1
|
Osman EO, Garcias-Bonet N, Cardoso PM, Rosado PM, García FC, Ferrier-Pagès C, Peixoto RS. Phototrophic bacteria as potential probiotics for corals. NPJ BIODIVERSITY 2025; 4:16. [PMID: 40301674 PMCID: PMC12041382 DOI: 10.1038/s44185-025-00085-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 03/14/2025] [Indexed: 05/01/2025]
Abstract
Coral-associated microorganisms provide crucial nutritional, protective, and developmental benefits, yet many functional traits remain unexplored. Phototrophic bacteria may enhance coral nutrition and reduce oxidative stress during bleaching via photosynthesis and antioxidant production. Despite this potential, their role in the holobiont's energy budget and heat stress resilience is understudied. This review explores the functional traits and potential of phototrophic bacteria to enhance coral health and resilience under environmental stress.
Collapse
Affiliation(s)
- Eslam O Osman
- Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| | - Neus Garcias-Bonet
- Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Pedro M Cardoso
- Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Phillipe M Rosado
- Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Francisca C García
- Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | | | - Raquel S Peixoto
- Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| |
Collapse
|
2
|
Ulrich NJ, Miller SR. Integration of horizontally acquired light-harvesting genes into an ancestral regulatory network in the cyanobacterium Acaryochloris marina MBIC11017. mBio 2024; 15:e0242324. [PMID: 39555914 PMCID: PMC11633204 DOI: 10.1128/mbio.02423-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/21/2024] [Indexed: 11/19/2024] Open
Abstract
The acquisition of new capabilities by horizontal gene transfer (HGT) shapes the distribution of traits during microbial diversification. In the Chlorophyll (Chl) d-producing cyanobacterium Acaryochloris marina, the genes involved in the production and disassembly of the light-harvesting phycobiliprotein phycocyanin (PC) were lost in the A. marina common ancestor but then subsequently regained via HGT in A. marina strain MBIC11017. However, it remains unknown how the HGT-acquired PC genes in MBIC11017 have been reintegrated into its existing regulatory network after tens of millions of years since their loss. Here, we investigated potential mechanisms of regulatory assimilation of PC genes by comparing the transcriptomes of A. marina strain MBIC11017 and a PC-lacking close relative under both low irradiance far-red light and high irradiance white light. We found that PC assembly and degradation processes have been re-assimilated into a conserved ancestral response to high light. Further, we identified putative regulatory elements that were likely co-transferred with PC genes and could be recognized by A. marina's pre-existing light response machinery. This study offers insights into how HGT-acquired genes can be reintegrated into an existing transcriptional regulatory network that has evolved in their absence.IMPORTANCEHorizontal gene transfer, the asymmetric movement of genetic information between donor and recipient organisms, is an important mechanism for acquiring new traits. In order for newly acquired gene content to be retained, it must be integrated into the genetic repertoire and regulatory networks of the recipient cell. In a strain of the Chlorophyll d-producing cyanobacterium Acaryochloris marina, the recent reacquisition of the genes required to produce the light-harvesting pigment phycocyanin offers a rare opportunity to understand the mechanisms underlying the regulatory assimilation of an acquired complex trait in bacteria. The significance in our research is in characterizing how an ancestrally lost, complex trait can be reintegrated into a conserved regulatory network, even after millions of years.
Collapse
Affiliation(s)
- Nikea J. Ulrich
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| | - Scott R. Miller
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| |
Collapse
|
3
|
Leschevin M, Ksas B, Baltenweck R, Hugueney P, Caffarri S, Havaux M. Photosystem rearrangements, photosynthetic efficiency, and plant growth in far red-enriched light. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:2536-2552. [PMID: 39506623 DOI: 10.1111/tpj.17127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/15/2024] [Accepted: 10/23/2024] [Indexed: 11/08/2024]
Abstract
Arabidopsis plants were grown in white light (400-700 nm) or in white light supplemented with far-red (FR) light peaking at 730 nm. FR-enriched light induced the typical shade avoidance syndrome characterized by enhanced length of seedling hypocotyl and leaf petiole. FR supplementation also caused a noticeable decrease in the carotenoid and chlorophyll content that was attributable to a block of pigment accumulation during plant development. The carotenoid decrease resulted from a downregulation of their biosynthesis pathway rather than carotenoid degradation. The losses of photosynthetic pigments are part of structural and functional rearrangements of the photosynthetic apparatus. The plastoquinone pool was chronically more oxidized in plants acclimated to white + FR light compared to white light-grown plants. Growth in FR-enriched light was associated with a higher photochemical efficiency of PSII compared to growth in white light and with a substantial increase in root and shoot biomass production. Light distribution between the photosystems was modified in favor of PSII by an increase in the PSII/PSI ratio and an inhibition of state transitions. Neither LHCII abundance nor nonphotochemical energy dissipation in the PSII chlorophyll antennae were modified significantly by the addition of FR light. A PSI supercomplex, not previously observed in Arabidopsis, was specifically found in plants grown in FR-enriched light. This large PSI complex contains a supplementary Lhca1-4 dimer, leading to a total of 6 LHCI antennae instead of 4 in the canonical PSI. Through those photosystem rearrangements and the synergistic interaction with white light, FR light is photosynthetically active and can boost photosynthesis and plant growth.
Collapse
Affiliation(s)
- Maïté Leschevin
- Aix Marseille Univ., CEA, CNRS, BIAM, CEA/Cadarache, F-13115, Saint-Paul-lez-Durance, France
| | - Brigitte Ksas
- Aix Marseille Univ., CEA, CNRS, BIAM, CEA/Cadarache, F-13115, Saint-Paul-lez-Durance, France
| | | | | | - Stefano Caffarri
- Aix Marseille Univ., CEA, CNRS, BIAM, Luminy Génétique et Biophysique des Plantes, F-13009, Marseille, France
| | - Michel Havaux
- Aix Marseille Univ., CEA, CNRS, BIAM, CEA/Cadarache, F-13115, Saint-Paul-lez-Durance, France
| |
Collapse
|
4
|
Bryant DA, Gisriel CJ. The structural basis for light harvesting in organisms producing phycobiliproteins. THE PLANT CELL 2024; 36:4036-4064. [PMID: 38652697 PMCID: PMC11449063 DOI: 10.1093/plcell/koae126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/13/2024] [Accepted: 03/20/2024] [Indexed: 04/25/2024]
Abstract
Cyanobacteria, red algae, and cryptophytes produce 2 classes of proteins for light harvesting: water-soluble phycobiliproteins (PBP) and membrane-intrinsic proteins that bind chlorophylls (Chls) and carotenoids. In cyanobacteria, red algae, and glaucophytes, phycobilisomes (PBS) are complexes of brightly colored PBP and linker (assembly) proteins. To date, 6 structural classes of PBS have been described: hemiellipsoidal, block-shaped, hemidiscoidal, bundle-shaped, paddle-shaped, and far-red-light bicylindrical. Two additional antenna complexes containing single types of PBP have also been described. Since 2017, structures have been reported for examples of all of these complexes except bundle-shaped PBS by cryogenic electron microscopy. PBS range in size from about 4.6 to 18 mDa and can include ∼900 polypeptides and bind >2000 chromophores. Cyanobacteria additionally produce membrane-associated proteins of the PsbC/CP43 superfamily of Chl a/b/d-binding proteins, including the iron-stress protein IsiA and other paralogous Chl-binding proteins (CBP) that can form antenna complexes with Photosystem I (PSI) and/or Photosystem II (PSII). Red and cryptophyte algae also produce CBP associated with PSI but which belong to the Chl a/b-binding protein superfamily and which are unrelated to the CBP of cyanobacteria. This review describes recent progress in structure determination for PBS and the Chl proteins of cyanobacteria, red algae, and cryptophytan algae.
Collapse
Affiliation(s)
- Donald A Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | | |
Collapse
|
5
|
Nagao R, Yamamoto H, Ogawa H, Ito H, Yamamoto Y, Suzuki T, Kato K, Nakajima Y, Dohmae N, Shen JR. Presence of low-energy chlorophylls d in photosystem I trimer and monomer cores isolated from Acaryochloris sp. NBRC 102871. PHOTOSYNTHESIS RESEARCH 2024; 161:203-212. [PMID: 38935195 DOI: 10.1007/s11120-024-01108-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024]
Abstract
Acaryochloris species belong to a special category of cyanobacteria possessing chlorophyll (Chl) d. One of the photosynthetic characteristics of Acaryochloris marina MBIC11017 is that the absorption spectra of photosystem I (PSI) showed almost no bands and shoulders of low-energy Chls d over 740 nm. In contrast, the absorption spectra of other Acaryochloris species showed a shoulder around 740 nm, suggesting that low-energy Chls d within PSI are diversified among Acaryochloris species. In this study, we purified PSI trimer and monomer cores from Acaryochloris sp. NBRC 102871 and examined their protein and pigment compositions and spectral properties. The protein bands and pigment compositions of the PSI trimer and monomer of NBRC102871 were virtually identical to those of MBIC11017. The absorption spectra of the NBRC102871 PSIs exhibited a shoulder around 740 nm, whereas the fluorescence spectra of PSI trimer and monomer displayed maximum peaks at 754 and 767 nm, respectively. These spectral properties were different from those of MBIC11017, indicating the presence of low-energy Chls d within the NBRC102871 PSIs. Moreover, we analyzed the NBRC102871 genome to identify amino acid sequences of PSI proteins and compared them with those of the A. marina MBIC11017 and MBIC10699 strains whose genomes are available. The results showed that some of the sequences in NBRC102871 were distinct from those in MBIC11017 and MBIC10699. These findings provide insights into the variety of low-energy Chls d with respect to the protein environments of PSI cores among the three Acaryochloris strains.
Collapse
Affiliation(s)
- Ryo Nagao
- Faculty of Agriculture, Shizuoka University, Shizuoka, 422-8529, Japan.
| | - Haruki Yamamoto
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601, Japan.
| | - Haruya Ogawa
- Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Hibiki Ito
- Faculty of Agriculture, Shizuoka University, Shizuoka, 422-8529, Japan
| | - Yuma Yamamoto
- Faculty of Agriculture, Shizuoka University, Shizuoka, 422-8529, Japan
| | - Takehiro Suzuki
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, Saitama, 351-0198, Japan
| | - Koji Kato
- Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Yoshiki Nakajima
- Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Naoshi Dohmae
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, Saitama, 351-0198, Japan
| | - Jian-Ren Shen
- Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| |
Collapse
|
6
|
Ulrich NJ, Shen G, Bryant DA, Miller SR. Ecological diversification of a cyanobacterium through divergence of its novel chlorophyll d-based light-harvesting system. Curr Biol 2024; 34:2972-2979.e4. [PMID: 38851184 DOI: 10.1016/j.cub.2024.05.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/07/2024] [Accepted: 05/13/2024] [Indexed: 06/10/2024]
Abstract
The evolution of novel traits can have important consequences for biological diversification. Novelties such as new structures are associated with changes in both genotype and phenotype that often lead to changes in ecological function.1,2 New ecological opportunities provided by a novel trait can trigger subsequent trait modification or niche partitioning3; however, the underlying mechanisms of novel trait diversification are still poorly understood. Here, we report that the innovation of a new chlorophyll (Chl) pigment, Chl d, by the cyanobacterium Acaryochloris marina was followed by the functional divergence of its light-harvesting complex. We identified three major photosynthetic spectral types based on Chl fluorescence properties for a collection of A. marina laboratory strains for which genome sequence data are available,4,5 with shorter- and longer-wavelength types more recently derived from an ancestral intermediate phenotype. Members of the different spectral types exhibited extensive variation in the Chl-binding proteins as well as the Chl energy levels of their photosynthetic complexes. This spectral-type divergence is associated with differences in the wavelength dependence of both growth rate and photosynthetic oxygen evolution. We conclude that the divergence of the light-harvesting apparatus has consequently impacted A. marina ecological diversification through specialization on different far-red photons for photosynthesis.
Collapse
Affiliation(s)
- Nikea J Ulrich
- Division of Biological Sciences, University of Montana, 32 Campus Drive, Missoula, MT 59812, USA
| | - Gaozhong Shen
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, 406 Althouse Lab, University Park, PA 16802, USA
| | - Donald A Bryant
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, 406 Althouse Lab, University Park, PA 16802, USA
| | - Scott R Miller
- Division of Biological Sciences, University of Montana, 32 Campus Drive, Missoula, MT 59812, USA.
| |
Collapse
|
7
|
Elias E, Oliver TJ, Croce R. Oxygenic Photosynthesis in Far-Red Light: Strategies and Mechanisms. Annu Rev Phys Chem 2024; 75:231-256. [PMID: 38382567 DOI: 10.1146/annurev-physchem-090722-125847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Oxygenic photosynthesis, the process that converts light energy into chemical energy, is traditionally associated with the absorption of visible light by chlorophyll molecules. However, recent studies have revealed a growing number of organisms capable of using far-red light (700-800 nm) to drive oxygenic photosynthesis. This phenomenon challenges the conventional understanding of the limits of this process. In this review, we briefly introduce the organisms that exhibit far-red photosynthesis and explore the different strategies they employ to harvest far-red light. We discuss the modifications of photosynthetic complexes and their impact on the delivery of excitation energy to photochemical centers and on overall photochemical efficiency. Finally, we examine the solutions employed to drive electron transport and water oxidation using relatively low-energy photons. The findings discussed here not only expand our knowledge of the remarkable adaptation capacities of photosynthetic organisms but also offer insights into the potential for enhancing light capture in crops.
Collapse
Affiliation(s)
- Eduard Elias
- Department of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands;
| | - Thomas J Oliver
- Department of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands;
| | - Roberta Croce
- Department of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands;
| |
Collapse
|
8
|
Garber AI, Sano EB, Gallagher AL, Miller SR. Duplicate Gene Expression and Possible Mechanisms of Paralog Retention During Bacterial Genome Expansion. Genome Biol Evol 2024; 16:evae089. [PMID: 38670115 PMCID: PMC11086944 DOI: 10.1093/gbe/evae089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 04/28/2024] Open
Abstract
Gene duplication contributes to the evolution of expression and the origin of new genes, but the relative importance of different patterns of duplicate gene expression and mechanisms of retention remains debated and particularly poorly understood in bacteria. Here, we investigated gene expression patterns for two lab strains of the cyanobacterium Acaryochloris marina with expanding genomes that contain about 10-fold more gene duplicates compared with most bacteria. Strikingly, we observed a generally stoichiometric pattern of greater combined duplicate transcript dosage with increased gene copy number, in contrast to the prevalence of expression reduction reported for many eukaryotes. We conclude that increased transcript dosage is likely an important mechanism of initial duplicate retention in these bacteria and may persist over long periods of evolutionary time. However, we also observed that paralog expression can diverge rapidly, including possible functional partitioning, for which different copies were respectively more highly expressed in at least one condition. Divergence may be promoted by the physical separation of most Acaryochloris duplicates on different genetic elements. In addition, expression pattern for ancestrally shared duplicates could differ between strains, emphasizing that duplicate expression fate need not be deterministic. We further observed evidence for context-dependent transcript dosage, where the aggregate expression of duplicates was either greater or lower than their single-copy homolog depending on physiological state. Finally, we illustrate how these different expression patterns of duplicated genes impact Acaryochloris biology for the innovation of a novel light-harvesting apparatus and for the regulation of recA paralogs in response to environmental change.
Collapse
Affiliation(s)
- Arkadiy I Garber
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Emiko B Sano
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Amy L Gallagher
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Scott R Miller
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| |
Collapse
|
9
|
Guo R, Xu YL, Zhu JX, Scheer H, Zhao KH. Assembly of CpcL-phycobilisomes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1207-1217. [PMID: 38319793 DOI: 10.1111/tpj.16666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/01/2023] [Accepted: 01/19/2024] [Indexed: 02/08/2024]
Abstract
CpcL-phycobilisomes (CpcL-PBSs) are a reduced type of phycobilisome (PBS) found in several cyanobacteria. They lack the traditional PBS terminal energy emitters, but still show the characteristic red-shifted fluorescence at ~670 nm. We established a method of assembling in vitro a rod-membrane linker protein, CpcL, with phycocyanin, generating complexes with the red-shifted spectral features of CpcL-PBSs. The red-shift arises from the interaction of a conserved key glutamine, Q57 of CpcL in Synechocystis sp. PCC 6803, with a single phycocyanobilin chromophore of trimeric phycocyanin at one of the three β82-sites. This chromophore is the terminal energy acceptor of CpcL-PBSs and donor to the photosystem(s). This mechanism also operates in PBSs from Acaryochloris marina MBIC11017. We then generated multichromic complexes harvesting light over nearly the complete visible range via the replacement of phycocyanobilin chromophores at sites α84 and β153 of phycocyanins by phycoerythrobilin and/or phycourobilin. The results demonstrate the rational design of biliprotein-based light-harvesting elements by engineering CpcL and phycocyanins, which broadens the light-harvesting range and accordingly improves the light-harvesting capacity and may be potentially applied in solar energy harvesting.
Collapse
Affiliation(s)
- Rui Guo
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Ya-Li Xu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Jun-Xun Zhu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Hugo Scheer
- Department Biologie I, Universität München, Menzinger Str. 67, D-80638, München, Germany
| | - Kai-Hong Zhao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| |
Collapse
|
10
|
Shen L, Gao Y, Tang K, Qi R, Fu L, Chen JH, Wang W, Ma X, Li P, Chen M, Kuang T, Zhang X, Shen JR, Wang P, Han G. Structure of a unique PSII-Pcb tetrameric megacomplex in a chlorophyll d-containing cyanobacterium. SCIENCE ADVANCES 2024; 10:eadk7140. [PMID: 38394197 PMCID: PMC10889353 DOI: 10.1126/sciadv.adk7140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/22/2024] [Indexed: 02/25/2024]
Abstract
Acaryochloris marina is a unique cyanobacterium using chlorophyll d (Chl d) as its major pigment and thus can use far-red light for photosynthesis. Photosystem II (PSII) of A. marina associates with a number of prochlorophyte Chl-binding (Pcb) proteins to act as the light-harvesting system. We report here the cryo-electron microscopic structure of a PSII-Pcb megacomplex from A. marina at a 3.6-angstrom overall resolution and a 3.3-angstrom local resolution. The megacomplex is organized as a tetramer consisting of two PSII core dimers flanked by sixteen symmetrically related Pcb proteins, with a total molecular weight of 1.9 megadaltons. The structure reveals the detailed organization of PSII core consisting of 15 known protein subunits and an unknown subunit, the assembly of 4 Pcb antennas within each PSII monomer, and possible pathways of energy transfer within the megacomplex, providing deep insights into energy transfer and dissipation mechanisms within the PSII-Pcb megacomplex involved in far-red light utilization.
Collapse
Affiliation(s)
- Liangliang Shen
- Cryo-EM Centre, Southern University of Science and Technology, Shenzhen 518055, China
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Yuanzhu Gao
- Cryo-EM Centre, Southern University of Science and Technology, Shenzhen 518055, China
| | - Kailu Tang
- Department of Biophysics, and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Ruxi Qi
- Cryo-EM Centre, Southern University of Science and Technology, Shenzhen 518055, China
| | - Lutang Fu
- Cryo-EM Centre, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jing-Hua Chen
- Department of Biophysics, and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wenda Wang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Xiaomin Ma
- Cryo-EM Centre, Southern University of Science and Technology, Shenzhen 518055, China
| | - Peiyao Li
- Cryo-EM Centre, Southern University of Science and Technology, Shenzhen 518055, China
| | - Min Chen
- School of Life and Environmental Science, Faculty of Science, University of Sydney, Sydney NSW 2006, Australia
| | - Tingyun Kuang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Xing Zhang
- Department of Biophysics, and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Center of Cryo-Electron Microscopy, Zhejiang University School of Medicine, Hangzhou 310058, China
- Zhejiang Laboratory for System and Precision Medicine, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou 311121, China
| | - Jian-Ren Shen
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- Institute for Interdisciplinary Science, and Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Peiyi Wang
- Cryo-EM Centre, Southern University of Science and Technology, Shenzhen 518055, China
| | - Guangye Han
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| |
Collapse
|
11
|
Liu R, Zhen ZH, Li W, Ge B, Qin S. How can Phycobilisome, the unique light harvesting system in certain algae working highly efficiently: The connection in between structures and functions. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 186:39-52. [PMID: 38030044 DOI: 10.1016/j.pbiomolbio.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/02/2023] [Accepted: 11/23/2023] [Indexed: 12/01/2023]
Abstract
Algae, which are ubiquitous in ecosystems, have evolved a variety of light-harvesting complexes to better adapt to diverse habitats. Phycobilisomes/phycobiliproteins, unique to cyanobacteria, red algae, and certain cryptomonads, compensate for the lack of chlorophyll absorption, allowing algae to capture and efficiently transfer light energy in aquatic environments. With the advancement of microscopy and spectroscopy, the structure and energy transfer processes of increasingly complex phycobilisomes have been elucidated, providing us with a vivid portrait of the dynamic adaptation of their structures to the light environment in which algae thrive: 1) Cyanobacteria living on the surface of the water use short, small phycobilisomes to absorb red-orange light and reduce the damage from blue-violet light via multiple methods; 2) Large red algae inhabiting the depths of the ocean have evolved long and dense phycobilisomes containing phycoerythrin to capture the feeble blue-green light; 3) In far-red light environments such as caves, algae use special allophycocyanin cores to optimally utilize the far-red light; 4) When the environment shifts, algae can adjust the length, composition and density of their rods to better adapt; 5) By carefully designing the position of the pigments, phycobilisomes can transfer light energy to the reaction center with nearly 100% efficiency via three energy transfer processes.
Collapse
Affiliation(s)
- Runze Liu
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China; University of Chinese Academy of Sciences, Beijing, 100000, China
| | - Zhang-He Zhen
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Wenjun Li
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China
| | - Baosheng Ge
- China University of Petroleum (HUADONG), Qingdao, Shandong, 266580, China
| | - Song Qin
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China.
| |
Collapse
|
12
|
Timms VJ, Hassan KA, Pearson LA, Neilan BA. Cyanobacteria as a critical reservoir of the environmental antimicrobial resistome. Environ Microbiol 2023; 25:2266-2276. [PMID: 37365851 DOI: 10.1111/1462-2920.16453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/04/2023] [Indexed: 06/28/2023]
Abstract
Antimicrobial resistance (AMR) is predicted to cause a worldwide annual toll of 10 million deaths by 2050. This looming public health threat has been linked to antibiotic overuse and pollution, which places selective pressures on AMR maintenance and transfer in and between microbial populations. We examined the distribution, diversity and potential mobility of AMR genes in cyanobacteria. While cyanobacteria are not pathogenic, we hypothesised that they could be a major environmental reservoir for AMR genes. Genes encoding AMR to seven antimicrobial drug classes were found in 10% of cyanobacterial genomes. AMR genes were found in 13% of freshwater, 19% of terrestrial, 34% of symbiotic, 2% of thermal spring, and 3% of marine genomes. AMR genes were found in five cyanobacterial orders with 23% of Nostocales and 8% of Oscillatoriales strains containing AMR genes. The most frequently observed alleles were ansamycin resistance genes, which were present in 7% of strains. AMR genes responsible for resistance to broad-spectrum β-lactams, chloramphenicols, tetracyclines, macrolides, and aminoglycosides were associated with mobile genetic elements or plasmid replicons or both. These results suggest that cyanobacteria are an extensive reservoir, and potential vector, for AMR genes in diverse terrestrial and aquatic habitats.
Collapse
Affiliation(s)
- V J Timms
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales, Australia
| | - K A Hassan
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales, Australia
| | - L A Pearson
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales, Australia
| | - B A Neilan
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales, Australia
| |
Collapse
|
13
|
Cao K, Cui Y, Sun F, Zhang H, Fan J, Ge B, Cao Y, Wang X, Zhu X, Wei Z, Yao Q, Ma J, Wang Y, Meng C, Gao Z. Metabolic engineering and synthetic biology strategies for producing high-value natural pigments in Microalgae. Biotechnol Adv 2023; 68:108236. [PMID: 37586543 DOI: 10.1016/j.biotechadv.2023.108236] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 07/16/2023] [Accepted: 08/11/2023] [Indexed: 08/18/2023]
Abstract
Microalgae are microorganisms capable of producing bioactive compounds using photosynthesis. Microalgae contain a variety of high value-added natural pigments such as carotenoids, phycobilins, and chlorophylls. These pigments play an important role in many areas such as food, pharmaceuticals, and cosmetics. Natural pigments have a health value that is unmatched by synthetic pigments. However, the current commercial production of natural pigments from microalgae is not able to meet the growing market demand. The use of metabolic engineering and synthetic biological strategies to improve the production performance of microalgal cell factories is essential to promote the large-scale production of high-value pigments from microalgae. This paper reviews the health and economic values, the applications, and the synthesis pathways of microalgal pigments. Overall, this review aims to highlight the latest research progress in metabolic engineering and synthetic biology in constructing engineered strains of microalgae with high-value pigments and the application of CRISPR technology and multi-omics in this context. Finally, we conclude with a discussion on the bottlenecks and challenges of microalgal pigment production and their future development prospects.
Collapse
Affiliation(s)
- Kai Cao
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China; School of Life Sciences and medicine, Shandong University of Technology, Zibo 255049, China
| | - Yulin Cui
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Fengjie Sun
- Department of Biological Sciences, School of Science and Technology, Georgia Gwinnett College, Lawrenceville, GA 30043, USA
| | - Hao Zhang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Jianhua Fan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Baosheng Ge
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, China
| | - Yujiao Cao
- School of Foreign Languages, Shandong University of Technology, Zibo 255090, China
| | - Xiaodong Wang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Xiangyu Zhu
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China; School of Life Sciences and medicine, Shandong University of Technology, Zibo 255049, China
| | - Zuoxi Wei
- School of Life Sciences and medicine, Shandong University of Technology, Zibo 255049, China
| | - Qingshou Yao
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Jinju Ma
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Yu Wang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Chunxiao Meng
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China.
| | - Zhengquan Gao
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China.
| |
Collapse
|
14
|
Nagao R, Ogawa H, Tsuboshita N, Kato K, Toyofuku R, Tomo T, Shen JR. Isolation and characterization of trimeric and monomeric PSI cores from Acaryochloris marina MBIC11017. PHOTOSYNTHESIS RESEARCH 2023; 157:55-63. [PMID: 37199910 DOI: 10.1007/s11120-023-01025-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 05/05/2023] [Indexed: 05/19/2023]
Abstract
Photosystem I (PSI) catalyzes light-induced electron-transfer reactions and has been observed to exhibit various oligomeric states and different energy levels of chlorophylls (Chls) in response to oligomerization. However, the biochemical and spectroscopic properties of a PSI monomer containing Chls d are not well understood. In this study, we successfully isolated and characterized PSI monomers from the cyanobacterium Acaryochloris marina MBIC11017, and compared their properties with those of the A. marina PSI trimer. The PSI trimers and monomers were prepared using trehalose density gradient centrifugation after anion-exchange and hydrophobic interaction chromatography. The polypeptide composition of the PSI monomer was found to be consistent with that of the PSI trimer. The absorption spectrum of the PSI monomer showed the Qy band of Chl d at 704 nm, which was blue-shifted from the peak at 707 nm observed in the PSI-trimer spectrum. The fluorescence-emission spectrum of the PSI monomer measured at 77 K exhibited a peak at 730 nm without a broad shoulder in the range of 745-780 nm, which was clearly observed in the PSI-trimer spectrum. These spectroscopic properties of the A. marina PSI trimer and monomer suggest different formations of low-energy Chls d between the two types of PSI cores. Based on these findings, we discuss the location of low-energy Chls d in A. marina PSIs.
Collapse
Affiliation(s)
- Ryo Nagao
- Faculty of Agriculture, Shizuoka University, Shizuoka, 422-8529, Japan.
| | - Haruya Ogawa
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Naoki Tsuboshita
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Koji Kato
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Reona Toyofuku
- Department of Physics, Graduate School of Science, Tokyo University of Science, Tokyo, 162-8601, Japan
| | - Tatsuya Tomo
- Department of Physics, Graduate School of Science, Tokyo University of Science, Tokyo, 162-8601, Japan
| | - Jian-Ren Shen
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| |
Collapse
|
15
|
Pinevich AV, Averina SG. On the Edge of the Rainbow: Red-Shifted Chlorophylls and Far-Red Light Photoadaptation in Cyanobacteria. Microbiology (Reading) 2022. [DOI: 10.1134/s0026261722602019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
16
|
Yamamoto H, Uesaka K, Tsuzuki Y, Yamakawa H, Itoh S, Fujita Y. Comparative Genomic Analysis of the Marine Cyanobacterium Acaryochloris marina MBIC10699 Reveals the Impact of Phycobiliprotein Reacquisition and the Diversity of Acaryochloris Plasmids. Microorganisms 2022; 10:microorganisms10071374. [PMID: 35889093 PMCID: PMC9324425 DOI: 10.3390/microorganisms10071374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 11/17/2022] Open
Abstract
Acaryochloris is a marine cyanobacterium that synthesizes chlorophyll d, a unique chlorophyll that absorbs far-red lights. Acaryochloris is also characterized by the loss of phycobiliprotein (PBP), a photosynthetic antenna specific to cyanobacteria; however, only the type-strain A. marina MBIC11017 retains PBP, suggesting that PBP-related genes were reacquired through horizontal gene transfer (HGT). Acaryochloris is thought to have adapted to various environments through its huge genome size and the genes acquired through HGT; however, genomic information on Acaryochloris is limited. In this study, we report the complete genome sequence of A. marina MBIC10699, which was isolated from the same area of ocean as A. marina MBIC11017 as a PBP-less strain. The genome of A.marina MBIC10699 consists of a 6.4 Mb chromosome and four large plasmids totaling about 7.6 Mb, and the phylogenic analysis shows that A.marina MBIC10699 is the most closely related to A. marina MBIC11017 among the Acaryochloris species reported so far. Compared with A. marina MBIC11017, the chromosomal genes are highly conserved between them, while the genes encoded in the plasmids are significantly diverse. Comparing these genomes provides clues as to how the genes for PBPs were reacquired and what changes occurred in the genes for photosystems during evolution.
Collapse
Affiliation(s)
- Haruki Yamamoto
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan; (Y.T.); (H.Y.); (Y.F.)
- Correspondence: ; Tel.: +81-52-789-4090
| | - Kazuma Uesaka
- Center for Gene Research, Nagoya University, Nagoya 464-8601, Japan;
| | - Yuki Tsuzuki
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan; (Y.T.); (H.Y.); (Y.F.)
| | - Hisanori Yamakawa
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan; (Y.T.); (H.Y.); (Y.F.)
| | - Shigeru Itoh
- Graduate School of Sciences, Nagoya University, Nagoya 464-8601, Japan;
| | - Yuichi Fujita
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan; (Y.T.); (H.Y.); (Y.F.)
| |
Collapse
|
17
|
Lajoie G, Parfrey LW. Beyond specialization: re-examining routes of host influence on symbiont evolution. Trends Ecol Evol 2022; 37:590-598. [PMID: 35466020 DOI: 10.1016/j.tree.2022.03.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 03/15/2022] [Accepted: 03/20/2022] [Indexed: 11/17/2022]
Abstract
Our understanding of host influence on microbial evolution has focused on symbiont specialization and the genomic streamlining that often accompanies it. However, a vast diversity of symbiotic lineages facultatively interact with hosts or associate with multiple hosts. Yet, there are no clear expectations for how host association influences the niche of these symbionts or their evolution. Here, we discuss how weak or variable selection on microbial symbiotic associations, horizontal transmission, and low costs of adaptation to novel host habitats are predicted to promote the expansion or maintenance of microbial niches. This broad perspective will aid in developing better and more general predictions for evolution in microbial symbioses.
Collapse
Affiliation(s)
- Geneviève Lajoie
- Botany Department, University of British Columbia, 6270 University Boulevard, Vancouver, BC, Canada, V6T 1Z4.
| | - Laura Wegener Parfrey
- Botany Department, University of British Columbia, 6270 University Boulevard, Vancouver, BC, Canada, V6T 1Z4
| |
Collapse
|
18
|
A Cyanobacteria Enriched Layer of Shark Bay Stromatolites Reveals a New Acaryochloris Strain Living in Near Infrared Light. Microorganisms 2022; 10:microorganisms10051035. [PMID: 35630477 PMCID: PMC9144716 DOI: 10.3390/microorganisms10051035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 12/04/2022] Open
Abstract
The genus Acaryochloris is unique among phototrophic organisms due to the dominance of chlorophyll d in its photosynthetic reaction centres and light-harvesting proteins. This allows Acaryochloris to capture light energy for photosynthesis over an extended spectrum of up to ~760 nm in the near infra-red (NIR) spectrum. Acaryochloris sp. has been reported in a variety of ecological niches, ranging from polar to tropical shallow aquatic sites. Here, we report a new Acarychloris strain isolated from an NIR-enriched stratified microbial layer 4–6 mm under the surface of stromatolite mats located in the Hamelin Pool of Shark Bay, Western Australia. Pigment analysis by spectrometry/fluorometry, flow cytometry and spectral confocal microscopy identifies unique patterns in pigment content that likely reflect niche adaption. For example, unlike the original A. marina species (type strain MBIC11017), this new strain, Acarychloris LARK001, shows little change in the chlorophyll d/a ratio in response to changes in light wavelength, displays a different Fv/Fm response and lacks detectable levels of phycocyanin. Indeed, 16S rRNA analysis supports the identity of the A. marina LARK001 strain as close to but distinct from from the A. marina HICR111A strain first isolated from Heron Island and previously found on the Great Barrier Reef under coral rubble on the reef flat. Taken together, A. marina LARK001 is a new cyanobacterial strain adapted to the stromatolite mats in Shark Bay.
Collapse
|
19
|
Discovery of Chlorophyll d: Isolation and Characterization of a Far-Red Cyanobacterium from the Original Site of Manning and Strain (1943) at Moss Beach, California. Microorganisms 2022; 10:microorganisms10040819. [PMID: 35456869 PMCID: PMC9029297 DOI: 10.3390/microorganisms10040819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/09/2022] [Accepted: 04/11/2022] [Indexed: 11/17/2022] Open
Abstract
We have isolated a chlorophyll-d-containing cyanobacterium from the intertidal field site at Moss Beach, on the coast of Central California, USA, where Manning and Strain (1943) originally discovered this far-red chlorophyll. Here, we present the cyanobacterium’s environmental description, culturing procedure, pigment composition, ultrastructure, and full genome sequence. Among cultures of far-red cyanobacteria obtained from red algae from the same site, this strain was an epiphyte on a brown macroalgae. Its Qyin vivo absorbance peak is centered at 704–705 nm, the shortest wavelength observed thus far among the various known Acaryochloris strains. Its Chl a/Chl d ratio was 0.01, with Chl d accounting for 99% of the total Chl d and Chl a mass. TEM imagery indicates the absence of phycobilisomes, corroborated by both pigment spectra and genome analysis. The Moss Beach strain codes for only a single set of genes for producing allophycocyanin. Genomic sequencing yielded a 7.25 Mbp circular chromosome and 10 circular plasmids ranging from 16 kbp to 394 kbp. We have determined that this strain shares high similarity with strain S15, an epiphyte of red algae, while its distinct gene complement and ecological niche suggest that this strain could be the closest known relative to the original Chl d source of Manning and Strain (1943). The Moss Beach strain is designated Acaryochloris sp. (marina) strain Moss Beach.
Collapse
|
20
|
Genomic and Functional Variation of the Chlorophyll d-Producing Cyanobacterium Acaryochloris marina. Microorganisms 2022; 10:microorganisms10030569. [PMID: 35336144 PMCID: PMC8949462 DOI: 10.3390/microorganisms10030569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/01/2022] [Accepted: 03/04/2022] [Indexed: 02/01/2023] Open
Abstract
The Chlorophyll d-producing cyanobacterium Acaryochloris marina is widely distributed in marine environments enriched in far-red light, but our understanding of its genomic and functional diversity is limited. Here, we take an integrative approach to investigate A. marina diversity for 37 strains, which includes twelve newly isolated strains from previously unsampled locations in Europe and the Pacific Northwest of North America. A genome-wide phylogeny revealed both that closely related A. marina have migrated within geographic regions and that distantly related A. marina lineages can co-occur. The distribution of traits mapped onto the phylogeny provided evidence of a dynamic evolutionary history of gene gain and loss during A. marina diversification. Ancestral genes that were differentially retained or lost by strains include plasmid-encoded sodium-transporting ATPase and bidirectional NiFe-hydrogenase genes that may be involved in salt tolerance and redox balance under fermentative conditions, respectively. The acquisition of genes by horizontal transfer has also played an important role in the evolution of new functions, such as nitrogen fixation. Together, our results resolve examples in which genome content and ecotypic variation for nutrient metabolism and environmental tolerance have diversified during the evolutionary history of this unusual photosynthetic bacterium.
Collapse
|
21
|
Pseudomonas aeruginosa Pangenome: Core and Accessory Genes of a Highly Resourceful Opportunistic Pathogen. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1386:3-28. [DOI: 10.1007/978-3-031-08491-1_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
22
|
Xu C, Zhu Q, Chen JH, Shen L, Yi X, Huang Z, Wang W, Chen M, Kuang T, Shen JR, Zhang X, Han G. A unique photosystem I reaction center from a chlorophyll d-containing cyanobacterium Acaryochloris marina. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:1740-1752. [PMID: 34002536 DOI: 10.1111/jipb.13113] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/12/2021] [Indexed: 05/10/2023]
Abstract
Photosystem I (PSI) is a large protein supercomplex that catalyzes the light-dependent oxidation of plastocyanin (or cytochrome c6 ) and the reduction of ferredoxin. This catalytic reaction is realized by a transmembrane electron transfer chain consisting of primary electron donor (a special chlorophyll (Chl) pair) and electron acceptors A0 , A1 , and three Fe4 S4 clusters, FX , FA , and FB . Here we report the PSI structure from a Chl d-dominated cyanobacterium Acaryochloris marina at 3.3 Å resolution obtained by single-particle cryo-electron microscopy. The A. marina PSI exists as a trimer with three identical monomers. Surprisingly, the structure reveals a unique composition of electron transfer chain in which the primary electron acceptor A0 is composed of two pheophytin a rather than Chl a found in any other well-known PSI structures. A novel subunit Psa27 is observed in the A. marina PSI structure. In addition, 77 Chls, 13 α-carotenes, two phylloquinones, three Fe-S clusters, two phosphatidyl glycerols, and one monogalactosyl-diglyceride were identified in each PSI monomer. Our results provide a structural basis for deciphering the mechanism of photosynthesis in a PSI complex with Chl d as the dominating pigments and absorbing far-red light.
Collapse
Affiliation(s)
- Caihuang Xu
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Qingjun Zhu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- College of Life Sciences, University of Chinese Academy of Science, Beijing, 100049, China
| | - Jing-Hua Chen
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Center of Cryo-Electron Microscopy, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Liangliang Shen
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- College of Life Sciences, University of Chinese Academy of Science, Beijing, 100049, China
| | - Xiaohan Yi
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Zihui Huang
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Wenda Wang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
| | - Min Chen
- School of Life and Environmental Science, Faculty of Science, University of Sydney, Sydney, NSW2006, Australia
| | - Tingyun Kuang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
| | - Jian-Ren Shen
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- Division of Photosynthesis and Structural Biology, Institute for Interdisciplinary Science, and Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Xing Zhang
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Center of Cryo-Electron Microscopy, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Guangye Han
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
| |
Collapse
|
23
|
Wang YT, Yang CH, Huang KS, Shaw JF. Chlorophyllides: Preparation, Purification, and Application. Biomolecules 2021; 11:biom11081115. [PMID: 34439782 PMCID: PMC8392590 DOI: 10.3390/biom11081115] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/20/2021] [Accepted: 07/20/2021] [Indexed: 12/18/2022] Open
Abstract
Chlorophyllides can be found in photosynthetic organisms. Generally, chlorophyllides have a-, b-, c-, d-, and f-type derivatives, and all chlorophyllides have a tetrapyrrole structure with a Mg ion at the center and a fifth isocyclic pentanone. Chlorophyllide a can be synthesized from protochlorophyllide a, divinyl chlorophyllide a, or chlorophyll. In addition, chlorophyllide a can be transformed into chlorophyllide b, chlorophyllide d, or chlorophyllide f. Chlorophyllide c can be synthesized from protochlorophyllide a or divinyl protochlorophyllide a. Chlorophyllides have been extensively used in food, medicine, and pharmaceutical applications. Furthermore, chlorophyllides exhibit many biological activities, such as anti-growth, antimicrobial, antiviral, antipathogenic, and antiproliferative activity. The photosensitivity of chlorophyllides that is applied in mercury electrodes and sensors were discussed. This article is the first detailed review dedicated specifically to chlorophyllides. Thus, this review aims to describe the definition of chlorophyllides, biosynthetic routes of chlorophyllides, purification of chlorophyllides, and applications of chlorophyllides.
Collapse
Affiliation(s)
- Yi-Ting Wang
- Department of Biological Science and Technology, I-Shou University, Kaohsiung 82445, Taiwan; (Y.-T.W.); (C.-H.Y.)
| | - Chih-Hui Yang
- Department of Biological Science and Technology, I-Shou University, Kaohsiung 82445, Taiwan; (Y.-T.W.); (C.-H.Y.)
- Pharmacy Department of E-Da Hospital, Kaohsiung 82445, Taiwan
- Taiwan Instrument Research Institute, National Applied Research Laboratories, Taipei 106214, Taiwan
| | - Keng-Shiang Huang
- The School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung 82445, Taiwan
- Correspondence: (K.-S.H.); (J.-F.S.); Tel.: +886-7-6151100 (ext. 7063) (K.-S.H.); +886-7-6151100 (ext. 7310) (J.-F.S.); Fax: +886-7-6151959 (J.-F.S.)
| | - Jei-Fu Shaw
- Department of Biological Science and Technology, I-Shou University, Kaohsiung 82445, Taiwan; (Y.-T.W.); (C.-H.Y.)
- Correspondence: (K.-S.H.); (J.-F.S.); Tel.: +886-7-6151100 (ext. 7063) (K.-S.H.); +886-7-6151100 (ext. 7310) (J.-F.S.); Fax: +886-7-6151959 (J.-F.S.)
| |
Collapse
|
24
|
Hamaguchi T, Kawakami K, Shinzawa-Itoh K, Inoue-Kashino N, Itoh S, Ifuku K, Yamashita E, Maeda K, Yonekura K, Kashino Y. Structure of the far-red light utilizing photosystem I of Acaryochloris marina. Nat Commun 2021; 12:2333. [PMID: 33879791 PMCID: PMC8058080 DOI: 10.1038/s41467-021-22502-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 03/18/2021] [Indexed: 01/09/2023] Open
Abstract
Acaryochloris marina is one of the cyanobacterial species that can use far-red light to drive photochemical reactions for oxygenic photosynthesis. Here, we report the structure of A. marina photosystem I (PSI) reaction center, determined by cryo-electron microscopy at 2.58 Å resolution. The structure reveals an arrangement of electron carriers and light-harvesting pigments distinct from other type I reaction centers. The paired chlorophyll, or special pair (also referred to as P740 in this case), is a dimer of chlorophyll d and its epimer chlorophyll d'. The primary electron acceptor is pheophytin a, a metal-less chlorin. We show the architecture of this PSI reaction center is composed of 11 subunits and we identify key components that help explain how the low energy yield from far-red light is efficiently utilized for driving oxygenic photosynthesis.
Collapse
Affiliation(s)
- Tasuku Hamaguchi
- Biostructural Mechanism Laboratory, RIKEN SPring-8 Center, Sayo, Hyogo, Japan
| | - Keisuke Kawakami
- Research Center for Artificial Photosynthesis (ReCAP), Osaka City University, Sumiyoshi-ku, Osaka, Japan.
- Biostructural Mechanism Laboratory, RIKEN SPring-8 Center, Sayo, Hyogo, Japan.
| | | | | | - Shigeru Itoh
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Kentaro Ifuku
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Eiki Yamashita
- Laboratory of Supramolecular Crystallography, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Kou Maeda
- Graduate School of Life Science, University of Hyogo, Ako-gun, Hyogo, Japan
| | - Koji Yonekura
- Biostructural Mechanism Laboratory, RIKEN SPring-8 Center, Sayo, Hyogo, Japan.
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Aoba-ku, Sendai, Japan.
| | - Yasuhiro Kashino
- Graduate School of Life Science, University of Hyogo, Ako-gun, Hyogo, Japan.
| |
Collapse
|
25
|
Ulrich NJ, Uchida H, Kanesaki Y, Hirose E, Murakami A, Miller SR. Reacquisition of light-harvesting genes in a marine cyanobacterium confers a broader solar niche. Curr Biol 2021; 31:1539-1546.e4. [PMID: 33571437 DOI: 10.1016/j.cub.2021.01.047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/18/2020] [Accepted: 01/13/2021] [Indexed: 12/25/2022]
Abstract
The evolution of phenotypic plasticity, i.e., the environmental induction of alternative phenotypes by the same genotype, can be an important mechanism of biological diversification.1,2 For example, an evolved increase in plasticity may promote ecological niche expansion as well as the innovation of novel traits;3 however, both the role of phenotypic plasticity in adaptive evolution and its underlying mechanisms are still poorly understood.4,5 Here, we report that the Chlorophyll d-producing marine cyanobacterium Acaryochloris marina strain MBIC11017 has evolved greater photosynthetic plasticity by reacquiring light-harvesting genes via horizontal gene transfer. The genes, which had been lost by the A. marina ancestor, are involved in the production and degradation of the light-harvesting phycobiliprotein phycocyanin. A. marina MBIC11017 exhibits a high degree of wavelength-dependence in phycocyanin production, and this ability enables it to grow with yellow and green light wavelengths that are inaccessible to other A. marina. Consequently, this strain has a broader solar niche than its close relatives. We discuss the role of horizontal gene transfer for regaining a lost phenotype in light of Dollo's Law6 that the loss of a complex trait is irreversible.
Collapse
Affiliation(s)
- Nikea J Ulrich
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812, USA
| | - Hiroko Uchida
- Kobe University Research Center for Inland Seas, Awaji, Hyogo, 656-2401, Japan
| | - Yu Kanesaki
- Research Institute of Green Science and Technology, Shizuoka University, Shizuoka, 422-8529, Japan
| | - Euichi Hirose
- Department of Chemistry, Biology & Marine Science, Faculty of Science, University of the Ryukyus, Nishihara, Okinawa, 903-0213, Japan
| | - Akio Murakami
- Kobe University Research Center for Inland Seas, Awaji, Hyogo, 656-2401, Japan
| | - Scott R Miller
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812, USA.
| |
Collapse
|
26
|
Genetic, Genomics, and Responses to Stresses in Cyanobacteria: Biotechnological Implications. Genes (Basel) 2021; 12:genes12040500. [PMID: 33805386 PMCID: PMC8066212 DOI: 10.3390/genes12040500] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/25/2021] [Accepted: 03/25/2021] [Indexed: 02/07/2023] Open
Abstract
Cyanobacteria are widely-diverse, environmentally crucial photosynthetic prokaryotes of great interests for basic and applied science. Work to date has focused mostly on the three non-nitrogen fixing unicellular species Synechocystis PCC 6803, Synechococcus PCC 7942, and Synechococcus PCC 7002, which have been selected for their genetic and physiological interests summarized in this review. Extensive "omics" data sets have been generated, and genome-scale models (GSM) have been developed for the rational engineering of these cyanobacteria for biotechnological purposes. We presently discuss what should be done to improve our understanding of the genotype-phenotype relationships of these models and generate robust and predictive models of their metabolism. Furthermore, we also emphasize that because Synechocystis PCC 6803, Synechococcus PCC 7942, and Synechococcus PCC 7002 represent only a limited part of the wide biodiversity of cyanobacteria, other species distantly related to these three models, should be studied. Finally, we highlight the need to strengthen the communication between academic researchers, who know well cyanobacteria and can engineer them for biotechnological purposes, but have a limited access to large photobioreactors, and industrial partners who attempt to use natural or engineered cyanobacteria to produce interesting chemicals at reasonable costs, but may lack knowledge on cyanobacterial physiology and metabolism.
Collapse
|
27
|
Whitford DS, Whitman BT, Owttrim GW. Genera specific distribution of DEAD-box RNA helicases in cyanobacteria. Microb Genom 2021; 7. [PMID: 33539277 PMCID: PMC8190605 DOI: 10.1099/mgen.0.000517] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Although RNA helicases are essentially ubiquitous and perform roles in all stages of RNA metabolism, phylogenetic analysis of the DEAD (Asp-Glu-Ala-Asp)-box RNA helicase family in a single phylum has not been performed. Here, we performed a phylogenetic analysis on DEAD-box helicases from all currently available cyanobacterial genomes, comprising a total of 362 helicase protein sequences from 280 strains. DEAD-box helicases belonging to three distinct clades were observed. Two clades, the CsdA (cold shock DEAD-box A)-like and RhlE (RNA helicase E)-like helicases, cluster with the homologous proteins from Escherichia coli. The third clade, the CrhR (cyanobacterial RNA helicase Redox)-like helicases, is unique to cyanobacteria and characterized by a conserved sequence motif in the C-terminal extension. Restricted distribution is observed across cyanobacterial diversity with respect to both helicase type and strain. CrhR-like and CsdA-like helicases essentially never occur together, while RhlE always occurs with either a CrhR-like or CsdA-like helicase. CrhR-like and RhlE-like proteins occurred in filamentous cyanobacteria of the orders Nostocales, Oscillatoriales and Synechococcales. Similarly, CsdA- and RhlE-like proteins are restricted to unicellular cyanobacteria of the genera Cyanobium and Synechococcus. In addition, the unexpected occurrence of RhlE in two Synechococcus strains suggests recent acquisition and evolutionary divergence. This study, therefore, raises physiological and evolutionary questions as to why DEAD-box RNA helicases encoded in cyanobacterial lineages display restricted distributions, suggesting niches that require either CrhR or CsdA RNA helicase activity but not both. Extensive conservation of gene synteny surrounding the previously described rimO–crhR operon is also observed, indicating a role in the maintenance of photosynthesis. The analysis provides insights into the evolution, origin and dissemination of sequences within a single gene family to yield divergent functional roles.
Collapse
Affiliation(s)
- Denise S Whitford
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Brendan T Whitman
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - George W Owttrim
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| |
Collapse
|
28
|
Kashimoto T, Miyake K, Sato M, Maeda K, Matsumoto C, Ikeuchi M, Toyooka K, Watanabe S, Kanesaki Y, Narikawa R. Acclimation process of the chlorophyll d-bearing cyanobacterium Acaryochloris marina to an orange light environment revealed by transcriptomic analysis and electron microscopic observation. J GEN APPL MICROBIOL 2020; 66:106-115. [PMID: 32147625 DOI: 10.2323/jgam.2019.11.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The cyanobacterium Acaryochloris marina MBIC 11017 (A. marina 11017) possesses chlorophyll d (Chl. d) peaking at 698 nm as photosystem reaction center pigments, instead of chlorophyll a (Chl. a) peaking at 665 nm. About 95% of the total chlorophylls is Chl. d in A. marina 11017. In addition, A. marina 11017 possesses phycobilisome (PBS) supercomplex to harvest orange light and to transfer the absorbing energy to the photosystems. In this context, A. marina 11017 utilizes both far-red and orange light as the photosynthetic energy source. In the present study, we incubated A. marina 11017 cells under monochromatic orange and far-red light conditions and performed transcriptional and morphological studies by RNA-seq analysis and electron microscopy. Cellular absorption spectra, transcriptomic profiles, and microscopic observations demonstrated that PBS was highly accumulated under an orange light condition relative to a far-red light condition. Notably, transcription of one cpcBA operon encoding the phycobiliprotein of the phycocyanin was up-regulated under the orange light condition, but another operon was constitutively expressed under both conditions, indicating functional diversification of these two operons for light harvesting. Taking the other observations into consideration, we could illustrate the photoacclimation processes of A. marina 11017 in response to orange and far-red light conditions in detail.
Collapse
Affiliation(s)
- Tomonori Kashimoto
- Department of Biological Science, Faculty of Science, Shizuoka University
| | - Keita Miyake
- Department of Biological Science, Faculty of Science, Shizuoka University
| | - Mayuko Sato
- RIKEN Center for Sustainable Resource Science
| | - Kaisei Maeda
- Department of Life Sciences (Biology), Graduate School of Arts and Sciences, The University of Tokyo.,Department of Bioscience, Tokyo University of Agriculture
| | | | - Masahiko Ikeuchi
- Department of Life Sciences (Biology), Graduate School of Arts and Sciences, The University of Tokyo.,Core Research for Evolutional Science and Technology, Japan Science and Technology Agency
| | | | | | - Yu Kanesaki
- Research Institute of Green Science and Technology, Shizuoka University.,NODAI Genome Research Center, Tokyo University of Agriculture
| | - Rei Narikawa
- Department of Biological Science, Faculty of Science, Shizuoka University.,Core Research for Evolutional Science and Technology, Japan Science and Technology Agency.,Research Institute of Green Science and Technology, Shizuoka University
| |
Collapse
|
29
|
Miyake K, Fushimi K, Kashimoto T, Maeda K, Ni-Ni-Win, Kimura H, Sugishima M, Ikeuchi M, Narikawa R. Functional diversification of two bilin reductases for light perception and harvesting in unique cyanobacterium Acaryochloris marina MBIC 11017. FEBS J 2020; 287:4016-4031. [PMID: 31995844 DOI: 10.1111/febs.15230] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/17/2019] [Accepted: 01/27/2020] [Indexed: 02/06/2023]
Abstract
Bilin pigments play important roles for both light perception and harvesting in cyanobacteria by binding to cyanobacteriochromes (CBCRs) and phycobilisomes (PBS), respectively. Among various cyanobacteria, Acaryochloris marina MBIC 11017 (A. marina 11017) exceptionally uses chlorophyll d as the main photosynthetic pigment absorbing longer wavelength light than the canonical pigment, chlorophyll a, indicating existence of a system to sense longer wavelength light than others. On the other hand, A. marina 11017 has the PBS apparatus to harvest short-wavelength orange light, similar to most cyanobacteria. Thus, A. marina 11017 might sense longer wavelength light and harvest shorter wavelength light by using bilin pigments. Phycocyanobilin (PCB) is the main bilin pigment of both systems. Phycocyanobilin:ferredoxin oxidoreductase (PcyA) catalyzes PCB synthesis from biliverdin via the intermediate 181 ,182 -dihydrobiliverdin (181 ,182 -DHBV), resulting in the stepwise shortening of the absorbing wavelengths. In this study, we found that A. marina 11017 exceptionally encodes two PcyA homologs, AmPcyAc and AmPcyAp. AmPcyAc is encoded on the main chromosome with most photoreceptor genes, whereas AmPcyAp is encoded on a plasmid with PBS-related genes. High accumulation of 181 ,182 -DHBV for extended periods was observed during the reaction catalyzed by AmPcyAc, whereas 181 ,182 -DHBV was transiently accumulated for a short period during the reaction catalyzed by AmPcyAp. CBCRs could sense longer wavelength far-red light through 181 ,182 -DHBV incorporation, whereas PBS could only harvest orange light through PCB incorporation, suggesting functional diversification of PcyA as AmPcyAc and AmPcyAp to provide 181 ,182 -DHBV and PCB to the light perception and harvesting systems, respectively.
Collapse
Affiliation(s)
- Keita Miyake
- Graduate School of Integrated Science and Technology, Shizuoka University, Japan
| | - Keiji Fushimi
- Graduate School of Integrated Science and Technology, Shizuoka University, Japan.,Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Kawaguchi, Japan
| | - Tomonori Kashimoto
- Graduate School of Integrated Science and Technology, Shizuoka University, Japan
| | - Kaisei Maeda
- Graduate School of Arts and Sciences, University of Tokyo, Japan
| | - Ni-Ni-Win
- Graduate School of Arts and Sciences, University of Tokyo, Japan
| | - Hiroyuki Kimura
- Graduate School of Integrated Science and Technology, Shizuoka University, Japan.,Research Institute of Green Science and Technology, Shizuoka University, Japan
| | - Masakazu Sugishima
- Department of Medical Biochemistry, Kurume University School of Medicine, Japan
| | - Masahiko Ikeuchi
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Kawaguchi, Japan.,Graduate School of Arts and Sciences, University of Tokyo, Japan
| | - Rei Narikawa
- Graduate School of Integrated Science and Technology, Shizuoka University, Japan.,Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Kawaguchi, Japan.,Research Institute of Green Science and Technology, Shizuoka University, Japan
| |
Collapse
|
30
|
Garber AI, Nealson KH, Okamoto A, McAllister SM, Chan CS, Barco RA, Merino N. FeGenie: A Comprehensive Tool for the Identification of Iron Genes and Iron Gene Neighborhoods in Genome and Metagenome Assemblies. Front Microbiol 2020; 11:37. [PMID: 32082281 PMCID: PMC7005843 DOI: 10.3389/fmicb.2020.00037] [Citation(s) in RCA: 204] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 01/09/2020] [Indexed: 01/15/2023] Open
Abstract
Iron is a micronutrient for nearly all life on Earth. It can be used as an electron donor and electron acceptor by iron-oxidizing and iron-reducing microorganisms and is used in a variety of biological processes, including photosynthesis and respiration. While it is the fourth most abundant metal in the Earth's crust, iron is often limiting for growth in oxic environments because it is readily oxidized and precipitated. Much of our understanding of how microorganisms compete for and utilize iron is based on laboratory experiments. However, the advent of next-generation sequencing and surge in publicly available sequence data has made it possible to probe the structure and function of microbial communities in the environment. To bridge the gap between our understanding of iron acquisition, iron redox cycling, iron storage, and magnetosome formation in model microorganisms and the plethora of sequence data available from environmental studies, we have created a comprehensive database of hidden Markov models (HMMs) based on genes related to iron acquisition, storage, and reduction/oxidation in Bacteria and Archaea. Along with this database, we present FeGenie, a bioinformatics tool that accepts genome and metagenome assemblies as input and uses our comprehensive HMM database to annotate provided datasets with respect to iron-related genes and gene neighborhood. An important contribution of this tool is the efficient identification of genes involved in iron oxidation and dissimilatory iron reduction, which have been largely overlooked by standard annotation pipelines. We validated FeGenie against a selected set of 28 isolate genomes and showcase its utility in exploring iron genes present in 27 metagenomes, 4 isolate genomes from human oral biofilms, and 17 genomes from candidate organisms, including members of the candidate phyla radiation. We show that FeGenie accurately identifies iron genes in isolates. Furthermore, analysis of metagenomes using FeGenie demonstrates that the iron gene repertoire and abundance of each environment is correlated with iron richness. While this tool will not replace the reliability of culture-dependent analyses of microbial physiology, it provides reliable predictions derived from the most up-to-date genetic markers. FeGenie's database will be maintained and continually updated as new genes are discovered. FeGenie is freely available: https://github.com/Arkadiy-Garber/FeGenie.
Collapse
Affiliation(s)
- Arkadiy I. Garber
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States
- Department of Earth Sciences, University of Delaware, Newark, DE, United States
| | - Kenneth H. Nealson
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States
| | - Akihiro Okamoto
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Japan
| | - Sean M. McAllister
- School of Marine Science and Policy, University of Delaware, Newark, DE, United States
| | - Clara S. Chan
- Department of Earth Sciences, University of Delaware, Newark, DE, United States
- School of Marine Science and Policy, University of Delaware, Newark, DE, United States
| | - Roman A. Barco
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States
| | - Nancy Merino
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, United States
| |
Collapse
|
31
|
Khumalo MJ, Nzuza N, Padayachee T, Chen W, Yu JH, Nelson DR, Syed K. Comprehensive Analyses of Cytochrome P450 Monooxygenases and Secondary Metabolite Biosynthetic Gene Clusters in Cyanobacteria. Int J Mol Sci 2020; 21:ijms21020656. [PMID: 31963856 PMCID: PMC7014017 DOI: 10.3390/ijms21020656] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 01/13/2020] [Accepted: 01/15/2020] [Indexed: 12/12/2022] Open
Abstract
The prokaryotic phylum Cyanobacteria are some of the oldest known photosynthetic organisms responsible for the oxygenation of the earth. Cyanobacterial species have been recognised as a prosperous source of bioactive secondary metabolites with antibacterial, antiviral, antifungal and/or anticancer activities. Cytochrome P450 monooxygenases (CYPs/P450s) contribute to the production and diversity of various secondary metabolites. To better understand the metabolic potential of cyanobacterial species, we have carried out comprehensive analyses of P450s, predicted secondary metabolite biosynthetic gene clusters (BGCs), and P450s located in secondary metabolite BGCs. Analysis of the genomes of 114 cyanobacterial species identified 341 P450s in 88 species, belonging to 36 families and 79 subfamilies. In total, 770 secondary metabolite BGCs were found in 103 cyanobacterial species. Only 8% of P450s were found to be part of BGCs. Comparative analyses with other bacteria Bacillus, Streptomyces and mycobacterial species have revealed a lower number of P450s and BGCs and a percentage of P450s forming part of BGCs in cyanobacterial species. A mathematical formula presented in this study revealed that cyanobacterial species have the highest gene-cluster diversity percentage compared to Bacillus and mycobacterial species, indicating that these diverse gene clusters are destined to produce different types of secondary metabolites. The study provides fundamental knowledge of P450s and those associated with secondary metabolism in cyanobacterial species, which may illuminate their value for the pharmaceutical and cosmetics industries.
Collapse
Affiliation(s)
- Makhosazana Jabulile Khumalo
- Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa 3886, South Africa; (M.J.K.); (N.N.); (T.P.)
| | - Nomfundo Nzuza
- Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa 3886, South Africa; (M.J.K.); (N.N.); (T.P.)
| | - Tiara Padayachee
- Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa 3886, South Africa; (M.J.K.); (N.N.); (T.P.)
| | - Wanping Chen
- Department of Molecular Microbiology and Genetics, University of Göttingen, 37077 Göttingen, Germany;
| | - Jae-Hyuk Yu
- Department of Bacteriology, University of Wisconsin-Madison, 3155 MSB, 1550 Linden Drive, Madison, WI 53706, USA;
- Department of Systems Biotechnology, Konkuk University, Seoul 05029, Korea
| | - David R. Nelson
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Correspondence: (D.R.N.); (K.S.)
| | - Khajamohiddin Syed
- Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa 3886, South Africa; (M.J.K.); (N.N.); (T.P.)
- Correspondence: (D.R.N.); (K.S.)
| |
Collapse
|
32
|
Wolf BM, Blankenship RE. Far-red light acclimation in diverse oxygenic photosynthetic organisms. PHOTOSYNTHESIS RESEARCH 2019; 142:349-359. [PMID: 31222688 DOI: 10.1007/s11120-019-00653-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 06/03/2019] [Indexed: 06/09/2023]
Abstract
Oxygenic photosynthesis has historically been considered limited to be driven by the wavelengths of visible light. However, in the last few decades, various adaptations have been discovered that allow algae, cyanobacteria, and even plants to utilize longer wavelength light in the far-red spectral range. These adaptations provide distinct advantages to the species possessing them, allowing the effective utilization of shade light under highly filtered light environments. In prokaryotes, these adaptations include the production of far-red-absorbing chlorophylls d and f and the remodeling of phycobilisome antennas and reaction centers. Eukaryotes express specialized light-harvesting pigment-protein complexes that use interactions between pigments and their protein environment to spectrally tune the absorption of chlorophyll a. If these adaptations could be applied to crop plants, a potentially significant increase in photon utilization in lower shaded leaves could be realized, improving crop yields.
Collapse
Affiliation(s)
- Benjamin M Wolf
- Department of Biology, Washington University in St. Louis, St. Louis, MO, 63130, USA.
| | - Robert E Blankenship
- Departments of Biology and Chemistry, Washington University in St. Louis, St. Louis, MO, 63130, USA
| |
Collapse
|
33
|
Pernice M, Raina JB, Rädecker N, Cárdenas A, Pogoreutz C, Voolstra CR. Down to the bone: the role of overlooked endolithic microbiomes in reef coral health. ISME JOURNAL 2019; 14:325-334. [PMID: 31690886 PMCID: PMC6976677 DOI: 10.1038/s41396-019-0548-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 10/17/2019] [Accepted: 10/28/2019] [Indexed: 01/10/2023]
Abstract
Reef-building corals harbour an astonishing diversity of microorganisms, including endosymbiotic microalgae, bacteria, archaea, and fungi. The metabolic interactions within this symbiotic consortium are fundamental to the ecological success of corals and the unique productivity of coral reef ecosystems. Over the last two decades, scientific efforts have been primarily channelled into dissecting the symbioses occurring in coral tissues. Although easily accessible, this compartment is only 2–3 mm thick, whereas the underlying calcium carbonate skeleton occupies the vast internal volume of corals. Far from being devoid of life, the skeleton harbours a wide array of algae, endolithic fungi, heterotrophic bacteria, and other boring eukaryotes, often forming distinct bands visible to the bare eye. Some of the critical functions of these endolithic microorganisms in coral health, such as nutrient cycling and metabolite transfer, which could enable the survival of corals during thermal stress, have long been demonstrated. In addition, some of these microorganisms can dissolve calcium carbonate, weakening the coral skeleton and therefore may play a major role in reef erosion. Yet, experimental data are wanting due to methodological limitations. Recent technological and conceptual advances now allow us to tease apart the complex physical, ecological, and chemical interactions at the heart of coral endolithic microbial communities. These new capabilities have resulted in an excellent body of research and provide an exciting outlook to further address the functional microbial ecology of the “overlooked” coral skeleton.
Collapse
Affiliation(s)
- Mathieu Pernice
- Climate Change Cluster, University of Technology Sydney, Sydney, NSW, Australia
| | - Jean-Baptiste Raina
- Climate Change Cluster, University of Technology Sydney, Sydney, NSW, Australia.
| | - Nils Rädecker
- Red Sea Research Center, Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.,Department of Biology, University of Konstanz, 78457, Konstanz, Germany
| | - Anny Cárdenas
- Red Sea Research Center, Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.,Department of Biology, University of Konstanz, 78457, Konstanz, Germany
| | - Claudia Pogoreutz
- Red Sea Research Center, Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.,Department of Biology, University of Konstanz, 78457, Konstanz, Germany
| | - Christian R Voolstra
- Red Sea Research Center, Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia. .,Department of Biology, University of Konstanz, 78457, Konstanz, Germany.
| |
Collapse
|
34
|
|
35
|
Genomic differences within the phylum Marinimicrobia: From waters to sediments in the Mariana Trench. Mar Genomics 2019; 50:100699. [PMID: 31301991 DOI: 10.1016/j.margen.2019.100699] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 06/15/2019] [Accepted: 06/29/2019] [Indexed: 02/06/2023]
Abstract
Marinimicrobia are widespread from the marine surface to the hadal zone. Major clades of Marinimicrobia have evolved to different ecotypes along with energy gradients, but their genomes in deeper waters and sediments have rarely been studied. Here we obtained 11 Marinimicrobia draft genomes from the water column in the full-ocean depth and the hadal sediments in the Mariana Trench. All the predicted genomic capabilities of the metagenome-assembled genomes (MAGs) are indicative of heterotrophic lifestyle. The MAGs from the hadal depths are distinct from those from the mesopelagic and bathypelagic depths by enrichment of the genes involved in amino acids metabolism and mismatch repair. Compared with the MAGs from waters, those from the sediments were dramatically expanded by acquiring the genes responsible for chemotaxis, mobility and the two-component systems. Marinimicrobia were apparently differentiated in the environments with different depths, organic matters and electronic acceptors. Our results also posit a potential evolutionary relationship between the species inhabiting the waters and sediments, indicating the occurrence of allopatric speciation in Marinimicrobia.
Collapse
|
36
|
Will SE, Henke P, Boedeker C, Huang S, Brinkmann H, Rohde M, Jarek M, Friedl T, Seufert S, Schumacher M, Overmann J, Neumann-Schaal M, Petersen J. Day and Night: Metabolic Profiles and Evolutionary Relationships of Six Axenic Non-Marine Cyanobacteria. Genome Biol Evol 2019; 11:270-294. [PMID: 30590650 PMCID: PMC6349668 DOI: 10.1093/gbe/evy275] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2018] [Indexed: 12/14/2022] Open
Abstract
Cyanobacteria are dominant primary producers of various ecosystems and they colonize marine as well as freshwater and terrestrial habitats. On the basis of their oxygenic photosynthesis they are known to synthesize a high number of secondary metabolites, which makes them promising for biotechnological applications. State-of-the-art sequencing and analytical techniques and the availability of several axenic strains offer new opportunities for the understanding of the hidden metabolic potential of cyanobacteria beyond those of single model organisms. Here, we report comprehensive genomic and metabolic analyses of five non-marine cyanobacteria, that is, Nostoc sp. DSM 107007, Anabaena variabilis DSM 107003, Calothrix desertica DSM 106972, Chroococcidiopsis cubana DSM 107010, Chlorogloeopsis sp. PCC 6912, and the reference strain Synechocystis sp. PCC 6803. Five strains that are prevalently belonging to the order Nostocales represent the phylogenetic depth of clade B1, a morphologically highly diverse sister lineage of clade B2 that includes strain PCC 6803. Genome sequencing, light and scanning electron microscopy revealed the characteristics and axenicity of the analyzed strains. Phylogenetic comparisons showed the limits of the 16S rRNA gene for the classification of cyanobacteria, but documented the applicability of a multilocus sequence alignment analysis based on 43 conserved protein markers. The analysis of metabolites of the core carbon metabolism showed parts of highly conserved metabolic pathways as well as lineage specific pathways such as the glyoxylate shunt, which was acquired by cyanobacteria at least twice via horizontal gene transfer. Major metabolic changes were observed when we compared alterations between day and night samples. Furthermore, our results showed metabolic potential of cyanobacteria beyond Synechocystis sp. PCC 6803 as model organism and may encourage the cyanobacterial community to broaden their research to related organisms with higher metabolic activity in the desired pathways.
Collapse
Affiliation(s)
- Sabine Eva Will
- Nachwuchsgruppe Bakterielle Metabolomik, Leibniz-Institut DSMZ - Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany
| | - Petra Henke
- Abteilung Mikrobielle Ökologie und Diversität, Leibniz-Institut DSMZ - Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany
| | - Christian Boedeker
- Abteilung Mikrobielle Ökologie und Diversität, Leibniz-Institut DSMZ - Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany
| | - Sixing Huang
- Abteilung Mikrobielle Ökologie und Diversität, Leibniz-Institut DSMZ - Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany
| | - Henner Brinkmann
- Abteilung Protisten und Cyanobakterien, Leibniz-Institut DSMZ - Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany
| | - Manfred Rohde
- Helmholtz-Centre for Infection Research, Braunschweig, Germany
| | - Michael Jarek
- Helmholtz-Centre for Infection Research, Braunschweig, Germany
| | - Thomas Friedl
- Sammlung von Algenkulturen der Universität Göttingen (SAG), Germany
| | - Steph Seufert
- Abteilung Protisten und Cyanobakterien, Leibniz-Institut DSMZ - Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany
| | - Martin Schumacher
- Abteilung Protisten und Cyanobakterien, Leibniz-Institut DSMZ - Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany
| | - Jörg Overmann
- Abteilung Mikrobielle Ökologie und Diversität, Leibniz-Institut DSMZ - Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany
| | - Meina Neumann-Schaal
- Nachwuchsgruppe Bakterielle Metabolomik, Leibniz-Institut DSMZ - Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany
| | - Jörn Petersen
- Abteilung Protisten und Cyanobakterien, Leibniz-Institut DSMZ - Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany
| |
Collapse
|
37
|
Gallagher AL, Miller SR. Expression of Novel Gene Content Drives Adaptation to Low Iron in the Cyanobacterium Acaryochloris. Genome Biol Evol 2018; 10:1484-1492. [PMID: 29850825 PMCID: PMC6007379 DOI: 10.1093/gbe/evy099] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2018] [Indexed: 12/24/2022] Open
Abstract
Variation in genome content is a potent mechanism of microbial adaptation. The genomes of members of the cyanobacterial genus Acaryochloris vary greatly in gene content as a consequence of the idiosyncratic retention of both recent gene duplicates and plasmid-encoded genes acquired by horizontal transfer. For example, the genome of Acaryochloris strain MBIC11017, which was isolated from an iron-limited environment, is enriched in duplicated and novel genes involved in iron assimilation. Here, we took an integrative approach to characterize the adaptation of Acaryochloris MBIC11017 to low environmental iron availability and the relative contributions of the expression of duplicated versus novel genes. We observed that Acaryochloris MBIC11017 grew faster and to a higher yield in the presence of nanomolar concentrations of iron than did a closely related strain. These differences were associated with both a higher rate of iron assimilation and a greater abundance of iron assimilation transcripts. However, recently duplicated genes contributed little to increased transcript dosage; rather, the maintenance of these duplicates in the MBIC11017 genome is likely due to the sharing of ancestral dosage by expression reduction. Instead, novel, horizontally transferred genes are responsible for the differences in transcript abundance. The study provides insights on the mechanisms of adaptive genome evolution and gene expression in Acaryochloris.
Collapse
Affiliation(s)
| | - Scott R Miller
- Division of Biological Sciences, The University of Montana
| |
Collapse
|
38
|
Sirisena KA, Ramirez S, Steele A, Glamoclija M. Microbial Diversity of Hypersaline Sediments from Lake Lucero Playa in White Sands National Monument, New Mexico, USA. MICROBIAL ECOLOGY 2018; 76:404-418. [PMID: 29380029 DOI: 10.1007/s00248-018-1142-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Accepted: 01/02/2018] [Indexed: 06/07/2023]
Abstract
Lake Lucero is a gypsum-rich, hypersaline, ephemeral playa located on the southern part of the Alkali Flat at the White Sands National Monument (WSNM), New Mexico, USA. This modern playa setting provides a dynamic extreme environment that changes from a freshwater lake to a hypersaline dry desert during the year. We investigated the microbial diversity (bacteria, archaea, and microbial eukaryotes) of the Lake Lucero sediments using 16S- and 18S-based amplicon sequencing approach and explored the diversity patterns in different geochemical microenvironments. Our results indicated that similar microbial communities, in particular bacterial communities colonized, were remarkably consistent across our depth profiles. Therefore, these communities show a first-order relevance on the environmental conditions (moisture content, oxygen content, and mineral composition). We found that Proteobacteria, Actinobacteria, Bacteroidetes, Firmicutes, and Gemmatimonadetes were the major bacterial phyla, while Cyanobacteria were present in relatively low abundances and appeared only at the surface. Genus level assessment reflected that Truepera, Delftia, and Pseudomonas were the predominant bacterial genera across all samples. Euryarchaeota was the major archaeal phylum in all the samples, while Candidatus Halobonum and Candidatus Nitrososphaera were the main genera. Diatoms were the dominant eukaryotic group in surface samples and Fungi, Ciliophora, Metazoa, and Nematodes were the other major groups. As expected, metabolic inference indicated that aerobic microbial communities were near surface colonizers, with anaerobic communities dominating with increasing depth. We demonstrated that these microbial communities could be used to characterize unique geochemical microenvironments enabling us to extrapolate these results into other terrestrial and possibly extraterrestrial environments with comparable geochemical characteristics.
Collapse
Affiliation(s)
- Kosala Ayantha Sirisena
- Department of Earth and Environmental Sciences, Rutgers University, Newark, NJ, USA.
- Geophysical Laboratory, Carnegie Institution of Washington, Washington, DC, USA.
- Department of Zoology, University of Sri Jayewardenepura, Nugegoda, Sri Lanka.
| | - Steven Ramirez
- Department of Earth and Environmental Sciences, Rutgers University, Newark, NJ, USA
| | - Andrew Steele
- Geophysical Laboratory, Carnegie Institution of Washington, Washington, DC, USA
| | - Mihaela Glamoclija
- Department of Earth and Environmental Sciences, Rutgers University, Newark, NJ, USA
| |
Collapse
|
39
|
Bar-Zvi S, Lahav A, Harris D, Niedzwiedzki DM, Blankenship RE, Adir N. Structural heterogeneity leads to functional homogeneity in A. marina phycocyanin. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:544-553. [DOI: 10.1016/j.bbabio.2018.04.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/18/2018] [Accepted: 04/23/2018] [Indexed: 12/31/2022]
|
40
|
Babilonia J, Conesa A, Casaburi G, Pereira C, Louyakis AS, Reid RP, Foster JS. Comparative Metagenomics Provides Insight Into the Ecosystem Functioning of the Shark Bay Stromatolites, Western Australia. Front Microbiol 2018; 9:1359. [PMID: 29988640 PMCID: PMC6027182 DOI: 10.3389/fmicb.2018.01359] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 06/05/2018] [Indexed: 12/22/2022] Open
Abstract
Stromatolites are organosedimentary build-ups that have formed as a result of the sediment trapping, binding and precipitating activities of microbes. Today, extant systems provide an ideal platform for understanding the structure, composition, and interactions between stromatolite-forming microbial communities and their respective environments. In this study, we compared the metagenomes of three prevalent stromatolite-forming microbial mat types in the Spaven Province of Hamelin Pool, Shark Bay located in Western Australia. These stromatolite-forming mat types included an intertidal pustular mat as well as a smooth and colloform mat types located in the subtidal zone. Additionally, the metagenomes of an adjacent, non-lithifying mat located in the upper intertidal zone were also sequenced for comparative purposes. Taxonomic and functional gene analyses revealed distinctive differences between the lithifying and non-lithifying mat types, which strongly correlated with water depth. Three distinct populations emerged including the upper intertidal non-lithifying mats, the intertidal pustular mats associated with unlaminated carbonate build-ups, and the subtidal colloform and smooth mat types associated with laminated structures. Functional analysis of metagenomes revealed that amongst stromatolite-forming mats there was an enrichment of photosynthesis pathways in the pustular stromatolite-forming mats. In the colloform and smooth stromatolite-forming mats, however, there was an increase in the abundance of genes associated with those heterotrophic metabolisms typically associated with carbonate mineralization, such as sulfate reduction. The comparative metagenomic analyses suggest that stromatolites of Hamelin Pool may form by two distinctive processes that are highly dependent on water depth. These results provide key insight into the potential adaptive strategies and synergistic interactions between microbes and their environments that may lead to stromatolite formation and accretion.
Collapse
Affiliation(s)
- Joany Babilonia
- Space Life Science Lab, Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, United States
| | - Ana Conesa
- Department of Microbiology and Cell Science, Genetics Institute, Institute for Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States.,Genomics of Gene Expression Laboratory, Prince Felipe Research Center, Valencia, Spain
| | - Giorgio Casaburi
- Space Life Science Lab, Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, United States
| | - Cecile Pereira
- Department of Microbiology and Cell Science, Genetics Institute, Institute for Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States.,EURA NOVA, Marseille, France
| | - Artemis S Louyakis
- Space Life Science Lab, Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, United States
| | - R Pamela Reid
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, United States
| | - Jamie S Foster
- Space Life Science Lab, Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, United States
| |
Collapse
|
41
|
A novel species of the marine cyanobacterium Acaryochloris with a unique pigment content and lifestyle. Sci Rep 2018; 8:9142. [PMID: 29904088 PMCID: PMC6002478 DOI: 10.1038/s41598-018-27542-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 06/01/2018] [Indexed: 01/01/2023] Open
Abstract
All characterized members of the ubiquitous genus Acaryochloris share the unique property of containing large amounts of chlorophyll (Chl) d, a pigment exhibiting a red absorption maximum strongly shifted towards infrared compared to Chl a. Chl d is the major pigment in these organisms and is notably bound to antenna proteins structurally similar to those of Prochloron, Prochlorothrix and Prochlorococcus, the only three cyanobacteria known so far to contain mono- or divinyl-Chl a and b as major pigments and to lack phycobilisomes. Here, we describe RCC1774, a strain isolated from the foreshore near Roscoff (France). It is phylogenetically related to members of the Acaryochloris genus but completely lacks Chl d. Instead, it possesses monovinyl-Chl a and b at a b/a molar ratio of 0.16, similar to that in Prochloron and Prochlorothrix. It differs from the latter by the presence of phycocyanin and a vestigial allophycocyanin energetically coupled to photosystems. Genome sequencing confirmed the presence of phycobiliprotein and Chl b synthesis genes. Based on its phylogeny, ultrastructural characteristics and unique pigment suite, we describe RCC1774 as a novel species that we name Acaryochloris thomasi. Its very unusual pigment content compared to other Acaryochloris spp. is likely related to its specific lifestyle.
Collapse
|
42
|
Li ZK, Yin YC, Zhang LD, Zhang ZC, Dai GZ, Chen M, Qiu BS. The identification of IsiA proteins binding chlorophyll d in the cyanobacterium Acaryochloris marina. PHOTOSYNTHESIS RESEARCH 2018; 135:165-175. [PMID: 28378245 DOI: 10.1007/s11120-017-0379-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Accepted: 03/30/2017] [Indexed: 06/07/2023]
Abstract
The bioavailable iron in many aquatic ecosystems is extremely low, and limits the growth and photosynthetic activity of phytoplankton. In response to iron limitation, a group of chlorophyll-binding proteins known as iron stress-induced proteins are induced and serve as accessory light-harvesting components for photosystems under iron limitation. In the present study, we investigated physiological features of Acaryochloris marina in response to iron-deficient conditions. The growth doubling time under iron-deficient conditions was prolonged to ~3.4 days compared with 1.9 days under normal culture conditions, accompanied with dramatically decreased chlorophyll content. The isolation of chlorophyll-binding protein complexes using sucrose density gradient centrifugation shows six main green bands and three main fluorescence components of 712, 728, and 748 nm from the iron-deficient culture. The fluorescence components of 712 and 728 nm co-exist in the samples collected from iron-deficient and iron-replete cultures and are attributed to Chl d-binding accessory chlorophyll-binding antenna proteins and also from photosystem II. A new chlorophyll-binding protein complex with its main fluorescence peak at 748 nm was observed and enriched in the heaviest fraction from the samples collected from the iron-deficient culture only. Combining western blotting analysis using antibodies of CP47 (PSII), PsaC (PSI) and IsiA and proteomic analysis on an excised protein band at ~37 kDa, the heaviest fraction (-F6) isolated from iron-deficient culture contained Chl d-bound PSI-IsiA supercomplexes. The PSII-antenna supercomplexes isolated from iron-replete conditions showed two fluorescence peaks of 712 and 728 nm, which can be assigned as 6-transmembrane helix chlorophyll-binding antenna and photosystem II fluorescence, respectively, which is supported by protein analysis of the fractions (F5 and F6).
Collapse
Affiliation(s)
- Zheng-Ke Li
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, 430079, Hubei, People's Republic of China
| | - Yan-Chao Yin
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, 430079, Hubei, People's Republic of China
| | - Lu-Dan Zhang
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, 430079, Hubei, People's Republic of China
| | - Zhong-Chun Zhang
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, 430079, Hubei, People's Republic of China
| | - Guo-Zheng Dai
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, 430079, Hubei, People's Republic of China
| | - Min Chen
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia.
| | - Bao-Sheng Qiu
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, 430079, Hubei, People's Republic of China.
| |
Collapse
|
43
|
Behrendt L, Raina JB, Lutz A, Kot W, Albertsen M, Halkjær-Nielsen P, Sørensen SJ, Larkum AW, Kühl M. In situ metabolomic- and transcriptomic-profiling of the host-associated cyanobacteria Prochloron and Acaryochloris marina. THE ISME JOURNAL 2018; 12:556-567. [PMID: 29087375 PMCID: PMC5776471 DOI: 10.1038/ismej.2017.192] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 09/25/2017] [Accepted: 09/26/2017] [Indexed: 01/20/2023]
Abstract
The tropical ascidian Lissoclinum patella hosts two enigmatic cyanobacteria: (1) the photoendosymbiont Prochloron spp., a producer of valuable bioactive compounds and (2) the chlorophyll-d containing Acaryochloris spp., residing in the near-infrared enriched underside of the animal. Despite numerous efforts, Prochloron remains uncultivable, restricting the investigation of its biochemical potential to cultivation-independent techniques. Likewise, in both cyanobacteria, universally important parameters on light-niche adaptation and in situ photosynthetic regulation are unknown. Here we used genome sequencing, transcriptomics and metabolomics to investigate the symbiotic linkage between host and photoendosymbiont and simultaneously probed the transcriptional response of Acaryochloris in situ. During high light, both cyanobacteria downregulate CO2 fixing pathways, likely a result of O2 photorespiration on the functioning of RuBisCO, and employ a variety of stress-quenching mechanisms, even under less stressful far-red light (Acaryochloris). Metabolomics reveals a distinct biochemical modulation between Prochloron and L. patella, including noon/midnight-dependent signatures of amino acids, nitrogenous waste products and primary photosynthates. Surprisingly, Prochloron constitutively expressed genes coding for patellamides, that is, cyclic peptides of great pharmaceutical value, with yet unknown ecological significance. Together these findings shed further light on far-red-driven photosynthesis in natural consortia, the interplay of Prochloron and its ascidian partner in a model chordate photosymbiosis and the uncultivability of Prochloron.
Collapse
Affiliation(s)
- Lars Behrendt
- Department of Civil, Environmental and Geomatic Engineering, Swiss Federal Institute of Technology, Zürich, Switzerland.
- Department of Biology, Marine Biological Section, University of Copenhagen, Helsingør, Denmark.
- Department of Biology, Microbiology Section, University of Copenhagen, Copenhagen, Denmark.
| | - Jean-Baptiste Raina
- Plant Functional Biology and Climate Change Cluster (C3), University of Technology, Sydney, New South Wales, Australia
| | - Adrian Lutz
- Metabolomics Australia, School of BioSciences, University of Melbourne, Parkville, Victoria, Australia
| | - Witold Kot
- Department of Environmental Science-Enviromental Microbiology and Biotechnology, Aarhus University, Roskilde, Denmark
| | - Mads Albertsen
- Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Aalborg, Denmark
| | - Per Halkjær-Nielsen
- Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Aalborg, Denmark
| | - Søren J Sørensen
- Department of Biology, Microbiology Section, University of Copenhagen, Copenhagen, Denmark
| | - Anthony Wd Larkum
- Plant Functional Biology and Climate Change Cluster (C3), University of Technology, Sydney, New South Wales, Australia
| | - Michael Kühl
- Department of Biology, Marine Biological Section, University of Copenhagen, Helsingør, Denmark
- Plant Functional Biology and Climate Change Cluster (C3), University of Technology, Sydney, New South Wales, Australia
| |
Collapse
|
44
|
Hernández-Prieto MA, Li Y, Postier BL, Blankenship RE, Chen M. Far-red light promotes biofilm formation in the cyanobacteriumAcaryochloris marina. Environ Microbiol 2017; 20:535-545. [DOI: 10.1111/1462-2920.13961] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 10/11/2017] [Accepted: 10/13/2017] [Indexed: 01/07/2023]
Affiliation(s)
- Miguel A. Hernández-Prieto
- ARC Centre of Excellence for Translational Photosynthesis and School of Life and Environmental Sciences; University of Sydney; NSW 2006 Australia
| | - Yaqiong Li
- ARC Centre of Excellence for Translational Photosynthesis and School of Life and Environmental Sciences; University of Sydney; NSW 2006 Australia
| | - Bradley L. Postier
- Departments of Biology and Chemistry; Washington University in St. Louis; St. Louis MO 63130 USA
| | - Robert E. Blankenship
- Departments of Biology and Chemistry; Washington University in St. Louis; St. Louis MO 63130 USA
| | - Min Chen
- ARC Centre of Excellence for Translational Photosynthesis and School of Life and Environmental Sciences; University of Sydney; NSW 2006 Australia
| |
Collapse
|
45
|
Pieper J, Rätsep M, Golub M, Schmitt FJ, Artene P, Eckert HJ. Excitation energy transfer in phycobiliproteins of the cyanobacterium Acaryochloris marina investigated by spectral hole burning. PHOTOSYNTHESIS RESEARCH 2017; 133:225-234. [PMID: 28560566 DOI: 10.1007/s11120-017-0396-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 05/06/2017] [Indexed: 06/07/2023]
Abstract
The cyanobacterium Acaryochloris marina developed two types of antenna complexes, which contain chlorophyll-d (Chl d) and phycocyanobilin (PCB) as light-harvesting pigment molecules, respectively. The latter membrane-extrinsic complexes are denoted as phycobiliproteins (PBPs). Spectral hole burning was employed to study excitation energy transfer and electron-phonon coupling in PBPs. The data reveal a rich spectral substructure with a total of four low-energy electronic states whose absorption bands peak at 633, 644, 654, and at about 673 nm. The electronic states at ~633 and 644 nm can be tentatively attributed to phycocyanin (PC) and allophycocyanin (APC), respectively. The remaining low-energy electronic states including the terminal emitter at 673 nm may be associated with different isoforms of PC, APC, or the linker protein. Furthermore, the hole burning data reveal a large number of excited state vibrational frequencies, which are characteristic for the chromophore PCB. In summary, the results are in good agreement with the low-energy level structure of PBPs and electron-phonon coupling parameters reported by Gryliuk et al. (BBA 1837:1490-1499, 2014) based on difference fluorescence line-narrowing experiments.
Collapse
Affiliation(s)
- Jörg Pieper
- Institute of Physics, University of Tartu, W. Ostwaldi 1, 50411, Tartu, Estonia.
| | - Margus Rätsep
- Institute of Physics, University of Tartu, W. Ostwaldi 1, 50411, Tartu, Estonia
| | - Maksym Golub
- Institute of Physics, University of Tartu, W. Ostwaldi 1, 50411, Tartu, Estonia
| | - Franz-Josef Schmitt
- Max-Volmer-Laboratories for Biophysical Chemistry, Technical University Berlin, Berlin, Germany
| | - Petrica Artene
- Institute of Physics, University of Tartu, W. Ostwaldi 1, 50411, Tartu, Estonia
| | - Hann-Jörg Eckert
- Max-Volmer-Laboratories for Biophysical Chemistry, Technical University Berlin, Berlin, Germany
| |
Collapse
|
46
|
|
47
|
Chen K, Ríos JJ, Pérez-Gálvez A, Roca M. Comprehensive chlorophyll composition in the main edible seaweeds. Food Chem 2017; 228:625-633. [DOI: 10.1016/j.foodchem.2017.02.036] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 02/07/2017] [Accepted: 02/08/2017] [Indexed: 11/26/2022]
|
48
|
Badshah SL, Mabkhot Y, Al-Showiman SS. Photosynthesis at the far-red region of the spectrum in Acaryochloris marina. Biol Res 2017; 50:16. [PMID: 28526061 PMCID: PMC5438491 DOI: 10.1186/s40659-017-0120-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 04/05/2017] [Indexed: 11/21/2022] Open
Abstract
Acaryochloris marina is an oxygenic cyanobacterium that utilizes far-red light for photosynthesis. It has an expanded genome, which helps in its adaptability to the environment, where it can survive on low energy photons. Its major light absorbing pigment is chlorophyll d and it has α-carotene as a major carotenoid. Light harvesting antenna includes the external phycobilin binding proteins, which are hexameric rods made of phycocyanin and allophycocyanins, while the small integral membrane bound chlorophyll binding proteins are also present. There is specific chlorophyll a molecule in both the reaction center of Photosystem I (PSI) and PSII, but majority of the reaction center consists of chlorophyll d. The composition of the PSII reaction center is debatable especially the role and position of chlorophyll a in it. Here we discuss the photosystems of this bacterium and its related biology.
Collapse
Affiliation(s)
- Syed Lal Badshah
- Department of Chemistry, Islamia College University Peshawar, Peshawar, 25120, Khyber Pakhtunkhwa, Pakistan.
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, 23200, Pakhtunkhwa, Pakistan.
| | - Yahia Mabkhot
- Department of Chemistry, College of Science, King Saud University, Riyad, Saudi Arabia.
| | - Salim S Al-Showiman
- Department of Chemistry, College of Science, King Saud University, Riyad, Saudi Arabia.
| |
Collapse
|
49
|
Bentkowski P, van Oosterhout C, Ashby B, Mock T. The effect of extrinsic mortality on genome size evolution in prokaryotes. THE ISME JOURNAL 2017; 11:1011-1018. [PMID: 27922601 PMCID: PMC5364348 DOI: 10.1038/ismej.2016.165] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 10/06/2016] [Accepted: 10/20/2016] [Indexed: 01/13/2023]
Abstract
Mortality has a significant role in prokaryotic ecology and evolution, yet the impact of variations in extrinsic mortality on prokaryotic genome evolution has received little attention. We used both mathematical and agent-based models to reveal how variations in extrinsic mortality affect prokaryotic genome evolution. Our results suggest that the genome size of bacteria increases with increased mortality. A high extrinsic mortality increases the pool of free resources and shortens life expectancy, which selects for faster reproduction, a phenotype we called 'scramblers'. This phenotype is realised by the expansion of gene families involved in nutrient acquisition and metabolism. In contrast, a low mortality rate increases an individual's life expectancy, which results in natural selection favouring tolerance to starvation when conditions are unfavourable. This leads to the evolution of small, streamlined genomes ('stayers'). Our models predict that large genomes, gene family expansion and horizontal gene transfer should be observed in prokaryotes occupying ecosystems exposed to high abiotic stress, as well as those under strong predator- and/or pathogen-mediated selection. A comparison of genome size of cyanobacteria in relatively stable marine versus more turbulent freshwater environments corroborates our predictions, although other factors between these environments could also be responsible.
Collapse
Affiliation(s)
- Piotr Bentkowski
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
- Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Cock van Oosterhout
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Ben Ashby
- Department of Mathematical Sciences, University of Bath, Bath, UK
- Department of Integrative Biology, University of California, Berkeley, CA, USA
| | - Thomas Mock
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| |
Collapse
|
50
|
The Complex Transcriptional Response of Acaryochloris marina to Different Oxygen Levels. G3-GENES GENOMES GENETICS 2017; 7:517-532. [PMID: 27974439 PMCID: PMC5295598 DOI: 10.1534/g3.116.036855] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Ancient oxygenic photosynthetic prokaryotes produced oxygen as a waste product, but existed for a long time under an oxygen-free (anoxic) atmosphere, before an oxic atmosphere emerged. The change in oxygen levels in the atmosphere influenced the chemistry and structure of many enzymes that contained prosthetic groups that were inactivated by oxygen. In the genome of Acaryochloris marina, multiple gene copies exist for proteins that are normally encoded by a single gene copy in other cyanobacteria. Using high throughput RNA sequencing to profile transcriptome responses from cells grown under microoxic and hyperoxic conditions, we detected 8446 transcripts out of the 8462 annotated genes in the Cyanobase database. Two-thirds of the 50 most abundant transcripts are key proteins in photosynthesis. Microoxic conditions negatively affected the levels of expression of genes encoding photosynthetic complexes, with the exception of some subunits. In addition to the known regulation of the multiple copies of psbA, we detected a similar transcriptional pattern for psbJ and psbU, which might play a key role in the altered components of photosystem II. Furthermore, regulation of genes encoding proteins important for reactive oxygen species-scavenging is discussed at genome level, including, for the first time, specific small RNAs having possible regulatory roles under varying oxygen levels.
Collapse
|