1
|
Pinna G, Ponomareva O, Stalcup GL, Rasmusson AM. Neuroactive steroids and the pathophysiology of PTSD: Biomarkers for treatment targeting. Neurosci Biobehav Rev 2025; 172:106085. [PMID: 40024353 DOI: 10.1016/j.neubiorev.2025.106085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 02/12/2025] [Accepted: 02/27/2025] [Indexed: 03/04/2025]
Abstract
Posttraumatic stress disorder (PTSD) is a disabling psychiatric disorder that arises after acute or chronic exposure to threatened death, serious injury, or sexual violence. The pathophysiology of PTSD is complex and involves dysregulation of multiple interacting brain regions and neurobiological systems including the sympathetic nervous system, the hypothalamic-pituitary-adrenal (HPA) axis, and the immune system. Deficient biosynthesis of neurosteroids that positively modulate GABAA receptor function, including allopregnanolone (Allo) and its equipotent stereoisomer pregnanolone (PA), also affects a subpopulation of individuals with PTSD and is associated with increased PTSD risk, severity, chronicity and treatment resistance. The synthesis of these neuroactive steroids by the brain, adrenal glands, and gonads may be influenced by stress, drugs, social isolation and other factors with impact on the balance of inhibitory versus excitatory (I/E) neurotransmission in brain. These neuroactive steroids are thus considered a potential target for new PTSD therapeutics. In this review, we first present studies in humans and rodents performed over the past 20 years that have shaped our current understanding of the role of Allo and PA in the pathophysiology of PTSD. We will also discuss the means by which rigorous measurement of neurosteroids can be used to identify individually-variable dysfunctional patterns of neurosteroidogenesis that could be targeted to prevent or treat PTSD. This broadened precision medicine approach to diagnosis of neuroendocrinopathies associated with PTSD may aid in reducing PTSD risk and facilitating the effective prescribing of PTSD therapeutics. We hope that such an approach will also forestall development of individually variable but common psychiatric, substance abuse, and medical PTSD-comorbidities.
Collapse
Affiliation(s)
- Graziano Pinna
- The Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, IL, USA; UI Center on Depression and Resilience (UICDR), Department of Psychiatry, College of Medicine, University of Illinois at Chicago, IL, USA; Center for Alcohol Research in Epigenetics (CARE), Department of Psychiatry, College of Medicine, University of Illinois at Chicago, IL, USA.
| | - Olga Ponomareva
- McLean Hospital and Department of Psychiatry, Harvard Medical School
| | - George L Stalcup
- OAA Psychiatry/Neuroscience Research Fellow in the Neuropsychiatry Translational Research Fellowship (NeTReF) Program, VA Boston Healthcare System, USA
| | - Ann M Rasmusson
- VA National Center for PTSD, Women's Health Science Division, VA Boston Healthcare System, Boston, MA 02130, USA; Department of Psychiatry, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, 02118, USA
| |
Collapse
|
2
|
Fogaça MV, Daher F, Picciotto MR. Effects of ketamine on GABAergic and glutamatergic activity in the mPFC: biphasic recruitment of GABA function in antidepressant-like responses. Neuropsychopharmacology 2025; 50:673-684. [PMID: 39390105 PMCID: PMC11845475 DOI: 10.1038/s41386-024-02002-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 09/21/2024] [Accepted: 09/24/2024] [Indexed: 10/12/2024]
Abstract
Major depressive disorder (MDD) is associated with disruptions in glutamatergic and GABAergic activity in the medial prefrontal cortex (mPFC), leading to altered synaptic formation and function. Low doses of ketamine rapidly rescue these deficits, inducing fast and sustained antidepressant effects. While it is suggested that ketamine produces a rapid glutamatergic enhancement in the mPFC, the temporal dynamics and the involvement of GABA interneurons in its sustained effects remain unclear. Using simultaneous photometry recordings of calcium activity in mPFC pyramidal and GABA neurons, as well as chemogenetic approaches in Gad1-Cre mice, we explored the hypothesis that initial effects of ketamine on glutamate signaling trigger subsequent enhancement of GABAergic responses, contributing to its sustained antidepressant responses. Calcium recordings revealed a biphasic effect of ketamine on activity of mPFC GABA neurons, characterized by an initial transient decrease (phase 1, <30 min) followed by an increase (phase 2, >60 min), in parallel with a transient increase in excitation/inhibition levels (10 min) and lasting enhancement of glutamatergic activity (30-120 min). Previous administration of ketamine enhanced GABA neuron activity during the sucrose splash test (SUST) and novelty suppressed feeding test (NSFT), 24 h and 72 h post-treatment, respectively. Chemogenetic inhibition of GABA interneurons during the surge of GABAergic activity (phase 2), or immediately before the SUST or NSFT, occluded ketamine's behavioral actions. These results indicate that time-dependent modulation of GABAergic activity is required for the sustained antidepressant-like responses induced by ketamine, suggesting that approaches to enhance GABAergic plasticity and function are promising therapeutic targets for antidepressant development.
Collapse
Affiliation(s)
- Manoela V Fogaça
- Department of Pharmacology and Physiology, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, 14642, USA.
- Department of Psychiatry, Yale University School of Medicine, 34 Park Street, New Haven, CT, 06519, USA.
| | - Fernanda Daher
- Department of Pharmacology and Physiology, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Marina R Picciotto
- Department of Psychiatry, Yale University School of Medicine, 34 Park Street, New Haven, CT, 06519, USA
| |
Collapse
|
3
|
Takahashi A. The role of social isolation stress in escalated aggression in rodent models. Neurosci Res 2025; 211:75-84. [PMID: 35917930 DOI: 10.1016/j.neures.2022.07.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/14/2022] [Accepted: 07/27/2022] [Indexed: 11/26/2022]
Abstract
Anti-social behavior and violence are major public health concerns. Globally, violence contributes to more than 1.6 million deaths each year. Previous studies have reported that social rejection or neglect exacerbates aggression. In rodent models, social isolation stress is used to demonstrate the adverse effects of social deprivation on physiological, endocrinological, immunological, and behavioral parameters, including aggressive behavior. This review summarizes recent rodent studies on the effect of social isolation stress during different developmental periods on aggressive behavior and the underlying neural mechanisms. Social isolation during adulthood affects the levels of neurosteroids and neuropeptides and increases aggressive behavior. These changes are ethologically relevant for the adaptation to changes in local environmental conditions in the natural habitats. Chronic deprivation of social interaction after weaning, especially during the juvenile to adolescent periods, leads to the disruption of the development of appropriate social behavior and the maladaptive escalation of aggressive behavior. The understanding of neurobiological mechanisms underlying social isolation-induced escalated aggression will aid in the development of therapeutic interventions for escalated aggression.
Collapse
Affiliation(s)
- Aki Takahashi
- Laboratory of Behavioral Neurobiology, Faculty of Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan.
| |
Collapse
|
4
|
Fogaça MV, Daher F, Picciotto MR. Effects of ketamine on GABAergic and glutamatergic activity in the mPFC: biphasic recruitment of GABA function in antidepressant-like responses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.29.605610. [PMID: 39131322 PMCID: PMC11312475 DOI: 10.1101/2024.07.29.605610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Major depressive disorder (MDD) is associated with disruptions in glutamatergic and GABAergic activity in the medial prefrontal cortex (mPFC), leading to altered synaptic formation and function. Low doses of ketamine rapidly rescue these deficits, inducing fast and sustained antidepressant effects. While it is suggested that ketamine produces a rapid glutamatergic enhancement in the mPFC, the temporal dynamics and the involvement of GABA interneurons in its sustained effects remain unclear. Using simultaneous photometry recordings of calcium activity in mPFC pyramidal and GABA neurons, as well as chemogenetic approaches in Gad1-Cre mice, we explored the hypothesis that initial effects of ketamine on glutamate signaling trigger subsequent enhancement of GABAergic responses, contributing to its sustained antidepressant responses. Calcium recordings revealed a biphasic effect of ketamine on activity of mPFC GABA neurons, characterized by an initial transient decrease (phase 1, <30 min) followed by an increase (phase 2, >60 min), in parallel with a transient increase in excitation/inhibition levels (10 min) and lasting enhancement of glutamatergic activity (30-120 min). Previous administration of ketamine enhanced GABA neuron activity during the sucrose splash test (SUST) and novelty suppressed feeding test (NSFT), 24 h and 72 h post-treatment, respectively. Chemogenetic inhibition of GABA interneurons during the surge of GABAergic activity (phase 2), or immediately before the SUST or NSFT, occluded ketamine's behavioral actions. These results indicate that time-dependent modulation of GABAergic activity is required for the sustained antidepressant-like responses induced by ketamine, suggesting that approaches to enhance GABAergic plasticity and function are promising therapeutic targets for antidepressant development.
Collapse
Affiliation(s)
- Manoela V. Fogaça
- Department of Pharmacology and Physiology, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA
- Department of Psychiatry, Yale University School of Medicine, 34 Park Street, New Haven, CT 06519, USA
| | - Fernanda Daher
- Department of Pharmacology and Physiology, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Marina R. Picciotto
- Department of Psychiatry, Yale University School of Medicine, 34 Park Street, New Haven, CT 06519, USA
| |
Collapse
|
5
|
Evans-Strong A, Walton N, Blandino K, Roper ATC, Donaldson ST, Lewis M, Maguire J. Witnessed trauma exposure induces fear in mice through a reduction in endogenous neurosteroid synthesis. J Neuroendocrinol 2024; 36:e13378. [PMID: 38482748 PMCID: PMC11091913 DOI: 10.1111/jne.13378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 02/17/2024] [Accepted: 02/19/2024] [Indexed: 03/27/2024]
Abstract
Neurosteroids have been implicated in the pathophysiology of post-traumatic stress disorder (PTSD). Allopregnanolone is reduced in subsets of individuals with PTSD and has been explored as a novel treatment strategy. Both direct trauma exposure and witnessed trauma are risk factors for PTSD; however, the role of neurosteroids in the behavioral outcomes of these unique experiences has not been explored. Here, we investigate whether observational fear is associated with a reduced capacity for endogenous neurosteroidogenesis and the relationship with behavioral outcomes. We demonstrated that mice directly subjected to a threat (foot shocks) and those witnessing the threat have decreased plasma levels of allopregnanolone. The expression of a key enzyme involved in endogenous neurosteroid synthesis, 5α-reductase type 2, is decreased in the basolateral amygdala, which is a major emotional processing hub implicated in PTSD. We demonstrated that genetic knockdown or pharmacological inhibition of 5α-reductase type 2 exaggerates the behavioral expression of fear in response to witnessed trauma, whereas oral treatment with an exogenous, synthetic neuroactive steroid gamma-aminobutyric acid-A receptor positive allosteric modulator with molecular pharmacology similar to allopregnanolone (SGE-516 [tool compound]) decreased the behavioral response to observational fear. These data implicate impaired endogenous neurosteroidogenesis in the pathophysiology of threat exposure, both direct and witnessed. Further, these data suggest that treatment with exogenous 5α-reduced neurosteroids or targeting endogenous neurosteroidogenesis may be beneficial for the treatment of individuals with PTSD, whether resulting from direct or witnessed trauma.
Collapse
Affiliation(s)
- Aidan Evans-Strong
- Neuroscience Department, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Najah Walton
- Neuroscience Department, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Katrina Blandino
- Neuroscience Department, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Abigail T C Roper
- Developmental and Brain Sciences Program, Department of Psychology, University of Massachusetts Boston, Boston, Massachusetts, USA
| | - S Tiffany Donaldson
- Developmental and Brain Sciences Program, Department of Psychology, University of Massachusetts Boston, Boston, Massachusetts, USA
| | - Mike Lewis
- Sage Therapeutics, Inc, Cambridge, Massachusetts, USA
| | - Jamie Maguire
- Neuroscience Department, Tufts University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
6
|
Maguire JL, Mennerick S. Neurosteroids: mechanistic considerations and clinical prospects. Neuropsychopharmacology 2024; 49:73-82. [PMID: 37369775 PMCID: PMC10700537 DOI: 10.1038/s41386-023-01626-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/15/2023] [Accepted: 05/17/2023] [Indexed: 06/29/2023]
Abstract
Like other classes of treatments described in this issue's section, neuroactive steroids have been studied for decades but have risen as a new class of rapid-acting, durable antidepressants with a distinct mechanism of action from previous antidepressant treatments and from other compounds covered in this issue. Neuroactive steroids are natural derivatives of progesterone but are proving effective as exogenous treatments. The best understood mechanism is that of positive allosteric modulation of GABAA receptors, where subunit selectivity may promote their profile of action. Mechanistically, there is some reason to think that neuroactive steroids may separate themselves from liabilities of other GABA modulators, although research is ongoing. It is also possible that intracellular targets, including inflammatory pathways, may be relevant to beneficial actions. Strengths and opportunities for further development include exploiting non-GABAergic targets, structural analogs, enzymatic production of natural steroids, precursor loading, and novel formulations. The molecular mechanisms of behavioral effects are not fully understood, but study of brain network states involved in emotional processing demonstrate a robust influence on affective states not evident with at least some other GABAergic drugs including benzodiazepines. Ongoing studies with neuroactive steroids will further elucidate the brain and behavioral effects of these compounds as well as likely underpinnings of disease.
Collapse
Affiliation(s)
- Jamie L Maguire
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Ave, Boston, MA, 02111, USA
| | - Steven Mennerick
- Department of Psychiatry and Taylor Family Institute for Innovative Psychiatric Research, Washington University in St. Louis School of Medicine, 660 S. Euclid Ave., St. Louis, MO, 63110, USA.
| |
Collapse
|
7
|
Walton NL, Antonoudiou P, Barros L, Dargan T, DiLeo A, Evans-Strong A, Gabby J, Howard S, Paracha R, Sánchez EJ, Weiss GL, Kong D, Maguire JL. Impaired Endogenous Neurosteroid Signaling Contributes to Behavioral Deficits Associated With Chronic Stress. Biol Psychiatry 2023; 94:249-261. [PMID: 36736870 PMCID: PMC10363189 DOI: 10.1016/j.biopsych.2023.01.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 11/21/2022] [Accepted: 01/14/2023] [Indexed: 02/04/2023]
Abstract
BACKGROUND Chronic stress is a major risk factor for psychiatric illnesses, including depression. However, the pathophysiological mechanisms whereby stress leads to mood disorders remain unclear. Allopregnanolone acts as a positive allosteric modulator preferentially on δ subunit-containing GABAA (gamma-aminobutyric acid A) receptors. Accumulating clinical and preclinical evidence supports the antidepressant effects of exogenous administration of allopregnanolone analogs; yet, the role of endogenous allopregnanolone in the pathophysiology of depression remains unknown. METHODS We utilized a chronic unpredictable stress (CUS) mouse model, followed by behavioral and biochemical assays, to examine whether altered neurosteroid signaling contributes to behavioral outcomes following CUS. We subsequently performed in vivo CRISPR (clustered regularly interspaced short palindromic repeats) knockdown of rate-limiting enzymes involved in allopregnanolone synthesis, 5α-reductase type 1 and 2 (5α1/2), in addition to lentiviral overexpression of 5α1/2 in the basolateral amygdala (BLA) of mice that underwent CUS to assess the impact of 5α1/2 on behavioral outcomes. RESULTS The expression of δ subunit-containing GABAA receptors and endogenous levels of allopregnanolone were reduced in the BLA following CUS. Treatment with an exogenous allopregnanolone analog, SGE-516, was sufficient to increase allopregnanolone levels in the BLA following CUS. Knockdown of 5α1/2 in the BLA mimicked the behavioral outcomes associated with CUS. Conversely, overexpression of 5α1/2 in the BLA improved behavioral outcomes following CUS. CONCLUSIONS Our findings demonstrate that chronic stress impairs endogenous neurosteroid signaling in the BLA, which is sufficient to induce behavioral deficits. Further, these studies suggest that allopregnanolone-based treatments may directly target the underlying pathophysiology of mood disorders suggesting that targeting endogenous neurosteroidogenesis may offer a novel therapeutic strategy.
Collapse
Affiliation(s)
- Najah L Walton
- Department of Neuroscience, Program of Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts
| | - Pantelis Antonoudiou
- Department of Neuroscience, Program of Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts
| | - Lea Barros
- Department of Neuroscience, Program of Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts; Building Diversity in Biomedical Sciences Program, Tufts University School of Medicine, Boston, Massachusetts; Department of Biology, Hamilton College, Clinton, New York
| | - Tauryn Dargan
- Department of Neuroscience, Program of Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts
| | - Alyssa DiLeo
- Department of Neuroscience, Program of Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts
| | - Aidan Evans-Strong
- Department of Neuroscience, Program of Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts
| | - Jenah Gabby
- Department of Neuroscience, Program of Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts; Building Diversity in Biomedical Sciences Program, Tufts University School of Medicine, Boston, Massachusetts; Louis Stokes Alliance for Minority Participation, Tufts University, Medford, Massachusetts
| | - Samantha Howard
- Department of Neuroscience, Program of Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts; Division of Endocrinology, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts; F.M. Kirby Neurobiology Center, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Rumzah Paracha
- Department of Neuroscience, Program of Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts
| | - Edgardo J Sánchez
- Department of Neuroscience, Program of Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts; Building Diversity in Biomedical Sciences Program, Tufts University School of Medicine, Boston, Massachusetts; Department of Chemistry, University of Puerto Rico, Cayey, Puerto Rico
| | - Grant L Weiss
- Department of Neuroscience, Program of Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts
| | - Dong Kong
- Department of Neuroscience, Program of Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts; Division of Endocrinology, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts; F.M. Kirby Neurobiology Center, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Jamie L Maguire
- Department of Neuroscience, Program of Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts.
| |
Collapse
|
8
|
Hamidovic A, Davis J, Soumare F, Datta A, Naveed A. Trajectories of Allopregnanolone and Allopregnanolone to Progesterone Ratio across the Six Subphases of Menstrual Cycle. Biomolecules 2023; 13:biom13040652. [PMID: 37189398 DOI: 10.3390/biom13040652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/08/2023] Open
Abstract
Background: Allopregnanolone is one of the most studied neuroactive steroids; yet, despite its relevance to neuropsychiatric research, it is not known how it, as well as its ratio to progesterone, varies across all six subphases of the menstrual cycle. Two enzymes—5α-dihydroprogesterone and 5α-reductase—convert progesterone to allopregnanolone, and, based on immunohistochemical studies in rodents, the activity of 5α-reductase is considered the rate-limiting step in the formation of allopregnanolone. It is not clear, however, whether the same phenomenon is observed across to the menstrual cycle, and, if so, at what point this takes place. Methods: Thirty-seven women completed the study during which they attended eight clinic visits across one menstrual cycle. We analyzed their allopregnanolone and progesterone serum concentrations using ultraperformance liquid chromatography–tandem mass spectrometry, and we implemented a validated method to realign the data from the original eight clinic study visits, following which we imputed the missing data. Hence, we characterized allopregnanolone concentrations, and the ratio of allopregnanolone:progesterone at six menstrual cycle subphases: (1) early follicular, (2) mid-follicular, (3) periovulatory, (4) early luteal, (5) mid-luteal, and (6) late luteal. Results: There were significant differences in allopregnanolone levels between (1) early follicular and early luteal, (2) early follicular and mid-luteal, (3) mid-follicular and mid-luteal, (4) periovulatory and mid-luteal, and (5) mid-luteal and late luteal. We detected a sharp drop in allopregnanolone:progesterone ratio in the early luteal subphase. Within the luteal subphase, the ratio was the lowest in the mid-luteal subphase. Conclusions: Allopregnanolone concentrations are the most distinct, relative to the other subphases, in the mid-luteal subphase. The shape of the allopregnanolone trajectory across the cycle is similar to that of progesterone; however, the proportion of the two neuroactive steroid hormones is drastically different due to enzymatic saturation, which takes place at the start of the early luteal subphase, but continuing through, and peaking, in the mid-luteal subphase. Hence, the estimated activity of 5α-reductase decreases, but does not cease, at any point across the menstrual cycle.
Collapse
Affiliation(s)
- Ajna Hamidovic
- College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA
| | - John Davis
- College of Medicine, University of Illinois at Chicago, 1601 W. Taylor St., Chicago, IL 60612, USA
| | - Fatimata Soumare
- College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA
| | - Avisek Datta
- School of Public Health, University of Illinois at Chicago, 1603 W. Taylor St., Chicago, IL 60612, USA
| | - Aamina Naveed
- College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA
| |
Collapse
|
9
|
Tongta S, Daendee S, Kalandakanond-Thongsong S. Anxiety-like behavior and GABAergic system in ovariectomized rats exposed to chronic mild stress. Physiol Behav 2023; 258:114014. [PMID: 36328075 DOI: 10.1016/j.physbeh.2022.114014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/14/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022]
Abstract
Stress or low level of estrogen could promote anxiety and depression; thus, it is of interest to investigate the combined effect of mild stress and the lack of estrogen on mental disorders by utilizing an animal model. This study was conducted to assess anxiety- and depressive- like behaviors in ovariectomized (Ovx) rats exposed to chronic mild stress (CMS) and determine the alteration in gamma-aminobutyric acid (GABA)-related transmission. Ovx rats were randomly assigned into four groups: (1) estrogen replacement (E2-NoCMS), (2) estrogen replacement and exposure to CMS (E2-CMS), (3) vehicle (VEH-NoCMS), and (4) vehicle and exposure to CMS (VEH-CMS). Following 4-week CMS, VEH groups (VEH-NoCMS and VEH-CMS) showed a similar level of anxiety-like behavior in elevated T-maze, whereas E2-CMS, VEH-NoCMS and VEH-CMS showed anxiety-like behavior in open field. The depressive-like behavior in the force swimming test tended to be affected by estrogen deprivation than CMS. The alteration of the GABAergic system as determined from the GABA level and mRNA expression of GABA-related transmission (i.e., glutamic acid decarboxylase, GABA transporter and GABAA subunits) showed that the GABA level in the amygdala and frontal cortex was affected by CMS. For mRNA expression, the mRNA profile in the amygdala and hippocampus of VEH-NoCMS and E2-CMS was the same but different from those of VEH-NoCMS and E2-CMS. In addition, compared with E2-NoCMS, the mRNA profile in the frontal cortex was similar in VEH-NoCMS, E2-CMS, and VEH-CMS. These findings indicated that the underlying mechanism of the GABAergic system was differently modified, although VEH-NoCMS and VEH-CMS showed anxiety-like behavior. The findings of this study may provide a comprehensive understanding of the modulation of the GABAergic system during estrogen deprivation under CMS, as observed in menopausal women who were daily exposed to stress.
Collapse
Affiliation(s)
- Sushawadee Tongta
- Department of Veterinary Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Suwaporn Daendee
- College of Medicine and Public Health, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
| | | |
Collapse
|
10
|
Huang J, Xu F, Yang L, Tuolihong L, Wang X, Du Z, Zhang Y, Yin X, Li Y, Lu K, Wang W. Involvement of the GABAergic system in PTSD and its therapeutic significance. Front Mol Neurosci 2023; 16:1052288. [PMID: 36818657 PMCID: PMC9928765 DOI: 10.3389/fnmol.2023.1052288] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 01/16/2023] [Indexed: 02/04/2023] Open
Abstract
The neurobiological mechanism of post-traumatic stress disorder (PTSD) is poorly understood. The inhibition of GABA neurons, especially in the amygdala, is crucial for the precise regulation of the consolidation, expression, and extinction of fear conditioning. The GABAergic system is involved in the pathophysiological process of PTSD, with several studies demonstrating that the function of the GABAergic system decreases in PTSD patients. This paper reviews the preclinical and clinical studies, neuroimaging techniques, and pharmacological studies of the GABAergic system in PTSD and summarizes the role of the GABAergic system in PTSD. Understanding the role of the GABAergic system in PTSD and searching for new drug targets will be helpful in the treatment of PTSD.
Collapse
Affiliation(s)
| | - Fei Xu
- Department of Psychiatry of School of Public Health, Southern Medical University, Guangzhou, China
| | - Liping Yang
- Department of Applied Psychology of School of Public Health, Southern Medical University, Guangzhou, China
| | - Lina Tuolihong
- Department of Basic Medical of Basic Medical College, Southern Medical University, Guangzhou, China
| | - Xiaoyu Wang
- Eight-Year Master's and Doctoral Program in Clinical Medicine of the First Clinical Medical College, Southern Medical University, Guangzhou, China
| | - Zibo Du
- Eight-Year Master's and Doctoral Program in Clinical Medicine of the First Clinical Medical College, Southern Medical University, Guangzhou, China
| | - Yiqi Zhang
- Eight-Year Master's and Doctoral Program in Clinical Medicine of the First Clinical Medical College, Southern Medical University, Guangzhou, China
| | - Xuanlin Yin
- Department of Basic Medical of Basic Medical College, Southern Medical University, Guangzhou, China
| | - Yingjun Li
- Department of Medical Laboratory Science, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Kangrong Lu
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, China
| | - Wanshan Wang
- Department of Laboratory Animal Center, Southern Medical University, Guangzhou, China
| |
Collapse
|
11
|
Chik MW, Hazalin NAMN, Singh GKS. Regulation of phase I and phase II neurosteroid enzymes in the hippocampus of an Alzheimer's disease rat model: A focus on sulphotransferases and UDP-glucuronosyltransferases. Steroids 2022; 184:109035. [PMID: 35405201 DOI: 10.1016/j.steroids.2022.109035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 03/27/2022] [Accepted: 04/05/2022] [Indexed: 11/17/2022]
Abstract
Neurosteroids have been associated with neurodegenerative diseases because they are involved in the modulation of neurotransmitter, neurotropic and neuroprotective actions. Emerging evidence suggests that the enzymes responsible for the synthesis of neurosteroids change during the progression of Alzheimer's disease (AD). The present study aimed to assess the changes in phase I and II enzymes involved in the metabolism of neurosteroids of the progestogen, androgenic and estrogenic steroidogenic pathways and the possibility that the neurosteroids are actively converted into the most abundant metabolites (i.e. glucuronides and sulphates). The gene expression for the phase I and II neurosteroid biosynthetic enzymes were studied in the hippocampus of streptozotocin AD rat model. Male Sprague-Dawley rats were randomly divided into control, sham (saline injected into the hippocampus) and 3 and 12 weeks post-STZ administration (STZ-G3w and STZ-G12w, respectively) groups. Behavioral assessments showed memory impairment in both STZ-injected groups, whereas the formation of amyloid-beta was more pronounced in the STZ-12w group. Gene expression of the hippocampus revealed that glucuronidation and sulphation enzymes transcript of the phase I metabolites were upregulated at the late stage of the disease progression (Hsd17b10, Hsd3b1, Akr1c3 and Cyp19a1) except for Sts. The phase II Sult and Ugt enzymes were mostly upregulated in the STZ-G12w rats (Sult1a1, Sult1e1, Ugt1a1, Ugt1a7c, Ugt1a6, Ugt2b35 and Ugt2b17) and normally expressed in the STZ-G3w group (Sult2a2, Sult2a6, Sult2b1, Ugt2b7, Sult4a1 and Ugt1a7c). In conclusion, changes occur in the phase I and II enzymes transcript of the progestogen, androgenic and estrogenic steroidogenic pathways during the progression of AD.
Collapse
Affiliation(s)
- Mazzura Wan Chik
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Selangor Branch, Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor, Malaysia
| | - Nurul Aqmar Mohd Nor Hazalin
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Selangor Branch, Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor, Malaysia; Integrative Pharmacogenomics Institute (iPROMiSE), Level 7, FF3, Universiti Teknologi MARA, Selangor Branch, Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor, Malaysia
| | - Gurmeet Kaur Surindar Singh
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Selangor Branch, Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor, Malaysia; Brain Degeneration and Therapeutics Group, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor, Malaysia.
| |
Collapse
|
12
|
Wang ZY, McKenzie-Smith GC, Liu W, Cho HJ, Pereira T, Dhanerawala Z, Shaevitz JW, Kocher SD. Isolation disrupts social interactions and destabilizes brain development in bumblebees. Curr Biol 2022; 32:2754-2764.e5. [PMID: 35584698 PMCID: PMC9233014 DOI: 10.1016/j.cub.2022.04.066] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/28/2022] [Accepted: 04/22/2022] [Indexed: 12/24/2022]
Abstract
Social isolation, particularly in early life, leads to deleterious physiological and behavioral outcomes. Here, we leverage new high-throughput tools to comprehensively investigate the impact of isolation in the bumblebee, Bombus impatiens, from behavioral, molecular, and neuroanatomical perspectives. We reared newly emerged bumblebees in complete isolation, in small groups, or in their natal colony, and then analyzed their behaviors while alone or paired with another bee. We find that when alone, individuals of each rearing condition show distinct behavioral signatures. When paired with a conspecific, bees reared in small groups or in the natal colony express similar behavioral profiles. Isolated bees, however, showed increased social interactions. To identify the neurobiological correlates of these differences, we quantified brain gene expression and measured the volumes of key brain regions for a subset of individuals from each rearing condition. Overall, we find that isolation increases social interactions and disrupts gene expression and brain development. Limited social experience in small groups is sufficient to preserve typical patterns of brain development and social behavior.
Collapse
Affiliation(s)
- Z Yan Wang
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA; Lewis Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Grace C McKenzie-Smith
- Lewis Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ, USA; Department of Physics, Princeton University, Princeton, NJ, USA
| | - Weijie Liu
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - Hyo Jin Cho
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - Talmo Pereira
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Zahra Dhanerawala
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA; Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
| | - Joshua W Shaevitz
- Lewis Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ, USA; Department of Physics, Princeton University, Princeton, NJ, USA
| | - Sarah D Kocher
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA; Lewis Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
13
|
Rossetti MF, Varayoud J, Ramos JG. Steroidogenic enzymes in the hippocampus: Transcriptional regulation aspects. VITAMINS AND HORMONES 2022; 118:171-198. [PMID: 35180926 DOI: 10.1016/bs.vh.2021.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Neurosteroids are steroids synthesized de novo from cholesterol in brain regions, and regulate processes associated with the development and functioning of the nervous system. Enzymes and proteins involved in the synthesis of these steroids have been detected in several brain regions, including hippocampus, hypothalamus, and cerebral cortex. Hippocampus has long been associated with learning and memory functions, while the loss of its functionality has been linked to neurodegenerative pathologies. In this sense, neurosteroids are critical for the maintenance of hippocampal functions and neuroprotective effects. Moreover, several factors have been shown to deregulate expression of steroidogenic enzymes in the rodent brain, including aging, enrichment experiences, diet habits, drug/alcohol consumption, hormone fluctuations, neurodegenerative processes and other diseases. These transcriptional deregulations are mediated mainly by transcription factors and epigenetic mechanisms. An epigenetic modification of chromatin involves changes in bases and associated proteins in the absence of changes in the DNA sequence. One of the most well-studied mechanisms related to gene silencing is DNA methylation, which involves a reversible addition of methyl groups in a cytosine base. Importantly, these epigenetic marks could be maintained over time and could be transmitted transgenerationally. The aim of this chapter is to present the most relevant steroidogenic enzymes described in rodent hippocampus; to discuss about their transcriptional regulation under different conditions; to show the main gene control regions and to propose DNA methylation as an epigenetic mechanism through which the expression of these enzymes could be controlled.
Collapse
Affiliation(s)
- María Florencia Rossetti
- Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral-CONICET, Santa Fe, Argentina
| | - Jorgelina Varayoud
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral-CONICET, Santa Fe, Argentina; Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Jorge Guillermo Ramos
- Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral-CONICET, Santa Fe, Argentina.
| |
Collapse
|
14
|
Bar-Sadeh B, Amichai OE, Pnueli L, Begum K, Leeman G, Emes RD, Stöger R, Bentley GR, Melamed P. Epigenetic regulation of 5α reductase-1 underlies adaptive plasticity of reproductive function and pubertal timing. BMC Biol 2022; 20:11. [PMID: 34996447 PMCID: PMC8742331 DOI: 10.1186/s12915-021-01219-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 12/16/2021] [Indexed: 12/30/2022] Open
Abstract
Background Women facing increased energetic demands in childhood commonly have altered adult ovarian activity and shorter reproductive lifespan, possibly comprising a strategy to optimize reproductive success. Here, we sought to understand the mechanisms of early-life programming of reproductive function, by integrating analysis of reproductive tissues in an appropriate mouse model with methylation analysis of proxy tissue DNA in a well-characterized population of Bangladeshi migrants in the UK. Bangladeshi women whose childhood was in Bangladesh were found to have later pubertal onset and lower age-matched ovarian reserve than Bangladeshi women who grew-up in England. Subsequently, we aimed to explore the potential relevance to the altered reproductive phenotype of one of the genes that emerged from the screens. Results Of the genes associated with differential methylation in the Bangladeshi women whose childhood was in Bangladesh as compared to Bangladeshi women who grew up in the UK, 13 correlated with altered expression of the orthologous gene in the mouse model ovaries. These mice had delayed pubertal onset and a smaller ovarian reserve compared to controls. The most relevant of these genes for reproductive function appeared to be SRD5A1, which encodes the steroidogenic enzyme 5α reductase-1. SRD5A1 was more methylated at the same transcriptional enhancer in mice ovaries as in the women’s buccal DNA, and its expression was lower in the hypothalamus of the mice as well, suggesting a possible role in the central control of reproduction. The expression of Kiss1 and Gnrh was also lower in these mice compared to controls, and inhibition of 5α reductase-1 reduced Kiss1 and Gnrh mRNA levels and blocked GnRH release in GnRH neuronal cell cultures. Crucially, we show that inhibition of this enzyme in female mice in vivo delayed pubertal onset. Conclusions SRD5A1/5α reductase-1 responds epigenetically to the environment and its downregulation appears to alter the reproductive phenotype. These findings help to explain diversity in reproductive characteristics and how they are shaped by early-life environment and reveal novel pathways that might be targeted to mitigate health issues caused by life-history trade-offs. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01219-6.
Collapse
Affiliation(s)
- Ben Bar-Sadeh
- Faculty of Biology, Technion-Israel Institute of Technology, 32000, Haifa, Israel
| | - Or E Amichai
- Faculty of Biology, Technion-Israel Institute of Technology, 32000, Haifa, Israel
| | - Lilach Pnueli
- Faculty of Biology, Technion-Israel Institute of Technology, 32000, Haifa, Israel
| | - Khurshida Begum
- Department of Anthropology, Durham University, Durham, DH1 3LE, UK
| | - Gregory Leeman
- School of Biosciences, University of Nottingham, Nottingham, LE12 5RD, UK
| | - Richard D Emes
- School of Veterinary Medicine and Sciences, University of Nottingham, Nottingham, LE12 5RD, UK
| | - Reinhard Stöger
- School of Biosciences, University of Nottingham, Nottingham, LE12 5RD, UK
| | | | - Philippa Melamed
- Faculty of Biology, Technion-Israel Institute of Technology, 32000, Haifa, Israel.
| |
Collapse
|
15
|
Woelfle S, Boeckers TM. Layer-Specific Vesicular Glutamate Transporter 1 Immunofluorescence Levels Delineate All Layers of the Human Hippocampus Including the Stratum lucidum. Front Cell Neurosci 2021; 15:789903. [PMID: 34955756 PMCID: PMC8696355 DOI: 10.3389/fncel.2021.789903] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/18/2021] [Indexed: 11/18/2022] Open
Abstract
The hippocampal formation consists of the Ammon’s horn (cornu Ammonis with its regions CA1-4), dentate gyrus, subiculum, and the entorhinal cortex. The rough extension of the regions CA1-3 is typically defined based on the density and size of the pyramidal neurons without clear-cut boundaries. Here, we propose the vesicular glutamate transporter 1 (VGLUT1) as a molecular marker for the CA3 region. This is based on its strong labeling of the stratum lucidum (SL) in fluorescently stained human hippocampus sections. VGLUT1 puncta of the intense SL band co-localize with synaptoporin (SPO), a protein enriched in mossy fibers (MFs). Owing to its specific intensity profile throughout all hippocampal layers, VGLUT1 could be implemented as a pendant to Nissl-staining in fluorescent approaches with the additional demarcation of the SL. Furthermore, by high-resolution confocal microscopy, we detected VGLUT2 in the human hippocampus, thus reconciling two previous studies. Finally, by VGLUT1/SPO co-staining, we provide evidence for the existence of infrapyramidal MFs in the human hippocampus and we show that SPO expression is not restricted to MF synapses as demonstrated for rodent tissue.
Collapse
Affiliation(s)
- Sarah Woelfle
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany.,International Graduate School in Molecular Medicine Ulm (IGradU), Ulm, Germany
| | - Tobias M Boeckers
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany.,Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Ulm, Germany
| |
Collapse
|
16
|
|
17
|
Luo Y, Kusay AS, Jiang T, Chebib M, Balle T. Delta-containing GABA A receptors in pain management: Promising targets for novel analgesics. Neuropharmacology 2021; 195:108675. [PMID: 34153311 DOI: 10.1016/j.neuropharm.2021.108675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 06/01/2021] [Accepted: 06/11/2021] [Indexed: 12/26/2022]
Abstract
Communication between nerve cells depends on the balance between excitatory and inhibitory circuits. GABA, the major inhibitory neurotransmitter, regulates this balance and insufficient GABAergic activity is associated with numerous neuropathological disorders including pain. Of the various GABAA receptor subtypes, the δ-containing receptors are particularly interesting drug targets in management of chronic pain. These receptors are pentameric ligand-gated ion channels composed of α, β and δ subunits and can be activated by ambient levels of GABA to generate tonic conductance. However, only a few ligands preferentially targeting δ-containing GABAA receptors have so far been identified, limiting both pharmacological understanding and drug-discovery efforts, and more importantly, understanding of how they affect pain pathways. Here, we systemically review and discuss the known drugs and ligands with analgesic potential targeting δ-containing GABAA receptors and further integrate the biochemical nature of the receptors with clinical perspectives in pain that might generate interest among researchers and clinical physicians to encourage analgesic discovery efforts leading to more efficient therapies.
Collapse
Affiliation(s)
- Yujia Luo
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, NSW, 2006, Australia; Brain and Mind Centre, The University of Sydney, Camperdown, NSW, 2050, Australia
| | - Ali Saad Kusay
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, NSW, 2006, Australia; Brain and Mind Centre, The University of Sydney, Camperdown, NSW, 2050, Australia
| | - Tian Jiang
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, NSW, 2006, Australia; Brain and Mind Centre, The University of Sydney, Camperdown, NSW, 2050, Australia
| | - Mary Chebib
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, NSW, 2006, Australia; Brain and Mind Centre, The University of Sydney, Camperdown, NSW, 2050, Australia
| | - Thomas Balle
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, NSW, 2006, Australia; Brain and Mind Centre, The University of Sydney, Camperdown, NSW, 2050, Australia.
| |
Collapse
|
18
|
Chen S, Gao L, Li X, Ye Y. Allopregnanolone in mood disorders: Mechanism and therapeutic development. Pharmacol Res 2021; 169:105682. [PMID: 34019980 DOI: 10.1016/j.phrs.2021.105682] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/10/2021] [Accepted: 05/14/2021] [Indexed: 01/23/2023]
Abstract
The neuroactive steroid allopregnanolone (ALLO) is an endogenous positive allosteric modulator of GABA type A receptor (GABAAR), and the down-regulation of its biosynthesis have been attributed to the development of mood disorders, such as depression, anxiety and post-traumatic stress disorder (PTSD). ALLO mediated depression/anxiety involves GABAergic mechanisms and appears to be related to brain-derived neurotrophic factor (BDNF), dopamine receptor, glutamate neurotransmission, and Ca2+ channel. In the clinical, brexanolone, as a newly developed intravenous ALLO preparation, has been approved for the treatment of postpartum depression (PPD). In addition, traditional antidepressants such as selective serotonin reuptake inhibitor (SSRI) could reverse ALLO decline. Recently, the translocation protein (TSPO, 18 kDa), which involves in the speed-limiting step of ALLO synthesis, and ALLO derivatization have been identified as new directions for antidepressant therapy. This review provides an overview of ALLO researches in animal model and patients, discusses its role in the development and treatment of depression/anxiety, and directs its therapeutic potential in future.
Collapse
Affiliation(s)
- Shiyi Chen
- School of Pharmacy, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, Zhejiang, People's Republic of China; Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang, People's Republic of China.
| | - Lijuan Gao
- School of Pharmacy, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, Zhejiang, People's Republic of China; Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang, People's Republic of China.
| | - Xiaoyu Li
- School of Pharmacy, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, Zhejiang, People's Republic of China; Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang, People's Republic of China.
| | - Yiping Ye
- School of Pharmacy, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, Zhejiang, People's Republic of China; Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang, People's Republic of China.
| |
Collapse
|
19
|
Čater M, Majdič G. How early maternal deprivation changes the brain and behavior? Eur J Neurosci 2021; 55:2058-2075. [PMID: 33870558 DOI: 10.1111/ejn.15238] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 01/30/2023]
Abstract
Early life stress can adversely influence brain development and reprogram brain function and consequently behavior in adult life. Adequate maternal care in early childhood is therefore particularly important for the normal brain development, and adverse early life experiences can lead to altered emotional, behavioral, and neuroendocrine stress responses in the adulthood. As a form of neonatal stress, maternal deprivation/separation is often used in behavioral studies to examine the effects of early life stress and for modeling the development of certain psychiatric disorders and brain pathologies in animal models. The temporary loss of maternal care during the critical postpartum periods remodels the offspring's brain and provokes long-term effects on learning and cognition, the development of mental disorders, aggression, and an increased tendency for the drug abuse. Early life stress through maternal deprivation affects neuroendocrine responses to stress in adolescence and adulthood by dysregulating the hypothalamic-pituitary-adrenal axis and permanently disrupts stress resilience. In this review, we focused on how improper maternal care during early postnatal life affects brain development resulting in modified behavior later in life.
Collapse
Affiliation(s)
- Maša Čater
- Veterinary Faculty, Laboratory for Animal Genomics, Institute for Preclinical Studies, University of Ljubljana, Ljubljana, Slovenia.,Faculty of Medicine, Institute of Physiology, University of Maribor, Maribor, Slovenia
| | - Gregor Majdič
- Veterinary Faculty, Laboratory for Animal Genomics, Institute for Preclinical Studies, University of Ljubljana, Ljubljana, Slovenia.,Faculty of Medicine, Institute of Physiology, University of Maribor, Maribor, Slovenia
| |
Collapse
|
20
|
Biosynthesis and signalling functions of central and peripheral nervous system neurosteroids in health and disease. Essays Biochem 2021; 64:591-606. [PMID: 32756865 PMCID: PMC7517341 DOI: 10.1042/ebc20200043] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/09/2020] [Accepted: 07/14/2020] [Indexed: 02/07/2023]
Abstract
Neurosteroids are steroid hormones synthesised de novo in the brain and peripheral nervous tissues. In contrast to adrenal steroid hormones that act on intracellular nuclear receptors, neurosteroids directly modulate plasma membrane ion channels and regulate intracellular signalling. This review provides an overview of the work that led to the discovery of neurosteroids, our current understanding of their intracellular biosynthetic machinery, and their roles in regulating the development and function of nervous tissue. Neurosteroids mediate signalling in the brain via multiple mechanisms. Here, we describe in detail their effects on GABA (inhibitory) and NMDA (excitatory) receptors, two signalling pathways of opposing function. Furthermore, emerging evidence points to altered neurosteroid function and signalling in neurological disease. This review focuses on neurodegenerative diseases associated with altered neurosteroid metabolism, mainly Niemann-Pick type C, multiple sclerosis and Alzheimer disease. Finally, we summarise the use of natural and synthetic neurosteroids as current and emerging therapeutics alongside their potential use as disease biomarkers.
Collapse
|
21
|
Rehbein E, Hornung J, Sundström Poromaa I, Derntl B. Shaping of the Female Human Brain by Sex Hormones: A Review. Neuroendocrinology 2021; 111:183-206. [PMID: 32155633 DOI: 10.1159/000507083] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/09/2020] [Indexed: 12/26/2022]
Abstract
Traditionally sex hormones have been associated with reproductive and developmental processes only. Since the 1950s we know that hormones can have organizational effects on the developing brain and initiate hormonal transition periods such as puberty. However, recent evidence shows that sex hormones additionally structure the brain during important hormonal transition periods across a woman's life including short-term fluctuations during the menstrual cycle. However, a comprehensive review focusing on structural changes during all hormonal transition phases of women is still missing. Therefore, in this review structural changes across hormonal transition periods (i.e., puberty, menstrual cycle, oral contraceptive intake, pregnancy and menopause) were investigated in a structured way and correlations with sex hormones evaluated. Results show an overall reduction in grey matter and region-specific decreases in prefrontal, parietal and middle temporal areas during puberty. Across the menstrual cycle grey matter plasticity in the hippocampus, the amygdala as well as temporal and parietal regions were most consistently reported. Studies reporting on pre- and post-pregnancy measurements revealed volume reductions in midline structures as well as prefrontal and temporal cortices. During perimenopause, the decline in sex hormones was paralleled with a reduction in hippocampal and parietal cortex volume. Brain volume changes were significantly correlated with estradiol, testosterone and progesterone levels in some studies, but directionality remains inconclusive between studies. These results indicate that sex hormones play an important role in shaping women's brain structure during different transition periods and are not restricted to specific developmental periods.
Collapse
Affiliation(s)
- Elisa Rehbein
- Department of Psychiatry and Psychotherapy, Innovative Neuroimaging, University of Tübingen, Tübingen, Germany,
| | - Jonas Hornung
- Department of Psychiatry and Psychotherapy, Innovative Neuroimaging, University of Tübingen, Tübingen, Germany
| | | | - Birgit Derntl
- Department of Psychiatry and Psychotherapy, Innovative Neuroimaging, University of Tübingen, Tübingen, Germany
- Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
- Lead Graduate School, University of Tübingen, Tübingen, Germany
| |
Collapse
|
22
|
Bottemanne H, Claret A, Fossati P. [Ketamine, psilocybin, and rapid acting antidepressant: new promise for psychiatry?]. Encephale 2020; 47:171-178. [PMID: 33190819 DOI: 10.1016/j.encep.2020.08.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 07/12/2020] [Accepted: 08/08/2020] [Indexed: 12/20/2022]
Abstract
The hypothesis of monoaminergic deficiency has long dominated the conceptual framework for the development of new antidepressant strategies, but the limits of conventional antidepressant treatments targeting monoaminergic signaling have motivated the search for new antidepressant pathways. The success of ketamine in the management of depressive disorders has provoked a renewed interest in hallucinogenic substances such as psilocybin targeting the serotonergic signaling 5HT2A and neurosteroid allosteric modulator of γ-aminobutyric acid (GABAA) receptors such as brexanolone. Unlike conventional treatments, these modulators of glutamatergic, serotonergic and GABAergic systems exert a rapid antidepressant effect ranging from 24hours to a week. Apart from their clinical interest and the fantasized search for a "miracle" molecule that jointly meets the expectations of patients and clinicians, these new targets could lead to the identification of potential new biomarkers for the development of rapid-acting antidepressants and redefine therapeutic strategies in mood disorders.
Collapse
Affiliation(s)
- H Bottemanne
- Control-Interoception-Attention team, Paris Brain Institute, Institut du Cerveau (ICM), UMR 7225/UMR_S 1127, Sorbonne University/CNRS/Inserm, Paris, France.; Department of Psychiatry, Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France.
| | - A Claret
- Department of Psychiatry, Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France
| | - P Fossati
- Control-Interoception-Attention team, Paris Brain Institute, Institut du Cerveau (ICM), UMR 7225/UMR_S 1127, Sorbonne University/CNRS/Inserm, Paris, France.; Department of Psychiatry, Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France
| |
Collapse
|
23
|
Deligiannidis KM, Kroll-Desrosiers AR, Tan Y, Dubuke ML, Shaffer SA. Longitudinal proneuroactive and neuroactive steroid profiles in medication-free women with, without and at-risk for perinatal depression: A liquid chromatography-tandem mass spectrometry analysis. Psychoneuroendocrinology 2020; 121:104827. [PMID: 32828068 PMCID: PMC7572700 DOI: 10.1016/j.psyneuen.2020.104827] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/17/2020] [Accepted: 07/23/2020] [Indexed: 01/04/2023]
Abstract
BACKGROUND Neuroactive steroids (NAS) are derivatives of cholesterol or steroidal precursors made in the gonads, adrenal gland, placenta and brain. We characterized longitudinal plasma proneuroactive and NAS in healthy perinatal comparison women (HPCW), women at-risk for perinatal depression (AR-PND), and women with PND with/without comorbid anxiety. We hypothesized that AR-PND women who either did or did not go on to develop PND would have elevated NAS concentrations as compared to HPCW and that NAS would be correlated to depressive and anxiety symptoms. METHODS A prospective cohort study evaluated 75 medication-free perinatal women (HPCW, n = 30; AR-PND, n = 19; PND, n = 26). Standardized depression and anxiety assessments and blood samples were completed across 5 visits. Structured Clinical Interviews for DSM-IV TR Disorders were administered at study entry and exit. Plasma pregnenolone, progesterone, 5α- and 5β-dihydroprogesterone, pregnanolone, allopregnanolone, deoxycorticosterone and tetrahydrodeoxycorticosterone were quantified by liquid chromatography-tandem mass spectrometry. Longitudinal relationships between risk-group, depression and anxiety symptoms, and NAS concentrations were analyzed using generalized estimating equations to control for repeated measures correlations. RESULTS Perinatal 5α-dihydroprogesterone, 5β-dihydroprogesterone, allopregnanolone, deoxycorticosterone, and tetrahydrodeoxycorticosterone concentrations were higher in AR-PND and PND women compared to HPCW (β = 3.57 ± 1.40 and β = 2.11 ± 1.12, p = 0.03; β = 0.18 ± 0.06 and β = 0.03 ± 0.05, p = 0.02; β = 1.06 ± 0.42 and β = 1.19 ± 0.47, p = 0.01; β = 0.17 ± 0.07 and β = 0.11 ± 0.06, p = 0.05; β = 0.03 ± 0.01 and β = 0.03 ± 0.01, p = 0.05, respectively). Perinatal allopregnanolone, 5α-dihydroprogesterone and tetrahydrodeoxycorticosterone were positively associated with HAM-D17 (all p < 0.02). HAM-A was positively associated with 5α- and 5β-dihydroprogesterone, pregnanolone, allopregnanolone, deoxycorticosterone and tetrahydrodeoxycorticosterone (all p < 0.05). A history of depression was associated with increased 5α-dihydroprogesterone (2.20 ± 1.09, p = 0.05), deoxycorticosterone (0.13 ± 0.06, p = 0.03) and tetrahydrodeoxycorticosterone (0.03 ± 0.01, p = 0.02). CONCLUSION To our knowledge, this study represents the largest prospective study of 5-α and 5-β reductase products of progesterone and deoxycorticosterone in HPCW and women AR-PND. Data suggest that PND is associated with both a reduction of progesterone to 5β-dihydroprogesterone, 5α-dihydroprogesterone, and allopregnanolone, and the 21-hydroxylation to deoxycorticosterone and tetrahydrodeoxycorticosterone. The shift towards 5α-dihydroprogesterone, deoxycorticosterone and tetrahydrodeoxycorticosterone was associated with a history of depression, a significant risk factor for PND.
Collapse
Affiliation(s)
- Kristina M Deligiannidis
- Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, 11030, USA; Department of Psychiatry, Division of Psychiatry Research, Zucker Hillside Hospital, Northwell Health, Queens, NY, 11004, USA; Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, 11549, USA; Department of Psychiatry, University of Massachusetts Medical School, Worcester, MA, 01655, USA.
| | - Aimee R Kroll-Desrosiers
- VA Central Western Massachusetts Healthcare System, Leeds, MA, 01053, USA; Department of Population and Quantitative Health Sciences, University of Massachusetts Medical School, Worcester, MA, 01655, USA.
| | - Yanglan Tan
- Mass Spectrometry Facility, University of Massachusetts Medical School, Shrewsbury, MA, 01545, USA; Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, 01655, USA.
| | - Michelle L Dubuke
- Mass Spectrometry Facility, University of Massachusetts Medical School, Shrewsbury, MA, 01545, USA; Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, 01655, USA.
| | - Scott A Shaffer
- Mass Spectrometry Facility, University of Massachusetts Medical School, Shrewsbury, MA, 01545, USA; Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, 01655, USA.
| |
Collapse
|
24
|
Pinna G. Allopregnanolone, the Neuromodulator Turned Therapeutic Agent: Thank You, Next? Front Endocrinol (Lausanne) 2020; 11:236. [PMID: 32477260 PMCID: PMC7240001 DOI: 10.3389/fendo.2020.00236] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 03/31/2020] [Indexed: 11/13/2022] Open
Affiliation(s)
- Graziano Pinna
- Department of Psychiatry, The Psychiatric Institute, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
25
|
Shirayama Y, Fujita Y, Oda Y, Iwata M, Muneoka K, Hashimoto K. Allopregnanolone induces antidepressant-like effects through BDNF-TrkB signaling independent from AMPA receptor activation in a rat learned helplessness model of depression. Behav Brain Res 2020; 390:112670. [PMID: 32437888 DOI: 10.1016/j.bbr.2020.112670] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/12/2020] [Accepted: 04/20/2020] [Indexed: 02/02/2023]
Abstract
Allopregnanolone (ALLO, 3α5α-tetrahydroprogesterone) was found to be effective for depressed patients. Animal models of depression indicate that ALLO is associated with the pathophysiology of depression. Traditional antidepressant drugs produce antidepressant effects via the monoamine system, with consequent up-regulation of brain-derived neurotrophic factor (BDNF). This study was designed to examine whether the antidepressant effects of ALLO involve BDNF-TrkB signaling or α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor activation on the learned helplessness paradigm. The antidepressant-like effect of ALLO infusion into the cerebral ventricle was blocked by coinfusion of TrkB inhibitor ANA-12, but not by co-administration of AMPA receptor antagonist 2,3-dihydroxy-6-nitro-7-sulfoamoylbenzo(f)quinoxaline (NBQX). Thus, the antidepressant-like effect of ALLO involves BDNF signaling independent from AMPA receptor activation.
Collapse
Affiliation(s)
- Yukihiko Shirayama
- Department of Psychiatry, Teikyo University Chiba Medical Center, Ichihara, Japan; Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan.
| | - Yuko Fujita
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| | - Yasunori Oda
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Masaaki Iwata
- Department of Neuropsychiatry, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Katsumasa Muneoka
- Department of Psychiatry, Teikyo University Chiba Medical Center, Ichihara, Japan
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| |
Collapse
|
26
|
Matrisciano F, Pinna G. PPAR and functional foods: Rationale for natural neurosteroid-based interventions for postpartum depression. Neurobiol Stress 2020; 12:100222. [PMID: 32426424 PMCID: PMC7226878 DOI: 10.1016/j.ynstr.2020.100222] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/23/2020] [Accepted: 04/08/2020] [Indexed: 02/07/2023] Open
Abstract
Allopregnanolone, a GABAergic neurosteroid and progesterone derivative, was recently approved by the Food and Drug Administration for the treatment of postpartum depression (PPD). Several mechanisms appear to be involved in the pathogenesis of PPD, including neuroendocrine dysfunction, neuroinflammation, neurotransmitter alterations, genetic and epigenetic modifications. Recent evidence highlights the higher risk for incidence of PPD in mothers exposed to unhealthy diets that negatively impact the microbiome composition and increase inflammation, all effects that are strongly correlated with mood disorders. Conversely, healthy diets have consistently been reported to decrease the risk of peripartum depression and to protect the body and brain against low-grade systemic chronic inflammation. Several bioactive micronutrients found in the so-called functional foods have been shown to play a relevant role in preventing neuroinflammation and depression, such as vitamins, minerals, omega-3 fatty acids and flavonoids. An intriguing molecular substrate linking functional foods with improvement of mood disorders may be represented by the peroxisome-proliferator activated receptor (PPAR) pathway, which can regulate allopregnanolone biosynthesis and brain-derived neurotropic factor (BDNF) and thereby may reduce inflammation and elevate mood. Herein, we discuss the potential connection between functional foods and PPAR and their role in preventing neuroinflammation and symptoms of PPD through neurosteroid regulation. We suggest that healthy diets by targeting the PPAR-neurosteroid axis and thereby decreasing inflammation may offer a suitable functional strategy to prevent and safely alleviate mood symptoms during the perinatal period.
Collapse
Affiliation(s)
- Francesco Matrisciano
- The Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois Chicago (UIC), Chicago, IL, USA
| | - Graziano Pinna
- The Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois Chicago (UIC), Chicago, IL, USA
| |
Collapse
|
27
|
Antidepressant mechanisms of ketamine: Focus on GABAergic inhibition. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2020; 89:43-78. [PMID: 32616214 DOI: 10.1016/bs.apha.2020.03.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
There has been much recent progress in understanding of the mechanism of ketamine's rapid and enduring antidepressant effects. Here we review recent insights from clinical and preclinical studies, with special emphasis of ketamine-induced changes in GABAergic synaptic transmission that are considered essential for its antidepressant therapeutic effects. Subanesthetic ketamine is now understood to exert its initial action by selectively blocking a subset of NMDA receptors on GABAergic interneurons, which results in disinhibition of glutamatergic target neurons, a surge in extracellular glutamate and correspondingly elevated glutamatergic synaptic transmission. This surge in glutamate appears to be corroborated by the rapid metabolism of ketamine into hydroxynorketamine, which acts at presynaptic sites to disinhibit the release of glutamate. Preclinical studies indicate that glutamate-induced activity triggers the release of BDNF, followed by transient activation of the mTOR pathway and increased expression of synaptic proteins, along with functional strengthening of glutamatergic synapses. This drug-on phase lasts for approximately 2h and is followed by a period of days characterized by structural maturation of newly formed glutamatergic synapses and prominently enhanced GABAergic synaptic inhibition. Evidence from mouse models with constitutive antidepressant-like phenotypes suggests that this phase involves strengthened inhibition of dendrites by somatostatin-positive GABAergic interneurons and correspondingly reduced NMDA receptor-mediated Ca2+ entry into dendrites, which activates an intracellular signaling cascade that converges with the mTOR pathway onto increased activity of the eukaryotic elongation factor eEF2 and enhanced translation of dendritic mRNAs. Newly synthesized proteins such as BDNF may be important for the prolonged therapeutic effects of ketamine.
Collapse
|
28
|
Paul SM, Pinna G, Guidotti A. Allopregnanolone: From molecular pathophysiology to therapeutics. A historical perspective. Neurobiol Stress 2020; 12:100215. [PMID: 32435665 PMCID: PMC7231972 DOI: 10.1016/j.ynstr.2020.100215] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/05/2020] [Accepted: 03/09/2020] [Indexed: 11/17/2022] Open
Abstract
Allopregnanolone is synthesized in the central nervous system either de novo from cholesterol or from steroid hormone precursors like progesterone and pregnenolone. Over the past 30 years, direct and rapid, non-genomic actions of allopregnanolone and its derivatives via GABAA receptors have been demonstrated. Changes in brain levels of allopregnanolone during pregnancy and in the postpartum period, or during exposure to protracted stress appear to play a crucial role in the pathophysiology of mood disorders. The discovery that allopregnanolone at low (nanomolar) concentrations elicits marked anxiolytic, anti-stress and antidepressant effects by facilitating allosterically the action of GABA at extrasynaptic GABAA receptors has provided new perspectives for the discovery of novel drugs useful for the treatment of mood disorders. These findings have led to the seminal clinical studies that recently demonstrated that treatment with allopregnanolone (i.e., brexanolone) can dramatically and rapidly improve the symptoms of postpartum depression in many patients.
Collapse
Affiliation(s)
- Steven M Paul
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA.,The Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA.,Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Graziano Pinna
- The Psychiatric Institute, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Alessandro Guidotti
- The Psychiatric Institute, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA.,Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of IIIinois at Chicago, USA
| |
Collapse
|
29
|
Tufano M, Pinna G. Is There a Future for PPARs in the Treatment of Neuropsychiatric Disorders? Molecules 2020; 25:molecules25051062. [PMID: 32120979 PMCID: PMC7179196 DOI: 10.3390/molecules25051062] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 02/07/2023] Open
Abstract
Recently, peroxisome proliferator-activated receptor (PPAR)-α and γ isoforms have been gaining consistent interest in neuropathology and treatment of neuropsychiatric disorders. Several studies have provided evidence that either the receptor expression or the levels of their endogenously-produced modulators are downregulated in several neurological and psychiatric disorders and in their respective animal models. Remarkably, administration of these endogenous or synthetic ligands improves mood and cognition, suggesting that PPARs may offer a significant pharmacological target to improve several neuropathologies. Furthermore, various neurological and psychiatric disorders reflect sustained levels of systemic inflammation. Hence, the strategy of targeting PPARs for their anti-inflammatory role to improve these disorders is attracting attention. Traditionally, classical antidepressants fail to be effective, specifically in patients with inflammation. Non-steroidal anti-inflammatory drugs exert potent antidepressant effects by acting along with PPARs, thereby strongly substantiating the involvement of these receptors in the mechanisms that lead to development of several neuropathologies. We reviewed running findings in support of a role for PPARs in the treatment of neurological diseases, including Alzheimer's disease or psychiatric disorders, such as major depression. We discuss the opportunity of targeting PPARs as a future pharmacological approach to decrease neuropsychiatric symptoms at the same time that PPAR ligands resolve neuroinflammatory processes.
Collapse
Affiliation(s)
| | - Graziano Pinna
- Correspondence: or ; Tel.: +1-312-355-1464; Fax: +1-312-413-4569
| |
Collapse
|
30
|
Meltzer-Brody S, Kanes SJ. Allopregnanolone in postpartum depression: Role in pathophysiology and treatment. Neurobiol Stress 2020; 12:100212. [PMID: 32435663 PMCID: PMC7231991 DOI: 10.1016/j.ynstr.2020.100212] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 01/22/2020] [Accepted: 01/30/2020] [Indexed: 02/06/2023] Open
Abstract
Postpartum depression (PPD) is a unique subtype of major depressive disorder and a substantial contributor to maternal morbidity and mortality. In addition to affecting the mother, PPD can have short- and long-term consequences for the infant and partner. The precise etiology of PPD is unknown, but proposed mechanisms include altered regulation of stress response pathways, such as the hypothalamic-pituitary-adrenal axis, and dysfunctional gamma-aminobutyric acid (GABA) signaling, and functional linkages exist between these pathways. Current PPD pharmacotherapies are not directly related to these proposed pathophysiologies. In this review, we focus on the potential role of GABAergic signaling and the GABAA receptor positive allosteric modulator allopregnanolone in PPD. Data implicating GABAergic signaling and allopregnanolone in PPD are discussed in the context of the development of brexanolone injection, an intravenous formulation of allopregnanolone recently approved by the United States Food and Drug Administration for the treatment of adult women with PPD.
Collapse
Affiliation(s)
- Samantha Meltzer-Brody
- Department of Psychiatry, School of Medicine, The University of North Carolina at Chapel Hill, USA
- Corresponding author.
| | | |
Collapse
|
31
|
Abstract
Understanding the neurobiological basis of post-traumatic stress disorder (PTSD) is fundamental to accurately diagnose this neuropathology and offer appropriate treatment options to patients. The lack of pharmacological effects, too often observed with the most currently used drugs, the selective serotonin reuptake inhibitors (SSRIs), makes even more urgent the discovery of new pharmacological approaches. Reliable animal models of PTSD are difficult to establish because of the present limited understanding of the PTSD heterogeneity and of the influence of various environmental factors that trigger the disorder in humans. We summarize knowledge on the most frequently investigated animal models of PTSD, focusing on both their behavioral and neurobiological features. Most of them can reproduce not only behavioral endophenotypes, including anxiety-like behaviors or fear-related avoidance, but also neurobiological alterations, such as glucocorticoid receptor hypersensitivity or amygdala hyperactivity. Among the various models analyzed, we focus on the social isolation mouse model, which reproduces some deficits observed in humans with PTSD, such as abnormal neurosteroid biosynthesis, changes in GABAA receptor subunit expression and lack of pharmacological response to benzodiazepines. Neurosteroid biosynthesis and its interaction with the endocannabinoid system are altered in PTSD and are promising neuronal targets to discover novel PTSD agents. In this regard, we discuss pharmacological interventions and we highlight exciting new developments in the fields of research for novel reliable PTSD biomarkers that may enable precise diagnosis of the disorder and more successful pharmacological treatments for PTSD patients.
Collapse
|
32
|
GABA-A receptor modulating steroids in acute and chronic stress; relevance for cognition and dementia? Neurobiol Stress 2019; 12:100206. [PMID: 31921942 PMCID: PMC6948369 DOI: 10.1016/j.ynstr.2019.100206] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/13/2019] [Accepted: 12/18/2019] [Indexed: 01/10/2023] Open
Abstract
Cognitive dysfunction, dementia and Alzheimer's disease (AD) are increasing as the population worldwide ages. Therapeutics for these conditions is an unmet need. This review focuses on the role of the positive GABA-A receptor modulating steroid allopregnanolone (APα), it's role in underlying mechanisms for impaired cognition and of AD, and to determine options for therapy of AD. On one hand, APα given intermittently promotes neurogenesis, decreases AD-related pathology and improves cognition. On the other, continuous exposure of APα impairs cognition and deteriorates AD pathology. The disparity between these two outcomes led our groups to analyze the mechanisms underlying the difference. We conclude that the effects of APα depend on administration pattern and that chronic slightly increased APα exposure is harmful to cognitive function and worsens AD pathology whereas single administrations with longer intervals improve cognition and decrease AD pathology. These collaborative assessments provide insights for the therapeutic development of APα and APα antagonists for AD and provide a model for cross laboratory collaborations aimed at generating translatable data for human clinical trials.
Collapse
|
33
|
Sze Y, Brunton PJ. Sex, stress and steroids. Eur J Neurosci 2019; 52:2487-2515. [DOI: 10.1111/ejn.14615] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/01/2019] [Accepted: 10/03/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Ying Sze
- Centre for Discovery Brain Sciences University of Edinburgh Edinburgh UK
| | - Paula J. Brunton
- Centre for Discovery Brain Sciences University of Edinburgh Edinburgh UK
- Zhejiang University‐University of Edinburgh Joint Institute Haining Zhejiang China
| |
Collapse
|
34
|
Zorumski CF, Paul SM, Covey DF, Mennerick S. Neurosteroids as novel antidepressants and anxiolytics: GABA-A receptors and beyond. Neurobiol Stress 2019; 11:100196. [PMID: 31649968 PMCID: PMC6804800 DOI: 10.1016/j.ynstr.2019.100196] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 09/24/2019] [Indexed: 01/22/2023] Open
Abstract
The recent FDA approval of the neurosteroid, brexanolone (allopregnanolone), as a treatment for women with postpartum depression, and successful trials of a related neuroactive steroid, SGE-217, for men and women with major depressive disorder offer the hope of a new era in treating mood and anxiety disorders based on the potential of neurosteroids as modulators of brain function. This review considers potential mechanisms contributing to antidepressant and anxiolytic effects of allopregnanolone and other GABAergic neurosteroids focusing on their actions as positive allosteric modulators of GABAA receptors. We also consider their roles as endogenous "stress" modulators and possible additional mechanisms contributing to their therapeutic effects. We argue that further understanding of the molecular, cellular, network and psychiatric effects of neurosteroids offers the hope of further advances in the treatment of mood and anxiety disorders.
Collapse
Affiliation(s)
- Charles F. Zorumski
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
- The Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Steven M. Paul
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- The Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Douglas F. Covey
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
- The Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Steven Mennerick
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
- The Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
35
|
Locci A, Pinna G. Stimulation of Peroxisome Proliferator-Activated Receptor-α by N-Palmitoylethanolamine Engages Allopregnanolone Biosynthesis to Modulate Emotional Behavior. Biol Psychiatry 2019; 85:1036-1045. [PMID: 30955840 DOI: 10.1016/j.biopsych.2019.02.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 12/31/2018] [Accepted: 02/01/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND The endocannabinoid and neurosteroid systems regulate emotions and stress responses. Activation of peroxisome proliferator-activated receptor (PPAR)-α by the endocannabinoid congener N-palmitoylethanolamine (PEA) regulates pathophysiological systems (e.g., inflammation, oxidative stress) and induces peripheral biosynthesis of allopregnanolone, a gamma-aminobutyric acidergic neurosteroid implicated in mood disorders. However, effects of PPAR-α on emotional behavior are poorly understood. METHODS We studied the impact of PPAR-α activation on emotional behavior in a mouse model of posttraumatic stress disorder. Neurosteroid levels before and after PEA treatment were measured by gas chromatography-mass spectrometry in relevant brain regions of socially isolated versus group-housed mice exposed to the contextual fear conditioning test, elevated plus maze test, forced swim test, and tail suspension test. Neurosteroidogenic enzyme levels were quantified in hippocampus by Western blot. RESULTS PEA administered in a model of conditioned contextual fear reconsolidation blockade facilitated fear extinction and fear extinction retention and induced marked antidepressive- and anxiolytic-like effects in socially isolated mice with reduced brain allopregnanolone levels. These effects were mimicked by the PPAR-α synthetic agonists, fenofibrate and GW7647, and were prevented by PPAR-α deletion, PPAR-α antagonists, and neurosteroid-enzyme inhibitors. Behavioral improvements correlated with PEA-induced upregulation of PPAR-α, neurosteroidogenic enzyme expression, and normalization of corticolimbic allopregnanolone levels. CONCLUSIONS This evidence supports a previously unknown role for PPAR-α in behavior regulation and suggests new strategies for the treatment of neuropsychopathologies characterized by deficient neurosteroidogenesis, including posttraumatic stress disorder and major depressive disorder.
Collapse
Affiliation(s)
- Andrea Locci
- The Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Graziano Pinna
- The Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, Illinois.
| |
Collapse
|
36
|
Pinna G. Animal Models of PTSD: The Socially Isolated Mouse and the Biomarker Role of Allopregnanolone. Front Behav Neurosci 2019; 13:114. [PMID: 31244621 PMCID: PMC6579844 DOI: 10.3389/fnbeh.2019.00114] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 05/14/2019] [Indexed: 12/18/2022] Open
Abstract
Post-traumatic stress disorder (PTSD) is a debilitating undertreated condition that affects 8%-13% of the general population and 20%-30% of military personnel. Currently, there are no specific medications that reduce PTSD symptoms or biomarkers that facilitate diagnosis, inform treatment selection or allow monitoring drug efficacy. PTSD animal models rely on stress-induced behavioral deficits that only partially reproduce PTSD neurobiology. PTSD heterogeneity, including comorbidity and symptoms overlap with other mental disorders, makes this attempt even more complicated. Allopregnanolone, a neurosteroid that positively, potently and allosterically modulates GABAA receptors and, by this mechanism, regulates emotional behaviors, is mainly synthesized in brain corticolimbic glutamatergic neurons. In PTSD patients, allopregnanolone down-regulation correlates with increased PTSD re-experiencing and comorbid depressive symptoms, CAPS-IV scores and Simms dysphoria cluster scores. In PTSD rodent models, including the socially isolated mouse, decrease in corticolimbic allopregnanolone biosynthesis is associated with enhanced contextual fear memory and impaired fear extinction. Allopregnanolone, its analogs or agents that stimulate its synthesis offer treatment approaches for facilitating fear extinction and, in general, for neuropsychopathologies characterized by a neurosteroid biosynthesis downregulation. The socially isolated mouse model reproduces several other deficits previously observed in PTSD patients, including altered GABAA receptor subunit subtypes and lack of benzodiazepines pharmacological efficacy. Transdiagnostic behavioral features, including expression of anxiety-like behavior, increased aggression, a behavioral component to reproduce behavioral traits of suicidal behavior in humans, as well as alcohol consumption are heightened in socially isolated rodents. Potentials for assessing novel biomarkers to predict, diagnose, and treat PTSD more efficiently are discussed in view of developing a precision medicine for improved PTSD pharmacological treatments.
Collapse
Affiliation(s)
- Graziano Pinna
- The Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
37
|
Locci A, Pinna G. Social isolation as a promising animal model of PTSD comorbid suicide: neurosteroids and cannabinoids as possible treatment options. Prog Neuropsychopharmacol Biol Psychiatry 2019; 92:243-259. [PMID: 30586627 DOI: 10.1016/j.pnpbp.2018.12.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 12/18/2018] [Accepted: 12/21/2018] [Indexed: 02/07/2023]
Abstract
Post-traumatic stress disorder (PTSD) is a psychiatric condition characterized by drastic alterations in mood, emotions, social abilities and cognition. Notably, one aspect of PTSD, particularly in veterans, is its comorbidity with suicide. Elevated aggressiveness predicts high-risk to suicide in humans and despite the difficulty in reproducing a complex human suicidal behavior in rodents, aggressive behavior is a well reproducible behavioral trait of suicide. PTSD animal models are based on a peculiar phenotype, including exaggerated fear memory and impaired fear extinction associated with neurochemical dysregulations in the brain circuitry regulating emotion. The endocannabinoid and the neurosteroid systems regulate emotions and stress responses, and recent evidence shows these two systems are interrelated and critically compromised in neuropsychiatric disorders. For instance, levels of the neurosteroid, allopregnanolone, as well as those of the endocannabinoids, anandamide and its congener, palmitoylethanolamide are decreased in PTSD. Similarly, the endocannabinoid system and neurosteroid biosynthesis are altered in suicidal individuals. Selective serotonin reuptake inhibitors (SSRIs), the only FDA-approved treatments for PTSD, fail to help half of the treatment-seeking patients. This highlights the need for developing biomarker-based efficient therapies. One promising alternative to SSRIs points to stimulation of allopregnanolone biosynthesis as a treatment and a valid end-point to predict treatment response in PTSD patients. This review highlights running findings on the role of the endocannabinoid and neurosteroid systems in PTSD and suicidal behavior both in a preclinical and clinical perspective. A specific focus is given to predictive PTSD/suicide animal models. Ultimately, we discuss the idea that disruption of neurosteroid and endocannabinoid biosynthesis may offer a novel promising biomarker axis to develop new treatments for PTSD and, perhaps, suicidal behavior.
Collapse
Affiliation(s)
- Andrea Locci
- The Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, 1601 W. Taylor St., Chicago, IL 60612, USA
| | - Graziano Pinna
- The Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, 1601 W. Taylor St., Chicago, IL 60612, USA.
| |
Collapse
|
38
|
Lüscher B, Möhler H. Brexanolone, a neurosteroid antidepressant, vindicates the GABAergic deficit hypothesis of depression and may foster resilience. F1000Res 2019; 8. [PMID: 31275559 PMCID: PMC6544078 DOI: 10.12688/f1000research.18758.1] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/22/2019] [Indexed: 12/18/2022] Open
Abstract
The GABAergic deficit hypothesis of depression states that a deficit of GABAergic transmission in defined neural circuits is causal for depression. Conversely, an enhancement of GABA transmission, including that triggered by selective serotonin reuptake inhibitors or ketamine, has antidepressant effects. Brexanolone, an intravenous formulation of the endogenous neurosteroid allopregnanolone, showed clinically significant antidepressant activity in postpartum depression. By allosterically enhancing GABA
A receptor function, the antidepressant activity of allopregnanolone is attributed to an increase in GABAergic inhibition. In addition, allopregnanolone may stabilize normal mood by decreasing the activity of stress-responsive dentate granule cells and thereby sustain resilience behavior. Therefore, allopregnanolone may augment and extend its antidepressant activity by fostering resilience. The recent structural resolution of the neurosteroid binding domain of GABA
A receptors will expedite the development of more selective ligands as a potential new class of central nervous system drugs.
Collapse
Affiliation(s)
- Bernhard Lüscher
- Department of Biology and Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, 16802, USA.,Center for Molecular Investigation of Neurological Disorders, The Huck Institutes for the Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA
| | - Hanns Möhler
- Institute of Pharmacology and Neuroscience Center, University of Zurich, Zurich, 8057, Switzerland.,Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH), Zurich, 8057, Switzerland
| |
Collapse
|
39
|
Raber J, Arzy S, Bertolus JB, Depue B, Haas HE, Hofmann SG, Kangas M, Kensinger E, Lowry CA, Marusak HA, Minnier J, Mouly AM, Mühlberger A, Norrholm SD, Peltonen K, Pinna G, Rabinak C, Shiban Y, Soreq H, van der Kooij MA, Lowe L, Weingast LT, Yamashita P, Boutros SW. Current understanding of fear learning and memory in humans and animal models and the value of a linguistic approach for analyzing fear learning and memory in humans. Neurosci Biobehav Rev 2019; 105:136-177. [PMID: 30970272 DOI: 10.1016/j.neubiorev.2019.03.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 01/30/2019] [Accepted: 03/18/2019] [Indexed: 01/04/2023]
Abstract
Fear is an emotion that serves as a driving factor in how organisms move through the world. In this review, we discuss the current understandings of the subjective experience of fear and the related biological processes involved in fear learning and memory. We first provide an overview of fear learning and memory in humans and animal models, encompassing the neurocircuitry and molecular mechanisms, the influence of genetic and environmental factors, and how fear learning paradigms have contributed to treatments for fear-related disorders, such as posttraumatic stress disorder. Current treatments as well as novel strategies, such as targeting the perisynaptic environment and use of virtual reality, are addressed. We review research on the subjective experience of fear and the role of autobiographical memory in fear-related disorders. We also discuss the gaps in our understanding of fear learning and memory, and the degree of consensus in the field. Lastly, the development of linguistic tools for assessments and treatment of fear learning and memory disorders is discussed.
Collapse
Affiliation(s)
- Jacob Raber
- Department of Behavioral Neuroscience, ONPRC, Oregon Health & Science University, Portland, OR, USA; Departments of Neurology and Radiation Medicine, and Division of Neuroscience, ONPRC, Oregon Health & Science University, Portland, OR, USA.
| | - Shahar Arzy
- Department of Medical Neurobiology, Hebrew University, Jerusalem 91904, Israel
| | | | - Brendan Depue
- Departments of Psychological and Brain Sciences and Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY, USA
| | - Haley E Haas
- Department of Psychiatry and Behavioral Science, Emory University School of Medicine, Atlanta, GA, USA
| | - Stefan G Hofmann
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, USA
| | - Maria Kangas
- Department of Psychology, Macquarie University, Sydney, Australia
| | | | - Christopher A Lowry
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Hilary A Marusak
- Department of Pharmacy Practice, Wayne State University, Detroit, MI, USA
| | - Jessica Minnier
- School of Public Health, Oregon Health & Science University, Portland, OR, USA
| | - Anne-Marie Mouly
- Lyon Neuroscience Research Center, CNRS-UMR 5292, INSERM U1028, Université Lyon, Lyon, France
| | - Andreas Mühlberger
- Department of Psychology (Clinical Psychology and Psychotherapy), University of Regensburg, Regensburg, Germany; PFH - Private University of Applied Sciences, Department of Psychology (Clinical Psychology and Psychotherapy Research), Göttingen, Germany
| | - Seth Davin Norrholm
- Department of Psychiatry and Behavioral Science, Emory University School of Medicine, Atlanta, GA, USA
| | - Kirsi Peltonen
- Faculty of Social Sciences/Psychology, Tampere University, Tampere, Finland
| | - Graziano Pinna
- The Psychiatric Institute, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | - Christine Rabinak
- Department of Pharmacy Practice, Wayne State University, Detroit, MI, USA
| | - Youssef Shiban
- Department of Psychology (Clinical Psychology and Psychotherapy), University of Regensburg, Regensburg, Germany; PFH - Private University of Applied Sciences, Department of Psychology (Clinical Psychology and Psychotherapy Research), Göttingen, Germany
| | - Hermona Soreq
- Department of Biological Chemistry, Edmond and Lily Safra Center of Brain Science and The Institute of Life Sciences, Hebrew University, Jerusalem 91904, Israel
| | - Michael A van der Kooij
- Translational Psychiatry, Department of Psychiatry and Psychotherapy, Universitatsmedizin der Johannes Guttenberg University Medical Center, Mainz, Germany
| | | | - Leah T Weingast
- Department of Psychiatry and Behavioral Science, Emory University School of Medicine, Atlanta, GA, USA
| | - Paula Yamashita
- School of Public Health, Oregon Health & Science University, Portland, OR, USA
| | - Sydney Weber Boutros
- Department of Behavioral Neuroscience, ONPRC, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
40
|
Rossetti MF, Schumacher R, Lazzarino GP, Gomez AL, Varayoud J, Ramos JG. The impact of sensory and motor enrichment on the epigenetic control of steroidogenic-related genes in rat hippocampus. Mol Cell Endocrinol 2019; 485:44-53. [PMID: 30721712 DOI: 10.1016/j.mce.2019.01.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 01/15/2019] [Accepted: 01/29/2019] [Indexed: 02/07/2023]
Abstract
In the present study, we analyzed the effects of a short-term environmental enrichment on the mRNA expression and DNA methylation of steroidogenic enzymes in the hippocampus. Thus, young adult (80-day-old) and middle-aged (350-day-old) Wistar female rats were exposed to sensory (SE) or motor (ME) enrichment during 10 days and compared to animals housed under standard conditions. SE was provided by an assortment of objects that included plastic tubes and toys; for ME, rodent wheels were provided. In young adult animals, SE and ME increased the mRNA expression of cytochrome P450 17α-hydroxylase/c17,20-lyase, steroid 5α-reductase type 1 (5αR-1) and 3α-hydroxysteroid dehydrogenase and decreased the methylation levels of 5αR-1 gene. In middle-aged rats, ME and SE upregulated the gene expression of aldosterone synthase and decreased the methylation state of its promoter. These results propose that SE and ME differentially regulate the transcription of neurosteroidogenic enzymes through epigenetic mechanisms in young and aged rats.
Collapse
Affiliation(s)
- Maria Florencia Rossetti
- Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Instituto de Salud y Ambiente del Litoral(ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral-CONICET, Santa Fe, Argentina.
| | - Rocio Schumacher
- Instituto de Salud y Ambiente del Litoral(ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral-CONICET, Santa Fe, Argentina.
| | - Gisela Paola Lazzarino
- Instituto de Salud y Ambiente del Litoral(ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral-CONICET, Santa Fe, Argentina.
| | - Ayelen Luciana Gomez
- Instituto de Salud y Ambiente del Litoral(ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral-CONICET, Santa Fe, Argentina; Cátedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina.
| | - Jorgelina Varayoud
- Instituto de Salud y Ambiente del Litoral(ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral-CONICET, Santa Fe, Argentina; Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina.
| | - Jorge Guillermo Ramos
- Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Instituto de Salud y Ambiente del Litoral(ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral-CONICET, Santa Fe, Argentina.
| |
Collapse
|
41
|
Rasmusson AM, King MW, Valovski I, Gregor K, Scioli-Salter E, Pineles SL, Hamouda M, Nillni YI, Anderson GM, Pinna G. Relationships between cerebrospinal fluid GABAergic neurosteroid levels and symptom severity in men with PTSD. Psychoneuroendocrinology 2019; 102:95-104. [PMID: 30529908 PMCID: PMC6584957 DOI: 10.1016/j.psyneuen.2018.11.027] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 11/02/2018] [Accepted: 11/21/2018] [Indexed: 12/21/2022]
Abstract
Allopregnanolone and pregnanolone (together termed allo + pregnan) are neurosteroid metabolites of progesterone that equipotently facilitate the action of gamma-amino-butyric acid (GABA) at GABAA receptors. The adrenal steroid dehydroepiandrosterone (DHEA) allosterically antagonizes GABAA receptors and facilitates N-methyl-D-aspartate (NMDA) receptor function. In prior research, premenopausal women with posttraumatic stress disorder (PTSD) displayed low cerebrospinal fluid (CSF) levels of allo + pregnan [undifferentiated by the gas chromatography-mass spectrometry (GC-MS) method used] that correlated strongly and negatively with PTSD reexperiencing and negative mood symptoms. A PTSD-related decrease in the ratio of allo + pregnan to 5α-dihydroprogesterone (5α-DHP: immediate precursor for allopregnanolone) suggested a block in synthesis of these neurosteroids at 3α-hydroxysteroid dehydrogenase (3α-HSD). In the current study, CSF was collected from unmedicated, tobacco-free men with PTSD (n = 13) and trauma-exposed healthy controls (n = 17) after an overnight fast. Individual CSF steroids were quantified separately by GC-MS. In the men with PTSD, allo + pregnan correlated negatively with Clinician-Administered PTSD Scale (CAPS-IV) total (ρ=-0.74, p = 0.006) and CAPS-IV derived Simms dysphoria cluster (ρ=-0.71, p = 0.01) scores. The allo+pregnan to DHEA ratio also was negatively correlated with total CAPS (ρ=-0.74, p = 0.006) and dysphoria cluster (ρ=-0.79, p = 0.002) scores. A PTSD-related decrease in the 5α-DHP to progesterone ratio indicated a block in allopregnanolone synthesis at 5α-reductase. This study suggests that CSF allo + pregnan levels correlate negatively with PTSD and negative mood symptoms in both men and women, but that the enzyme blocks in synthesis of these neurosteroids may be sex-specific. Consideration of sex, PTSD severity, and function of 5α-reductase and 3α-HSD thus may enable better targeting of neurosteroid-based PTSD treatments.
Collapse
Affiliation(s)
- Ann M Rasmusson
- VA National Center for PTSD Women's Health Science Division, Boston, MA, 02130, United States; VA Boston Healthcare System, Boston, MA, 02130, United States; Boston University School of Medicine, Boston, MA, 02118, United States.
| | - Matthew W King
- VA National Center for PTSD Women's Health Science Division, Boston, MA, 02130, United States; VA Boston Healthcare System, Boston, MA, 02130, United States; Boston University School of Medicine, Boston, MA, 02118, United States
| | - Ivan Valovski
- VA Boston Healthcare System, Boston, MA, 02130, United States; Harvard Medical School, Boston, MA, 02115, United States
| | - Kristin Gregor
- VA Boston Healthcare System, Boston, MA, 02130, United States; Boston University School of Medicine, Boston, MA, 02118, United States
| | - Erica Scioli-Salter
- VA National Center for PTSD Women's Health Science Division, Boston, MA, 02130, United States; VA Boston Healthcare System, Boston, MA, 02130, United States; Boston University School of Medicine, Boston, MA, 02118, United States
| | - Suzanne L Pineles
- VA National Center for PTSD Women's Health Science Division, Boston, MA, 02130, United States; VA Boston Healthcare System, Boston, MA, 02130, United States; Boston University School of Medicine, Boston, MA, 02118, United States
| | - Mohamed Hamouda
- VA Boston Healthcare System, Boston, MA, 02130, United States; Harvard Medical School, Boston, MA, 02115, United States
| | - Yael I Nillni
- VA National Center for PTSD Women's Health Science Division, Boston, MA, 02130, United States; VA Boston Healthcare System, Boston, MA, 02130, United States; Boston University School of Medicine, Boston, MA, 02118, United States
| | - George M Anderson
- Child Study Center and Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, 06510, United States
| | - Graziano Pinna
- The Psychiatric Institute, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, United States
| |
Collapse
|
42
|
Maguire J. Neuroactive Steroids and GABAergic Involvement in the Neuroendocrine Dysfunction Associated With Major Depressive Disorder and Postpartum Depression. Front Cell Neurosci 2019; 13:83. [PMID: 30906252 PMCID: PMC6418819 DOI: 10.3389/fncel.2019.00083] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 02/19/2019] [Indexed: 12/21/2022] Open
Abstract
Stress and previous adverse life events are well-established risk factors for depression. Further, neuroendocrine disruptions are associated with both major depressive disorder (MDD) and postpartum depression (PPD). However, the mechanisms whereby stress contributes to the underlying neurobiology of depression remains poorly understood. The hypothalamic-pituitary-adrenal (HPA) axis, which mediates the body's neuroendocrine response to stress, is tightly controlled by GABAergic signaling and there is accumulating evidence that GABAergic dysfunction contributes to the impact of stress on depression. GABAergic signaling plays a critical role in the neurobiological effects of stress, not only by tightly controlling the activity of the HPA axis, but also mediating stress effects in stress-related brain regions. Deficits in neuroactive steroids and neurosteroids, some of which are positive allosteric modulators of GABAA receptors (GABAARs), such as allopregnanolone and THDOC, have also been implicated in MDD and PPD, further supporting a role for GABAergic signaling in depression. Alterations in neurosteroid levels and GABAergic signaling are implicated as potential contributing factors to neuroendocrine dysfunction and vulnerability to MDD and PPD. Further, potential novel treatment strategies targeting these proposed underlying neurobiological mechanisms are discussed. The evidence summarized in the current review supports the notion that MDD and PPD are stress-related psychiatric disorders involving neurosteroids and GABAergic dysfunction.
Collapse
Affiliation(s)
- Jamie Maguire
- Neuroscience Department, Tufts University School of Medicine, Boston, MA, United States
| |
Collapse
|
43
|
Hare BD, Shinohara R, Liu RJ, Pothula S, DiLeone RJ, Duman RS. Optogenetic stimulation of medial prefrontal cortex Drd1 neurons produces rapid and long-lasting antidepressant effects. Nat Commun 2019; 10:223. [PMID: 30644390 PMCID: PMC6333924 DOI: 10.1038/s41467-018-08168-9] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 12/11/2018] [Indexed: 12/13/2022] Open
Abstract
Impaired function in the medial prefrontal cortex (mPFC) contributes to depression, and the therapeutic response produced by novel rapid-acting antidepressants such as ketamine are mediated by mPFC activity. The mPFC contains multiple types of pyramidal cells, but it is unclear whether a particular subtype mediates the rapid antidepressant actions of ketamine. Here we tested two major subtypes, Drd1 and Drd2 dopamine receptor expressing pyramidal neurons and found that activating Drd1 expressing pyramidal cells in the mPFC produces rapid and long-lasting antidepressant and anxiolytic responses. In contrast, photostimulation of Drd2 expressing pyramidal cells was ineffective across anxiety-like and depression-like measures. Disruption of Drd1 activity also blocked the rapid antidepressant effects of ketamine. Finally, we demonstrate that stimulation of mPFC Drd1 terminals in the BLA recapitulates the antidepressant effects of somatic stimulation. These findings aid in understanding the cellular target neurons in the mPFC and the downstream circuitry involved in rapid antidepressant responses.
Collapse
Affiliation(s)
- Brendan D Hare
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06519, USA
| | - Ryota Shinohara
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06519, USA
| | - Rong Jian Liu
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06519, USA
| | - Santosh Pothula
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06519, USA
| | - Ralph J DiLeone
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06519, USA
| | - Ronald S Duman
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06519, USA.
| |
Collapse
|
44
|
Almeida FB, Gomez R, Barros HMT, Nin MS. Hemisphere-dependent Changes in mRNA Expression of GABA A Receptor Subunits and BDNF after Intra-prefrontal Cortex Allopregnanolone Infusion in Rats. Neuroscience 2018; 397:56-66. [PMID: 30481569 DOI: 10.1016/j.neuroscience.2018.11.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 11/05/2018] [Accepted: 11/19/2018] [Indexed: 02/08/2023]
Abstract
Allopregnanolone is a neurosteroid implicated in mood disorders such as depression and anxiety. It acts as a GABAA receptor (GABAAR)-positive allosteric modulator and changes the expression of GABAAR subunits and of brain-derived neurotrophic factor (BDNF) in different brain regions. It has been demonstrated that such neurochemical changes may have an asymmetrical pattern regarding brain hemispheres. The aim of this study was to verify the behavioral and hemisphere-specific neurochemical effects of the bilateral intra-prefrontal cortex (intra-PFC) infusion of allopregnanolone in rats. Rats were exposed to the forced swim test and to the grooming microstructure test, followed by the right and left hemisphere-specific quantification of mRNA expression by Real-Time PCR of δ and γ2 GABAAR subunits and BDNF in the PFC and in the hippocampus. Though we did not observe any significant effects in the behavioral tests, intra-PFC allopregnanolone infusion bilaterally increased the mRNA expression of the δ subunit in the same area and of BDNF in the hippocampus. Both mRNA expressions of the γ2 subunit and BDNF were higher in the right than in the left PFC of control animals, and the hemisphere differences were not seen after allopregnanolone infusion. Overall hippocampal BDNF expression was also higher in the right hemisphere, but this asymmetry was not normalized by allopregnanolone. No asymmetries or changes were observed in the hippocampal mRNA expression of GABAAR subunits. These results point to a hemisphere-dependent regulation of GABAAR subunits and BDNF that can be modulated by intra-PFC allopregnanolone infusion, even in the absence of associated behavioral effects.
Collapse
Affiliation(s)
- Felipe Borges Almeida
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre - UFCSPA, Rua Sarmento Leite 245, 90050-170 Porto Alegre, RS, Brazil; Departamento de Farmacociências, Laboratório de Neuropsicofarmacologia, Universidade Federal de Ciências da Saúde de Porto Alegre - UFCSPA, Rua Sarmento Leite 245, 90050-170 Porto Alegre, RS, Brazil.
| | - Rosane Gomez
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre - UFCSPA, Rua Sarmento Leite 245, 90050-170 Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Farmacologia e Terapêutica, Universidade Federal do Rio Grande do Sul - UFRGS, Rua Sarmento Leite 500, 90050-170 Porto Alegre, RS, Brazil
| | - Helena Maria Tannhauser Barros
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre - UFCSPA, Rua Sarmento Leite 245, 90050-170 Porto Alegre, RS, Brazil; Departamento de Farmacociências, Laboratório de Neuropsicofarmacologia, Universidade Federal de Ciências da Saúde de Porto Alegre - UFCSPA, Rua Sarmento Leite 245, 90050-170 Porto Alegre, RS, Brazil
| | - Maurício Schüler Nin
- Departamento de Farmacociências, Laboratório de Neuropsicofarmacologia, Universidade Federal de Ciências da Saúde de Porto Alegre - UFCSPA, Rua Sarmento Leite 245, 90050-170 Porto Alegre, RS, Brazil; Curso de Farmácia, Centro Universitário Metodista do IPA, Rua Coronel Joaquim Pedro Salgado 80, 90420-060 Porto Alegre, RS, Brazil
| |
Collapse
|
45
|
Nisbett KE, Pinna G. Emerging Therapeutic Role of PPAR-α in Cognition and Emotions. Front Pharmacol 2018; 9:998. [PMID: 30356872 PMCID: PMC6190882 DOI: 10.3389/fphar.2018.00998] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 08/14/2018] [Indexed: 01/11/2023] Open
Affiliation(s)
- Khalin E Nisbett
- The Psychiatric Institute, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States
| | - Graziano Pinna
- The Psychiatric Institute, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
46
|
Pinna G. Biomarkers for PTSD at the Interface of the Endocannabinoid and Neurosteroid Axis. Front Neurosci 2018; 12:482. [PMID: 30131663 PMCID: PMC6091574 DOI: 10.3389/fnins.2018.00482] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 06/26/2018] [Indexed: 01/08/2023] Open
Affiliation(s)
- Graziano Pinna
- The Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
47
|
Abstract
SIGNIFICANCE Social and demographic changes have led to an increased prevalence of loneliness and social isolation in modern society. Recent Advances: Population-based studies have demonstrated that both objective social isolation and the perception of social isolation (loneliness) are correlated with a higher risk of mortality and that both are clearly risk factors for cardiovascular disease (CVD). Lonely individuals have increased peripheral vascular resistance and elevated blood pressure. Socially isolated animals develop more atherosclerosis than those housed in groups. CRITICAL ISSUES Molecular mechanisms responsible for the increased cardiovascular risk are poorly understood. In recent reports, loneliness and social stress were associated with activation of the hypothalamic-pituitary-adrenocortical axis and the sympathetic nervous system. Repeated and chronic social stress leads to glucocorticoid resistance, enhanced myelopoiesis, upregulated proinflammatory gene expression, and oxidative stress. However, the causal role of these mechanisms in the development of loneliness-associated CVD remains unclear. FUTURE DIRECTIONS Elucidation of the molecular mechanisms of how CVD is induced by loneliness and social isolation requires additional studies. Understanding of the pathomechanisms is essential for the development of therapeutic strategies to prevent the detrimental effects of social stress on health. Antioxid. Redox Signal. 28, 837-851.
Collapse
Affiliation(s)
- Ning Xia
- 1 Department of Pharmacology, Johannes Gutenberg University Medical Center , Mainz, Germany
| | - Huige Li
- 1 Department of Pharmacology, Johannes Gutenberg University Medical Center , Mainz, Germany .,2 Center for Translational Vascular Biology (CTVB), Johannes Gutenberg University Medical Center , Mainz, Germany .,3 German Center for Cardiovascular Research (DZHK) , Partner Site Rhine-Main, Mainz, Germany
| |
Collapse
|
48
|
Lorenz-Guertin JM, Jacob TC. GABA type a receptor trafficking and the architecture of synaptic inhibition. Dev Neurobiol 2018; 78:238-270. [PMID: 28901728 PMCID: PMC6589839 DOI: 10.1002/dneu.22536] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/08/2017] [Accepted: 09/08/2017] [Indexed: 12/21/2022]
Abstract
Ubiquitous expression of GABA type A receptors (GABAA R) in the central nervous system establishes their central role in coordinating most aspects of neural function and development. Dysregulation of GABAergic neurotransmission manifests in a number of human health disorders and conditions that in certain cases can be alleviated by drugs targeting these receptors. Precise changes in the quantity or activity of GABAA Rs localized at the cell surface and at GABAergic postsynaptic sites directly impact the strength of inhibition. The molecular mechanisms constituting receptor trafficking to and from these compartments therefore dictate the efficacy of GABAA R function. Here we review the current understanding of how GABAA Rs traffic through biogenesis, plasma membrane transport, and degradation. Emphasis is placed on discussing novel GABAergic synaptic proteins, receptor and scaffolding post-translational modifications, activity-dependent changes in GABAA R confinement, and neuropeptide and neurosteroid mediated changes. We further highlight modern techniques currently advancing the knowledge of GABAA R trafficking and clinically relevant neurodevelopmental diseases connected to GABAergic dysfunction. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 78: 238-270, 2018.
Collapse
Affiliation(s)
- Joshua M Lorenz-Guertin
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, 15261
| | - Tija C Jacob
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, 15261
| |
Collapse
|
49
|
Belelli D, Brown AR, Mitchell SJ, Gunn BG, Herd MB, Phillips GD, Seifi M, Swinny JD, Lambert JJ. Endogenous neurosteroids influence synaptic GABA A receptors during postnatal development. J Neuroendocrinol 2018; 30. [PMID: 28905487 DOI: 10.1111/jne.12537] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 08/22/2017] [Accepted: 09/10/2017] [Indexed: 12/12/2022]
Abstract
GABA plays a key role in both embryonic and neonatal brain development. For example, during early neonatal nervous system maturation, synaptic transmission, mediated by GABAA receptors (GABAA Rs), undergoes a temporally specific form of synaptic plasticity to accommodate the changing requirements of maturing neural networks. Specifically, the duration of miniature inhibitory postsynaptic currents (mIPSCs), resulting from vesicular GABA activating synaptic GABAA Rs, is reduced, permitting neurones to appropriately influence the window for postsynaptic excitation. Conventionally, programmed expression changes to the subtype of synaptic GABAA R are primarily implicated in this plasticity. However, it is now evident that, in developing thalamic and cortical principal- and inter-neurones, an endogenous neurosteroid tone (eg, allopregnanolone) enhances synaptic GABAA R function. Furthermore, a cessation of steroidogenesis, as a result of a lack of substrate, or a co-factor, appears to be primarily responsible for early neonatal changes to GABAergic synaptic transmission, followed by further refinement, which results from subsequent alterations of the GABAA R subtype. The timing of this cessation of neurosteroid influence is neurone-specific, occurring by postnatal day (P)10 in the thalamus but approximately 1 week later in the cortex. Neurosteroid levels are not static and change dynamically in a variety of physiological and pathophysiological scenarios. Given that GABA plays an important role in brain development, abnormal perturbations of neonatal GABAA R-active neurosteroids may have not only a considerable immediate, but also a longer-term impact upon neural network activity. Here, we review recent evidence indicating that changes in neurosteroidogenesis substantially influence neonatal GABAergic synaptic transmission. We discuss the physiological relevance of these findings and how the interference of neurosteroid-GABAA R interaction early in life may contribute to psychiatric conditions later in life.
Collapse
Affiliation(s)
- D Belelli
- Division of Neuroscience, School of Medicine, Ninewells Hospital, University of Dundee, Dundee, UK
| | - A R Brown
- Division of Neuroscience, School of Medicine, Ninewells Hospital, University of Dundee, Dundee, UK
| | - S J Mitchell
- Division of Neuroscience, School of Medicine, Ninewells Hospital, University of Dundee, Dundee, UK
| | - B G Gunn
- Division of Neuroscience, School of Medicine, Ninewells Hospital, University of Dundee, Dundee, UK
| | - M B Herd
- Division of Neuroscience, School of Medicine, Ninewells Hospital, University of Dundee, Dundee, UK
| | - G D Phillips
- Division of Neuroscience, School of Medicine, Ninewells Hospital, University of Dundee, Dundee, UK
| | - M Seifi
- Institute for Biomedical & Biomolecular Sciences, School of Pharmacy & Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - J D Swinny
- Institute for Biomedical & Biomolecular Sciences, School of Pharmacy & Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - J J Lambert
- Division of Neuroscience, School of Medicine, Ninewells Hospital, University of Dundee, Dundee, UK
| |
Collapse
|
50
|
Cacioppo JT, Cacioppo S. Loneliness in the Modern Age: An Evolutionary Theory of Loneliness (ETL). ADVANCES IN EXPERIMENTAL SOCIAL PSYCHOLOGY 2018. [DOI: 10.1016/bs.aesp.2018.03.003] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|