1
|
Ezer S, Ronin N, Yanovsky-Dagan S, Rotem-Bamberger S, Halstuk O, Wexler Y, Ben-Moshe Z, Plaschkes I, Benyamini H, Saada A, Inbal A, Harel T. Transcriptome analysis of atad3-null zebrafish embryos elucidates possible disease mechanisms. Orphanet J Rare Dis 2025; 20:181. [PMID: 40234890 PMCID: PMC12001410 DOI: 10.1186/s13023-025-03709-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 04/02/2025] [Indexed: 04/17/2025] Open
Abstract
BACKGROUND ATAD3A, a nuclear gene encoding the ATAD3A protein, has diverse roles in mitochondrial processes, encompassing mitochondrial dynamics, mitochondrial DNA maintenance, metabolic pathways and inter-organellar interactions. Pathogenic variants in this gene cause neurological diseases in humans with recognizable genotype-phenotype correlations. Yet, gaps in knowledge remain regarding the underlying pathogenesis. METHODS To further investigate the gene function and its implication in health and disease, we utilized CRISPR/Cas9 genome editing to generate a knockout model of the zebrafish ortholog gene, atad3. We characterized the phenotype of the null model, performed mitochondrial and functional tests, and compared the transcriptome of null embryos to their healthy siblings. RESULTS Analysis of atad3-null zebrafish embryos revealed microcephaly, small eyes, pericardial edema and musculature thinning, closely mirroring the human rare disease phenotype. Larvae exhibited delayed hatching and embryonic lethality by 13 days post-fertilization (dpf). Locomotor activity, ATP content, mitochondrial content, and mitochondrial activity were all reduced in the mutant embryos. Transcriptome analysis at 3 dpf via RNA-sequencing indicated decline in most mitochondrial pathways, accompanied by a global upregulation of cytosolic tRNA synthetases, presumably secondary to mitochondrial stress and possibly endoplasmic reticulum (ER)-stress. Differential expression of select genes was corroborated in fibroblasts from an affected individual. CONCLUSIONS The atad3-null zebrafish model emerges as a reliable representation of human ATAD3A-associated disorders, with similarities in differentially expressed pathways and processes. Furthermore, our study underscores mitochondrial dysfunction as the primary underlying pathogenic mechanism in ATAD3A-associated disorders and identifies potential readouts for therapeutic studies.
Collapse
Affiliation(s)
- Shlomit Ezer
- Department of Genetics, Hadassah Medical Organization, Jerusalem, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nathan Ronin
- Department of Medical Neurobiology, Institute for Medical Research-Israel-Canada, Jerusalem, Israel
- The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | | - Shahar Rotem-Bamberger
- Department of Medical Neurobiology, Institute for Medical Research-Israel-Canada, Jerusalem, Israel
- The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Orli Halstuk
- Department of Genetics, Hadassah Medical Organization, Jerusalem, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yair Wexler
- Department of Neurobiology, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel Aviv, Israel
| | - Zohar Ben-Moshe
- Department of Neurobiology, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel Aviv, Israel
| | - Inbar Plaschkes
- Info-CORE, Bioinformatics Unit of the I-CORE, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Hadar Benyamini
- Info-CORE, Bioinformatics Unit of the I-CORE, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ann Saada
- Department of Genetics, Hadassah Medical Organization, Jerusalem, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Laboratory Sciences, Hadassah Academic College , Jerusalem, Israel
| | - Adi Inbal
- Department of Medical Neurobiology, Institute for Medical Research-Israel-Canada, Jerusalem, Israel
- The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Tamar Harel
- Department of Genetics, Hadassah Medical Organization, Jerusalem, Israel.
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.
- Department of Genetics, Hadassah-Hebrew University Medical Center, POB 12000, Jerusalem, Israel.
| |
Collapse
|
2
|
Wang B, Cai J, Fang L, Ma P, Leung YF. Tensor analysis of animal behavior by matricization and feature selection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.28.635088. [PMID: 39975151 PMCID: PMC11838277 DOI: 10.1101/2025.01.28.635088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Contemporary neurobehavior research often collects multi-dimensional tensor (MDT) data, consisting of time-series measurements for multiple features from multiple animals subjected to various perturbations. Proper analysis of the MDT data can facilitate the dissection of the underlying neural circuitry driving the behavior. However, many common approaches for MDT analysis, such as tensor decomposition, often yield results that are difficult to interpret and not directly compatible with standard multivariate analysis (MVA), which is designed for simpler, lower-dimensional data structures. To address this issue, dimensionality reduction techniques, including matricization methods such as Index Construction and Feature Concatenation, are applied to transform all or a subset of the features in the MDT into a lower-dimensional tensor, commonly a 2-dimensional tensor (2DT), that is compatible with MVA. However, the matricization methods may exclude information from the MDT features or create too many 2DT features that introduce spurious noise to the downstream analyses. Their impacts on the downstream MVA performance remain elusive. In this study, we systematically evaluated different approaches for matricization and feature selection and their impacts on MVA performance using an MDT dataset of zebrafish visual- motor response collected from wild-types (WTs) and visually-impaired mutants. We matricized the MDT dataset using various Index Construction and Feature Concatenation methods, then identified informative 2DT features using the filter and embedded methods. To evaluate these feature-selection approaches, we conducted a classification task distinguishing WT and visually-impaired zebrafish by multiple classifiers. We then assessed classification performance with cross-validation and holdout validation. We found that most classifiers performed the best when using all 2DT features matricized by Feature Concatenation and selected by the embedded method. The results also revealed unique behavioral differences between the WTs and visually-impaired mutants that were not identified by standard MVA or MDT analysis. Our results demonstrate the utility of analyzing MDT behavioral data by matricization and feature selection.
Collapse
|
3
|
Wexler Y, Huang D, Medvetzky A, Armbruster D, Driever W, Yan J, Gothilf Y. Zebrafish Dark-Dependent Behavior Requires Phototransduction by the Pineal Gland. J Pineal Res 2024; 76:e70021. [PMID: 39711421 DOI: 10.1111/jpi.70021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 12/24/2024]
Abstract
Located dorsally underneath a thin translucent skull in many teleosts, the pineal gland is a photoreceptive organ known as a key element of the circadian clock system. Nevertheless, the presence of additional routes of photoreception presents a challenge in determining its specific roles in regulating photic-related behavior. Here, we show the importance of the pineal gland in mediating a prolonged motor response of zebrafish larvae to sudden darkness, both as a photodetector and as a circadian pacemaker. This was evident by a reduced motor response of Bsx-deficient larvae, lacking a pineal gland, to sudden darkness. Moreover, the typical daily rhythm of the intensity of this response was lost in the pineal-less larvae. In contrast, motor response to a sudden increase in illumination was unaffected. Furthermore, we show that the pineal-mediated behavioral response to darkness requires two elements: the photoreceptor cells and the projecting neurons. Dark response was impaired in larvae whose pineal photoreceptor cells were genetically ablated and in larvae whose pineal projecting neurons had undergone laser-axotomy. This study thus establishes the pineal gland as a mediator of dark-dependent behavior and reveals underlying cellular components involved in transducing information about darkness to the brain.
Collapse
Affiliation(s)
- Yair Wexler
- School of Neurobiology, Biochemistry and Biophysics, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel Aviv, Israel
| | - Dengfeng Huang
- State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | - Adar Medvetzky
- School of Neurobiology, Biochemistry and Biophysics, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel Aviv, Israel
| | - Daniel Armbruster
- Developmental Biology, Institute Biology I, Faculty of Biology, University of Freiburg, Freiburg, Germany
- CIBSS and BIOSS-Centres for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Wolfgang Driever
- Developmental Biology, Institute Biology I, Faculty of Biology, University of Freiburg, Freiburg, Germany
- CIBSS and BIOSS-Centres for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Jun Yan
- State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | - Yoav Gothilf
- School of Neurobiology, Biochemistry and Biophysics, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel-Aviv University, Tel AvivTel Aviv, Israel
| |
Collapse
|
4
|
Wen L, Man X, Luan J, Zhang S, Zhao C, Bao Y, Liu C, Feng X. Early-life exposure to five biodegradable plastics impairs eye development and visually-mediated behavior through disturbing hypothalamus-pituitary-thyroid (HPT) axis in zebrafish larvae. Comp Biochem Physiol C Toxicol Pharmacol 2024; 284:109981. [PMID: 39033795 DOI: 10.1016/j.cbpc.2024.109981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/09/2024] [Accepted: 07/18/2024] [Indexed: 07/23/2024]
Abstract
Biodegradable plastics have been commonly developed and applied as an alternative to traditional plastics, which cause environmental plastic pollution. However, biodegradable plastics still present limitations such as stringent degradation conditions and slow degradation rate, and may cause harm to the environment and organisms. Consequently, in this study, zebrafish was used to evaluate the effects of five biodegradable microplastics (MPs), polyglycolic acid (PGA), polylactic acid (PLA), polybutylene succinate (PBS), polyhydroxyalkanoate (PHA) and polybutylene adipate terephthalate (PBAT) exposure on the early development, retina morphology, visually-mediated behavior, and thyroid signaling at concentrations of 1 mg/L and 100 mg/L. The results indicated that all MPs induced decreased survival rate, reduced body length, smaller eyes, and smaller heads, affecting the early development of zebrafish larvae. Moreover, the thickness of retinal layers, including inner plexiform layer (IPL), outer nuclear layer (ONL), and retinal ganglion layer (RGL) was decreased, and the expression of key genes related to eye and retinal development was abnormally altered after all MPs exposure. Exposure to PBS and PBAT led to abnormal visually-mediated behavior, indicating likely affected the visual function. All MPs could also cause thyroid system disorders, among which alterations in the thyroid hormone receptors (TRs) genes could affect the retinal development of zebrafish larvae. In summary, biodegradable MPs exhibited eye developmental toxicity and likely impaired the visual function in zebrafish larvae. This provided new evidence for revealing the effects of biodegradable plastics on aquatic organism development and environmental risks to aquatic ecosystems.
Collapse
Affiliation(s)
- Liang Wen
- China Shenhua Coal to Liquid and Chemical CO., LTD. of China Energy, Beijing 100011, China
| | - Xiaoting Man
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Jialu Luan
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Shuhui Zhang
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Chengtian Zhao
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Yehua Bao
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Congzhi Liu
- China Shenhua Coal to Liquid and Chemical CO., LTD. of China Energy, Beijing 100011, China.
| | - Xizeng Feng
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China.
| |
Collapse
|
5
|
Zhang JL, Fan DG, Yin W, Hu B. CM082 suppresses hypoxia-induced retinal neovascularization in larval zebrafish. Front Pharmacol 2024; 15:1336249. [PMID: 39135806 PMCID: PMC11317304 DOI: 10.3389/fphar.2024.1336249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 07/15/2024] [Indexed: 08/15/2024] Open
Abstract
Retinal neovascularization is a common feature of several ocular neovascular diseases, which are the leading cause of blindness in the world. Current treatments are administered through invasive intravitreal injections, leading to poor patient compliance, serious ocular complications and heavy economic burdens. Thus, an alternative less or non-invasive therapeutic strategy is in demand. Here, a non-invasive oral tyrosine kinase inhibitor, CM082, was evaluated in a retinal neovascularization model induced by hypoxia in zebrafish larvae. We found that CM082 effectively suppressed retinal neovascularization, rescued cell loss in the retinal ganglion cell layer, and rescued the visual function deficiency. Our results elucidated that CM082 mediated its therapeutic efficacy primarily through the inhibition of Vegfr2 phosphorylation. The findings demonstrated that CM082 possessed strong antiangiogenic effects and may serve as a potential treatment for angiogenesis in ocular neovascular diseases.
Collapse
Affiliation(s)
- Jun-long Zhang
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Ding-gang Fan
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Wu Yin
- Department of Geriatrics, Gerontology Institute of Anhui Province, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Anhui Province Key Laboratory of Geriatric Immunology and Nutrition Therapy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Bing Hu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
6
|
Wu X, Chan YS, Xiang B, Zhang W, Luk KM, Cheng SH, Leung YF, Chan RHM. Scalable Neuroanatomical and Behavioral Phenotyping of Radio Frequency Radiation on Young Zebrafish. IEEE OPEN JOURNAL OF ENGINEERING IN MEDICINE AND BIOLOGY 2024; 6:89-99. [PMID: 39564560 PMCID: PMC11573389 DOI: 10.1109/ojemb.2024.3420247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/08/2024] [Accepted: 06/20/2024] [Indexed: 11/21/2024] Open
Abstract
Objective: In our wireless-centric world, evaluating the health effects of radio frequency electromagnetic radiation (RF-EMR) is crucial. An existing research gap pertains to the replication of real-world specific absorption rates (SAR) for RF-EMR, especially within aquatic environments. We aimed to bridge this gap using an innovative TEM cell platform to replicate realistic SAR conditions in water and assess RF-EMR's impact on neuroanatomical and behavioral changes. Results: We examined RF-EMR effects on zebrafish embryos exposed to RF-EMR during the 4-58 hours post-fertilization phase. Temporary neuroanatomical enlargements and minor behavioral shifts were observed, diminishing by day 8 post-fertilization. Conclusion: Short-term RF-EMR exposure at tested levels did not yield significant long-term effects. Nevertheless, investigating prolonged exposure remains imperative. Our study serves as a pioneering model for future investigations into the biological consequences of RF-EMR exposure, highlighting the importance of assessing its health implications in our wireless-centric world.
Collapse
Affiliation(s)
- Xiaoli Wu
- State Key Laboratory of Terahertz and Millimeter Waves, Department of Electrical EngineeringCity University of Hong Kong Hong Kong SAR China
| | - Yu Suen Chan
- Department of Biomedical SciencesCity University of Hong Kong Hong Kong SAR China
| | - Bingjie Xiang
- State Key Laboratory of Terahertz and Millimeter Waves, Department of Electrical EngineeringCity University of Hong Kong Hong Kong SAR China
| | - Wenhui Zhang
- State Key Laboratory of Terahertz and Millimeter Waves, Department of Electrical EngineeringCity University of Hong Kong Hong Kong SAR China
| | - Kwai-Man Luk
- State Key Laboratory of Terahertz and Millimeter Waves, Department of Electrical EngineeringCity University of Hong Kong Hong Kong SAR China
| | - Shuk Han Cheng
- Department of Biomedical SciencesCity University of Hong Kong Hong Kong SAR China
| | - Yuk Fai Leung
- Department of Biological SciencesPurdue University West Lafayette IN 47907 USA
| | - Rosa H M Chan
- State Key Laboratory of Terahertz and Millimeter Waves, Department of Electrical EngineeringCity University of Hong Kong Hong Kong SAR China
| |
Collapse
|
7
|
Valentim AM. Behavioral Profiling of Zebrafish (Danio rerio) Larvae: Activity, Anxiety, Avoidance, and Startle Response. Methods Mol Biol 2024; 2753:421-446. [PMID: 38285357 DOI: 10.1007/978-1-0716-3625-1_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Apart from morphological, biochemical, and genetic alterations induced by teratogen compounds, there is an increased interest in characterizing behavioral alterations. Behavior is a sensitive parameter that can provide information regarding developmental disruptions non-invasively. Behavioral disturbances interfere with animals' capacity to cope with the environment, having an impact on the organism's life. Hereby, behavioral assays consisting of recording larvae in multi-well plates, Petri dishes, or cuvettes and video analysis using adequate software, allowing teratogen screening of behavior, are proposed. Examples of how to evaluate locomotor, anxiety-like and avoidance-like behaviors, and the integrity of sensory-motor functions and learning are discussed in this chapter.
Collapse
Affiliation(s)
- Ana M Valentim
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
8
|
Gómez Sánchez A, Colucci P, Moran A, Moya López A, Colligris B, Álvarez Y, Kennedy BN. Systemic treatment with cigarette smoke extract affects zebrafish visual behaviour, intraocular vasculature morphology and outer segment phagocytosis. OPEN RESEARCH EUROPE 2023; 3:48. [PMID: 38283058 PMCID: PMC10822043 DOI: 10.12688/openreseurope.15491.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 11/21/2023] [Indexed: 01/30/2024]
Abstract
Introduction Cigarette smoking adversely affects multiple aspects of human health including eye disorders such as age-related macular degeneration, cataracts and dry eye disease. However, there remains a knowledge gap in how constituents of cigarette smoke affect vision and retinal biology. We used zebrafish to assess effects of short-term acute exposure to cigarette smoke extract (CSE) on visual behaviour and retinal biology. Methods Zebrafish larvae with a developed visual system at three days post-fertilization (dpf) were exposed to CSE for 4, 24 or 48 hours. Visual behaviour, hyaloid vasculature morphology, retinal histology, oxidative stress gene expression and outer segment phagocytosis were investigated using visual behavioural optokinetic and visual motor response assays (OKR and VMR), microscopy (light, fluorescence and transmission electron microscopy), and real-time PCR. Results In zebrafish larvae, 48 hours of CSE treatment resulted in significantly reduced visual behaviour. Larvae treated with 10, 15 or 20 μg/mL CSE showed an average of 13.7, 10.7 or 9.4 saccades per minute, respectively, significantly lower compared with 0.05% DMSO controls (p=0.0093, p=0.0004 and p<0.0001, respectively) that exhibited 19.7 saccades per minute. The diameter of intraocular vessels increased from 4.833 μm in 0.05% DMSO controls to 5.885 μm in the 20 μg/mL CSE-treated larvae (p=0.0333). Biometry analysis highlighted a significant axial length elongation in 20 μg/mL CSE-treated larvae (216.9 μm, p<0.0001) compared to 0.05% dimethyl sulfoxide (DMSO) controls (205.1 μm). Larvae exposed to 20 μg/mL CSE had significantly (p=0.0002) higher numbers of RPE phagosomes compared to vehicle controls (0.1425 and 0.093 phagosomes/μm RPE, respectively). Conclusions Zebrafish larvae with a developed visual system display apparent defects in visual behaviour and retinal biology after acute exposure to CSE, establishing a valuable in vivo model to investigate ocular disorders related to cigarette smoke.
Collapse
Affiliation(s)
- Alicia Gómez Sánchez
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, D04 V1W8, Ireland
- Ocupharm Diagnostic Group Research, Faculty of Optic and Optometry, Complutense University of Madrid, Madrid, Spain
| | - Patrizia Colucci
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, D04 V1W8, Ireland
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Ailis Moran
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, D04 V1W8, Ireland
| | - Alexandro Moya López
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, D04 V1W8, Ireland
- Ocupharm Diagnostic Group Research, Faculty of Optic and Optometry, Complutense University of Madrid, Madrid, Spain
| | - Basilio Colligris
- Ocupharm Diagnostic Group Research, Faculty of Optic and Optometry, Complutense University of Madrid, Madrid, Spain
| | - Yolanda Álvarez
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, D04 V1W8, Ireland
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, D04 V1W8, Ireland
| | - Breandán N. Kennedy
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, D04 V1W8, Ireland
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, D04 V1W8, Ireland
| |
Collapse
|
9
|
Pungor JR, Allen VA, Songco-Casey JO, Niell CM. Functional organization of visual responses in the octopus optic lobe. Curr Biol 2023; 33:2784-2793.e3. [PMID: 37343556 PMCID: PMC11056276 DOI: 10.1016/j.cub.2023.05.069] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/24/2023] [Accepted: 05/30/2023] [Indexed: 06/23/2023]
Abstract
Cephalopods are highly visual animals with camera-type eyes, large brains, and a rich repertoire of visually guided behaviors. However, the cephalopod brain evolved independently from those of other highly visual species, such as vertebrates; therefore, the neural circuits that process sensory information are profoundly different. It is largely unknown how their powerful but unique visual system functions, as there have been no direct neural measurements of visual responses in the cephalopod brain. In this study, we used two-photon calcium imaging to record visually evoked responses in the primary visual processing center of the octopus central brain, the optic lobe, to determine how basic features of the visual scene are represented and organized. We found spatially localized receptive fields for light (ON) and dark (OFF) stimuli, which were retinotopically organized across the optic lobe, demonstrating a hallmark of visual system organization shared across many species. An examination of these responses revealed transformations of the visual representation across the layers of the optic lobe, including the emergence of the OFF pathway and increased size selectivity. We also identified asymmetries in the spatial processing of ON and OFF stimuli, which suggest unique circuit mechanisms for form processing that may have evolved to suit the specific demands of processing an underwater visual scene. This study provides insight into the neural processing and functional organization of the octopus visual system, highlighting both shared and unique aspects, and lays a foundation for future studies of the neural circuits that mediate visual processing and behavior in cephalopods.
Collapse
Affiliation(s)
- Judit R Pungor
- Department of Biology and Institute of Neuroscience, University of Oregon, Eugene, OR 97405, USA.
| | - V Angelique Allen
- Department of Biology and Institute of Neuroscience, University of Oregon, Eugene, OR 97405, USA
| | - Jeremea O Songco-Casey
- Department of Biology and Institute of Neuroscience, University of Oregon, Eugene, OR 97405, USA
| | - Cristopher M Niell
- Department of Biology and Institute of Neuroscience, University of Oregon, Eugene, OR 97405, USA.
| |
Collapse
|
10
|
Poudel S, Rahimi-Nasrabadi H, Jin J, Najafian S, Alonso JM. Differences in visual stimulation between reading and walking and implications for myopia development. J Vis 2023; 23:3. [PMID: 37014657 PMCID: PMC10080958 DOI: 10.1167/jov.23.4.3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 02/11/2023] [Indexed: 04/05/2023] Open
Abstract
Visual input plays an important role in the development of myopia (nearsightedness), a visual disorder that blurs vision at far distances. The risk of myopia progression increases with the time spent reading and decreases with outdoor activity for reasons that remain poorly understood. To investigate the stimulus parameters driving this disorder, we compared the visual input to the retina of humans performing two tasks associated with different risks of myopia progression, reading and walking. Human subjects performed the two tasks while wearing glasses with cameras and sensors that recorded visual scenes and visuomotor activity. When compared with walking, reading black text in white background reduced spatiotemporal contrast in central vision and increased it in peripheral vision, leading to a pronounced reduction in the ratio of central/peripheral strength of visual stimulation. It also made the luminance distribution heavily skewed toward negative dark contrast in central vision and positive light contrast in peripheral vision, decreasing the central/peripheral stimulation ratio of ON visual pathways. It also decreased fixation distance, blink rate, pupil size, and head-eye coordination reflexes dominated by ON pathways. Taken together with previous work, these results support the hypothesis that reading drives myopia progression by understimulating ON visual pathways.
Collapse
Affiliation(s)
- Sabina Poudel
- Department of Biological and Visual Sciences, SUNY College of Optometry, New York, NY, USA
| | - Hamed Rahimi-Nasrabadi
- Department of Biological and Visual Sciences, SUNY College of Optometry, New York, NY, USA
| | - Jianzhong Jin
- Department of Biological and Visual Sciences, SUNY College of Optometry, New York, NY, USA
| | - Sohrab Najafian
- Department of Biological and Visual Sciences, SUNY College of Optometry, New York, NY, USA
| | - Jose-Manuel Alonso
- Department of Biological and Visual Sciences, SUNY College of Optometry, New York, NY, USA
| |
Collapse
|
11
|
Abstract
The primary visual cortex signals the onset of light and dark stimuli with ON and OFF cortical pathways. Here, we demonstrate that both pathways generate similar response increments to large homogeneous surfaces and their response average increases with surface brightness. We show that, in cat visual cortex, response dominance from ON or OFF pathways is bimodally distributed when stimuli are smaller than one receptive field center but unimodally distributed when they are larger. Moreover, whereas small bright stimuli drive opposite responses from ON and OFF pathways (increased versus suppressed activity), large bright surfaces drive similar response increments. We show that this size-brightness relation emerges because strong illumination increases the size of light surfaces in nature and both ON and OFF cortical neurons receive input from ON thalamic pathways. We conclude that visual scenes are perceived as brighter when the average response increments from ON and OFF cortical pathways become stronger. Mazade et al. find that the visual cortex encodes brightness differently for small than large stimuli. Bright small stimuli drive cortical pathways signaling lights and suppress cortical pathways signaling darks. Conversely, large surfaces drive response increments from both pathways and appear brightest when the response average is strongest.
Collapse
|
12
|
Chen ZF, Lin ZC, Lu SQ, Chen XF, Liao XL, Qi Z, Cai Z. Azole-Induced Color Vision Deficiency Associated with Thyroid Hormone Signaling: An Integrated In Vivo, In Vitro, and In Silico Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:13264-13273. [PMID: 36082512 DOI: 10.1021/acs.est.2c05328] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Azoles that are used in pesticides, pharmaceuticals, and personal care products can have toxic effects on fish. However, there is no information regarding azole-induced visual disorder associated with thyroid disruption. We evaluated changes in retinal morphology, optokinetic response, transcript abundance of the genes involved in color perception and hypothalamic-pituitary-thyroid (HPT) axis, and thyroid hormone (TH) levels in zebrafish larvae exposed to common azoles, such as climbazole (CBZ, 0.1 and 10 μg/L) and triadimefon (TDF, 50 and 500 μg/L), at environmentally relevant and predicted worst-case environmental concentrations. Subsequently, the effect of azoles on TH-dependent GH3 cell proliferation and thyroid receptor (TR)-regulated transcriptional activity, as well as the in silico binding affinity between azoles and TR isoforms, was investigated. Azole exposure decreased cell densities of the ganglion cell layer, inner nuclear layer, and photoreceptor layer. Zebrafish larvae exposed to environmentally relevant concentrations of CBZ and TDF showed a decrease in optokinetic response to green-white and red-white stripes but not blue-white stripes, consistent with disturbance in the corresponding opsin gene expression. Azole exposure also reduced triiodothyronine levels and concomitantly increased HPT-related gene expression. Molecular docking analysis combined with in vitro TR-mediated transactivation and dual-luciferase reporter assays demonstrated that CBZ and TDF exhibited TR antagonism. These results are comparable to those obtained from a known TR antagonist, namely, TR antagonist 1, as a positive control. Therefore, damage to specific color perception by azoles appears to result from lowered TH signaling, indicating the potential threat of environmental TH disruptors to the visual function of fish.
Collapse
Affiliation(s)
- Zhi-Feng Chen
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhi-Cheng Lin
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Si-Qi Lu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiao-Fan Chen
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiao-Liang Liao
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Zenghua Qi
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Zongwei Cai
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China
| |
Collapse
|
13
|
Aung MH, Hogan K, Mazade RE, Park HN, Sidhu CS, Iuvone PM, Pardue MT. ON than OFF pathway disruption leads to greater deficits in visual function and retinal dopamine signaling. Exp Eye Res 2022; 220:109091. [PMID: 35487263 PMCID: PMC9701101 DOI: 10.1016/j.exer.2022.109091] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/15/2022] [Accepted: 04/20/2022] [Indexed: 11/19/2022]
Abstract
The visual system uses ON and OFF pathways to signal luminance increments and decrements. Increasing evidence suggests that ON and OFF pathways have different signaling properties and serve specialized visual functions. However, it is still unclear the contribution of ON and OFF pathways to visual behavior. Therefore, we examined the effects on optomotor response and the retinal dopamine system in nob mice with ON pathway dysfunction and Vsx1-/- mice with partial OFF pathway dysfunction. Spatial frequency and contrast sensitivity thresholds were determined, and values were compared to age-matched wild-type controls. Retinas were collected immediately after visual testing to measure levels of dopamine and its metabolite, DOPAC. At 4 weeks of age, we found that nob mice had significantly reduced spatial frequency (19%) and contrast sensitivity (60%) thresholds compared to wild-type mice. Vsx1-/- mice also exhibited reductions in optomotor responses (3% in spatial frequency; 18% in contrast sensitivity) at 4 weeks, although these changes were significantly smaller than those found in nob mice. Furthermore, nob mice had significantly lower DOPAC levels (53%) and dopamine turnover (41%) compared to controls while Vsx1-/- mice displayed a transient increase in DOPAC levels at 4 weeks of age (55%). Our results show that dysfunction of ON pathways leads to reductions in contrast sensitivity, spatial frequency threshold, and retinal dopamine turnover whereas partial loss of the OFF pathway has minimal effect. We conclude that ON pathways play a critical role in visual reflexes and retinal dopamine signaling, highlighting a potential association for future investigations.
Collapse
Affiliation(s)
- Moe H Aung
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Health Care System, 1670 Clairmont Rd, Decatur, GA, 30033, USA; Neuroscience Program, Emory University School of Medicine, 1365 Clifton Rd NE, Atlanta, GA, 30322, USA; Department of Ophthalmology, Dell Medical School, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Kelleigh Hogan
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Health Care System, 1670 Clairmont Rd, Decatur, GA, 30033, USA; Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Dr, Atlanta, GA, 30332, USA
| | - Reece E Mazade
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Health Care System, 1670 Clairmont Rd, Decatur, GA, 30033, USA; Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Dr, Atlanta, GA, 30332, USA
| | - Han Na Park
- Neuroscience Program, Emory University School of Medicine, 1365 Clifton Rd NE, Atlanta, GA, 30322, USA; Department of Ophthalmology, Emory University School of Medicine, 1365 Clifton Road NE, Atlanta, GA, 0322, USA
| | - Curran S Sidhu
- Department of Ophthalmology, Emory University School of Medicine, 1365 Clifton Road NE, Atlanta, GA, 0322, USA
| | - P Michael Iuvone
- Neuroscience Program, Emory University School of Medicine, 1365 Clifton Rd NE, Atlanta, GA, 30322, USA; Department of Ophthalmology, Emory University School of Medicine, 1365 Clifton Road NE, Atlanta, GA, 0322, USA
| | - Machelle T Pardue
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Health Care System, 1670 Clairmont Rd, Decatur, GA, 30033, USA; Neuroscience Program, Emory University School of Medicine, 1365 Clifton Rd NE, Atlanta, GA, 30322, USA; Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Dr, Atlanta, GA, 30332, USA; Department of Ophthalmology, Emory University School of Medicine, 1365 Clifton Road NE, Atlanta, GA, 0322, USA.
| |
Collapse
|
14
|
Jarema KA, Hunter DL, Hill BN, Olin JK, Britton KN, Waalkes MR, Padilla S. Developmental Neurotoxicity and Behavioral Screening in Larval Zebrafish with a Comparison to Other Published Results. TOXICS 2022; 10:256. [PMID: 35622669 PMCID: PMC9145655 DOI: 10.3390/toxics10050256] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/29/2022] [Accepted: 05/07/2022] [Indexed: 02/04/2023]
Abstract
With the abundance of chemicals in the environment that could potentially cause neurodevelopmental deficits, there is a need for rapid testing and chemical screening assays. This study evaluated the developmental toxicity and behavioral effects of 61 chemicals in zebrafish (Danio rerio) larvae using a behavioral Light/Dark assay. Larvae (n = 16-24 per concentration) were exposed to each chemical (0.0001-120 μM) during development and locomotor activity was assessed. Approximately half of the chemicals (n = 30) did not show any gross developmental toxicity (i.e., mortality, dysmorphology or non-hatching) at the highest concentration tested. Twelve of the 31 chemicals that did elicit developmental toxicity were toxic at the highest concentration only, and thirteen chemicals were developmentally toxic at concentrations of 10 µM or lower. Eleven chemicals caused behavioral effects; four chemicals (6-aminonicotinamide, cyclophosphamide, paraquat, phenobarbital) altered behavior in the absence of developmental toxicity. In addition to screening a library of chemicals for developmental neurotoxicity, we also compared our findings with previously published results for those chemicals. Our comparison revealed a general lack of standardized reporting of experimental details, and it also helped identify some chemicals that appear to be consistent positives and negatives across multiple laboratories.
Collapse
Affiliation(s)
- Kimberly A. Jarema
- Center for Public Health and Environmental Assessment, Immediate Office, Program Operations Staff, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Deborah L. Hunter
- Center for Computational Toxicology and Exposure, Biomolecular and Computational Toxicology Division, Rapid Assay Development Branch, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA; (D.L.H.); (J.K.O.)
| | - Bridgett N. Hill
- ORISE Research Participation Program Hosted by EPA, Center for Computational Toxicology and Exposure, Biomolecular and Computational Toxicology Division, Rapid Assay Development Branch, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA;
| | - Jeanene K. Olin
- Center for Computational Toxicology and Exposure, Biomolecular and Computational Toxicology Division, Rapid Assay Development Branch, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA; (D.L.H.); (J.K.O.)
| | - Katy N. Britton
- ORAU Research Participation Program Hosted by EPA, Center for Computational Toxicology and Exposure, Biomolecular and Computational Toxicology Division, Rapid Assay Development Branch, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA;
| | - Matthew R. Waalkes
- ORISE Research Participation Program Hosted by EPA, National Health and Environmental Effects Research Laboratory, Integrated Systems Toxicology Division, Genetic and Cellular Toxicology Branch, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA;
| | - Stephanie Padilla
- Center for Computational Toxicology and Exposure, Biomolecular and Computational Toxicology Division, Rapid Assay Development Branch, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA; (D.L.H.); (J.K.O.)
| |
Collapse
|
15
|
Ichinose T, Habib S. ON and OFF Signaling Pathways in the Retina and the Visual System. FRONTIERS IN OPHTHALMOLOGY 2022; 2:989002. [PMID: 36926308 PMCID: PMC10016624 DOI: 10.3389/fopht.2022.989002] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Visual processing starts at the retina of the eye, and signals are then transferred primarily to the visual cortex and the tectum. In the retina, multiple neural networks encode different aspects of visual input, such as color and motion. Subsequently, multiple neural streams in parallel convey unique aspects of visual information to cortical and subcortical regions. Bipolar cells, which are the second order neurons of the retina, separate visual signals evoked by light and dark contrasts and encode them to ON and OFF pathways, respectively. The interplay between ON and OFF neural signals is the foundation for visual processing for object contrast which underlies higher order stimulus processing. ON and OFF pathways have been classically thought to signal in a mirror-symmetric manner. However, while these two pathways contribute synergistically to visual perception in some instances, they have pronounced asymmetries suggesting independent operation in other cases. In this review, we summarize the role of the ON-OFF dichotomy in visual signaling, aiming to contribute to the understanding of visual recognition.
Collapse
Affiliation(s)
- Tomomi Ichinose
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, USA
- Correspondence: Tomomi Ichinose, MD, PhD,
| | - Samar Habib
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Medical Parasitology, Mansoura Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
16
|
Chen XF, Chen ZF, Lin ZC, Liao XL, Zou T, Qi Z, Cai Z. Toxic effects of triclocarban on larval zebrafish: A focus on visual dysfunction. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 241:106013. [PMID: 34731642 DOI: 10.1016/j.aquatox.2021.106013] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/07/2021] [Accepted: 10/24/2021] [Indexed: 06/13/2023]
Abstract
Triclocarban (TCC) is considered an endocrine disruptor and shows antagonist activity on thyroid receptors. In view of the report that thyroid hormone signaling mediates retinal cone photoreceptor specification, we hypothesize that TCC could impair visual function, which is vital to wildlife. In order to verify our hypothesis, we assessed alteration in the retinal structure (retinal layer thickness and cell density), visually-mediated behavior, cone and rod opsin gene expression, and photoreceptor immunostaining in zebrafish larvae exposed to TCC at environmentally realistic concentrations (0.16 ± 0.005 µg/L, L-group) and one-fifth of the median lethal concentrations (25.4 ± 1.02 µg/L, H-group). Significant decrease in eye size, ganglion cell density, optokinetic response, and phototactic response can be observed in the L-group, while the thickness of outer nuclear layer, where the cell bodies of cone and rod cells are located, was significantly reduced with the down-regulation of critical opsin gene (opn1sw2, opn1mw1, opn1mw3, opn1lw1, opn1lw2, and rho) expression and rhodopsin immunofluorescence in the H-group. It should be noted that TCC could affect the sensitivity of zebrafish larvae to red and green light according to the results of behavioral and opsin gene expression analysis. These findings provide the first evidence to support our hypothesis that the visual system, a novel toxicological target, is affected by TCC. Consequently, we urgently call for a more in-depth exploration of TCC-induced ocular toxicity to aquatic organisms and even to humans.
Collapse
Affiliation(s)
- Xiao-Fan Chen
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhi-Feng Chen
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, South China Normal University, Guangzhou 510006, China.
| | - Zhi-Cheng Lin
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiao-Liang Liao
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Ting Zou
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Zenghua Qi
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Zongwei Cai
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China; State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China
| |
Collapse
|
17
|
Connaughton VP, Nelson R. Ganglion cells in larval zebrafish retina integrate inputs from multiple cone types. J Neurophysiol 2021; 126:1440-1454. [PMID: 34550015 DOI: 10.1152/jn.00082.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
We recently showed the presence of seven physiological cone opsins-R1 (575 nm), R2 (556 nm), G1 (460 nm), G3 (480 nm), B1 (415 nm), B2 (440 nm), and UV (358 nm)-in electroretinogram (ERG) recordings of larval zebrafish (Danio rerio) retina. Larval ganglion cells (GCs) are generally thought to integrate only four cone opsin signals (red, green, blue, and UV). We address the question as to whether they may integrate seven cone spectral signals. Here we examined the 127 possible combinations of seven cone signals to find the optimal representation, as based on impulse discharge data sets from GC axons in the larval optic nerve. We recorded four varieties of light-response waveform, sustained-ON, transient-ON, ON-OFF, and OFF, based on the time course of mean discharge rates to all stimulus wavelengths combined. Modeling of GC responses revealed that each received 1-6 cone opsin signals, with a mean of 3.8 ± 1.3 cone signals/GC. Most onset or offset responses were opponent (ON, 80%; OFF, 100%). The most common cone signals were UV (93%), R2 (50%), G3 (55%), and G1 (60%). Seventy-three percent of cone opsin signals were excitatory, and 27% were inhibitory. UV signals favored excitation, whereas G3 and B2 signals favored inhibition. R1/R2, G1/G3, and B1/B2 opsin signals were selectively associated along a nonsynergistic/opponent axis. Overall, these results suggest that larval zebrafish GC spectral responses are complex and use inputs from the seven expressed opsins.NEW & NOTEWORTHY Ganglion cells in larval zebrafish retina have complex spectral responses driven by seven different cone opsin types. UV cone inputs are significant and excitatory to ganglion cells, whereas green and blue cone inputs favor inhibition. Most dramatic are the pentachromatic cells. These responses were identified at 5-6 days after fertilization, reflecting an impressive level of color processing not seen in older fish or mammals.
Collapse
Affiliation(s)
- V P Connaughton
- Department of Biology, American University, Washington, District of Columbia
| | - R Nelson
- Neural Circuits Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
18
|
Faria M, Prats E, Rosas Ramírez JR, Bellot M, Bedrossiantz J, Pagano M, Valls A, Gomez-Canela C, Porta JM, Mestres J, Garcia-Reyero N, Faggio C, Gómez Oliván LM, Raldua D. Androgenic activation, impairment of the monoaminergic system and altered behavior in zebrafish larvae exposed to environmental concentrations of fenitrothion. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 775:145671. [PMID: 33621872 DOI: 10.1016/j.scitotenv.2021.145671] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/11/2021] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
Fenitrothion is an organophosphorus insecticide usually found in aquatic ecosystems at concentrations in the range of low ng/L. In this manuscript we show that 24 h exposure to environmental concentrations of fenitrothion, from ng/L to low μg/L, altered basal locomotor activity, visual-motor response and acoustic/vibrational escape response of zebrafish larvae. Furthermore, fenitrothion and expression of gap43a, gfap, atp2b1a, and mbp exhibited a significant non-monotonic concentration-response relationship. Once determined that environmental concentrations of fenitrothion were neurotoxic for zebrafish larvae, a computational analysis identified potential protein targets of this compound. Some of the predictions, including interactions with acetylcholinesterase, monoamine-oxidases and androgen receptor (AR), were experimentally validated. Binding to AR was the most suitable candidate for molecular initiating event, as indicated by both the up-regulation of cyp19a1b and sult2st3 and the non-monotonic relationship found between fenitrothion and the observed responses. Finally, when the integrity of the monoaminergic system was evaluated, altered levels of L-DOPA, DOPAC, HVA and 5-HIAA were found, as well as a significant up-regulation of slc18a2 expression at the lowest concentrations of fenitrothion. These data strongly suggest that concentrations of fenitrothion commonly found in aquatic ecosystems present a significant environmental risk for fish communities.
Collapse
Affiliation(s)
- Melissa Faria
- Institute for Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona, 18, 08034 Barcelona, Spain
| | - Eva Prats
- Research and Development Center (CID-CSIC), Jordi Girona 18, 08034 Barcelona, Spain
| | - Jonathan Ricardo Rosas Ramírez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n. Col. Residencial Colón, 50120 Toluca, Estado de México, Mexico
| | - Marina Bellot
- Department of Analytical Chemistry and Applied (Chromatography section), School of Engineering, Institut Químic de Sarrià-Universitat Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain
| | - Juliette Bedrossiantz
- Institute for Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona, 18, 08034 Barcelona, Spain
| | - Maria Pagano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, 31, 98166 Agata-Messina, Italy
| | - Arnau Valls
- Institut de Robòtica i Informàtica Industrial, CSIC-UPC, Barcelona, Spain
| | - Cristian Gomez-Canela
- Department of Analytical Chemistry and Applied (Chromatography section), School of Engineering, Institut Químic de Sarrià-Universitat Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain
| | - Josep M Porta
- Institut de Robòtica i Informàtica Industrial, CSIC-UPC, Barcelona, Spain
| | - Jordi Mestres
- Systems Pharmacology, Research Group on Biomedical Informatics (GRIB), IMIM Hospital del Mar Medical Research Institute and Universitat Pompeu Fabra, Parc de Recerca Biomèdica, Chemotargets SL, Parc Científic de Barcelona, Barcelona, Spain
| | - Natalia Garcia-Reyero
- Environmental Laboratory, US Army Engineer Research and Development Center, Vicksburg, MS, USA
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, 31, 98166 Agata-Messina, Italy
| | - Leobardo Manuel Gómez Oliván
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n. Col. Residencial Colón, 50120 Toluca, Estado de México, Mexico
| | - Demetrio Raldua
- Institute for Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona, 18, 08034 Barcelona, Spain.
| |
Collapse
|
19
|
Ganzen L, Ko MJ, Zhang M, Xie R, Chen Y, Zhang L, James R, Mumm J, van Rijn RM, Zhong W, Pang CP, Zhang M, Tsujikawa M, Leung YF. Drug screening with zebrafish visual behavior identifies carvedilol as a potential treatment for an autosomal dominant form of retinitis pigmentosa. Sci Rep 2021; 11:11432. [PMID: 34075074 PMCID: PMC8169685 DOI: 10.1038/s41598-021-89482-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 04/23/2021] [Indexed: 02/04/2023] Open
Abstract
Retinitis Pigmentosa (RP) is a mostly incurable inherited retinal degeneration affecting approximately 1 in 4000 individuals globally. The goal of this work was to identify drugs that can help patients suffering from the disease. To accomplish this, we screened drugs on a zebrafish autosomal dominant RP model. This model expresses a truncated human rhodopsin transgene (Q344X) causing significant rod degeneration by 7 days post-fertilization (dpf). Consequently, the larvae displayed a deficit in visual motor response (VMR) under scotopic condition. The diminished VMR was leveraged to screen an ENZO SCREEN-WELL REDOX library since oxidative stress is postulated to play a role in RP progression. Our screening identified a beta-blocker, carvedilol, that ameliorated the deficient VMR of the RP larvae and increased their rod number. Carvedilol may directly on rods as it affected the adrenergic pathway in the photoreceptor-like human Y79 cell line. Since carvedilol is an FDA-approved drug, our findings suggest that carvedilol can potentially be repurposed to treat autosomal dominant RP patients.
Collapse
Affiliation(s)
- Logan Ganzen
- grid.169077.e0000 0004 1937 2197Department of Biological Sciences, Purdue University, West Lafayette, IN 47907 USA ,grid.169077.e0000 0004 1937 2197Purdue University Life Sciences Program, Purdue University, West Lafayette, IN 47907 USA
| | - Mee Jung Ko
- grid.169077.e0000 0004 1937 2197Purdue University Life Sciences Program, Purdue University, West Lafayette, IN 47907 USA ,grid.169077.e0000 0004 1937 2197Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907 USA
| | - Mengrui Zhang
- grid.213876.90000 0004 1936 738XDepartment of Statistics, University of Georgia, Athens, GA 30602 USA
| | - Rui Xie
- grid.170430.10000 0001 2159 2859Department of Statistics and Data Science, University of Central Florida, Orlando, FL 32816 USA
| | - Yongkai Chen
- grid.213876.90000 0004 1936 738XDepartment of Statistics, University of Georgia, Athens, GA 30602 USA
| | - Liyun Zhang
- grid.21107.350000 0001 2171 9311Wilmer Eye Institute, John Hopkins School of Medicine, Baltimore, MD 21205 USA
| | - Rebecca James
- grid.169077.e0000 0004 1937 2197Department of Biological Sciences, Purdue University, West Lafayette, IN 47907 USA
| | - Jeff Mumm
- grid.21107.350000 0001 2171 9311Wilmer Eye Institute, John Hopkins School of Medicine, Baltimore, MD 21205 USA
| | - Richard M. van Rijn
- grid.169077.e0000 0004 1937 2197Purdue University Life Sciences Program, Purdue University, West Lafayette, IN 47907 USA ,grid.169077.e0000 0004 1937 2197Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907 USA ,grid.169077.e0000 0004 1937 2197Purdue Institute for Integrative Neuroscience, Purdue University, 610 Purdue Mall, West Lafayette, IN 47907 USA ,grid.169077.e0000 0004 1937 2197Purdue Institute for Drug Discovery, Purdue University, 610 Purdue Mall, West Lafayette, IN 47907 USA
| | - Wenxuan Zhong
- grid.213876.90000 0004 1936 738XDepartment of Statistics, University of Georgia, Athens, GA 30602 USA
| | - Chi Pui Pang
- grid.10784.3a0000 0004 1937 0482Department of Ophthalmology and Visual Sciences, Chinese University of Hong Kong, Hong Kong, China ,grid.263451.70000 0000 9927 110XJoint Shantou International Eye Center, Shantou University and the Chinese University of Hong Kong, Shantou, China
| | - Mingzhi Zhang
- grid.263451.70000 0000 9927 110XJoint Shantou International Eye Center, Shantou University and the Chinese University of Hong Kong, Shantou, China
| | - Motokazu Tsujikawa
- grid.136593.b0000 0004 0373 3971Department of Ophthalmology, Osaka University Graduate School of Medicine, Osaka, Japan ,grid.136593.b0000 0004 0373 3971Department of Clinical Laboratory and Biomedical Sciences, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yuk Fai Leung
- grid.169077.e0000 0004 1937 2197Department of Biological Sciences, Purdue University, West Lafayette, IN 47907 USA ,grid.257413.60000 0001 2287 3919Department of Biochemistry and Molecular Biology, Indiana University School of Medicine Lafayette, 625 Harrison Street, West Lafayette, IN 47907 USA ,grid.169077.e0000 0004 1937 2197Purdue Institute for Integrative Neuroscience, Purdue University, 610 Purdue Mall, West Lafayette, IN 47907 USA ,grid.169077.e0000 0004 1937 2197Purdue Institute for Drug Discovery, Purdue University, 610 Purdue Mall, West Lafayette, IN 47907 USA
| |
Collapse
|
20
|
Venkatraman P, Mills-Henry I, Padmanabhan KR, Pascuzzi P, Hassan M, Zhang J, Zhang X, Ma P, Pang CP, Dowling JE, Zhang M, Leung YF. Rods Contribute to Visual Behavior in Larval Zebrafish. Invest Ophthalmol Vis Sci 2021; 61:11. [PMID: 33049059 PMCID: PMC7571310 DOI: 10.1167/iovs.61.12.11] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Purpose Although zebrafish rods begin to develop as early as 2 days postfertilization (dpf), they are not deemed anatomically mature and functional until 15 to 21 dpf. A recent study detected a small electroretinogram (ERG) from rods in a cone mutant called no optokinetic response f (nof) at 5 dpf, suggesting that young rods are functional. Whether they can mediate behavioral responses in larvae is unknown. Methods We first confirmed rod function by measuring nof ERGs under photopic and scotopic illumination at 6 dpf. We evaluated the role of rods in visual behaviors using two different assays: the visual-motor response (VMR) and optokinetic response (OKR). We measured responses from wild-type (WT) larvae and nof mutants under photopic and scotopic illuminations at 6 dpf. Results Nof mutants lacked a photopic ERG. However, after prolonged dark adaptation, they displayed scotopic ERGs. Compared with WT larvae, the nof mutants displayed reduced VMRs. The VMR difference during light onset gradually diminished with decreased illumination and became nearly identical at lower light intensities. Additionally, light-adapted nof mutants did not display an OKR, whereas dark-adapted nof mutants displayed scotopic OKRs. Conclusions Because the nof mutants lacked a photopic ERG but displayed scotopic ERGs after dark adaptation, the mutants clearly had functional rods. WT larvae and the nof mutants displayed comparable scotopic light-On VMRs and scotopic OKRs after dark adaptation, suggesting that these responses were driven primarily by rods. Together, these observations indicate that rods contribute to zebrafish visual behaviors as early as 6 dpf.
Collapse
Affiliation(s)
- Prahatha Venkatraman
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States
| | - Ishara Mills-Henry
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States
| | | | - Pete Pascuzzi
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, United States.,Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana, United States.,Purdue University Libraries, Purdue University, West Lafayette, Indiana, United States
| | - Menna Hassan
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States
| | - Jingyi Zhang
- Center for Statistical Science, Tsinghua University, Beijing, China
| | - Xinlian Zhang
- Department of Statistics, University of Georgia, Athens, Georgia, United States
| | - Ping Ma
- Department of Statistics, University of Georgia, Athens, Georgia, United States
| | - Chi Pui Pang
- Department of Ophthalmology and Visual Sciences, Chinese University of Hong Kong, Hong Kong.,Joint Shantou International Eye Center, Shantou University and the Chinese University of Hong Kong, Shantou, China
| | - John E Dowling
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States
| | - Mingzhi Zhang
- Joint Shantou International Eye Center, Shantou University and the Chinese University of Hong Kong, Shantou, China
| | - Yuk Fai Leung
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States.,Department of Biochemistry and Molecular Biology, Indiana University School of Medicine Lafayette, West Lafayette, Indiana, United States.,Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana, United States.,Purdue Institute for Drug Discovery, Purdue University, West Lafayette, Indiana, United States
| |
Collapse
|
21
|
Fitzgerald JA, Könemann S, Krümpelmann L, Županič A, Vom Berg C. Approaches to Test the Neurotoxicity of Environmental Contaminants in the Zebrafish Model: From Behavior to Molecular Mechanisms. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:989-1006. [PMID: 33270929 DOI: 10.1002/etc.4951] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/15/2020] [Accepted: 11/29/2020] [Indexed: 06/12/2023]
Abstract
The occurrence of neuroactive chemicals in the aquatic environment is on the rise and poses a potential threat to aquatic biota of currently unpredictable outcome. In particular, subtle changes caused by these chemicals to an organism's sensation or behavior are difficult to tackle with current test systems that focus on rodents or with in vitro test systems that omit whole-animal responses. In recent years, the zebrafish (Danio rerio) has become a popular model organism for toxicological studies and testing strategies, such as the standardized use of zebrafish early life stages in the Organisation for Economic Co-operation and Development's guideline 236. In terms of neurotoxicity, the zebrafish provides a powerful model to investigate changes to the nervous system from several different angles, offering the ability to tackle the mechanisms of action of chemicals in detail. The mechanistic understanding gained through the analysis of this model species provides a good basic knowledge of how neuroactive chemicals might interact with a teleost nervous system. Such information can help infer potential effects occurring to other species exposed to neuroactive chemicals in their aquatic environment and predicting potential risks of a chemical for the aquatic ecosystem. In the present article, we highlight approaches ranging from behavioral to structural, functional, and molecular analysis of the larval zebrafish nervous system, providing a holistic view of potential neurotoxic outcomes. Environ Toxicol Chem 2021;40:989-1006. © 2020 SETAC.
Collapse
Affiliation(s)
- Jennifer A Fitzgerald
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Sarah Könemann
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- EPF Lausanne, School of Architecture, Civil and Environmental Engineering, Lausanne, Switzerland
| | - Laura Krümpelmann
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Anže Županič
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- National Institute of Biology, Ljubljana, Slovenia
| | - Colette Vom Berg
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| |
Collapse
|
22
|
Neurodegeneration, Neuroprotection and Regeneration in the Zebrafish Retina. Cells 2021; 10:cells10030633. [PMID: 33809186 PMCID: PMC8000332 DOI: 10.3390/cells10030633] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/10/2021] [Accepted: 03/01/2021] [Indexed: 12/15/2022] Open
Abstract
Neurodegenerative retinal diseases, such as glaucoma and diabetic retinopathy, involve a gradual loss of neurons in the retina as the disease progresses. Central nervous system neurons are not able to regenerate in mammals, therefore, an often sought after course of treatment for neuronal loss follows a neuroprotective or regenerative strategy. Neuroprotection is the process of preserving the structure and function of the neurons that have survived a harmful insult; while regenerative approaches aim to replace or rewire the neurons and synaptic connections that were lost, or induce regrowth of damaged axons or dendrites. In order to test the neuroprotective effectiveness or the regenerative capacity of a particular agent, a robust experimental model of retinal neuronal damage is essential. Zebrafish are being used more often in this type of study because their eye structure and development is well-conserved between zebrafish and mammals. Zebrafish are robust genetic tools and are relatively inexpensive to maintain. The large array of functional and behavioral tests available in zebrafish makes them an attractive model for neuroprotection studies. Some common insults used to model retinal disease and study neuroprotection in zebrafish include intense light, chemical toxicity and mechanical damage. This review covers the existing retinal neuroprotection and regeneration literature in the zebrafish and highlights their potential for future studies.
Collapse
|
23
|
Comparative Analysis of Neurotoxicity of Six Phthalates in Zebrafish Embryos. TOXICS 2021; 9:toxics9010005. [PMID: 33430197 PMCID: PMC7825694 DOI: 10.3390/toxics9010005] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 12/11/2022]
Abstract
The effects and underlying mechanisms of phthalates on neurotoxicity remain unclear as compared with the potentials of these substances as endocrine disruptors. The locomotor activities of zebrafish embryos were investigated upon exposure to six phthalates: dimethyl phthalate (DMP), diethyl phthalate (DEP), benzyl butyl phthalate (BBzP), di-2-ethylhexyl phthalate (DEHP), di-n-octyl phthalate (DnOP), and diisononyl phthalate (DiNP). Moreover, changes in fluorescence intensity in the green fluorescent protein (GFP) transgenic (Tg) lines Tg(HuC:eGFP), Tg(sox10:eGFP), and Tg(mbp:GFP) were measured after exposure to six phthalates, and changes in the expression profiles of genes involved in the cholinergic (ache) and dopaminergic systems (dat, th, and drd1b) were assessed. Exposure to BBzP, DEHP, and DiNP affected larval behaviors, whereas exposure to DMP, DEP, and DnOP revealed no alterations. A reduced expression of Tg(HuC:eGFP) was observed upon exposure to BBzP, DEHP, and DiNP. The expression of Tg(sox10:eGFP) and Tg(mbp:GFP) was reduced only in response to BBzP and DiNP, respectively. Further, exposure to DiNP upregulated ache and drd1b. The upregulation of ache and downregulation of drd1b was observed in DEHP-exposed groups. Exposure to BBzP suppressed th expression. These observations indicate that exposure to phthalates impaired embryogenesis of the neurological system and neurochemicals in zebrafish embryos, although the detailed mechanisms varied among the individual phthalates. Further mechanistic studies are needed to better understand the causality between phthalate exposure and neurotoxicity.
Collapse
|
24
|
van den Berg CP, Hollenkamp M, Mitchell LJ, Watson EJ, Green NF, Marshall NJ, Cheney KL. More than noise: context-dependent luminance contrast discrimination in a coral reef fish ( Rhinecanthus aculeatus). J Exp Biol 2020; 223:jeb232090. [PMID: 32967998 DOI: 10.1242/jeb.232090] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/11/2020] [Indexed: 01/19/2023]
Abstract
Achromatic (luminance) vision is used by animals to perceive motion, pattern, space and texture. Luminance contrast sensitivity thresholds are often poorly characterised for individual species and are applied across a diverse range of perceptual contexts using over-simplified assumptions of an animal's visual system. Such thresholds are often estimated using the receptor noise limited model (RNL). However, the suitability of the RNL model to describe luminance contrast perception remains poorly tested. Here, we investigated context-dependent luminance discrimination using triggerfish (Rhinecanthus aculeatus) presented with large achromatic stimuli (spots) against uniform achromatic backgrounds of varying absolute and relative contrasts. 'Dark' and 'bright' spots were presented against relatively dark and bright backgrounds. We found significant differences in luminance discrimination thresholds across treatments. When measured using Michelson contrast, thresholds for bright spots on a bright background were significantly higher than for other scenarios, and the lowest threshold was found when dark spots were presented on dark backgrounds. Thresholds expressed in Weber contrast revealed lower thresholds for spots darker than their backgrounds, which is consistent with the literature. The RNL model was unable to estimate threshold scaling across scenarios as predicted by the Weber-Fechner law, highlighting limitations in the current use of the RNL model to quantify luminance contrast perception. Our study confirms that luminance contrast discrimination thresholds are context dependent and should therefore be interpreted with caution.
Collapse
Affiliation(s)
- Cedric P van den Berg
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Michelle Hollenkamp
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Laurie J Mitchell
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Erin J Watson
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Naomi F Green
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - N Justin Marshall
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Karen L Cheney
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
25
|
Cassar S, Dunn C, Ramos MF. Zebrafish as an Animal Model for Ocular Toxicity Testing: A Review of Ocular Anatomy and Functional Assays. Toxicol Pathol 2020; 49:438-454. [PMID: 33063651 DOI: 10.1177/0192623320964748] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Xenobiotics make their way into organisms from diverse sources including diet, medication, and pollution. Our understanding of ocular toxicities from xenobiotics in humans, livestock, and wildlife is growing thanks to laboratory animal models. Anatomy and physiology are conserved among vertebrate eyes, and studies with common mammalian preclinical species (rodent, dog) can predict human ocular toxicity. However, since the eye is susceptible to toxicities that may not involve a histological correlate, and these species rely heavily on smell and hearing to navigate their world, discovering visual deficits can be challenging with traditional animal models. Alternative models capable of identifying functional impacts on vision and requiring minimal amounts of chemical are valuable assets to toxicology. Human and zebrafish eyes are anatomically and functionally similar, and it has been reported that several common human ocular toxicants cause comparable toxicity in zebrafish. Vision develops rapidly in zebrafish; the tiny larvae rely on visual cues as early as 4 days, and behavioral responses to those cues can be monitored in high-throughput fashion. This article describes the comparative anatomy of the zebrafish eye, the notable differences from the mammalian eye, and presents practical applications of this underutilized model for assessment of ocular toxicity.
Collapse
Affiliation(s)
- Steven Cassar
- Preclinical Safety, 419726AbbVie, Inc, North Chicago, IL, USA
| | - Christina Dunn
- Preclinical Safety, 419726AbbVie, Inc, North Chicago, IL, USA
| | | |
Collapse
|
26
|
Mazade R, Jin J, Pons C, Alonso JM. Functional Specialization of ON and OFF Cortical Pathways for Global-Slow and Local-Fast Vision. Cell Rep 2020; 27:2881-2894.e5. [PMID: 31167135 DOI: 10.1016/j.celrep.2019.05.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 03/07/2019] [Accepted: 04/30/2019] [Indexed: 12/20/2022] Open
Abstract
Visual information is processed in the cortex by ON and OFF pathways that respond to light and dark stimuli. Responses to darks are stronger, faster, and driven by a larger number of cortical neurons than responses to lights. Here, we demonstrate that these light-dark cortical asymmetries reflect a functional specialization of ON and OFF pathways for different stimulus properties. We show that large long-lasting stimuli drive stronger cortical responses when they are light, whereas small fast stimuli drive stronger cortical responses when they are dark. Moreover, we show that these light-dark asymmetries are preserved under a wide variety of luminance conditions that range from photopic to low mesopic light. Our results suggest that ON and OFF pathways extract different spatiotemporal information from visual scenes, making OFF local-fast signals better suited to maximize visual acuity and ON global-slow signals better suited to guide the eye movements needed for retinal image stabilization.
Collapse
Affiliation(s)
- Reece Mazade
- Department of Biological and Visual Sciences, SUNY College of Optometry, New York, NY 10036, USA
| | - Jianzhong Jin
- Department of Biological and Visual Sciences, SUNY College of Optometry, New York, NY 10036, USA
| | - Carmen Pons
- Department of Biological and Visual Sciences, SUNY College of Optometry, New York, NY 10036, USA
| | - Jose-Manuel Alonso
- Department of Biological and Visual Sciences, SUNY College of Optometry, New York, NY 10036, USA.
| |
Collapse
|
27
|
Wint JM, Sirotkin HI. Lrrk2 modulation of Wnt signaling during zebrafish development. J Neurosci Res 2020; 98:1831-1842. [PMID: 32623786 DOI: 10.1002/jnr.24687] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/11/2020] [Accepted: 06/12/2020] [Indexed: 12/15/2022]
Abstract
Mutations in leucine-rich repeat kinase 2 (lrrk2) are the most common genetic cause of Parkinson's disease. Difficulty in elucidating the pathogenic mechanisms resulting from disease-associated Lrrk2 variants stems from the complexity of Lrrk2 function and activities. Lrrk2 contains multiple protein-protein interacting domains, a GTPase domain, and a kinase domain. Lrrk2 is implicated in many cellular processes including vesicular trafficking, autophagy, cytoskeleton dynamics, and Wnt signaling. Here, we generated a zebrafish lrrk2 allelic series to study the requirements for Lrrk2 during development and to dissect the importance of its various domains. The alleles are predicted to encode proteins that either lack all functional domains (lrrk2sbu304 ), the GTPase, and kinase domains (lrrk2sbu71 ) or the kinase domain (lrrk2sbu96 ). All three lrrk2 mutants are viable, morphologically normal, and display wild-type-like locomotion. Because Lrrk2 modulates Wnt signaling in some contexts, we assessed Wnt signaling in all three mutant lines. Analysis of Wnt signaling by studying the expression of target genes using whole mount RNA in situ hybridization and a transgenic Wnt reporter revealed wild-type domains of Wnt activity in each of the mutants. However, we found that Wnt pathway activation is attenuated in lrrk2sbu304/sbu304 , which lacks both scaffolding and catalytic domains, but not in the other alleles during late embryogenesis. This supports a model in which Lrrk2 scaffolding functions are key to a context-dependent role in promoting canonical Wnt signaling.
Collapse
Affiliation(s)
- Jinelle M Wint
- Molecular and Cellular Biology Graduate Program, Stony Brook University, Stony Brook, NY, USA
| | - Howard I Sirotkin
- Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
28
|
Karpenko S, Wolf S, Lafaye J, Le Goc G, Panier T, Bormuth V, Candelier R, Debrégeas G. From behavior to circuit modeling of light-seeking navigation in zebrafish larvae. eLife 2020; 9:52882. [PMID: 31895038 PMCID: PMC6989119 DOI: 10.7554/elife.52882] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 01/02/2020] [Indexed: 01/18/2023] Open
Abstract
Bridging brain-scale circuit dynamics and organism-scale behavior is a central challenge in neuroscience. It requires the concurrent development of minimal behavioral and neural circuit models that can quantitatively capture basic sensorimotor operations. Here, we focus on light-seeking navigation in zebrafish larvae. Using a virtual reality assay, we first characterize how motor and visual stimulation sequences govern the selection of discrete swim-bout events that subserve the fish navigation in the presence of a distant light source. These mechanisms are combined into a comprehensive Markov-chain model of navigation that quantitatively predicts the stationary distribution of the fish’s body orientation under any given illumination profile. We then map this behavioral description onto a neuronal model of the ARTR, a small neural circuit involved in the orientation-selection of swim bouts. We demonstrate that this visually-biased decision-making circuit can capture the statistics of both spontaneous and contrast-driven navigation. All animals with the ability to move use sensory signals to help them navigate towards areas that seem better than their current location. Such areas might contain desirable things like food and mates, or they might allow an animal to escape from threats such as predators. But how the brain gives rise to this navigation behavior is unclear. Karpenko et al. have now obtained insights into the underlying mechanism by studying a behavior in zebrafish larvae called phototaxis. Phototaxis is the tendency to move in response to light. The advantage of using zebrafish larvae to study this behavior is that their brains are small and semi-transparent. This makes it possible to record the activity of almost every neuron. As a result, an individual’s brain activity can be mapped on to their behavior more precisely than in most other species. To probe how visual cues influence fish behavior, Karpenko et al. exposed individual fish to a carefully controlled virtual light source and then tracked their movements with a camera. The fish used two strategies to move towards the light. They selected their next movement based partly on the difference in the amount of light reaching each of their eyes, and partly on the change in overall brightness with each swim movement. Karpenko et al. used this information to build a numerical model of fish phototaxis, and to show how a simple brain circuit could generate this behavior. Species whose brains differ in size and structure may nevertheless develop similar strategies to perform similar tasks. By quantifying a generic behavior in a simple animal model, this study could provide insights into comparable behaviors in other species. In addition, the study suggests a simple mechanism for how animals select actions on the basis of sensory signals, which may also be relevant to other species and other tasks.
Collapse
Affiliation(s)
- Sophia Karpenko
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire Jean Perrin (LJP), Paris, France.,Université Paris Sciences et Lettres, Paris, France
| | - Sebastien Wolf
- Laboratoire de Physique de l'Ecole Normale Supérieure, CNRS UMR 8023 & PSL Research, Paris, France.,Institut de Biologie de l'Ecole Normale Supérieure, CNRS, INSERM, UMR 8197 & PSL Research, Paris, France
| | - Julie Lafaye
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire Jean Perrin (LJP), Paris, France
| | - Guillaume Le Goc
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire Jean Perrin (LJP), Paris, France
| | - Thomas Panier
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire Jean Perrin (LJP), Paris, France
| | - Volker Bormuth
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire Jean Perrin (LJP), Paris, France
| | - Raphaël Candelier
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire Jean Perrin (LJP), Paris, France
| | - Georges Debrégeas
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire Jean Perrin (LJP), Paris, France
| |
Collapse
|
29
|
Zebrafish dscaml1 Deficiency Impairs Retinal Patterning and Oculomotor Function. J Neurosci 2019; 40:143-158. [PMID: 31685652 DOI: 10.1523/jneurosci.1783-19.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/15/2019] [Accepted: 10/22/2019] [Indexed: 11/21/2022] Open
Abstract
Down syndrome cell adhesion molecules (dscam and dscaml1) are essential regulators of neural circuit assembly, but their roles in vertebrate neural circuit function are still mostly unexplored. We investigated the functional consequences of dscaml1 deficiency in the larval zebrafish (sexually undifferentiated) oculomotor system, where behavior, circuit function, and neuronal activity can be precisely quantified. Genetic perturbation of dscaml1 resulted in deficits in retinal patterning and light adaptation, consistent with its known roles in mammals. Oculomotor analyses revealed specific deficits related to the dscaml1 mutation, including severe fatigue during gaze stabilization, reduced saccade amplitude and velocity in the light, greater disconjugacy, and impaired fixation. Two-photon calcium imaging of abducens neurons in control and dscaml1 mutant animals confirmed deficits in saccade-command signals (indicative of an impairment in the saccadic premotor pathway), whereas abducens activation by the pretectum-vestibular pathway was not affected. Together, we show that loss of dscaml1 resulted in impairments in specific oculomotor circuits, providing a new animal model to investigate the development of oculomotor premotor pathways and their associated human ocular disorders.SIGNIFICANCE STATEMENT Dscaml1 is a neural developmental gene with unknown behavioral significance. Using the zebrafish model, this study shows that dscaml1 mutants have a host of oculomotor (eye movement) deficits. Notably, the oculomotor phenotypes in dscaml1 mutants are reminiscent of human ocular motor apraxia, a neurodevelopmental disorder characterized by reduced saccade amplitude and gaze stabilization deficits. Population-level recording of neuronal activity further revealed potential subcircuit-specific requirements for dscaml1 during oculomotor behavior. These findings underscore the importance of dscaml1 in the development of visuomotor function and characterize a new model to investigate potential circuit deficits underlying human oculomotor disorders.
Collapse
|
30
|
Optomotor Swimming in Larval Zebrafish Is Driven by Global Whole-Field Visual Motion and Local Light-Dark Transitions. Cell Rep 2019; 29:659-670.e3. [DOI: 10.1016/j.celrep.2019.09.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 08/22/2019] [Accepted: 09/08/2019] [Indexed: 01/28/2023] Open
|
31
|
The Neuropeptide Galanin Is Required for Homeostatic Rebound Sleep following Increased Neuronal Activity. Neuron 2019; 104:370-384.e5. [PMID: 31537465 DOI: 10.1016/j.neuron.2019.08.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 06/04/2019] [Accepted: 08/03/2019] [Indexed: 01/19/2023]
Abstract
Sleep pressure increases during wake and dissipates during sleep, but the molecules and neurons that measure homeostatic sleep pressure remain poorly understood. We present a pharmacological assay in larval zebrafish that generates short-term increases in wakefulness followed by sustained rebound sleep after washout. The intensity of global neuronal activity during drug-induced wakefulness predicted the amount of subsequent rebound sleep. Whole-brain mapping with the neuronal activity marker phosphorylated extracellular signal-regulated kinase (pERK) identified preoptic Galanin (Galn)-expressing neurons as selectively active during rebound sleep, and the relative induction of galn transcripts was predictive of total rebound sleep time. Galn is required for sleep homeostasis, as galn mutants almost completely lacked rebound sleep following both pharmacologically induced neuronal activity and physical sleep deprivation. These results suggest that Galn plays a key role in responding to sleep pressure signals derived from neuronal activity and functions as an output arm of the vertebrate sleep homeostat.
Collapse
|
32
|
Abstract
Visual stimuli can evoke complex behavioral responses, but the underlying streams of neural activity in mammalian brains are difficult to follow because of their size. Here, I review the visual system of zebrafish larvae, highlighting where recent experimental evidence has localized the functional steps of visuomotor transformations to specific brain areas. The retina of a larva encodes behaviorally relevant visual information in neural activity distributed across feature-selective ganglion cells such that signals representing distinct stimulus properties arrive in different areas or layers of the brain. Motor centers in the hindbrain encode motor variables that are precisely tuned to behavioral needs within a given stimulus setting. Owing to rapid technological progress, larval zebrafish provide unique opportunities for obtaining a comprehensive understanding of the intermediate processing steps occurring between visual and motor centers, revealing how visuomotor transformations are implemented in a vertebrate brain.
Collapse
Affiliation(s)
- Johann H. Bollmann
- Developmental Biology, Institute of Biology I, Faculty of Biology, and Bernstein Center Freiburg, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
33
|
Abstract
I was drawn into research in George Wald's laboratory at Harvard, where as an undergraduate and graduate student, I studied vitamin A deficiency and dark adaptation. A chance observation while an assistant professor at Harvard led to the major research of my career-to understand the functional organization of vertebrate retinas. I started with a retinal circuit analysis of the primate retina with Brian Boycott and intracellular retinal cell recordings in mudpuppies with Frank Werblin. Subsequent pharmacology studies with Berndt Ehinger primarily with fish focused on dopamine and neuromodulation. Using zebrafish, we studied retinal development, neuronal connectivity, and the effects of genetic mutations on retinal structure and function. Now semi-retired, I have returned to primate retinal circuitry, undertaking a connectomic analysis of the human fovea in Jeffrey Lichtman's laboratory.
Collapse
Affiliation(s)
- John E Dowling
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA;
| |
Collapse
|
34
|
Pannetier P, Morin B, Clérandeau C, Laurent J, Chapelle C, Cachot J. Toxicity assessment of pollutants sorbed on environmental microplastics collected on beaches: Part II-adverse effects on Japanese medaka early life stages. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 248:1098-1107. [PMID: 31091641 DOI: 10.1016/j.envpol.2018.10.129] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 10/09/2018] [Accepted: 10/30/2018] [Indexed: 06/09/2023]
Abstract
While microplastics are present in great abundance across all seas and oceans, little is known about their effects on marine life. In the aquatic environment, they can accumulate a variety of chemicals and can be ingested by many marine organisms including fish, with chronic physical and chemical effects. The purpose of this paper is to evaluate the toxic effects of pollutants sorbed at the surface of environmental microplastics (MPs), collected on various beaches from three islands of the Pacific Ocean. Developmental toxicity of virgin MPs or artificially coated with B[a]P and environmental MPs from Easter Island, Guam and Hawaii was evaluated on embryos and prolarvae of Japanese medaka. Mortality, hatching success, biometry, malformations, EROD activity and DNA damage were analyzed after exposure to DMSO extracts. No toxicity was observed for extracts of virgin MPs whatever the endpoint considered. Extracts of virgin MPs coated with 250 µg.g-1 of B(a)P induced lethal effects with high embryo mortality (+81%) and low hatching rate (-28%) and sublethal effects including biometry and swimming behavior changes, increase of EROD activity (+94%) and DNA damage (+60%). Environmental MPs collected on the three selected islands exhibited different polymer, pollutant and toxicity patterns. The highest toxicity was detected for MPs extract from Hawaï with head/body length and swimming speed decreases and induction of EROD activity and DNA stand breaks. This study reports the possible sublethal toxicity of organic pollutants sorbed on MPs to fish early life stages.
Collapse
Affiliation(s)
| | | | | | | | | | - Jérôme Cachot
- Univ. Bordeaux, EPOC, UMR 5805, F-33400, Talence, France
| |
Collapse
|
35
|
Simulated Saccadic Stimuli Suppress ON-Type Direction-Selective Retinal Ganglion Cells via Glycinergic Inhibition. J Neurosci 2019; 39:4312-4322. [PMID: 30926751 DOI: 10.1523/jneurosci.3066-18.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 02/06/2023] Open
Abstract
Two types of mammalian direction-selective ganglion cells (DSGCs), ON and ONOFF, operate over different speed ranges. The directional axes of the ON-DSGCs are thought to align with the axes of the vestibular system and provide sensitivity at rotational velocities that are too slow to activate the semicircular canals. ONOFF-DSGCs respond to faster image velocities. Using natural images that simulate the natural visual inputs to freely moving animals, we show that simulated visual saccades suppress responses in ON-DSGCs but not ONOFF-DSGCs recorded in retinas of domestic rabbits of either gender. Analysis of the synaptic inputs shows that this saccadic suppression results from glycinergic inputs that are specific to ON-DSGCs and are absent in ONOFF-DSGCs. When this glycinergic input is blocked, both cell types respond similarly to visual saccades and display essentially identical speed tuning. The results demonstrate that glycinergic circuits within the retina can produce saccadic suppression of retinal ganglion cell activity. The cell-type-specific targeting of the glycinergic circuits further supports the proposed physiological roles of ON-DSGCs in retinal-image stabilization and of ONOFF-DSGCs in detecting local object motion and signaling optical flow.SIGNIFICANCE STATEMENT In the mammalian retina, ON direction-selective ganglion cells (DSGCs) respond preferentially to slow image motion, whereas ONOFF-DSGCs respond better to rapid motion. The mechanisms producing this different speed tuning remain unclear. Here we show that simulated visual saccades suppress ON-DSGCs, but not ONOFF-DSGCs. This selective saccadic suppression is because of the selective targeting of glycinergic inhibitory synaptic inputs to ON-DSGCs. The different saccadic suppression in the two cell types points to different physiological roles, consistent with their projections to distinct areas within the brain. ON-DSGCs may be critical for providing the visual feedback signals that contribute to stabilizing the image on the retina, whereas ONOFF-DSGCs may be important for detecting the onset of saccades or for signaling optical flow.
Collapse
|
36
|
Xie R, Zhang M, Venkatraman P, Zhang X, Zhang G, Carmer R, Kantola SA, Pang CP, Ma P, Zhang M, Zhong W, Leung YF. Normalization of large-scale behavioural data collected from zebrafish. PLoS One 2019; 14:e0212234. [PMID: 30768618 PMCID: PMC6377122 DOI: 10.1371/journal.pone.0212234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 01/29/2019] [Indexed: 11/19/2022] Open
Abstract
Many contemporary neuroscience experiments utilize high-throughput approaches to simultaneously collect behavioural data from many animals. The resulting data are often complex in structure and are subjected to systematic biases, which require new approaches for analysis and normalization. This study addressed the normalization need by establishing an approach based on linear-regression modeling. The model was established using a dataset of visual motor response (VMR) obtained from several strains of wild-type (WT) zebrafish collected at multiple stages of development. The VMR is a locomotor response triggered by drastic light change, and is commonly measured repeatedly from multiple larvae arrayed in 96-well plates. This assay is subjected to several systematic variations. For example, the light emitted by the machine varies slightly from well to well. In addition to the light-intensity variation, biological replication also created batch-batch variation. These systematic variations may result in differences in the VMR and must be normalized. Our normalization approach explicitly modeled the effect of these systematic variations on VMR. It also normalized the activity profiles of different conditions to a common baseline. Our approach is versatile, as it can incorporate different normalization needs as separate factors. The versatility was demonstrated by an integrated normalization of three factors: light-intensity variation, batch-batch variation and baseline. After normalization, new biological insights were revealed from the data. For example, we found larvae of TL strain at 6 days post-fertilization (dpf) responded to light onset much stronger than the 9-dpf larvae, whereas previous analysis without normalization shows that their responses were relatively comparable. By removing systematic variations, our model-based normalization can facilitate downstream statistical comparisons and aid detecting true biological differences in high-throughput studies of neurobehaviour.
Collapse
Affiliation(s)
- Rui Xie
- Department of Statistics, University of Georgia, Athens, Georgia, United States of America
| | - Mengrui Zhang
- Department of Statistics, University of Georgia, Athens, Georgia, United States of America
| | - Prahatha Venkatraman
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Xinlian Zhang
- Department of Statistics, University of Georgia, Athens, Georgia, United States of America
| | - Gaonan Zhang
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Robert Carmer
- Department of Statistics, Purdue University, West Lafayette, Indiana, United States of America
| | - Skylar A. Kantola
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Chi Pui Pang
- Department of Ophthalmology and Visual Sciences, Chinese University of Hong Kong, Hong Kong SAR, China
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, China
| | - Ping Ma
- Department of Statistics, University of Georgia, Athens, Georgia, United States of America
| | - Mingzhi Zhang
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, China
- * E-mail: (MZ); (WZ); (YFL)
| | - Wenxuan Zhong
- Department of Statistics, University of Georgia, Athens, Georgia, United States of America
- * E-mail: (MZ); (WZ); (YFL)
| | - Yuk Fai Leung
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine Lafayette, West Lafayette, Indiana, United States of America
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana, United States of America
- Purdue Institute for Drug Discovery, Purdue University, West Lafayette, Indiana, United States of America
- * E-mail: (MZ); (WZ); (YFL)
| |
Collapse
|
37
|
Zebrafish: an emerging real-time model system to study Alzheimer's disease and neurospecific drug discovery. Cell Death Discov 2018; 4:45. [PMID: 30302279 PMCID: PMC6170431 DOI: 10.1038/s41420-018-0109-7] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/21/2018] [Accepted: 08/23/2018] [Indexed: 12/22/2022] Open
Abstract
Zebrafish (Danio rerio) is emerging as an increasingly successful model for translational research on human neurological disorders. In this review, we appraise the high degree of neurological and behavioural resemblance of zebrafish with humans. It is highly validated as a powerful vertebrate model for investigating human neurodegenerative diseases. The neuroanatomic and neurochemical pathways of zebrafish brain exhibit a profound resemblance with the human brain. Physiological, emotional and social behavioural pattern similarities between them have also been well established. Interestingly, zebrafish models have been used successfully to simulate the pathology of Alzheimer’s disease (AD) as well as Tauopathy. Their relatively simple nervous system and the optical transparency of the embryos permit real-time neurological imaging. Here, we further elaborate on the use of recent real-time imaging techniques to obtain vital insights into the neurodegeneration that occurs in AD. Zebrafish is adeptly suitable for Ca2+ imaging, which provides a better understanding of neuronal activity and axonal dystrophy in a non-invasive manner. Three-dimensional imaging in zebrafish is a rapidly evolving technique, which allows the visualisation of the whole organism for an elaborate in vivo functional and neurophysiological analysis in disease condition. Suitability to high-throughput screening and similarity with humans makes zebrafish an excellent model for screening neurospecific compounds. Thus, the zebrafish model can be pivotal in bridging the gap from the bench to the bedside. This fish is becoming an increasingly successful model to understand AD with further scope for investigation in neurodevelopment and neurodegeneration, which promises exciting research opportunities in the future.
Collapse
|
38
|
Meier A, Nelson R, Connaughton VP. Color Processing in Zebrafish Retina. Front Cell Neurosci 2018; 12:327. [PMID: 30337857 PMCID: PMC6178926 DOI: 10.3389/fncel.2018.00327] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 09/10/2018] [Indexed: 11/13/2022] Open
Abstract
Zebrafish (Danio rerio) is a model organism for vertebrate developmental processes and, through a variety of mutant and transgenic lines, various diseases and their complications. Some of these diseases relate to proper function of the visual system. In the US, the National Eye Institute indicates >140 million people over the age of 40 have some form of visual impairment. The causes of the impairments range from refractive error to cataract, diabetic retinopathy and glaucoma, plus heritable diseases such as retinitis pigmentosa and color vision deficits. Most impairments directly affect the retina, the nervous tissue at the back of the eye. Zebrafish with long or short-wavelength color blindness, altered retinal anatomy due to hyperglycemia, high intraocular pressure, and reduced pigment epithelium are all used, and directly applicable, to study how these symptoms affect visual function. However, many published reports describe only molecular/anatomical/structural changes or behavioral deficits. Recent work in zebrafish has documented physiological responses of the different cell types to colored (spectral) light stimuli, indicating a complex level of information processing and color vision in this species. The purpose of this review article is to consolidate published morphological and physiological data from different cells to describe how zebrafish retina is capable of complex visual processing. This information is compared to findings in other vertebrates and relevance to disorders affecting color processing is discussed.
Collapse
Affiliation(s)
- April Meier
- Zebrafish Ecotoxicology, Neuropharmacology, and Vision Lab, Department of Biology, and Center for Behavioral Neuroscience, American University, Washington, DC, United States
| | - Ralph Nelson
- Neural Circuits Unit, National Institute of Neurological Disorders and Stroke (NINDS), NIH, Bethesda, MD, United States
| | - Victoria P Connaughton
- Zebrafish Ecotoxicology, Neuropharmacology, and Vision Lab, Department of Biology, and Center for Behavioral Neuroscience, American University, Washington, DC, United States
| |
Collapse
|
39
|
Motion changes response balance between ON and OFF visual pathways. Commun Biol 2018; 1:60. [PMID: 30271942 PMCID: PMC6123681 DOI: 10.1038/s42003-018-0066-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 05/03/2018] [Indexed: 11/09/2022] Open
Abstract
Humans are faster at detecting dark than light stationary stimuli, a temporal difference that originates early in the visual pathway. Here we show that this difference reverses when stimuli move, making detection faster for moving lights than darks. Human subjects judged the direction of moving edges and bars, and made faster and more accurate responses for light than for dark stimuli. This light/dark asymmetry is greatest at low speeds and disappears at high speeds. In parallel experiments, we recorded responses in the cat visual cortex for moving bars and again find that responses are faster for light bars than for dark bars moving at low speeds. We show that differences in the luminance-response function between ON and OFF pathways can reproduce these findings, and may explain why ON pathways are used for slow-motion image stabilization in many species.
Collapse
|
40
|
Gravot CM, Knorr AG, Glasauer S, Straka H. It's not all black and white: visual scene parameters influence optokinetic reflex performance in Xenopus laevis tadpoles. ACTA ACUST UNITED AC 2018; 220:4213-4224. [PMID: 29141881 DOI: 10.1242/jeb.167700] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 09/16/2017] [Indexed: 11/20/2022]
Abstract
The maintenance of visual acuity during active and passive body motion is ensured by gaze-stabilizing reflexes that aim at minimizing retinal image slip. For the optokinetic reflex (OKR), large-field visual motion of the surround forms the essential stimulus that activates eye movements. Properties of the moving visual world influence cognitive motion perception and the estimation of visual image velocity. Therefore, the performance of brainstem-mediated visuo-motor behaviors might also depend on image scene characteristics. Employing semi-intact preparations of mid-larval stages of Xenopus laevis tadpoles, we studied the influence of contrast polarity, intensity, contour shape and different motion stimulus patterns on the performance of the OKR and multi-unit optic nerve discharge during motion of a large-field visual scene. At high contrast intensities, the OKR amplitude was significantly larger for visual scenes with a positive contrast (bright dots on a dark background) compared with those with a negative contrast. This effect persisted for luminance-matched pairs of stimuli, and was independent of contour shape. The relative biases of OKR performance along with the independence of the responses from contour shape were closely matched by the optic nerve discharge evoked by the same visual stimuli. However, the multi-unit activity of retinal ganglion cells in response to a small single moving vertical edge was strongly influenced by the light intensity in the vertical neighborhood. This suggests that the underlying mechanism of OKR biases related to contrast polarity directly derives from visual motion-processing properties of the retinal circuitry.
Collapse
Affiliation(s)
- Céline M Gravot
- Department Biology II, Ludwig-Maximilians-Universität München, Großhaderner Str. 2, 82152 Planegg, Germany .,Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität München, Großhaderner Str. 2, 82152 Planegg, Germany
| | - Alexander G Knorr
- Center for Sensorimotor Research, Department of Neurology, University Hospital Munich, Feodor-Lynen-Str. 19, 81377 Munich, Germany.,Institute for Cognitive Systems, TUM Department of Electrical and Computer Engineering, Technical University of Munich, Karlstr. 45/II, 80333 Munich, Germany
| | - Stefan Glasauer
- Center for Sensorimotor Research, Department of Neurology, University Hospital Munich, Feodor-Lynen-Str. 19, 81377 Munich, Germany
| | - Hans Straka
- Department Biology II, Ludwig-Maximilians-Universität München, Großhaderner Str. 2, 82152 Planegg, Germany
| |
Collapse
|
41
|
Huang DF, Wang MY, Yin W, Ma YQ, Wang H, Xue T, Ren DL, Hu B. Zebrafish Lacking Circadian Gene per2 Exhibit Visual Function Deficiency. Front Behav Neurosci 2018; 12:53. [PMID: 29593513 PMCID: PMC5859089 DOI: 10.3389/fnbeh.2018.00053] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 03/01/2018] [Indexed: 01/09/2023] Open
Abstract
The retina has an intrinsic circadian clock, but the importance of this clock for vision is unknown. Zebrafish offer many advantages for studying vertebrate vision and circadian rhythm. Here, we explored the role of zebrafish per2, a light-regulated gene, in visual behavior and the underlying mechanisms. We observed that per2 mutant zebrafish larvae showed decreased contrast sensitivity and visual acuity using optokinetic response (OKR) assays. Using a visual motor response (VMR) assay, we observed normal OFF responses but abnormal ON responses in mutant zebrafish larvae. Immunofluorescence showed that mutants had a normal morphology of cone photoreceptor cells and retinal organization. However, electron microscopy showed that per2 mutants displayed abnormal and decreased photoreceptor ribbon synapses with arciform density, which resulted in retinal ON pathway defect. We also examined the expression of three cone opsins by quantitative real-time PCR (qRT-PCR), and the expression of long-wave-sensitive opsin (opn1lw) and short-wave-sensitive opsin (opn1sw) was reduced in mutant zebrafish larvae. qRT-PCR analyses also showed a down-regulation of the clock genes cry1ba and bmal1b in the adult eye of per2 mutant zebrafish. This study identified a mechanism by which a clock gene affects visual function and defined important roles of per2 in retinal information processing.
Collapse
Affiliation(s)
- Deng-Feng Huang
- Hefei National Laboratory for Physical Sciences at the Microscale and CAS Key Laboratory of Brain Function & Disease, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Ming-Yong Wang
- School of Biology & Basic Medical Sciences, Medical College, Soochow University, Suzhou, China
| | - Wu Yin
- Hefei National Laboratory for Physical Sciences at the Microscale and CAS Key Laboratory of Brain Function & Disease, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Yu-Qian Ma
- Neurodegenerative Disorder Research Center, University of Science and Technology of China, Hefei, China
| | - Han Wang
- School of Biology & Basic Medical Sciences, Medical College, Soochow University, Suzhou, China
| | - Tian Xue
- Neurodegenerative Disorder Research Center, University of Science and Technology of China, Hefei, China
| | - Da-Long Ren
- Hefei National Laboratory for Physical Sciences at the Microscale and CAS Key Laboratory of Brain Function & Disease, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Bing Hu
- Hefei National Laboratory for Physical Sciences at the Microscale and CAS Key Laboratory of Brain Function & Disease, School of Life Sciences, University of Science and Technology of China, Hefei, China
| |
Collapse
|
42
|
Shams S, Rihel J, Ortiz JG, Gerlai R. The zebrafish as a promising tool for modeling human brain disorders: A review based upon an IBNS Symposium. Neurosci Biobehav Rev 2018; 85:176-190. [DOI: 10.1016/j.neubiorev.2017.09.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 08/28/2017] [Accepted: 09/02/2017] [Indexed: 12/12/2022]
|
43
|
Abstract
Apart from morphological, biochemical, and genetic alterations induced by teratogen compounds, there is an increase interest in characterizing behavioral alterations. Behavior is a sensitive parameter that can provide information regarding developmental disruptions noninvasively, as it is the result of brain processes. Behavioral disturbances interfere with animals' capacity to cope with the environment, having an impact on the organism's life. Hereby, it is proposed behavioral assays consisting on recording larvae in multiwell plates and video analysis with a proper software, allowing for teratogen screening of behavior. How to evaluate locomotor, anxiety-like and avoidance-like behaviors, and the integrity of sensory-motor functions and learning are discussed in this chapter.
Collapse
Affiliation(s)
- Ana M Valentim
- Instituto de Investigação e Inovação em Saúde (i3s), Universidade do Porto (UP), Porto, Portugal.
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto (UP), Porto, Portugal.
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Universidade de Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal.
| |
Collapse
|
44
|
Prats E, Gómez-Canela C, Ben-Lulu S, Ziv T, Padrós F, Tornero D, Garcia-Reyero N, Tauler R, Admon A, Raldúa D. Modelling acrylamide acute neurotoxicity in zebrafish larvae. Sci Rep 2017; 7:13952. [PMID: 29066856 PMCID: PMC5655329 DOI: 10.1038/s41598-017-14460-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 10/10/2017] [Indexed: 12/13/2022] Open
Abstract
Acrylamide (ACR), a type-2 alkene, may lead to a synaptopathy characterized by ataxia, skeletal muscles weakness and numbness of the extremities in exposed human and laboratory animals. Currently, only the mildly affected patients undergo complete recovery, and identification of new molecules with therapeutic bioactivity against ACR acute neurotoxicity is urgently needed. Here, we have generated a zebrafish model for ACR neurotoxicity by exposing 5 days post-fertilization zebrafish larvae to 1 mM ACR for 3 days. Our results show that zebrafish mimics most of the pathophysiological processes described in humans and mammalian models. Motor function was altered, and specific effects were found on the presynaptic nerve terminals at the neuromuscular junction level, but not on the axonal tracts or myelin sheath integrity. Transcriptional markers of proteins involved in synaptic vesicle cycle were selectively altered, and the proteomic analysis showed that ACR-adducts were formed on cysteine residues of some synaptic proteins. Finally, analysis of neurotransmitters profile showed a significant effect on cholinergic and dopaminergic systems. These data support the suitability of the developed zebrafish model for screening of molecules with therapeutic value against this toxic neuropathy.
Collapse
Affiliation(s)
- Eva Prats
- CID-CSIC, Jordi Girona 18, 08034, Barcelona, Spain
| | | | - Shani Ben-Lulu
- The Smoler Proteomics Center and the Department of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Tamar Ziv
- The Smoler Proteomics Center and the Department of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Francesc Padrós
- Fish Diseases Diagnostic Service, Facultat de Veterinària. Universitat Autònoma de Barcelona, 08190, Bellaterra (Cerdanyola del Vallès), Spain
| | | | - Natàlia Garcia-Reyero
- Environmental Laboratory-US Army Engineer Research and Development Center, Vicksburg, MS, USA
| | - Romà Tauler
- IDAEA-CSIC, Jordi Girona 18, 08034, Barcelona, Spain
| | - Arie Admon
- The Smoler Proteomics Center and the Department of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | | |
Collapse
|
45
|
Moravec CE, Yousef H, Kinney BA, Salerno-Eichenholz R, Monestime CM, Martin BL, Sirotkin HI. Zebrafish sin3b mutants are viable but have size, skeletal, and locomotor defects. Dev Dyn 2017; 246:946-955. [PMID: 28850761 DOI: 10.1002/dvdy.24581] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 07/12/2017] [Accepted: 08/01/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The transcriptional co-repressor Sin3 is highly conserved from yeast to vertebrates and has multiple roles controlling cell fate, cell cycle progression, and senescence programming. Sin3 proteins recruit histone deacetylases and other chromatin modifying factors to specific loci through interactions with transcription factors including Myc, Rest, p53 and E2F. Most vertebrates have two Sin3 family members (sin3a and sin3b), but zebrafish have a second sin3a paralogue. In mice, sin3a and sin3b are essential for embryonic development. Sin3b knockout mice show defects in growth as well as bone and blood differentiation. RESULTS To study the requirement for Sin3b during development, we disrupted zebrafish sin3b using CRISPR-Cas9, and studied the effects on early development and locomotor behavior. CONCLUSIONS Surprisingly, Sin3b is not essential in zebrafish. sin3b mutants show a decrease in fitness, small size, changes to locomotor behavior, and delayed bone development. We did not detect a role for Sin3b in cell proliferation. Our analysis of the sin3b mutant revealed a more nuanced requirement for zebrafish Sin3b than would be predicted from analysis of mutants in other species. Developmental Dynamics 246:946-955, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Cara E Moravec
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York.,Genetics Gradate Program Stony Brook University, Stony Brook, New York
| | - Hakeem Yousef
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York
| | - Brian A Kinney
- Genetics Gradate Program Stony Brook University, Stony Brook, New York.,Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York
| | - Ryan Salerno-Eichenholz
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York.,Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York
| | - Camillia M Monestime
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York
| | - Benjamin L Martin
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York
| | - Howard I Sirotkin
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York.,Genetics Gradate Program Stony Brook University, Stony Brook, New York
| |
Collapse
|
46
|
Steenbergen PJ, Bardine N, Sharif F. Kinetics of glucocorticoid exposure in developing zebrafish: A tracer study. CHEMOSPHERE 2017; 183:147-155. [PMID: 28544900 DOI: 10.1016/j.chemosphere.2017.05.059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 05/02/2017] [Accepted: 05/10/2017] [Indexed: 06/07/2023]
Abstract
In the current study the dynamics of glucocorticoid uptake by zebrafish chorionated embryos from the surrounding medium were studied, using 2.5 μM cortisol or dexamethasone solutions complemented with their tritiated variant. We measured the uptake of radioactive cortisol by embryos during a 1 h submersion. Interestingly, the signal in chorionated embryos was 85% (exposure: 1-2 hpf) or 78% (exposure: 48-49 hpf) of the signal present in an equal volume medium. By comparing embryos measured without chorion, we found that 18-20% of the radioactivity present in chorionated embryos is actually bound to the chorion or located in the perivitelline space. Consequently, embryonic tissue contains radioactivity levels of 60% of a similar volume of medium after 1 h incubation. During early developmental stages (1-48 hpf) exposure of more than 24 h in cortisol was needed to achieve radioactivity levels similar to an equal volume of medium within the embryonic tissue and more than 48 h for dexamethasone. In glucocorticoid-free medium, radioactivity dropped rapidly below 10% for both glucocorticoids, suggesting that the major portion of the embryonic radioactivity was a result of simple diffusion. During later developmental stages (48-96 hpf) initial uptake dynamics were similar, but showed a decrease of tissue radioactivity to 20% of an equal volume of medium after hatching, probably due to development and activation of the hypothalamic pituitary interrenal axis. Uptake is dependent on the developmental stage of the embryo. Furthermore, the presence of the chorion during exposure should be taken into account even when small lipophilic molecules are being tested.
Collapse
Affiliation(s)
- Peter Johannes Steenbergen
- Department of Integrative Zoology, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands; Department of Medical Pharmacology, Leiden/Amsterdam Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Nabila Bardine
- Department of Cell Biology, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Faiza Sharif
- Department of Integrative Zoology, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands; Interdisciplinary Reseach Centre in Biomedical Materials, COMSATS Institute of Information Technology Lahore, Pakistan.
| |
Collapse
|
47
|
Abstract
The zebrafish (Danio rerio) possesses a vertebrate-type retina that is extraordinarily conserved in evolution. This well-organized and anatomically easily accessible part of the central nervous system has been widely investigated in zebrafish, promoting general understanding of retinal development, morphology, function and associated diseases. Over the recent years, genome and protein engineering as well as imaging techniques have experienced revolutionary advances and innovations, creating new possibilities and methods to study zebrafish development and function. In this review, we focus on some of these emerging technologies and how they may impact retinal research in the future. We place an emphasis on genetic techniques, such as transgenic approaches and the revolutionizing new possibilities in genome editing.
Collapse
Affiliation(s)
- Stephanie Niklaus
- a Institute of Molecular Life Sciences , University of Zurich , Zurich , Switzerland.,b Life Science Zurich Graduate Program - Neuroscience , Zurich , Switzerland
| | - Stephan C F Neuhauss
- a Institute of Molecular Life Sciences , University of Zurich , Zurich , Switzerland
| |
Collapse
|
48
|
Daniele LL, Emran F, Lobo GP, Gaivin RJ, Perkins BD. Mutation of wrb, a Component of the Guided Entry of Tail-Anchored Protein Pathway, Disrupts Photoreceptor Synapse Structure and Function. Invest Ophthalmol Vis Sci 2017; 57:2942-54. [PMID: 27273592 PMCID: PMC4898200 DOI: 10.1167/iovs.15-18996] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
PURPOSE Tail-anchored (TA) proteins contain a single hydrophobic domain at the C-terminus and are posttranslationally inserted into the ER membrane via the GET (guided entry of tail-anchored proteins) pathway. The role of the GET pathway in photoreceptors is unexplored. The goal of this study was to characterize the zebrafish pinball wizard mutant, which disrupts Wrb, a core component of the GET pathway. METHODS Electroretinography, optokinetic response measurements (OKR), immunohistochemistry, and electron microscopy analyses were employed to assess ribbon synapse function, protein expression, and ultrastructure in 5-day-old zebrafish larvae. Expression of wrb was investigated with real-time qRT-PCR and in situ hybridization. RESULTS Mutation of wrb abolished the OKR and greatly diminished the ERG b-wave, but not the a-wave. Ribeye and SV2 were partially mislocalized in both photoreceptors and hair cells of wrb mutants. Fewer contacts were seen between photoreceptors and bipolar cells in wrb-/- mutants. Expression of wrb was observed throughout the nervous system and Wrb localized to the ER and synaptic region of photoreceptors. Morpholino knockdown of the cytosolic ATPase trc40, which targets TA proteins to the ER, also diminished the OKR. Overexpression of wrb fully restored contrast sensitivity in mutants, while overexpression of mutant wrbR73A, which cannot bind Trc40, did not. CONCLUSIONS Proteins Wrb and Trc40 are required for synaptic transmission between photoreceptors and bipolar cells, indicating that TA protein insertion by the TRC pathway is a critical step in ribbon synapse assembly and function.
Collapse
Affiliation(s)
- Lauren L Daniele
- Department of Ophthalmic Research Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, United States
| | - Farida Emran
- Centre for Research in Neuroscience, McGill University, Montreal, Quebec, Canada
| | - Glenn P Lobo
- Department of Ophthalmic Research Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, United States
| | - Robert J Gaivin
- Department of Ophthalmic Research Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, United States
| | - Brian D Perkins
- Department of Ophthalmic Research Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, United States
| |
Collapse
|
49
|
Liu Y, Ma P, Cassidy PA, Carmer R, Zhang G, Venkatraman P, Brown SA, Pang CP, Zhong W, Zhang M, Leung YF. Statistical Analysis of Zebrafish Locomotor Behaviour by Generalized Linear Mixed Models. Sci Rep 2017; 7:2937. [PMID: 28592855 PMCID: PMC5462837 DOI: 10.1038/s41598-017-02822-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 04/19/2017] [Indexed: 12/13/2022] Open
Abstract
Upon a drastic change in environmental illumination, zebrafish larvae display a rapid locomotor response. This response can be simultaneously tracked from larvae arranged in multi-well plates. The resulting data have provided new insights into neuro-behaviour. The features of these data, however, present a challenge to traditional statistical tests. For example, many larvae display little or no movement. Thus, the larval responses have many zero values and are imbalanced. These responses are also measured repeatedly from the same well, which results in correlated observations. These analytical issues were addressed in this study by the generalized linear mixed model (GLMM). This approach deals with binary responses and characterizes the correlation of observations in the same group. It was used to analyze a previously reported dataset. Before applying the GLMM, the activity values were transformed to binary responses (movement vs. no movement) to reduce data imbalance. Moreover, the GLMM estimated the variations among the effects of different well locations, which would eliminate the location effects when two biological groups or conditions were compared. By addressing the data-imbalance and location-correlation issues, the GLMM effectively quantified true biological effects on zebrafish locomotor response.
Collapse
Affiliation(s)
- Yiwen Liu
- Department of Statistics, University of Georgia, 101 Cedar St, Athens, GA, 30602, USA
| | - Ping Ma
- Department of Statistics, University of Georgia, 101 Cedar St, Athens, GA, 30602, USA
| | - Paige A Cassidy
- Department of Biological Sciences, Purdue University, 915 W. State Street, West Lafayette, IN, 47907, USA
| | - Robert Carmer
- Department of Biological Sciences, Purdue University, 915 W. State Street, West Lafayette, IN, 47907, USA.,Department of Statistics, 250 N University Street, Purdue University, West Lafayette, IN, 47907, USA
| | - Gaonan Zhang
- Department of Biological Sciences, Purdue University, 915 W. State Street, West Lafayette, IN, 47907, USA
| | - Prahatha Venkatraman
- Department of Biological Sciences, Purdue University, 915 W. State Street, West Lafayette, IN, 47907, USA
| | - Skye A Brown
- Department of Biological Sciences, Purdue University, 915 W. State Street, West Lafayette, IN, 47907, USA
| | - Chi Pui Pang
- Department of Ophthalmology and Visual Sciences, Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Wenxuan Zhong
- Department of Statistics, University of Georgia, 101 Cedar St, Athens, GA, 30602, USA.
| | - Mingzhi Zhang
- Joint Shantou International Eye Center, Shantou University & the Chinese University of Hong Kong, Shantou, China.
| | - Yuk Fai Leung
- Department of Biological Sciences, Purdue University, 915 W. State Street, West Lafayette, IN, 47907, USA. .,Department of Biochemistry and Molecular Biology, Indiana University School of Medicine Lafayette, 625 Harrison Street, West Lafayette, IN, 47907, USA. .,Purdue Institute for Integrative neuroscience, 610 Purdue Mall, Purdue University, West Lafayette, IN, 47907, USA. .,Purdue Institute for Drug Discovery, 610 Purdue Mall, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
50
|
Utilizing Zebrafish Visual Behaviors in Drug Screening for Retinal Degeneration. Int J Mol Sci 2017; 18:ijms18061185. [PMID: 28574477 PMCID: PMC5486008 DOI: 10.3390/ijms18061185] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 05/14/2017] [Accepted: 05/16/2017] [Indexed: 12/15/2022] Open
Abstract
Zebrafish are a popular vertebrate model in drug discovery. They produce a large number of small and rapidly-developing embryos. These embryos display rich visual-behaviors that can be used to screen drugs for treating retinal degeneration (RD). RD comprises blinding diseases such as Retinitis Pigmentosa, which affects 1 in 4000 people. This disease has no definitive cure, emphasizing an urgency to identify new drugs. In this review, we will discuss advantages, challenges, and research developments in using zebrafish behaviors to screen drugs in vivo. We will specifically discuss a visual-motor response that can potentially expedite discovery of new RD drugs.
Collapse
|