1
|
Wang MR, Bai CS, Dai JW, Yang L, Quan FY, Ma JC, Chen XY, Zhu SW, Xu YQ, Xiang ZF, Jiang YL, Cheng Q, Zhang WH, Chen KH, Wang JH, Feng Y, Chen XP, Xiong Y, Chen SL, Hou W, Xiong HR. LncRNA MALAT1 facilitates HIV-1 replication by upregulation of CHCHD2 and downregulation of IFN-I expression. Mol Cell Proteomics 2025:100997. [PMID: 40414289 DOI: 10.1016/j.mcpro.2025.100997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 04/27/2025] [Accepted: 05/20/2025] [Indexed: 05/27/2025] Open
Abstract
Long noncoding RNAs (lncRNAs) are effective regulators of both RNA and protein functions throughout cell biology, including viral replication. Emerging studies have shown that lncRNAs activate or inhibit the replication and latency of HIV-1 by regulating different cellular mechanisms. Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is an oncogenic lncRNA required for paraspeckle integrity and has been proven to be linked to viral infection. However, the mechanisms by which it influences HIV-1 infection in macrophages remain unclear. In this study, we performed RNA-deep sequencing to compare the profiles of lncRNAs in macrophages with or without HIV-1 and found that MALAT1 was dramatically upregulated in HIV-1-infected macrophages. MALAT1 knockdown inhibited HIV-1 infection, whereas MALAT1 overexpression enhanced viral replication, indicating that MALAT1 promotes HIV-1 replication. We further performed proteomics analysis and found that coiled-coil-helix-coiled-coil-helix domain-containing 2 (CHCHD2) was the most downregulated protein affected by RNAi-mediated knockdown of MALAT1. We next demonstrated that MALAT1 favored HIV-1 replication in a CHCHD2-dependent manner and functioned as a competing endogenous RNA to regulate CHCHD2 expression by sponging miR-145-5p, which could mutually bind the MALAT1 and 3'UTR of chchd2 mRNA. Furthermore, knockdown of endogenous MALAT1 or CHCHD2 with specific small interfering RNAs (siRNAs) promoted the expression of IRF7, and enhanced the promoter activities of interferons-α and -β, increasing their production as well as that of a critical interferon-stimulated gene (ISG), myxovirus resistance protein B (MxB). Moreover, MALAT1 or CHCHD2 knockdown promoted the expression of STAT2 to enhance the production of downstream MxB, which expanded the role of CHCHD2 as a negative regulator of the innate immune response. These findings improve our understanding of MALAT1/miR-145-5p/CHCHD2 pathway regulation of HIV-1 replication in macrophages, providing new insights into potential targeted therapeutic interventions.
Collapse
Affiliation(s)
- Mei-Rong Wang
- State Key Laboratory of Virology and Biosafety /Department of Infectious Diseases /Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences /Zhongnan Hospital, Wuhan University, 185 Donghu Road, Wuhan 430071, Hubei Province, China; Yantai Yuhuangding Hospital, 20 Yuhuangding East Road, Yantai 264000, Shandong Province, China
| | - Cheng-Si Bai
- State Key Laboratory of Virology and Biosafety /Department of Infectious Diseases /Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences /Zhongnan Hospital, Wuhan University, 185 Donghu Road, Wuhan 430071, Hubei Province, China
| | - Jian-Wei Dai
- State Key Laboratory of Virology and Biosafety /Department of Infectious Diseases /Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences /Zhongnan Hospital, Wuhan University, 185 Donghu Road, Wuhan 430071, Hubei Province, China
| | - Lan Yang
- State Key Laboratory of Virology and Biosafety /Department of Infectious Diseases /Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences /Zhongnan Hospital, Wuhan University, 185 Donghu Road, Wuhan 430071, Hubei Province, China
| | - Fang-Yi Quan
- State Key Laboratory of Virology and Biosafety /Department of Infectious Diseases /Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences /Zhongnan Hospital, Wuhan University, 185 Donghu Road, Wuhan 430071, Hubei Province, China
| | - Jian-Chun Ma
- State Key Laboratory of Virology and Biosafety /Department of Infectious Diseases /Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences /Zhongnan Hospital, Wuhan University, 185 Donghu Road, Wuhan 430071, Hubei Province, China
| | - Xing-Yuan Chen
- State Key Laboratory of Virology and Biosafety /Department of Infectious Diseases /Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences /Zhongnan Hospital, Wuhan University, 185 Donghu Road, Wuhan 430071, Hubei Province, China
| | - Shao-Wei Zhu
- State Key Laboratory of Virology and Biosafety /Department of Infectious Diseases /Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences /Zhongnan Hospital, Wuhan University, 185 Donghu Road, Wuhan 430071, Hubei Province, China
| | - Ying-Qi Xu
- State Key Laboratory of Virology and Biosafety /Department of Infectious Diseases /Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences /Zhongnan Hospital, Wuhan University, 185 Donghu Road, Wuhan 430071, Hubei Province, China
| | - Zhou-Fu Xiang
- State Key Laboratory of Virology and Biosafety /Department of Infectious Diseases /Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences /Zhongnan Hospital, Wuhan University, 185 Donghu Road, Wuhan 430071, Hubei Province, China
| | - Ya-le Jiang
- State Key Laboratory of Virology and Biosafety /Department of Infectious Diseases /Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences /Zhongnan Hospital, Wuhan University, 185 Donghu Road, Wuhan 430071, Hubei Province, China
| | - Qi Cheng
- State Key Laboratory of Virology and Biosafety /Department of Infectious Diseases /Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences /Zhongnan Hospital, Wuhan University, 185 Donghu Road, Wuhan 430071, Hubei Province, China
| | - Wei-Hao Zhang
- State Key Laboratory of Virology and Biosafety /Department of Infectious Diseases /Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences /Zhongnan Hospital, Wuhan University, 185 Donghu Road, Wuhan 430071, Hubei Province, China
| | - Ke-Han Chen
- School of Public Health, Wuhan University, 185 Donghu Road, Wuhan 430071, Hubei Province, China
| | - Jian-Hua Wang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, Guangdong Province, China
| | - Yong Feng
- State Key Laboratory of Virology and Biosafety /Department of Infectious Diseases /Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences /Zhongnan Hospital, Wuhan University, 185 Donghu Road, Wuhan 430071, Hubei Province, China
| | - Xiao-Ping Chen
- State Key Laboratory of Virology and Biosafety /Department of Infectious Diseases /Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences /Zhongnan Hospital, Wuhan University, 185 Donghu Road, Wuhan 430071, Hubei Province, China
| | - Yong Xiong
- State Key Laboratory of Virology and Biosafety /Department of Infectious Diseases /Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences /Zhongnan Hospital, Wuhan University, 185 Donghu Road, Wuhan 430071, Hubei Province, China
| | - Shu-Liang Chen
- State Key Laboratory of Virology and Biosafety /Department of Infectious Diseases /Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences /Zhongnan Hospital, Wuhan University, 185 Donghu Road, Wuhan 430071, Hubei Province, China
| | - Wei Hou
- State Key Laboratory of Virology and Biosafety /Department of Infectious Diseases /Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences /Zhongnan Hospital, Wuhan University, 185 Donghu Road, Wuhan 430071, Hubei Province, China; School of Public Health, Wuhan University, 185 Donghu Road, Wuhan 430071, Hubei Province, China; Shenzhen Research Institute, Wuhan University, Shenzhen 518057, Guangdong Province, China.
| | - Hai-Rong Xiong
- State Key Laboratory of Virology and Biosafety /Department of Infectious Diseases /Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences /Zhongnan Hospital, Wuhan University, 185 Donghu Road, Wuhan 430071, Hubei Province, China.
| |
Collapse
|
2
|
Holland AM, Jehoul R, Vranken J, Wohl SG, Boesmans W. MicroRNA regulation of enteric nervous system development and disease. Trends Neurosci 2025; 48:268-282. [PMID: 40089421 PMCID: PMC11981837 DOI: 10.1016/j.tins.2025.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 02/04/2025] [Accepted: 02/18/2025] [Indexed: 03/17/2025]
Abstract
The enteric nervous system (ENS), an elaborate network of neurons and glia woven through the gastrointestinal tract, is integral for digestive physiology and broader human health. Commensurate with its importance, ENS dysfunction is linked to a range of debilitating gastrointestinal disorders. MicroRNAs (miRNAs), with their pleiotropic roles in post-transcriptional gene regulation, serve as key developmental effectors within the ENS. Herein, we review the regulatory dynamics of miRNAs in ENS ontogeny, showcasing specific miRNAs implicated in both congenital and acquired enteric neuropathies, such as Hirschsprung's disease (HSCR), achalasia, intestinal neuronal dysplasia (IND), chronic intestinal pseudo-obstruction (CIPO), and slow transit constipation (STC). By delineating miRNA-mediated mechanisms in these diseases, we underscore their importance for ENS homeostasis and highlight their potential as therapeutic targets.
Collapse
Affiliation(s)
- Amy Marie Holland
- Biomedical Research Institute (BIOMED), Hasselt University, Diepenbeek, Belgium; Department of Pathology, GROW - Research Institute for Oncology and Reproduction, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Reindert Jehoul
- Biomedical Research Institute (BIOMED), Hasselt University, Diepenbeek, Belgium
| | - Jorunn Vranken
- Biomedical Research Institute (BIOMED), Hasselt University, Diepenbeek, Belgium
| | - Stefanie Gabriele Wohl
- Department of Biological and Vision Sciences, College of Optometry, The State University of New York, New York, NY, USA
| | - Werend Boesmans
- Biomedical Research Institute (BIOMED), Hasselt University, Diepenbeek, Belgium; Department of Pathology, GROW - Research Institute for Oncology and Reproduction, Maastricht University Medical Center, Maastricht, The Netherlands.
| |
Collapse
|
3
|
Campos-Parra AD, Sánchez-Marín D, Acevedo-Sánchez V. MicroRNAs as Sensitizers of Tyrosine Kinase Inhibitor Resistance in Cancer: Small Molecule Partnerships. Pharmaceuticals (Basel) 2025; 18:492. [PMID: 40283927 PMCID: PMC12030540 DOI: 10.3390/ph18040492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/25/2025] [Accepted: 03/26/2025] [Indexed: 04/29/2025] Open
Abstract
Tyrosine kinase inhibitors (TKIs) have revolutionized cancer treatments by being less toxic and improving the survival of cancer patients. The greatest challenge to their success is the resistance exhibited by cancer patients. However, the potential of microRNAs (miRNAs) for sensitizing molecules to TKIs has been well recognized, with several reports publishing promising results. Nonetheless, this therapeutic window faces challenges and several often-overlooked limitations. One of the most fundamental challenges is selecting the optimal miRNA candidates for clinical trials, as miRNAs are promiscuous and regulate hundreds of targets. In this review, we describe how miRNAs enhance sensitivity to TKIs across various types of cancer. We highlight several challenges and limitations in achieving a successful collaboration between small molecules (TKIs-miRNAs). Our focus is on proposing a workflow to select the most suitable miRNA candidate, recommending several available bioinformatics tools to develop a successful therapeutic partnership between TKIs and miRNAs. We hope that this initial proposal will provide valuable support for future research.
Collapse
Affiliation(s)
| | - David Sánchez-Marín
- Posgrado en Ciencias Biológicas, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 04360, Mexico;
| | | |
Collapse
|
4
|
Hao R, Li L, Zhang D, Tian Y, Long H, Li H, Zhu X, Huang Y, Li G, Zhu C. Characterization and functional analysis of pl-miR-2188 in melanin synthesis in leopard coral grouper (Plectropomus leopardus). Comp Biochem Physiol B Biochem Mol Biol 2024; 275:111043. [PMID: 39491612 DOI: 10.1016/j.cbpb.2024.111043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/30/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
MicroRNAs (miRNAs) are known to regulate gene expression and play a role in body color formation in fish. However, the molecular mechanisms underlying miRNA involvement in the body color of leopard coral grouper (Plectropomus leopardus) remain largely unexplored. In this study, we investigated the expression levels of miR-2188 in red and black P. leopardus (pl-miR-2188) and found significantly higher expression levels in red fish samples compared to those in black fish samples. Silencing pl-miR-2188 in vivo using a pl-miR-2188 antagomir resulted in increased melanin concentration. Following pl-miR-2188 silencing, the expression levels of melanin-related genes, such as tyrosinase (tyr), TYR-related protein 1 (tyrp1-1 and tyrp1-2) and TYR-related protein 2 (tyrp2), and microphthalmia-associated transcription factor (mitf), were elevated. RNAhybrid predictions and dual-luciferase reporter assays identified sox5 as a target mRNA of pl-miR-2188. Following pl-miR-2188 antagomir injection, sox5 expression was significantly upregulated in the injection group compared to that in control groups (P < 0.05). These results suggest that pl-miR-2188 may regulate melanin synthesis in P. leopardus by targeting sox5. This study provides new insights into the miRNA-mRNA interactions involved in melanin synthesis and body color formation in the leopard coral grouper.
Collapse
Affiliation(s)
- Ruijuan Hao
- Development and research center for biological marine resources, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524006, China.
| | - Liancheng Li
- Development and research center for biological marine resources, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524006, China; Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Dongying Zhang
- Development and research center for biological marine resources, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524006, China
| | - Yali Tian
- Development and research center for biological marine resources, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524006, China; Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Hongzhao Long
- Development and research center for biological marine resources, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524006, China; Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Hang Li
- Development and research center for biological marine resources, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524006, China
| | - Xiaowen Zhu
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Zhanjiang 524088, China
| | - Yang Huang
- Development and research center for biological marine resources, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524006, China; Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Guangli Li
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Zhanjiang 524088, China
| | - Chunhua Zhu
- Development and research center for biological marine resources, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524006, China; Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Ocean University, Zhanjiang 524088, China.
| |
Collapse
|
5
|
Lyu K, Wu Y, Li J, Yang Z. MicroRNA miR-210 Modulates the Water Flea Daphnia magna Response to Cyanobacterial Toxicity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:18520-18530. [PMID: 39382696 DOI: 10.1021/acs.est.4c04190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
As a key form of post-transcriptional regulation, microRNAs (miRNAs) regulate gene expression by binding to target mRNAs, leading to mRNA decay or translational repression. Recently, the role of miRNAs in the response of aquatic organisms to environmental stressors has emerged. Daphnia, widely distributed cladocerans, play a crucial role in aquatic ecosystems. Cyanobacterial blooms often cause Daphnia populations to decrease, thereby disrupting ecosystem functionality and water quality. However, the post-transcriptional mechanisms behind Daphnia's response to toxic cyanobacteria are insufficiently understood. This study investigated the role of miR-210, a multifunctional miRNA involved in stress response and toxicity pathways, and its target genes (MLH3, CDHR5, and HYOU1) in two Daphnia magna clones exposed to toxic Microcystis aeruginosa. Results showed that M. aeruginosa inhibited somatic growth rates, led to microcystin accumulation, caused abnormal ultrastructural alterations in the digestive tract, and induced DNA damage in both clones. Notably, exposure significantly increased miR-210 expression and decreased the expression of its target genes compared with the controls. We identified miR-210s regulation on clonal-tolerance variations in D. magna to M. aeruginosa, emphasizing miRNAs' contribution to adaptive responses. Our work uncovered a novel post-transcriptional mechanism of cyanobacterial impact on zooplankton and provided essential insights for assessing cyanobacterial toxicity risks.
Collapse
Affiliation(s)
- Kai Lyu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Yuting Wu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Jiameng Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Zhou Yang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| |
Collapse
|
6
|
Lyu P, Li F, Deng R, Wei Q, Lin B, Cheng L, Zhao B, Lu Z. Lnc-PIK3R1, transcriptionally suppressed by YY1, inhibits hepatocellular carcinoma progression via the Lnc-PIK3R1/miR-1286/GSK3β axis. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167233. [PMID: 38744342 DOI: 10.1016/j.bbadis.2024.167233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/03/2024] [Accepted: 05/09/2024] [Indexed: 05/16/2024]
Abstract
Hepatocellular carcinoma (HCC) poses a significant threat due to its highly aggressive and high recurrence characteristics, necessitating urgent advances in diagnostic and therapeutic approaches. Long non-coding RNAs exert vital roles in HCC tumorigenesis, however the mechanisms of their expression regulation and functions are not fully elucidated yet. Herein, we identify that a novel tumor suppressor 'lnc-PIK3R1' was significantly downregulated in HCC tissues, which was correlated with poor prognosis. Functionally, lnc-PIK3R1 played tumor suppressor roles to inhibit the proliferation and mobility of HCC cells, and to impede the distant implantation of xenograft in mice. Mechanistic studies revealed that lnc-PIK3R1 interacted with miR-1286 and alleviated the repression on GSK3B by miR-1286. Notably, pharmacological inhibition of GSK3β compromised the tumor suppression effect by lnc-PIK3R1, confirming their functional relevance. Moreover, we identified that oncogenic YY1 acts as a specific transcriptional repressor to downregulate the expression of lnc-PIK3R1 in HCC. In summary, this study highlights the tumor-suppressive effect of lnc-PIK3R1, and provides new insights into the regulation of GSK3β expression in HCC, which would benefit the development of innovative intervention strategies for HCC.
Collapse
Affiliation(s)
- Peng Lyu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, PR China
| | - Fengyue Li
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, PR China
| | - Runzhi Deng
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, PR China
| | - Qiliang Wei
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, PR China
| | - Bingkai Lin
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, PR China
| | - Lei Cheng
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, PR China
| | - Bixing Zhao
- The United Innovation of Mengchao Hepatobiliary Technology, Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, PR China.
| | - Zhonglei Lu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, PR China.
| |
Collapse
|
7
|
Shekhar R, Kumari S, Vergish S, Tripathi P. The crosstalk between miRNAs and signaling pathways in human cancers: Potential therapeutic implications. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 386:133-165. [PMID: 38782498 DOI: 10.1016/bs.ircmb.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
MicroRNAs (miRNAs) are increasingly recognized as central players in the regulation of eukaryotic physiological processes. These small double stranded RNA molecules have emerged as pivotal regulators in the intricate network of cellular signaling pathways, playing significant roles in the development and progression of human cancers. The central theme in miRNA-mediated regulation of signaling pathways involves their ability to target and modulate the expression of pathway components. Aberrant expression of miRNAs can either promote or suppress key signaling events, influencing critical cellular processes such as proliferation, apoptosis, angiogenesis, and metastasis. For example, oncogenic miRNAs often promote cancer progression by targeting tumor suppressors or negative regulators of signaling pathways, thereby enhancing pathway activity. Conversely, tumor-suppressive miRNAs frequently inhibit oncogenic signaling by targeting key components within these pathways. This complex regulatory crosstalk underscores the significance of miRNAs as central players in shaping the signaling landscape of cancer cells. Furthermore, the therapeutic implications of targeting miRNAs in cancer are substantial. miRNAs can be manipulated to restore normal signaling pathway activity, offering a potential avenue for precision medicine. The development of miRNA-based therapeutics, including synthetic miRNA mimics and miRNA inhibitors, has shown promise in preclinical and clinical studies. These strategies aim to either enhance the activity of tumor-suppressive miRNAs or inhibit the function of oncogenic miRNAs, thereby restoring balanced signaling and impeding cancer progression. In conclusion, the crosstalk between miRNAs and signaling pathways in human cancers is a dynamic and influential aspect of cancer biology. Understanding this interplay provides valuable insights into cancer development and progression. Harnessing the therapeutic potential of miRNAs as regulators of signaling pathways opens up exciting opportunities for the development of innovative cancer treatments with the potential to improve patient outcomes. In this chapter, we provide an overview of the crosstalk between miRNAs and signaling pathways in the context of cancer and highlight the potential therapeutic implications of targeting this regulatory interplay.
Collapse
Affiliation(s)
- Ritu Shekhar
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, USA.
| | - Sujata Kumari
- Department of Zoology, Magadh Mahila College, Patna University, Patna, India
| | - Satyam Vergish
- Department of Plant Pathology, University of Florida, Gainesville, FL, USA
| | - Prajna Tripathi
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, USA
| |
Collapse
|
8
|
Paccosi E, Proietti-De-Santis L. Parkinson's Disease: From Genetics and Epigenetics to Treatment, a miRNA-Based Strategy. Int J Mol Sci 2023; 24:ijms24119547. [PMID: 37298496 DOI: 10.3390/ijms24119547] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Parkinson's disease (PD) is one of the most common neurodegenerative disorders, characterized by an initial and progressive loss of dopaminergic neurons of the substantia nigra pars compacta via a potentially substantial contribution from protein aggregates, the Lewy bodies, mainly composed of α-Synuclein among other factors. Distinguishing symptoms of PD are bradykinesia, muscular rigidity, unstable posture and gait, hypokinetic movement disorder and resting tremor. Currently, there is no cure for PD, and palliative treatments, such as Levodopa administration, are directed to relieve the motor symptoms but induce severe side effects over time. Therefore, there is an urgency for discovering new drugs in order to design more effective therapeutic approaches. The evidence of epigenetic alterations, such as the dysregulation of different miRNAs that may stimulate many aspects of PD pathogenesis, opened a new scenario in the research for a successful treatment. Along this line, a promising strategy for PD treatment comes from the potential exploitation of modified exosomes, which can be loaded with bioactive molecules, such as therapeutic compounds and RNAs, and can allow their delivery to the appropriate location in the brain, overcoming the blood-brain barrier. In this regard, the transfer of miRNAs within Mesenchymal stem cell (MSC)-derived exosomes has yet to demonstrate successful results both in vitro and in vivo. This review, besides providing a systematic overview of both the genetic and epigenetic basis of the disease, aims to explore the exosomes/miRNAs network and its clinical potential for PD treatment.
Collapse
Affiliation(s)
- Elena Paccosi
- Unit of Molecular Genetics of Aging, Department of Ecology and Biology (DEB), University of Tuscia, 01100 Viterbo, Italy
| | - Luca Proietti-De-Santis
- Unit of Molecular Genetics of Aging, Department of Ecology and Biology (DEB), University of Tuscia, 01100 Viterbo, Italy
| |
Collapse
|
9
|
Jaśkiewicz M, Moszyńska A, Gebert M, Collawn JF, Bartoszewski R. EPAS1 resistance to miRNA-based regulation contributes to prolonged expression of HIF-2 during hypoxia in human endothelial cells. Gene 2023; 868:147376. [PMID: 36934786 DOI: 10.1016/j.gene.2023.147376] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/09/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023]
Abstract
The cellular adaptation to hypoxia is regulated by hypoxia inducible factors: HIF-1 and HIF-2. HIF-1 mediates response to acute hypoxia, whereas HIF-2 allows adaptation to chronic oxygen deprivation. The hypoxic transition from HIF-1 to HIF-2 is possible due to the low stability of HIF-1α subunit transcript (HIF1A) and the stable mRNA of HIF-2α (EPAS1). Notably, although many micro-RNAs (miRNAs) that regulate endothelial HIF-1 levels during hypoxia have been identified, in case of HIF-2, no analogous ones have been found so far. In this work, using different methods, we tested 23 microRNA that were predicted to interact with the EPAS1 transcript (18 of which were induced during prolonged hypoxia), and we demonstrated that none of them were functional in vitro. This suggests that HIF-2α transcript is much less prone to miRNA-related destabilization during hypoxia.
Collapse
Affiliation(s)
- Maciej Jaśkiewicz
- International Research Agenda 3P- Medicine Laboratory, Medical University of Gdansk, Gdansk, Poland.
| | | | - Magdalena Gebert
- Department of Medical Laboratory Diagnostics - Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, Gdansk, Poland.
| | - James F Collawn
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States.
| | - Rafał Bartoszewski
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland.
| |
Collapse
|
10
|
Small RNA Targets: Advances in Prediction Tools and High-Throughput Profiling. BIOLOGY 2022; 11:biology11121798. [PMID: 36552307 PMCID: PMC9775672 DOI: 10.3390/biology11121798] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 11/27/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
MicroRNAs (miRNAs) are an abundant class of small non-coding RNAs that regulate gene expression at the post-transcriptional level. They are suggested to be involved in most biological processes of the cell primarily by targeting messenger RNAs (mRNAs) for cleavage or translational repression. Their binding to their target sites is mediated by the Argonaute (AGO) family of proteins. Thus, miRNA target prediction is pivotal for research and clinical applications. Moreover, transfer-RNA-derived fragments (tRFs) and other types of small RNAs have been found to be potent regulators of Ago-mediated gene expression. Their role in mRNA regulation is still to be fully elucidated, and advancements in the computational prediction of their targets are in their infancy. To shed light on these complex RNA-RNA interactions, the availability of good quality high-throughput data and reliable computational methods is of utmost importance. Even though the arsenal of computational approaches in the field has been enriched in the last decade, there is still a degree of discrepancy between the results they yield. This review offers an overview of the relevant advancements in the field of bioinformatics and machine learning and summarizes the key strategies utilized for small RNA target prediction. Furthermore, we report the recent development of high-throughput sequencing technologies, and explore the role of non-miRNA AGO driver sequences.
Collapse
|
11
|
Cheng J, Zhang R, Yan M, Li Y. Circular RNA hsa_circ_0000277 promotes tumor progression and DDP resistance in esophageal squamous cell carcinoma. BMC Cancer 2022; 22:238. [PMID: 35241028 PMCID: PMC8895546 DOI: 10.1186/s12885-022-09241-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 01/25/2022] [Indexed: 12/24/2022] Open
Abstract
Background Circular RNAs (circRNAs) are well-known regulators of cancer progression and chemoresistance in various types of cancers. This study was performed to investigate the function of hsa_circ_0000277 in esophageal squamous cell carcinoma (ESCC). Methods RNA levels were analyzed via the reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Cell Counting Kit-8 (CCK-8) assay was applied to determine cell proliferation and half maximal inhibitory concentration (IC50) of cisplatin (DDP). Colony formation ability was evaluated by colony formation assay. Cell cycle and apoptosis were measured using flow cytometry. RNA immunoprecipitation (RIP), pull-down assay and dual-luciferase reporter assays were performed for target interaction analysis. The protein levels were determined through western blot. Xenograft models were established for researching hsa_circ_0000277 function in vivo. Results Hsa_circ_0000277 expression was increased in ESCC cells and tissues, and it had important clinical significance. Downregulation of hsa_circ_0000277 repressed ESCC cell proliferation, colony formation, cell cycle, and DDP resistance. Hsa_circ_0000277 acted as a microRNA-873-5p (miR-873-5p) sponge and Sry-related high-mobility group box 4 (SOX4) was validated as a target of miR-873-5p. Moreover, hsa_circ_0000277/miR-873-5p axis and miR-873-5p/SOX4 axis regulated ESCC cell progression and DDP resistance. Hsa_circ_0000277/miR-873-5p axis activated SOX4/Wnt/β-catenin signaling pathway. Hsa_circ_0000277 facilitated tumorigenesis and DDP resistance by miR-873-5p/SOX4 axis in vivo. Conclusion These findings unraveled that hsa_circ_0000277 promoted ESCC progression and DDP resistance via miR-873-5p/SOX4/Wnt/β-catenin axis, showing a specific molecular mechanism of carcinogenesis and chemoresistance in ESCC. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09241-9.
Collapse
Affiliation(s)
- Jiwei Cheng
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, No.127 Dongming Road, Zhengzhou, 450008, Henan Province, China
| | - Ruixiang Zhang
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, No.127 Dongming Road, Zhengzhou, 450008, Henan Province, China
| | - Ming Yan
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, No.127 Dongming Road, Zhengzhou, 450008, Henan Province, China
| | - Yin Li
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, No.127 Dongming Road, Zhengzhou, 450008, Henan Province, China.
| |
Collapse
|
12
|
Kaller M, Hünten S, Siemens H, Hermeking H. Analysis of the p53/microRNA Network in Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1385:187-228. [DOI: 10.1007/978-3-031-08356-3_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
13
|
Abstract
MicroRNAs (miRNAs) are small noncoding elements that play essential roles in the posttranscriptional regulation of biochemical processes. miRNAs recognize and target multiple mRNAs; therefore, investigating miRNA dysregulation is an indispensable strategy to understand pathological conditions and to design innovative drugs. Targeting miRNAs in diseases improve outcomes of several therapeutic strategies thus, this present study highlights miRNA targeting methods through experimental assays and bioinformatics tools. The first part of this review focuses on experimental miRNA targeting approaches for elucidating key biochemical pathways. A growing body of evidence about the miRNA world reveals the fact that it is not possible to uncover these molecules' structural and functional characteristics related to the biological processes with a deterministic approach. Instead, a systemic point of view is needed to truly understand the facts behind the natural complexity of interactions and regulations that miRNA regulations present. This task heavily depends both on computational and experimental capabilities. Fortunately, several miRNA bioinformatics tools catering to nonexperts are available as complementary wet-lab approaches. For this purpose, this work provides recent research and information about computational tools for miRNA targeting research.
Collapse
Affiliation(s)
- Hossein Ghanbarian
- Biotechnology Department & Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehmet Taha Yıldız
- Division of Molecular Medicine, Hamidiye Institute of Health Sciences, University of Health Sciences-Turkey, Istanbul, Turkey
| | - Yusuf Tutar
- Division of Biochemistry, Department of Basic Pharmaceutical Sciences, Hamidiye Faculty of Pharmacy & Division of Molecular Medicine, Hamidiye Institute of Health Sciences, University of Health Sciences-Turkey, Istanbul, Turkey.
| |
Collapse
|
14
|
Deng L, Petrek H, Tu MJ, Batra N, Yu AX, Yu AM. Bioengineered miR-124-3p prodrug selectively alters the proteome of human carcinoma cells to control multiple cellular components and lung metastasis in vivo. Acta Pharm Sin B 2021; 11:3950-3965. [PMID: 35024318 PMCID: PMC8727917 DOI: 10.1016/j.apsb.2021.07.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 02/07/2023] Open
Abstract
With the understanding of microRNA (miRNA or miR) functions in tumor initiation, progression, and metastasis, efforts are underway to develop new miRNA-based therapies. Very recently, we demonstrated effectiveness of a novel humanized bioengineered miR-124-3p prodrug in controlling spontaneous lung metastasis in mouse models. This study was to investigate the molecular and cellular mechanisms by which miR-124-3p controls tumor metastasis. Proteomics study identified a set of proteins selectively and significantly downregulated by bioengineered miR-124-3p in A549 cells, which were assembled into multiple cellular components critical for metastatic potential. Among them, plectin (PLEC) was verified as a new direct target for miR-124-3p that links cytoskeleton components and junctions. In miR-124-3p-treated lung cancer and osteosarcoma cells, protein levels of vimentin, talin 1 (TLN1), integrin beta-1 (ITGB1), IQ motif containing GTPase activating protein 1 (IQGAP1), cadherin 2 or N-cadherin (CDH2), and junctional adhesion molecule A (F11R or JAMA or JAM1) decreased, causing remodeling of cytoskeletons and disruption of cell-cell junctions. Furthermore, miR-124-3p sharply suppressed the formation of focal adhesion plaques, leading to reduced cell adhesion capacity. Additionally, efficacy and safety of biologic miR-124-3p therapy was established in an aggressive experimental metastasis mouse model in vivo. These results connect miR-124-3p-PLEC signaling to other elements in the control of cytoskeleton, cell junctions, and adhesion essential for cancer cell invasion and extravasation towards metastasis, and support the promise of miR-124 therapy.
Collapse
Affiliation(s)
- Linglong Deng
- Department of Orthopaedic Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan 430072, China
- Department of Biochemistry and Molecular Medicine, UC Davis School of Medicine, Sacramento, CA 95817, USA
| | - Hannah Petrek
- Department of Biochemistry and Molecular Medicine, UC Davis School of Medicine, Sacramento, CA 95817, USA
| | - Mei-Juan Tu
- Department of Biochemistry and Molecular Medicine, UC Davis School of Medicine, Sacramento, CA 95817, USA
| | - Neelu Batra
- Department of Biochemistry and Molecular Medicine, UC Davis School of Medicine, Sacramento, CA 95817, USA
| | - Ai-Xi Yu
- Department of Orthopaedic Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan 430072, China
| | - Ai-Ming Yu
- Department of Biochemistry and Molecular Medicine, UC Davis School of Medicine, Sacramento, CA 95817, USA
| |
Collapse
|
15
|
Construction of a Full-Length 3'UTR Reporter System for Identification of Cell-Cycle Regulating MicroRNAs. Methods Mol Biol 2021. [PMID: 34085217 DOI: 10.1007/978-1-0716-1538-6_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Three prime untranslated region (3'UTR) reporter constructs are widely used by the scientific community to functionally link microRNAs (miRNAs) to suppression of mRNA expression. However, full-length 3'UTR vectors are rarely employed due to labor-intensive cloning work. Instead, 3'UTR fragments containing putative miRNA binding sites are commonly utilized to mechanistically validate miRNAs. Assaying truncated 3'UTRs may falsely validate miRNAs due to altered positioning of binding sites in respect to 3'UTR length and RNA secondary structure. Here we present a detailed protocol for the construction of full-length 3'UTR luciferase reporter constructs that was used to unveil miRNAs regulating multiple cell-cycle factors.
Collapse
|
16
|
Shen Y, Lin Y, Liu K, Chen J, Zhong J, Gao Y, Yuan C. XIST: A Meaningful Long Noncoding RNA in NSCLC Process. Curr Pharm Des 2021; 27:1407-1417. [PMID: 33267757 DOI: 10.2174/1381612826999201202102413] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 11/01/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND A number of studies have proposed that lncRNA XIST plays a role in the development and chemosensitivity of NSCLC. Besides, XIST may become a potential therapeutic target for NSCLC patients. The aim of this review is to reveal the biological functions and exact mechanisms of XIST in NSCLC. METHODS In this review, relevant researches involving the relationship between XIST and NSCLC are collected through systematic retrieval of PubMed. RESULTS XIST is an oncogene in NSCLC and is abnormally upregulated in NSCLC tissues. Considerable evidence has shown that XIST plays a critical role in the proliferation, invasion, migration, apoptosis and chemosensitivity of NSCLC cells. XIST mainly functions as a ceRNA in the NSCLC process, while XIST also functions at transcriptional levels. CONCLUSION LncRNA XIST has the potential to become a novel biomolecular marker of NSCLC and a therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Yujie Shen
- College of Medical Science, China Three Gorges University, Yichang 443002, China
| | - Yexiang Lin
- College of Medical Science, China Three Gorges University, Yichang 443002, China
| | - Kai Liu
- College of Medical Science, China Three Gorges University, Yichang 443002, China
| | - Jinlan Chen
- College of Medical Science, China Three Gorges University, Yichang 443002, China
| | - Juanjuan Zhong
- College of Medical Science, China Three Gorges University, Yichang 443002, China
| | - Yisong Gao
- College of Medical Science, China Three Gorges University, Yichang 443002, China
| | - Chengfu Yuan
- College of Medical Science, China Three Gorges University, Yichang 443002, China
| |
Collapse
|
17
|
Wang Y, Soneson C, Malinowska AL, Laski A, Ghosh S, Kanitz A, Gebert LFR, Robinson MD, Hall J. MiR-CLIP reveals iso-miR selective regulation in the miR-124 targetome. Nucleic Acids Res 2021; 49:25-37. [PMID: 33300035 PMCID: PMC7797034 DOI: 10.1093/nar/gkaa1117] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 10/04/2020] [Accepted: 12/07/2020] [Indexed: 12/15/2022] Open
Abstract
Many microRNAs regulate gene expression via atypical mechanisms, which are difficult to discern using native cross-linking methods. To ascertain the scope of non-canonical miRNA targeting, methods are needed that identify all targets of a given miRNA. We designed a new class of miR-CLIP probe, whereby psoralen is conjugated to the 3p arm of a pre-microRNA to capture targetomes of miR-124 and miR-132 in HEK293T cells. Processing of pre-miR-124 yields miR-124 and a 5′-extended isoform, iso-miR-124. Using miR-CLIP, we identified overlapping targetomes from both isoforms. From a set of 16 targets, 13 were differently inhibited at mRNA/protein levels by the isoforms. Moreover, delivery of pre-miR-124 into cells repressed these targets more strongly than individual treatments with miR-124 and iso-miR-124, suggesting that isomirs from one pre-miRNA may function synergistically. By mining the miR-CLIP targetome, we identified nine G-bulged target-sites that are regulated at the protein level by miR-124 but not isomiR-124. Using structural data, we propose a model involving AGO2 helix-7 that suggests why only miR-124 can engage these sites. In summary, access to the miR-124 targetome via miR-CLIP revealed for the first time how heterogeneous processing of miRNAs combined with non-canonical targeting mechanisms expand the regulatory range of a miRNA.
Collapse
Affiliation(s)
- Yuluan Wang
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| | - Charlotte Soneson
- Department of Molecular Life Sciences and SIB Swiss Institute of Bioinformatics, University of Zurich, 8057, Zurich, Switzerland
| | - Anna L Malinowska
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| | - Artur Laski
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| | - Souvik Ghosh
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | | | - Luca F R Gebert
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Mark D Robinson
- Department of Molecular Life Sciences and SIB Swiss Institute of Bioinformatics, University of Zurich, 8057, Zurich, Switzerland
| | - Jonathan Hall
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| |
Collapse
|
18
|
Yang X, Meng L, Zhong Y, Hu F, Wang L, Wang M. The long intergenic noncoding RNA GAS5 reduces cisplatin-resistance in non-small cell lung cancer through the miR-217/LHPP axis. Aging (Albany NY) 2021; 13:2864-2884. [PMID: 33418541 PMCID: PMC7880381 DOI: 10.18632/aging.202352] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 11/03/2020] [Indexed: 12/20/2022]
Abstract
Long noncoding RNAs (lncRNAs) are known to exert their effects to tumor progression. In this study, the role of the lncRNA GAS5 (growth arrest specific 5) was confirmed in reducing non-small cell lung cancer (NSCLC) cisplatin (DDP) resistance. In NSCLC tissue samples, GAS5 expression decreased significantly. Low GAS5 levels were positively correlated with NSCLC characteristics including TNM, tumor size and lymphatic metastasis. Functionally, GAS5 significantly reduced NSCLC/DDP cell migration, invasion and epithelial-mesenchymal transition (EMT) progression in vitro. In vivo, GAS5 upregulation inhibited remarkably NSCLC/DDP cell tumor growth. Mechanism analysis suggested that GAS5 was a molecular sponge of miR-217, inhibiting the expression of phospholysine phosphohistidine inorganic pyrophosphate phosphatase (LHPP). In conclusion, this study reveals that the GAS5/miR-217/LHPP pathway reduces NSCLC cisplatin resistance and that LHPP may serve as a potential therapeutic target for NSCLC cisplatin resistance.
Collapse
Affiliation(s)
- Xuhui Yang
- Department of Thoracic Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Lifei Meng
- Department of Thoracic Surgery, Ningbo First Hospital, Ningbo, China
| | - Yuang Zhong
- Department of Cardiothoracic Surgery, Xinhua Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Fengqing Hu
- Department of Cardiothoracic Surgery, Xinhua Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Lei Wang
- Department of Cardiothoracic Surgery, Xinhua Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Mingsong Wang
- Department of Thoracic Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| |
Collapse
|
19
|
Diggins NL, Crawford LB, Struthers HM, Hook LM, Landais I, Skalsky RL, Hancock MH. Techniques for Characterizing Cytomegalovirus-Encoded miRNAs. Methods Mol Biol 2021; 2244:301-342. [PMID: 33555594 DOI: 10.1007/978-1-0716-1111-1_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
microRNAs (miRNAs) are small noncoding RNAs that regulate gene expression at the posttranscriptional level by binding to sites within the 3' untranslated regions of messenger RNA (mRNA) transcripts. The discovery of this completely new mechanism of gene regulation necessitated the development of a variety of techniques to further characterize miRNAs, their expression, and function. In this chapter, we will discuss techniques currently used in the miRNA field to detect, express and inhibit miRNAs, as well as methods used to identify and validate their targets, specifically with respect to the miRNAs encoded by human cytomegalovirus.
Collapse
Affiliation(s)
- Nicole L Diggins
- Vaccine and Gene Therapy Institute, Oregon Health and Sciences University, Beaverton, OR, USA
| | - Lindsey B Crawford
- Vaccine and Gene Therapy Institute, Oregon Health and Sciences University, Beaverton, OR, USA
| | - Hillary M Struthers
- Vaccine and Gene Therapy Institute, Oregon Health and Sciences University, Beaverton, OR, USA
| | - Lauren M Hook
- Vaccine and Gene Therapy Institute, Oregon Health and Sciences University, Beaverton, OR, USA
| | - Igor Landais
- Vaccine and Gene Therapy Institute, Oregon Health and Sciences University, Beaverton, OR, USA
| | - Rebecca L Skalsky
- Vaccine and Gene Therapy Institute, Oregon Health and Sciences University, Beaverton, OR, USA
| | - Meaghan H Hancock
- Vaccine and Gene Therapy Institute, Oregon Health and Sciences University, Beaverton, OR, USA.
| |
Collapse
|
20
|
The Significance of Circular RNA DDX17 in Prostate Cancer. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1878431. [PMID: 32904557 PMCID: PMC7456467 DOI: 10.1155/2020/1878431] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 06/10/2020] [Accepted: 06/16/2020] [Indexed: 12/14/2022]
Abstract
Circular RNA DDX17 (circDDX17) has been demonstrated as a tumor suppressor in colorectal cancer. However, mechanisms underlying circDDX17 effects in cases of prostate cancer (PCa) are not well understood. Thus, herein, we determined measures of circDDX17 expression by use of the TCGA database. Expression of circDDX17 in prostate cancer-afflicted tissue samples was determined by qRT-PCR. Functionally, circDDX17 induced remarkable inhibition of cell colonizing ability, invasion, and epithelial-mesenchymal transition (EMT) progression in vitro. Mechanistically, dual-luciferase reporter assays, RNA immunoprecipitation, and RNA pull-down experiments helped verify interactions between circDDX17 and miR-346. Low expression of circDDX17 occurred in TCGA PCa samples. Furthermore, circDDX17 expression was downregulated significantly in PCa. These results suggested that circDDX17 suppressed PC cell mobility, proliferation, and invasion. Mechanistic experiments indicated that circDDX17 might serve as a ceRNA of miR-346 to relieve repressive effects of miR-346 upon phospholysine phosphohistidine inorganic pyrophosphate phosphatase (LHPP). LHPP expression itself was downregulated in TCGA PCa samples. Overall, our findings indicated that the circDDX17/miR-346/LHPP pathway inhibited the progression of prostate cancer and that circDDX17 may be a new potential therapeutic or diagnostic target for treating and diagnosing prostate cancer. As our study also demonstrated for the first time that LHPP might act as an anticancer gene in prostate cancer, the findings could have wide-ranging implications for the treatment of this affliction.
Collapse
|
21
|
Li L, Zhang Q, Lian K. Circular RNA circ_0000284 plays an oncogenic role in the progression of non-small cell lung cancer through the miR-377-3p-mediated PD-L1 promotion. Cancer Cell Int 2020; 20:247. [PMID: 32550825 PMCID: PMC7298744 DOI: 10.1186/s12935-020-01310-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 05/30/2020] [Indexed: 12/24/2022] Open
Abstract
Background Circular RNAs (circRNAs), a subgroup of non-coding RNAs, are recognized as pivotal mediators in various types of cancers. CircRNA_0000284 (circ_0000284) was manifested to participate in the development of non-small cell lung cancer (NSCLC). The novel functional mechanism of circ_0000284 in NSCLC was investigated in our current study. Methods We exploited quantitative real-time polymerase chain reaction (qRT-PCR) to analyze the relative RNA (circRNA, miRNA and mRNA) expression. The assessment of cell proliferation and colony formation was executed by Cell Counting Kit-8 (CCK-8) and colony formation assay, respectively. Transwell assay was implemented to examine cell migration and invasion. All protein levels were assayed using western blot. The role of circ_0000284 in vivo was evaluated via xenograft model. The target relation was estimated by dual-luciferase reporter and RNA immunoprecipitation (RIP) assays. Results As for the biological characterization, circ_0000284 was highly stable and localized in the cytoplasm. Circ_0000284 was up-regulated in NSCLC and could predict poor prognosis of NSCLC patients. Both in vitro and in vivo, down-regulation of circ_0000284 refrained tumorigenesis of NSCLC. Besides, microRNA-377-3p (miR-377-3p) was a miRNA target of circ_0000284, and targeted programmed death-ligand 1 (PD-L1). Circ_0000284 was a cancer-promoting circRNA in NSCLC via regulating the miR-377-3p/PD-L1 axis. Conclusion Thus, our results unraveled that circ_0000284 facilitated the progression of NSCLC by up-regulating the PD-L1 expression as a competing endogenous RNA (ceRNA) of miR-377, possibly developing a different perspective in understanding the molecular pathogenesis of NSCLC.
Collapse
Affiliation(s)
- Li Li
- Medical Oncology Dept.3, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, No. 99 Longcheng Street, Taiyuan, Shanxi China
| | - Qiaohua Zhang
- Medical Oncology Dept.3, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, No. 99 Longcheng Street, Taiyuan, Shanxi China
| | - Ke Lian
- Medical Oncology Dept.3, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, No. 99 Longcheng Street, Taiyuan, Shanxi China
| |
Collapse
|
22
|
Dong Z, Luo M, Wang L, Yin H, Zhu W, Fu J. MicroRNA-206 Regulation of Skin Pigmentation in Koi Carp ( Cyprinus carpio L.). Front Genet 2020; 11:47. [PMID: 32117457 PMCID: PMC7029398 DOI: 10.3389/fgene.2020.00047] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 01/15/2020] [Indexed: 01/15/2023] Open
Abstract
MicroRNAs (miRNAs) are ∼22 nucleotide non-coding RNA molecules that act as crucial roles in plenty of biological processes. However, the molecular and cellular mechanisms of miRNAs to regulate skin color differentiation and pigmentation in fish have not been fully understood. Herein, we revealed that miR-206, a skin-enriched miRNA, regulates melanocortin 1 receptor (Mc1r, a key regulator of melanogenesis) expression by binding to its 3'-untranslated (UTR) region through bioinformatics and luciferase reporter assay in koi carp (Cyprinus carpio L.). The analysis of spatial and temporal expression patterns suggested that miR-206 is a potential regulator in the skin pigmentation process. Then, we silenced it in vivo with an antagomir method. The result showed a substantial increase of Mc1r mRNA expression and protein level, and also its downstream genes: tyrosinase (Tyr) and dopachrome tautomerase (Dct) that encoding key enzymes involved in melanin synthesis. Moreover, we constructed the miRNA-206 sponge lentivirus vector to transfect koi carp melanocytes in vitro, further checked the functions of melanocytes using Cck-8 and Transwell assays. As a result, inhibition of miR-206 significantly up-regulated Mc1r mRNA expression and protein level and accelerated the melanocyte proliferation and migration ability compared with the scrambled-sequence negative control group (miR-NC). Overall, these findings provide the evidence that miR-206 plays a regulatory role in the skin color pigmentation through targeting the Mc1r gene and would facilitate understanding the molecular regulatory mechanisms underlying miRNA-mediated skin color pigmentation in koi carp.
Collapse
Affiliation(s)
- Zaijie Dong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Ministry of Agriculture and Rural Affairs, Jiangsu, China.,Wuxi Fisheries College, Nanjing Agricultural University, Jiangsu, China
| | - Mingkun Luo
- Wuxi Fisheries College, Nanjing Agricultural University, Jiangsu, China
| | - Lanmei Wang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Ministry of Agriculture and Rural Affairs, Jiangsu, China
| | - Haoran Yin
- Wuxi Fisheries College, Nanjing Agricultural University, Jiangsu, China
| | - Wenbin Zhu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Ministry of Agriculture and Rural Affairs, Jiangsu, China
| | - Jianjun Fu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Ministry of Agriculture and Rural Affairs, Jiangsu, China
| |
Collapse
|
23
|
LncRNA-241 inhibits 1,2-Dichloroethane-induced hepatic apoptosis. Toxicol In Vitro 2019; 61:104650. [DOI: 10.1016/j.tiv.2019.104650] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 09/09/2019] [Accepted: 09/10/2019] [Indexed: 01/21/2023]
|
24
|
miR-124 and Parkinson's disease: A biomarker with therapeutic potential. Pharmacol Res 2019; 150:104515. [PMID: 31707035 DOI: 10.1016/j.phrs.2019.104515] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/20/2019] [Accepted: 10/28/2019] [Indexed: 02/07/2023]
Abstract
Parkinson's disease (PD) is a multifactorial disorder, attributed to a complex interplay between genetic and epigenetic factors. Although the exact etiology of the disease remains elusive, dysregulation of signaling pathways implicated in cell survival, apoptosis, protein aggregation, mitochondrial dysfunction, autophagy, oxidative damage and neuroinflammation, contributes to its pathogenesis. MicroRNAs (miRs) are endogenous short non-coding RNA molecules that negatively regulate gene expression at a post-transcriptional level. MiR-124 is one of the most abundantly expressed miRs in the brain that participates in neurogenesis, synapse morphology, neurotransmission, inflammation, autophagy and mitochondrial function. Accumulating pre-clinical evidence shows that miR-124 may act through calpain 1/p25/cyclin-dependent kinases 5 (CDK5), nuclear factor-kappa B (NF-κB), signal transducer and activator of transcription 3 (STAT3), Bcl-2-interacting mediator of cell death (Bim), 5' adenosine monophosphate-activated protein kinase (AMPK) and extracellular signal-regulated kinase (ERK)-mediated pathways to regulate cell survival, apoptosis, autophagy, mitochondrial dysfunction, oxidative damage and neuroinflammation in PD. Moreover, clinical evidence indicates that reduced plasma miR-124 levels may serve as a potential diagnostic biomarker in PD. This review provides an update of the pathogenic implication of miR-124 activity in PD and discusses its targeting potential for the development of future therapeutic strategies.
Collapse
|
25
|
Xue YB, Ding MQ, Xue L, Luo JH. CircAGFG1 sponges miR-203 to promote EMT and metastasis of non-small-cell lung cancer by upregulating ZNF281 expression. Thorac Cancer 2019; 10:1692-1701. [PMID: 31243884 PMCID: PMC6669801 DOI: 10.1111/1759-7714.13131] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/07/2019] [Accepted: 06/08/2019] [Indexed: 01/17/2023] Open
Abstract
The circRNA circAGFG1 is reported to be important in triple-negative breast cancer progression. However, the mechanism of circAGFG1 in non-small-cell lung cancer (NSCLC) remains unknown. In this study, expression of circAGFG1 was determined by real-time PCR in 20 pairs of NSCLC tissues and adjacent tissues. Next, functional experiments with circAGFG1 were performed in vitro to evaluate the role of circAGFG1 in tumor metastasis and growth. Meanwhile, a dual luciferase reporter assay, RNA pull-down and RNA immunoprecipitation experiments were used to explore the interaction between circAGFG1 and miR-203. Our results revealed that expression levels of circAGFG1 and miR-203 are upregulated in non-small-cell lung cancer tissues. CircAGFG1 enhances NSCLC cell proliferation, invasion, migration and epithelial-mesenchymal transition in vitro. Mechanistic analyses indicated that circAGFG1 acts as a sponge for miR-203 to repress the effect of miR-203 on its target, ZNF281. In conclusion, our study suggests that circAGFG1 promotes NSCLC growth and metastasis though a circAGFG1/miR-203/ZNF281 axis and may represent a novel therapeutic target.
Collapse
Affiliation(s)
- Yi-Bo Xue
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Meng-Qi Ding
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lei Xue
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jin-Hua Luo
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
26
|
Gao W, Weng T, Wang L, Shi B, Meng W, Wang X, Wu Y, Jin L, Fei L. Long non‑coding RNA NORAD promotes cell proliferation and glycolysis in non‑small cell lung cancer by acting as a sponge for miR‑136‑5p. Mol Med Rep 2019; 19:5397-5405. [PMID: 31059060 PMCID: PMC6522956 DOI: 10.3892/mmr.2019.10210] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 03/14/2019] [Indexed: 02/06/2023] Open
Abstract
NORAD (non-coding RNA activated by DNA damage) is a long non-coding RNA (lncRNA) that is upregulated and promotes cell progression in various human types of cancer; however, its function in non-small cell lung cancer (NSCLC) remains unclear. The present study investigated the regulatory function and underlying mechanisms of NORAD in NSCLC. NORAD and miR-136-5p expression were assessed by reverse transcription-quantitative polymerase chain reaction, and proliferation and glycolysis-associated markers were also assessed. Direct miR-136-5p regulation by NORAD was detected using luciferase reporter assay and RNA immunoprecipitation. NORAD was highly expressed in NSCLC tissues and cell lines. NORAD overexpression increased NSCLC proliferation and glycolysis. Further investigation revealed that NORAD serves as a competing endogenous RNA for miR-136-5p. Gain- and loss-of-function experiments confirmed that miR-136-5p reversed the promoting effects of NORAD in NSCLC. Results of the present study indicate that NORAD serves as a growth-promoting lncRNA in NSCLC by suppressing the function of miR-136-5p. NORAD and miR-136-5p interaction may provide a potential target for NSCLC treatment.
Collapse
Affiliation(s)
- Wei Gao
- Department of Respiratory Medicine, Suqian People's Hospital of Nanjing Drum Tower Hospital Group, Suqian, Jiangsu 223800, P.R. China
| | - Ting Weng
- Department of Respiratory Medicine, Suqian People's Hospital of Nanjing Drum Tower Hospital Group, Suqian, Jiangsu 223800, P.R. China
| | - Lifang Wang
- Department of Respiratory Medicine, Suqian People's Hospital of Nanjing Drum Tower Hospital Group, Suqian, Jiangsu 223800, P.R. China
| | - Bin Shi
- Department of Respiratory Medicine, Suqian People's Hospital of Nanjing Drum Tower Hospital Group, Suqian, Jiangsu 223800, P.R. China
| | - Wenshu Meng
- Department of Respiratory Medicine, Suqian People's Hospital of Nanjing Drum Tower Hospital Group, Suqian, Jiangsu 223800, P.R. China
| | - Xiaoyu Wang
- Department of Respiratory Medicine, Suqian People's Hospital of Nanjing Drum Tower Hospital Group, Suqian, Jiangsu 223800, P.R. China
| | - Ying Wu
- Department of Respiratory Medicine, Suqian People's Hospital of Nanjing Drum Tower Hospital Group, Suqian, Jiangsu 223800, P.R. China
| | - Liang Jin
- Department of Respiratory Medicine, Suqian People's Hospital of Nanjing Drum Tower Hospital Group, Suqian, Jiangsu 223800, P.R. China
| | - Lijuan Fei
- Department of Respiratory Medicine, Suqian People's Hospital of Nanjing Drum Tower Hospital Group, Suqian, Jiangsu 223800, P.R. China
| |
Collapse
|
27
|
RIP-Chip analysis supports different roles for AGO2 and GW182 proteins in recruiting and processing microRNA targets. BMC Bioinformatics 2019; 20:120. [PMID: 30999843 PMCID: PMC6471694 DOI: 10.1186/s12859-019-2683-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background MicroRNAs (miRNAs) are small non-coding RNA molecules mediating the translational repression and degradation of target mRNAs in the cell. Mature miRNAs are used as a template by the RNA-induced silencing complex (RISC) to recognize the complementary mRNAs to be regulated. To discern further RISC functions, we analyzed the activities of two RISC proteins, AGO2 and GW182, in the MCF-7 human breast cancer cell line. Methods We performed three RIP-Chip experiments using either anti-AGO2 or anti-GW182 antibodies and compiled a data set made up of the miRNA and mRNA expression profiles of three samples for each experiment. Specifically, we analyzed the input sample, the immunoprecipitated fraction and the unbound sample resulting from the RIP experiment. We used the expression profile of the input sample to compute several variables, using formulae capable of integrating the information on miRNA binding sites, both in the 3’UTR and coding regions, with miRNA and mRNA expression level profiles. We compared immunoprecipitated vs unbound samples to determine the enriched or underrepresented genes in the immunoprecipitated fractions, independently for AGO2 and GW182 related samples. Results For each of the two proteins, we trained and tested several support vector machine algorithms capable of distinguishing the enriched from the underrepresented genes that were experimentally detected. The most efficient algorithm for distinguishing the enriched genes in AGO2 immunoprecipitated samples was trained by using variables involving the number of binding sites in both the 3’UTR and coding region, integrated with the miRNA expression profile, as expected for miRNA targets. On the other hand, we found that the best variable for distinguishing the enriched genes in the GW182 immunoprecipitated samples was the length of the coding region. Conclusions Due to the major role of GW182 in GW/P-bodies, our data suggests that the AGO2-GW182 RISC recruits genes based on miRNA binding sites in the 3’UTR and coding region, but only the longer mRNAs probably remain sequestered in GW/P-bodies, functioning as a repository for translationally silenced RNAs. Electronic supplementary material The online version of this article (10.1186/s12859-019-2683-y) contains supplementary material, which is available to authorized users.
Collapse
|
28
|
Wang H, Sha L, Huang L, Yang S, Zhou Q, Luo X, Shi B. LINC00261 functions as a competing endogenous RNA to regulate BCL2L11 expression by sponging miR-132-3p in endometriosis. Am J Transl Res 2019; 11:2269-2279. [PMID: 31105834 PMCID: PMC6511796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 01/31/2019] [Indexed: 06/09/2023]
Abstract
Endometriosis is a benign disease but manifests with malignant features and limited treatment options. Women with endometriosis should not be ignored or patronized by the medical profession and society. In this regard, a major cultural change and searching for the optimum therapeutic regimen from multiple perspectives is needed in China even in the whole world. Long non-coding RNAs are crucial for various human diseases while its potential functions and mechanisms are largely unknown in endometriosis. LINC00261 was significantly downregulated in endometriosis tissues and our study indicated that it suppresses proliferation and invasion of endometriosis cells functionally in vitro. Insights of the mechanism of competitive endogenous RNAs were obtained from bioinformatic analysis, RIP, RNA pull-down and luciferase assays, which further confirmed that LINC00261 functions as a molecular sponge to regulate BCL2L11 expression by binding to miR-132-3p directly. These data defined LINC00261/miR-132-3p/BCL2L11 regulatory networks may be a novel therapeutic target for endometriosis.
Collapse
Affiliation(s)
- Hanchu Wang
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Wenzhou Medical UniversityWenzhou, China
| | - Lixiao Sha
- Department of Obstetrics and Gynecology, Wenzhou People’s HospitalWenzhou, China
| | - Lingxiao Huang
- Department of Obstetrics and Gynecology, Wenzhou People’s HospitalWenzhou, China
| | - Simeng Yang
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Wenzhou Medical UniversityWenzhou, China
| | - Qiangyong Zhou
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Wenzhou Medical UniversityWenzhou, China
| | - Xishao Luo
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Wenzhou Medical UniversityWenzhou, China
| | - Beibei Shi
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Wenzhou Medical UniversityWenzhou, China
| |
Collapse
|
29
|
Wu M, Wu W, Ding J, Yang J. LINC01433/miR-2116-3p/MYC Feedback Loop Promotes Cell Proliferation, Migration, and the Epithelial-Mesenchymal Transition in Breast Cancer. Cancer Biother Radiopharm 2019; 34:388-397. [PMID: 30939038 DOI: 10.1089/cbr.2019.2772] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Background: It is reported that long noncoding RNAs play an important role in human cancers, including breast cancer (BC). However, the effect of long intergenic non-protein coding RNA 1433 (LINC01433) on BC development remains elusive. Materials and Methods: The expression level of LINC01433 in BC cells and a normal breast epithelial cell (MCF-10A) was determined by quantitative real-time polymerase chain reaction (qRT-PCR). A series of functional assays was applied to measure the bio-function of LINC01433 in BC. Bioinformatics analysis and mechanistic assays were utilized to disclose the underlying mechanism involved in the LINC01433-mediated BC cellular process. Results: qRT-PCR revealed that LINC01433 was highly expressed in BC cells. In function, LINC01433 depletion suppressed BC cell proliferation, migration, and epithelial-mesenchymal transition, but induced cell apoptosis. Mechanically, chromatin immunoprecipitation and luciferase reporter assays suggested that LINC01433 was activated by its upstream transcription factor MYC proto-oncogene (MYC). The interaction between LINC01433 and miR-2116-3p was verified in BC. Additionally, MYC was validated as a target gene of miR-2116-3p. Rescue assays demonstrated that LINC01433 promoted BC cellular process via regulating miR-2116-3p/MYC axis. Conclusion: Our findings revealed a novel positive feedback loop (LINC01433/miR-2116-3p/MYC) in BC progression and discovered the novel functional genes in this BC cellular process.
Collapse
Affiliation(s)
- Minhua Wu
- Department of Thyroid and Breast, Ningbo Medical Center Lihuili Eastern Hospital/Taipei Medical University Ningbo Medical Center, Ningbo, China
| | - Weizhu Wu
- Department of Thyroid and Breast, Ningbo Medical Center Lihuili Eastern Hospital/Taipei Medical University Ningbo Medical Center, Ningbo, China
| | - Jinhua Ding
- Department of Thyroid and Breast, Ningbo Medical Center Lihuili Eastern Hospital/Taipei Medical University Ningbo Medical Center, Ningbo, China
| | - Jiahui Yang
- Department of Thyroid and Breast, Ningbo Medical Center Lihuili Eastern Hospital/Taipei Medical University Ningbo Medical Center, Ningbo, China
| |
Collapse
|
30
|
Li J, Zhang Y. Current experimental strategies for intracellular target identification of microRNA. ACTA ACUST UNITED AC 2019. [DOI: 10.1186/s41544-018-0002-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
31
|
Provost P. Platelet MicroRNAs. Platelets 2019. [DOI: 10.1016/b978-0-12-813456-6.00006-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
32
|
Shaw TA, Singaravelu R, Powdrill MH, Nhan J, Ahmed N, Özcelik D, Pezacki JP. MicroRNA-124 Regulates Fatty Acid and Triglyceride Homeostasis. iScience 2018; 10:149-157. [PMID: 30528902 PMCID: PMC6282456 DOI: 10.1016/j.isci.2018.11.028] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 10/01/2018] [Accepted: 11/15/2018] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs) are part of a complex regulatory network that modulates cellular lipid metabolism. Here, we identify miR-124 as a regulator of triglyceride (TG) metabolism. This study advances our knowledge of the role of miR-124 in human hepatoma cells. Transcriptional profiling of Huh7.5 cells overexpressing miR-124 reveals enrichment for host factors involved in fatty acid oxidation among repressed miRNA targets. In addition, miR-124 down-regulates arylacetamide deacetylase (AADAC) and adipose triglyceride lipase, lipases proposed to mediate breakdown of hepatic TG stores for lipoprotein assembly and mitochondrial β-oxidation. Consistent with the inhibition of TG and fatty acid catabolism, miR-124 expression promotes cellular TG accumulation. Interestingly, miR-124 inhibits the production of hepatitis C virus, a virus that hijacks lipid pathways during its life cycle. Antiviral activity of miR-124 is consistent with repression of AADAC, a pro-viral host factor. Overall, our data highlight miR-124 as a novel regulator of TG metabolism in human hepatoma cells. miR-124 regulates triglyceride and fatty acid metabolism miR-124 represses genes associated with fatty acid and triglyceride breakdown miR-124 promotes triglyceride accumulation in hepatoma cells
Collapse
Affiliation(s)
- Tyler A Shaw
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Canada
| | - Ragunath Singaravelu
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Canada
| | - Megan H Powdrill
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Canada
| | - Jordan Nhan
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Canada
| | - Nadine Ahmed
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Canada
| | - Dennis Özcelik
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Canada
| | - John Paul Pezacki
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada.
| |
Collapse
|
33
|
Regulating gene expression in animals through RNA endonucleolytic cleavage. Heliyon 2018; 4:e00908. [PMID: 30426105 PMCID: PMC6223193 DOI: 10.1016/j.heliyon.2018.e00908] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 10/28/2018] [Accepted: 10/29/2018] [Indexed: 12/22/2022] Open
Abstract
The expression of any gene must be precisely controlled for appropriate function. This expression can be controlled at various levels. This includes epigenetic regulation through DNA methylation or histone modifications. At the posttranscriptional level, regulation can be via alternative splicing or controlling messenger RNA (mRNA) stability. RNA cleavage is one way to control mRNA stability. For example, microRNA (miRNA)-induced mRNA cleavage has long been recognised in plants. RNA cleavage also appears to be widespread in other kingdoms of life, and it is now clear that mRNA cleavage plays critical functions in animals. Although miRNA-induced mRNA cleavage can occur in animals, it is not a widespread mechanism. Instead, mRNA cleavage can be induced by a range of other mechanisms, including by endogenous short inhibitory RNAs (endo-siRNAs), as well as the Ribonuclease III (RNase III) enzymes Drosha and Dicer. In addition, RNA cleavage induced by endo-siRNAs and PIWI-interacting RNAs (piRNAs) is important for genome defence against transposons. Moreover, several RNase has been identified as important antiviral mediators. In this review, we will discuss these various RNA endonucleolytic cleavage mechanisms utilised by animals to regulate the expression of genes and as a defence against retrotransposons and viral infection.
Collapse
|
34
|
Dong B, Zhou B, Sun Z, Huang S, Han L, Nie H, Chen G, Liu S, Zhang Y, Bao N, Yang X, Feng H. LncRNA-FENDRR mediates VEGFA to promote the apoptosis of brain microvascular endothelial cells via regulating miR-126 in mice with hypertensive intracerebral hemorrhage. Microcirculation 2018; 25:e12499. [PMID: 30120860 DOI: 10.1111/micc.12499] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 06/11/2018] [Accepted: 08/13/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND LncRNA-FENDRR is a kind of endothelial genes critical for vascular development. Moreover, miR-126 and vascular endothelial growth factor A (VEGFA) are also involved in the physiological process of vascular endothelial cells. This study aimed to the underlying mechanism of FENDRR involving miR-126 and VEGFA in hypertensive intracerebral hemorrhage (HICH). METHODS C57BL/6 mice were chosen to establish HICH model. The expression of FENDRR, miR-126, and VEGFA at mRNA level was determined by qRT-PCR. The protein expression of VEGFA was assessed using Western blot. RIP assay and RNA pull-down assay were used to the relationship between FENDRR and miR-126. Flow cytometry was used to analyze cell apoptosis. RESULTS The levels of FENDRR and VEGFA were increased, and miR-126 expression was decreased in vascular endothelial cells (VECs) from the right brain of model mice and human brain microvascular endothelial cells (HBMECs) treated by thrombin. Overexpression of FENDRR promoted the apoptosis of HBMECs. FENDRR regulating VEGFA participated in HBMECs apoptosis through targeting miR-126. Downregulation of FENDRR was indicated to relieve the HICH in mice. CONCLUSIONS FENDRR could promote the apoptosis of HBMECs via miR-126 regulating VEGFA in HICH.
Collapse
Affiliation(s)
- Baizhuo Dong
- Department of Neurosurgery, The Fourth Affiliated Hospital of Baotou Medical College, Baotou Eighth Hospital, Baotou, China
| | - Bin Zhou
- Department of Neurosurgery, The Fourth Affiliated Hospital of Baotou Medical College, Baotou Eighth Hospital, Baotou, China
| | - Zhigang Sun
- Department of Neurosurgery, The Fourth Affiliated Hospital of Baotou Medical College, Baotou Eighth Hospital, Baotou, China
| | - Shengming Huang
- Department of Neurosurgery, The Fourth Affiliated Hospital of Baotou Medical College, Baotou Eighth Hospital, Baotou, China
| | - Liang Han
- Department of Neurosurgery, The Fourth Affiliated Hospital of Baotou Medical College, Baotou Eighth Hospital, Baotou, China
| | - Honghua Nie
- Department of Neurosurgery, The Fourth Affiliated Hospital of Baotou Medical College, Baotou Eighth Hospital, Baotou, China
| | - Guohui Chen
- Department of Neurosurgery, The Fourth Affiliated Hospital of Baotou Medical College, Baotou Eighth Hospital, Baotou, China
| | - Shibing Liu
- Department of Neurosurgery, The Fourth Affiliated Hospital of Baotou Medical College, Baotou Eighth Hospital, Baotou, China
| | - Yanna Zhang
- Department of Neurosurgery, The Fourth Affiliated Hospital of Baotou Medical College, Baotou Eighth Hospital, Baotou, China
| | - Ning Bao
- Department of Neurosurgery, The Fourth Affiliated Hospital of Baotou Medical College, Baotou Eighth Hospital, Baotou, China
| | - Xiaolong Yang
- Department of Neurosurgery, The Fourth Affiliated Hospital of Baotou Medical College, Baotou Eighth Hospital, Baotou, China
| | - Hongwei Feng
- Department of Neurosurgery, The Fourth Affiliated Hospital of Baotou Medical College, Baotou Eighth Hospital, Baotou, China
| |
Collapse
|
35
|
Quévillon Huberdeau M, Simard MJ. A guide to microRNA‐mediated gene silencing. FEBS J 2018; 286:642-652. [DOI: 10.1111/febs.14666] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/23/2018] [Accepted: 09/25/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Miguel Quévillon Huberdeau
- Oncology division (St‐Patrick Research Group in Basic Oncology) CHU de Québec‐Université Laval Research Center Quebec City Canada
- Laval University Cancer Research Centre Quebec City Canada
| | - Martin J. Simard
- Oncology division (St‐Patrick Research Group in Basic Oncology) CHU de Québec‐Université Laval Research Center Quebec City Canada
- Laval University Cancer Research Centre Quebec City Canada
| |
Collapse
|
36
|
Liu Q, Yu W, Zhu S, Cheng K, Xu H, Lv Y, Long X, Ma L, Huang J, Sun S, Wang K. Long noncoding RNA GAS5 regulates the proliferation, migration, and invasion of glioma cells by negatively regulating miR‐18a‐5p. J Cell Physiol 2018; 234:757-768. [DOI: 10.1002/jcp.26889] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 05/31/2018] [Indexed: 01/19/2023]
Affiliation(s)
- Qian Liu
- Department of Anatomy Institute of Neuroscience, Chongqing Medical University Chongqing China
| | - Wei Yu
- Department of Anatomy Institute of Neuroscience, Chongqing Medical University Chongqing China
| | - Shujuan Zhu
- Department of Anatomy Institute of Neuroscience, Chongqing Medical University Chongqing China
| | - Ke Cheng
- Department of Anatomy Institute of Neuroscience, Chongqing Medical University Chongqing China
| | - Hong Xu
- Department of Epidemiology School of Public Health and Management, Chongqing Medical University Chongqing China
| | - Yalan Lv
- Department of Medical Information Management and Decision Making School of Medical Informatics, Chongqing Medical University Chongqing China
| | - Xuan Long
- Department of Orthopedics Renmin Hospital of Wuhan University Wuhan China
| | - Lan Ma
- Department of Anatomy Institute of Neuroscience, Chongqing Medical University Chongqing China
| | - Juan Huang
- Department of Anatomy Institute of Neuroscience, Chongqing Medical University Chongqing China
| | - Shanquan Sun
- Department of Anatomy Institute of Neuroscience, Chongqing Medical University Chongqing China
| | - Kejian Wang
- Department of Anatomy Institute of Neuroscience, Chongqing Medical University Chongqing China
| |
Collapse
|
37
|
Nuclear Transcription Factor Kappa B (NF-кB) and Molecular Damage Mechanisms in Acute Cardiovascular Diseases. A Review. JOURNAL OF CARDIOVASCULAR EMERGENCIES 2018. [DOI: 10.2478/jce-2018-0008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Abstract
Worldwide, cardiovascular diseases (CVDs) represent one of the main causes of morbidity and mortality, and acute coronary syndromes are responsible for a large number of sudden cardiac deaths. One of the main challenges that still exist in this area is represented by the early detection and targeted monitoring of the pathophysiology involved in CVDs. During the last couple of years, researchers have highlighted the importance of molecular and epigenetic mechanisms involved in the initiation and augmentation of CVDs, culminating in their most severe form represented by acute myocardial infarction. One of the most studied molecular factors involved in this type of pathology is represented by nuclear transcription factor kappa B (NF-κB), as well as the involvement of microRNAs (miRNAs). It has been suggested that miRNAs can also be involved in the complex process of atheromatous plaque vulnerabilization that leads to an acute cardiac event. In this review paper, we describe the most important molecular mechanisms involved in the pathogenesis of CVDs and atheromatous plaque progression and vulnerabilization, which include molecular mechanisms dependent on NF-κB. For this paper, we used international databases (PubMed and Scopus). The keywords used for the search were “miRNAs biomarkers”, “miRNAs in cardiovascular disease”, “NF-κB in cardiovascular disease”, “molecular mechanism in cardiovascular disease”, and “myocardial NF-κB mechanisms”. Numerous molecular reactions that have NF-κB as a trigger are involved in the pathogenesis of CVDs. Moreover, miRNAs play an important role in initiating and aggravating certain segments of CVDs. Therefore, miRNAs can be used as biomarkers for early evaluation of CVDs. Furthermore, in the future, miRNAs could be used as a targeted molecular therapy in order to block certain mechanisms responsible for inducing CVDs and leading to acute cardiovascular events.
Collapse
|
38
|
Ho PY, Duan Z, Batra N, Jilek JL, Tu MJ, Qiu JX, Hu Z, Wun T, Lara PN, DeVere White RW, Chen HW, Yu AM. Bioengineered Noncoding RNAs Selectively Change Cellular miRNome Profiles for Cancer Therapy. J Pharmacol Exp Ther 2018; 365:494-506. [PMID: 29602831 PMCID: PMC5931433 DOI: 10.1124/jpet.118.247775] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 03/28/2018] [Indexed: 12/16/2022] Open
Abstract
Noncoding RNAs (ncRNAs) produced in live cells may better reflect intracellular ncRNAs for research and therapy. Attempts were made to produce biologic ncRNAs, but at low yield or success rate. Here we first report a new ncRNA bioengineering technology using more stable ncRNA carrier (nCAR) containing a pre-miR-34a derivative identified by rational design and experimental validation. This approach offered a remarkable higher level expression (40%-80% of total RNAs) of recombinant ncRNAs in bacteria and gave an 80% success rate (33 of 42 ncRNAs). New FPLC and spin-column based methods were also developed for large- and small-scale purification of milligrams and micrograms of recombinant ncRNAs from half liter and milliliters of bacterial culture, respectively. We then used two bioengineered nCAR/miRNAs to demonstrate the selective release of target miRNAs into human cells, which were revealed to be Dicer dependent (miR-34a-5p) or independent (miR-124a-3p), and subsequent changes of miRNome and transcriptome profiles. miRNA enrichment analyses of altered transcriptome confirmed the specificity of nCAR/miRNAs in target gene regulation. Furthermore, nCAR assembled miR-34a-5p and miR-124-3p were active in suppressing human lung carcinoma cell proliferation through modulation of target gene expression (e.g., cMET and CDK6 for miR-34a-5p; STAT3 and ABCC4 for miR-124-3p). In addition, bioengineered miRNA molecules were effective in controlling metastatic lung xenograft progression, as demonstrated by live animal and ex vivo lung tissue bioluminescent imaging as well as histopathological examination. This novel ncRNA bioengineering platform can be easily adapted to produce various ncRNA molecules, and biologic ncRNAs hold the promise as new cancer therapeutics.
Collapse
Affiliation(s)
- Pui Yan Ho
- Department of Biochemistry and Molecular Medicine (P.Y.H., Z.D., N.B., J.L.J., M.-J.T., H.-W.C., A.-M.Y.), Division of Hematology Oncology (T.W.), Department of Internal Medicine (P.N.L.), and Department of Urology (R.W.D.W.), UC Davis School of Medicine, Sacramento, California; Department of Pathology, Roswell Park Cancer Institute, Buffalo, New York (J.-X.Q.); and Center for Computational Research, New York State Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, New York (Z.H.)
| | - Zhijian Duan
- Department of Biochemistry and Molecular Medicine (P.Y.H., Z.D., N.B., J.L.J., M.-J.T., H.-W.C., A.-M.Y.), Division of Hematology Oncology (T.W.), Department of Internal Medicine (P.N.L.), and Department of Urology (R.W.D.W.), UC Davis School of Medicine, Sacramento, California; Department of Pathology, Roswell Park Cancer Institute, Buffalo, New York (J.-X.Q.); and Center for Computational Research, New York State Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, New York (Z.H.)
| | - Neelu Batra
- Department of Biochemistry and Molecular Medicine (P.Y.H., Z.D., N.B., J.L.J., M.-J.T., H.-W.C., A.-M.Y.), Division of Hematology Oncology (T.W.), Department of Internal Medicine (P.N.L.), and Department of Urology (R.W.D.W.), UC Davis School of Medicine, Sacramento, California; Department of Pathology, Roswell Park Cancer Institute, Buffalo, New York (J.-X.Q.); and Center for Computational Research, New York State Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, New York (Z.H.)
| | - Joseph L Jilek
- Department of Biochemistry and Molecular Medicine (P.Y.H., Z.D., N.B., J.L.J., M.-J.T., H.-W.C., A.-M.Y.), Division of Hematology Oncology (T.W.), Department of Internal Medicine (P.N.L.), and Department of Urology (R.W.D.W.), UC Davis School of Medicine, Sacramento, California; Department of Pathology, Roswell Park Cancer Institute, Buffalo, New York (J.-X.Q.); and Center for Computational Research, New York State Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, New York (Z.H.)
| | - Mei-Juan Tu
- Department of Biochemistry and Molecular Medicine (P.Y.H., Z.D., N.B., J.L.J., M.-J.T., H.-W.C., A.-M.Y.), Division of Hematology Oncology (T.W.), Department of Internal Medicine (P.N.L.), and Department of Urology (R.W.D.W.), UC Davis School of Medicine, Sacramento, California; Department of Pathology, Roswell Park Cancer Institute, Buffalo, New York (J.-X.Q.); and Center for Computational Research, New York State Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, New York (Z.H.)
| | - Jing-Xin Qiu
- Department of Biochemistry and Molecular Medicine (P.Y.H., Z.D., N.B., J.L.J., M.-J.T., H.-W.C., A.-M.Y.), Division of Hematology Oncology (T.W.), Department of Internal Medicine (P.N.L.), and Department of Urology (R.W.D.W.), UC Davis School of Medicine, Sacramento, California; Department of Pathology, Roswell Park Cancer Institute, Buffalo, New York (J.-X.Q.); and Center for Computational Research, New York State Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, New York (Z.H.)
| | - Zihua Hu
- Department of Biochemistry and Molecular Medicine (P.Y.H., Z.D., N.B., J.L.J., M.-J.T., H.-W.C., A.-M.Y.), Division of Hematology Oncology (T.W.), Department of Internal Medicine (P.N.L.), and Department of Urology (R.W.D.W.), UC Davis School of Medicine, Sacramento, California; Department of Pathology, Roswell Park Cancer Institute, Buffalo, New York (J.-X.Q.); and Center for Computational Research, New York State Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, New York (Z.H.)
| | - Theodore Wun
- Department of Biochemistry and Molecular Medicine (P.Y.H., Z.D., N.B., J.L.J., M.-J.T., H.-W.C., A.-M.Y.), Division of Hematology Oncology (T.W.), Department of Internal Medicine (P.N.L.), and Department of Urology (R.W.D.W.), UC Davis School of Medicine, Sacramento, California; Department of Pathology, Roswell Park Cancer Institute, Buffalo, New York (J.-X.Q.); and Center for Computational Research, New York State Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, New York (Z.H.)
| | - Primo N Lara
- Department of Biochemistry and Molecular Medicine (P.Y.H., Z.D., N.B., J.L.J., M.-J.T., H.-W.C., A.-M.Y.), Division of Hematology Oncology (T.W.), Department of Internal Medicine (P.N.L.), and Department of Urology (R.W.D.W.), UC Davis School of Medicine, Sacramento, California; Department of Pathology, Roswell Park Cancer Institute, Buffalo, New York (J.-X.Q.); and Center for Computational Research, New York State Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, New York (Z.H.)
| | - Ralph W DeVere White
- Department of Biochemistry and Molecular Medicine (P.Y.H., Z.D., N.B., J.L.J., M.-J.T., H.-W.C., A.-M.Y.), Division of Hematology Oncology (T.W.), Department of Internal Medicine (P.N.L.), and Department of Urology (R.W.D.W.), UC Davis School of Medicine, Sacramento, California; Department of Pathology, Roswell Park Cancer Institute, Buffalo, New York (J.-X.Q.); and Center for Computational Research, New York State Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, New York (Z.H.)
| | - Hong-Wu Chen
- Department of Biochemistry and Molecular Medicine (P.Y.H., Z.D., N.B., J.L.J., M.-J.T., H.-W.C., A.-M.Y.), Division of Hematology Oncology (T.W.), Department of Internal Medicine (P.N.L.), and Department of Urology (R.W.D.W.), UC Davis School of Medicine, Sacramento, California; Department of Pathology, Roswell Park Cancer Institute, Buffalo, New York (J.-X.Q.); and Center for Computational Research, New York State Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, New York (Z.H.)
| | - Ai-Ming Yu
- Department of Biochemistry and Molecular Medicine (P.Y.H., Z.D., N.B., J.L.J., M.-J.T., H.-W.C., A.-M.Y.), Division of Hematology Oncology (T.W.), Department of Internal Medicine (P.N.L.), and Department of Urology (R.W.D.W.), UC Davis School of Medicine, Sacramento, California; Department of Pathology, Roswell Park Cancer Institute, Buffalo, New York (J.-X.Q.); and Center for Computational Research, New York State Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, New York (Z.H.)
| |
Collapse
|
39
|
Yan TT, Ren LL, Shen CQ, Wang ZH, Yu YN, Liang Q, Tang JY, Chen YX, Sun DF, Zgodzinski W, Majewski M, Radwan P, Kryczek I, Zhong M, Chen J, Liu Q, Zou W, Chen HY, Hong J, Fang JY. miR-508 Defines the Stem-like/Mesenchymal Subtype in Colorectal Cancer. Cancer Res 2018; 78:1751-1765. [PMID: 29374066 DOI: 10.1158/0008-5472.can-17-2101] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 11/13/2017] [Accepted: 01/23/2018] [Indexed: 11/16/2022]
Abstract
Colorectal cancer includes an invasive stem-like/mesenchymal subtype, but its genetic drivers, functional, and clinical relevance are uncharacterized. Here we report the definition of an altered miRNA signature defining this subtype that includes a major genomic loss of miR-508. Mechanistic investigations showed that this miRNA affected the expression of cadherin CDH1 and the transcription factors ZEB1, SALL4, and BMI1. Loss of miR-508 in colorectal cancer was associated with upregulation of the novel hypoxia-induced long noncoding RNA AK000053. Ectopic expression of miR-508 in colorectal cancer cells blunted epithelial-to-mesenchymal transition (EMT), stemness, migration, and invasive capacity in vitro and in vivo In clinical colorectal cancer specimens, expression of miR-508 negatively correlated with stemness and EMT-associated gene expression and positively correlated with patient survival. Overall, our results showed that miR-508 is a key functional determinant of the stem-like/mesenchymal colorectal cancer subtype and a candidate therapeutic target for its treatment.Significance: These results define a key functional determinant of a stem-like/mesenchymal subtype of colorectal cancers and a candidate therapeutic target for its treatment. Cancer Res; 78(7); 1751-65. ©2018 AACR.
Collapse
Affiliation(s)
- Ting-Ting Yan
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Lin-Lin Ren
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Shandong, China
| | - Chao-Qin Shen
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Zhen-Hua Wang
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Ya-Nan Yu
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Shandong, China
| | - Qian Liang
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Jia-Yin Tang
- Department of Surgery, Renji Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Ying-Xuan Chen
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Dan-Feng Sun
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China
- Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Witold Zgodzinski
- The Second Department of General Surgery, University School of Medicine in Lublin, Lublin, Poland
| | - Marek Majewski
- The Second Department of General Surgery, University School of Medicine in Lublin, Lublin, Poland
| | - Piotr Radwan
- Department of Gastroenterology, Medical University of Lublin, Lublin, Poland
| | - Ilona Kryczek
- Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Ming Zhong
- Department of Surgery, Renji Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Jinxian Chen
- Department of Surgery, Renji Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Qiang Liu
- Department of Pathology, Renji Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Weiping Zou
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Shandong, China.
| | - Hao-Yan Chen
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China.
| | - Jie Hong
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China.
| | - Jing-Yuan Fang
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China.
| |
Collapse
|
40
|
Seok H, Lee H, Jang ES, Chi SW. Evaluation and control of miRNA-like off-target repression for RNA interference. Cell Mol Life Sci 2018; 75:797-814. [PMID: 28905147 PMCID: PMC11105550 DOI: 10.1007/s00018-017-2656-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 09/06/2017] [Accepted: 09/07/2017] [Indexed: 01/08/2023]
Abstract
RNA interference (RNAi) has been widely adopted to repress specific gene expression and is easily achieved by designing small interfering RNAs (siRNAs) with perfect sequence complementarity to the intended target mRNAs. Although siRNAs direct Argonaute (Ago), a core component of the RNA-induced silencing complex (RISC), to recognize and silence target mRNAs, they also inevitably function as microRNAs (miRNAs) and suppress hundreds of off-targets. Such miRNA-like off-target repression is potentially detrimental, resulting in unwanted toxicity and phenotypes. Despite early recognition of the severity of miRNA-like off-target repression, this effect has often been overlooked because of difficulties in recognizing and avoiding off-targets. However, recent advances in genome-wide methods and knowledge of Ago-miRNA target interactions have set the stage for properly evaluating and controlling miRNA-like off-target repression. Here, we describe the intrinsic problems of miRNA-like off-target effects caused by canonical and noncanonical interactions. We particularly focus on various genome-wide approaches and chemical modifications for the evaluation and prevention of off-target repression to facilitate the use of RNAi with secured specificity.
Collapse
Affiliation(s)
- Heeyoung Seok
- Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Korea
| | - Haejeong Lee
- Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Korea
| | - Eun-Sook Jang
- Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Korea
- EncodeGEN Co. Ltd, Seoul, 06329, Korea
| | - Sung Wook Chi
- Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Korea.
| |
Collapse
|
41
|
Ahmed M, Nguyen H, Lai T, Kim DR. miRCancerdb: a database for correlation analysis between microRNA and gene expression in cancer. BMC Res Notes 2018; 11:103. [PMID: 29471873 PMCID: PMC5822626 DOI: 10.1186/s13104-018-3160-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 01/11/2018] [Indexed: 01/21/2023] Open
Abstract
Objectives microRNAs regulate expression of target genes by specifically binding to their transcripts, subsequently leading to translational inhibition or mRNA degradation. Gene regulation by microRNAs has been implicated in a wide range of physiological and pathological conditions. Here, we leverage the use of public-access data and the available genomic annotations to pre-calculate the correlation of the expression of a large number of microRNAs with gene at the mRNA and protein level in the context of cancers. Results Expression data of miRNAs, mRNAs and proteins in cancer patients from The Cancer Genome Atlas along with TargetScan miRNAs-target annotations were used to calculate the expression correlations between miRNAs and features (mRNAs/proteins) in a number of cancer studies. We then packed the output of this analysis into a database and made it available through an interactive web application. The miRCancerdb is an easy-to-use database to investigate the microRNAs-dependent regulation of target genes involved in development of cancer.
Collapse
Affiliation(s)
- Mahmoud Ahmed
- Department of Biochemistry and Convergence Medical Sciences and Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, 527-27, Republic of Korea
| | - Huynh Nguyen
- Department of Biochemistry and Convergence Medical Sciences and Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, 527-27, Republic of Korea
| | - Trang Lai
- Department of Biochemistry and Convergence Medical Sciences and Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, 527-27, Republic of Korea
| | - Deok Ryong Kim
- Department of Biochemistry and Convergence Medical Sciences and Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, 527-27, Republic of Korea.
| |
Collapse
|
42
|
Ankasha SJ, Shafiee MN, Wahab NA, Ali RAR, Mokhtar NM. Post-transcriptional regulation of microRNAs in cancer: From prediction to validation. Oncol Rev 2018; 12:344. [PMID: 29989022 PMCID: PMC6037043 DOI: 10.4081/oncol.2018.344] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 04/01/2018] [Indexed: 12/11/2022] Open
Abstract
MicroRNA (miRNA) is a small non-coding RNA with an established function to regulate genes at the post-transcriptional level leading to suppression or degradation of its messenger RNA expression (mRNA). Its dysregulation plays a vital role in a variety of biological and pathological processes including cancer. A lot of algorithms have been established to predict the target sites of miRNA, but experimentally identifying and validating its target region is still lacking. Guidance in experimental procedures is really needed to find genuine miRNA targets. Therefore, in this review, we provide an outline on the workflow in predicting and validating the targeted sites of miRNA using several methods as a guideline for the scientists. The final outcome of this type of experiment is essential to explore the major impact of miRNAmRNA interaction involved in the biological processes and to assist miRNA-based drug development in the future.
Collapse
Affiliation(s)
| | - Mohamad Nasir Shafiee
- Department of Obstetrics and Gynaecology, Faculty of Medicine, University Kebangsaan
| | | | - Raja Affendi Raja Ali
- Gastroenterology Unit, Department of Medicine, Faculty of Medicine, University Kebangsaan, Malaysia
| | | |
Collapse
|
43
|
Competitive Argonaute-Based RNA Immunoprecipitation for Investigation of Transcriptomic Response to Anti-miR. Methods Mol Biol 2018; 1517:91-102. [PMID: 27924476 DOI: 10.1007/978-1-4939-6563-2_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Identification and validation of microRNA (miRNA) target genes is essential for gaining a better understanding of the many different functions miRNAs have in healthy and diseased cells. From a practical standpoint, validated target genes are also useful for monitoring pharmacological activity of developmental therapeutics that modulate miRNAs, such as anti-miRNA oligonucleotides (anti-miR). Here, we describe a method that uses changes in Argonaute 2-RNA immunoprecipitation in response to competition by anti-miR, titrated ex vivo, as physical evidence for target validation.
Collapse
|
44
|
Burak K, Lamoureux L, Boese A, Majer A, Saba R, Niu Y, Frost K, Booth SA. MicroRNA-16 targets mRNA involved in neurite extension and branching in hippocampal neurons during presymptomatic prion disease. Neurobiol Dis 2017; 112:1-13. [PMID: 29277556 DOI: 10.1016/j.nbd.2017.12.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 11/14/2017] [Accepted: 12/19/2017] [Indexed: 12/21/2022] Open
Abstract
The mechanisms that lead to neuronal death in neurodegenerative diseases are poorly understood. Prion diseases, like many more common disorders such as Alzheimer's and Parkinson's diseases, are characterized by the progressive accumulation of misfolded disease-specific proteins. The earliest changes observed in brain tissue include a reduction in synaptic number and retraction of dendritic spines, followed by reduced length and branching of neurites. These pathologies are observable during presymptomatic stages of disease and are accompanied by altered expression of transcripts that include miRNAs. Here we report that miR-16 localized within hippocampal CA1 neurons is increased during early prion disease. Modulating miR-16 expression in mature murine hippocampal neurons by expression from a lentivirus, thus mimicking the modest increase seen in vivo, was found to induce neurodegeneration. This was characterized by retraction of neurites and reduced branching. We performed immunoprecipitation of the miR-16 enriched RISC complex, and identified associated transcripts from the co-immunoprecipitated RNA (Ago2 RIP-Chip). These transcripts were enriched with predicted binding sites for miR-16, including the validated miR-16 targets APP and BCL2, as well as numerous novel targets. In particular, genes within the neurotrophin receptor mediated MAPK/ERK pathway were potentially regulated by miR-16; including TrkB (NTRK2), MEK1 (MAP2K1) and c-Raf (RAF). Increased miR-16 expression in neurons during presymptomatic prion disease and reduction in proteins involved in MAPK/ERK signaling represents a possible mechanism by which neurite length and branching are decreased during early stages of disease.
Collapse
Affiliation(s)
- Kristyn Burak
- Zoonotic Diseases and Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada; Department of Medical Microbiology and Infectious Diseases, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Lise Lamoureux
- Zoonotic Diseases and Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Amrit Boese
- Zoonotic Diseases and Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada; Department of Medical Microbiology and Infectious Diseases, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Anna Majer
- Zoonotic Diseases and Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada; Department of Medical Microbiology and Infectious Diseases, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Reuben Saba
- Zoonotic Diseases and Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Yulian Niu
- Zoonotic Diseases and Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Kathy Frost
- Zoonotic Diseases and Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Stephanie A Booth
- Zoonotic Diseases and Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada; Department of Medical Microbiology and Infectious Diseases, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
45
|
Werfel S, Leierseder S, Ruprecht B, Kuster B, Engelhardt S. Preferential microRNA targeting revealed by in vivo competitive binding and differential Argonaute immunoprecipitation. Nucleic Acids Res 2017; 45:10218-10228. [PMID: 28973447 PMCID: PMC5622317 DOI: 10.1093/nar/gkx640] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 07/21/2017] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) have been described to simultaneously inhibit hundreds of targets, albeit to a modest extent. It was recently proposed that there could exist more specific, exceptionally strong binding to a subgroup of targets. However, it is unknown, whether this is the case and how such targets can be identified. Using Argonaute2-ribonucleoprotein immunoprecipitation and in vivo competitive binding assays, we demonstrate for miRNAs-21, -199–3p and let-7 exceptional regulation of a subset of targets, which are characterized by preferential miRNA binding. We confirm this finding by analysis of independent quantitative proteome and transcriptome datasets obtained after miRNA silencing. Our data suggest that mammalian miRNA activity is guided by preferential binding of a small set of 3′-untranslated regions, thereby shaping a steep gradient of regulation between potential targets. Our approach can be applied for transcriptome-wide identification of such targets independently of the presence of seed complementary sequences or other predictors.
Collapse
Affiliation(s)
- Stanislas Werfel
- Institut für Pharmakologie und Toxikologie, Technische Universität München (TUM), 80802 Munich, Germany.,DZHK (German Center for Cardiovascular Research), Munich Heart Alliance, 80802 Munich, Germany
| | - Simon Leierseder
- Institut für Pharmakologie und Toxikologie, Technische Universität München (TUM), 80802 Munich, Germany
| | - Benjamin Ruprecht
- Chair of Proteomics and Bioanalytics, Technische Universität München, 85354 Freising, Germany
| | - Bernhard Kuster
- Chair of Proteomics and Bioanalytics, Technische Universität München, 85354 Freising, Germany.,German Cancer Consortium (DKTK), 69120 Heidelberg, Germany.,German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.,Bavarian Biomolecular Mass Spectrometry Center (BayBioMS), Technische Universität München, 85354 Freising, Germany
| | - Stefan Engelhardt
- Institut für Pharmakologie und Toxikologie, Technische Universität München (TUM), 80802 Munich, Germany.,DZHK (German Center for Cardiovascular Research), Munich Heart Alliance, 80802 Munich, Germany
| |
Collapse
|
46
|
Zhong X, Ma X, Zhang L, Li Y, Li Y, He R. MIAT promotes proliferation and hinders apoptosis by modulating miR-181b/STAT3 axis in ox-LDL-induced atherosclerosis cell models. Biomed Pharmacother 2017; 97:1078-1085. [PMID: 29136944 DOI: 10.1016/j.biopha.2017.11.052] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 10/17/2017] [Accepted: 11/07/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Plenty of lncRNAs and microRNAs have been identified to be critical mediators in the progression of atherosclerosis (AS). Myocardial infarction-associated transcript (MIAT) were aberrantly high expressed and closely associated with the pathogenesis of AS. However, its molecular mechanism has not been well characterized. METHODS The expression patterns of MIAT and microRNA-181b (miR-181b) in clinical samples and cells were measured by RT-qPCR assays. Luciferase reporter assay and RIP assays were used to manifest the potential interaction between MIAT, miR-181b and signal transducer and activator of transcription 3 (STAT3). Cell Counting Kit-8 (CCK-8), Propidium Iodide (PI) staining, Terminal dexynucleotidyl transferase(TdT)-mediated dUTP nick end labeling (TUNEL) and western blot assays were carried out to detect cell proliferation, cell cycle distribution, apoptosis, and STAT3 protein level, respectively. RESULTS MIAT expression was up-regulated and miR-181b expression was down-regulated in AS patients serum and oxidized low-density lipoprotein (ox-LDL) induced AS cells model. MIAT facilitated cell proliferation, accelerated cell cycle progression and inhibited apoptosis in ox-LDL-induced AS cell lines, while this effect was partly reversed by miR-181b overexpression. Moreover, MIAT enhanced STAT3 expression through sequestering miR-181b as a molecular sponge. Furthermore, MiR-181b hindered cell growth, induced cell cycle arrest and promoted apoptosis by directly targeting STAT3. CONCLUSION MIAT performed as an induction factor of AS by regulating miR-181b/STAT3 axis in ox-LDL-induced AS cell lines, offering a new insight into the potential application of MIAT in AS treatment.
Collapse
Affiliation(s)
- Xiaoming Zhong
- Department of Cardiology, Huaihe Hospital of Henan University, No. 8, Baobei Road, Gulou District, Kaifeng, 475000, China
| | - Xiang Ma
- Department of Cardiology, Huaihe Hospital of Henan University, No. 8, Baobei Road, Gulou District, Kaifeng, 475000, China
| | - Lei Zhang
- Department of Cardiology, Huaihe Hospital of Henan University, No. 8, Baobei Road, Gulou District, Kaifeng, 475000, China
| | - Yanming Li
- Department of Cardiology, Huaihe Hospital of Henan University, No. 8, Baobei Road, Gulou District, Kaifeng, 475000, China.
| | - Yunwei Li
- Department of Cardiology, Huaihe Hospital of Henan University, No. 8, Baobei Road, Gulou District, Kaifeng, 475000, China
| | - Ruili He
- Department of Cardiology, Huaihe Hospital of Henan University, No. 8, Baobei Road, Gulou District, Kaifeng, 475000, China
| |
Collapse
|
47
|
Rissland OS, Subtelny AO, Wang M, Lugowski A, Nicholson B, Laver JD, Sidhu SS, Smibert CA, Lipshitz HD, Bartel DP. The influence of microRNAs and poly(A) tail length on endogenous mRNA-protein complexes. Genome Biol 2017; 18:211. [PMID: 29089021 PMCID: PMC5664449 DOI: 10.1186/s13059-017-1330-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 09/29/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND All mRNAs are bound in vivo by proteins to form mRNA-protein complexes (mRNPs), but changes in the composition of mRNPs during posttranscriptional regulation remain largely unexplored. Here, we have analyzed, on a transcriptome-wide scale, how microRNA-mediated repression modulates the associations of the core mRNP components eIF4E, eIF4G, and PABP and of the decay factor DDX6 in human cells. RESULTS Despite the transient nature of repressed intermediates, we detect significant changes in mRNP composition, marked by dissociation of eIF4G and PABP, and by recruitment of DDX6. Furthermore, although poly(A)-tail length has been considered critical in post-transcriptional regulation, differences in steady-state tail length explain little of the variation in either PABP association or mRNP organization more generally. Instead, relative occupancy of core components correlates best with gene expression. CONCLUSIONS These results indicate that posttranscriptional regulatory factors, such as microRNAs, influence the associations of PABP and other core factors, and do so without substantially affecting steady-state tail length.
Collapse
Affiliation(s)
- Olivia S Rissland
- Whitehead Institute for Biomedical Research, Cambridge, MA, 02142, USA.
- Howard Hughes Medical Institute, Cambridge, MA, 02142, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada.
- Present address: Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, 80045, USA.
| | - Alexander O Subtelny
- Whitehead Institute for Biomedical Research, Cambridge, MA, 02142, USA
- Howard Hughes Medical Institute, Cambridge, MA, 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Miranda Wang
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Andrew Lugowski
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Beth Nicholson
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - John D Laver
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Sachdev S Sidhu
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Craig A Smibert
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Howard D Lipshitz
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - David P Bartel
- Whitehead Institute for Biomedical Research, Cambridge, MA, 02142, USA.
- Howard Hughes Medical Institute, Cambridge, MA, 02142, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
48
|
Sun J, Pan LM, Chen LB, Wang Y. LncRNA XIST promotes human lung adenocarcinoma cells to cisplatin resistance via let-7i/BAG-1 axis. Cell Cycle 2017; 16:2100-2107. [PMID: 28961027 PMCID: PMC5731406 DOI: 10.1080/15384101.2017.1361071] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/07/2017] [Accepted: 07/25/2017] [Indexed: 12/13/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) have been identified as oncogenes or tumor suppressors that are involved in tumorigenesis and chemoresistance. LncRNA XIST expression is upregulated in several cancers, however, its biologic role in the development of the chemotherapy of human lung adenocarcinoma (LAD) has not been elucidated. This study aimed to observe the expression of LncRNA XIST in LAD and to evaluate its biologic role and clinical significance in the resistance of LAD cells to cisplatin. LncRNA XIST expression was markedly increased in cisplatin-resistant A549/DDP cells compared with parental A549 cells as shown by qRT-PCR. LncRNA XIST overexpression in A549 cells increased their chemosensitivity to cisplatin both in vitro and in vivo by protecting cells from apoptosis and promoting cell proliferation. By contrast, LncRNA XIST knockdown in A549/DDP cells decreased the chemoresistance. We revealed that XIST functioned as competing endogenous RNA to repress let-7i, which controlled its down-stream target BAG-1. We proposed that XIST was responsible for cisplatin resistance of LAD cells and XIST exerted its function through the let-7i/BAG-1 axis. Our findings suggested that lncRNA XIST may be a new marker of poor response to cisplatin and could be a potential therapeutic target for LAD chemotherapy.
Collapse
Affiliation(s)
- Jing Sun
- Health Examination Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Li-Ming Pan
- The First Hospital of Jilin University, Changchun, China
| | - Li-Bo Chen
- Department of Ultrasound, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yue Wang
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
49
|
MicroRNA in vivo precipitation identifies miR-151-3p as a computational unpredictable miRNA to target Stat3 and inhibits innate IL-6 production. Cell Mol Immunol 2017; 15:99-110. [PMID: 28890541 DOI: 10.1038/cmi.2017.82] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/20/2017] [Accepted: 07/20/2017] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) function as important regulators in the immune response and inflammation. Several approaches have been reported to computationally predict miRNAs and their potential targets. However, there are still many miRNA-target interactions that are unpredictable by using the current computational algorithms. We established a miRNA in vivo precipitation method (miRIP) to identify unpredictable miRNAs with definite targets in these cells. Because Stat3 is a well-known transcription factor involved in innate immunity and inflammation, we utilized the miRIP method to identify miRNAs that bind Stat3 mRNA in macrophages. Among the captured miRNAs, miR-151-3p was confirmed to interact with Stat3 mRNA 3'-UTR and downregulate the Stat3 protein levels. LPS stimulation decreased miR-151-3p expression, thereby increasing IL-6 production. Therefore, we found that miR-151-3p inhibited LPS-induced IL-6 production by targeting Stat3. These data further confirmed miRIP as an efficient method to identify unpredictable miRNAs and explore miRNAs-mediated regulation in innate immunity and inflammation.
Collapse
|
50
|
Tian Z, Zhang J, He H, Li J, Wu Y, Shen Z. MiR-525-3p mediates antiviral defense to rotavirus infection by targeting nonstructural protein 1. Biochim Biophys Acta Mol Basis Dis 2017; 1863:3212-3225. [PMID: 28890396 DOI: 10.1016/j.bbadis.2017.09.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 09/05/2017] [Accepted: 09/06/2017] [Indexed: 12/23/2022]
Abstract
MicroRNAs (miRNAs) are short RNAs of approximately 22 nucleotides that post-transcriptionally regulate gene expression by controlling mRNA stability or translation. They play critical roles in intricate networks of host-pathogen interactions and innate immunity. Rotaviruses (RVs) are the leading cause of severe diarrhea among infants and young children worldwide. This study was undertaken to demonstrate the importance of cellular miRNAs during RV (human Wa RV or Rhesus RV) strains infection. Twenty-nine differentially regulated miRNAs were identified during RV infection, and miR-525-3p was downregulated and validated by quantitative real-time polymerase chain reaction (qRT-PCR). MiR-525-3p mimic inhibited RV replication in dose-dependent manner. Correspondingly, the miR-525-3p inhibitors enhanced RV replication. We confirmed that miR-525-3p was complementary to the 3' untranslated region (UTR) of nonstructural protein 1(NSP1) of RV (Wa or Rhesus) strains. Interestingly, miR-525-3p induced type I interferon (IFN) expression and proinflammatory cytokines during RV infection through IFN regulatory factor (IRF) 3/IRF7 and NF-κB activation, which can induce an antiviral state to further suppress RV infection. In addition, RV suppressed miR-525-3p expression to evade host innate immunity through the action of the RV protein NSP1. These results suggest that miR-525-3p has the potential to be used as an antiviral therapeutic against RV infection.
Collapse
Affiliation(s)
- Zhiqiang Tian
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, China
| | - Ji Zhang
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, China
| | - Haiyang He
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, China
| | - Jintao Li
- Institute of Tropical Medicine, Third Military Medical University, Chongqing, China
| | - Yuzhang Wu
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, China..
| | - Zigang Shen
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, China..
| |
Collapse
|