1
|
Xi Y, Li X, Liu L, Xiu F, Yi X, Chen H, You X. Sneaky tactics: Ingenious immune evasion mechanisms of Bartonella. Virulence 2024; 15:2322961. [PMID: 38443331 PMCID: PMC10936683 DOI: 10.1080/21505594.2024.2322961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/20/2024] [Indexed: 03/07/2024] Open
Abstract
Gram-negative Bartonella species are facultative intracellular bacteria that can survive in the harsh intracellular milieu of host cells. They have evolved strategies to evade detection and degradation by the host immune system, which ensures their proliferation in the host. Following infection, Bartonella alters the initial immunogenic surface-exposed proteins to evade immune recognition via antigen or phase variation. The diverse lipopolysaccharide structures of certain Bartonella species allow them to escape recognition by the host pattern recognition receptors. Additionally, the survival of mature erythrocytes and their resistance to lysosomal fusion further complicate the immune clearance of this species. Certain Bartonella species also evade immune attacks by producing biofilms and anti-inflammatory cytokines and decreasing endothelial cell apoptosis. Overall, these factors create a challenging landscape for the host immune system to rapidly and effectively eradicate the Bartonella species, thereby facilitating the persistence of Bartonella infections and creating a substantial obstacle for therapeutic interventions. This review focuses on the effects of three human-specific Bartonella species, particularly their mechanisms of host invasion and immune escape, to gain new perspectives in the development of effective diagnostic tools, prophylactic measures, and treatment options for Bartonella infections.
Collapse
Affiliation(s)
- Yixuan Xi
- Institute of Pathogenic Biology, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, China
| | - Xinru Li
- Institute of Pathogenic Biology, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, China
| | - Lu Liu
- Institute of Pathogenic Biology, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, China
| | - Feichen Xiu
- Institute of Pathogenic Biology, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, China
| | - Xinchao Yi
- Institute of Pathogenic Biology, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, China
| | - Hongliang Chen
- Chenzhou NO.1 People’s Hospital, The Affiliated Chenzhou Hospital, Hengyang Medical College, University of South China, ChenZhou, China
| | - Xiaoxing You
- Institute of Pathogenic Biology, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, China
| |
Collapse
|
2
|
Antibiotic Susceptibility of Bartonella Grown in Different Culture Conditions. Pathogens 2021; 10:pathogens10060718. [PMID: 34201011 PMCID: PMC8229624 DOI: 10.3390/pathogens10060718] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/04/2021] [Accepted: 06/05/2021] [Indexed: 12/02/2022] Open
Abstract
Bartonellosis is caused by a Gram-negative intracellular bacterium with a zoonotic transmission. The disease, caused by any of several genospecies of Bartonella can range from a benign, self-limited condition to a highly morbid and life-threatening illness. The current standard of care antibiotics are generally effective in acute infection; these include azithromycin or erythromycin, doxycycline, gentamicin, rifampin, and ciprofloxacin. However, treatment of chronic infection remains problematic. We tested six different antibiotics for their ability to stop the growth of Bartonella sp. in the standard insect media and in an enrichment media. All antibiotics (ceftriaxone, doxycycline, gentamycin, azithromycin, ampicillin, and azlocillin) had minimum inhibitory concentrations (MICs) below 0.5 µg/mL in the BAPGM enrichment media but were ineffective at inhibiting growth when the standard insect media was used. Azlocillin was the most potent, with a MIC of 0.01 µg/mL. When Bartonella was tested under intracellular growth conditions, none of the antibiotics were efficacious singly. However, growth inhibition was observed when azlocillin and azithromycin were combined. These studies illustrate the impact of growth medium and intracellular environment on antibiotic susceptibility testing and indicate that azlocillin combined with azithromycin may be an effective drug combination for the treatment of Bartonellosis.
Collapse
|
3
|
Okaro U, George S, Anderson B. What Is in a Cat Scratch? Growth of Bartonella henselae in a Biofilm. Microorganisms 2021; 9:835. [PMID: 33919891 PMCID: PMC8070961 DOI: 10.3390/microorganisms9040835] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/02/2021] [Accepted: 04/07/2021] [Indexed: 01/04/2023] Open
Abstract
Bartonella henselae (B. henselae) is a gram-negative bacterium that causes cat scratch disease, bacteremia, and endocarditis, as well as other clinical presentations. B. henselae has been shown to form a biofilm in vitro that likely plays a role in the establishment and persistence of the bacterium in the host. Biofilms are also known to form in the cat flea vector; hence, the ability of this bacterium to form a biofilm has broad biological significance. The release of B. henselae from a biofilm niche appears to be important in disease persistence and relapse in the vertebrate host but also in transmission by the cat flea vector. It has been shown that the BadA adhesin of B. henselae is critical for adherence and biofilm formation. Thus, the upregulation of badA is important in initiating biofilm formation, and down-regulation is important in the release of the bacterium from the biofilm. We summarize the current knowledge of biofilm formation in Bartonella species and the role of BadA in biofilm formation. We discuss the evidence that defines possible mechanisms for the regulation of the genes required for biofilm formation. We further describe the regulation of those genes in the conditions that mimic both the arthropod vector and the mammalian host for B. henselae. The treatment for persistent B. henselae infection remains a challenge; hence, a better understanding of the mechanisms by which this bacterium persists in its host is critical to inform future efforts to develop drugs to treat such infections.
Collapse
Affiliation(s)
- Udoka Okaro
- Foundational Sciences Directorate, Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA;
| | - Sierra George
- Department of Molecular Medicine, MDC7, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA;
| | - Burt Anderson
- Department of Molecular Medicine, MDC7, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA;
| |
Collapse
|
4
|
Abstract
Since the reclassification of the genus Bartonella in 1993, the number of species has grown from 1 to 45 currently designated members. Likewise, the association of different Bartonella species with human disease continues to grow, as does the range of clinical presentations associated with these bacteria. Among these, blood-culture-negative endocarditis stands out as a common, often undiagnosed, clinical presentation of infection with several different Bartonella species. The limitations of laboratory tests resulting in this underdiagnosis of Bartonella endocarditis are discussed. The varied clinical picture of Bartonella infection and a review of clinical aspects of endocarditis caused by Bartonella are presented. We also summarize the current knowledge of the molecular basis of Bartonella pathogenesis, focusing on surface adhesins in the two Bartonella species that most commonly cause endocarditis, B. henselae and B. quintana. We discuss evidence that surface adhesins are important factors for autoaggregation and biofilm formation by Bartonella species. Finally, we propose that biofilm formation is a critical step in the formation of vegetative masses during Bartonella-mediated endocarditis and represents a potential reservoir for persistence by these bacteria.
Collapse
|
5
|
Picascia A, Pagliuca C, Sommese L, Colicchio R, Casamassimi A, Labonia F, Pastore G, Pagliarulo C, Cicatiello AG, Castaldo F, Schiano C, Maiello C, Mezza E, D'Armiento FP, Salvatore P, Napoli C. Seroprevalence of Bartonella henselae in patients awaiting heart transplant in Southern Italy. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2017; 50:239-244. [PMID: 26051222 DOI: 10.1016/j.jmii.2015.05.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 04/13/2015] [Accepted: 05/05/2015] [Indexed: 12/21/2022]
Abstract
BACKGROUND Bartonella henselae is the etiologic agent of cat-scratch disease. B. henselae infections are responsible for a widening spectrum of human diseases, although often symptomless, ranging from self-limited to life-threatening and show different courses and organ involvement due to the balance between host and pathogen. The role of the host immune response to B. henselae is critical in preventing progression to systemic disease. Indeed in immunocompromised patients, such as solid organ transplant patients, B. henselae results in severe disseminated disease and pathologic vasoproliferation. The purpose of this study was to determine the seroprevalence of B. henselae in patients awaiting heart transplant compared to healthy individuals enrolled in the Regional Reference Laboratory of Transplant Immunology of Second University of Naples. METHODS Serum samples of 38 patients awaiting heart transplant in comparison to 50 healthy donors were examined using immunfluorescence assay. RESULTS We found a B. henselae significant antibody positivity rate of 21% in patients awaiting heart transplant (p = 0.002). There was a positive rate of 8% (p > 0.05) for immunoglobulin (Ig)M and a significant value of 13% (p = 0.02) for IgG, whereas controls were negative both for IgM and IgG antibodies against B. henselae. The differences in comorbidity between cases and controls were statistically different (1.41 ± 0.96 vs 0.42 ± 0.32; p = 0.001). CONCLUSIONS Although this study was conducted in a small number of patients, we suggest that the identification of these bacteria should be included as a routine screening analysis in pretransplant patients.
Collapse
Affiliation(s)
- Antonietta Picascia
- Department of Molecular Medicine and Medical Biotechnology, Federico II University Medical School, Naples, Italy; U.O.C. Division of Immunohematology, Transfusion Medicine and Transplant Immunology, Regional Reference Laboratory of Transplant Immunology, Azienda Ospedaliera Universitaria, Second University of Naples, Naples, Italy.
| | - Chiara Pagliuca
- Department of Molecular Medicine and Medical Biotechnology, Federico II University Medical School, Naples, Italy; Department of Integrated Activities of Laboratory Medicine, Federico II University Medical School, Naples, Italy
| | - Linda Sommese
- U.O.C. Division of Immunohematology, Transfusion Medicine and Transplant Immunology, Regional Reference Laboratory of Transplant Immunology, Azienda Ospedaliera Universitaria, Second University of Naples, Naples, Italy
| | - Roberta Colicchio
- Department of Molecular Medicine and Medical Biotechnology, Federico II University Medical School, Naples, Italy; Institute of Diagnostic and Nuclear Development (SDN), Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS), Naples, Italy
| | - Amelia Casamassimi
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy
| | - Francesco Labonia
- Department of Integrated Activities of Laboratory Medicine, Federico II University Medical School, Naples, Italy
| | - Gabiria Pastore
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy
| | - Caterina Pagliarulo
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy
| | | | - Francesco Castaldo
- Department of Molecular Medicine and Medical Biotechnology, Federico II University Medical School, Naples, Italy
| | - Concetta Schiano
- Institute of Diagnostic and Nuclear Development (SDN), Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS), Naples, Italy
| | - Ciro Maiello
- Department of Cardiothoracic Sciences, Monaldi Hospital, Second University of Naples, Naples, Italy
| | - Ernesto Mezza
- Department of Advanced Biomedical Sciences, Section of Pathology, Federico II University Medical School, Naples, Italy
| | - Francesco Paolo D'Armiento
- Department of Advanced Biomedical Sciences, Section of Pathology, Federico II University Medical School, Naples, Italy
| | - Paola Salvatore
- Department of Molecular Medicine and Medical Biotechnology, Federico II University Medical School, Naples, Italy
| | - Claudio Napoli
- U.O.C. Division of Immunohematology, Transfusion Medicine and Transplant Immunology, Regional Reference Laboratory of Transplant Immunology, Azienda Ospedaliera Universitaria, Second University of Naples, Naples, Italy; Institute of Diagnostic and Nuclear Development (SDN), Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS), Naples, Italy
| |
Collapse
|
6
|
Pagliuca C, Cicatiello AG, Colicchio R, Greco A, Cerciello R, Auletta L, Albanese S, Scaglione E, Pagliarulo C, Pastore G, Mansueto G, Brunetti A, Avallone B, Salvatore P. Novel Approach for Evaluation of Bacteroides fragilis Protective Role against Bartonella henselae Liver Damage in Immunocompromised Murine Model. Front Microbiol 2016; 7:1750. [PMID: 27872616 PMCID: PMC5097911 DOI: 10.3389/fmicb.2016.01750] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 10/19/2016] [Indexed: 12/12/2022] Open
Abstract
Bartonella henselae is a gram-negative facultative intracellular bacterium and is the causative agent of cat-scratch disease. Our previous data have established that Bacteroides fragilis colonization is able to prevent B. henselae damages through the polysaccharide A (PSA) in an experimental murine model. In order to determine whether the PSA is essential for the protection against pathogenic effects of B. henselae in immunocompromised hosts, SCID mice were co-infected with B. fragilis wild type or its mutant B. fragilis ΔPSA and the effects of infection on murine tissues have been observed by High-Frequency Ultrasound (HFUS), histopathological examination, and Transmission Electron Microscopy (TEM). For the first time, echostructure, hepatic lobes length, vascular alterations, and indirect signs of hepatic dysfunctions, routinely used as signs of disease in humans, have been analyzed in an immunocompromised murine model. Our findings showed echostructural alterations in all infected mice compared with the Phosphate Buffer Solution (PBS) control group; further, those infected with B. henselae and co-infected with B. henselae/B. fragilis ΔPSA presented the major echostructural alterations. Half of the mice infected with B. henselae and all those co-infected with B. henselae/B. fragilis ΔPSA have showed an altered hepatic echogenicity compared with the renal cortex. The echogenicity score of co-infected mice with B. henselae/B. fragilis ΔPSA differed significantly compared with the PBS control group (p < 0.05). Moreover the inflammation score of the histopathological evaluation was fairly concordant with ultrasound findings. Ultrastructural analysis performed by TEM revealed no significant alterations in liver samples of SCID mice infected with B. fragilis wild type while those infected with B. fragilis ΔPSA showed the presence of collagen around the main vessels compared with the PBS control group. The liver samples of mice infected with B. henselae showed macro-areas rich in collagen, stellate cells, and histiocytic cells. Interestingly, our data demonstrated that immunocompromised SCID mice infected with B. henselae and co-infected with B. henselae/B. fragilis ΔPSA showed the most severe morpho-structural liver damage. In addition, these results suggests that the HFUS together with histopathological evaluation could be considered good imaging approach to evaluate hepatic alterations.
Collapse
Affiliation(s)
- Chiara Pagliuca
- Department of Molecular Medicine and Medical Biotechnology, Federico II University Medical SchoolNaples, Italy; CEINGE-Advanced BiotechnologiesNaples, Italy
| | - Annunziata G Cicatiello
- Department of Molecular Medicine and Medical Biotechnology, Federico II University Medical School Naples, Italy
| | - Roberta Colicchio
- Department of Molecular Medicine and Medical Biotechnology, Federico II University Medical School Naples, Italy
| | - Adelaide Greco
- CEINGE-Advanced BiotechnologiesNaples, Italy; Department of Advanced Biomedical Science, Federico II University Medical SchoolNaples, Italy; Institute of Biostructure and Bioimaging, National Research CouncilNaples, Italy
| | | | | | - Sandra Albanese
- CEINGE-Advanced BiotechnologiesNaples, Italy; Department of Advanced Biomedical Science, Federico II University Medical SchoolNaples, Italy
| | - Elena Scaglione
- Department of Molecular Medicine and Medical Biotechnology, Federico II University Medical School Naples, Italy
| | - Caterina Pagliarulo
- Department of Sciences and Technologies, University of Sannio Benevento, Italy
| | - Gabiria Pastore
- Department of Sciences and Technologies, University of Sannio Benevento, Italy
| | - Gelsomina Mansueto
- Department of Advanced Biomedical Science, Federico II University Medical School Naples, Italy
| | - Arturo Brunetti
- CEINGE-Advanced BiotechnologiesNaples, Italy; Department of Advanced Biomedical Science, Federico II University Medical SchoolNaples, Italy; Institute of Biostructure and Bioimaging, National Research CouncilNaples, Italy
| | - Bice Avallone
- Department of Biology, University of Naples Federico II Naples, Italy
| | - Paola Salvatore
- Department of Molecular Medicine and Medical Biotechnology, Federico II University Medical SchoolNaples, Italy; CEINGE-Advanced BiotechnologiesNaples, Italy
| |
Collapse
|
7
|
Salvatore P, Zullo A, Sommese L, Colicchio R, Picascia A, Schiano C, Mancini FP, Napoli C. Infections and cardiovascular disease: is Bartonella henselae contributing to this matter? J Med Microbiol 2015; 64:799-809. [PMID: 26066633 DOI: 10.1099/jmm.0.000099] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cardiovascular disease is still the major cause of death worldwide despite the remarkable progress in its prevention and treatment. Endothelial progenitor cells (EPCs) have recently emerged as key players of vascular repair and regenerative medicine applied to cardiovascular disease. A large amount of effort has been put into discovering the factors that could aid or impair the number and function of EPCs, and also into characterizing these cells at the molecular level in order to facilitate their therapeutic applications in vascular disease. Interestingly, the major cardiovascular risk factors have been associated with reduced number and function of EPCs. The bacterial contribution to cardiovascular disease represents a long-standing controversy. The discovery that Bartonella henselae can infect and damage EPCs revitalizes the enduring debate about the microbiological contribution to atherosclerosis, thus allowing the hypothesis that this infection could impair the cardiovascular regenerative potential and increase the risk for cardiovascular disease. In this review, we summarize the rationale suggesting that Bartonella henselae could favour atherogenesis by infecting and damaging EPCs, thus reducing their vascular repair potential. These mechanisms suggest a novel link between communicable and non-communicable human diseases, and put forward the possibility that Bartonella henselae could enhance the susceptibility and worsen the prognosis in cardiovascular disease.
Collapse
Affiliation(s)
- Paola Salvatore
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy.,CEINGE-Advanced Biotechnologies, Naples, Italy
| | - Alberto Zullo
- CEINGE-Advanced Biotechnologies, Naples, Italy.,Department of Sciences and Technologies, University of Sannio, Benevento, Italy
| | - Linda Sommese
- U.O.C. Division of Immunohematology, Transfusion Medicine and Transplant Immunology [SIMT], Regional Reference Laboratory of Transplant Immunology [LIT], Azienda Universitaria Policlinico (AOU) and Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy.,Department of Experimental Medicine, Section of Microbiology, Second University of Naples, Naples, Italy
| | - Roberta Colicchio
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Antonietta Picascia
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy.,U.O.C. Division of Immunohematology, Transfusion Medicine and Transplant Immunology [SIMT], Regional Reference Laboratory of Transplant Immunology [LIT], Azienda Universitaria Policlinico (AOU) and Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy
| | - Concetta Schiano
- Foundation SDN, Institute of Diagnostic and Nuclear Development, IRCCS, Naples, Italy
| | | | - Claudio Napoli
- U.O.C. Division of Immunohematology, Transfusion Medicine and Transplant Immunology [SIMT], Regional Reference Laboratory of Transplant Immunology [LIT], Azienda Universitaria Policlinico (AOU) and Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy.,Foundation SDN, Institute of Diagnostic and Nuclear Development, IRCCS, Naples, Italy
| |
Collapse
|
8
|
Sommese L, Vasco M, Costa D, Napoli C. Endothelial progenitor cells and human diseases. Ann Hematol 2013; 93:533-4. [PMID: 23832236 DOI: 10.1007/s00277-013-1840-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 06/26/2013] [Indexed: 11/26/2022]
Affiliation(s)
- Linda Sommese
- U.O.C. Immunohematology, Transfusion Medicine and Transplant Immunology (SIMT), Regional Reference Laboratory of Transplant Immunology (LIT), Azienda Universitaria Policlinico (AOU), Second University of Naples, Naples, Italy,
| | | | | | | |
Collapse
|
9
|
JI KANGTING, XING CHENG, JIANG FENGCHUN, WANG XIAOYAN, GUO HUIHUI, NAN JINLIANG, QIAN LU, YANG PENGLIN, LIN JIAFENG, LI MEIDE, LI JINNONG, LIAO LIANMING, TANG JIFEI. Benzo[a]pyrene induces oxidative stress and endothelial progenitor cell dysfunction via the activation of the NF-κB pathway. Int J Mol Med 2013; 31:922-30. [DOI: 10.3892/ijmm.2013.1288] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Accepted: 02/08/2013] [Indexed: 11/06/2022] Open
|
10
|
Zhu C, Bai Y, Liu Q, Li D, Hong J, Yang Z, Cui L, Hua X, Yuan C. Depolymerization of cytokeratin intermediate filaments facilitates intracellular infection of HeLa cells by Bartonella henselae. J Infect Dis 2013; 207:1397-405. [PMID: 23359593 DOI: 10.1093/infdis/jit040] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Bartonella henselae is capable of invading epithelial and endothelial cells by modulating the function of actin-dependent cytoskeleton proteins. Although understanding of the pathogenesis has been increased by the development of an in vitro infection model involving endothelial cells, little is known about the mechanism of interaction between B. henselae and epithelial cells. This study aims to identify the binding candidates of B. henselae in epithelial cells and explores their effect on B. henselae infection. Pull-down assays and mass spectrometry analysis confirmed that some of the binding proteins (keratin 14, keratin 6, and F-actin) are cytoskeleton associated. B. henselae infection significantly induces the expression of the cytokeratin genes. Chemical disruption of the keratin network by using ethylene glycol tetraacetic acid promotes the intracellular persistence of B. henselae in HeLa cells. However, cytochalasin B and phalloidin treatment inhibits B. henselae invasion. Immunofluorescent staining demonstrates that B. henselae infection induces an F-actin-dependent rearrangement of the cytoskeleton. However, we demonstrated via immunofluorescent staining and whole-mount cell electron microscopy that keratin intermediate filaments are depolymerized by B. henselae. The results indicate that B. henselae achieves an intracellular persistence in epithelial cells through the depolymerization of cytokeratin intermediate filaments that are protective against B. henselae invasion.
Collapse
Affiliation(s)
- Caixia Zhu
- School of Agriculture and Biology, Shanghai Jiaotong University, Beijing, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Evidence of Bacteroides fragilis protection from Bartonella henselae-induced damage. PLoS One 2012; 7:e49653. [PMID: 23166739 PMCID: PMC3499472 DOI: 10.1371/journal.pone.0049653] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 10/10/2012] [Indexed: 12/26/2022] Open
Abstract
Bartonella henselae is able to internalize endothelial progenitor cells (EPCs), which are resistant to the infection of other common pathogens. Bacteroides fragilis is a gram-negative anaerobe belonging to the gut microflora. It protects from experimental colitis induced by Helicobacter hepaticus through the polysaccharide A (PSA). The aim of our study was to establish: 1) whether B. fragilis colonization could protect from B. henselae infection; if this event may have beneficial effects on EPCs, vascular system and tissues. Our in vitro results establish for the first time that B. fragilis can internalize EPCs and competes with B. henselae during coinfection. We observed a marked activation of the inflammatory response by Real-time PCR and ELISA in coinfected cells compared to B. henselae-infected cells (63 vs 23 up-regulated genes), and after EPCs infection with mutant B. fragilis ΔPSA (≅90% up-regulated genes) compared to B. fragilis. Interestingly, in a mouse model of coinfection, morphological and ultrastructural analyses by hematoxylin-eosin staining and electron microscopy on murine tissues revealed that damages induced by B. henselae can be prevented in the coinfection with B. fragilis but not with its mutant B. fragilis ΔPSA. Moreover, immunohistochemistry analysis with anti-Bartonella showed that the number of positive cells per field decreased of at least 50% in the liver (20±4 vs 50±8), aorta (5±1 vs 10±2) and spleen (25±3 vs 40±6) sections of mice coinfected compared to mice infected only with B. henselae. This decrease was less evident in the coinfection with ΔPSA strain (35±6 in the liver, 5±1 in the aorta and 30±5 in the spleen). Finally, B. fragilis colonization was also able to restore the EPC decrease observed in mice infected with B. henselae (0.65 vs 0.06 media). Thus, our data establish that B. fragilis colonization is able to prevent B. henselae damages through PSA.
Collapse
|
12
|
Yuan C, Zhu C, Bai Y, Yang X, Hua X. Staining of Bartonella henselae with carboxyfluorescein diacetate succinimidyl ester for tracking infection in erythrocytes and epithelial cells. J Microbiol Methods 2012; 89:102-6. [DOI: 10.1016/j.mimet.2012.02.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2012] [Revised: 02/12/2012] [Accepted: 02/13/2012] [Indexed: 10/28/2022]
|
13
|
Pulliainen AT, Dehio C. Persistence of Bartonella spp. stealth pathogens: from subclinical infections to vasoproliferative tumor formation. FEMS Microbiol Rev 2012; 36:563-99. [PMID: 22229763 DOI: 10.1111/j.1574-6976.2012.00324.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 12/13/2011] [Accepted: 12/13/2011] [Indexed: 01/11/2023] Open
Abstract
Bartonella spp. are facultative intracellular bacteria that typically cause a long-lasting intraerythrocytic bacteremia in their mammalian reservoir hosts, thereby favoring transmission by blood-sucking arthropods. In most cases, natural reservoir host infections are subclinical and the relapsing intraerythrocytic bacteremia may last weeks, months, or even years. In this review, we will follow the infection cycle of Bartonella spp. in a reservoir host, which typically starts with an intradermal inoculation of bacteria that are superficially scratched into the skin from arthropod feces and terminates with the pathogen exit by the blood-sucking arthropod. The current knowledge of bacterial countermeasures against mammalian immune response will be presented for each critical step of the pathogenesis. The prevailing models of the still-enigmatic primary niche and the anatomical location where bacteria reside, persist, and are periodically seeded into the bloodstream to cause the typical relapsing Bartonella spp. bacteremia will also be critically discussed. The review will end up with a discussion of the ability of Bartonella spp., namely Bartonella henselae, Bartonella quintana, and Bartonella bacilliformis, to induce tumor-like vascular deformations in humans having compromised immune response such as in patients with AIDS.
Collapse
|
14
|
Abstract
Bartonella spp. are facultative intracellular pathogens that employ a unique stealth infection strategy comprising immune evasion and modulation, intimate interaction with nucleated cells, and intraerythrocytic persistence. Infections with Bartonella are ubiquitous among mammals, and many species can infect humans either as their natural host or incidentally as zoonotic pathogens. Upon inoculation into a naive host, the bartonellae first colonize a primary niche that is widely accepted to involve the manipulation of nucleated host cells, e.g., in the microvasculature. Consistently, in vitro research showed that Bartonella harbors an ample arsenal of virulence factors to modulate the response of such cells, gain entrance, and establish an intracellular niche. Subsequently, the bacteria are seeded into the bloodstream where they invade erythrocytes and give rise to a typically asymptomatic intraerythrocytic bacteremia. While this course of infection is characteristic for natural hosts, zoonotic infections or the infection of immunocompromised patients may alter the path of Bartonella and result in considerable morbidity. In this review we compile current knowledge on the molecular processes underlying both the infection strategy and pathogenesis of Bartonella and discuss their connection to the clinical presentation of human patients, which ranges from minor complaints to life-threatening disease.
Collapse
Affiliation(s)
- Alexander Harms
- Focal Area Infection Biology, Biozentrum, University of Basel, Switzerland
| | | |
Collapse
|
15
|
Bartonella infection in immunocompromised hosts: immunology of vascular infection and vasoproliferation. Clin Dev Immunol 2011; 2012:612809. [PMID: 22162717 PMCID: PMC3227422 DOI: 10.1155/2012/612809] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 09/27/2011] [Accepted: 09/29/2011] [Indexed: 01/07/2023]
Abstract
Most infections by genus Bartonella in immunocompromised patients are caused by B. henselae and B. quintana. Unlike immunocompetent hosts who usually develop milder diseases such as cat scratch disease and trench fever, immunocompromised patients, including those living with HIV/AIDS and posttransplant patients, are more likely to develop different and severe life-threatening disease. This paper will discuss Bartonella's manifestations in immunosuppressed patients and will examine Bartonella's interaction with the immune system including its mechanisms of establishing infection and immune escape. Gaps in current understanding of the immunology of Bartonella infection in immunocompromised hosts will be highlighted.
Collapse
|
16
|
Zhang Z, Qun J, Cao C, Wang J, Li W, Wu Y, Du L, Zhao P, Gong K. Apolipoprotein A-I mimetic peptide D-4F promotes human endothelial progenitor cell proliferation, migration, adhesion though eNOS/NO pathway. Mol Biol Rep 2011; 39:4445-54. [PMID: 21947883 DOI: 10.1007/s11033-011-1233-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Accepted: 09/13/2011] [Indexed: 02/07/2023]
Abstract
Circulating endothelial progenitor cells (EPCs) have a critical role in endothelial maintenance and repair. Apolipoprotein A-I mimetic peptide D-4F has been shown to posses anti-atherogenic properties via sequestration of oxidized phospholipids, induction of remodeling of high density lipoprotein and promotion of cholesterol efflux from macrophage-derived foam cells. In this study, we test the effects of D-4F on EPC biology. EPCs were isolated from the peripheral venous blood of healthy male volunteers and characterized by 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine-labeled acetylated LDL uptake and ulex europaeus agglutinin binding and flow cytometry. Cell proliferation, migration, adhesion, nitric oxide production and endothelial nitric oxide synthase (eNOS) expression in the absence and presence of D-4F or simvastatin (as a positive control), were assayed. We demonstrated that D-4F significantly enhanced EPC proliferation, migration and adhesion in a dose-dependent manner compared with vehicle. However, all of the favorable effects of D-4F on EPCs were dramatically attenuated by preincubation with NOS inhibitor L-NAME. Further, D-4F also increased nitric oxide production in culture supernatant and the levels of eNOS expression and phosphorylation. The stimulatory effects of D-4F (10 μg/ml) on EPC biology were comparable to 0.5 μM simvastatin. These results suggest that eNOS/NO pathway mediates the functional modulation of EPC biology in response to D-4F treatment and support the notion that the beneficial role of D-4F on EPCs may be one of the important components of its anti-atherogenic potential.
Collapse
Affiliation(s)
- Zhengang Zhang
- Department of Cardiology, The Second Clinic Medical College, Yangzhou University, Yangzhou, 225001, China
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Costa V, Angelini C, D'Apice L, Mutarelli M, Casamassimi A, Sommese L, Gallo MA, Aprile M, Esposito R, Leone L, Donizetti A, Crispi S, Rienzo M, Sarubbi B, Calabrò R, Picardi M, Salvatore P, Infante T, De Berardinis P, Napoli C, Ciccodicola A. Massive-scale RNA-Seq analysis of non ribosomal transcriptome in human trisomy 21. PLoS One 2011; 6:e18493. [PMID: 21533138 PMCID: PMC3080369 DOI: 10.1371/journal.pone.0018493] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Accepted: 03/08/2011] [Indexed: 11/19/2022] Open
Abstract
Hybridization- and tag-based technologies have been successfully used in Down syndrome to identify genes involved in various aspects of the pathogenesis. However, these technologies suffer from several limits and drawbacks and, to date, information about rare, even though relevant, RNA species such as long and small non-coding RNAs, is completely missing. Indeed, none of published works has still described the whole transcriptional landscape of Down syndrome. Although the recent advances in high-throughput RNA sequencing have revealed the complexity of transcriptomes, most of them rely on polyA enrichment protocols, able to detect only a small fraction of total RNA content. On the opposite end, massive-scale RNA sequencing on rRNA-depleted samples allows the survey of the complete set of coding and non-coding RNA species, now emerging as novel contributors to pathogenic mechanisms. Hence, in this work we analysed for the first time the complete transcriptome of human trisomic endothelial progenitor cells to an unprecedented level of resolution and sensitivity by RNA-sequencing. Our analysis allowed us to detect differential expression of even low expressed genes crucial for the pathogenesis, to disclose novel regions of active transcription outside yet annotated loci, and to investigate a plethora of non-polyadenylated long as well as short non coding RNAs. Novel splice isoforms for a large subset of crucial genes, and novel extended untranslated regions for known genes--possibly novel miRNA targets or regulatory sites for gene transcription--were also identified in this study. Coupling the rRNA depletion of samples, followed by high-throughput RNA-sequencing, to the easy availability of these cells renders this approach very feasible for transcriptome studies, offering the possibility of investigating in-depth blood-related pathological features of Down syndrome, as well as other genetic disorders.
Collapse
Affiliation(s)
- Valerio Costa
- Institute of Genetics and Biophysics “A. Buzzati-Traverso”,
CNR, Naples, Italy
| | - Claudia Angelini
- Istituto per le Applicazioni del Calcolo, Mauro Picone, CNR, Naples,
Italy
| | | | | | - Amelia Casamassimi
- Department of General Pathology and Excellence Research Centre on
Cardiovascular Diseases, 1st School of Medicine, Second University of Naples,
Naples, Italy
| | - Linda Sommese
- Section of Microbiology, Department of Experimental Medicine, 1st School
of Medicine, Second University of Naples, Naples, Italy
| | | | - Marianna Aprile
- Institute of Genetics and Biophysics “A. Buzzati-Traverso”,
CNR, Naples, Italy
| | - Roberta Esposito
- Institute of Genetics and Biophysics “A. Buzzati-Traverso”,
CNR, Naples, Italy
| | - Luigi Leone
- Institute of Genetics and Biophysics “A. Buzzati-Traverso”,
CNR, Naples, Italy
| | - Aldo Donizetti
- Institute of Genetics and Biophysics “A. Buzzati-Traverso”,
CNR, Naples, Italy
| | - Stefania Crispi
- Institute of Genetics and Biophysics “A. Buzzati-Traverso”,
CNR, Naples, Italy
| | - Monica Rienzo
- Department of General Pathology and Excellence Research Centre on
Cardiovascular Diseases, 1st School of Medicine, Second University of Naples,
Naples, Italy
| | - Berardo Sarubbi
- Cardiology Department of Second University of Naples, “Monaldi
Hospital”, Naples, Italy
| | - Raffaele Calabrò
- Cardiology Department of Second University of Naples, “Monaldi
Hospital”, Naples, Italy
| | - Marco Picardi
- Department of Biochemistry and Medical Biotechnology, University of
Naples “Federico II”, Naples, Italy
| | - Paola Salvatore
- Department of Cellular and Molecular Biology and Pathology “L.
Califano”, University of Naples “Federico II” and Ceinge
Biotecnologie Avanzate s.c.a.r.l., Naples, Italy
| | - Teresa Infante
- Fondazione-SDN (Institute of Diagnostic and Nuclear Development), IRCCS,
Naples, Italy
| | | | - Claudio Napoli
- Department of General Pathology and Excellence Research Centre on
Cardiovascular Diseases, 1st School of Medicine, Second University of Naples,
Naples, Italy
- Fondazione-SDN (Institute of Diagnostic and Nuclear Development), IRCCS,
Naples, Italy
| | - Alfredo Ciccodicola
- Institute of Genetics and Biophysics “A. Buzzati-Traverso”,
CNR, Naples, Italy
| |
Collapse
|
18
|
Napoli C, Hayashi T, Cacciatore F, Casamassimi A, Casini C, Al-Omran M, Ignarro LJ. Endothelial progenitor cells as therapeutic agents in the microcirculation: an update. Atherosclerosis 2010; 215:9-22. [PMID: 21126740 DOI: 10.1016/j.atherosclerosis.2010.10.039] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Revised: 09/28/2010] [Accepted: 10/25/2010] [Indexed: 12/15/2022]
Abstract
This review evaluates novel beneficial effects of circulating endothelial progenitor cells (EPCs) as shown by several preclinical studies and clinical trials carried out to test the safety and feasibility of using EPCs. There are 31 registered clinical trials (and many others still ongoing) and 19 published studies. EPCs originate in the bone marrow and migrate into the bloodstream where they undergo a differentiation program leading to major changes in their antigenic characteristics. EPCs lose typical progenitor markers and acquire endothelial markers, and two important receptors, (VEGFR and CXCR-4), which recruit circulating EPCs to damaged or ischemic microcirculatory (homing to damaged tissues) beds. Overall, therapeutic angiogenesis will likely change the face of regenerative medicine in the next decade with many patients worldwide predicted to benefit from these treatments.
Collapse
Affiliation(s)
- Claudio Napoli
- Department of General Pathology, Division of Clinical Pathology and Excellence Research Center on Cardiovascular Diseases, 1st School of Medicine, II University of Naples, 80138 Naples, Italy.
| | | | | | | | | | | | | |
Collapse
|
19
|
Costa V, Sommese L, Casamassimi A, Colicchio R, Angelini C, Marchesano V, Milone L, Farzati B, Giovane A, Fiorito C, Rienzo M, Picardi M, Avallone B, Marco Corsi M, Sarubbi B, Calabrò R, Salvatore P, Ciccodicola A, Napoli C. Impairment of circulating endothelial progenitors in Down syndrome. BMC Med Genomics 2010; 3:40. [PMID: 20836844 PMCID: PMC2949777 DOI: 10.1186/1755-8794-3-40] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Accepted: 09/13/2010] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Pathological angiogenesis represents a critical issue in the progression of many diseases. Down syndrome is postulated to be a systemic anti-angiogenesis disease model, possibly due to increased expression of anti-angiogenic regulators on chromosome 21. The aim of our study was to elucidate some features of circulating endothelial progenitor cells in the context of this syndrome. METHODS Circulating endothelial progenitors of Down syndrome affected individuals were isolated, in vitro cultured and analyzed by confocal and transmission electron microscopy. ELISA was performed to measure SDF-1α plasma levels in Down syndrome and euploid individuals. Moreover, qRT-PCR was used to quantify expression levels of CXCL12 gene and of its receptor in progenitor cells. The functional impairment of Down progenitors was evaluated through their susceptibility to hydroperoxide-induced oxidative stress with BODIPY assay and the major vulnerability to the infection with human pathogens. The differential expression of crucial genes in Down progenitor cells was evaluated by microarray analysis. RESULTS We detected a marked decrease of progenitors' number in young Down individuals compared to euploid, cell size increase and some major detrimental morphological changes. Moreover, Down syndrome patients also exhibited decreased SDF-1α plasma levels and their progenitors had a reduced expression of SDF-1α encoding gene and of its membrane receptor. We further demonstrated that their progenitor cells are more susceptible to hydroperoxide-induced oxidative stress and infection with Bartonella henselae. Further, we observed that most of the differentially expressed genes belong to angiogenesis, immune response and inflammation pathways, and that infected progenitors with trisomy 21 have a more pronounced perturbation of immune response genes than infected euploid cells. CONCLUSIONS Our data provide evidences for a reduced number and altered morphology of endothelial progenitor cells in Down syndrome, also showing the higher susceptibility to oxidative stress and to pathogen infection compared to euploid cells, thereby confirming the angiogenesis and immune response deficit observed in Down syndrome individuals.
Collapse
Affiliation(s)
- Valerio Costa
- Institute of Genetics and Biophysics A, Buzzati-Traverso, IGB-CNR, Naples, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Rienzo M, Nagel J, Casamassimi A, Giovane A, Dietzel S, Napoli C. Mediator subunits: gene expression pattern, a novel transcript identification and nuclear localization in human endothelial progenitor cells. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1799:487-495. [PMID: 20493979 DOI: 10.1016/j.bbagrm.2010.05.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Revised: 05/03/2010] [Accepted: 05/05/2010] [Indexed: 05/29/2023]
Abstract
Mediator of RNA polymerase II transcription subunits (MEDs) serve to promote the assembly, activation, and regeneration of transcription complexes on core promoters during the initiation and re-initiation phases of transcription. There are no studies on the Mediator complex during development of endothelial progenitors (EPCs). Here, we have analysed all known MEDs during the differentiation of EPCs, by expression profile studies at RNA level and, for a limited subset of MED subunits, also at protein level. Since beneficial effects of L-arginine on EPCs have been described, we have also examined its effect on the expression of Mediator subunit coding genes. Through RT-PCR we have found increased expression for MED12 and decreased levels for MED30 after l-arginine treatment; Western blot analysis do not agree entirely with the RNA data in the identification of a putative protein product. Furthermore, we have analysed the three-dimensional nuclear positions of MED12 and MED30 genes in the presence of l-arginine treatment. Our major finding is the identification of a novel transcript of MED30, termed MED30 short (MED30s) generating by alternative splicing. Our results showed that the mRNA of this novel isoform is present only in circulating cells, but it is not expressed in cultured adherent cells. These findings are broadly relevant and will contribute to our understanding of the role of Mediator in eukaryotic gene expression. Despite the need to confirm the in vivo presence of the protein of this novel isoform, the presence of this novel RNA raises the possibility of regulating pathophysiological mechanism in progenitors.
Collapse
Affiliation(s)
- Monica Rienzo
- Department of General Pathology, 1st School of Medicine, II University of Naples, 80138 Naples, Italy
| | | | | | | | | | | |
Collapse
|
21
|
Chiaraviglio L, Duong S, Brown DA, Birtles RJ, Kirby JE. An immunocompromised murine model of chronic Bartonella infection. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 176:2753-63. [PMID: 20395436 DOI: 10.2353/ajpath.2010.090862] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Bartonella are ubiquitous gram-negative pathogens that cause chronic blood stream infections in mammals. Two species most often responsible for human infection, B. henselae and B. quintana, cause prolonged febrile illness in immunocompetent hosts, known as cat scratch disease and trench fever, respectively. Fascinatingly, in immunocompromised hosts, these organisms also induce new blood vessel formation leading to the formation of angioproliferative tumors, a disease process named bacillary angiomatosis. In addition, they cause an endothelial-lined cystic disease in the liver known as bacillary peliosis. Unfortunately, there are as yet no completely satisfying small animal models for exploring these unique human pathologies, as neither species appears able to sustain infection in small animal models. Therefore, we investigated the potential use of other Bartonella species for their ability to recapitulate human pathologies in an immunodeficient murine host. Here, we demonstrate the ability of Bartonella taylorii to cause chronic infection in SCID/BEIGE mice. In this model, Bartonella grows in extracellular aggregates, embedded within collagen matrix, similar to previous observations in cat scratch disease, bacillary peliosis, and bacillary angiomatosis. Interestingly, despite overwhelming infection later in disease, evidence for significant intracellular replication in endothelial or other cell types was not evident. We believe that this new model will provide an important new tool for investigation of Bartonella-host interaction.
Collapse
Affiliation(s)
- Lucius Chiaraviglio
- Department of Pathology, Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA 02215, USA
| | | | | | | | | |
Collapse
|
22
|
Therapeutic angiogenesis in diabetic apolipoprotein E-deficient mice using bone marrow cells, functional hemangioblasts and metabolic intervention. Atherosclerosis 2010; 209:403-14. [DOI: 10.1016/j.atherosclerosis.2009.10.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Revised: 10/14/2009] [Accepted: 10/15/2009] [Indexed: 12/13/2022]
|
23
|
Yager JA, Best SJ, Maggi RG, Varanat M, Znajda N, Breitschwerdt EB. Bacillary angiomatosis in an immunosuppressed dog. Vet Dermatol 2010; 21:420-8. [PMID: 20374571 DOI: 10.1111/j.1365-3164.2010.00879.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
A dog being treated with immunosuppressive doses of prednisone and azathioprine for pancytopenia of unknown origin, developed, over a 2-week period, multiple erythematous nodular lesions in the skin including footpads. Skin samples revealed lesions identical to those of human bacillary angiomatosis (BA). The nodules were composed of multifocal proliferations of capillaries, each lined by protuberant endothelial cells. The capillary clusters were separated by an oedematous connective tissue, lightly infiltrated with degenerate inflammatory cells, including neutrophils and macrophages. Tissue sections stained with Warthin-Starry silver stain revealed large numbers of positively stained bacilli in the stromal tissue, most heavily concentrated around the proliferating capillaries. Lesions of vascular degeneration and inflammation were evident. Bartonella vinsonii subsp. berkhoffii genotype 1 was independently amplified and sequenced from the blood and the skin tissue. The pathognomonic nature of the histological lesions, demonstration of compatible silver-stained bacilli in the tissue, and identification of B. vinsonii subsp. berkhoffii in the blood and tissue indicates that this is most likely the aetiologic agent responsible for the lesions. Antibiotic therapy was successful in resolving the nodules. It would appear that B. vinsonii subsp berkhoffii, like Bartonella henselae and Bartonella quintana, has the rare ability to induce angioproliferative lesions, most likely in association with immunosuppression. The demonstration of lesions identical to those of human BA in this dog is further evidence that the full range of clinical manifestations of human Bartonella infection occurs also in canines.
Collapse
Affiliation(s)
- Julie A Yager
- Yager-Best Veterinary Surgical Pathology, Guelph, ON, Canada.
| | | | | | | | | | | |
Collapse
|
24
|
Costa V, Casamassimi A, Ciccodicola A. Nutritional genomics era: opportunities toward a genome-tailored nutritional regimen. J Nutr Biochem 2010; 21:457-67. [PMID: 20233651 DOI: 10.1016/j.jnutbio.2009.10.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Revised: 09/16/2009] [Accepted: 10/23/2009] [Indexed: 10/19/2022]
Abstract
There is increasing evidence indicating that nutritional genomics represents a promise to improve public health. This goal will be reached by highlighting the mechanisms through which diet can reduce the risk of monogenic and common polygenic diseases. Indeed, nutrition is a very relevant environmental factor involved in the development and progression of metabolic disorders, as well as other kind of diseases. The revolutionary changes in the field of genomics have led to the development and implementation of new technologies and molecular tools. These technologies have a useful application in the nutritional sciences, since they allow a more precise and accurate analysis of biochemical alterations, in addition to filling fundamental gaps in the knowledge of nutrient-genome interactions in both health and disease. Overall, these advances will open undiscovered ways in genome-customized diets for disease prevention and therapy. This review summarizes the recent knowledge concerning this novel nutritional approach, paying attention to the human genome variations, such as single-nucleotide polymorphisms and copy number variations, gene expression and innovative molecular tools to reveal them.
Collapse
Affiliation(s)
- Valerio Costa
- Institute of Genetics and Biophysics Adriano Buzzati-Traverso, IGB-CNR, 80131 Naples, Italy.
| | | | | |
Collapse
|
25
|
Markitsis A, Lai Y. A censored beta mixture model for the estimation of the proportion of non-differentially expressed genes. ACTA ACUST UNITED AC 2010; 26:640-6. [PMID: 20080506 DOI: 10.1093/bioinformatics/btq001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
MOTIVATION The proportion of non-differentially expressed genes (pi(0)) is an important quantity in microarray data analysis. Although many statistical methods have been proposed for its estimation, it is still necessary to develop more efficient methods. METHODS Our approach for improving pi(0) estimation is to modify an existing simple method by introducing artificial censoring to P-values. In a comprehensive simulation study and the applications to experimental datasets, we compare our method with eight existing estimation methods. RESULTS The simulation study confirms that our method can clearly improve the estimation performance. Compared with the existing methods, our method can generally provide a relatively accurate estimate with relatively small variance. Using experimental microarray datasets, we also demonstrate that our method can generally provide satisfactory estimates in practice. AVAILABILITY The R code is freely available at http://home.gwu.edu/~ylai/research/CBpi0/.
Collapse
Affiliation(s)
- Anastasios Markitsis
- Department of Statistics, The George Washington University, Washington, DC 20052, USA
| | | |
Collapse
|
26
|
Kanika ND, Tar M, Tong Y, Kuppam DSR, Melman A, Davies KP. The mechanism of opiorphin-induced experimental priapism in rats involves activation of the polyamine synthetic pathway. Am J Physiol Cell Physiol 2009; 297:C916-27. [PMID: 19657052 PMCID: PMC2770744 DOI: 10.1152/ajpcell.00656.2008] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Accepted: 07/27/2009] [Indexed: 12/27/2022]
Abstract
Intracorporal injection of plasmids encoding opiorphins into retired breeder rats can result in animals developing a priapic-like condition. Microarray analysis demonstrated that following intracorporal gene transfer of plasmids expressing opiorphins the most significantly upregulated gene in corporal tissue was the ornithine decarboxylase gene (ODC). Quantitative RT-PCR confirmed the upregulation of ODC, as well as other genes involved in polyamine synthesis, such as arginase-I and -II, polyamine oxidase, spermidine synthase, spermidine acetyltransferase (SAT), and S-adenosylmethionine decarboxylase. Western blot analysis demonstrated upregulation of arginase-I and -II, ODC, and SAT at the protein level. Levels of the polyamine putrescine were upregulated in animals treated with opiorphin-expressing plasmids compared with controls. A direct role for the upregulation of polyamine synthesis in the development of the priapic-like condition was supported by the observation that the ODC inhibitor 1,3-diaminopropane, when added to the drinking water of animals treated with plasmids expressing opiorphins, prevented experimental priapism. We also demonstrate that in sickle cell mice, another model of priapism, there is increased expression of the mouse opiorphin homologue in corporal tissue compared with the background strain at a life stage prior to evidence of priapism. At a life stage when there is onset of priapism, there is increased expression of the enzymes involved in polyamine synthesis (ODC and arginase-I and -II). Our results suggest that the upregulation of enzymes involved in the polyamine synthetic pathway may play a role in the development of experimental priapism and represent a target for the prevention of priapism.
Collapse
Affiliation(s)
- Nirmala Devi Kanika
- Department of Urology and Institute of Smooth Muscle Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | |
Collapse
|