1
|
Fortunato A, Taylor J, Scirone J, Seyedi S, Aktipis A, Maley CC. Tethya wilhelma (Porifera) Is Highly Resistant to Radiation Exposure and Possibly Cancer. BIOLOGY 2025; 14:171. [PMID: 40001939 PMCID: PMC11851485 DOI: 10.3390/biology14020171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 01/29/2025] [Accepted: 01/31/2025] [Indexed: 02/27/2025]
Abstract
There are no reports of cancer in sponges, despite them having somatic cell turnover, long lifespans, and no specialized adaptive immune cells. In order to investigate whether sponges are cancer resistant, we exposed a species of sponge, Tethya wilhelma, to X-rays. We found that T. wilhelma can withstand 518 Gy of X-ray radiation. That is approximately 100 times the lethal dose for humans. A single high dose of X-rays did not induce cancer in T. wilhelma, providing the first experimental evidence of cancer resistance in the phylum Porifera. Following X-ray exposure, we found an overexpression of genes involved in DNA repair, signaling transduction pathways, and epithelial-to-mesenchymal transition. T. wilhelma has the highest level of radiation resistance that has yet been observed in animals that have sustained somatic cell turnover. This may make them an excellent model system for studying cancer resistance and developing new approaches for cancer prevention and treatment.
Collapse
Affiliation(s)
- Angelo Fortunato
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ 85287, USA
- Biodesign Center for Biocomputing, Security and Society, Arizona State University, Tempe, AZ 85287, USA
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
- Department of Theoretical and Applied Sciences, eCampus University, 22060 Novedrate, Italy
| | - Jake Taylor
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ 85287, USA
- Biodesign Center for Biocomputing, Security and Society, Arizona State University, Tempe, AZ 85287, USA
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Jonathan Scirone
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ 85287, USA
- Biodesign Center for Biocomputing, Security and Society, Arizona State University, Tempe, AZ 85287, USA
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Sareh Seyedi
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ 85287, USA
- Biodesign Center for Biocomputing, Security and Society, Arizona State University, Tempe, AZ 85287, USA
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Athena Aktipis
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ 85287, USA
- Department of Psychology, Arizona State University, Tempe, AZ 85287, USA
| | - Carlo C. Maley
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ 85287, USA
- Biodesign Center for Biocomputing, Security and Society, Arizona State University, Tempe, AZ 85287, USA
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
2
|
Szydlowski LM, Bulbul AA, Simpson AC, Kaya DE, Singh NK, Sezerman UO, Łabaj PP, Kosciolek T, Venkateswaran K. Adaptation to space conditions of novel bacterial species isolated from the International Space Station revealed by functional gene annotations and comparative genome analysis. MICROBIOME 2024; 12:190. [PMID: 39363369 PMCID: PMC11451251 DOI: 10.1186/s40168-024-01916-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 08/21/2024] [Indexed: 10/05/2024]
Abstract
BACKGROUND The extreme environment of the International Space Station (ISS) puts selective pressure on microorganisms unintentionally introduced during its 20+ years of service as a low-orbit science platform and human habitat. Such pressure leads to the development of new features not found in the Earth-bound relatives, which enable them to adapt to unfavorable conditions. RESULTS In this study, we generated the functional annotation of the genomes of five newly identified species of Gram-positive bacteria, four of which are non-spore-forming and one spore-forming, all isolated from the ISS. Using a deep-learning based tool-deepFRI-we were able to functionally annotate close to 100% of protein-coding genes in all studied species, overcoming other annotation tools. Our comparative genomic analysis highlights common characteristics across all five species and specific genetic traits that appear unique to these ISS microorganisms. Proteome analysis mirrored these genomic patterns, revealing similar traits. The collective annotations suggest adaptations to life in space, including the management of hypoosmotic stress related to microgravity via mechanosensitive channel proteins, increased DNA repair activity to counteract heightened radiation exposure, and the presence of mobile genetic elements enhancing metabolism. In addition, our findings suggest the evolution of certain genetic traits indicative of potential pathogenic capabilities, such as small molecule and peptide synthesis and ATP-dependent transporters. These traits, exclusive to the ISS microorganisms, further substantiate previous reports explaining why microbes exposed to space conditions demonstrate enhanced antibiotic resistance and pathogenicity. CONCLUSION Our findings indicate that the microorganisms isolated from ISS we studied have adapted to life in space. Evidence such as mechanosensitive channel proteins, increased DNA repair activity, as well as metallopeptidases and novel S-layer oxidoreductases suggest a convergent adaptation among these diverse microorganisms, potentially complementing one another within the context of the microbiome. The common genes that facilitate adaptation to the ISS environment may enable bioproduction of essential biomolecules need during future space missions, or serve as potential drug targets, if these microorganisms pose health risks. Video Abstract.
Collapse
Affiliation(s)
- Lukasz M Szydlowski
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, Krakow, 30-387, Malopolska, Poland
- Sano Centre for Computational Personalized Medicine, Czarnowiejska 36, Krakow, 30-054, Malopolskie, Poland
| | - Alper A Bulbul
- Biostatistics and Medical Informatics Department, M. A. A. Acibadem University, İçerenköy, Kayıcdağı Cd.32, Istanbul, 34752, Turkey
| | - Anna C Simpson
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, CA, USA
| | - Deniz E Kaya
- Biostatistics and Medical Informatics Department, M. A. A. Acibadem University, İçerenköy, Kayıcdağı Cd.32, Istanbul, 34752, Turkey
| | - Nitin K Singh
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, CA, USA
| | - Ugur O Sezerman
- Biostatistics and Medical Informatics Department, M. A. A. Acibadem University, İçerenköy, Kayıcdağı Cd.32, Istanbul, 34752, Turkey
| | - Paweł P Łabaj
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, Krakow, 30-387, Malopolska, Poland
| | - Tomasz Kosciolek
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, Krakow, 30-387, Malopolska, Poland.
- Department of Data Science and Engineering, Silesian University of Technology, Akademicka 2A, Gliwice, 44-100, Slaskie, Poland.
- Sano Centre for Computational Personalized Medicine, Czarnowiejska 36, Krakow, 30-054, Malopolskie, Poland.
| | - Kasthuri Venkateswaran
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, CA, USA.
| |
Collapse
|
3
|
Anoud M, Delagoutte E, Helleu Q, Brion A, Duvernois-Berthet E, As M, Marques X, Lamribet K, Senamaud-Beaufort C, Jourdren L, Adrait A, Heinrich S, Toutirais G, Hamlaoui S, Gropplero G, Giovannini I, Ponger L, Geze M, Blugeon C, Couté Y, Guidetti R, Rebecchi L, Giovannangeli C, De Cian A, Concordet JP. Comparative transcriptomics reveal a novel tardigrade-specific DNA-binding protein induced in response to ionizing radiation. eLife 2024; 13:RP92621. [PMID: 38980300 PMCID: PMC11233135 DOI: 10.7554/elife.92621] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024] Open
Abstract
Tardigrades are microscopic animals renowned for their ability to withstand extreme conditions, including high doses of ionizing radiation (IR). To better understand their radio-resistance, we first characterized induction and repair of DNA double- and single-strand breaks after exposure to IR in the model species Hypsibius exemplaris. Importantly, we found that the rate of single-strand breaks induced was roughly equivalent to that in human cells, suggesting that DNA repair plays a predominant role in tardigrades' radio-resistance. To identify novel tardigrade-specific genes involved, we next conducted a comparative transcriptomics analysis across three different species. In all three species, many DNA repair genes were among the most strongly overexpressed genes alongside a novel tardigrade-specific gene, which we named Tardigrade DNA damage Response 1 (TDR1). We found that TDR1 protein interacts with DNA and forms aggregates at high concentration suggesting it may condensate DNA and preserve chromosome organization until DNA repair is accomplished. Remarkably, when expressed in human cells, TDR1 improved resistance to Bleomycin, a radiomimetic drug. Based on these findings, we propose that TDR1 is a novel tardigrade-specific gene conferring resistance to IR. Our study sheds light on mechanisms of DNA repair helping cope with high levels of DNA damage inflicted by IR.
Collapse
Affiliation(s)
- Marwan Anoud
- Département AVIV, MNHN, CNRS UMR7196, INSERM U1154ParisFrance
- Université Paris-SaclayOrsayFrance
| | | | - Quentin Helleu
- Département AVIV, MNHN, CNRS UMR7196, INSERM U1154ParisFrance
| | - Alice Brion
- Département AVIV, MNHN, CNRS UMR7196, INSERM U1154ParisFrance
| | | | - Marie As
- Département AVIV, MNHN, CNRS UMR7196, INSERM U1154ParisFrance
| | - Xavier Marques
- Département AVIV, MNHN, CNRS UMR7196, INSERM U1154ParisFrance
- CeMIM, MNHN, CNRS UMR7245ParisFrance
| | | | - Catherine Senamaud-Beaufort
- Génomique ENS, Institut de Biologie de l’ENS (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSLParisFrance
| | - Laurent Jourdren
- Génomique ENS, Institut de Biologie de l’ENS (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSLParisFrance
| | - Annie Adrait
- Univ. Grenoble Alpes, INSERM, CEA, UA13 BGE, CNRS, CEAGrenobleFrance
| | - Sophie Heinrich
- Institut Curie, Inserm U1021-CNRS UMR 3347, Université Paris-Saclay, Université PSLOrsay CedexFrance
- Plateforme RADEXP, Institut CurieOrsayFrance
| | | | | | | | - Ilaria Giovannini
- Department of Life Sciences, University of Modena and Reggio EmiliaModenaItaly
- NBFC, National Biodiversity Future CenterPalermoItaly
| | - Loic Ponger
- Département AVIV, MNHN, CNRS UMR7196, INSERM U1154ParisFrance
| | - Marc Geze
- CeMIM, MNHN, CNRS UMR7245ParisFrance
| | - Corinne Blugeon
- Génomique ENS, Institut de Biologie de l’ENS (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSLParisFrance
| | - Yohann Couté
- Univ. Grenoble Alpes, INSERM, CEA, UA13 BGE, CNRS, CEAGrenobleFrance
| | - Roberto Guidetti
- Department of Life Sciences, University of Modena and Reggio EmiliaModenaItaly
- NBFC, National Biodiversity Future CenterPalermoItaly
| | - Lorena Rebecchi
- Department of Life Sciences, University of Modena and Reggio EmiliaModenaItaly
- NBFC, National Biodiversity Future CenterPalermoItaly
| | | | - Anne De Cian
- Département AVIV, MNHN, CNRS UMR7196, INSERM U1154ParisFrance
| | | |
Collapse
|
4
|
Galas S, Le Goff E, Cazevieille C, Tanaka A, Cuq P, Baghdiguian S, Kunieda T, Godefroy N, Richaud M. A comparative ultrastructure study of the tardigrade Ramazzottius varieornatus in the hydrated state, after desiccation and during the process of rehydration. PLoS One 2024; 19:e0302552. [PMID: 38843161 PMCID: PMC11156355 DOI: 10.1371/journal.pone.0302552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 04/07/2024] [Indexed: 06/09/2024] Open
Abstract
Tardigrades can survive hostile environments such as desiccation by adopting a state of anhydrobiosis. Numerous tardigrade species have been described thus far, and recent genome and transcriptome analyses revealed that several distinct strategies were employed to cope with harsh environments depending on the evolutionary lineages. Detailed analyses at the cellular and subcellular levels are essential to complete these data. In this work, we analyzed a tardigrade species that can withstand rapid dehydration, Ramazzottius varieornatus. Surprisingly, we noted an absence of the anhydrobiotic-specific extracellular structure previously described for the Hypsibius exemplaris species. Both Ramazzottius varieornatus and Hypsibius exemplaris belong to the same evolutionary class of Eutardigrada. Nevertheless, our observations reveal discrepancies in the anhydrobiotic structures correlated with the variation in the anhydrobiotic mechanisms.
Collapse
Affiliation(s)
- Simon Galas
- IBMM, University of Montpellier, CNRS, ENSCM, Montpellier, France
| | - Emilie Le Goff
- ISEM, University of Montpellier, CNRS, IRD, Montpellier, France
| | | | - Akihiro Tanaka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Pierre Cuq
- IBMM, University of Montpellier, CNRS, ENSCM, Montpellier, France
| | | | - Takekazu Kunieda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Nelly Godefroy
- ISEM, University of Montpellier, CNRS, IRD, Montpellier, France
| | - Myriam Richaud
- IBMM, University of Montpellier, CNRS, ENSCM, Montpellier, France
| |
Collapse
|
5
|
Rolland SGM, Memar N, Gartner A. Tardigrades: Trained to be hardy in the face of DNA damage. Curr Biol 2024; 34:R504-R507. [PMID: 38772339 DOI: 10.1016/j.cub.2024.04.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Tardigrades withstand ionizing irradiation levels ∼500 times higher than humans can tolerate. Two recent papers shed light on how this might be achieved - via the transcriptional induction of DNA repair genes, the induction of a radioprotective DNA-binding protein, and possibly also the heightened capacity of repair proteins.
Collapse
Affiliation(s)
- Stéphane G M Rolland
- Center for Genomic Integrity, Institute for Basic Science, UNIST-gil 50, Ulsan 44919, Republic of Korea
| | - Nadin Memar
- Center for Genomic Integrity, Institute for Basic Science, UNIST-gil 50, Ulsan 44919, Republic of Korea
| | - Anton Gartner
- Center for Genomic Integrity, Institute for Basic Science, UNIST-gil 50, Ulsan 44919, Republic of Korea; Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea; Graduate School for Health Sciences and Technology, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
| |
Collapse
|
6
|
Car C, Quevarec L, Gilles A, Réale D, Bonzom JM. Evolutionary approach for pollution study: The case of ionizing radiation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 349:123692. [PMID: 38462194 DOI: 10.1016/j.envpol.2024.123692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/12/2024]
Abstract
Estimating the consequences of environmental changes, specifically in a global change context, is essential for conservation issues. In the case of pollutants, the interest in using an evolutionary approach to investigate their consequences has been emphasized since the 2000s, but these studies remain rare compared to the characterization of direct effects on individual features. We focused on the study case of anthropogenic ionizing radiation because, despite its potential strong impact on evolution, the scarcity of evolutionary approaches to study the biological consequences of this stressor is particularly true. In this study, by investigating some particular features of the biological effects of this stressor, and by reviewing existing studies on evolution under ionizing radiation, we suggest that evolutionary approach may help provide an integrative view on the biological consequences of ionizing radiation. We focused on three topics: (i) the mutagenic properties of ionizing radiation and its disruption of evolutionary processes, (ii) exposures at different time scales, leading to an interaction between past and contemporary evolution, and (iii) the special features of contaminated areas called exclusion zones and how evolution could match field and laboratory observed effects. This approach can contribute to answering several key issues in radioecology: to explain species differences in the sensitivity to ionizing radiation, to improve our estimation of the impacts of ionizing radiation on populations, and to help identify the environmental features impacting organisms (e.g., interaction with other pollution, migration of populations, anthropogenic environmental changes). Evolutionary approach would benefit from being integrated to the ecological risk assessment process.
Collapse
Affiliation(s)
- Clément Car
- Laboratoire de Recherche sur Les Effets des Radionucléides sur L'écosystème (LECO), Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Saint-Paul Lèz Durance, France
| | - Loïc Quevarec
- Laboratoire de Recherche sur Les Effets des Radionucléides sur L'écosystème (LECO), Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Saint-Paul Lèz Durance, France.
| | - André Gilles
- UMR Risques, ECOsystèmes, Vulnérabilité, Environnement, Résilience (RECOVER), Aix-Marseille Université (AMU), Marseille, France
| | - Denis Réale
- Département des Sciences Biologiques, Université Du Québec à Montréal, (UQAM), Montréal, Canada
| | - Jean-Marc Bonzom
- Laboratoire de Recherche sur Les Effets des Radionucléides sur L'écosystème (LECO), Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Saint-Paul Lèz Durance, France
| |
Collapse
|
7
|
Wilson CG, Pieszko T, Nowell RW, Barraclough TG. Recombination in bdelloid rotifer genomes: asexuality, transfer and stress. Trends Genet 2024; 40:422-436. [PMID: 38458877 DOI: 10.1016/j.tig.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 03/10/2024]
Abstract
Bdelloid rotifers constitute a class of microscopic animals living in freshwater habitats worldwide. Several strange features of bdelloids have drawn attention: their ability to tolerate desiccation and other stresses, a lack of reported males across the clade despite centuries of study, and unusually high numbers of horizontally acquired, non-metazoan genes. Genome sequencing is transforming our understanding of their lifestyle and its consequences, while in turn providing wider insights about recombination and genome organisation in animals. Many questions remain, not least how to reconcile apparent genomic signatures of sex with the continued absence of reported males, why bdelloids have so many horizontally acquired genes, and how their remarkable ability to survive stress interacts with recombination and other genomic processes.
Collapse
Affiliation(s)
- Christopher G Wilson
- Department of Biology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, UK.
| | - Tymoteusz Pieszko
- Department of Biology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, UK
| | - Reuben W Nowell
- Institute of Ecology and Evolution, Ashworth Laboratories, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK; Biological and Environmental Sciences, School of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK
| | | |
Collapse
|
8
|
Li M, Gao F, Zhu L, Li J, Xiang J, Xi Y, Xiang X. Geographic origin shapes the adaptive divergences of Rotaria rotatoria (Rotifera, Bdelloidea) to thermal stress: Insights from ecology and transcriptomics. Ecol Evol 2024; 14:e11307. [PMID: 38665893 PMCID: PMC11043679 DOI: 10.1002/ece3.11307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/25/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Global warming has raised concerns regarding the potential impact on aquatic biosafety and health. To illuminate the adaptive mechanisms of bdelloid rotifers in response to global warming, the ecological and transcriptomic characteristics of two strains (HX and ZJ) of Rotaria rotatoria were investigated at 25°C and 35°C. Our results showed an obvious genetic divergence between the two geographic populations. Thermal stress significantly reduced the average lifespan of R. rotatoria in both strains, but increased the offspring production in the ZJ strain. Furthermore, the expression levels of genes Hsp70 were significantly upregulated in the HX strain, while GSTo1 and Cu/Zn-SOD were on the contrary. In the ZJ strain, the expression levels of genes Hsp70, CAT2, and GSTo1 were upregulated under thermal stress. Conversely, a significant decrease in the expression level of the Mn-SOD gene was observed in the ZJ strain under thermal stress. Transcriptomic profiling analysis revealed a total of 105 and 5288 differentially expressed genes (DEGs) in the HX and ZJ strains under thermal stress, respectively. The PCA results showed clear differences in gene expression pattern between HX and ZJ strains under thermal stress. Interestingly, compared to the HX strain, numerous downregulated DEGs in the ZJ strain were enriched into pathways related to metabolism under thermal stress, suggesting that rotifers from the ZJ strain prioritize resource allocation to reproduction by suppressing costly metabolic processes. This finding is consistent with the life table results. This study provides new insights into the adaptive evolution of aquatic animals in the context of global climate change.
Collapse
Affiliation(s)
- Meng Li
- School of Ecology and EnvironmentAnhui Normal UniversityWuhuAnhuiChina
| | - Fan Gao
- School of Ecology and EnvironmentAnhui Normal UniversityWuhuAnhuiChina
| | - Lingyun Zhu
- School of Ecology and EnvironmentAnhui Normal UniversityWuhuAnhuiChina
| | - Jianan Li
- School of Ecology and EnvironmentAnhui Normal UniversityWuhuAnhuiChina
| | - Jinjin Xiang
- School of Ecology and EnvironmentAnhui Normal UniversityWuhuAnhuiChina
| | - Yilong Xi
- School of Ecology and EnvironmentAnhui Normal UniversityWuhuAnhuiChina
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co‐founded by Anhui Province and Ministry of EducationAnhui Normal UniversityWuhuAnhuiChina
| | - Xianling Xiang
- School of Ecology and EnvironmentAnhui Normal UniversityWuhuAnhuiChina
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co‐founded by Anhui Province and Ministry of EducationAnhui Normal UniversityWuhuAnhuiChina
| |
Collapse
|
9
|
Moris VC, Bruneau L, Berthe J, Heuskin AC, Penninckx S, Ritter S, Weber U, Durante M, Danchin EGJ, Hespeels B, Doninck KV. Ionizing radiation responses appear incidental to desiccation responses in the bdelloid rotifer Adineta vaga. BMC Biol 2024; 22:11. [PMID: 38273318 PMCID: PMC10809525 DOI: 10.1186/s12915-023-01807-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 12/21/2023] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND The remarkable resistance to ionizing radiation found in anhydrobiotic organisms, such as some bacteria, tardigrades, and bdelloid rotifers has been hypothesized to be incidental to their desiccation resistance. Both stresses produce reactive oxygen species and cause damage to DNA and other macromolecules. However, this hypothesis has only been investigated in a few species. RESULTS In this study, we analyzed the transcriptomic response of the bdelloid rotifer Adineta vaga to desiccation and to low- (X-rays) and high- (Fe) LET radiation to highlight the molecular and genetic mechanisms triggered by both stresses. We identified numerous genes encoding antioxidants, but also chaperones, that are constitutively highly expressed, which may contribute to the protection of proteins against oxidative stress during desiccation and ionizing radiation. We also detected a transcriptomic response common to desiccation and ionizing radiation with the over-expression of genes mainly involved in DNA repair and protein modifications but also genes with unknown functions that were bdelloid-specific. A distinct transcriptomic response specific to rehydration was also found, with the over-expression of genes mainly encoding Late Embryogenesis Abundant proteins, specific heat shock proteins, and glucose repressive proteins. CONCLUSIONS These results suggest that the extreme resistance of bdelloid rotifers to radiation might indeed be a consequence of their capacity to resist complete desiccation. This study paves the way to functional genetic experiments on A. vaga targeting promising candidate proteins playing central roles in radiation and desiccation resistance.
Collapse
Affiliation(s)
- Victoria C Moris
- Laboratory of Evolutionary Genetics and Ecology (LEGE), Department of Biology - URBE, University of Namur, Rue de Bruxelles, 61, B-5000, Namur, Belgium.
- Laboratory of Molecular Biology & Evolution (MBE), Department of Biology, Université Libre de Bruxelles, 1000, Brussels, Belgium.
| | - Lucie Bruneau
- Laboratory of Evolutionary Genetics and Ecology (LEGE), Department of Biology - URBE, University of Namur, Rue de Bruxelles, 61, B-5000, Namur, Belgium
| | - Jérémy Berthe
- Laboratory of Evolutionary Genetics and Ecology (LEGE), Department of Biology - URBE, University of Namur, Rue de Bruxelles, 61, B-5000, Namur, Belgium
| | - Anne-Catherine Heuskin
- Namur Research Institute for Life Sciences (NARILIS), Laboratory of Analysis By Nuclear Reactions (LARN), University of Namur, Rue de Bruxelles, 61, B-5000, Namur, Belgium
| | - Sébastien Penninckx
- Medical Physics Department, Institut Jules Bordet - Université Libre de Bruxelles, 90 Rue Meylemeersch, 1070, Brussels, Belgium
| | - Sylvia Ritter
- Biophysics Department, GSI Helmholtzzentrum Für Schwerionenforschung, Darmstadt, Germany
| | - Uli Weber
- Biophysics Department, GSI Helmholtzzentrum Für Schwerionenforschung, Darmstadt, Germany
| | - Marco Durante
- Biophysics Department, GSI Helmholtzzentrum Für Schwerionenforschung, Darmstadt, Germany
- Institute of Condensed Matter Physics, Technische Universität Darmstadt, Darmstadt, Germany
| | - Etienne G J Danchin
- Institut Sophia Agrobiotech, INRAE, Université Côte d'Azur, CNRS, 06903, Sophia Antipolis, France
| | - Boris Hespeels
- Laboratory of Evolutionary Genetics and Ecology (LEGE), Department of Biology - URBE, University of Namur, Rue de Bruxelles, 61, B-5000, Namur, Belgium
| | - Karine Van Doninck
- Laboratory of Evolutionary Genetics and Ecology (LEGE), Department of Biology - URBE, University of Namur, Rue de Bruxelles, 61, B-5000, Namur, Belgium
- Laboratory of Molecular Biology & Evolution (MBE), Department of Biology, Université Libre de Bruxelles, 1000, Brussels, Belgium
| |
Collapse
|
10
|
Ujaoney AK, Anaganti N, Padwal MK, Basu B. Tracing the serendipitous genesis of radiation resistance. Mol Microbiol 2024; 121:142-151. [PMID: 38082498 DOI: 10.1111/mmi.15208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 11/01/2023] [Accepted: 11/27/2023] [Indexed: 01/15/2024]
Abstract
Free-living organisms frequently encounter unfavorable abiotic environmental factors. Those who adapt and cope with sudden changes in the external environment survive. Desiccation is one of the most common and frequently encountered stresses in nature. On the contrary, ionizing radiations are limited to high local concentrations of naturally occurring radioactive materials and related anthropogenic activities. Yet, resistance to high doses of ionizing radiation is evident across the tree of life. The evolution of desiccation resistance has been linked to the evolution of ionizing radiation resistance, although, evidence to support the idea that the evolution of desiccation tolerance is a necessary precursor to ionizing radiation resistance is lacking. Moreover, the presence of radioresistance in hyperthermophiles suggests multiple paths lead to radiation resistance. In this minireview, we focus on the molecular aspects of damage dynamics and damage response pathways comprising protective and restorative functions with a definitive survival advantage, to explore the serendipitous genesis of ionizing radiation resistance.
Collapse
Affiliation(s)
- Aman Kumar Ujaoney
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Narasimha Anaganti
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Mahesh Kumar Padwal
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Bhakti Basu
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
11
|
Nicolas E, Simion P, Guérineau M, Terwagne M, Colinet M, Virgo J, Lingurski M, Boutsen A, Dieu M, Hallet B, Van Doninck K. Horizontal acquisition of a DNA ligase improves DNA damage tolerance in eukaryotes. Nat Commun 2023; 14:7638. [PMID: 37993452 PMCID: PMC10665377 DOI: 10.1038/s41467-023-43075-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/30/2023] [Indexed: 11/24/2023] Open
Abstract
Bdelloid rotifers are part of the restricted circle of multicellular animals that can withstand a wide range of genotoxic stresses at any stage of their life cycle. In this study, bdelloid rotifer Adineta vaga is used as a model to decipher the molecular basis of their extreme tolerance. Proteomic analysis shows that a specific DNA ligase, different from those usually involved in DNA repair in eukaryotes, is strongly over-represented upon ionizing radiation. A phylogenetic analysis reveals its orthology to prokaryotic DNA ligase E, and its horizontal acquisition by bdelloid rotifers and plausibly other eukaryotes. The fungus Mortierella verticillata, having a single copy of this DNA Ligase E homolog, also exhibits an increased radiation tolerance with an over-expression of this DNA ligase E following X-ray exposure. We also provide evidence that A. vaga ligase E is a major contributor of DNA breaks ligation activity, which is a common step of all important DNA repair pathways. Consistently, its heterologous expression in human cell lines significantly improves their radio-tolerance. Overall, this study highlights the potential of horizontal gene transfers in eukaryotes, and their contribution to the adaptation to extreme conditions.
Collapse
Affiliation(s)
- Emilien Nicolas
- Université Libre de Bruxelles, Molecular Biology and Evolution, Brussels, 1050, Belgium.
| | - Paul Simion
- Université de Namur, Laboratory of Evolutionary Genetics and Ecology, Namur, 5000, Belgium
- Université de Rennes, Ecosystèmes, biodiversité, évolution (ECOBIO UMR 6553), CNRS, Rennes, France
| | - Marc Guérineau
- Université Libre de Bruxelles, Molecular Biology and Evolution, Brussels, 1050, Belgium
| | - Matthieu Terwagne
- Université de Namur, Laboratory of Evolutionary Genetics and Ecology, Namur, 5000, Belgium
| | - Mathilde Colinet
- Université de Namur, Laboratory of Evolutionary Genetics and Ecology, Namur, 5000, Belgium
| | - Julie Virgo
- Université de Namur, Laboratory of Evolutionary Genetics and Ecology, Namur, 5000, Belgium
| | - Maxime Lingurski
- Université Libre de Bruxelles, Molecular Biology and Evolution, Brussels, 1050, Belgium
| | - Anaïs Boutsen
- Université de Namur, Laboratory of Evolutionary Genetics and Ecology, Namur, 5000, Belgium
| | - Marc Dieu
- Université de Namur, MaSUN-mass spectrometry facility, Namur, 5000, Belgium
| | - Bernard Hallet
- Université Catholique de Louvain, Louvain Institute of Biomolecular Science and Technology, Louvain-la-Neuve, 1348, Belgium.
| | - Karine Van Doninck
- Université Libre de Bruxelles, Molecular Biology and Evolution, Brussels, 1050, Belgium.
- Université de Namur, Laboratory of Evolutionary Genetics and Ecology, Namur, 5000, Belgium.
| |
Collapse
|
12
|
Suring W, Hoogduin D, Le Ngoc G, Brouwer A, van Straalen NM, Roelofs D. Nonribosomal Peptide Synthetases in Animals. Genes (Basel) 2023; 14:1741. [PMID: 37761881 PMCID: PMC10531068 DOI: 10.3390/genes14091741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
Nonribosomal peptide synthetases (NRPSs) are a class of cytosolic enzymes that synthesize a range of bio-active secondary metabolites including antibiotics and siderophores. They are widespread among both prokaryotes and eukaryotes but are considered rare among animals. Recently, several novel NRPS genes have been described in nematodes, schistosomes, and arthropods, which led us to investigate how prevalent NRPS genes are in the animal kingdom. We screened 1059 sequenced animal genomes and showed that NRPSs were present in 7 out of the 19 phyla analyzed. A phylogenetic analysis showed that the identified NRPSs form clades distinct from other adenylate-forming enzymes that contain similar domains such as fatty acid synthases. NRPSs show a remarkably scattered distribution over the animal kingdom. They are especially abundant in rotifers and nematodes. In rotifers, we found a large variety of domain architectures and predicted substrates. In the nematode Plectus sambesii, we identified the beta-lactam biosynthesis genes L-δ-(α-aminoadipoyl)-L-cysteinyl-D-valine synthetase, isopenicillin N synthase, and deacetoxycephalosporin C synthase that catalyze the formation of beta-lactam antibiotics in fungi and bacteria. These genes are also present in several species of Collembola, but not in other hexapods analyzed so far. In conclusion, our survey showed that NRPS genes are more abundant and widespread in animals than previously known.
Collapse
Affiliation(s)
- Wouter Suring
- A-LIFE Ecology and Evolution, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1087, 1081 HV Amsterdam, The Netherlands
- Department of Academy Technology & Innovation, NHL Stenden University of Applied Sciences, Rengerslaan 8-10, 8917 DD Leeuwarden, The Netherlands
| | - Dylan Hoogduin
- A-LIFE Ecology and Evolution, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1087, 1081 HV Amsterdam, The Netherlands
| | - Giang Le Ngoc
- A-LIFE Ecology and Evolution, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1087, 1081 HV Amsterdam, The Netherlands
- Biomedical Primate Research Centre, Lange Kleiweg 161, 2282 GJ Rijswijk, The Netherlands
| | - Abraham Brouwer
- BioDetection Systems, Science Park 406, 1098 XH Amsterdam, The Netherlands
| | - Nico M. van Straalen
- A-LIFE Ecology and Evolution, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1087, 1081 HV Amsterdam, The Netherlands
| | - Dick Roelofs
- A-LIFE Ecology and Evolution, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1087, 1081 HV Amsterdam, The Netherlands
- Keygene N.V., Agro Business Park 90, 6708 PW Wageningen, The Netherlands
| |
Collapse
|
13
|
Zhou J, Horton JR, Kaur G, Chen Q, Li X, Mendoza F, Wu T, Blumenthal RM, Zhang X, Cheng X. Biochemical and structural characterization of the first-discovered metazoan DNA cytosine-N4 methyltransferase from the bdelloid rotifer Adineta vaga. J Biol Chem 2023; 299:105017. [PMID: 37414145 PMCID: PMC10406627 DOI: 10.1016/j.jbc.2023.105017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 07/08/2023] Open
Abstract
Much is known about the generation, removal, and roles of 5-methylcytosine (5mC) in eukaryote DNA, and there is a growing body of evidence regarding N6-methyladenine, but very little is known about N4-methylcytosine (4mC) in the DNA of eukaryotes. The gene for the first metazoan DNA methyltransferase generating 4mC (N4CMT) was reported and characterized recently by others, in tiny freshwater invertebrates called bdelloid rotifers. Bdelloid rotifers are ancient, apparently asexual animals, and lack canonical 5mC DNA methyltransferases. Here, we characterize the kinetic properties and structural features of the catalytic domain of the N4CMT protein from the bdelloid rotifer Adineta vaga. We find that N4CMT generates high-level methylation at preferred sites, (a/c)CG(t/c/a), and low-level methylation at disfavored sites, exemplified by ACGG. Like the mammalian de novo 5mC DNA methyltransferase 3A/3B (DNMT3A/3B), N4CMT methylates CpG dinucleotides on both DNA strands, generating hemimethylated intermediates and eventually fully methylated CpG sites, particularly in the context of favored symmetric sites. In addition, like DNMT3A/3B, N4CMT methylates non-CpG sites, mainly CpA/TpG, though at a lower rate. Both N4CMT and DNMT3A/3B even prefer similar CpG-flanking sequences. Structurally, the catalytic domain of N4CMT closely resembles the Caulobacter crescentus cell cycle-regulated DNA methyltransferase. The symmetric methylation of CpG, and similarity to a cell cycle-regulated DNA methyltransferase, together suggest that N4CMT might also carry out DNA synthesis-dependent methylation following DNA replication.
Collapse
Affiliation(s)
- Jujun Zhou
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - John R Horton
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Gundeep Kaur
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Qin Chen
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Xuwen Li
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Fabian Mendoza
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Tao Wu
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Robert M Blumenthal
- Department of Medical Microbiology and Immunology, Program in Bioinformatics, The University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA.
| | - Xing Zhang
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
| | - Xiaodong Cheng
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
| |
Collapse
|
14
|
Kumar K, Kumar S, Datta K, Fornace AJ, Suman S. High-LET-Radiation-Induced Persistent DNA Damage Response Signaling and Gastrointestinal Cancer Development. Curr Oncol 2023; 30:5497-5514. [PMID: 37366899 DOI: 10.3390/curroncol30060416] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/28/2023] Open
Abstract
Ionizing radiation (IR) dose, dose rate, and linear energy transfer (LET) determine cellular DNA damage quality and quantity. High-LET heavy ions are prevalent in the deep space environment and can deposit a much greater fraction of total energy in a shorter distance within a cell, causing extensive DNA damage relative to the same dose of low-LET photon radiation. Based on the DNA damage tolerance of a cell, cellular responses are initiated for recovery, cell death, senescence, or proliferation, which are determined through a concerted action of signaling networks classified as DNA damage response (DDR) signaling. The IR-induced DDR initiates cell cycle arrest to repair damaged DNA. When DNA damage is beyond the cellular repair capacity, the DDR for cell death is initiated. An alternative DDR-associated anti-proliferative pathway is the onset of cellular senescence with persistent cell cycle arrest, which is primarily a defense mechanism against oncogenesis. Ongoing DNA damage accumulation below the cell death threshold but above the senescence threshold, along with persistent SASP signaling after chronic exposure to space radiation, pose an increased risk of tumorigenesis in the proliferative gastrointestinal (GI) epithelium, where a subset of IR-induced senescent cells can acquire a senescence-associated secretory phenotype (SASP) and potentially drive oncogenic signaling in nearby bystander cells. Moreover, DDR alterations could result in both somatic gene mutations as well as activation of the pro-inflammatory, pro-oncogenic SASP signaling known to accelerate adenoma-to-carcinoma progression during radiation-induced GI cancer development. In this review, we describe the complex interplay between persistent DNA damage, DDR, cellular senescence, and SASP-associated pro-inflammatory oncogenic signaling in the context of GI carcinogenesis.
Collapse
Affiliation(s)
- Kamendra Kumar
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Santosh Kumar
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Kamal Datta
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
- Department of Biochemistry and Molecular & Cellular Biology and Department of Oncology, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Albert J Fornace
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
- Department of Biochemistry and Molecular & Cellular Biology and Department of Oncology, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Shubhankar Suman
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
- Department of Biochemistry and Molecular & Cellular Biology and Department of Oncology, Georgetown University Medical Center, Washington, DC 20057, USA
| |
Collapse
|
15
|
Shim KY, Shin H, Yeo IC, Kim KR, Kwak IS, Jeong CB. Environmental DNA surveillance of biocontamination in a drinking water treatment plant. JOURNAL OF HAZARDOUS MATERIALS 2023; 456:131656. [PMID: 37236104 DOI: 10.1016/j.jhazmat.2023.131656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023]
Abstract
A clean and adequate supply of drinking water is essential to life and good health. However, despite the risk of biologically derived contamination of drinking water, monitoring of invertebrate outbreaks has relied primarily on naked-eye inspections that are prone to errors. In this study, we applied environmental DNA (eDNA) metabarcoding as a biomonitoring tool at seven different stages of drinking water treatment, from prefiltration to release from household faucets. While the composition of invertebrate eDNA communities reflected the communities of the source water in earlier stages of the treatment, several predominant invertebrate taxa (e.g., rotifer) were shown to be introduced during purification, but most were eliminated in later treatment stages. In addition, the limit of detection/quantification of PCR assay and read capacity of high-throughput sequencing was assessed with further microcosm experiments to estimate the applicability eDNA metabarcoding to the biocontamination surveillance in drinking water treatment plants (DWTPs). Here we propose a novel eDNA-based approach for sensitive and efficient surveillance of invertebrate outbreaks in DWTPs.
Collapse
Affiliation(s)
- Kyu-Young Shim
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon 22012, Republic of Korea
| | - Heesang Shin
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon 22012, Republic of Korea
| | - In-Cheol Yeo
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon 22012, Republic of Korea
| | - Kyu Ri Kim
- Hoseo Toxicology Research Center, Hoseo University, Asan 31499, Republic of Korea
| | - Ihn-Sil Kwak
- Department of Ocean Integrated Science, Chonnam National University, Yeosu 59626, Republic of Korea
| | - Chang-Bum Jeong
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon 22012, Republic of Korea.
| |
Collapse
|
16
|
Hespeels B, Fontaneto D, Cornet V, Penninckx S, Berthe J, Bruneau L, Larrick JW, Rapport E, Bailly J, Debortoli N, Iakovenko N, Janko K, Heuskin AC, Lucas S, Hallet B, Van Doninck K. Back to the roots, desiccation and radiation resistances are ancestral characters in bdelloid rotifers. BMC Biol 2023; 21:72. [PMID: 37024917 PMCID: PMC10080820 DOI: 10.1186/s12915-023-01554-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 02/27/2023] [Indexed: 04/08/2023] Open
Abstract
BACKGROUND Bdelloid rotifers are micro-invertebrates distributed worldwide, from temperate latitudes to the most extreme areas of the planet like Antarctica or the Atacama Desert. They have colonized any habitat where liquid water is temporarily available, including terrestrial environments such as soils, mosses, and lichens, tolerating desiccation and other types of stress such as high doses of ionizing radiation (IR). It was hypothesized that bdelloid desiccation and radiation resistance may be attributed to their potential ability to repair DNA double-strand breaks (DSBs). Here, these properties are investigated and compared among nine bdelloid species collected from both mild and harsh habitats, addressing the correlation between the ability of bdelloid rotifers to survive desiccation and their capacity to repair massive DNA breakage in a phylogenetically explicit context. Our research includes both specimens isolated from habitats that experience frequent desiccation (at least 1 time per generation), and individuals sampled from habitats that rarely or never experienced desiccation. RESULTS Our analysis reveals that DNA repair prevails in somatic cells of both desiccation-tolerant and desiccation-sensitive bdelloid species after exposure to X-ray radiation. Species belonging to both categories are able to withstand high doses of ionizing radiation, up to 1000 Gy, without experiencing any negative effects on their survival. However, the fertility of two desiccation-sensitive species, Rotaria macrura and Rotaria rotatoria, was more severely impacted by low doses of radiation than that of desiccation-resistant species. Surprisingly, the radioresistance of desiccation-resistant species is not related to features of their original habitat. Indeed, bdelloids isolated from Atacama Desert or Antarctica were not characterized by a higher radioresistance than species found in more temperate environments. CONCLUSIONS Tolerance to desiccation and radiation are supported as ancestral features of bdelloid rotifers, with a group of species of the genus Rotaria having lost this trait after colonizing permanent water habitats. Together, our results provide a comprehensive overview of the evolution of desiccation and radiation resistance among bdelloid rotifers.
Collapse
Affiliation(s)
- Boris Hespeels
- Research Unit in Environmental and Evolutionary Biology (URBE), Laboratory of Evolutionary Genetics and Ecology (LEGE), NAmur Research Institute for Life Sciences (NARILIS), University of Namur, Namur, Belgium.
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment (ILEE), University of Namur, Namur, Belgium.
| | - Diego Fontaneto
- Molecular Ecology Group (MEG), Water Research Institute (IRSA), National Research Council of Italy (CNR), Verbania Pallanza, Italy
- Laboratory of Non-Mendelian Evolution, Institute of Animal Physiology and Genetics AS CR, Rumburská 89, Liběchov, 277 21, Czech Republic
| | - Valérie Cornet
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment (ILEE), University of Namur, Namur, Belgium
| | - Sébastien Penninckx
- Medical Physics Department, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Jérémy Berthe
- Research Unit in Environmental and Evolutionary Biology (URBE), Laboratory of Evolutionary Genetics and Ecology (LEGE), NAmur Research Institute for Life Sciences (NARILIS), University of Namur, Namur, Belgium
- Research Unit in Molecular Biology and Evolution, DBO, Université libre de Bruxelles (ULB), 1050, Brussels, Belgium
| | - Lucie Bruneau
- Research Unit in Environmental and Evolutionary Biology (URBE), Laboratory of Evolutionary Genetics and Ecology (LEGE), NAmur Research Institute for Life Sciences (NARILIS), University of Namur, Namur, Belgium
| | - James W Larrick
- Panorama Research Institute, Sunnyvale, CA, USA
- SETI Institute, Mountain View, CA, USA
| | - Eloïse Rapport
- Research Unit in Environmental and Evolutionary Biology (URBE), Laboratory of Evolutionary Genetics and Ecology (LEGE), NAmur Research Institute for Life Sciences (NARILIS), University of Namur, Namur, Belgium
| | - Jérémie Bailly
- Research Unit in Environmental and Evolutionary Biology (URBE), Laboratory of Evolutionary Genetics and Ecology (LEGE), NAmur Research Institute for Life Sciences (NARILIS), University of Namur, Namur, Belgium
| | - Nicolas Debortoli
- Research Unit in Environmental and Evolutionary Biology (URBE), Laboratory of Evolutionary Genetics and Ecology (LEGE), NAmur Research Institute for Life Sciences (NARILIS), University of Namur, Namur, Belgium
| | - Nataliia Iakovenko
- Laboratory of Non-Mendelian Evolution, Institute of Animal Physiology and Genetics AS CR, Rumburská 89, Liběchov, 277 21, Czech Republic
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, CZ - 165 21 Praha 6, Suchdol, Czech Republic
- Faculty of Science, University of Ostrava, Chittussiho 10, 71000, Ostrava, Czech Republic
| | - Karel Janko
- Laboratory of Non-Mendelian Evolution, Institute of Animal Physiology and Genetics AS CR, Rumburská 89, Liběchov, 277 21, Czech Republic
- Faculty of Science, University of Ostrava, Chittussiho 10, 71000, Ostrava, Czech Republic
| | - Anne-Catherine Heuskin
- Laboratory of Analysis by Nuclear Reactions (LARN), Namur Research Institute for Life Sciences (Narilis), University of Namur, Namur, Belgium
| | - Stéphane Lucas
- Laboratory of Analysis by Nuclear Reactions (LARN), Namur Research Institute for Life Sciences (Narilis), University of Namur, Namur, Belgium
| | - Bernard Hallet
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, B-1348, Louvain-la-Neuve, Belgium
| | - Karine Van Doninck
- Research Unit in Environmental and Evolutionary Biology (URBE), Laboratory of Evolutionary Genetics and Ecology (LEGE), NAmur Research Institute for Life Sciences (NARILIS), University of Namur, Namur, Belgium.
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment (ILEE), University of Namur, Namur, Belgium.
- Research Unit in Molecular Biology and Evolution, DBO, Université libre de Bruxelles (ULB), 1050, Brussels, Belgium.
| |
Collapse
|
17
|
Laurent A, Scaletta C, Abdel-Sayed P, Raffoul W, Hirt-Burri N, Applegate LA. Industrial Biotechnology Conservation Processes: Similarities with Natural Long-Term Preservation of Biological Organisms. BIOTECH 2023; 12:biotech12010015. [PMID: 36810442 PMCID: PMC9944097 DOI: 10.3390/biotech12010015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
Cryopreservation and lyophilization processes are widely used for conservation purposes in the pharmaceutical, biotechnological, and food industries or in medical transplantation. Such processes deal with extremely low temperatures (e.g., -196 °C) and multiple physical states of water, a universal and essential molecule for many biological lifeforms. This study firstly considers the controlled laboratory/industrial artificial conditions used to favor specific water phase transitions during cellular material cryopreservation and lyophilization under the Swiss progenitor cell transplantation program. Both biotechnological tools are successfully used for the long-term storage of biological samples and products, with reversible quasi-arrest of metabolic activities (e.g., cryogenic storage in liquid nitrogen). Secondly, similarities are outlined between such artificial localized environment modifications and some natural ecological niches known to favor metabolic rate modifications (e.g., cryptobiosis) in biological organisms. Specifically, examples of survival to extreme physical parameters by small multi-cellular animals (e.g., tardigrades) are discussed, opening further considerations about the possibility to reversibly slow or temporarily arrest the metabolic activity rates of defined complex organisms in controlled conditions. Key examples of biological organism adaptation capabilities to extreme environmental parameters finally enabled a discussion about the emergence of early primordial biological lifeforms, from natural biotechnology and evolutionary points of view. Overall, the provided examples/similarities confirm the interest in further transposing natural processes and phenomena to controlled laboratory settings with the ultimate goal of gaining better control and modulation capacities over the metabolic activities of complex biological organisms.
Collapse
Affiliation(s)
- Alexis Laurent
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
- Applied Research Department, LAM Biotechnologies SA, CH-1066 Epalinges, Switzerland
- Manufacturing Department, TEC-PHARMA SA, CH-1038 Bercher, Switzerland
| | - Corinne Scaletta
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland
| | - Philippe Abdel-Sayed
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland
- DLL Bioengineering, STI School of Engineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Wassim Raffoul
- Lausanne Burn Center, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland
- Plastic, Reconstructive, and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Nathalie Hirt-Burri
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland
| | - Lee Ann Applegate
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
- Lausanne Burn Center, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland
- Plastic, Reconstructive, and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland
- Center for Applied Biotechnology and Molecular Medicine, University of Zurich, CH-8057 Zurich, Switzerland
- Correspondence: ; Tel.: +41-21-314-35-10
| |
Collapse
|
18
|
Sun Y, Zhang X, Zhang A, Landis JB, Zhang H, Sun H, Xiang QY(J, Wang H. Population Genomic Analyses Suggest a Hybrid Origin, Cryptic Sexuality, and Decay of Genes Regulating Seed Development for the Putatively Strictly Asexual Kingdonia uniflora (Circaeasteraceae, Ranunculales). Int J Mol Sci 2023; 24:1451. [PMID: 36674965 PMCID: PMC9866071 DOI: 10.3390/ijms24021451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/20/2022] [Accepted: 12/28/2022] [Indexed: 01/15/2023] Open
Abstract
Asexual lineages are perceived to be short-lived on evolutionary timescales. Hence, reports for exceptional cases of putative 'ancient asexuals' usually raise questions about the persistence of such species. So far, there have been few studies to solve the mystery in plants. The monotypic Kingdonia dating to the early Eocene, contains only K. uniflora that has no known definitive evidence for sexual reproduction nor records for having congeneric sexual species, raising the possibility that the species has persisted under strict asexuality for a long period of time. Here, we analyze whole genome polymorphism and divergence in K. uniflora. Our results show that K. uniflora is characterized by high allelic heterozygosity and elevated πN/πS ratio, in line with theoretical expectations under asexual evolution. Allele frequency spectrum analysis reveals the origin of asexuality in K. uniflora occurred prior to lineage differentiation of the species. Although divergence within K. uniflora individuals exceeds that between populations, the topologies of the two haplotype trees, however, fail to match each other, indicating long-term asexuality is unlikely to account for the high allele divergence and K. uniflora may have a recent hybrid origin. Phi-test shows a statistical probability of recombination for the conflicting phylogenetic signals revealed by the split network, suggesting K. uniflora engages in undetected sexual reproduction. Detection of elevated genetic differentiation and premature stop codons (in some populations) in genes regulating seed development indicates mutational degradation of sexuality-specific genes in K. uniflora. This study unfolds the origin and persistence mechanism of a plant lineage that has been known to reproduce asexually and presents the genomic consequences of lack of sexuality.
Collapse
Affiliation(s)
- Yanxia Sun
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China
| | - Xu Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Aidi Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China
| | - Jacob B. Landis
- School of Integrative Plant Science, Section of Plant Biology and the L.H. Bailey Hortorium, Cornell University, Ithaca, NY 14853, USA
- BTI Computational Biology Center, Boyce Thompson Institute, Ithaca, NY 14853, USA
| | - Huajie Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China
| | - Hang Sun
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Qiu-Yun (Jenny) Xiang
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - Hengchang Wang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China
| |
Collapse
|
19
|
Terwagne M, Nicolas E, Hespeels B, Herter L, Virgo J, Demazy C, Heuskin AC, Hallet B, Van Doninck K. DNA repair during nonreductional meiosis in the asexual rotifer Adineta vaga. SCIENCE ADVANCES 2022; 8:eadc8829. [PMID: 36449626 PMCID: PMC9710870 DOI: 10.1126/sciadv.adc8829] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 10/13/2022] [Indexed: 06/17/2023]
Abstract
Rotifers of the class Bdelloidea are microscopic animals notorious for their long-term persistence in the apparent absence of sexual reproduction and meiotic recombination. This evolutionary paradox is often counterbalanced by invoking their ability to repair environmentally induced genome breakage. By studying the dynamics of DNA damage response in the bdelloid species Adineta vaga, we found that it occurs rapidly in the soma, producing a partially reassembled genome. By contrast, germline DNA repair is delayed to a specific time window of oogenesis during which homologous chromosomes adopt a meiotic-like juxtaposed configuration, resulting in accurate reconstitution of the genome in the offspring. Our finding that a noncanonical meiosis is the mechanism of germline DNA repair in bdelloid rotifers gives previously unidentified insights on their enigmatic long-term evolution.
Collapse
Affiliation(s)
- Matthieu Terwagne
- Research Unit in Environmental and Evolutionary Biology (URBE), Laboratory of Evolutionary Genetics and Ecology (LEGE), NAmur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), Namur 5000, Belgium
- Institute of Biomolecular Science and Technology (LIBST), Université Catholique de Louvain (UCLouvain), Louvain-la-Neuve 1348, Belgium
| | - Emilien Nicolas
- Research Unit in Environmental and Evolutionary Biology (URBE), Laboratory of Evolutionary Genetics and Ecology (LEGE), NAmur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), Namur 5000, Belgium
- Institute of Biomolecular Science and Technology (LIBST), Université Catholique de Louvain (UCLouvain), Louvain-la-Neuve 1348, Belgium
- Research Unit of Molecular Biology and Evolution (MBE), Université Libre de Bruxelles (ULB), Brussels, 1050, Belgium
| | - Boris Hespeels
- Research Unit in Environmental and Evolutionary Biology (URBE), Laboratory of Evolutionary Genetics and Ecology (LEGE), NAmur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), Namur 5000, Belgium
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth and Environment (ILEE), University of Namur (UNamur), Namur 5000, Belgium
| | - Ludovic Herter
- Research Unit in Environmental and Evolutionary Biology (URBE), Laboratory of Evolutionary Genetics and Ecology (LEGE), NAmur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), Namur 5000, Belgium
| | - Julie Virgo
- Research Unit in Environmental and Evolutionary Biology (URBE), Laboratory of Evolutionary Genetics and Ecology (LEGE), NAmur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), Namur 5000, Belgium
| | - Catherine Demazy
- Research Unit in Environmental and Evolutionary Biology (URBE), Laboratory of Evolutionary Genetics and Ecology (LEGE), NAmur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), Namur 5000, Belgium
- Cellular Biology Research Unit (URBC), University of Namur (UNamur), Namur 5000, Belgium
| | - Anne-Catherine Heuskin
- Laboratory of Analysis by Nuclear Reaction (LARN), NAmur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), Namur 5000, Belgium
| | - Bernard Hallet
- Institute of Biomolecular Science and Technology (LIBST), Université Catholique de Louvain (UCLouvain), Louvain-la-Neuve 1348, Belgium
| | - Karine Van Doninck
- Research Unit in Environmental and Evolutionary Biology (URBE), Laboratory of Evolutionary Genetics and Ecology (LEGE), NAmur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), Namur 5000, Belgium
- Research Unit of Molecular Biology and Evolution (MBE), Université Libre de Bruxelles (ULB), Brussels, 1050, Belgium
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth and Environment (ILEE), University of Namur (UNamur), Namur 5000, Belgium
| |
Collapse
|
20
|
Non-random genetic alterations in the cyanobacterium Nostoc sp. exposed to space conditions. Sci Rep 2022; 12:12580. [PMID: 35869252 PMCID: PMC9307615 DOI: 10.1038/s41598-022-16789-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 07/15/2022] [Indexed: 11/26/2022] Open
Abstract
Understanding the impact of long-term exposure of microorganisms to space is critical in understanding how these exposures impact the evolution and adaptation of microbial life under space conditions. In this work we subjected Nostoc sp. CCCryo 231-06, a cyanobacterium capable of living under many different ecological conditions, and also surviving in extreme ones, to a 23-month stay at the International Space Station (the Biology and Mars Experiment, BIOMEX, on the EXPOSE-R2 platform) and returned it to Earth for single-cell genome analysis. We used microfluidic technology and single cell sequencing to identify the changes that occurred in the whole genome of single Nostoc cells. The variant profile showed that biofilm and photosystem associated loci were the most altered, with an increased variant rate of synonymous base pair substitutions. The cause(s) of these non-random alterations and their implications to the evolutionary potential of single bacterial cells under long-term cosmic exposure warrants further investigation.
Collapse
|
21
|
Lee Y, Kim MS, Park JJC, Lee YH, Lee JS. Oxidative stress-mediated synergistic deleterious effects of nano- and microplastics in the hypoxia-conditioned marine rotifer Brachionus plicatilis. MARINE POLLUTION BULLETIN 2022; 181:113933. [PMID: 35850089 DOI: 10.1016/j.marpolbul.2022.113933] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
While pollution due to nano- and micro-sized plastics (NMPs) and hypoxic conditions both occur in coastal areas, the deleterious potential of co-exposure to hypoxia and NMPs (hypoxia and micro-sized plastics, HMPs; hypoxia and nano-sized plastics, HNPs) is largely unclear. Here, we provide evidence for multigenerational effects of HMP and HNP in the marine rotifer Brachionus plicatilis by investigating changes in its life traits, antioxidant system, and hypoxia-inducible factor (HIF) pathway using an orthogonal experimental design, with nanoscale and microscale particles measuring 0.05 μm and 6.0 μm in diameter, respectively, and hypoxic conditions of 0.5 mg/L for six generations. Combined exposure to NMPs and hypoxia caused a significant decrease in fecundity and overproduction of reactive oxygen species (ROS). The HIF pathway and circadian clock genes were also significantly upregulated in response to HMP and HNP exposure. In particular, synergistic deleterious effects of HNP were evident, suggesting that size-dependent toxicity can be a major driver of the effects of hypoxia and NMP co-exposure. After several generations of exposure, ROS levels returned to basal levels and transcriptomic resilience was observed, although rotifer reproduction remained suppressed. These findings help eluciating the underlying molecular mechanisms involved in responses to plastic pollution in hypoxic conditions.
Collapse
Affiliation(s)
- Yoseop Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Min-Sub Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jordan Jun Chul Park
- Département des Sciences, Université Sainte-Anne, Church Point, NS B0W1M0, Canada
| | - Young Hwan Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
22
|
Shim KY, Sukumaran V, Yeo IC, Shin H, Jeong CB. Effects of atrazine and diuron on life parameters, antioxidant response, and multixenobiotic resistance in non-targeted marine zooplankton. Comp Biochem Physiol C Toxicol Pharmacol 2022; 258:109378. [PMID: 35605931 DOI: 10.1016/j.cbpc.2022.109378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/02/2022] [Accepted: 05/17/2022] [Indexed: 11/30/2022]
Abstract
Atrazine and diuron are among the most widely used antifoulant biocides in the world. Due to their persistence in the environment, they can induce adverse effects on non-targeted organisms. In this study, we investigated the chronic in vivo toxicity of atrazine and diuron with further assessments on oxidative stress responses (e.g., oxidative stress, antioxidant) and multixenobiotic resistance (MXR) function in the rotifer Brachionus koreanus, a non-targeted microzooplanktonic grazer at the primary level of the marine food chain. Although similar oxidative response was shown by both biocides, diuron induced stronger retardation on reproduction and population growth rates of B. koreanus while moderate effects were observed by atrazine. This higher toxicity of diuron was shown to be associated with its stronger inhibition of MXR conferred by P-glycoprotein and multidrug resistance proteins which play as a first line of defense by transporting various toxicants out of a cell. Our study provides new insight into non-targeted effects of biocides on marine zooplankton and mechanisms beyond their different degrees of toxicity.
Collapse
Affiliation(s)
- Kyu-Young Shim
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon 22012, South Korea
| | - Vrinda Sukumaran
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon 22012, South Korea
| | - In-Cheol Yeo
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon 22012, South Korea
| | - Heesang Shin
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon 22012, South Korea
| | - Chang-Bum Jeong
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon 22012, South Korea.
| |
Collapse
|
23
|
Foe VE. Does the Pachytene Checkpoint, a Feature of Meiosis, Filter Out Mistakes in Double-Strand DNA Break Repair and as a side-Effect Strongly Promote Adaptive Speciation? Integr Org Biol 2022; 4:obac008. [PMID: 36827645 PMCID: PMC8998493 DOI: 10.1093/iob/obac008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
This essay aims to explain two biological puzzles: why eukaryotic transcription units are composed of short segments of coding DNA interspersed with long stretches of non-coding (intron) DNA, and the near ubiquity of sexual reproduction. As is well known, alternative splicing of its coding sequences enables one transcription unit to produce multiple variants of each encoded protein. Additionally, padding transcription units with non-coding DNA (often many thousands of base pairs long) provides a readily evolvable way to set how soon in a cell cycle the various mRNAs will begin being expressed and the total amount of mRNA that each transcription unit can make during a cell cycle. This regulation complements control via the transcriptional promoter and facilitates the creation of complex eukaryotic cell types, tissues, and organisms. However, it also makes eukaryotes exceedingly vulnerable to double-strand DNA breaks, which end-joining break repair pathways can repair incorrectly. Transcription units cover such a large fraction of the genome that any mis-repair producing a reorganized chromosome has a high probability of destroying a gene. During meiosis, the synaptonemal complex aligns homologous chromosome pairs and the pachytene checkpoint detects, selectively arrests, and in many organisms actively destroys gamete-producing cells with chromosomes that cannot adequately synapse; this creates a filter favoring transmission to the next generation of chromosomes that retain the parental organization, while selectively culling those with interrupted transcription units. This same meiotic checkpoint, reacting to accidental chromosomal reorganizations inflicted by error-prone break repair, can, as a side effect, provide a mechanism for the formation of new species in sympatry. It has been a long-standing puzzle how something as seemingly maladaptive as hybrid sterility between such new species can arise. I suggest that this paradox is resolved by understanding the adaptive importance of the pachytene checkpoint, as outlined above.
Collapse
|
24
|
Lantin S, Mendell S, Akkad G, Cohen AN, Apicella X, McCoy E, Beltran-Pardo E, Waltemathe M, Srinivasan P, Joshi PM, Rothman JH, Lubin P. Interstellar space biology via Project Starlight. ACTA ASTRONAUTICA 2022; 190:261-272. [PMID: 36710946 PMCID: PMC9881496 DOI: 10.1016/j.actaastro.2021.10.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Our ability to explore the cosmos by direct contact has been limited to a small number of lunar and interplanetary missions. However, the NASA Starlight program points a path forward to send small, relativistic spacecraft far outside our solar system via standoff directed-energy propulsion. These miniaturized spacecraft are capable of robotic exploration but can also transport seeds and organisms, marking a profound change in our ability to both characterize and expand the reach of known life. Here we explore the biological and technological challenges of interstellar space biology, focusing on radiation-tolerant microorganisms capable of cryptobiosis. Additionally, we discuss planetary protection concerns and other ethical considerations of sending life to the stars.
Collapse
Affiliation(s)
- Stephen Lantin
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, 32611, FL, USA
- Department of Chemical Engineering, University of California - Santa Barbara, Santa Barbara, 93106, CA, USA
| | - Sophie Mendell
- Department of Molecular, Cellular, and Developmental Biology, University of California - Santa Barbara, Santa Barbara, 93106, CA, USA
- College of Creative Studies, University of California - Santa Barbara, Santa Barbara, 93106, CA, USA
| | - Ghassan Akkad
- Department of Molecular, Cellular, and Developmental Biology, University of California - Santa Barbara, Santa Barbara, 93106, CA, USA
| | - Alexander N. Cohen
- Department of Physics, University of California - Santa Barbara, Santa Barbara, 93106, CA, USA
| | - Xander Apicella
- Department of Physics, University of California - Santa Barbara, Santa Barbara, 93106, CA, USA
| | - Emma McCoy
- Department of Physics, University of California - Santa Barbara, Santa Barbara, 93106, CA, USA
| | | | | | - Prasanna Srinivasan
- Department of Electrical and Computer Engineering, University of California - Santa Barbara, Santa Barbara, 93106, CA, USA
- Center for BioEngineering, University of California - Santa Barbara, Santa Barbara, 93106, CA, USA
| | - Pradeep M. Joshi
- Department of Molecular, Cellular, and Developmental Biology, University of California - Santa Barbara, Santa Barbara, 93106, CA, USA
| | - Joel H. Rothman
- Department of Molecular, Cellular, and Developmental Biology, University of California - Santa Barbara, Santa Barbara, 93106, CA, USA
| | - Philip Lubin
- Department of Physics, University of California - Santa Barbara, Santa Barbara, 93106, CA, USA
| |
Collapse
|
25
|
Laine VN, Sackton T, Meselson M. Genomic Signature of Sexual Reproduction in the Bdelloid Rotifer Macrotrachella quadricornifera. Genetics 2021; 220:6458333. [PMID: 34888647 DOI: 10.1093/genetics/iyab221] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 11/10/2021] [Indexed: 11/13/2022] Open
Abstract
Bdelloid rotifers, common freshwater invertebrates of ancient origin and worldwide distribution have long been thought to be entirely asexual, being the principal exception to the view that in eukaryotes the loss of sex leads to early extinction. That bdelloids are facultatively sexual is shown by a study of allele sharing within a group of closely related bdelloids of the species Macrotrachella quadricornifera, supporting the view that sexual reproduction is essential for long-term success in all eukaryotes.
Collapse
Affiliation(s)
- Veronika N Laine
- Department of Animal Ecology, Finnish Museum of Natural History, University of Helsinki, Helsinki 00100, Finland
| | - Timothy Sackton
- Informatics Group, Faculty of Arts and Sciences, Harvard University, Cambridge, MA 02138; USA
| | - Matthew Meselson
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
26
|
Simion P, Narayan J, Houtain A, Derzelle A, Baudry L, Nicolas E, Arora R, Cariou M, Cruaud C, Gaudray FR, Gilbert C, Guiglielmoni N, Hespeels B, Kozlowski DKL, Labadie K, Limasset A, Llirós M, Marbouty M, Terwagne M, Virgo J, Cordaux R, Danchin EGJ, Hallet B, Koszul R, Lenormand T, Flot JF, Van Doninck K. Chromosome-level genome assembly reveals homologous chromosomes and recombination in asexual rotifer Adineta vaga. SCIENCE ADVANCES 2021; 7:eabg4216. [PMID: 34613768 PMCID: PMC8494291 DOI: 10.1126/sciadv.abg4216] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Bdelloid rotifers are notorious as a speciose ancient clade comprising only asexual lineages. Thanks to their ability to repair highly fragmented DNA, most bdelloid species also withstand complete desiccation and ionizing radiation. Producing a well-assembled reference genome is a critical step to developing an understanding of the effects of long-term asexuality and DNA breakage on genome evolution. To this end, we present the first high-quality chromosome-level genome assemblies for the bdelloid Adineta vaga, composed of six pairs of homologous (diploid) chromosomes with a footprint of paleotetraploidy. The observed large-scale losses of heterozygosity are signatures of recombination between homologous chromosomes, either during mitotic DNA double-strand break repair or when resolving programmed DNA breaks during a modified meiosis. Dynamic subtelomeric regions harbor more structural diversity (e.g., chromosome rearrangements, transposable elements, and haplotypic divergence). Our results trigger the reappraisal of potential meiotic processes in bdelloid rotifers and help unravel the factors underlying their long-term asexual evolutionary success.
Collapse
Affiliation(s)
- Paul Simion
- Research Unit in Environmental and Evolutionary Biology, Université de Namur, Namur 5000, Belgium
- Corresponding author. (K.V.D.); (J.-F.F.); (P.S.)
| | - Jitendra Narayan
- Research Unit in Environmental and Evolutionary Biology, Université de Namur, Namur 5000, Belgium
| | - Antoine Houtain
- Research Unit in Environmental and Evolutionary Biology, Université de Namur, Namur 5000, Belgium
| | - Alessandro Derzelle
- Research Unit in Environmental and Evolutionary Biology, Université de Namur, Namur 5000, Belgium
| | - Lyam Baudry
- Institut Pasteur, Unité Régulation Spatiale des Génomes, UMR 3525, CNRS, Paris F-75015, France
- Collège Doctoral, Sorbonne Université, F-75005 Paris, France
| | - Emilien Nicolas
- Research Unit in Environmental and Evolutionary Biology, Université de Namur, Namur 5000, Belgium
- Molecular Biology and Evolution, Université libre de Bruxelles (ULB), Brussels 1050, Belgium
| | - Rohan Arora
- Research Unit in Environmental and Evolutionary Biology, Université de Namur, Namur 5000, Belgium
- Molecular Biology and Evolution, Université libre de Bruxelles (ULB), Brussels 1050, Belgium
| | - Marie Cariou
- Research Unit in Environmental and Evolutionary Biology, Université de Namur, Namur 5000, Belgium
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France
| | - Corinne Cruaud
- Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057 Evry, France
| | | | - Clément Gilbert
- Évolution, Génomes, Comportement et Écologie, Université Paris-Saclay, CNRS, IRD, UMR, 91198 Gif-sur-Yvette, France
| | - Nadège Guiglielmoni
- Evolutionary Biology and Ecology, Université libre de Bruxelles (ULB), Brussels 1050, Belgium
| | - Boris Hespeels
- Research Unit in Environmental and Evolutionary Biology, Université de Namur, Namur 5000, Belgium
| | - Djampa K. L. Kozlowski
- INRAE, Université Côte-d’Azur, CNRS, Institut Sophia Agrobiotech, Sophia Antipolis 06903, France
| | - Karine Labadie
- Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057 Evry, France
| | - Antoine Limasset
- Université de Lille, CNRS, UMR 9189 - CRIStAL, 59655 Villeneuve-d’Ascq, France
| | - Marc Llirós
- Research Unit in Environmental and Evolutionary Biology, Université de Namur, Namur 5000, Belgium
- Institut d’Investigació Biomédica de Girona, Malalties Digestives i Microbiota, 17190 Salt, Spain
| | - Martial Marbouty
- Institut Pasteur, Unité Régulation Spatiale des Génomes, UMR 3525, CNRS, Paris F-75015, France
| | - Matthieu Terwagne
- Research Unit in Environmental and Evolutionary Biology, Université de Namur, Namur 5000, Belgium
| | - Julie Virgo
- Research Unit in Environmental and Evolutionary Biology, Université de Namur, Namur 5000, Belgium
| | - Richard Cordaux
- Ecologie et Biologie des interactions, Université de Poitiers, UMR CNRS 7267, 5 rue Albert Turpain, 86073 Poitiers, France
| | - Etienne G. J. Danchin
- INRAE, Université Côte-d’Azur, CNRS, Institut Sophia Agrobiotech, Sophia Antipolis 06903, France
| | - Bernard Hallet
- LIBST, Université Catholique de Louvain (UCLouvain), Croix du Sud 4/5, Louvain-la-Neuve 1348, Belgium
| | - Romain Koszul
- Institut Pasteur, Unité Régulation Spatiale des Génomes, UMR 3525, CNRS, Paris F-75015, France
| | - Thomas Lenormand
- CEFE, Univ Montpellier, CNRS, Univ Paul Valéry Montpellier 3, EPHE, IRD, Montpellier, France
| | - Jean-Francois Flot
- Evolutionary Biology and Ecology, Université libre de Bruxelles (ULB), Brussels 1050, Belgium
- Interuniversity Institute of Bioinformatics in Brussels - (IB), Brussels 1050, Belgium
- Corresponding author. (K.V.D.); (J.-F.F.); (P.S.)
| | - Karine Van Doninck
- Research Unit in Environmental and Evolutionary Biology, Université de Namur, Namur 5000, Belgium
- Molecular Biology and Evolution, Université libre de Bruxelles (ULB), Brussels 1050, Belgium
- Corresponding author. (K.V.D.); (J.-F.F.); (P.S.)
| |
Collapse
|
27
|
Tsuneizumi K, Yamada M, Kim HJ, Ichida H, Ichinose K, Sakakura Y, Suga K, Hagiwara A, Kawata M, Katayama T, Tezuka N, Kobayashi T, Koiso M, Abe T. Application of heavy-ion-beam irradiation to breeding large rotifer. Biosci Biotechnol Biochem 2021; 85:703-713. [PMID: 33624778 DOI: 10.1093/bbb/zbaa094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/16/2020] [Indexed: 12/17/2022]
Abstract
In larviculture facilities, rotifers are generally used as an initial food source, while a proper size of live feeds to connect rotifer and Artemia associated with fish larval growth is needed. The improper management of feed size and density induces mass mortality and abnormal development of fish larvae. To improve the survival and growth of target larvae, this study applied carbon and argon heavy-ion-beam irradiation in mutation breeding to select rotifer mutants with larger lorica sizes. The optimal irradiation conditions of heavy-ion beam were determined with lethality, reproductivity, mutant frequency, and morphometric characteristics. Among 56 large mutants, TYC78, TYC176, and TYA41 also showed active population growth. In conclusion, (1) heavy-ion-beam irradiation was defined as an efficient tool for mutagenesis of rotifers and (2) the aforementioned 3 lines that have larger lorica length and active population growth may be used as a countermeasure of live feed size gap during fish larviculcure.
Collapse
Affiliation(s)
| | - Mieko Yamada
- Nishina Center for Accelerator-Based Science, RIKEN, Wako, Japan
| | - Hee-Jin Kim
- Institute of Integrated Science and Technology, Graduate School of Fisheries Science and Environmental Sciences, Nagasaki University, Nagasaki, Japan
| | - Hiroyuki Ichida
- Nishina Center for Accelerator-Based Science, RIKEN, Wako, Japan
| | | | - Yoshitaka Sakakura
- Institute of Integrated Science and Technology, Graduate School of Fisheries Science and Environmental Sciences, Nagasaki University, Nagasaki, Japan
| | - Koushirou Suga
- Institute of Integrated Science and Technology, Graduate School of Fisheries Science and Environmental Sciences, Nagasaki University, Nagasaki, Japan
| | - Atsushi Hagiwara
- Institute of Integrated Science and Technology, Graduate School of Fisheries Science and Environmental Sciences, Nagasaki University, Nagasaki, Japan.,Organization for Marine Science and Technology, Nagasaki University, Nagasaki, Japan
| | - Miki Kawata
- Japan Sea National Fisheries Research Institute, Japan Fisheries Research and Education Agency, Miyazu, Japan
| | - Takashi Katayama
- Japan Sea National Fisheries Research Institute, Japan Fisheries Research and Education Agency, Miyazu, Japan
| | - Nobuhiro Tezuka
- Japan Sea National Fisheries Research Institute, Japan Fisheries Research and Education Agency, Miyazu, Japan
| | - Takanori Kobayashi
- National Research Institute of Fisheries Science, Japan Fisheries Research and Education Agency, Yokohama, Japan
| | - Masahiko Koiso
- Seikai National Fisheries Research Institute, Japan Fisheries Research and Education Agency, Ishigaki, Japan
| | - Tomoko Abe
- Nishina Center for Accelerator-Based Science, RIKEN, Wako, Japan
| |
Collapse
|
28
|
Nowell RW, Wilson CG, Almeida P, Schiffer PH, Fontaneto D, Becks L, Rodriguez F, Arkhipova IR, Barraclough TG. Evolutionary dynamics of transposable elements in bdelloid rotifers. eLife 2021; 10:e63194. [PMID: 33543711 PMCID: PMC7943196 DOI: 10.7554/elife.63194] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 02/04/2021] [Indexed: 12/17/2022] Open
Abstract
Transposable elements (TEs) are selfish genomic parasites whose ability to spread autonomously is facilitated by sexual reproduction in their hosts. If hosts become obligately asexual, TE frequencies and dynamics are predicted to change dramatically, but the long-term outcome is unclear. Here, we test current theory using whole-genome sequence data from eight species of bdelloid rotifers, a class of invertebrates in which males are thus far unknown. Contrary to expectations, we find a variety of active TEs in bdelloid genomes, at an overall frequency within the range seen in sexual species. We find no evidence that TEs are spread by cryptic recombination or restrained by unusual DNA repair mechanisms. Instead, we find that that TE content evolves relatively slowly in bdelloids and that gene families involved in RNAi-mediated TE suppression have undergone significant expansion, which might mitigate the deleterious effects of active TEs and compensate for the consequences of long-term asexuality.
Collapse
Affiliation(s)
- Reuben W Nowell
- Department of Zoology, University of OxfordOxfordUnited Kingdom
- Department of Life Sciences, Imperial College London, Silwood Park CampusAscot, BerkshireUnited Kingdom
| | - Christopher G Wilson
- Department of Zoology, University of OxfordOxfordUnited Kingdom
- Department of Life Sciences, Imperial College London, Silwood Park CampusAscot, BerkshireUnited Kingdom
| | - Pedro Almeida
- Department of Life Sciences, Imperial College London, Silwood Park CampusAscot, BerkshireUnited Kingdom
- Division of Biosciences, University College LondonLondonUnited Kingdom
| | - Philipp H Schiffer
- Institute of Zoology, Section Developmental Biology, University of Cologne, KölnWormlabGermany
| | - Diego Fontaneto
- National Research Council of Italy, Water Research InstituteVerbania PallanzaItaly
| | - Lutz Becks
- Community Dynamics Group, Department of Evolutionary Ecology, Max Planck Institute for Evolutionary BiologyPlönGermany
- Aquatic Ecology and Evolution, University of KonstanzKonstanzGermany
| | - Fernando Rodriguez
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological LaboratoryWoods Hole, MAUnited States
| | - Irina R Arkhipova
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological LaboratoryWoods Hole, MAUnited States
| | - Timothy G Barraclough
- Department of Zoology, University of OxfordOxfordUnited Kingdom
- Department of Life Sciences, Imperial College London, Silwood Park CampusAscot, BerkshireUnited Kingdom
| |
Collapse
|
29
|
Tarazona E, Lucas-Lledó JI, Carmona MJ, García-Roger EM. Gene expression in diapausing rotifer eggs in response to divergent environmental predictability regimes. Sci Rep 2020; 10:21366. [PMID: 33288800 PMCID: PMC7721884 DOI: 10.1038/s41598-020-77727-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 11/17/2020] [Indexed: 12/02/2022] Open
Abstract
In unpredictable environments in which reliable cues for predicting environmental variation are lacking, a diversifying bet-hedging strategy for diapause exit is expected to evolve, whereby only a portion of diapausing forms will resume development at the first occurrence of suitable conditions. This study focused on diapause termination in the rotifer Brachionus plicatilis s.s., addressing the transcriptional profile of diapausing eggs from environments differing in the level of predictability and the relationship of such profiles with hatching patterns. RNA-Seq analyses revealed significant differences in gene expression between diapausing eggs produced in the laboratory under combinations of two contrasting selective regimes of environmental fluctuation (predictable vs unpredictable) and two different diapause conditions (passing or not passing through forced diapause). The results showed that the selective regime was more important than the diapause condition in driving differences in the transcriptome profile. Most of the differentially expressed genes were upregulated in the predictable regime and mostly associated with molecular functions involved in embryo morphological development and hatching readiness. This was in concordance with observations of earlier, higher, and more synchronous hatching in diapausing eggs produced under the predictable regime.
Collapse
Affiliation(s)
- Eva Tarazona
- Institut Cavanilles de Biodiversitat I Biologia Evolutiva, Universitat de València, Valencia, Spain
| | - J Ignacio Lucas-Lledó
- Institut Cavanilles de Biodiversitat I Biologia Evolutiva, Universitat de València, Valencia, Spain
| | - María José Carmona
- Institut Cavanilles de Biodiversitat I Biologia Evolutiva, Universitat de València, Valencia, Spain
| | - Eduardo M García-Roger
- Institut Cavanilles de Biodiversitat I Biologia Evolutiva, Universitat de València, Valencia, Spain.
| |
Collapse
|
30
|
Romsdahl J, Schultzhaus Z, Chen A, Liu J, Ewing A, Hervey J, Wang Z. Adaptive evolution of a melanized fungus reveals robust augmentation of radiation resistance by abrogating non-homologous end-joining. Environ Microbiol 2020; 23:3627-3645. [PMID: 33078510 DOI: 10.1111/1462-2920.15285] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/22/2020] [Accepted: 10/16/2020] [Indexed: 02/06/2023]
Abstract
Fungi have been observed to exhibit resistance to high levels of ionizing radiation despite sharing most DNA repair mechanisms with other eukaryotes. Radioresistance, in fact, is such a common feature in fungi that it is difficult to identify species that exhibit widely different radiosensitivities, which in turn has hampered the identification of genetic elements responsible for this resistance phenotype. Due to the inherent mutagenic properties of radiation exposure, however, this can be addressed through adaptive laboratory evolution for increased ionizing radiation resistance. Here, using the black yeast Exophiala dermatitidis, we demonstrate that resistance to γ-radiation can be greatly increased through repeated rounds of irradiation and outgrowth. Moreover, we find that the small genome size of fungi situates them as a relatively simple functional genomics platform for identification of mutations associated with ionizing radiation resistance. This enabled the identification of genetic mutations in genes encoding proteins with a broad range of functions from 10 evolved strains. Specifically, we find that greatly increased resistance to γ-radiation is achieved in E. dermatitidis through disruption of the non-homologous end-joining pathway, with three individual evolutionary paths converging to abolish this DNA repair process. This result suggests that non-homologous end-joining, even in haploid cells where homologous chromosomes are not present during much of the cell cycle, is an impediment to repair of radiation-induced lesions in this organism, and that the relative levels of homologous and non-homologous repair in a given fungal species may play a major role in its radiation resistance.
Collapse
Affiliation(s)
- Jillian Romsdahl
- National Research Council Postdoctoral Research Associate, Naval Research Laboratory, Washington, DC, USA
| | - Zachary Schultzhaus
- Center for Biomolecular Sciences and Engineering, US Naval Research Laboratory, Washington, DC, USA
| | - Amy Chen
- Virginia Tech Carilion School of Medicine, Roanoke, VA, USA
| | - Jing Liu
- Thomas Jefferson High School for Science and Technology, Alexandria, VA, USA
| | | | - Judson Hervey
- Center for Biomolecular Sciences and Engineering, US Naval Research Laboratory, Washington, DC, USA
| | - Zheng Wang
- Center for Biomolecular Sciences and Engineering, US Naval Research Laboratory, Washington, DC, USA
| |
Collapse
|
31
|
Lee YH, Kim MS, Kim DH, Kim IC, Hagiwara A, Lee JS. Genome-wide identification of DNA double-strand break repair genes and transcriptional modulation in response to benzo[α]pyrene in the monogonont rotifer Brachionus spp. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 227:105614. [PMID: 32932040 DOI: 10.1016/j.aquatox.2020.105614] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/19/2020] [Accepted: 08/24/2020] [Indexed: 06/11/2023]
Abstract
The DNA repair system has evolved from the common ancestor of all life forms and its function is highly conserved within eukaryotes. In this study, to reveal the role of DNA double-strand break repair (DSB) genes in response to benzo[α]pyrene (B[α]P), we first identified DSB genes in relation to homologous recombination and non-homologous end joining events in four Brachionus rotifer spp.: B. calyciflorus, B. koreanus, B. plicatilis, and B. rotundiformis. In all the Brachionus spp., 39 orthologous genes to human DSB repair genes were identified. Furthermore, three genes in B. koreanus, two genes in B. plicatilis, and one gene in B. calyciflorus and B. rotundiformis were present as duplicated genes, indicating that these genes were diversified over speciation in the genus Brachionus. Moreover, we compared DSB repair genes on the gene structures in four monogonont Brachionus rotifers and the bdelloid rotifer Adineta vaga, which possesses highly efficient DNA repair ability. The transcriptional responses of four monogonont Brachionus rotifers in response to B[α]P exposure showed how B[α]P exposure led to DSBs and subsequently recruited DNA DSB repair pathways in the rotifer B. koreanus. Taken together, this study provides a better understanding of the potential role of DSB repair genes in the monogonont rotifer Brachionus spp. in response to B[α]P.
Collapse
Affiliation(s)
- Young Hwan Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Min-Sub Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Duck-Hyun Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Il-Chan Kim
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 21990, South Korea
| | - Atsushi Hagiwara
- Institute of Integrated Science and Technology, Nagasaki University, Nagasaki 852-8521, Japan; Organization for Marine Science and Technology, Nagasaki University, Nagasaki 852-8521, Japan
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
32
|
Schultzhaus ZS, Schultzhaus JN, Romsdahl J, Chen A, Hervey IV WJ, Leary DH, Wang Z. Proteomics Reveals Distinct Changes Associated with Increased Gamma Radiation Resistance in the Black Yeast Exophiala dermatitidis. Genes (Basel) 2020; 11:E1128. [PMID: 32992890 PMCID: PMC7650708 DOI: 10.3390/genes11101128] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 12/12/2022] Open
Abstract
The yeast Exophiala dermatitidis exhibits high resistance to γ-radiation in comparison to many other fungi. Several aspects of this phenotype have been characterized, including its dependence on homologous recombination for the repair of radiation-induced DNA damage, and the transcriptomic response invoked by acute γ-radiation exposure in this organism. However, these findings have yet to identify unique γ-radiation exposure survival strategies-many genes that are induced by γ-radiation exposure do not appear to be important for recovery, and the homologous recombination machinery of this organism is not unique compared to more sensitive species. To identify features associated with γ-radiation resistance, here we characterized the proteomes of two E. dermatitidis strains-the wild type and a hyper-resistant strain developed through adaptive laboratory evolution-before and after γ-radiation exposure. The results demonstrate that protein intensities do not change substantially in response to this stress. Rather, the increased resistance exhibited by the evolved strain may be due in part to increased basal levels of single-stranded binding proteins and a large increase in ribosomal content, possibly allowing for a more robust, induced response during recovery. This experiment provides evidence enabling us to focus on DNA replication, protein production, and ribosome levels for further studies into the mechanism of γ-radiation resistance in E. dermatitidis and other fungi.
Collapse
Affiliation(s)
- Zachary S. Schultzhaus
- Center for Bio/Molecular Science & Engineering, Naval Research Laboratory, Washington, DC 20375, USA; (Z.S.S.); (J.N.S.); (W.J.H.IV); (D.H.L.)
| | - Janna N. Schultzhaus
- Center for Bio/Molecular Science & Engineering, Naval Research Laboratory, Washington, DC 20375, USA; (Z.S.S.); (J.N.S.); (W.J.H.IV); (D.H.L.)
| | - Jillian Romsdahl
- National Research Council, Postdoctoral Fellowship Program, US Naval Research Laboratory, Washington, DC 20744, USA;
| | - Amy Chen
- Virginia Tech Carilion School of Medicine, Roanoke, VA 24016, USA;
| | - W. Judson Hervey IV
- Center for Bio/Molecular Science & Engineering, Naval Research Laboratory, Washington, DC 20375, USA; (Z.S.S.); (J.N.S.); (W.J.H.IV); (D.H.L.)
| | - Dagmar H. Leary
- Center for Bio/Molecular Science & Engineering, Naval Research Laboratory, Washington, DC 20375, USA; (Z.S.S.); (J.N.S.); (W.J.H.IV); (D.H.L.)
| | - Zheng Wang
- Center for Bio/Molecular Science & Engineering, Naval Research Laboratory, Washington, DC 20375, USA; (Z.S.S.); (J.N.S.); (W.J.H.IV); (D.H.L.)
| |
Collapse
|
33
|
Hespeels B, Penninckx S, Cornet V, Bruneau L, Bopp C, Baumlé V, Redivo B, Heuskin AC, Moeller R, Fujimori A, Lucas S, Van Doninck K. Iron Ladies - How Desiccated Asexual Rotifer Adineta vaga Deal With X-Rays and Heavy Ions? Front Microbiol 2020; 11:1792. [PMID: 32849408 PMCID: PMC7412981 DOI: 10.3389/fmicb.2020.01792] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 07/09/2020] [Indexed: 11/29/2022] Open
Abstract
Space exposure experiments from the last 15 years have unexpectedly shown that several terrestrial organisms, including some multi-cellular species, are able to survive in open space without protection. The robustness of bdelloid rotifers suggests that these tiny creatures can possibly be added to the still restricted list of animals that can deal with the exposure to harsh condition of space. Bdelloids are one of the smallest animals on Earth. Living all over the world, mostly in semi-terrestrial environments, they appear to be extremely stress tolerant. Their desiccation tolerance at any stage of their life cycle is known to confer tolerance to a variety of stresses including high doses of radiation and freezing. In addition, they constitute a major scandal in evolutionary biology due to the putative absence of sexual reproduction for at least 60 million years. Adineta vaga, with its unique characteristics and a draft genome available, was selected by ESA (European Space Agency) as a model system to study extreme resistance of organisms exposed to space environment. In this manuscript, we documented the resistance of desiccated A. vaga individuals exposed to increasing doses of X-ray, protons and Fe ions. Consequences of exposure to different sources of radiation were investigated in regard to the cellular type including somatic (survival assay) and germinal cells (fertility assay). Then, the capacity of A. vaga individuals to repair DNA DSB induced by different source of radiation was investigated. Bdelloid rotifers represent a promising model in order to investigate damage induced by high or low LET radiation. The possibility of exposure both on hydrated or desiccated specimens may help to decipher contribution of direct and indirect radiation damage on biological processes. Results achieved through this study consolidate our knowledge about the radioresistance of A. vaga and improve our capacity to compare extreme resistance against radiation among living organisms including metazoan.
Collapse
Affiliation(s)
- Boris Hespeels
- Research Unit in Environmental and Evolutionary Biology (URBE), Laboratory of Evolutionary Genetics and Ecology (LEGE), NAmur Research Institute for Life Sciences (NARILIS), University of Namur, Namur, Belgium.,Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment (ILEE), University of Namur, Namur, Belgium
| | - Sébastien Penninckx
- Laboratory of Analysis by Nuclear Reaction (LARN), NAmur Research Institute for Life Sciences (NARILIS), University of Namur, Namur, Belgium
| | - Valérie Cornet
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment (ILEE), University of Namur, Namur, Belgium
| | - Lucie Bruneau
- Research Unit in Environmental and Evolutionary Biology (URBE), Laboratory of Evolutionary Genetics and Ecology (LEGE), NAmur Research Institute for Life Sciences (NARILIS), University of Namur, Namur, Belgium
| | - Cécile Bopp
- Laboratory of Analysis by Nuclear Reaction (LARN), NAmur Research Institute for Life Sciences (NARILIS), University of Namur, Namur, Belgium
| | - Véronique Baumlé
- Research Unit in Environmental and Evolutionary Biology (URBE), Laboratory of Evolutionary Genetics and Ecology (LEGE), NAmur Research Institute for Life Sciences (NARILIS), University of Namur, Namur, Belgium.,Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment (ILEE), University of Namur, Namur, Belgium
| | - Baptiste Redivo
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment (ILEE), University of Namur, Namur, Belgium
| | - Anne-Catherine Heuskin
- Laboratory of Analysis by Nuclear Reaction (LARN), NAmur Research Institute for Life Sciences (NARILIS), University of Namur, Namur, Belgium
| | - Ralf Moeller
- Space Microbiology Research Group, Radiation Biology Department, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany.,Department of Natural Sciences, University of Applied Sciences Bonn-Rhein-Sieg (BRSU), Rheinbach, Germany
| | - Akira Fujimori
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences (NIRS), Chiba, Japan
| | - Stephane Lucas
- Laboratory of Analysis by Nuclear Reaction (LARN), NAmur Research Institute for Life Sciences (NARILIS), University of Namur, Namur, Belgium
| | - Karine Van Doninck
- Research Unit in Environmental and Evolutionary Biology (URBE), Laboratory of Evolutionary Genetics and Ecology (LEGE), NAmur Research Institute for Life Sciences (NARILIS), University of Namur, Namur, Belgium.,Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment (ILEE), University of Namur, Namur, Belgium
| |
Collapse
|
34
|
Lee YH, Kang HM, Kim MS, Lee JS, Wang M, Hagiwara A, Jeong CB, Lee JS. Multigenerational Mitigating Effects of Ocean Acidification on In Vivo Endpoints, Antioxidant Defense, DNA Damage Response, and Epigenetic Modification in an Asexual Monogonont Rotifer. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:7858-7869. [PMID: 32490673 DOI: 10.1021/acs.est.0c01438] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Ocean acidification (OA) is caused by changes in ocean carbon chemistry due to increased atmospheric pCO2 and is predicted to have deleterious effects on marine ecosystems. While the potential impacts of OA on many marine species have been studied, the multigenerational effects on asexual organisms remain unknown. We found that low seawater pH induced oxidative stress and DNA damage, decreasing growth rates, fecundity, and lifespans in the parental generation, whereas deleterious effects on in vivo endpoints in F1 and F2 offspring were less evident. The findings suggest that multigenerational adaptive effects play a role in antioxidant abilities and other defense mechanisms. OA-induced DNA damage, including double-strand breaks (DSBs), was fully repaired in F1 offspring of parents exposed to OA for 7 days, indicating that an adaptation mechanism may be the major driving force behind multigenerational adaptive effects. Analysis of epigenetic modification in response to OA involved examination of histone modification of DNA repair genes and a chromatin immunoprecipitation assay, as Bombus koreanus has no methylation pattern for CpG in its genome. We conclude that DSBs, DNA repair, and histone modification play important roles in multigenerational plasticity in response to OA in an asexual monogonont rotifer.
Collapse
Affiliation(s)
- Young Hwan Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Hye-Min Kang
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Min-Sub Kim
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jin-Sol Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Minghua Wang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems/College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Atsushi Hagiwara
- Institute of Integrated Science and Technology, Nagasaki University, Nagasaki 852-8521, Japan
- Organization for Marine Science and Technology, Nagasaki University, Nagasaki 852-8521, Japan
| | - Chang-Bum Jeong
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
- Department of Marine Science, College of Nature Science, Incheon National University, Incheon 22012, South Korea
| | - Jae-Seong Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| |
Collapse
|
35
|
Li X, Fang C, Zhao JP, Zhou XY, Ni Z, Niu DK. Desiccation does not drastically increase the accessibility of exogenous DNA to nuclear genomes: evidence from the frequency of endosymbiotic DNA transfer. BMC Genomics 2020; 21:452. [PMID: 32611311 PMCID: PMC7329468 DOI: 10.1186/s12864-020-06865-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 06/23/2020] [Indexed: 12/04/2022] Open
Abstract
Background Although horizontal gene transfer (HGT) is a widely accepted force in the evolution of prokaryotic genomes, its role in the evolution of eukaryotic genomes remains hotly debated. Some bdelloid rotifers that are resistant to extreme desiccation and radiation undergo a very high level of HGT, whereas in another desiccation-resistant invertebrate, the tardigrade, the pattern does not exist. Overall, the DNA double-strand breaks (DSBs) induced by prolonged desiccation have been postulated to open a gateway to the nuclear genome for exogenous DNA integration and thus to facilitate the HGT process, thereby enhancing the rate of endosymbiotic DNA transfer (EDT). Results We first surveyed the abundance of nuclear mitochondrial DNAs (NUMTs) and nuclear plastid DNAs (NUPTs) in five eukaryotes that are highly resistant to desiccation: the bdelloid rotifers Adineta vaga and Adineta ricciae, the tardigrade Ramazzottius varieornatus, and the resurrection plants Dorcoceras hygrometricum and Selaginella tamariscina. Excessive NUMTs or NUPTs were not detected. Furthermore, we compared 24 groups of desiccation-tolerant organisms with their relatively less desiccation-tolerant relatives but did not find a significant difference in NUMT/NUPT contents. Conclusions Desiccation may induce DSBs, but it is unlikely to dramatically increase the frequency of exogenous sequence integration in most eukaryotes. The capture of exogenous DNA sequences is possible only when DSBs are repaired through a subtype of non-homologous end joining, named alternative end joining (alt-EJ). Due to the deleterious effects of the resulting insertion mutations, alt-EJ is less frequently initiated than other mechanisms.
Collapse
Affiliation(s)
- Xixi Li
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering and Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Cheng Fang
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering and Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Jun-Peng Zhao
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering and Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Xiao-Yu Zhou
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering and Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Zhihua Ni
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering and Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.,College of Life Sciences, Hebei University, Baoding, 071002, China
| | - Deng-Ke Niu
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering and Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
36
|
Arnaise S, Shykoff JA, Møller AP, Mousseau TA, Giraud T. Anther-smut fungi from more contaminated sites in Chernobyl show lower infection ability and lower viability following experimental irradiation. Ecol Evol 2020; 10:6409-6420. [PMID: 32724522 PMCID: PMC7381591 DOI: 10.1002/ece3.6376] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/25/2020] [Accepted: 04/27/2020] [Indexed: 11/07/2022] Open
Abstract
The long-term contamination that followed the nuclear disaster at Chernobyl provides a case study for the effects of chronic ionizing radiation on living organisms and on their ability to tolerate or evolve resistance to such radiation. Previously, we studied the fertility and viability of early developmental stages of a castrating plant pathogen, the anther-smut fungus Microbotryum lychnidis-dioicae, isolated from field sites varying over 700-fold in degree of radioactive contamination. Neither the budding rate of haploid spores following meiosis nor the karyotype structure varied with increasing radiation levels at sampling sites. Here, we assessed the ability of the same M. lychnidis-dioicae strains to perform their whole life cycle, up to the production of symptoms in the plants, that is, the development of anthers full of fungal spores; we also assessed their viability under experimental radiation. Fungal strains from more contaminated sites had no lower spore numbers in anthers or viability, but infected host plants less well, indicating lower overall fitness due to radioactivity exposure. These findings improve our understanding of the previous field data, in which the anther-smut disease prevalence on Silene latifolia plants caused by M. lychnidis-dioicae was lower at more contaminated sites. Although the fungus showed relatively high resistance to experimental radiation, we found no evidence that increased resistance to radiation has evolved in populations from contaminated sites. Fungal strains from more contaminated sites even tolerated or repaired damage from a brief acute exposure to γ radiation less well than those from non- or less contaminated sites. Our results more generally concur with previous studies in showing that the fitness of living organisms is affected by radiation after nuclear disasters, but that they do not rapidly evolve higher tolerance.
Collapse
Affiliation(s)
- Sylvie Arnaise
- Ecologie Systematique EvolutionCNRSUniversité Paris‐SaclayOrsayFrance
| | - Jacqui A. Shykoff
- Ecologie Systematique EvolutionCNRSUniversité Paris‐SaclayOrsayFrance
| | - Anders P. Møller
- Ecologie Systematique EvolutionCNRSUniversité Paris‐SaclayOrsayFrance
| | | | - Tatiana Giraud
- Ecologie Systematique EvolutionCNRSUniversité Paris‐SaclayOrsayFrance
| |
Collapse
|
37
|
Zeng Y, Wei N, Wang Q, Iakovenko NS, Li Y, Yang Y. Bdelloid rotifers (Rotifera, Bdelloidea) of China: diversity and new records. Zookeys 2020; 941:1-23. [PMID: 32595405 PMCID: PMC7311513 DOI: 10.3897/zookeys.941.50465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 03/26/2020] [Indexed: 11/12/2022] Open
Abstract
Bdelloid rotifers are a group of microscopic invertebrates known for their obligate parthenogenesis and exceptional resistance to extreme environments. Their diversity and distributions are poorly studied in Asia, especially in China. In order to better understand the species distribution and diversity of bdelloid rotifers in China, a scientific surveys of habitats was conducted with 61 samples (both terrestrial and aquatic habitats) from 11 provinces and regions of China, ranging from tropics to subtropics with a specific focus on poorly sampled areas (Oriental) during September 2017 to October 2018. A total of 59 morphospecies (including subspecies) were found, of which, thirty-nine morphospecies (including one genus) are new records for China, almost doubling the number of previous records. Four rare morphospecies (Adineta cf. acuticornis Haigh, A. beysunae Örstan, Habrotrocha ligula loxoglotta De Koning and H. serpens Donner) are depicted and redescribed, and an updated checklist of Chinese bdelloids with their location and ecological information is presented. This study provides new data from a large region of China, enriching the knowledge of bdelloid biodiversity, and their global biogeography.
Collapse
Affiliation(s)
- Yue Zeng
- Institute of Hydrobiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China Jinan University Guangzhou China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China Southern Marine Science and Engineering Guangdong Laboratory Zhuhai China
| | - Nan Wei
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, China South China Institute of Environmental Sciences Guangzhou China
| | - Qing Wang
- Institute of Hydrobiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China Jinan University Guangzhou China
| | - Nataliia S Iakovenko
- Czech University of Life Sciences Prague, Faculty of Forestry and Wood Sciences, Kamýcká 129, CZ- 16521 Praha 6- Suchdol, Czech Republic Schmalhausen Institute of Zoology NAS of Ukraine Kyiv Ukraine.,Schmalhausen Institute of Zoology NAS of Ukraine, Department of Fauna and Systematics, Bogdana Khmelnyts'kogo 15, 01601 Kyiv, Ukraine Czech University of Life Sciences Prague Prague Czech Republic
| | - Ying Li
- Institute of Hydrobiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China Jinan University Guangzhou China
| | - Yufeng Yang
- Institute of Hydrobiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China Jinan University Guangzhou China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China Southern Marine Science and Engineering Guangdong Laboratory Zhuhai China
| |
Collapse
|
38
|
Furukawa S, Nagamatsu A, Nenoi M, Fujimori A, Kakinuma S, Katsube T, Wang B, Tsuruoka C, Shirai T, Nakamura AJ, Sakaue-Sawano A, Miyawaki A, Harada H, Kobayashi M, Kobayashi J, Kunieda T, Funayama T, Suzuki M, Miyamoto T, Hidema J, Yoshida Y, Takahashi A. Space Radiation Biology for "Living in Space". BIOMED RESEARCH INTERNATIONAL 2020; 2020:4703286. [PMID: 32337251 PMCID: PMC7168699 DOI: 10.1155/2020/4703286] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/13/2020] [Indexed: 12/16/2022]
Abstract
Space travel has advanced significantly over the last six decades with astronauts spending up to 6 months at the International Space Station. Nonetheless, the living environment while in outer space is extremely challenging to astronauts. In particular, exposure to space radiation represents a serious potential long-term threat to the health of astronauts because the amount of radiation exposure accumulates during their time in space. Therefore, health risks associated with exposure to space radiation are an important topic in space travel, and characterizing space radiation in detail is essential for improving the safety of space missions. In the first part of this review, we provide an overview of the space radiation environment and briefly present current and future endeavors that monitor different space radiation environments. We then present research evaluating adverse biological effects caused by exposure to various space radiation environments and how these can be reduced. We especially consider the deleterious effects on cellular DNA and how cells activate DNA repair mechanisms. The latest technologies being developed, e.g., a fluorescent ubiquitination-based cell cycle indicator, to measure real-time cell cycle progression and DNA damage caused by exposure to ultraviolet radiation are presented. Progress in examining the combined effects of microgravity and radiation to animals and plants are summarized, and our current understanding of the relationship between psychological stress and radiation is presented. Finally, we provide details about protective agents and the study of organisms that are highly resistant to radiation and how their biological mechanisms may aid developing novel technologies that alleviate biological damage caused by radiation. Future research that furthers our understanding of the effects of space radiation on human health will facilitate risk-mitigating strategies to enable long-term space and planetary exploration.
Collapse
Affiliation(s)
- Satoshi Furukawa
- Japan Aerospace Exploration Agency, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505, Japan
| | - Aiko Nagamatsu
- Japan Aerospace Exploration Agency, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505, Japan
| | - Mitsuru Nenoi
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Akira Fujimori
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Shizuko Kakinuma
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Takanori Katsube
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Bing Wang
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Chizuru Tsuruoka
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Toshiyuki Shirai
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Asako J. Nakamura
- Department of Biological Sciences, College of Science, Ibaraki University, 2-1-1, Bunkyo, Mito, Ibaraki 310-8512, Japan
| | - Asako Sakaue-Sawano
- Lab for Cell Function and Dynamics, CBS, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Atsushi Miyawaki
- Lab for Cell Function and Dynamics, CBS, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Hiroshi Harada
- Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Minoru Kobayashi
- Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Junya Kobayashi
- Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Takekazu Kunieda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tomoo Funayama
- Takasaki Advanced Radiation Research Institute, QST, 1233 Watanuki-machi, Takasaki, Gunma 370-1292, Japan
| | - Michiyo Suzuki
- Takasaki Advanced Radiation Research Institute, QST, 1233 Watanuki-machi, Takasaki, Gunma 370-1292, Japan
| | - Tatsuo Miyamoto
- Research Institute for Radiation Biology and Medicine, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8553, Japan
| | - Jun Hidema
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
- Division for the Establishment of Frontier Sciences of the Organization for Advanced Studies, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Yukari Yoshida
- Gunma University Heavy Ion Medical Center, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Akihisa Takahashi
- Gunma University Heavy Ion Medical Center, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| |
Collapse
|
39
|
Shuryak I. Review of resistance to chronic ionizing radiation exposure under environmental conditions in multicellular organisms. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2020; 212:106128. [PMID: 31818732 DOI: 10.1016/j.jenvrad.2019.106128] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 06/10/2023]
Abstract
Ionizing radiation resistance occurs among many phylogenetic groups and its mechanisms remain incompletely understood. Tolerances to acute and chronic irradiation do not always correlate because different mechanisms may be involved. The radioresistance phenomenon becomes even more complex in the field than in the laboratory because the effects of radioactive contamination on natural populations are intertwined with those of other factors, such as bioaccumulation of radionuclides, interspecific competition, seasonal variations in environmental conditions, and land use changes due to evacuation of humans from contaminated areas. Previous reviews of studies performed in radioactive sites like the Kyshtym, Chernobyl, and Fukushima accident regions, and of protracted irradiation experiments, often focused on detecting radiation effects at low doses in radiosensitive organisms. Here we review the literature with a different purpose: to identify organisms with high tolerance to chronic irradiation under environmental conditions, which maintained abundant populations and/or outcompeted more radiosensitive species at high dose rates. Taxa for which consistent evidence for radioresistance came from multiple studies conducted in different locations and at different times were found among plants (e.g. willow and birch trees, sedges), invertebrate and vertebrate animals (e.g. rotifers, some insects, crustaceans and freshwater fish). These organisms are not specialized "extremophiles", but tend to tolerate broad ranges of environmental conditions and stresses, have small genomes, reproduce quickly and/or disperse effectively over long distances. Based on these findings, resistance to radioactive contamination can be examined in a more broad context of chronic stress responses.
Collapse
Affiliation(s)
- Igor Shuryak
- Center for Radiological Research, Columbia University Irving Medical Center, 630 West 168th Street, VC-11-234/5, New York, NY, USA.
| |
Collapse
|
40
|
Saito R, Koizumi R, Sakai T, Shimizu T, Ono T, Sogame Y. Gamma Radiation Tolerance and Protein Carbonylation Caused by Irradiation of Resting Cysts in the Free-living Ciliated Protist Colpoda cucullus. ACTA PROTOZOOL 2020. [DOI: 10.4467/16890027ap.20.006.12674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The ciliate Colpoda cucullus forms resting cysts to survive unfavorable environmental stresses. In this study, we have shown that Colpoda resting cysts survived exposure to a gamma radiation dose of 4000 Gy, although vegetative cells were killed by 500 Gy. After 4000 Gy irradiation, more than 90% of resting cysts and approximately 70% of dry cysts could excyst to form vegetative cells. In both cases, the excystment gradually increased after the induction of excystment. In addition, we also showed that protein carbonylation level was increased by gamma irradiation, but decreased by incubation in the cyst state. These results indicated that cell damage was repaired in resting cysts. Colpoda probably developed tolerance to gamma radiation by forming resting cysts as a strategy for growth in terrestrial environments, as part of contending with the stress due to reactive oxygen species caused by desiccation.
Collapse
|
41
|
Boothby TC. Mechanisms and evolution of resistance to environmental extremes in animals. EvoDevo 2019; 10:30. [PMID: 31827759 PMCID: PMC6862762 DOI: 10.1186/s13227-019-0143-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 11/02/2019] [Indexed: 11/25/2022] Open
Abstract
When animals are exposed to an extreme environmental stress, one of three possible outcomes takes place: the animal dies, the animal avoids the environmental stress and survives, or the animal tolerates the environmental stress and survives. This review is concerned with the third possibility, and will look at mechanisms that rare animals use to survive extreme environmental stresses including freezing, desiccation, intense heat, irradiation, and low-oxygen conditions (hypoxia). In addition, an increasing understanding of the molecular mechanisms involved in environmental stress tolerance allows us to speculate on how these tolerances arose. Uncovering the mechanisms of extreme environmental stress tolerance and how they evolve has broad implications for our understanding of the evolution of early life on this planet, colonization of new environments, and the search for novel forms of life both on Earth and elsewhere, as well as a number of agricultural and health-related applications.
Collapse
Affiliation(s)
- Thomas C Boothby
- Department of Molecular Biology, University of Wyoming, Laramie, WY USA
| |
Collapse
|
42
|
Jönsson KI. Radiation Tolerance in Tardigrades: Current Knowledge and Potential Applications in Medicine. Cancers (Basel) 2019; 11:E1333. [PMID: 31505739 PMCID: PMC6770827 DOI: 10.3390/cancers11091333] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/04/2019] [Accepted: 09/06/2019] [Indexed: 11/17/2022] Open
Abstract
Tardigrades represent a phylum of very small aquatic animals in which many species have evolved adaptations to survive under extreme environmental conditions, such as desiccation and freezing. Studies on several species have documented that tardigrades also belong to the most radiation-tolerant animals on Earth. This paper gives an overview of our current knowledge on radiation tolerance of tardigrades, with respect to dose-responses, developmental stages, and different radiation sources. The molecular mechanisms behind radiation tolerance in tardigrades are still largely unknown, but omics studies suggest that both mechanisms related to the avoidance of DNA damage and mechanisms of DNA repair are involved. The potential of tardigrades to provide knowledge of importance for medical sciences has long been recognized, but it is not until recently that more apparent evidence of such potential has appeared. Recent studies show that stress-related tardigrade genes may be transfected to human cells and provide increased tolerance to osmotic stress and ionizing radiation. With the recent sequencing of the tardigrade genome, more studies applying tardigrade omics to relevant aspects of human medicine are expected. In particular, the cancer research field has potential to learn from studies on tardigrades about molecular mechanisms evolved to maintain genome integrity.
Collapse
Affiliation(s)
- K Ingemar Jönsson
- Department of Environmental Science and Bioscience, Kristianstad University, 291 88 Kristianstad, Sweden.
| |
Collapse
|
43
|
Shuryak I, Tkavc R, Matrosova VY, Volpe RP, Grichenko O, Klimenkova P, Conze IH, Balygina IA, Gaidamakova EK, Daly MJ. Chronic gamma radiation resistance in fungi correlates with resistance to chromium and elevated temperatures, but not with resistance to acute irradiation. Sci Rep 2019; 9:11361. [PMID: 31388021 PMCID: PMC6684587 DOI: 10.1038/s41598-019-47007-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 06/10/2019] [Indexed: 02/07/2023] Open
Abstract
Exposure to chronic ionizing radiation (CIR) from nuclear power plant accidents, acts of terrorism, and space exploration poses serious threats to humans. Fungi are a group of highly radiation-resistant eukaryotes, and an understanding of fungal CIR resistance mechanisms holds the prospect of protecting humans. We compared the abilities of 95 wild-type yeast and dimorphic fungal isolates, representing diverse Ascomycota and Basidiomycota, to resist exposure to five environmentally-relevant stressors: CIR (long-duration growth under 36 Gy/h) and acute (10 kGy/h) ionizing radiation (IR), heavy metals (chromium, mercury), elevated temperature (up to 50 °C), and low pH (2.3). To quantify associations between resistances to CIR and these other stressors, we used correlation analysis, logistic regression with multi-model inference, and customized machine learning. The results suggest that resistance to acute IR in fungi is not strongly correlated with the ability of a given fungal isolate to grow under CIR. Instead, the strongest predictors of CIR resistance in fungi were resistance to chromium (III) and to elevated temperature. These results suggest fundamental differences between the mechanisms of resistance to chronic and acute radiation. Convergent evolution towards radioresistance among genetically distinct groups of organisms is considered here.
Collapse
Affiliation(s)
- Igor Shuryak
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, USA.
| | - Rok Tkavc
- Department of Pathology, Uniformed Services University of the Health Sciences, School of Medicine, Bethesda, MD, USA
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, School of Medicine, Bethesda, MD, USA
| | - Vera Y Matrosova
- Department of Pathology, Uniformed Services University of the Health Sciences, School of Medicine, Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Robert P Volpe
- Department of Pathology, Uniformed Services University of the Health Sciences, School of Medicine, Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Olga Grichenko
- Department of Pathology, Uniformed Services University of the Health Sciences, School of Medicine, Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Polina Klimenkova
- Department of Pathology, Uniformed Services University of the Health Sciences, School of Medicine, Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Isabel H Conze
- Department of Pathology, Uniformed Services University of the Health Sciences, School of Medicine, Bethesda, MD, USA
- Department of Biology, University of Bielefeld, Bielefeld, Germany
| | - Irina A Balygina
- Department of Pathology, Uniformed Services University of the Health Sciences, School of Medicine, Bethesda, MD, USA
- Institute of Medicine and Psychology, Novosibirsk State University, Novosibirsk, Russia
| | - Elena K Gaidamakova
- Department of Pathology, Uniformed Services University of the Health Sciences, School of Medicine, Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Michael J Daly
- Department of Pathology, Uniformed Services University of the Health Sciences, School of Medicine, Bethesda, MD, USA
| |
Collapse
|
44
|
Lee JS, Kang HM, Jeong CB, Han J, Park HG, Lee JS. Protective Role of Freshwater and Marine Rotifer Glutathione S-Transferase Sigma and Omega Isoforms Transformed into Heavy Metal-Exposed Escherichia coli. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:7840-7850. [PMID: 31244073 DOI: 10.1021/acs.est.9b01460] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Glutathione S-transferases (GSTs) play an important role in phase II of detoxification to protect cells in response to oxidative stress generated by exogenous toxicants. Despite their important role in defense, studies on invertebrate GSTs have mainly focused on identification and characterization. Here, we isolated omega and sigma classes of GSTs from the freshwater rotifer Brachionus calyciflorus and the marine rotifer Brachionus koreanus and explored their antioxidant function in response to metal-induced oxidative stress. The recombinant Bc- and Bk-GSTs were successfully transformed and expressed in Escherichia coli. Their antioxidant potential was characterized by measuring kinetic properties and enzymatic activity in response to pH, temperature, and chemical inhibitor. In addition, a disk diffusion assay, reactive oxygen species assay, and morphological analysis revealed that GST transformed into E. coli significantly protected cells from oxidative stress induced by H2O2 and metals (Hg, Cd, Cu, and Zn). Stronger antioxidant activity was exhibited by GST-S compared to GST-O in both rotifers, suggesting that GST-S plays a prominent function as an antioxidant defense mechanism in Brachionus spp. Overall, our study clearly shows the antioxidant role of Bk- and Bc-GSTs in E. coli and provides a greater understanding of GST class-specific and interspecific detoxification in rotifer Brachionus spp.
Collapse
Affiliation(s)
- Jin-Sol Lee
- Department of Biological Science , Sungkyunkwan University , Suwon , South Korea
| | - Hye-Min Kang
- Department of Biological Science , Sungkyunkwan University , Suwon , South Korea
| | - Chang-Bum Jeong
- Department of Biological Science , Sungkyunkwan University , Suwon , South Korea
| | - Jeonghoon Han
- Department of Biological Science , Sungkyunkwan University , Suwon , South Korea
| | - Heum Gi Park
- Department of Marine Resource Development , Gangneung-Wonju National University , Gangneung , South Korea
| | - Jae-Seong Lee
- Department of Biological Science , Sungkyunkwan University , Suwon , South Korea
| |
Collapse
|
45
|
Waterworth WM, Bray CM, West CE. Seeds and the Art of Genome Maintenance. FRONTIERS IN PLANT SCIENCE 2019; 10:706. [PMID: 31214224 PMCID: PMC6554324 DOI: 10.3389/fpls.2019.00706] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 05/13/2019] [Indexed: 05/20/2023]
Abstract
Successful germination represents a crucial developmental transition in the plant lifecycle and is important both for crop yields and plant survival in natural ecosystems. However, germination potential decreases during storage and seed longevity is a key determinant of crop production. Decline in germination vigor is initially manifest as an increasing delay to radicle emergence and the completion of germination and eventually culminating in loss of seed viability. The molecular mechanisms that determine seed germination vigor and viability remain obscure, although deterioration in seed quality is associated with the accumulation of damage to cellular structures and macromolecules including lipids, protein, and nucleic acids. In desiccation tolerant seeds, desiccation/rehydration cycles and prolonged periods in the dry quiescent state are associated with remarkable levels of stress to the embryo genome which can result in mutagenesis of the genetic material, inhibition of transcription and replication and delayed growth and development. An increasing number of studies are revealing DNA damage accumulated in the embryo genome, and the repair capacity of the seed to reverse this damage, as major factors that determine seed vigor and viability. Recent findings are now establishing important roles for the DNA damage response in regulating germination, imposing a delay to germination in aged seed to minimize the deleterious consequences of DNA damage accumulated in the dry quiescent state. Understanding the mechanistic basis of seed longevity will underpin the directed improvement of crop varieties and support preservation of plant genetic resources in seed banks.
Collapse
|
46
|
Kaczmarek Ł, Roszkowska M, Fontaneto D, Jezierska M, Pietrzak B, Wieczorek R, Poprawa I, Kosicki JZ, Karachitos A, Kmita H. Staying young and fit? Ontogenetic and phylogenetic consequences of animal anhydrobiosis. J Zool (1987) 2019. [DOI: 10.1111/jzo.12677] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Ł. Kaczmarek
- Department of Animal Taxonomy and Ecology Faculty of Biology Adam Mickiewicz University in Poznan Poznań Poland
| | - M. Roszkowska
- Department of Animal Taxonomy and Ecology Faculty of Biology Adam Mickiewicz University in Poznan Poznań Poland
- Department of Bioenergetics Institute of Molecular Biology and Biotechnology Faculty of Biology Adam Mickiewicz University in Poznan Poznań Poland
| | - D. Fontaneto
- National Research Council Water Research Institute (CNR‐IRSA) Verbania Italy
| | - M. Jezierska
- Department of Animal Histology and Embryology University of Silesia in Katowice Katowice Poland
| | - B. Pietrzak
- Department of Hydrobiology Faculty of Biology Biological and Chemical Research Centre University of Warsaw Warszawa Poland
| | - R. Wieczorek
- Faculty of Chemistry University of Warsaw Warsaw Poland
| | - I. Poprawa
- Department of Animal Histology and Embryology University of Silesia in Katowice Katowice Poland
| | - J. Z. Kosicki
- Department of Avian Biology and Ecology Faculty of Biology Adam Mickiewicz University Poznan Poznań Poland
| | - A. Karachitos
- Department of Bioenergetics Institute of Molecular Biology and Biotechnology Faculty of Biology Adam Mickiewicz University in Poznan Poznań Poland
| | - H. Kmita
- Department of Bioenergetics Institute of Molecular Biology and Biotechnology Faculty of Biology Adam Mickiewicz University in Poznan Poznań Poland
| |
Collapse
|
47
|
Jeong CB, Kang HM, Lee MC, Byeon E, Park HG, Lee JS. Effects of polluted seawater on oxidative stress, mortality, and reproductive parameters in the marine rotifer Brachionus koreanus and the marine copepod Tigriopus japonicus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 208:39-46. [PMID: 30605868 DOI: 10.1016/j.aquatox.2018.12.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 12/10/2018] [Accepted: 12/22/2018] [Indexed: 06/09/2023]
Abstract
Although many efforts have been made to understand the toxic effects of metals in aquatic invertebrates, there are limited data regarding metal toxicity in natural ecosystems, as most previous studies were conducted under controlled laboratory conditions. To address this data gap, we analyzed toxic effects and molecular responses in the marine rotifer Brachionus koreanus and the marine copepod Tigriopus japonicus following in vivo exposure to a seawater sample collected from a polluted region in South Korea. Inductively coupled plasma-mass spectrometry (ICP-MS) analysis of the field seawater sample found a variety of metals. Exposure to several dilutions of the field seawater sample impacted several endpoints in both species, including mortality and reproduction. Interestingly, the rotifer and copepod test species exhibited different patterns of effects on reactive oxygen species (ROS) and antioxidant enzymatic activities, suggesting that different regulatory mechanisms may be activated in the two species in response to exposure to toxic chemicals. Our study helps to better understand the defense mechanisms activated in aquatic invertebrates in response to metal-induced oxidative stress induced by contaminated seawater.
Collapse
Affiliation(s)
- Chang-Bum Jeong
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Hye-Min Kang
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Min-Chul Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Eunjin Byeon
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Heum Gi Park
- Department of Marine Resource Development, College of Life Sciences, Gangneung-Wonju National University, Gangneung, 25457, South Korea
| | - Jae-Seong Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
48
|
Latta LC, Tucker KN, Haney RA. The relationship between oxidative stress, reproduction, and survival in a bdelloid rotifer. BMC Ecol 2019; 19:7. [PMID: 30709393 PMCID: PMC6359782 DOI: 10.1186/s12898-019-0223-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/29/2019] [Indexed: 01/06/2023] Open
Abstract
Background A proposed mediator of trade-offs between survival and reproduction is oxidative stress resistance. Investments in reproduction are associated with increased oxidative stress that reduces lifespan. We used the bdelloid rotifer Adineta vaga to examine baseline patterns of survival, reproduction, and measures of oxidative
stress, as well as how these patterns change in the face of treatments known to induce oxidative stress. Results We discovered that under standard laboratory conditions late-life mortality may be explained by increased levels of oxidative stress induced by reproduction. However, following exposure to the oxidizing agent ionizing radiation, survival was unaffected while reproduction was reduced. Conclusions We suggest that under normal environmental conditions, reduced survival is mediated by endogenously generated oxidative stress induced by reproduction, and thus represents a cost of reproduction. Alternatively, the reduced reproduction evident under exogenously applied oxidative stress represents a cost of somatic maintenance. Biochemical analyses designed to assess levels of oxidative stress, oxidative stress resistance, and oxidative damage under normal and oxidizing conditions suggest that varying investments in enzymatic and non-enzymatic based oxidative stress resistance determine whether a cost of reproduction or a cost of somatic maintenance is observed. Electronic supplementary material The online version of this article (10.1186/s12898-019-0223-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Leigh C Latta
- Division of Natural Sciences and Mathematics, Lewis-Clark State College, 500 8th Avenue, Lewiston, ID, 83501, USA.
| | - K Nathaniel Tucker
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Robert A Haney
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| |
Collapse
|
49
|
Shuryak I. Review of microbial resistance to chronic ionizing radiation exposure under environmental conditions. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2019; 196:50-63. [PMID: 30388428 DOI: 10.1016/j.jenvrad.2018.10.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 10/21/2018] [Indexed: 06/08/2023]
Abstract
Ionizing radiation (IR) produces multiple types of damage to nucleic acids, proteins and other crucial cellular components. Nevertheless, various microorganisms from phylogenetically distant taxa (bacteria, archaea, fungi) can resist IR levels many orders of magnitude above natural background. This intriguing phenomenon of radioresistance probably arose independently many times throughout evolution as a byproduct of selective pressures from other stresses (e.g. desiccation, UV radiation, chemical oxidants). Most of the literature on microbial radioresistance is based on acute γ-irradiation experiments performed in the laboratory, typically involving pure cultures grown under near-optimal conditions. There is much less information about the upper limits of radioresistance in the field, such as in radioactively-contaminated areas, where several radiation types (e.g. α and β, as well as γ) and other stressors (e.g. non-optimal temperature and nutrient levels, toxic chemicals, interspecific competition) act over multiple generations. Here we discuss several examples of radioresistant microbes isolated from extremely radioactive locations (e.g. Chernobyl and Mayak nuclear plant sites) and estimate the radiation dose rates they were able to tolerate. Some of these organisms (e.g. the fungus Cladosporium cladosporioides, the cyanobacterium Geitlerinema amphibium) are widely-distributed and colonize a variety of habitats. These examples suggest that resistance to chronic IR and chemical contamination is not limited to rare specialized strains from extreme environments, but can occur among common microbial taxa, perhaps due to overlap between mechanisms of resistance to IR and other stressors.
Collapse
Affiliation(s)
- Igor Shuryak
- Center for Radiological Research, Columbia University, 630 West 168(th) street, VC-11-234/5, New York, NY, 10032, USA.
| |
Collapse
|
50
|
Immediate and heritable costs of desiccation on the life history of the bdelloid rotifer Philodina roseola. ORG DIVERS EVOL 2018. [DOI: 10.1007/s13127-018-0379-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|