1
|
Zheng L, Wu Z, Yada N, Liu S, Lin C, Bignotti A, Zhao X, Zheng XL. Modeling ANKRD26 5'-UTR mutation-related thrombocytopenia. Dis Model Mech 2025; 18:dmm052222. [PMID: 40170493 PMCID: PMC12067082 DOI: 10.1242/dmm.052222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 03/26/2025] [Indexed: 04/03/2025] Open
Abstract
Mutations in the 5'-untranslated region (5'-UTR) of ankyrin repeat domain-containing protein 26 (ANKRD26) are associated with hereditary thrombocytopenia 2 (THC2). However, the causative role of these mutations and the mechanisms underlying THC2 are not fully established. Here, we report, for the first time, that zebrafish carrying a deletion of two nucleotides (Δ2) in the 5'-UTR of ankrd26 recapitulate some of the key laboratory features of THC2. ankrd26ku6 (homozygous for the Δ2 deletion in the 5'-UTR) fish larvae exhibited significantly increased expression of ankrd26 mRNA and protein. Adult ankrd26ku6 fish exhibited spontaneous thrombocytopenia. Furthermore, the thrombocytes from ankrd26ku6 fish showed enhanced ability to adhere and aggregate on a collagen surface under flow. Proteomic profiling demonstrated marked upregulation of Ninjurin 1 in young thrombocytes from ankrd26ku6 fish compared with those from wild-type controls. The ankrd26ku6 fish with a homozygous nacre allele developed myelodysplastic syndrome at old age. ANKRD26 protein levels were also significantly increased in platelets and plasma from patients with immune thrombotic thrombocytopenic purpura compared with those from unaffected controls. We conclude that ANKRD26 overexpression, resulting from either hereditary or acquired mechanisms, contributes to thrombocytopenia, thrombosis and hematologic malignancies.
Collapse
Affiliation(s)
- Liang Zheng
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, KS 66126, USA
- Institute of Reproductive and Developmental Sciences, The University of Kansas Medical Center, Kansas City, KS 66126, USA
| | - Zhijian Wu
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, KS 66126, USA
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha 410010, China
| | - Noritaka Yada
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, KS 66126, USA
| | - Szumam Liu
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, KS 66126, USA
| | - Cindy Lin
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, KS 66126, USA
| | - Antonia Bignotti
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, KS 66126, USA
| | - Xinyang Zhao
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, KS 66126, USA
- Institute of Reproductive and Developmental Sciences, The University of Kansas Medical Center, Kansas City, KS 66126, USA
| | - X. Long Zheng
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, KS 66126, USA
- Institute of Reproductive and Developmental Sciences, The University of Kansas Medical Center, Kansas City, KS 66126, USA
| |
Collapse
|
2
|
Kanie T, Ng R, Abbott KL, Tanvir NM, Lorentzen E, Pongs O, Jackson PK. Myristoylated Neuronal Calcium Sensor-1 captures the preciliary vesicle at distal appendages. eLife 2025; 14:e85998. [PMID: 39882855 PMCID: PMC11984960 DOI: 10.7554/elife.85998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 01/09/2025] [Indexed: 01/31/2025] Open
Abstract
The primary cilium is a microtubule-based organelle that cycles through assembly and disassembly. In many cell types, formation of the cilium is initiated by recruitment of preciliary vesicles to the distal appendage of the mother centriole. However, the distal appendage mechanism that directly captures preciliary vesicles is yet to be identified. In an accompanying paper, we show that the distal appendage protein, CEP89, is important for the preciliary vesicle recruitment, but not for other steps of cilium formation (Kanie et al., 2025). The lack of a membrane-binding motif in CEP89 suggests that it may indirectly recruit preciliary vesicles via another binding partner. Here, we identify Neuronal Calcium Sensor-1 (NCS1) as a stoichiometric interactor of CEP89. NCS1 localizes to the position between CEP89 and the centriole-associated vesicle marker, RAB34, at the distal appendage. This localization was completely abolished in CEP89 knockouts, suggesting that CEP89 recruits NCS1 to the distal appendage. Similar to CEP89 knockouts, preciliary vesicle recruitment as well as subsequent cilium formation was perturbed in NCS1 knockout cells. The ability of NCS1 to recruit the preciliary vesicle is dependent on its myristoylation motif and NCS1 knockout cells expressing a myristoylation defective mutant failed to rescue the vesicle recruitment defect despite localizing properly to the centriole. In sum, our analysis reveals the first known mechanism for how the distal appendage recruits the preciliary vesicles.
Collapse
Affiliation(s)
- Tomoharu Kanie
- Baxter Laboratory, Department of Microbiology & Immunology and Department of Pathology, Stanford UniversityStanfordUnited States
- Department of Cell Biology, University of Oklahoma Health Sciences CenterOklahoma CityUnited States
| | - Roy Ng
- Baxter Laboratory, Department of Microbiology & Immunology and Department of Pathology, Stanford UniversityStanfordUnited States
| | - Keene L Abbott
- Baxter Laboratory, Department of Microbiology & Immunology and Department of Pathology, Stanford UniversityStanfordUnited States
| | | | - Esben Lorentzen
- Department of Molecular Biology and Genetics, Aarhus UniversityAarhusDenmark
| | - Olaf Pongs
- Institute for Physiology, Center for Integrative Physiology and Molecular Medicine, Saarland UniversitySaarbrückenGermany
| | - Peter K Jackson
- Baxter Laboratory, Department of Microbiology & Immunology and Department of Pathology, Stanford UniversityStanfordUnited States
| |
Collapse
|
3
|
Capaci V, Zanchetta ME, Fontana G, Ammeti D, Bottega R, Faleschini M, Savoia A. Inherited Thrombocytopenia Related Genes: GPS2 Mediates the Interplay Between ANKRD26 and ETV6. Cells 2024; 14:23. [PMID: 39791724 PMCID: PMC11720448 DOI: 10.3390/cells14010023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/17/2024] [Accepted: 12/24/2024] [Indexed: 01/30/2025] Open
Abstract
Mutations in the genes ANKRD26, RUNX1, and ETV6 cause three clinically overlapping thrombocytopenias characterized by a predisposition to hematological neoplasms. The ANKRD26 gene, which encodes a protein involved in protein-protein interactions, is downregulated by RUNX1 during megakaryopoiesis. Mutations in 5'UTR of ANKRD26, leading to ANKRD26-RT, disrupt this regulation, resulting in the persistent expression of ANKRD26, which leads to impaired platelet biogenesis and an increased risk of leukemia. Although ANKRD26 and ETV6 exhibit inverse expression during megakaryopoiesis, ETV6 does not regulate the ANKRD26 expression. Hypothesizing an interplay between ETV6 and ANKRD26 through in vitro studies, we explored the interactions between the two proteins. In this study, we found that ANKRD26 interacts with ETV6 and retains it in the cytoplasm, phenocopying ETV6-RT-related mutants. We found that GPS2, a component of the NCoR complex, binds both ANKRD26 and ETV6, mediating this interaction. Furthermore, ANKRD26 overexpression deregulates ETV6 transcriptional repression, supporting a common pathogenic mechanism underlying ANKRD26-RT, FPD/AML, and ETV6-RT. Our results unveil a novel ANKRD26-ETV6-GPS2 axis, providing new insights to investigate the molecular mechanism underlying thrombocytopenias with a predisposition to myeloid neoplasms that need to be further characterized.
Collapse
Affiliation(s)
- Valeria Capaci
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, 34137 Trieste, Italy; (M.E.Z.); (G.F.); (D.A.); (R.B.); (M.F.)
| | - Melania Eva Zanchetta
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, 34137 Trieste, Italy; (M.E.Z.); (G.F.); (D.A.); (R.B.); (M.F.)
| | - Giorgia Fontana
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, 34137 Trieste, Italy; (M.E.Z.); (G.F.); (D.A.); (R.B.); (M.F.)
| | - Daniele Ammeti
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, 34137 Trieste, Italy; (M.E.Z.); (G.F.); (D.A.); (R.B.); (M.F.)
| | - Roberta Bottega
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, 34137 Trieste, Italy; (M.E.Z.); (G.F.); (D.A.); (R.B.); (M.F.)
| | - Michela Faleschini
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, 34137 Trieste, Italy; (M.E.Z.); (G.F.); (D.A.); (R.B.); (M.F.)
| | - Anna Savoia
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy
| |
Collapse
|
4
|
Zhang X, Blumenthal RM, Cheng X. Keep Fingers on the CpG Islands. EPIGENOMES 2024; 8:23. [PMID: 38920624 PMCID: PMC11202855 DOI: 10.3390/epigenomes8020023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/31/2024] [Accepted: 06/14/2024] [Indexed: 06/27/2024] Open
Abstract
The post-genomic era has ushered in the extensive application of epigenetic editing tools, allowing for precise alterations of gene expression. The use of reprogrammable editors that carry transcriptional corepressors has significant potential for long-term epigenetic silencing for the treatment of human diseases. The ideal scenario involves precise targeting of a specific genomic location by a DNA-binding domain, ensuring there are no off-target effects and that the process yields no genetic remnants aside from specific epigenetic modifications (i.e., DNA methylation). A notable example is a recent study on the mouse Pcsk9 gene, crucial for cholesterol regulation and expressed in hepatocytes, which identified synthetic zinc-finger (ZF) proteins as the most effective DNA-binding editors for silencing Pcsk9 efficiently, specifically, and persistently. This discussion focuses on enhancing the specificity of ZF-array DNA binding by optimizing interactions between specific amino acids and DNA bases across three promoters containing CpG islands.
Collapse
Affiliation(s)
- Xing Zhang
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Robert M. Blumenthal
- Department of Medical Microbiology and Immunology, and Program in Bioinformatics, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA;
| | - Xiaodong Cheng
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| |
Collapse
|
5
|
Jiang YZ, Hu LY, Chen MS, Wang XJ, Tan CN, Xue PP, Yu T, He XY, Xiang LX, Xiao YN, Li XL, Ran Q, Li ZJ, Chen L. GATA binding protein 2 mediated ankyrin repeat domain containing 26 high expression in myeloid-derived cell lines. World J Stem Cells 2024; 16:538-550. [PMID: 38817334 PMCID: PMC11135246 DOI: 10.4252/wjsc.v16.i5.538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/12/2024] [Accepted: 04/12/2024] [Indexed: 05/24/2024] Open
Abstract
BACKGROUND Thrombocytopenia 2, an autosomal dominant inherited disease characterized by moderate thrombocytopenia, predisposition to myeloid malignancies and normal platelet size and function, can be caused by 5'-untranslated region (UTR) point mutations in ankyrin repeat domain containing 26 (ANKRD26). Runt related transcription factor 1 (RUNX1) and friend leukemia integration 1 (FLI1) have been identified as negative regulators of ANKRD26. However, the positive regulators of ANKRD26 are still unknown. AIM To prove the positive regulatory effect of GATA binding protein 2 (GATA2) on ANKRD26 transcription. METHODS Human induced pluripotent stem cells derived from bone marrow (hiPSC-BM) and urothelium (hiPSC-U) were used to examine the ANKRD26 expression pattern in the early stage of differentiation. Then, transcriptome sequencing of these iPSCs and three public transcription factor (TF) databases (Cistrome DB, animal TFDB and ENCODE) were used to identify potential TF candidates for ANKRD26. Furthermore, overexpression and dual-luciferase reporter experiments were used to verify the regulatory effect of the candidate TFs on ANKRD26. Moreover, using the GENT2 platform, we analyzed the relationship between ANKRD26 expression and overall survival in cancer patients. RESULTS In hiPSC-BMs and hiPSC-Us, we found that the transcription levels of ANKRD26 varied in the absence of RUNX1 and FLI1. We sequenced hiPSC-BM and hiPSC-U and identified 68 candidate TFs for ANKRD26. Together with three public TF databases, we found that GATA2 was the only candidate gene that could positively regulate ANKRD26. Using dual-luciferase reporter experiments, we showed that GATA2 directly binds to the 5'-UTR of ANKRD26 and promotes its transcription. There are two identified binding sites of GATA2 that are located 2 kb upstream of the TSS of ANKRD26. In addition, we discovered that high ANKRD26 expression is always related to a more favorable prognosis in breast and lung cancer patients. CONCLUSION We first discovered that the transcription factor GATA2 plays a positive role in ANKRD26 transcription and identified its precise binding sites at the promoter region, and we revealed the importance of ANKRD26 in many tissue-derived cancers.
Collapse
Affiliation(s)
- Yang-Zhou Jiang
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center, The Second Affiliated Hospital, Third Military Medical University, Chongqing 400037, China
- Hematopoietic Acute Radiation Syndrome Medical and Pharmaceutical Basic Research Innovation Center, Ministry of Education of the People's Republic of China, Chongqing 400037, China
| | - Lan-Yue Hu
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center, The Second Affiliated Hospital, Third Military Medical University, Chongqing 400037, China
- Hematopoietic Acute Radiation Syndrome Medical and Pharmaceutical Basic Research Innovation Center, Ministry of Education of the People's Republic of China, Chongqing 400037, China
| | - Mao-Shan Chen
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center, The Second Affiliated Hospital, Third Military Medical University, Chongqing 400037, China
- Hematopoietic Acute Radiation Syndrome Medical and Pharmaceutical Basic Research Innovation Center, Ministry of Education of the People's Republic of China, Chongqing 400037, China
| | - Xiao-Jie Wang
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center, The Second Affiliated Hospital, Third Military Medical University, Chongqing 400037, China
- Hematopoietic Acute Radiation Syndrome Medical and Pharmaceutical Basic Research Innovation Center, Ministry of Education of the People's Republic of China, Chongqing 400037, China
| | - Cheng-Ning Tan
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center, The Second Affiliated Hospital, Third Military Medical University, Chongqing 400037, China
- Hematopoietic Acute Radiation Syndrome Medical and Pharmaceutical Basic Research Innovation Center, Ministry of Education of the People's Republic of China, Chongqing 400037, China
| | - Pei-Pei Xue
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center, The Second Affiliated Hospital, Third Military Medical University, Chongqing 400037, China
- Hematopoietic Acute Radiation Syndrome Medical and Pharmaceutical Basic Research Innovation Center, Ministry of Education of the People's Republic of China, Chongqing 400037, China
| | - Teng Yu
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center, The Second Affiliated Hospital, Third Military Medical University, Chongqing 400037, China
- Hematopoietic Acute Radiation Syndrome Medical and Pharmaceutical Basic Research Innovation Center, Ministry of Education of the People's Republic of China, Chongqing 400037, China
| | - Xiao-Yan He
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center, The Second Affiliated Hospital, Third Military Medical University, Chongqing 400037, China
- Hematopoietic Acute Radiation Syndrome Medical and Pharmaceutical Basic Research Innovation Center, Ministry of Education of the People's Republic of China, Chongqing 400037, China
| | - Li-Xin Xiang
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center, The Second Affiliated Hospital, Third Military Medical University, Chongqing 400037, China
- Hematopoietic Acute Radiation Syndrome Medical and Pharmaceutical Basic Research Innovation Center, Ministry of Education of the People's Republic of China, Chongqing 400037, China
| | - Yan-Ni Xiao
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center, The Second Affiliated Hospital, Third Military Medical University, Chongqing 400037, China
- Hematopoietic Acute Radiation Syndrome Medical and Pharmaceutical Basic Research Innovation Center, Ministry of Education of the People's Republic of China, Chongqing 400037, China
| | - Xiao-Liang Li
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center, The Second Affiliated Hospital, Third Military Medical University, Chongqing 400037, China
- Hematopoietic Acute Radiation Syndrome Medical and Pharmaceutical Basic Research Innovation Center, Ministry of Education of the People's Republic of China, Chongqing 400037, China
| | - Qian Ran
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center, The Second Affiliated Hospital, Third Military Medical University, Chongqing 400037, China
- Hematopoietic Acute Radiation Syndrome Medical and Pharmaceutical Basic Research Innovation Center, Ministry of Education of the People's Republic of China, Chongqing 400037, China
| | - Zhong-Jun Li
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center, The Second Affiliated Hospital, Third Military Medical University, Chongqing 400037, China
- Hematopoietic Acute Radiation Syndrome Medical and Pharmaceutical Basic Research Innovation Center, Ministry of Education of the People's Republic of China, Chongqing 400037, China
| | - Li Chen
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center, The Second Affiliated Hospital, Third Military Medical University, Chongqing 400037, China
- Hematopoietic Acute Radiation Syndrome Medical and Pharmaceutical Basic Research Innovation Center, Ministry of Education of the People's Republic of China, Chongqing 400037, China.
| |
Collapse
|
6
|
Englisch AS, Hofbrucker-MacKenzie SA, Izadi-Seitz M, Kessels MM, Qualmann B. Ankrd26 is a retinoic acid-responsive plasma membrane-binding and -shaping protein critical for proper cell differentiation. Cell Rep 2024; 43:113939. [PMID: 38493476 DOI: 10.1016/j.celrep.2024.113939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 01/17/2024] [Accepted: 02/23/2024] [Indexed: 03/19/2024] Open
Abstract
Morphogens are important triggers for differentiation processes. Yet, downstream effectors that organize cell shape changes in response to morphogenic cues, such as retinoic acid, largely remain elusive. Additionally, derailed plasma membrane-derived signaling often is associated with cancer. We identify Ankrd26 as a critical player in cellular differentiation and as plasma membrane-localized protein able to self-associate and form clusters at the plasma membrane in response to retinoic acid. We show that Ankrd26 uses an N-terminal amphipathic structure for membrane binding and bending. Importantly, in an acute myeloid leukemia-associated Ankrd26 mutant, this critical structure was absent, and Ankrd26's membrane association and shaping abilities were impaired. In line with this, the mutation rendered Ankrd26 inactive in both gain-of-function and loss-of-function/rescue studies addressing retinoic acid/brain-derived neurotrophic factor (BDNF)-induced neuroblastoma differentiation. Our results highlight the importance and molecular details of Ankrd26-mediated organizational platforms for cellular differentiation at the plasma membrane and how impairment of these platforms leads to cancer-associated pathomechanisms involving these Ankrd26 properties.
Collapse
Affiliation(s)
- Anna Sofie Englisch
- Institute of Biochemistry I, Jena University Hospital - Friedrich Schiller University Jena, Nonnenplan 2-4, 07743 Jena, Germany
| | - Sarah Ann Hofbrucker-MacKenzie
- Institute of Biochemistry I, Jena University Hospital - Friedrich Schiller University Jena, Nonnenplan 2-4, 07743 Jena, Germany
| | - Maryam Izadi-Seitz
- Institute of Biochemistry I, Jena University Hospital - Friedrich Schiller University Jena, Nonnenplan 2-4, 07743 Jena, Germany
| | - Michael Manfred Kessels
- Institute of Biochemistry I, Jena University Hospital - Friedrich Schiller University Jena, Nonnenplan 2-4, 07743 Jena, Germany.
| | - Britta Qualmann
- Institute of Biochemistry I, Jena University Hospital - Friedrich Schiller University Jena, Nonnenplan 2-4, 07743 Jena, Germany.
| |
Collapse
|
7
|
Li Z, Wang Y, Liu J, Chen D, Feng G, Chen M, Feng Y, Zhang R, Yan X. The potential role of alfalfa polysaccharides and their sulphated derivatives in the alleviation of obesity. Food Funct 2023; 14:7586-7602. [PMID: 37526987 DOI: 10.1039/d3fo01390a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Sulfated alfalfa polysaccharides (SAPs) as derivatives of alfalfa polysaccharides (APs) showed better in vitro antioxidant activity and potential obesity inhibition. The purpose of this study was to investigate the effect and mechanisms of APs and SAPs on obesity alleviation. Different concentrations of APs and SAPs were tested for effects on body conditions, gut flora, antioxidant capacity, and immunological factors. The results showed that APs and SAPs improved the physical conditions of obese mice, including organ weight, body weight, intraperitoneal fat ratio, and lipid levels. APs and SAPs increased the antioxidant capacity of the obese mice, enhanced the activity of SOD and CAT, and decreased the activity of MDA in the serum, liver, and colon. APs and SAPs upregulated the mRNA expression of IL-4 and IL-10 and downregulated the mRNA expression of NF-κB, IFN-γ, TNF-α, and IL-6 in the liver and colon. Meanwhile, APs and SAPs improved lipid absorption in the jejunum, upregulated LXR and GLP-2, and down-regulated the mRNA expression of NPC1L1. APs and SAPs also contributed to restoring short-chain fatty acid levels in the colon. APs and SAPs improved the structure of the intestinal flora, promoted the proliferation of bacteria associated with short-chain fatty acid metabolism, and inhibited the proliferation of pathogenic bacteria. At the same concentration, the effect of SAPs on the antioxidant capacity was stronger than that of APs. In the AP group, high concentrations of APs showed the best anti-inflammatory effect, while in the SAP group, medium concentrations of SAPs showed the best inhibition of inflammation. Our results suggest that APs and SAPs alleviate obesity symptoms by relieving inflammation, improving the antioxidant capacity, and regulating intestinal flora and therefore could be used as potential probiotic products to alleviate obesity.
Collapse
Affiliation(s)
- Zhiwei Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province 225009, China.
| | - Yawen Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province 225009, China.
| | - Jun Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu Province 225127, China
| | - Dan Chen
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu Province 225127, China
| | - Guilan Feng
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province 225009, China.
| | - Min Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province 225009, China.
| | - Yuxi Feng
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province 225009, China.
| | - Ran Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province 225009, China.
| | - Xuebing Yan
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province 225009, China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu Province 225009, China
| |
Collapse
|
8
|
Pepe RB, Lottenberg AM, Fujiwara CTH, Beyruti M, Cintra DE, Machado RM, Rodrigues A, Jensen NSO, Caldas APS, Fernandes AE, Rossoni C, Mattos F, Motarelli JHF, Bressan J, Saldanha J, Beda LMM, Lavrador MSF, Del Bosco M, Cruz P, Correia PE, Maximino P, Pereira S, Faria SL, Piovacari SMF. Position statement on nutrition therapy for overweight and obesity: nutrition department of the Brazilian association for the study of obesity and metabolic syndrome (ABESO-2022). Diabetol Metab Syndr 2023; 15:124. [PMID: 37296485 PMCID: PMC10251611 DOI: 10.1186/s13098-023-01037-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 03/23/2023] [Indexed: 06/12/2023] Open
Abstract
Obesity is a chronic disease resulting from multifactorial causes mainly related to lifestyle (sedentary lifestyle, inadequate eating habits) and to other conditions such as genetic, hereditary, psychological, cultural, and ethnic factors. The weight loss process is slow and complex, and involves lifestyle changes with an emphasis on nutritional therapy, physical activity practice, psychological interventions, and pharmacological or surgical treatment. Because the management of obesity is a long-term process, it is essential that the nutritional treatment contributes to the maintenance of the individual's global health. The main diet-related causes associated with excess weight are the high consumption of ultraprocessed foods, which are high in fats, sugars, and have high energy density; increased portion sizes; and low intake of fruits, vegetables, and grains. In addition, some situations negatively interfere with the weight loss process, such as fad diets that involve the belief in superfoods, the use of teas and phytotherapics, or even the avoidance of certain food groups, as has currently been the case for foods that are sources of carbohydrates. Individuals with obesity are often exposed to fad diets and, on a recurring basis, adhere to proposals with promises of quick solutions, which are not supported by the scientific literature. The adoption of a dietary pattern combining foods such as grains, lean meats, low-fat dairy, fruits, and vegetables, associated with an energy deficit, is the nutritional treatment recommended by the main international guidelines. Moreover, an emphasis on behavioral aspects including motivational interviewing and the encouragement for the individual to develop skills will contribute to achieve and maintain a healthy weight. Therefore, this Position Statement was prepared based on the analysis of the main randomized controlled studies and meta-analyses that tested different nutrition interventions for weight loss. Topics in the frontier of knowledge such as gut microbiota, inflammation, and nutritional genomics, as well as the processes involved in weight regain, were included in this document. This Position Statement was prepared by the Nutrition Department of the Brazilian Association for the Study of Obesity and Metabolic Syndrome (ABESO), with the collaboration of dietitians from research and clinical fields with an emphasis on strategies for weight loss.
Collapse
Affiliation(s)
- Renata Bressan Pepe
- Grupo de Obesidade e Sindrome Metabolica, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, Sao Paulo, SP Brazil
| | - Ana Maria Lottenberg
- Laboratório de Lipides (LIM10), Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP), São Paulo, SP Brazil
- Nutrition Department of the Brazilian Association for the Study of Obesity and Metabolic Syndrome (ABESO), Rua Mato Grosso 306 – cj 1711, Sao Paulo, SP 01239-040 Brazil
| | - Clarissa Tamie Hiwatashi Fujiwara
- Grupo de Obesidade e Sindrome Metabolica, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, Sao Paulo, SP Brazil
| | - Mônica Beyruti
- Brazilian Association for the Study of Obesity and Metabolic Syndrome (ABESO), São Paulo, SP Brazil
| | - Dennys Esper Cintra
- Centro de Estudos em Lipídios e Nutrigenômica – CELN – University of Campinas, Campinas, SP Brazil
| | - Roberta Marcondes Machado
- Liga Acadêmica de Controle de Diabetes do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP Brazil
| | - Alessandra Rodrigues
- Brazilian Association for the Study of Obesity and Metabolic Syndrome (ABESO), São Paulo, SP Brazil
| | - Natália Sanchez Oliveira Jensen
- Liga Acadêmica de Controle de Diabetes do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP Brazil
| | | | - Ariana Ester Fernandes
- Grupo de Obesidade e Sindrome Metabolica, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, Sao Paulo, SP Brazil
| | - Carina Rossoni
- Instituto de Saúde Ambiental, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Fernanda Mattos
- Programa de Obesidade e Cirurgia Bariátrica do Hospital Universitário Clementino Fraga Filho da UFRJ, Rio de Janeiro, RJ Brazil
| | - João Henrique Fabiano Motarelli
- Núcleo de Estudos e Extensão em Comportamento Alimentar e Obesidade (NEPOCA) da Universidade de São Paulo - FMRP/USP, Ribeirão Preto, Brazil
| | - Josefina Bressan
- Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, MG Brazil
| | | | - Lis Mie Masuzawa Beda
- Brazilian Association for the Study of Obesity and Metabolic Syndrome (ABESO), São Paulo, SP Brazil
| | - Maria Sílvia Ferrari Lavrador
- Liga Acadêmica de Controle de Diabetes do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP Brazil
| | - Mariana Del Bosco
- Brazilian Association for the Study of Obesity and Metabolic Syndrome (ABESO), São Paulo, SP Brazil
| | - Patrícia Cruz
- Grupo de Obesidade e Sindrome Metabolica, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, Sao Paulo, SP Brazil
| | | | - Priscila Maximino
- Instituto PENSI - Fundação José Luiz Egydio Setúbal, Instituto Pensi, Fundação José Luiz Egydio Setúbal, Hospital Infantil Sabará, São Paulo, SP Brazil
| | - Silvia Pereira
- Núcleo de Saúde Alimentar da Sociedade Brasileira de Cirurgia Bariátrica e Metabólica, São Paulo, Brazil
| | | | | |
Collapse
|
9
|
Bitaraf Sani M, Karimi O, Burger PA, Javanmard A, Roudbari Z, Mohajer M, Asadzadeh N, Zareh Harofteh J, Kazemi A, Naderi AS. A genome-wide association study of morphometric traits in dromedaries. Vet Med Sci 2023. [PMID: 37139670 DOI: 10.1002/vms3.1151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/15/2023] [Accepted: 04/11/2023] [Indexed: 05/05/2023] Open
Abstract
BACKGROUND Investigating genomic regions associated with morphometric traits in camels is valuable, because it allows a better understanding of adaptive and productive features to implement a sustainable management and a customised breeding program for dromedaries. OBJECTIVES With a genome-wide association study (GWAS) including 96 Iranian dromedaries phenotyped for 12 morphometric traits and genotyped-by-sequencing (GBS) with 14,522 SNPs, we aimed at identifying associated candidate genes. METHODS The association between SNPs and morphometric traits was investigated using a linear mixed model with principal component analysis (PCA) and kinship matrix. RESULTS With this approach, we detected 59 SNPs located in 37 candidate genes potentially associated to morphometric traits in dromedaries. The top associated SNPs were related to pin width, whither to pin length, height at whither, muzzle girth, and tail length. Interestingly, the results highlight the association between whither height, muzzle circumference, tail length, whither to pin length. The identified candidate genes were associated with growth, body size, and immune system in other species. CONCLUSIONS We identified three key hub genes in the gene network analysis including ACTB, SOCS1 and ARFGEF1. In the central position of gene network, ACTB was detected as the most important gene related to muscle function. With this initial GWAS using GBS on dromedary camels for morphometric traits, we show that this SNP panel can be effective for genetic evaluation of growth in dromedaries. However, we suggest a higher-density SNP array may greatly improve the reliability of the results.
Collapse
Affiliation(s)
- Morteza Bitaraf Sani
- Animal Science Research Department, Yazd Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education & Extension Organization (AREEO), Yazd, Iran
| | - Omid Karimi
- Department of Animal Viral Diseases Research, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran
| | - Pamela Anna Burger
- Research Institute of Wildlife Ecology, Vetmeduni Vienna, Vienna, Austria
| | - Arash Javanmard
- Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Zahra Roudbari
- Department of Animal Science, Faculty of Agriculture, University of Jiroft, Jiroft, Iran
| | - Mokhtar Mohajer
- Animal Science Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Nader Asadzadeh
- Animal Science Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Javad Zareh Harofteh
- Animal Science Research Department, Yazd Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education & Extension Organization (AREEO), Yazd, Iran
| | - Ali Kazemi
- Animal Breeding Canter of Iran, Karaj, Iran
| | - Ali Shafei Naderi
- Animal Science Research Department, Yazd Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education & Extension Organization (AREEO), Yazd, Iran
| |
Collapse
|
10
|
Takahashi Y, Morales Valencia M, Yu Y, Ouchi Y, Takahashi K, Shokhirev MN, Lande K, Williams AE, Fresia C, Kurita M, Hishida T, Shojima K, Hatanaka F, Nuñez-Delicado E, Esteban CR, Izpisua Belmonte JC. Transgenerational inheritance of acquired epigenetic signatures at CpG islands in mice. Cell 2023; 186:715-731.e19. [PMID: 36754048 DOI: 10.1016/j.cell.2022.12.047] [Citation(s) in RCA: 100] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 08/19/2022] [Accepted: 12/29/2022] [Indexed: 02/10/2023]
Abstract
Transgenerational epigenetic inheritance in mammals remains a debated subject. Here, we demonstrate that DNA methylation of promoter-associated CpG islands (CGIs) can be transmitted from parents to their offspring in mice. We generated DNA methylation-edited mouse embryonic stem cells (ESCs), in which CGIs of two metabolism-related genes, the Ankyrin repeat domain 26 and the low-density lipoprotein receptor, were specifically methylated and silenced. DNA methylation-edited mice generated by microinjection of the methylated ESCs exhibited abnormal metabolic phenotypes. Acquired methylation of the targeted CGI and the phenotypic traits were maintained and transmitted across multiple generations. The heritable CGI methylation was subjected to reprogramming in parental PGCs and subsequently reestablished in the next generation at post-implantation stages. These observations provide a concrete step toward demonstrating transgenerational epigenetic inheritance in mammals, which may have implications in our understanding of evolutionary biology as well as the etiology, diagnosis, and prevention of non-genetically inherited human diseases.
Collapse
Affiliation(s)
- Yuta Takahashi
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA; Altos Labs, 5510 Morehouse Drive, Suite 300, San Diego, CA 92121, USA
| | - Mariana Morales Valencia
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA; Altos Labs, 5510 Morehouse Drive, Suite 300, San Diego, CA 92121, USA
| | - Yang Yu
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China; Stem Cell Research Center, Peking University Third Hospital, Beijing 100191, China
| | - Yasuo Ouchi
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA; Altos Labs, 5510 Morehouse Drive, Suite 300, San Diego, CA 92121, USA; Department of Regenerative Medicine, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuou-ku, Chiba 260-8670, Japan
| | - Kazuki Takahashi
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA; Altos Labs, 5510 Morehouse Drive, Suite 300, San Diego, CA 92121, USA
| | - Maxim Nikolaievich Shokhirev
- Integrative Genomics and Bioinformatics Core, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Kathryn Lande
- Integrative Genomics and Bioinformatics Core, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - April E Williams
- Integrative Genomics and Bioinformatics Core, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Chiara Fresia
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Masakazu Kurita
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA; Department of Plastic, Reconstructive and Aesthetic Surgery, The University of Tokyo Hospital, Tokyo, Japan
| | - Tomoaki Hishida
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA; Laboratory of Biological Chemistry, School of Pharmaceutical Sciences, Wakayama Medical University, 25-1 Shitibancho, Wakayama, Wakayama, Japan
| | - Kensaku Shojima
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Fumiyuki Hatanaka
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA; Altos Labs, 5510 Morehouse Drive, Suite 300, San Diego, CA 92121, USA
| | - Estrella Nuñez-Delicado
- Universidad Católica San Antonio de Murcia (UCAM), Campus de los Jerónimos, no. 135 Guadalupe 30107, Murcia, Spain
| | - Concepcion Rodriguez Esteban
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA; Altos Labs, 5510 Morehouse Drive, Suite 300, San Diego, CA 92121, USA
| | - Juan Carlos Izpisua Belmonte
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA; Altos Labs, 5510 Morehouse Drive, Suite 300, San Diego, CA 92121, USA.
| |
Collapse
|
11
|
Kanie T, Ng R, Abbott KL, Pongs O, Jackson PK. Myristoylated Neuronal Calcium Sensor-1 captures the ciliary vesicle at distal appendages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.06.523037. [PMID: 36712037 PMCID: PMC9881967 DOI: 10.1101/2023.01.06.523037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The primary cilium is a microtubule-based organelle that cycles through assembly and disassembly. In many cell types, formation of the cilium is initiated by recruitment of ciliary vesicles to the distal appendage of the mother centriole. However, the distal appendage mechanism that directly captures ciliary vesicles is yet to be identified. In an accompanying paper, we show that the distal appendage protein, CEP89, is important for thef ciliary vesicle recruitment, but not for other steps of cilium formation (Tomoharu Kanie, Love, Fisher, Gustavsson, & Jackson, 2023). The lack of a membrane binding motif in CEP89 suggests that it may indirectly recruit ciliary vesicles via another binding partner. Here, we identify Neuronal Calcium Sensor-1 (NCS1) as a stoichiometric interactor of CEP89. NCS1 localizes to the position between CEP89 and a ciliary vesicle marker, RAB34, at the distal appendage. This localization was completely abolished in CEP89 knockouts, suggesting that CEP89 recruits NCS1 to the distal appendage. Similarly to CEP89 knockouts, ciliary vesicle recruitment as well as subsequent cilium formation was perturbed in NCS1 knockout cells. The ability of NCS1 to recruit the ciliary vesicle is dependent on its myristoylation motif and NCS1 knockout cells expressing myristoylation defective mutant failed to rescue the vesicle recruitment defect despite localizing proper localization to the centriole. In sum, our analysis reveals the first known mechanism for how the distal appendage recruits the ciliary vesicles.
Collapse
Affiliation(s)
- Tomoharu Kanie
- Baxter Laboratory, Department of Microbiology & Immunology and Department of Pathology, Stanford University, Stanford, CA, 94305
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma, OK, 73112
| | - Roy Ng
- Baxter Laboratory, Department of Microbiology & Immunology and Department of Pathology, Stanford University, Stanford, CA, 94305
| | - Keene L. Abbott
- Baxter Laboratory, Department of Microbiology & Immunology and Department of Pathology, Stanford University, Stanford, CA, 94305
| | - Olaf Pongs
- Institute for Physiology, Center for Integrative Physiology and Molecular Medicine (CIPPM), Saarland University, Homburg, Germany
| | - Peter K. Jackson
- Baxter Laboratory, Department of Microbiology & Immunology and Department of Pathology, Stanford University, Stanford, CA, 94305
| |
Collapse
|
12
|
Sladky VC, Akbari H, Tapias-Gomez D, Evans LT, Drown CG, Strong MA, LoMastro GM, Larman T, Holland AJ. Centriole signaling restricts hepatocyte ploidy to maintain liver integrity. Genes Dev 2022; 36:gad.349727.122. [PMID: 35981754 PMCID: PMC9480857 DOI: 10.1101/gad.349727.122] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/27/2022] [Indexed: 01/03/2023]
Abstract
Hepatocyte polyploidization is a tightly controlled process that is initiated at weaning and increases with age. The proliferation of polyploid hepatocytes in vivo is restricted by the PIDDosome-P53 axis, but how this pathway is triggered remains unclear. Given that increased hepatocyte ploidy protects against malignant transformation, the evolutionary driver that sets the upper limit for hepatocyte ploidy remains unknown. Here we show that hepatocytes accumulate centrioles during cycles of polyploidization in vivo. The presence of excess mature centrioles containing ANKRD26 was required to activate the PIDDosome in polyploid cells. As a result, mice lacking centrioles in the liver or ANKRD26 exhibited increased hepatocyte ploidy. Under normal homeostatic conditions, this increase in liver ploidy did not impact organ function. However, in response to chronic liver injury, blocking centriole-mediated ploidy control leads to a massive increase in hepatocyte polyploidization, severe liver damage, and impaired liver function. These results show that hyperpolyploidization sensitizes the liver to injury, posing a trade-off for the cancer-protective effect of increased hepatocyte ploidy. Our results may have important implications for unscheduled polyploidization that frequently occurs in human patients with chronic liver disease.
Collapse
Affiliation(s)
- Valentina C Sladky
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Hanan Akbari
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Daniel Tapias-Gomez
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Lauren T Evans
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Chelsea G Drown
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Margaret A Strong
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Gina M LoMastro
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Tatianna Larman
- Divison of Gastrointestinal and Liver Pathology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| | - Andrew J Holland
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| |
Collapse
|
13
|
Vyas H, Alcheikh A, Lowe G, Stevenson WS, Morgan NV, Rabbolini DJ. Prevalence and natural history of variants in the ANKRD26 gene: a short review and update of reported cases. Platelets 2022; 33:1107-1112. [PMID: 35587581 PMCID: PMC9555274 DOI: 10.1080/09537104.2022.2071853] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
ANKRD26 is a highly conserved gene located on chromosome 10p12.1 which has shown to play a role in normal megakaryocyte differentiation. ANKRD26-related thrombocytopenia, or thrombocytopenia 2, is an inherited thrombocytopenia with mild bleeding diathesis resulting from point mutations the 5ʹUTR of the ANKRD26 gene. Point mutations in the 5ʹUTR region have been shown to prevent transcription factor-mediated downregulation of ANKRD26 in normal megakaryocyte differentiation. Patients with ANKRD26-related thrombocytopenia have a predisposition to developing hematological malignancies, with acute myeloid leukemia and myelodysplastic syndrome most commonly described in the literature. We review the clinical features and biological mechanisms of ANKRD26-related thrombocytopenia and summarize known cases in the literature.
Collapse
Affiliation(s)
- Hrushikesh Vyas
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Ahmad Alcheikh
- Northern Blood Research Centre, Kolling Institute, University of Sydney, Sydney, Australia
| | - Gillian Lowe
- Comprehensive Care Haemophilia Centre, University Hospital Birmingham NHS Foundation Trust, Birmingham, UK
| | - William S Stevenson
- Northern Blood Research Centre, Kolling Institute, University of Sydney, Sydney, Australia.,Department of Haematology and Transfusion Medicine, Royal North Shore Hospital, Sydney, Australia
| | - Neil V Morgan
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - David J Rabbolini
- Northern Blood Research Centre, Kolling Institute, University of Sydney, Sydney, Australia
| |
Collapse
|
14
|
Lee CH, Kang GM, Kim MS. Mechanisms of Weight Control by Primary Cilia. Mol Cells 2022; 45:169-176. [PMID: 35387896 PMCID: PMC9001153 DOI: 10.14348/molcells.2022.2046] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/25/2022] [Accepted: 01/25/2022] [Indexed: 02/06/2023] Open
Abstract
A primary cilium, a hair-like protrusion of the plasma membrane, is a pivotal organelle for sensing external environmental signals and transducing intracellular signaling. An interesting linkage between cilia and obesity has been revealed by studies of the human genetic ciliopathies Bardet-Biedl syndrome and Alström syndrome, in which obesity is a principal manifestation. Mouse models of cell type-specific cilia dysgenesis have subsequently demonstrated that ciliary defects restricted to specific hypothalamic neurons are sufficient to induce obesity and hyperphagia. A potential mechanism underlying hypothalamic neuron cilia-related obesity is impaired ciliary localization of G protein-coupled receptors involved in the regulation of appetite and energy metabolism. A well-studied example of this is melanocortin 4 receptor (MC4R), mutations in which are the most common cause of human monogenic obesity. In the paraventricular hypothalamus neurons, a blockade of ciliary trafficking of MC4R as well as its downstream ciliary signaling leads to hyperphagia and weight gain. Another potential mechanism is reduced leptin signaling in hypothalamic neurons with defective cilia. Leptin receptors traffic to the periciliary area upon leptin stimulation. Moreover, defects in cilia formation hamper leptin signaling and actions in both developing and differentiated hypothalamic neurons. The list of obesity-linked ciliary proteins is expending and this supports a tight association between cilia and obesity. This article provides a brief review on the mechanism of how ciliary defects in hypothalamic neurons facilitate obesity.
Collapse
Affiliation(s)
- Chan Hee Lee
- Department of Biomedical Science, Hallym University, Chuncheon 24252, Korea
| | - Gil Myoung Kang
- Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Min-Seon Kim
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| |
Collapse
|
15
|
Gunturkun MH, Wang T, Chitre AS, Garcia Martinez A, Holl K, St. Pierre C, Bimschleger H, Gao J, Cheng R, Polesskaya O, Solberg Woods LC, Palmer AA, Chen H. Genome-Wide Association Study on Three Behaviors Tested in an Open Field in Heterogeneous Stock Rats Identifies Multiple Loci Implicated in Psychiatric Disorders. Front Psychiatry 2022; 13:790566. [PMID: 35237186 PMCID: PMC8882588 DOI: 10.3389/fpsyt.2022.790566] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/18/2022] [Indexed: 12/05/2022] Open
Abstract
Many personality traits are influenced by genetic factors. Rodents models provide an efficient system for analyzing genetic contribution to these traits. Using 1,246 adolescent heterogeneous stock (HS) male and female rats, we conducted a genome-wide association study (GWAS) of behaviors measured in an open field, including locomotion, novel object interaction, and social interaction. We identified 30 genome-wide significant quantitative trait loci (QTL). Using multiple criteria, including the presence of high impact genomic variants and co-localization of cis-eQTL, we identified 17 candidate genes (Adarb2, Ankrd26, Cacna1c, Cacng4, Clock, Ctu2, Cyp26b1, Dnah9, Gda, Grxcr1, Eva1a, Fam114a1, Kcnj9, Mlf2, Rab27b, Sec11a, and Ube2h) for these traits. Many of these genes have been implicated by human GWAS of various psychiatric or drug abuse related traits. In addition, there are other candidate genes that likely represent novel findings that can be the catalyst for future molecular and genetic insights into human psychiatric diseases. Together, these findings provide strong support for the use of the HS population to study psychiatric disorders.
Collapse
Affiliation(s)
- Mustafa Hakan Gunturkun
- Department of Pharmacology, Addiction Science and Toxicology, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Tengfei Wang
- Department of Pharmacology, Addiction Science and Toxicology, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Apurva S. Chitre
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| | - Angel Garcia Martinez
- Department of Pharmacology, Addiction Science and Toxicology, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Katie Holl
- Department of Internal Medicine, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Celine St. Pierre
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| | - Hannah Bimschleger
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| | - Jianjun Gao
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| | - Riyan Cheng
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| | - Oksana Polesskaya
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| | - Leah C. Solberg Woods
- Department of Internal Medicine, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Abraham A. Palmer
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
- Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Hao Chen
- Department of Pharmacology, Addiction Science and Toxicology, University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
16
|
Kaimala S, Kumar CA, Allouh MZ, Ansari SA, Emerald BS. Epigenetic modifications in pancreas development, diabetes, and therapeutics. Med Res Rev 2022; 42:1343-1371. [PMID: 34984701 PMCID: PMC9306699 DOI: 10.1002/med.21878] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 11/24/2021] [Accepted: 12/18/2021] [Indexed: 12/26/2022]
Abstract
A recent International Diabetes Federation report suggests that more than 463 million people between 20 and 79 years have diabetes. Of the 20 million women affected by hyperglycemia during pregnancy, 84% have gestational diabetes. In addition, more than 1.1 million children or adolescents are affected by type 1 diabetes. Factors contributing to the increase in diabetes prevalence are complex and include contributions from genetic, environmental, and epigenetic factors. However, molecular regulatory mechanisms influencing the progression of an individual towards increased susceptibility to metabolic diseases such as diabetes are not fully understood. Recent studies suggest that the pathogenesis of diabetes involves epigenetic changes, resulting in a persistently dysregulated metabolic phenotype. This review summarizes the role of epigenetic mechanisms, mainly DNA methylation and histone modifications, in the development of the pancreas, their contribution to the development of diabetes, and the potential employment of epigenetic modulators in diabetes treatment.
Collapse
Affiliation(s)
- Suneesh Kaimala
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE
| | - Challagandla Anil Kumar
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE
| | - Mohammed Z Allouh
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE
| | - Suraiya Anjum Ansari
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE.,Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE
| | - Bright Starling Emerald
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE.,Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE
| |
Collapse
|
17
|
Jung BC, Kang S. Epigenetic regulation of inflammatory factors in adipose tissue. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:159019. [PMID: 34332076 DOI: 10.1016/j.bbalip.2021.159019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/10/2021] [Accepted: 07/25/2021] [Indexed: 12/13/2022]
Abstract
Obesity is a strong risk factor for insulin resistance. Chronic low-grade tissue inflammation and systemic inflammation have been proposed as major mechanisms that promote insulin resistance in obesity. Adipose tissue has been recognized as a nexus between inflammation and metabolism, but how exactly inflammatory gene expression is orchestrated during the development of obesity is not well understood. Epigenetic modifications are defined as heritable changes in gene expression and cellular function without changes to the original DNA sequence. The major epigenetic mechanisms include DNA methylation, histone modification, noncoding RNAs, nucleopositioning/remodeling and chromatin reorganization. Epigenetic mechanisms provide a critical layer of gene regulation in response to environmental changes. Accumulating evidence supports that epigenetics plays a large role in the regulation of inflammatory genes in adipocytes and adipose-resident immune cell types. This review focuses on the association between adipose tissue inflammation in obesity and major epigenetic modifications.
Collapse
Affiliation(s)
- Byung Chul Jung
- Nutritional Sciences and Toxicology Department, University of California Berkeley, Berkeley, CA 94720, United States of America
| | - Sona Kang
- Nutritional Sciences and Toxicology Department, University of California Berkeley, Berkeley, CA 94720, United States of America.
| |
Collapse
|
18
|
Aravani D, Kassi E, Chatzigeorgiou A, Vakrou S. Cardiometabolic Syndrome: An Update on Available Mouse Models. Thromb Haemost 2021; 121:703-715. [PMID: 33280078 DOI: 10.1055/s-0040-1721388] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cardiometabolic syndrome (CMS), a disease entity characterized by abdominal obesity, insulin resistance (IR), hypertension, and hyperlipidemia, is a global epidemic with approximately 25% prevalence in adults globally. CMS is associated with increased risk for cardiovascular disease (CVD) and development of diabetes. Due to its multifactorial etiology, the development of several animal models to simulate CMS has contributed significantly to the elucidation of the disease pathophysiology and the design of therapies. In this review we aimed to present the most common mouse models used in the research of CMS. We found that CMS can be induced either by genetic manipulation, leading to dyslipidemia, lipodystrophy, obesity and IR, or obesity and hypertension, or by administration of specific diets and drugs. In the last decade, the ob/ob and db/db mice were the most common obesity and IR models, whereas Ldlr-/- and Apoe-/- were widely used to induce hyperlipidemia. These mice have been used either as a single transgenic or combined with a different background with or without diet treatment. High-fat diet with modifications is the preferred protocol, generally leading to increased body weight, hyperlipidemia, and IR. A plethora of genetically engineered mouse models, diets, drugs, or synthetic compounds that are available have advanced the understanding of CMS. However, each researcher should carefully select the most appropriate model and validate its consistency. It is important to consider the differences between strains of the same animal species, different animals, and most importantly differences to human when translating results.
Collapse
Affiliation(s)
- Dimitra Aravani
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Eva Kassi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Antonios Chatzigeorgiou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine Carl Gustav Carus of TU Dresden, Dresden, Germany
| | - Styliani Vakrou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Department of Cardiology, "Laiko" General Hospital, Athens, Greece
| |
Collapse
|
19
|
Zidan NI, AbdElmonem DM, Elsheikh HM, Metwally EA, Mokhtar WA, Osman GM. Relation between mutations in the 5' UTR of ANKRD26 gene and inherited thrombocytopenia with predisposition to myeloid malignancies. An Egyptian study. Platelets 2020; 32:642-650. [PMID: 32659145 DOI: 10.1080/09537104.2020.1790512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Inherited thrombocytopenias are a heterogeneous group of diseases characterized by a reduced number of platelets and a bleeding tendency that ranges from very mild to life threatening especially in surgery. Mutations in the 5' untranslated region (UTR) of Ankirin repeat domain 26 (ANKRD26) are responsible for autosomal-dominant form of thrombocytopenia, that is known as ANKRD26-related thrombocytopenia (ANKRD26 RT), characterized by a moderate thrombocytopenia with mild propensity to bleeding and predisposition to hematological malignancies including AML and MDS. We included 90 unrelated patients with inherited thrombocytopenia. In addition, we investigated 45 patients with ITP. Peripheral blood and bone marrow samples were collected and examined and molecular detection of mutations in the 5︡ UTR of ANKRD26 gene was performed for all the patients. Also, screening of the mutation and development of myeloid malignancies in the extended series of the affected subjects was done. ANKRD26 mutations were identified in 10% of the patients with inherited thrombocytopenia. The most common types were c.128 G > A and c.127A>T, while no mutations were found in the ITP group. In those affected, the median number of platelets was 69 x109/L (43-106) with normal MPV in most of the patients (9.4-11.6). There was a statistically significant increase in the unexpected high frequency of myeloid malignancies in the extended series of the mutated subjects compared with the ITP group-extended series (P < .001). So, we can conclude that ANKRD26 RT is associated with increased risk for developing myeloid malignancies and ANKRD26 mutations can represent a valuable tool for making therapeutic decisions.
Collapse
Affiliation(s)
- Nahla Ibrahim Zidan
- Clinical Pathology Department. Faculty of Human Medicine, Zagazig University, Zagazig, Egypt
| | | | - Haitham Mohamed Elsheikh
- Hematology Unit of Internal Medicine Department. Faculty of Human Medicine, Zagazig University, Zagazig, Egypt
| | - Elsayed Anany Metwally
- Hematology Unit of Internal Medicine Department. Faculty of Human Medicine, Zagazig University, Zagazig, Egypt
| | | | - Gamal Mohamed Osman
- General Surgery Department. Faculty of Human Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
20
|
Wendt R, He T, Latosinska A, Siwy J, Mischak H, Beige J. Proteomic characterization of obesity-related nephropathy. Clin Kidney J 2020; 13:684-692. [PMID: 32905225 PMCID: PMC7467596 DOI: 10.1093/ckj/sfaa016] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 01/27/2020] [Indexed: 12/13/2022] Open
Abstract
Background Nephropathy related to obesity lacks a pathophysiological understanding and definite diagnostic pathways by biomarkers. Methods In this study we investigated the association between urinary peptides and body mass index (BMI) and renal function in proteome data sets from 4015 individuals. Results A total of 365 urinary peptides were identified to be significantly associated with BMI. The majority of these peptides were collagen fragments. In addition, most of the peptides also demonstrated a significant concordant association with estimated glomerular filtration rate (eGFR) in the investigated cohort, with the presence of diabetes exhibiting no significant association. A new classifier was developed, based on 150 urinary peptides, that enabled the distinction of non-obese subjects with preserved kidney function from obese, non-diabetic subjects with eGFR >45 mL/min/1.73 m2 in an independent cohort, with an area under the curve of 0.93. Conclusions On a molecular level, the data strongly suggest a link between obesity and fibrosis, which may be a major cause of obesity-related nephropathy.
Collapse
Affiliation(s)
- Ralph Wendt
- Department of Nephrology and Kuratorium for Dialysis and Transplantation Renal Unit, Hospital St Georg, Leipzig, Germany
| | - Tianlin He
- Mosaiques Diagnostics, Hannover, Germany
| | | | | | | | - Joachim Beige
- Department of Nephrology and Kuratorium for Dialysis and Transplantation Renal Unit, Hospital St Georg, Leipzig, Germany.,Department of Nephrology, Martin-Luther-University Halle/Wittenberg, Halle, Germany
| |
Collapse
|
21
|
Xu Q, Chen J, Peng M, Duan S, Hu Y, Guo D, Geng J, Zhou J. POTEE promotes colorectal carcinoma progression via activating the Rac1/Cdc42 pathway. Exp Cell Res 2020; 390:111933. [PMID: 32142855 DOI: 10.1016/j.yexcr.2020.111933] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/22/2020] [Accepted: 02/27/2020] [Indexed: 12/21/2022]
Abstract
Current studies have shown that POTE ankyrin domain family members have high expressions as tumor antigens in malignant tumors, such as prostate cancer, ovarian cancer, breast cancer and the like. POTEE is a member of the POTE anchor protein family E. However, its role in colorectal carcinoma (CRC) has not been studied. In this study, the function of POTEE in CRC was examined for the first time and its correlation with CRC cell biological behaviors was analyzed. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR), western blotting, and immunohistochemistry revealed that POTEE was remarkably overexpressed in CRC and associated with an aggressive phenotype. We also found that POTEE was localized in the cytoplasm. In addition, downregulation of POTEE expression can notably inhibit the proliferation, migration, and invasion of CRC cell in vitro, and repressed tumor growth and metastasis in vivo. In contrast, overexpression of POTEE could promote the aggressive behaviors of CRC cells. Mechanistically, POTEE promoted CRC migration, invasion and epithelial-mesenchymal transition (EMT) by increasing the activation of Rac1 and Cdc42. To summarize, these results suggested that POTEE might serve as an oncogene for CRC tumorigenesis and progression, and may become a novel molecular marker for clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Qiong Xu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jianxiong Chen
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Man Peng
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Shiyu Duan
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yukun Hu
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Dan Guo
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jian Geng
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Jun Zhou
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
22
|
Desiderio A, Longo M, Parrillo L, Campitelli M, Cacace G, de Simone S, Spinelli R, Zatterale F, Cabaro S, Dolce P, Formisano P, Milone M, Miele C, Beguinot F, Raciti GA. Epigenetic silencing of the ANKRD26 gene correlates to the pro-inflammatory profile and increased cardio-metabolic risk factors in human obesity. Clin Epigenetics 2019; 11:181. [PMID: 31801613 PMCID: PMC6894277 DOI: 10.1186/s13148-019-0768-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 10/21/2019] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Obesity is a major worldwide threat to human health. Increasing evidence indicates that epigenetic modifications have a major impact on the natural history of this disorder. Ankyrin Repeat Domain 26 (Ankrd26) is involved in the development of both obesity and diabetes in mice and is modulated by environmentally induced epigenetic modifications. This study aims at investigating whether impaired ANKRD26 gene expression and methylation occur in human obesity and whether they correlate to the phenotype of these subjects. RESULTS We found that downregulation of ANKRD26 mRNA and hyper-methylation of a specific region of the ANKRD26 promoter, embedding the CpG dinucleotides - 689, - 659, and - 651 bp, occur in peripheral blood leukocytes from obese compared with the lean subjects. ANKRD26 gene expression correlates inversely to the percentage of DNA methylation at these 3 CpG sites. Luciferase assays reveal a cause-effect relationship between DNA methylation at the 3 CpG sites and ANKRD26 gene expression. Finally, both ANKRD26 mRNA levels and CpG methylation correlate to body mass index and to the pro-inflammatory status and the increased cardio-metabolic risk factors of these same subjects. CONCLUSION Downregulation of the ANKRD26 gene and hyper-methylation at specific CpGs of its promoter are common abnormalities in obese patients. These changes correlate to the pro-inflammatory profile and the cardio-metabolic risk factors of the obese individuals, indicating that, in humans, they mark adverse health outcomes.
Collapse
Affiliation(s)
- Antonella Desiderio
- URT Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Via Pansini 5, 80131, Naples, Italy
- Department of Translational Medicine, Federico II University of Naples, Via Pansini 5, 80131, Naples, Italy
| | - Michele Longo
- URT Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Via Pansini 5, 80131, Naples, Italy
- Department of Translational Medicine, Federico II University of Naples, Via Pansini 5, 80131, Naples, Italy
| | - Luca Parrillo
- URT Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Via Pansini 5, 80131, Naples, Italy
- Department of Translational Medicine, Federico II University of Naples, Via Pansini 5, 80131, Naples, Italy
| | - Michele Campitelli
- URT Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Via Pansini 5, 80131, Naples, Italy
- Department of Translational Medicine, Federico II University of Naples, Via Pansini 5, 80131, Naples, Italy
| | - Giuseppe Cacace
- URT Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Via Pansini 5, 80131, Naples, Italy
- Department of Translational Medicine, Federico II University of Naples, Via Pansini 5, 80131, Naples, Italy
| | - Sonia de Simone
- URT Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Via Pansini 5, 80131, Naples, Italy
- Department of Translational Medicine, Federico II University of Naples, Via Pansini 5, 80131, Naples, Italy
| | - Rosa Spinelli
- URT Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Via Pansini 5, 80131, Naples, Italy
- Department of Translational Medicine, Federico II University of Naples, Via Pansini 5, 80131, Naples, Italy
| | - Federica Zatterale
- URT Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Via Pansini 5, 80131, Naples, Italy
- Department of Translational Medicine, Federico II University of Naples, Via Pansini 5, 80131, Naples, Italy
| | - Serena Cabaro
- URT Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Via Pansini 5, 80131, Naples, Italy
- Department of Translational Medicine, Federico II University of Naples, Via Pansini 5, 80131, Naples, Italy
| | - Pasquale Dolce
- Department of Public Health, Federico II University of Naples, Via Pansini 5, 80131, Naples, Italy
| | - Pietro Formisano
- URT Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Via Pansini 5, 80131, Naples, Italy
- Department of Translational Medicine, Federico II University of Naples, Via Pansini 5, 80131, Naples, Italy
| | - Marco Milone
- Department of Clinical Medicine and Surgery, Federico II University of Naples, Via Pansini 5, 80131, Naples, Italy
| | - Claudia Miele
- URT Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Via Pansini 5, 80131, Naples, Italy.
- Department of Translational Medicine, Federico II University of Naples, Via Pansini 5, 80131, Naples, Italy.
| | - Francesco Beguinot
- URT Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Via Pansini 5, 80131, Naples, Italy.
- Department of Translational Medicine, Federico II University of Naples, Via Pansini 5, 80131, Naples, Italy.
| | - Gregory A Raciti
- URT Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Via Pansini 5, 80131, Naples, Italy
- Department of Translational Medicine, Federico II University of Naples, Via Pansini 5, 80131, Naples, Italy
| |
Collapse
|
23
|
Shen Z, Feng X, Fang Y, Li Y, Li Z, Zhan Y, Lin M, Li G, Ding Y, Deng H. POTEE drives colorectal cancer development via regulating SPHK1/p65 signaling. Cell Death Dis 2019; 10:863. [PMID: 31723122 PMCID: PMC6853991 DOI: 10.1038/s41419-019-2046-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 09/08/2019] [Accepted: 10/03/2019] [Indexed: 12/24/2022]
Abstract
Aberrant gene expression plays critical roles in the development of colorectal cancer (CRC). Here we show that POTEE, which was identified as a member E of POTE ankyrin domain family, was significantly upregulated in colorectal tumors and predicted poor overall survival of CRC patients. In CRC cells, POTEE could act as an oncogene and could promote cell growth, cell-cycle progression, inhibit apoptosis, and elevates xenograft tumor growth. Mechanically, we used microarray analysis and identified a POTEE/SPHK1/p65 signaling axis, which affected the biological functions of CRC cells. Further evaluation showed that overexpression of POTEE could increase the protein expression of SPHK1, followed by promoting the phosphorylation and activation of p65 protein. Altogether, our findings suggested a POTEE/SPHK1/p65 signaling axis could promote colorectal tumorigenesis and POTEE might potentially serve as a novel biomarker for the diagnosis and an intervention of colorectal cancer.
Collapse
Affiliation(s)
- Zhiyong Shen
- Department of General Surgery, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Ave., 510515, Guangzhou, Guangdong Province, China
| | - Xiaochuang Feng
- Department of General Surgery, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Ave., 510515, Guangzhou, Guangdong Province, China
| | - Yuan Fang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Ave., 510515, Guangzhou, Guangdong Province, China
| | - Yongsheng Li
- Department of General Surgery, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Ave., 510515, Guangzhou, Guangdong Province, China
| | - Zhenkang Li
- Department of General Surgery, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Ave., 510515, Guangzhou, Guangdong Province, China
| | - Yizhi Zhan
- Department of Pathology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Ave., 510515, Guangzhou, Guangdong Province, China
| | - Mingdao Lin
- Department of General Surgery, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Ave., 510515, Guangzhou, Guangdong Province, China
| | - Guoxin Li
- Department of General Surgery, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Ave., 510515, Guangzhou, Guangdong Province, China
| | - Yi Ding
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Ave., 510515, Guangzhou, Guangdong Province, China.
| | - Haijun Deng
- Department of General Surgery, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Ave., 510515, Guangzhou, Guangdong Province, China.
| |
Collapse
|
24
|
Galera P, Dulau-Florea A, Calvo KR. Inherited thrombocytopenia and platelet disorders with germline predisposition to myeloid neoplasia. Int J Lab Hematol 2019; 41 Suppl 1:131-141. [PMID: 31069978 DOI: 10.1111/ijlh.12999] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 02/07/2019] [Accepted: 02/10/2019] [Indexed: 12/21/2022]
Abstract
Advances in molecular genetic sequencing techniques have contributed to the elucidation of previously unknown germline mutations responsible for inherited thrombocytopenia (IT). Regardless of age of presentation and severity of symptoms related to thrombocytopenia and/or platelet dysfunction, a subset of patients with IT are at increased risk of developing myeloid neoplasms during their life time, particularly those with germline autosomal dominant mutations in RUNX1, ANKRD26, and ETV6. Patients may present with isolated thrombocytopenia and megakaryocytic dysmorphia or atypia on baseline bone marrow evaluation, without constituting myelodysplasia (MDS). Bone marrow features may overlap with idiopathic thrombocytopenic purpura (ITP) or sporadic MDS leading to misdiagnosis. Progression to myelodysplastic syndrome/ acute myeloid leukemia (MDS/AML) may be accompanied by progressive bi- or pancytopenia, multilineage dysplasia, increased blasts, cytogenetic abnormalities, acquisition of bi-allelic mutations in the underlying gene with germline mutation, or additional somatic mutations in genes associated with myeloid malignancy. A subset of patients may present with MDS/AML at a young age, underscoring the growing concern for evaluating young patients with MDS/AML for germline mutations predisposing to myeloid neoplasm. Early recognition of germline mutation and predisposition to myeloid malignancy permits appropriate treatment, adequate monitoring for disease progression, proper donor selection for hematopoietic stem cell transplantation, as well as genetic counseling of the affected patients and their family members. Herein, we describe the clinical and diagnostic features of IT with germline mutations predisposing to myeloid neoplasms focusing on mutations involving RUNX1, ANKRD26, and ETV6.
Collapse
Affiliation(s)
- Pallavi Galera
- Department of Laboratory Medicine, Hematology Section, Clinical Center, National Institutes of Health (NIH), Bethesda, Maryland
| | - Alina Dulau-Florea
- Department of Laboratory Medicine, Hematology Section, Clinical Center, National Institutes of Health (NIH), Bethesda, Maryland
| | - Katherine R Calvo
- Department of Laboratory Medicine, Hematology Section, Clinical Center, National Institutes of Health (NIH), Bethesda, Maryland
| |
Collapse
|
25
|
Churpek JE, Bresnick EH. Transcription factor mutations as a cause of familial myeloid neoplasms. J Clin Invest 2019; 129:476-488. [PMID: 30707109 DOI: 10.1172/jci120854] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The initiation and evolution of myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML) are driven by genomic events that disrupt multiple genes controlling hematopoiesis. Human genetic studies have discovered germline mutations in single genes that instigate familial MDS/AML. The best understood of these genes encode transcription factors, such as GATA-2, RUNX1, ETV6, and C/EBPα, which establish and maintain genetic networks governing the genesis and function of blood stem and progenitor cells. Many questions remain unanswered regarding how genes and circuits within these networks function in physiology and disease and whether network integrity is exquisitely sensitive to or efficiently buffered from perturbations. In familial MDS/AML, mutations change the coding sequence of a gene to generate a mutant protein with altered activity or introduce frameshifts or stop codons or disrupt regulatory elements to alter protein expression. Each mutation has the potential to exert quantitatively and qualitatively distinct influences on networks. Consistent with this mechanistic diversity, disease onset is unpredictable and phenotypic variability can be considerable. Efforts to elucidate mechanisms and forge prognostic and therapeutic strategies must therefore contend with a spectrum of patient-specific leukemogenic scenarios. Here we illustrate mechanistic advances in our understanding of familial MDS/AML syndromes caused by germline mutations of hematopoietic transcription factors.
Collapse
Affiliation(s)
- Jane E Churpek
- Section of Hematology/Oncology and Center for Clinical Cancer Genetics, The University of Chicago, Chicago, Illinois, USA
| | - Emery H Bresnick
- UW-Madison Blood Research Program, Department of Cell and Regenerative Biology, Wisconsin Institutes for Medical Research, UW Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| |
Collapse
|
26
|
Identification of MΦ specific POTEE expression: Its role in mTORC2 activation via protein-protein interaction in TAMs. Cell Immunol 2018; 335:30-40. [PMID: 30420269 DOI: 10.1016/j.cellimm.2018.10.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/26/2018] [Accepted: 10/30/2018] [Indexed: 01/28/2023]
Abstract
POTE is known as cancer antigen, expressed in many cancers, along with very few normal tissues like prostate, ovary, testes and embryo. Till date, POTEE identified as majorly expressed POTE paralog. Functionally, POTEF regulates TLR signaling which play important role in innate immunity provided clue about expression of POTE in immune cells. We have chosen three Thp1monocytes, Jurkat T1 and MΦ cells as a model. Here, first time we report expression of POTEE in immune cells specifically only in MΦ but not in monocytes or T-cells. In addition, expression level remains unaltered in MΦ subtypes M1 and M2 and MΦ subjected to various stresses, except MΦs treated with Hyp-CM where MΦs acquires properties of TAMs. In TAMs, POTEE was involved differential protein-protein interaction with mTOR, RICTOR, and Rad51 indicating its biological role in cell invasion through mTORC2 activation. siRNA mediated knockdown of POTEE suggests its importance in cell survival of MΦs as well as TAMs.
Collapse
|
27
|
Vekariya U, Saxena R, Singh P, Rawat K, Kumar B, Kumari S, Agnihotri SK, Kaur S, Sachan R, Nazir A, Bhadauria S, Sachdev M, Tripathi RK. HIV-1 Nef-POTEE; A novel interaction modulates macrophage dissemination via mTORC2 signaling pathway. Life Sci 2018; 214:158-166. [PMID: 30391463 DOI: 10.1016/j.lfs.2018.10.068] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 10/29/2018] [Indexed: 12/16/2022]
Abstract
AIMS Human immunodeficiency virus -1 [HIV-1] Nef, localizes in different cellular compartments and modulates several cellular pathways. Nef promotes virus pathogenicity through alteration in cell surface receptor expression, apoptosis, protein trafficking etc. Nef regulates viral pathogenesis through interaction with different host proteins. Thus, molecular mechanisms of pathogenesis could be deciphered by identifying novel Nef interacting proteins. MAIN METHODS HIV-1 Nef interacting proteins were identified by pull down assay and MALDI-TOF analysis. The interaction was further validated through mammalian two hybrid assay. Functional role of this interaction was identified by immunoprecipitation assay, cell invasion and cell migration studies. Fold Change in mRNA levels of CD163, CD206, CCL17 and CCL18 was analyzed using qPCR. KEY FINDINGS In current study, C. elegans protein ACT4C and its human homolog POTEE was identified to be interacting with Nef. This interaction activates mTORC2 complex, which in-turn activates AKT and PKC-α. The activation of mTORC2 complex was found to be initiated by the interaction of Nef, mTORC2, Rictor to POTEE. The cellular phenotype and functions affected by Nef-POTEE interaction resulted in significant increase in cell invasion and migration of macrophages (MΦ). SIGNIFICANCE MΦ is primary target of HIV-1 infection where HIV-1 replicates and polarizes immunosuppressive M2 phenotype. Combine effect of M2 phenotype and Viral-host protein interactions compromise the MΦ associated physiological functions. Infected MΦ dissemination into other system also leads to HIV-1 induced malignancies. Therefore, targeting POTEE-Nef interaction can lead to formulating better therapeutic strategy against HIV-1.
Collapse
Affiliation(s)
- Umeshkumar Vekariya
- Toxicology and Experimental Medicine Division, CSIR-Central Drug Research Institute, Lucknow, UP, India
| | - Reshu Saxena
- Toxicology and Experimental Medicine Division, CSIR-Central Drug Research Institute, Lucknow, UP, India
| | - Poonam Singh
- Toxicology and Experimental Medicine Division, CSIR-Central Drug Research Institute, Lucknow, UP, India
| | - Kavita Rawat
- Toxicology and Experimental Medicine Division, CSIR-Central Drug Research Institute, Lucknow, UP, India
| | - Balawant Kumar
- Toxicology and Experimental Medicine Division, CSIR-Central Drug Research Institute, Lucknow, UP, India
| | - Sushila Kumari
- Toxicology and Experimental Medicine Division, CSIR-Central Drug Research Institute, Lucknow, UP, India
| | | | - Supinder Kaur
- Toxicology and Experimental Medicine Division, CSIR-Central Drug Research Institute, Lucknow, UP, India
| | - Rekha Sachan
- Department of Obstetrics & Gynecology, King George Medical University, Lucknow, UP, India
| | - Aamir Nazir
- Toxicology and Experimental Medicine Division, CSIR-Central Drug Research Institute, Lucknow, UP, India
| | - Smrati Bhadauria
- Toxicology and Experimental Medicine Division, CSIR-Central Drug Research Institute, Lucknow, UP, India
| | - Monika Sachdev
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow, UP, India
| | - Raj Kamal Tripathi
- Toxicology and Experimental Medicine Division, CSIR-Central Drug Research Institute, Lucknow, UP, India.
| |
Collapse
|
28
|
Dervishi E, Blanco M, Rodríguez-Sánchez JA, Sanz A, Calvo JH, Casasús I. Milk yield and genomewide expression profiling in the mammary gland of beef primiparous cows in response to the dietary management during the pre- and postweaning periods. J Anim Sci 2018; 95:4274-4287. [PMID: 29108071 DOI: 10.2527/jas2017.1736] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Accelerated growth programs during prepubertal periods have been promoted to advance the first calving of beef heifers. The objectives of the present study were to evaluate nutrition-induced changes on first lactation milk yield and composition and on gene expression of the mammary gland in Parda de Montaña primiparous cows. Female calves ( = 16) were involved in a 2 × 2 factorial experiment. In the preweaning period (PRE-W; 0-6 mo), female calves were either fed a creep feed supplement (Creep) or fed only their dam's milk (Control). In the postweaning period (POST-W; 6-15 mo), heifers received either a high-energy diet (91.7 MJ/d) or a moderate-energy diet (79.3 MJ/d). All the heifers were managed together from breeding (15 mo) to the end of their first lactation (32 mo). Animal performance; milk production and quantity during the first lactation; plasma glucose, IGF-I, and leptin concentrations; and RNA samples from the mammary gland at the end of the first lactation of the primiparous cows (32 mo) were analyzed. The BW and ADG of the primiparous cow during its first lactation were not different among treatments; however, creep feeding during PRE-W reduced milk production ( < 0.01), milk CP, crude fat, lactose, nonfat solids, and casein content throughout lactation and increased somatic cell count in the third ( < 0.05) and fourth month of lactation ( < 0.10). The energy level during the POST-W had no effect on milk production and quality. Gene expression in the mammary gland was affected by the diet in the PRE-W and POST-W, with the PRE-W diet having the greatest impact. During the PRE-W, creep feeding resulted in upregulation of genes related to immune response and chemokine activity, suggesting that these animals might be in a compromised immune status. Therefore, this strategy would not be recommendable; meanwhile, increasing the energy level in the diet during the POST-W would be recommendable, because it had no deleterious effects on milk yield and composition.
Collapse
|
29
|
Balduini A, Raslova H, Di Buduo CA, Donada A, Ballmaier M, Germeshausen M, Balduini CL. Clinic, pathogenic mechanisms and drug testing of two inherited thrombocytopenias, ANKRD26-related Thrombocytopenia and MYH9-related diseases. Eur J Med Genet 2018; 61:715-722. [PMID: 29545013 DOI: 10.1016/j.ejmg.2018.01.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 01/08/2018] [Accepted: 01/27/2018] [Indexed: 12/21/2022]
Abstract
Inherited thrombocytopenias (ITs) are a heterogeneous group of disorders characterized by low platelet count resulting in impaired hemostasis. Patients can have spontaneous hemorrhages and/or excessive bleedings provoked by hemostatic challenges as trauma or surgery. To date, ITs encompass 32 different rare monogenic disorders caused by mutations of 30 genes. This review will focus on the major discoveries that have been made in the last years on the diagnosis, treatment and molecular mechanisms of ANKRD26-Related Thrombocytopenia and MYH9-Related Diseases. Furthermore, we will discuss the use a Thrombopoietin mimetic as a novel approach to treat the thrombocytopenia in these patients. We will propose the use of a new 3D bone marrow model to study the mechanisms of action of these drugs and to test their efficacy and safety in patients. The overall purpose of this review is to point out that important progresses have been made in understanding the pathogenesis of ANKRD26-Related Thrombocytopenia and MYH9-Related Diseases and new therapeutic approaches have been proposed and tested. Future advancement in this research will rely in the development of more physiological models to study the regulation of human platelet biogenesis, disease mechanisms and specific pharmacologic targets.
Collapse
Affiliation(s)
- Alessandra Balduini
- University of Pavia, Pavia, Italy; IRCCS Policlinico San Matteo Foundation, Pavia, Italy.
| | - Hana Raslova
- INSERM UMR 1170, Gustave Roussy Cancer Campus, Université Paris-Saclay, Equipe Labellisée par la Ligue Nationale Contre le Cancer, Villejuif, France
| | - Christian A Di Buduo
- University of Pavia, Pavia, Italy; IRCCS Policlinico San Matteo Foundation, Pavia, Italy
| | - Alessandro Donada
- INSERM UMR 1170, Gustave Roussy Cancer Campus, Université Paris-Saclay, Equipe Labellisée par la Ligue Nationale Contre le Cancer, Villejuif, France
| | | | | | - Carlo L Balduini
- University of Pavia, Pavia, Italy; IRCCS Policlinico San Matteo Foundation, Pavia, Italy.
| |
Collapse
|
30
|
Baik M, Kang HJ, Park SJ, Na SW, Piao M, Kim SY, Fassah DM, Moon YS. TRIENNIAL GROWTH AND DEVELOPMENT SYMPOSIUM: Molecular mechanisms related to bovine intramuscular fat deposition in the longissimus muscle. J Anim Sci 2017; 95:2284-2303. [PMID: 28727015 DOI: 10.2527/jas.2016.1160] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The intramuscular fat (IMF) content of the LM, also known as marbling, is particularly important in determining the price of beef in Korea, Japan, and the United States. Deposition of IMF is influenced by both genetic (e.g., breed, gender, and genotype) and nongenetic factors (e.g., castration, nutrition, stressors, animal weight, and age). Castration of bulls markedly increases deposition of IMF, resulting in improved beef quality. Here, we present a comparative gene expression approach between bulls and steers. Transcriptomic and proteomic studies have demonstrated that the combined effects of increases in lipogenesis, fatty acid uptake, and fatty acid esterification and decreased lipolysis are associated with increased IMF deposition in the LM. Several peripheral tissues (LM, adipose tissues, and the liver) are involved in lipid metabolism. Therefore, understanding the significance of the tissue network in lipid metabolism is important. Here, we demonstrate that lipid metabolism in LM tissues is crucial for IMF deposition, whereas lipid metabolism in the liver plays only a minor role. Metabolism of body fat and IMF deposition in bovine species has similarities with these processes in metabolic diseases, such as obesity in humans and rodents. Extensive studies on metabolic diseases using epigenome modification (DNA methylation, histone modification, and microRNA), microbial metagenomics, and metabolomics have been performed in humans and rodents, and new findings have been reported using these technologies. The importance of applying "omics" fields (epigenomics, metagenomics, and metabolomics) to the study of IMF deposition in cattle is described. New information on the molecular mechanisms of IMF deposition may be used to design nutritional or genetic methods to manipulate IMF deposition and to modify fatty acid composition in beef cattle. Applying nutrigenomics could maximize the expression of genetic potential of economically important traits (e.g., marbling) in animals.
Collapse
|
31
|
Léon C, Dupuis A, Gachet C, Lanza F. The contribution of mouse models to the understanding of constitutional thrombocytopenia. Haematologica 2017; 101:896-908. [PMID: 27478199 DOI: 10.3324/haematol.2015.139394] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 05/04/2016] [Indexed: 11/09/2022] Open
Abstract
Constitutional thrombocytopenias result from platelet production abnormalities of hereditary origin. Long misdiagnosed and poorly studied, knowledge about these rare diseases has increased considerably over the last twenty years due to improved technology for the identification of mutations, as well as an improvement in obtaining megakaryocyte culture from patient hematopoietic stem cells. Simultaneously, the manipulation of mouse genes (transgenesis, total or conditional inactivation, introduction of point mutations, random chemical mutagenesis) have helped to generate disease models that have contributed greatly to deciphering patient clinical and laboratory features. Most of the thrombocytopenias for which the mutated genes have been identified now have a murine model counterpart. This review focuses on the contribution that these mouse models have brought to the understanding of hereditary thrombocytopenias with respect to what was known in humans. Animal models have either i) provided novel information on the molecular and cellular pathways that were missing from the patient studies; ii) improved our understanding of the mechanisms of thrombocytopoiesis; iii) been instrumental in structure-function studies of the mutated gene products; and iv) been an invaluable tool as preclinical models to test new drugs or develop gene therapies. At present, the genetic determinants of thrombocytopenia remain unknown in almost half of all cases. Currently available high-speed sequencing techniques will identify new candidate genes, which will in turn allow the generation of murine models to confirm and further study the abnormal phenotype. In a complementary manner, programs of random mutagenesis in mice should also identify new candidate genes involved in thrombocytopenia.
Collapse
Affiliation(s)
- Catherine Léon
- UMR_S949, INSERM, Strasbourg, France Etablissement Français du Sang-Alsace (EFS-Alsace), Strasbourg, France Université de Strasbourg, France Fédération de Médecine Translationnelle de Strasbourg (FMTS), France
| | - Arnaud Dupuis
- UMR_S949, INSERM, Strasbourg, France Etablissement Français du Sang-Alsace (EFS-Alsace), Strasbourg, France Université de Strasbourg, France Fédération de Médecine Translationnelle de Strasbourg (FMTS), France
| | - Christian Gachet
- UMR_S949, INSERM, Strasbourg, France Etablissement Français du Sang-Alsace (EFS-Alsace), Strasbourg, France Université de Strasbourg, France Fédération de Médecine Translationnelle de Strasbourg (FMTS), France
| | - François Lanza
- UMR_S949, INSERM, Strasbourg, France Etablissement Français du Sang-Alsace (EFS-Alsace), Strasbourg, France Université de Strasbourg, France Fédération de Médecine Translationnelle de Strasbourg (FMTS), France
| |
Collapse
|
32
|
Brown TM, Hammond SA, Behsaz B, Veldhoen N, Birol I, Helbing CC. De novo assembly of the ringed seal (Pusa hispida) blubber transcriptome: A tool that enables identification of molecular health indicators associated with PCB exposure. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 185:48-57. [PMID: 28187360 DOI: 10.1016/j.aquatox.2017.02.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 02/02/2017] [Accepted: 02/03/2017] [Indexed: 06/06/2023]
Abstract
The ringed seal, Pusa hispida, is a keystone species in the Arctic marine ecosystem, and is proving a useful marine mammal for linking polychlorinated biphenyl (PCB) exposure to toxic injury. We report here the first de novo assembled transcriptome for the ringed seal (342,863 transcripts, of which 53% were annotated), which we then applied to a population of ringed seals exposed to a local PCB source in Arctic Labrador, Canada. We found an indication of energy metabolism imbalance in local ringed seals (n=4), and identified five significant gene transcript targets: plasminogen receptor (Plg-R(KT)), solute carrier family 25 member 43 receptor (Slc25a43), ankyrin repeat domain-containing protein 26-like receptor (Ankrd26), HIS30 (not yet annotated) and HIS16 (not yet annotated) that may represent indicators of PCB exposure and effects in marine mammals. The abundance profiles of these five gene targets were validated in blubber samples collected from 43 ringed seals using a qPCR assay. The mRNA transcript levels for all five gene targets, (Plg-R(KT), r2=0.43), (Slc25a43, r2=0.51), (Ankrd26, r2=0.43), (HIS30, r2=0.39) and (HIS16, r2=0.31) correlated with increasing levels of blubber PCBs. Results from the present study contribute to our understanding of PCB associated effects in marine mammals, and provide new tools for future molecular and toxicology work in pinnipeds.
Collapse
Affiliation(s)
- Tanya M Brown
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8W 3P6, Canada; Memorial University, St. John's, Newfoundland A1B 3X9, Canada
| | - S Austin Hammond
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8W 3P6, Canada; Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC V5Z 4S6, Canada
| | - Bahar Behsaz
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC V5Z 4S6, Canada
| | - Nik Veldhoen
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8W 3P6, Canada
| | - Inanç Birol
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC V5Z 4S6, Canada
| | - Caren C Helbing
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8W 3P6, Canada.
| |
Collapse
|
33
|
Raciti GA, Spinelli R, Desiderio A, Longo M, Parrillo L, Nigro C, D'Esposito V, Mirra P, Fiory F, Pilone V, Forestieri P, Formisano P, Pastan I, Miele C, Beguinot F. Specific CpG hyper-methylation leads to Ankrd26 gene down-regulation in white adipose tissue of a mouse model of diet-induced obesity. Sci Rep 2017; 7:43526. [PMID: 28266632 PMCID: PMC5339897 DOI: 10.1038/srep43526] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 01/27/2017] [Indexed: 12/16/2022] Open
Abstract
Epigenetic modifications alter transcriptional activity and contribute to the effects of environment on the individual risk of obesity and Type 2 Diabetes (T2D). Here, we have estimated the in vivo effect of a fat-enriched diet (HFD) on the expression and the epigenetic regulation of the Ankyrin repeat domain 26 (Ankrd26) gene, which is associated with the onset of these disorders. In visceral adipose tissue (VAT), HFD exposure determined a specific hyper-methylation of Ankrd26 promoter at the −436 and −431 bp CpG sites (CpGs) and impaired its expression. Methylation of these 2 CpGs impaired binding of the histone acetyltransferase/transcriptional coactivator p300 to this same region, causing hypo-acetylation of histone H4 at the Ankrd26 promoter and loss of binding of RNA Pol II at the Ankrd26 Transcription Start Site (TSS). In addition, HFD increased binding of DNA methyl-transferases (DNMTs) 3a and 3b and methyl-CpG-binding domain protein 2 (MBD2) to the Ankrd26 promoter. More importantly, Ankrd26 down-regulation enhanced secretion of pro-inflammatory mediators by 3T3-L1 adipocytes as well as in human sera. Thus, in mice, the exposure to HFD induces epigenetic silencing of the Ankrd26 gene, which contributes to the adipose tissue inflammatory secretion profile induced by high-fat regimens.
Collapse
Affiliation(s)
- Gregory A Raciti
- URT of the Institute of Experimental Endocrinology and Oncology "G. Salvatore", National Council of Research, Naples, 80131, Italy.,Department of Translational Medical Sciences, University of Naples "Federico II", Naples, 80131, Italy
| | - Rosa Spinelli
- URT of the Institute of Experimental Endocrinology and Oncology "G. Salvatore", National Council of Research, Naples, 80131, Italy.,Department of Translational Medical Sciences, University of Naples "Federico II", Naples, 80131, Italy
| | - Antonella Desiderio
- URT of the Institute of Experimental Endocrinology and Oncology "G. Salvatore", National Council of Research, Naples, 80131, Italy.,Department of Translational Medical Sciences, University of Naples "Federico II", Naples, 80131, Italy
| | - Michele Longo
- URT of the Institute of Experimental Endocrinology and Oncology "G. Salvatore", National Council of Research, Naples, 80131, Italy.,Department of Translational Medical Sciences, University of Naples "Federico II", Naples, 80131, Italy
| | - Luca Parrillo
- URT of the Institute of Experimental Endocrinology and Oncology "G. Salvatore", National Council of Research, Naples, 80131, Italy.,Department of Translational Medical Sciences, University of Naples "Federico II", Naples, 80131, Italy
| | - Cecilia Nigro
- URT of the Institute of Experimental Endocrinology and Oncology "G. Salvatore", National Council of Research, Naples, 80131, Italy.,Department of Translational Medical Sciences, University of Naples "Federico II", Naples, 80131, Italy
| | - Vittoria D'Esposito
- URT of the Institute of Experimental Endocrinology and Oncology "G. Salvatore", National Council of Research, Naples, 80131, Italy.,Department of Translational Medical Sciences, University of Naples "Federico II", Naples, 80131, Italy
| | - Paola Mirra
- URT of the Institute of Experimental Endocrinology and Oncology "G. Salvatore", National Council of Research, Naples, 80131, Italy.,Department of Translational Medical Sciences, University of Naples "Federico II", Naples, 80131, Italy
| | - Francesca Fiory
- URT of the Institute of Experimental Endocrinology and Oncology "G. Salvatore", National Council of Research, Naples, 80131, Italy.,Department of Translational Medical Sciences, University of Naples "Federico II", Naples, 80131, Italy
| | - Vincenzo Pilone
- Bariatric and Metabolic Surgery Unit, University of Salerno, Salerno, 84084, Italy
| | - Pietro Forestieri
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, 80131, Italy
| | - Pietro Formisano
- URT of the Institute of Experimental Endocrinology and Oncology "G. Salvatore", National Council of Research, Naples, 80131, Italy.,Department of Translational Medical Sciences, University of Naples "Federico II", Naples, 80131, Italy
| | - Ira Pastan
- Laboratory of Molecular Biology (LMB), National Cancer Institute (NCI), National Institute of Health (NIH), Bethesda, MD 20892, USA
| | - Claudia Miele
- URT of the Institute of Experimental Endocrinology and Oncology "G. Salvatore", National Council of Research, Naples, 80131, Italy.,Department of Translational Medical Sciences, University of Naples "Federico II", Naples, 80131, Italy
| | - Francesco Beguinot
- URT of the Institute of Experimental Endocrinology and Oncology "G. Salvatore", National Council of Research, Naples, 80131, Italy.,Department of Translational Medical Sciences, University of Naples "Federico II", Naples, 80131, Italy
| |
Collapse
|
34
|
He L, Kernogitski Y, Kulminskaya I, Loika Y, Arbeev KG, Loiko E, Bagley O, Duan M, Yashkin A, Ukraintseva SV, Kovtun M, Yashin AI, Kulminski AM. Pleiotropic Meta-Analyses of Longitudinal Studies Discover Novel Genetic Variants Associated with Age-Related Diseases. Front Genet 2016; 7:179. [PMID: 27790247 PMCID: PMC5061751 DOI: 10.3389/fgene.2016.00179] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 09/21/2016] [Indexed: 01/31/2023] Open
Abstract
Age-related diseases may result from shared biological mechanisms in intrinsic processes of aging. Genetic effects on age-related diseases are often modulated by environmental factors due to their little contribution to fitness or are mediated through certain endophenotypes. Identification of genetic variants with pleiotropic effects on both common complex diseases and endophenotypes may reveal potential conflicting evolutionary pressures and deliver new insights into shared genetic contribution to healthspan and lifespan. Here, we performed pleiotropic meta-analyses of genetic variants using five NIH-funded datasets by integrating univariate summary statistics for age-related diseases and endophenotypes. We investigated three groups of traits: (1) endophenotypes such as blood glucose, blood pressure, lipids, hematocrit, and body mass index, (2) time-to-event outcomes such as the age-at-onset of diabetes mellitus (DM), cancer, cardiovascular diseases (CVDs) and neurodegenerative diseases (NDs), and (3) both combined. In addition to replicating previous findings, we identify seven novel genome-wide significant loci (< 5e-08), out of which five are low-frequency variants. Specifically, from Group 2, we find rs7632505 on 3q21.1 in SEMA5B, rs460976 on 21q22.3 (1 kb from TMPRSS2) and rs12420422 on 11q24.1 predominantly associated with a variety of CVDs, rs4905014 in ITPK1 associated with stroke and heart failure, rs7081476 on 10p12.1 in ANKRD26 associated with multiple diseases including DM, CVDs, and NDs. From Group 3, we find rs8082812 on 18p11.22 and rs1869717 on 4q31.3 associated with both endophenotypes and CVDs. Our follow-up analyses show that rs7632505, rs4905014, and rs8082812 have age-dependent effects on coronary heart disease or stroke. Functional annotation suggests that most of these SNPs are within regulatory regions or DNase clusters and in linkage disequilibrium with expression quantitative trait loci, implying their potential regulatory influence on the expression of nearby genes. Our mediation analyses suggest that the effects of some SNPs are mediated by specific endophenotypes. In conclusion, these findings indicate that loci with pleiotropic effects on age-related disorders tend to be enriched in genes involved in underlying mechanisms potentially related to nervous, cardiovascular and immune system functions, stress resistance, inflammation, ion channels and hematopoiesis, supporting the hypothesis of shared pathological role of infection, and inflammation in chronic age-related diseases.
Collapse
Affiliation(s)
- Liang He
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke UniversityDurham, NC, USA
| | | | | | | | | | | | | | | | | | | | | | | | - Alexander M. Kulminski
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke UniversityDurham, NC, USA
| |
Collapse
|
35
|
Volta F, Gerdes JM. The role of primary cilia in obesity and diabetes. Ann N Y Acad Sci 2016; 1391:71-84. [DOI: 10.1111/nyas.13216] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 07/19/2016] [Accepted: 08/01/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Francesco Volta
- Institute for Diabetes and Regeneration Research; Helmholtz Zentrum München; Garching Germany
| | - Jantje M. Gerdes
- Institute for Diabetes and Regeneration Research; Helmholtz Zentrum München; Garching Germany
- German Center for Diabetes Research; DZD; Munich Germany
| |
Collapse
|
36
|
Desiderio A, Spinelli R, Ciccarelli M, Nigro C, Miele C, Beguinot F, Raciti GA. Epigenetics: spotlight on type 2 diabetes and obesity. J Endocrinol Invest 2016; 39:1095-103. [PMID: 27180180 DOI: 10.1007/s40618-016-0473-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 04/18/2016] [Indexed: 12/15/2022]
Abstract
Type 2 diabetes (T2D) and obesity are the major public health problems. Substantial efforts have been made to define loci and variants contributing to the individual risk of these disorders. However, the overall risk explained by genetic variation is very modest. Epigenetics is one of the fastest growing research areas in biomedicine as changes in the epigenome are involved in many biological processes, impact on the risk for several complex diseases including diabetes and may explain susceptibility. In this review, we focus on the role of DNA methylation in contributing to the risk of T2D and obesity.
Collapse
Affiliation(s)
- A Desiderio
- URT of the Institute of Experimental Endocrinology and Oncology "G. Salvatore", National Council of Research, Naples, Italy
- Department of Translational Medical Sciences, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy
| | - R Spinelli
- URT of the Institute of Experimental Endocrinology and Oncology "G. Salvatore", National Council of Research, Naples, Italy
- Department of Translational Medical Sciences, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy
| | - M Ciccarelli
- URT of the Institute of Experimental Endocrinology and Oncology "G. Salvatore", National Council of Research, Naples, Italy
- Department of Translational Medical Sciences, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy
| | - C Nigro
- URT of the Institute of Experimental Endocrinology and Oncology "G. Salvatore", National Council of Research, Naples, Italy
- Department of Translational Medical Sciences, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy
| | - C Miele
- URT of the Institute of Experimental Endocrinology and Oncology "G. Salvatore", National Council of Research, Naples, Italy
- Department of Translational Medical Sciences, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy
| | - F Beguinot
- URT of the Institute of Experimental Endocrinology and Oncology "G. Salvatore", National Council of Research, Naples, Italy.
- Department of Translational Medical Sciences, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy.
| | - G A Raciti
- URT of the Institute of Experimental Endocrinology and Oncology "G. Salvatore", National Council of Research, Naples, Italy
- Department of Translational Medical Sciences, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy
| |
Collapse
|
37
|
Soga T, Lim WL, Khoo ASB, Parhar IS. Kisspeptin Activates Ankrd 26 Gene Expression in Migrating Embryonic GnRH Neurons. Front Endocrinol (Lausanne) 2016; 7:15. [PMID: 26973595 PMCID: PMC4771921 DOI: 10.3389/fendo.2016.00015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 01/28/2016] [Indexed: 12/27/2022] Open
Abstract
Kisspeptin, a newly discovered neuropeptide, regulates gonadotropin-releasing hormone (GnRH). Kisspeptins are a large RF-amide family of peptides. The kisspeptin coded by KiSS-1 gene is a 145-amino acid protein that is cleaved to C-terminal peptide kisspeptin-10. G-protein-coupled receptor 54 (GPR54) has been identified as a kisspeptin receptor, and it is expressed in GnRH neurons and in a variety of cancer cells. In this study, enhanced green fluorescent protein (EGFP) labeled GnRH cells with migratory properties, which express GPR54, served as a model to study the effects of kisspeptin on cell migration. We monitored EGFP-GnRH neuronal migration in brain slide culture of embryonic day 14 transgenic rat by live cell imaging system and studied the effects of kisspeptin-10 (1 nM) treatment for 36 h on GnRH migration. Furthermore, to determine kisspeptin-induced molecular pathways related with apoptosis and cytoskeletal changes during neuronal migration, we studied the expression levels of candidate genes in laser-captured EGFP-GnRH neurons by real-time PCR. We found that there was no change in the expression level of genes related to cell proliferation and apoptosis. The expression of ankyrin repeat domain-containing protein (ankrd) 26 in EGFP-GnRH neurons was upregulated by the exposure to kisspeptin. These studies suggest that ankrd 26 gene plays an unidentified role in regulating neuronal movement mediated by kisspeptin-GPR54 signaling, which could be a potential pathway to suppress cell migration.
Collapse
Affiliation(s)
- Tomoko Soga
- Brain Research Institute, School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Wei Ling Lim
- Brain Research Institute, School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Alan Soo-Beng Khoo
- Molecular Pathology Unit, Cancer Research Centre, Institute for Medical Research, Kuala Lumpur, Malaysia
| | - Ishwar S. Parhar
- Brain Research Institute, School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
- *Correspondence: Ishwar S. Parhar,
| |
Collapse
|
38
|
Comprehensive Identification of Sexual Dimorphism-Associated Differentially Expressed Genes in Two-Way Factorial Designed RNA-Seq Data on Japanese Quail (Coturnix coturnix japonica). PLoS One 2015; 10:e0139324. [PMID: 26418419 PMCID: PMC4587967 DOI: 10.1371/journal.pone.0139324] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 09/10/2015] [Indexed: 12/02/2022] Open
Abstract
Japanese quail (Coturnix coturnix japonica) reach sexual maturity earlier, breed rapidly and successfully, and cost less and require less space than other birds raised commercially. Given the value of this species for food production and experimental use, more studies are necessary to determine chromosomal regions and genes associated with gender and breed-differentiation. This study employed Trinity and edgeR for transcriptome analysis of next-generation RNA-seq data, which included 4 tissues obtained from 3 different breeding lines of Japanese quail (random bred control, heavy weight, low weight). Differentially expressed genes shared between female and male tissue contrast groups were analyzed to identify genes related to sexual dimorphism as well as potential novel candidate genes for molecular sexing. Several of the genes identified in the present study as significant sex-related genes have been previously found in avian gene expression analyses (NIPBL, UBAP2), and other genes found differentially expressed in this study and not previously associated with sex-related differences may be considered potential candidates for molecular sexing (TERA, MYP0, PPR17, CASQ2). Additionally, other genes likely associated with neuronal and brain development (CHKA, NYAP), as well as body development and size differentiation (ANKRD26, GRP87) in quail were identified. Expression of homeobox protein regulating genes (HXC4, ISL1) shared between our two sex-related contrast groups (Female Brain vs. Male Brain and Ovary vs. Testis) indicates that these genes may regulate sex-specific anatomical development. Results reveal genetic features of the quail breed and could allow for more effective molecular sexing as well as selective breeding for traits important in commercial production.
Collapse
|
39
|
Du X, Servin B, Womack JE, Cao J, Yu M, Dong Y, Wang W, Zhao S. An update of the goat genome assembly using dense radiation hybrid maps allows detailed analysis of evolutionary rearrangements in Bovidae. BMC Genomics 2014; 15:625. [PMID: 25052253 PMCID: PMC4141111 DOI: 10.1186/1471-2164-15-625] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 07/10/2014] [Indexed: 01/02/2023] Open
Abstract
Background The domestic goat (Capra hircus), an important livestock species, belongs to a clade of Ruminantia, Bovidae, together with cattle, buffalo and sheep. The history of genome evolution and chromosomal rearrangements on a small scale in ruminants remain speculative. Recently completed goat genome sequence was released but is still in a draft stage. The draft sequence used a variety of assembly packages, as well as a radiation hybrid (RH) map of chromosome 1 as part of its validation. Results Using an improved RH mapping pipeline, whole-genome dense maps of 45,953 SNP markers were constructed with statistical confidence measures and the saturated maps provided a fine map resolution of approximate 65 kb. Linking RH maps to the goat sequences showed that the assemblies of scaffolds/super-scaffolds were globally accurate. However, we observed certain flaws linked to the process of anchoring chromosome using conserved synteny with cattle. Chromosome assignments, long-range order, and orientation of the scaffolds were reassessed in an updated genome sequence version. We also present new results exploiting the updated goat genome sequence to understand genomic rearrangements and chromosome evolution between mammals during species radiations. The sequence architecture of rearrangement sites between the goat and cattle genomes presented abundant segmental duplication on regions of goat chromosome 9 and 14, as well as new insertions in homologous cattle genome regions. This complex interplay between duplicated sequences and Robertsonian translocations highlights the rearrangement mechanism of centromeric nonallelic homologous recombination (NAHR) in mammals. We observed that species-specific shifts in ANKRD26 gene duplication are coincident with breakpoint reuse in divergent lineages and this gene family may play a role in chromosome stabilization in chromosome evolution. Conclusions We generated dense maps of the complete whole goat genome. The chromosomal maps allowed us to anchor and orientate assembled genome scaffolds along the chromosomes, annotate chromosome rearrangements and thereby get a better understanding of the genome evolution of ruminants and other mammals. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-625) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Wen Wang
- Key lab of animal genetics, breeding and reproduction of ministry education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.
| | | |
Collapse
|
40
|
Leamy LJ, Elo K, Nielsen MK, Thorn SR, Valdar W, Pomp D. Quantitative trait loci for energy balance traits in an advanced intercross line derived from mice divergently selected for heat loss. PeerJ 2014; 2:e392. [PMID: 24918027 PMCID: PMC4045330 DOI: 10.7717/peerj.392] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 05/01/2014] [Indexed: 11/28/2022] Open
Abstract
Obesity in human populations, currently a serious health concern, is considered to be the consequence of an energy imbalance in which more energy in calories is consumed than is expended. We used interval mapping techniques to investigate the genetic basis of a number of energy balance traits in an F11 advanced intercross population of mice created from an original intercross of lines selected for increased and decreased heat loss. We uncovered a total of 137 quantitative trait loci (QTLs) for these traits at 41 unique sites on 18 of the 20 chromosomes in the mouse genome, with X-linked QTLs being most prevalent. Two QTLs were found for the selection target of heat loss, one on distal chromosome 1 and another on proximal chromosome 2. The number of QTLs affecting the various traits generally was consistent with previous estimates of heritabilities in the same population, with the most found for two bone mineral traits and the least for feed intake and several body composition traits. QTLs were generally additive in their effects, and some, especially those affecting the body weight traits, were sex-specific. Pleiotropy was extensive within trait groups (body weights, adiposity and organ weight traits, bone traits) and especially between body composition traits adjusted and not adjusted for body weight at sacrifice. Nine QTLs were found for one or more of the adiposity traits, five of which appeared to be unique. The confidence intervals among all QTLs averaged 13.3 Mb, much smaller than usually observed in an F2 cross, and in some cases this allowed us to make reasonable inferences about candidate genes underlying these QTLs. This study combined QTL mapping with genetic parameter analysis in a large segregating population, and has advanced our understanding of the genetic architecture of complex traits related to obesity.
Collapse
Affiliation(s)
- Larry J Leamy
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Kari Elo
- Department of Animal Science, University of Nebraska, Lincoln, NE, USA
| | - Merlyn K Nielsen
- Department of Animal Science, University of Nebraska, Lincoln, NE, USA
| | - Stephanie R Thorn
- Department of Animal Science, University of Nebraska, Lincoln, NE, USA
| | - William Valdar
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Daniel Pomp
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
41
|
Acs P, Bauer PO, Mayer B, Bera T, Macallister R, Mezey E, Pastan I. A novel form of ciliopathy underlies hyperphagia and obesity in Ankrd26 knockout mice. Brain Struct Funct 2014; 220:1511-28. [PMID: 24633808 DOI: 10.1007/s00429-014-0741-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 02/19/2014] [Indexed: 02/06/2023]
Abstract
Human ciliopathies are genetic disorders caused by mutations in genes responsible for the formation and function of primary cilia. Some are associated with hyperphagia and obesity (e.g., Bardet-Biedl Syndrome, Alström Syndrome), but the mechanisms underlying these problems are not fully understood. The human gene ANKRD26 is located on 10p12, a locus that is associated with some forms of hereditary obesity. Previously, we reported that disruption of this gene causes hyperphagia, obesity and gigantism in mice. In the present study, we looked for the mechanisms that induce hyperphagia in the Ankrd26-/- mice and found defects in primary cilia in regions of the central nervous system that control appetite and energy homeostasis.
Collapse
Affiliation(s)
- Peter Acs
- Laboratory of Molecular Biology, National Cancer Institute, NIH, Bethesda, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Peterson MP, Rosvall KA, Taylor CA, Lopez JA, Choi JH, Ziegenfus C, Tang H, Colbourne JK, Ketterson ED. Potential for sexual conflict assessed via testosterone-mediated transcriptional changes in liver and muscle of a songbird. ACTA ACUST UNITED AC 2013; 217:507-17. [PMID: 24198265 DOI: 10.1242/jeb.089813] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Males and females can be highly dimorphic in metabolism and physiology despite sharing nearly identical genomes, and both sexes respond phenotypically to elevated testosterone, a steroid hormone that alters gene expression. Only recently has it become possible to learn how a hormone such as testosterone affects global gene expression in non-model systems, and whether it affects the same genes in males and females. To investigate the transcriptional mechanisms by which testosterone exerts its metabolic and physiological effects on the periphery, we compared gene expression by sex and in response to experimentally elevated testosterone in a well-studied bird species, the dark-eyed junco (Junco hyemalis). We identified 291 genes in the liver and 658 in the pectoralis muscle that were differentially expressed between males and females. In addition, we identified 1727 genes that were differentially expressed between testosterone-treated and control individuals in at least one tissue and sex. Testosterone treatment altered the expression of only 128 genes in both males and females in the same tissue, and 847 genes were affected significantly differently by testosterone treatment in the two sexes. These substantial differences in transcriptional response to testosterone suggest that males and females may employ different pathways when responding to elevated testosterone, despite the fact that many phenotypic effects of experimentally elevated testosterone are similar in both sexes. In contrast, of the 121 genes that were affected by testosterone treatment in both sexes, 78% were regulated in the same direction (e.g. either higher or lower in testosterone-treated than control individuals) in both males and females. Thus, it appears that testosterone acts through both unique and shared transcriptional pathways in males and females, suggesting multiple mechanisms by which sexual conflict can be mediated.
Collapse
Affiliation(s)
- Mark P Peterson
- Department of Biology, Center for Integrative Study of Animal Behavior, Indiana University, Bloomington, IN 47405, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Lomax MA, Karamanlidis G, Laws J, Cremers SG, Weinberg PD, Clarke L. Pigs fed saturated fat/cholesterol have a blunted hypothalamic-pituitary-adrenal function, are insulin resistant and have decreased expression of IRS-1, PGC1α and PPARα. J Nutr Biochem 2013; 24:656-63. [DOI: 10.1016/j.jnutbio.2012.03.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 02/22/2012] [Accepted: 03/15/2012] [Indexed: 10/28/2022]
|
44
|
Balduini CL, Pecci A, Noris P. Inherited thrombocytopenias: the evolving spectrum. Hamostaseologie 2012; 32:259-70. [PMID: 22972471 DOI: 10.5482/ha12050001] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 08/28/2012] [Indexed: 12/23/2022] Open
Abstract
The chapter of inherited thrombocytopenias has expanded greatly over the last decade and many "new" forms deriving from mutations in "new" genes have been identified. Nevertheless, nearly half of patients remain without a definite diagnosis because their illnesses have not yet been described. The diagnostic approach to these diseases can still take advantage of the algorithm proposed by the Italian Platelet Study Group in 2003, although an update is required to include the recently described disorders. So far, transfusions of platelet concentrates have represented the main tool for preventing or treating bleedings, while haematopoietic stem cell transplantation has been reserved for patients with very severe forms. However, recent disclosure that an oral thrombopoietin mimetic is effective in increasing platelet count in patients with MYH9-related thrombocytopenia opened new therapeutic perspectives. This review summarizes the general aspects of inherited thrombocytopenias and describes in more detail MYH9-related diseases (encompassing four thrombocytopenias previously recognized as separate diseases) and the recently described ANKRD26-related thrombocytopenia, which are among the most frequent forms of inherited thrombocytopenia.
Collapse
Affiliation(s)
- C L Balduini
- Department of Internal Medicine, University of Pavia – IRCCS Policlinico San Matteo Foundation, Pavia, Italy.
| | | | | |
Collapse
|
45
|
Liu XF, Bera TK, Kahue C, Escobar T, Fei Z, Raciti GA, Pastan I. ANKRD26 and its interacting partners TRIO, GPS2, HMMR and DIPA regulate adipogenesis in 3T3-L1 cells. PLoS One 2012; 7:e38130. [PMID: 22666460 PMCID: PMC3364200 DOI: 10.1371/journal.pone.0038130] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 05/04/2012] [Indexed: 01/04/2023] Open
Abstract
Partial inactivation of the Ankyrin repeat domain 26 (Ankrd26) gene causes obesity and diabetes in mice and increases spontaneous and induced adipogenesis in mouse embryonic fibroblasts. However, it is not yet known how the Ankrd26 protein carries out its biological functions. We identified by yeast two-hybrid and immunoprecipitation assays the triple functional domain protein (TRIO), the G protein pathway suppressor 2 (GPS2), the delta-interacting protein A (DIPA) and the hyaluronan-mediated motility receptor (HMMR) as ANKRD26 interacting partners. Adipogenesis of 3T3-L1 cells was increased by selective down-regulation of Ankrd26, Trio, Gps2, Hmmr and Dipa. Furthermore, GPS2 and DIPA, which are normally located in the nucleus, were translocated to the cytoplasm, when the C-terminus of ANKRD26 was introduced into these cells. These findings provide biochemical evidence that ANKRD26, TRIO, GPS2 and HMMR are novel and important regulators of adipogenesis and identify new targets for the modulation of adipogenesis.
Collapse
Affiliation(s)
- Xiu-Fen Liu
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Tapan K. Bera
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Charissa Kahue
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Thelma Escobar
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Zhaoliang Fei
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Gregory A. Raciti
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ira Pastan
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
46
|
Overexpression of Akt1 enhances adipogenesis and leads to lipoma formation in zebrafish. PLoS One 2012; 7:e36474. [PMID: 22623957 PMCID: PMC3356305 DOI: 10.1371/journal.pone.0036474] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Accepted: 04/04/2012] [Indexed: 12/22/2022] Open
Abstract
Background Obesity is a complex, multifactorial disorder influenced by the interaction of genetic, epigenetic, and environmental factors. Obesity increases the risk of contracting many chronic diseases or metabolic syndrome. Researchers have established several mammalian models of obesity to study its underlying mechanism. However, a lower vertebrate model for conveniently performing drug screening against obesity remains elusive. The specific aim of this study was to create a zebrafish obesity model by over expressing the insulin signaling hub of the Akt1 gene. Methodology/Principal Findings Skin oncogenic transformation screening shows that a stable zebrafish transgenic of Tg(krt4Hsa.myrAkt1)cy18 displays severely obese phenotypes at the adult stage. In Tg(krt4:Hsa.myrAkt1)cy18, the expression of exogenous human constitutively active Akt1 (myrAkt1) can activate endogenous downstream targets of mTOR, GSK-3α/β, and 70S6K. During the embryonic to larval transitory phase, the specific over expression of myrAkt1 in skin can promote hypertrophic and hyperplastic growth. From 21 hour post-fertilization (hpf) onwards, myrAkt1 transgene was ectopically expressed in several mesenchymal derived tissues. This may be the result of the integration position effect. Tg(krt4:Hsa.myrAkt1)cy18 caused a rapid increase of body weight, hyperplastic growth of adipocytes, abnormal accumulation of fat tissues, and blood glucose intolerance at the adult stage. Real-time RT-PCR analysis showed the majority of key genes on regulating adipogenesis, adipocytokine, and inflammation are highly upregulated in Tg(krt4:Hsa.myrAkt1)cy18. In contrast, the myogenesis- and skeletogenesis-related gene transcripts are significantly downregulated in Tg(krt4:Hsa.myrAkt1)cy18, suggesting that excess adipocyte differentiation occurs at the expense of other mesenchymal derived tissues. Conclusion/Significance Collectively, the findings of this study provide direct evidence that Akt1 signaling plays an important role in balancing normal levels of fat tissue in vivo. The obese zebrafish examined in this study could be a new powerful model to screen novel drugs for the treatment of human obesity.
Collapse
|
47
|
Brennan EP, Morine MJ, Walsh DW, Roxburgh SA, Lindenmeyer MT, Brazil DP, Gaora PÓ, Roche HM, Sadlier DM, Cohen CD, Godson C, Martin F. Next-generation sequencing identifies TGF-β1-associated gene expression profiles in renal epithelial cells reiterated in human diabetic nephropathy. Biochim Biophys Acta Mol Basis Dis 2012; 1822:589-99. [PMID: 22266139 DOI: 10.1016/j.bbadis.2012.01.008] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 01/06/2012] [Accepted: 01/08/2012] [Indexed: 01/09/2023]
Abstract
Transforming growth factor-beta (TGF-β1) is implicated in the onset and progression of renal fibrosis and diabetic nephropathy (DN), leading to a loss of epithelial characteristics of tubular cells. The transcriptional profile of renal tubular epithelial cells stimulated with TGF-β1 was assessed using RNA-Seq, with 2027 differentially expressed genes identified. Promoter analysis of transcription factor binding sites in the TGF-β1 responsive gene set predicted activation of multiple transcriptional networks, including NFκB. Comparison of RNA-Seq with microarray data from identical experimental conditions identified low abundance transcripts exclusive to RNA-Seq data. We compared these findings to human disease by analyzing transcriptomic data from renal biopsies of patients with DN versus control groups, identifying a shared subset of 179 regulated genes. ARK5, encoding an AMP-related kinase, and TGFBI - encoding transforming growth factor, beta-induced protein were induced by TGF-β1 and also upregulated in human DN. Suppression of ARK5 attenuated fibrotic responses of renal epithelia to TGF-β1 exposure; and silencing of TGFBI induced expression of the epithelial cell marker - E-cadherin. We identified low abundance transcripts in sequence data and validated expression levels of several transcripts (ANKRD56, ENTPD8) in tubular enriched kidney biopsies of DN patients versus living donors. In conclusion, we have defined a TGF-β1-driven pro-fibrotic signal in renal epithelial cells that is also evident in the DN renal transcriptome.
Collapse
Affiliation(s)
- Eoin P Brennan
- UCD Diabetes Research Centre, UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin 4, Ireland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Raciti GA, Bera TK, Gavrilova O, Pastan I. Partial inactivation of Ankrd26 causes diabetes with enhanced insulin responsiveness of adipose tissue in mice. Diabetologia 2011; 54:2911-22. [PMID: 21842266 PMCID: PMC3881194 DOI: 10.1007/s00125-011-2263-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 07/04/2011] [Indexed: 01/05/2023]
Abstract
AIMS/HYPOTHESIS ANKRD26 is a newly described gene located at 10p12 in humans, a locus that has been identified with some forms of hereditary obesity. Previous studies have shown that partial inactivation of Ankrd26 in mice causes hyperphagia, obesity and gigantism. Hypothesising that Ankrd26 mutant (MT) mice could develop diabetes, we sought to establish whether the observed phenotype could be (1) solely related to the development of obesity or (2) caused by a direct action of ankyrin repeat domain 26 (ANKRD26) in peripheral tissues. METHODS To test the hypothesis, we did a full metabolic characterisation of Ankrd26 MT mice that had free access to chow or were placed under two different energy-restricted dietary regimens. RESULTS Highly obese Ankrd26 MT mice developed an unusual form of diabetes in which white adipose tissue is insulin-sensitive, while other tissues are insulin-resistant. When obese MT mice were placed on a food-restricted diet, their weight and glucose homeostasis returned to normal. In addition, when young MT mice were placed on a pair-feeding diet with normal mice, they maintained normal body weight, but showed better glucose tolerance than normal mice, an increased responsiveness of white adipose tissue to insulin and enhanced phosphorylation of the insulin receptor. CONCLUSIONS/INTERPRETATION These findings show that the ANKRD26 protein has at least two functions in mice. One is to control the response of white adipose tissue to insulin; the other is to control appetite, which when Ankrd26 is mutated, leads to hyperphagia and diabetes in an obesity-dependent manner.
Collapse
Affiliation(s)
- G. A. Raciti
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - T. K. Bera
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - O. Gavrilova
- Mouse Metabolism Core, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - I. Pastan
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
- Corresponding author: Laboratory of Molecular Biology, National Cancer Institute, 37 Convent Drive, Room 5106, Bethesda, MD 20892-4264 USA, Tel: (301) 496-4797; Fax: (301) 402-1344;
| |
Collapse
|
49
|
Fei Z, Bera TK, Liu X, Xiang L, Pastan I. Ankrd26 gene disruption enhances adipogenesis of mouse embryonic fibroblasts. J Biol Chem 2011; 286:27761-8. [PMID: 21669876 DOI: 10.1074/jbc.m111.248435] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We previously reported that partial disruption of the Ankrd26 gene in mice leads to hyperphagia and leptin-resistant obesity. To determine whether the Ankrd26 mutation can affect the development of adipocytes, we studied mouse embryo fibroblasts (MEFs) from the mutant mice. We found that Ankrd26(-/-) MEFs have a higher rate of spontaneous adipogenesis than normal MEFs and that adipocyte formation is greatly increased when the cells are induced with troglitazone alone or with a mixture of troglitazone, insulin, dexamethasone, and methylisobutylxanthine. Increased adipogenesis was detected as an increase in lipid droplet formation and in the expression of several markers of adipogenesis. There was an increase in expression of early stage adipogenesis genes such as Krox20, KLF5, C/EBPβ, C/EBPδ, and late stage adipogenesis regulators KLF15, C/EBPα, PPARγ, and aP2. There was also an increase in adipocyte stem cell markers CD34 and Sca-1 and preadipocyte markers Gata2 and Pref-1, indicating an increase in both stem cells and progenitor cells in the mutant MEFs. Furthermore, ERK was found constitutively activated in Anrd26(-/-) MEFs, and the addition of MEK inhibitors to mutant cells blocked ERK activation, decreased adipogenesis induction, and significantly reduced expression of C/EBPδ, KLF15, PPARγ2, CD34, and Pref-1 genes. We conclude that Ankrd26 gene disruption promotes adipocyte differentiation at both the progenitor commitment and differentiation steps and that ERK activation plays a role in this process.
Collapse
Affiliation(s)
- Zhaoliang Fei
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-4264, USA
| | | | | | | | | |
Collapse
|
50
|
Ross KA. Evidence for somatic gene conversion and deletion in bipolar disorder, Crohn's disease, coronary artery disease, hypertension, rheumatoid arthritis, type-1 diabetes, and type-2 diabetes. BMC Med 2011; 9:12. [PMID: 21291537 PMCID: PMC3048570 DOI: 10.1186/1741-7015-9-12] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Accepted: 02/03/2011] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND During gene conversion, genetic information is transferred unidirectionally between highly homologous but non-allelic regions of DNA. While germ-line gene conversion has been implicated in the pathogenesis of some diseases, somatic gene conversion has remained technically difficult to investigate on a large scale. METHODS A novel analysis technique is proposed for detecting the signature of somatic gene conversion from SNP microarray data. The Wellcome Trust Case Control Consortium has gathered SNP microarray data for two control populations and cohorts for bipolar disorder (BD), cardiovascular disease (CAD), Crohn's disease (CD), hypertension (HT), rheumatoid arthritis (RA), type-1 diabetes (T1D) and type-2 diabetes (T2D). Using the new analysis technique, the seven disease cohorts are analyzed to identify cohort-specific SNPs at which conversion is predicted. The quality of the predictions is assessed by identifying known disease associations for genes in the homologous duplicons, and comparing the frequency of such associations with background rates. RESULTS Of 28 disease/locus pairs meeting stringent conditions, 22 show various degrees of disease association, compared with only 8 of 70 in a mock study designed to measure the background association rate (P < 10-9). Additional candidate genes are identified using less stringent filtering conditions. In some cases, somatic deletions appear likely. RA has a distinctive pattern of events relative to other diseases. Similarities in patterns are apparent between BD and HT. CONCLUSIONS The associations derived represent the first evidence that somatic gene conversion could be a significant causative factor in each of the seven diseases. The specific genes provide potential insights about disease mechanisms, and are strong candidates for further study.
Collapse
Affiliation(s)
- Kenneth Andrew Ross
- Department of Computer Science, Columbia University, New York, NY 10027, USA.
| |
Collapse
|