a translational target of EIF4G2. The identified signaling cascade, which comprises miR-379, EIF4G2 and DAPIT, may link the glucocorticoid treatment in DMD to a recovered mitochondrial ATP synthesis rate. We propose an updated model of mitochondrial dysfunction in DMD.
Collapse
Affiliation(s)
- Ai Vu Hong
- Genethon, Evry, France; Université Paris-Saclay, Univ Evry, Inserm, Généthon, Integrare research unit UMR-S951, Evry.
| | - Mathilde Sanson
- Genethon, Evry, France; Université Paris-Saclay, Univ Evry, Inserm, Généthon, Integrare research unit UMR-S951, Evry.
| | - Isabelle Richard
- Genethon, Evry, France; Université Paris-Saclay, Univ Evry, Inserm, Généthon, Integrare research unit UMR-S951, Evry.
| | - David Israeli
- Genethon, Evry, France; Université Paris-Saclay, Univ Evry, Inserm, Généthon, Integrare research unit UMR-S951, Evry.
| |
Collapse
|
50
|
Sweeney BA, Tagmazian AA, Ribas CE, Finn RD, Bateman A, Petrov AI. Exploring Non-Coding RNAs in RNAcentral. ACTA ACUST UNITED AC 2021; 71:e104. [PMID: 32846052 DOI: 10.1002/cpbi.104] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Non-coding RNAs are essential for all life and carry out a wide range of functions. Information about these molecules is distributed across dozens of specialized resources. RNAcentral is a database of non-coding RNA sequences that provides a unified access point to non-coding RNA annotations from >40 member databases and helps provide insight into the function of these RNAs. This article describes different ways of accessing the data, including searching the website and retrieving the data programmatically over web APIs and a public database. We also demonstrate an example Galaxy workflow for using RNAcentral for RNA-seq differential expression analysis. RNAcentral is available at https://rnacentral.org. © 2020 The Authors. Basic Protocol 1: Viewing RNAcentral sequence reports Basic Protocol 2: Using RNAcentral text search to explore ncRNA sequences Basic Protocol 3: Using RNAcentral sequence search Basic Protocol 4: Using RNAcentral FTP archive Support Protocol 1: Using web APIs for programmatic data access Support Protocol 2: Using public Postgres database to export large datasets Support Protocol 3: Analyze non-coding RNA in RNA-seq datasets using RNAcentral and Galaxy.
Collapse
Affiliation(s)
- Blake A Sweeney
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Arina A Tagmazian
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK.,Federal State Budget Scientific Institution Center of Experimental Embryology and Reproductive Biotechnologies, Moscow, Russia
| | - Carlos E Ribas
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Robert D Finn
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Alex Bateman
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Anton I Petrov
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| |
Collapse
|