1
|
Xiao Y, Deng S, Huang T, Li Z, Zhang H, Wang K, Akihiro T, Jia C, Lin F, Xu H. Knockout of OsPHT4;4 enhances thiamethoxam accumulation in rice stems for improved brown planthopper control. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 224:109910. [PMID: 40239259 DOI: 10.1016/j.plaphy.2025.109910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 04/07/2025] [Accepted: 04/08/2025] [Indexed: 04/18/2025]
Abstract
The phosphate transporter PHT4 plays a crucial role in nutrient transport within plants. In addition to this fundamental functions, PHT4 may also participate in the uptake and translocation of other compounds, such as ascorbate. However, only a few studies have characterized the functional roles of PHT4. In this study, we identified and functionally characterized the role of the phosphate transporter OsPHT4;4 in thiamethoxam (THX) uptake and transport in rice. Heterologous expression experiments in yeast and Xenopus laevis oocytes (X. laevis oocytes) demonstrated that OsPHT4;4 significantly enhanced THX accumulation in cells. The OsPHT4; 4 proteins contained 11 transmembrane helices and localized primarily to the plasma membrane (PM) and chloroplast envelope. Knockout of OsPHT4;4 reduced the efficiency of THX translocation from stems to leaves, resulting in significant THX accumulation in the stems, which enhanced control of the brown planthopper (BPH), but had no effect on root-to-stem translocation. In contrast, overexpression of OsPHT4;4 increased THX translocation to the leaves, reduced THX accumulation in the stems, and thereby weakened the pest control effect on BPH. Our results indicate that OsPHT4;4 plays a key role in the specific distribution of THX, contributing to pest management while also affecting plant growth. These findings provide a foundation for optimizing pesticide usage in crop management by balancing pest control effectiveness and plant health.
Collapse
Affiliation(s)
- Yuyan Xiao
- State Key Laboratory of Green Pesticide/Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, 512005, Shaoguan, China
| | - Shuqi Deng
- State Key Laboratory of Green Pesticide/Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, 510642, China
| | - Tinghong Huang
- State Key Laboratory of Green Pesticide/Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, 510642, China
| | - Zepu Li
- State Key Laboratory of Green Pesticide/Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, 510642, China
| | - Hanlin Zhang
- State Key Laboratory of Green Pesticide/Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, 510642, China
| | - Keyi Wang
- State Key Laboratory of Green Pesticide/Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, 510642, China
| | - Takashi Akihiro
- Faculty of Life and Environmental Science, Shimane University, Shimane, 690-8504, Japan
| | - Chunsheng Jia
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, 512005, Shaoguan, China
| | - Fei Lin
- State Key Laboratory of Green Pesticide/Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, 510642, China.
| | - Hanhong Xu
- State Key Laboratory of Green Pesticide/Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
2
|
Yan Y, Antolin N, Zhou L, Xu L, Vargas IL, Gomez CD, Kong G, Palmisano I, Yang Y, Chadwick J, Müller F, Bull AMJ, Lo Celso C, Primiano G, Servidei S, Perrier JF, Bellardita C, Di Giovanni S. Macrophages excite muscle spindles with glutamate to bolster locomotion. Nature 2025; 637:698-707. [PMID: 39633045 PMCID: PMC11735391 DOI: 10.1038/s41586-024-08272-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 10/23/2024] [Indexed: 12/07/2024]
Abstract
The stretch reflex is a fundamental component of the motor system that orchestrates the coordinated muscle contractions underlying movement. At the heart of this process lie the muscle spindles (MS), specialized receptors finely attuned to fluctuations in tension within intrafusal muscle fibres. The tension variation in the MS triggers a series of neuronal events including an initial depolarization of sensory type Ia afferents that subsequently causes the activation of motoneurons within the spinal cord1,2. This neuronal cascade culminates in the execution of muscle contraction, underscoring a presumed closed-loop mechanism between the musculoskeletal and nervous systems. By contrast, here we report the discovery of a new population of macrophages with exclusive molecular and functional signatures within the MS that express the machinery for synthesizing and releasing glutamate. Using mouse intersectional genetics with optogenetics and electrophysiology, we show that activation of MS macrophages (MSMP) drives proprioceptive sensory neuron firing on a millisecond timescale. MSMP activate spinal circuits, motor neurons and muscles by means of a glutamate-dependent mechanism that excites the MS. Furthermore, MSMP respond to neural and muscle activation by increasing the expression of glutaminase, enabling them to convert the uptaken glutamine released by myocytes during muscle contraction into glutamate. Selective silencing or depletion of MSMP in hindlimb muscles disrupted the modulation of the stretch reflex for force generation and sensory feedback correction, impairing locomotor strategies in mice. Our results have identified a new cellular component, the MSMP, that directly regulates neural activity and muscle contraction. The glutamate-mediated signalling of MSMP and their dynamic response to sensory cues introduce a new dimension to our understanding of sensation and motor action, potentially offering innovative therapeutic approaches in conditions that affect sensorimotor function.
Collapse
Affiliation(s)
- Yuyang Yan
- Faculty of Medicine, Department of Brain Sciences, Imperial College London, London, UK
- Faculty of Natural Sciences, Department of Life Sciences, Imperial College London, London, UK
| | - Nuria Antolin
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Luming Zhou
- Faculty of Medicine, Department of Brain Sciences, Imperial College London, London, UK
| | - Luyang Xu
- Faculty of Engineering, Department of Bioengineering, Imperial College London, London, UK
| | - Irene Lisa Vargas
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | | | - Guiping Kong
- Faculty of Medicine, Department of Brain Sciences, Imperial College London, London, UK
| | - Ilaria Palmisano
- Faculty of Medicine, Department of Brain Sciences, Imperial College London, London, UK
| | - Yi Yang
- Faculty of Medicine, Department of Brain Sciences, Imperial College London, London, UK
| | - Jessica Chadwick
- Faculty of Medicine, Department of Brain Sciences, Imperial College London, London, UK
| | - Franziska Müller
- Faculty of Medicine, Department of Brain Sciences, Imperial College London, London, UK
| | - Anthony M J Bull
- Faculty of Engineering, Department of Bioengineering, Imperial College London, London, UK
| | - Cristina Lo Celso
- Faculty of Natural Sciences, Department of Life Sciences, Imperial College London, London, UK
| | - Guido Primiano
- Dipartimento di Neuroscienze, Organi di Senso e Torace, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Serenella Servidei
- Dipartimento di Neuroscienze, Organi di Senso e Torace, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Italy
| | | | - Carmelo Bellardita
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark.
| | - Simone Di Giovanni
- Faculty of Medicine, Department of Brain Sciences, Imperial College London, London, UK.
| |
Collapse
|
3
|
Soon JW, Manca MA, Laskowska A, Starkova J, Rohlenova K, Rohlena J. Aspartate in tumor microenvironment and beyond: Metabolic interactions and therapeutic perspectives. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167451. [PMID: 39111633 DOI: 10.1016/j.bbadis.2024.167451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/19/2024] [Accepted: 07/31/2024] [Indexed: 08/11/2024]
Abstract
Aspartate is a proteinogenic non-essential amino acid with several essential functions in proliferating cells. It is mostly produced in a cell autonomous manner from oxalacetate via glutamate oxalacetate transaminases 1 or 2 (GOT1 or GOT2), but in some cases it can also be salvaged from the microenvironment via transporters such as SLC1A3 or by macropinocytosis. In this review we provide an overview of biosynthetic pathways that produce aspartate endogenously during proliferation. We discuss conditions that favor aspartate uptake as well as possible sources of exogenous aspartate in the microenvironment of tumors and bone marrow, where most available data have been generated. We highlight metabolic fates of aspartate, its various functions, and possible approaches to target aspartate metabolism for cancer therapy.
Collapse
Affiliation(s)
- Julian Wong Soon
- Institute of Biotechnology of the Czech Academy of Sciences, Prumyslova 595, 252 50 Vestec, Prague-West, Czech Republic
| | - Maria Antonietta Manca
- Institute of Biotechnology of the Czech Academy of Sciences, Prumyslova 595, 252 50 Vestec, Prague-West, Czech Republic
| | - Agnieszka Laskowska
- Institute of Biotechnology of the Czech Academy of Sciences, Prumyslova 595, 252 50 Vestec, Prague-West, Czech Republic
| | - Julia Starkova
- CLIP (Childhood Leukaemia Investigation Prague), Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Katerina Rohlenova
- Institute of Biotechnology of the Czech Academy of Sciences, Prumyslova 595, 252 50 Vestec, Prague-West, Czech Republic.
| | - Jakub Rohlena
- Institute of Biotechnology of the Czech Academy of Sciences, Prumyslova 595, 252 50 Vestec, Prague-West, Czech Republic.
| |
Collapse
|
4
|
Schmiege P, Donnelly L, Elghobashi-Meinhardt N, Lee CH, Li X. Structure and inhibition of the human lysosomal transporter Sialin. Nat Commun 2024; 15:4386. [PMID: 38782953 PMCID: PMC11116495 DOI: 10.1038/s41467-024-48535-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 05/03/2024] [Indexed: 05/25/2024] Open
Abstract
Sialin, a member of the solute carrier 17 (SLC17) transporter family, is unique in its ability to transport not only sialic acid using a pH-driven mechanism, but also transport mono and diacidic neurotransmitters, such as glutamate and N-acetylaspartylglutamate (NAAG), into synaptic vesicles via a membrane potential-driven mechanism. While most transporters utilize one of these mechanisms, the structural basis of how Sialin transports substrates using both remains unclear. Here, we present the cryogenic electron-microscopy structures of human Sialin: apo cytosol-open, apo lumen-open, NAAG-bound, and inhibitor-bound. Our structures show that a positively charged cytosol-open vestibule accommodates either NAAG or the Sialin inhibitor Fmoc-Leu-OH, while its luminal cavity potentially binds sialic acid. Moreover, functional analyses along with molecular dynamics simulations identify key residues in binding sialic acid and NAAG. Thus, our findings uncover the essential conformational states in NAAG and sialic acid transport, demonstrating a working model of SLC17 transporters.
Collapse
Affiliation(s)
- Philip Schmiege
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Linda Donnelly
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Chia-Hsueh Lee
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Xiaochun Li
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
5
|
Weinrauch AM, Dumar ZJ, Overduin SL, Goss GG, Leys SP, Blewett TA. Evidence for transporter-mediated uptake of environmental L-glutamate in a freshwater sponge, Ephydatia muelleri. J Comp Physiol B 2024; 194:121-130. [PMID: 38553641 DOI: 10.1007/s00360-024-01544-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/10/2023] [Accepted: 02/12/2024] [Indexed: 05/07/2024]
Abstract
The freshwater sponge, Ephydatia muelleri, lacks a nervous or endocrine system and yet it exhibits a coordinated whole-body action known as a "sneeze" that can be triggered by exposure to L-glutamate. It is not known how L-glutamate is obtained by E. muelleri in sufficient quantities (i.e., 70 µM) to mediate this response endogenously. The present study tested the hypothesis that L-glutamate can be directly acquired from the environment across the body surface of E. muelleri. We demonstrate carrier mediated uptake of two distinct saturable systems with maximal transport rates (Jmax) of 64.27 ± 4.98 and 25.12 ± 1.87 pmols mg-1 min-1, respectively. The latter system has a higher calculated substrate affinity (Km) of 2.87 ± 0.38 µM compared to the former (8.75 ± 1.00 µM), indicative of distinct systems that can acquire L-glutamate at variable environmental concentrations. Further characterization revealed potential shared pathways of L-glutamate uptake with other negatively charged amino acids, namely D-glutamate and L-aspartate, as well as the neutral amino acid L-alanine. We demonstrate that L-glutamate uptake does not appear to rely on exogenous sodium or proton concentrations as removal of these ions from the bathing media did not significantly alter uptake. Likewise, L-glutamate uptake does not seem to rely on internal proton motive forces driven by VHA as application of 100 nM of the VHA inhibitor bafilomycin did not alter uptake rates within E. muelleri tissues. Whether the acquired amino acid is used to supplement feeding or is stored and accumulated to mediate the sneeze response remains to be determined.
Collapse
Affiliation(s)
- Alyssa M Weinrauch
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Zachary J Dumar
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - Sienna L Overduin
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - Greg G Goss
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - Sally P Leys
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - Tamzin A Blewett
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2R3, Canada.
| |
Collapse
|
6
|
van Onselen R, Downing TG. Uptake of β-N-methylamino-L-alanine (BMAA) into glutamate-specific synaptic vesicles: Exploring the validity of the excitotoxicity mechanism of BMAA. Neurosci Lett 2024; 821:137593. [PMID: 38103629 DOI: 10.1016/j.neulet.2023.137593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/01/2023] [Accepted: 12/07/2023] [Indexed: 12/19/2023]
Abstract
The first mechanism of toxicity proposed for the cyanobacterial neurotoxin β-N-methylamino-L-alanine (BMAA) was excitotoxicity, and this was supported by numerous in vitro studies in which overactivation of both ionotropic and metabotropic glutamate receptors was reported. However, the excitotoxicity of BMAA is weak in comparison with other known excitotoxins and on par with that of glutamate, implying that to achieve sufficient synaptic concentrations of BMAA to cause classical in vivo excitotoxicity, BMAA must either accumulate in synapses to allow persistent glutamate receptor activation or it must be released in sufficiently high concentrations into synapses to cause the overexcitation. Since it has been shown that BMAA can be readily removed from synapses, release of high concentrations of BMAA into synapses must be shown to confirm its role as an excitotoxin in in vivo systems. This study therefore sought to evaluate the uptake of BMAA into synaptic vesicles and to determine if BMAA affects the uptake of glutamate into synaptic vesicles. There was no evidence to support uptake of BMAA into glutamate-specific synaptic vesicles but there was some indication that BMAA may affect the uptake of glutamate into synaptic vesicles. The uptake of BMAA into synaptic vesicles isolated from areas other than the cerebral cortex should be investigated before definite conclusions can be drawn about the role of BMAA as an excitotoxin.
Collapse
Affiliation(s)
- Rianita van Onselen
- Biomedical Research and Innovation Platform, South African Medical Research Council, Cape Town, South Africa; Department of Biochemistry and Microbiology, Nelson Mandela University, Gqeberha, South Africa
| | - Tim G Downing
- Department of Biochemistry and Microbiology, Nelson Mandela University, Gqeberha, South Africa.
| |
Collapse
|
7
|
Mao WY, He Y, Zhang L, He QZ, Sun LM, Zhang R. [Free sialic acid storage disorders with fetal hydrops in a neonate]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2023; 25:546-550. [PMID: 37272184 DOI: 10.7499/j.issn.1008-8830.2303041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A boy, aged 3 hours, was admitted due to a prenatal diagnosis of fetal hydrops at 3 hours after resuscitation for birth asphyxia. Prenatal examination at 5 months of gestation showed massive ascites in the fetus, and after birth, the boy had the manifestations of systemic hydroderma, massive ascites, coarse face, and hepatomegaly. Genetic testing revealed heterozygous mutations in the SLC17A5 gene, and there was a significant increase in urinary free sialic acid. Placental pathology showed extensive vacuolization in villous stromal cells, Hofbauer cells, cytotrophoblast cells, and syncytiotrophoblast cells in human placental chorionic villi. The boy was finally diagnosed with free sialic acid storage disorders (FSASDs). This is the first case of FSASDs with the initial symptom of fetal hydrops reported in China. The possibility of FSASDs should be considered for cases with non-immune hydrops fetalis, and examinations such as placental pathology and urinary free sialic acid may help with early diagnosis and clinical decision making.
Collapse
Affiliation(s)
- Wei-Ying Mao
- Department of Neonatology, Children's Hospital of Fudan University/National Children's Medical Center, Shanghai 201102, China
| | - Yue He
- Department of Neonatology, Children's Hospital of Fudan University/National Children's Medical Center, Shanghai 201102, China
| | - Lan Zhang
- Department of Neonatology, Children's Hospital of Fudan University/National Children's Medical Center, Shanghai 201102, China
| | | | | | - Rong Zhang
- Department of Neonatology, Children's Hospital of Fudan University/National Children's Medical Center, Shanghai 201102, China
| |
Collapse
|
8
|
Hu W, Chi C, Song K, Zheng H. The molecular mechanism of sialic acid transport mediated by Sialin. SCIENCE ADVANCES 2023; 9:eade8346. [PMID: 36662855 PMCID: PMC9858498 DOI: 10.1126/sciadv.ade8346] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Malfunction of the sialic acid transporter caused by various genetic mutations in the SLC17A5 gene encoding Sialin leads to a spectrum of neurodegenerative conditions called free sialic acid storage disorders. Unfortunately, how Sialin transports sialic acid/proton (H+) and how pathogenic mutations impair its function are poorly defined. Here, we present the structure of human Sialin in an inward-facing partially open conformation determined by cryo-electron microscopy, representing the first high-resolution structure of any human SLC17 member. Our analysis reveals two unique features in Sialin: (i) The H+ coupling/sensing requires two highly conserved Glu residues (E171 and E175) instead of one (E175) as implied in previous studies; and (ii) the normal function of Sialin requires the stabilization of a cytosolic helix, which has not been noticed in the literature. By mapping known pathogenic mutations, we provide mechanistic explanations for corresponding functional defects. We propose a structure-based mechanism for sialic acid transport mediated by Sialin.
Collapse
Affiliation(s)
- Wenxin Hu
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, CO, USA
| | - Congwu Chi
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, CO, USA
| | - Kunhua Song
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, CO, USA
| | - Hongjin Zheng
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, CO, USA
| |
Collapse
|
9
|
Moroz LL, Nikitin MA, Poličar PG, Kohn AB, Romanova DY. Evolution of glutamatergic signaling and synapses. Neuropharmacology 2021; 199:108740. [PMID: 34343611 PMCID: PMC9233959 DOI: 10.1016/j.neuropharm.2021.108740] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 12/13/2022]
Abstract
Glutamate (Glu) is the primary excitatory transmitter in the mammalian brain. But, we know little about the evolutionary history of this adaptation, including the selection of l-glutamate as a signaling molecule in the first place. Here, we used comparative metabolomics and genomic data to reconstruct the genealogy of glutamatergic signaling. The origin of Glu-mediated communications might be traced to primordial nitrogen and carbon metabolic pathways. The versatile chemistry of L-Glu placed this molecule at the crossroad of cellular biochemistry as one of the most abundant metabolites. From there, innovations multiplied. Many stress factors or injuries could increase extracellular glutamate concentration, which led to the development of modular molecular systems for its rapid sensing in bacteria and archaea. More than 20 evolutionarily distinct families of ionotropic glutamate receptors (iGluRs) have been identified in eukaryotes. The domain compositions of iGluRs correlate with the origins of multicellularity in eukaryotes. Although L-Glu was recruited as a neuro-muscular transmitter in the early-branching metazoans, it was predominantly a non-neuronal messenger, with a possibility that glutamatergic synapses evolved more than once. Furthermore, the molecular secretory complexity of glutamatergic synapses in invertebrates (e.g., Aplysia) can exceed their vertebrate counterparts. Comparative genomics also revealed 15+ subfamilies of iGluRs across Metazoa. However, most of this ancestral diversity had been lost in the vertebrate lineage, preserving AMPA, Kainate, Delta, and NMDA receptors. The widespread expansion of glutamate synapses in the cortical areas might be associated with the enhanced metabolic demands of the complex brain and compartmentalization of Glu signaling within modular neuronal ensembles.
Collapse
Affiliation(s)
- Leonid L Moroz
- Whitney Laboratory for Marine Biosciences, University of Florida, St. Augustine, FL, 32080, USA; Departments of Neuroscience and McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA.
| | - Mikhail A Nikitin
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119991, Russia; Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, 127994, Russia
| | - Pavlin G Poličar
- Whitney Laboratory for Marine Biosciences, University of Florida, St. Augustine, FL, 32080, USA; Faculty of Computer and Information Science, University of Ljubljana, SI-1000, Ljubljana, Slovenia
| | - Andrea B Kohn
- Whitney Laboratory for Marine Biosciences, University of Florida, St. Augustine, FL, 32080, USA
| | - Daria Y Romanova
- Cellular Neurobiology of Learning Lab, Institute of Higher Nervous Activity and Neurophysiology, Moscow, 117485, Russia.
| |
Collapse
|
10
|
Blanco J, Mariño C, Martín H, Álvarez G, Rossignoli AE. Characterization of the Domoic Acid Uptake Mechanism of the Mussel ( Mytilus galloprovincialis) Digestive Gland. Toxins (Basel) 2021; 13:458. [PMID: 34208992 PMCID: PMC8310042 DOI: 10.3390/toxins13070458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 11/17/2022] Open
Abstract
Cultures of the mussel Mytilus galloprovincialis are frequently affected by accumulation of the amnesic shellfish poisoning toxin domoic acid (DA). This species is characterized by a fast uptake and release of the toxin. In this work, the main characteristics of the uptake mechanism have been studied by incubation of digestive gland thin slices in media with different composition and DA concentration. DA uptake seems to follow Michaelis-Menten kinetics, with a very high estimated KM (1722 µg DA mL-1) and a Vmax of 71.9 µg DA g-1 h-1, which is similar to those found for other amino acids in invertebrates. Replacement of NaCl from the incubation media by Cl-choline (Na+-free medium) did not significantly reduce the uptake, but replacement by sorbitol (Na+-free and Cl--depleted medium) did. A new experiment replacing all chlorides with their equivalent gluconates (Na+- and Cl--free medium) showed an important reduction in the uptake that should be attributed to the absence of chloride, pointing to a Na+-independent, Cl- (or anion-) dependent transporter. In media with Na+ and Cl-, neither decreasing the pH nor adding cyanide (a metabolic inhibitor) had significant effect on DA uptake, suggesting that the transport mechanism is not H+- or ATP-dependent. In a chloride depleted medium, lowering pH or adding CN increased the uptake, suggesting that other anions could, at least partially, substitute chloride.
Collapse
Affiliation(s)
- Juan Blanco
- Centro de Investigacións Mariñas (CIMA), Xunta de Galicia, Pedras de Coron s/n, 36620 Vilanova de Arousa, Spain; (C.M.); (H.M.); (A.E.R.)
| | - Carmen Mariño
- Centro de Investigacións Mariñas (CIMA), Xunta de Galicia, Pedras de Coron s/n, 36620 Vilanova de Arousa, Spain; (C.M.); (H.M.); (A.E.R.)
| | - Helena Martín
- Centro de Investigacións Mariñas (CIMA), Xunta de Galicia, Pedras de Coron s/n, 36620 Vilanova de Arousa, Spain; (C.M.); (H.M.); (A.E.R.)
| | - Gonzalo Álvarez
- Departamento de Acuicultura, Universidad Católica del Norte, Larrondo 1281, Coquimbo, Chile;
- Centro de Investigación y Desarrollo Tecnológico en Algas y Otros Recursos Biológicos (CIDTA), Facultad de Ciencias del Mar, Universidad Católica del Norte, Larrondo 1281, Coquimbo, Chile
| | - Araceli E. Rossignoli
- Centro de Investigacións Mariñas (CIMA), Xunta de Galicia, Pedras de Coron s/n, 36620 Vilanova de Arousa, Spain; (C.M.); (H.M.); (A.E.R.)
| |
Collapse
|
11
|
Rodríguez-Campuzano AG, Ortega A. Glutamate transporters: Critical components of glutamatergic transmission. Neuropharmacology 2021; 192:108602. [PMID: 33991564 DOI: 10.1016/j.neuropharm.2021.108602] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/09/2021] [Accepted: 04/27/2021] [Indexed: 02/06/2023]
Abstract
Glutamate is the major excitatory neurotransmitter in the vertebrate central nervous system. Once released, it binds to specific membrane receptors and transporters activating a wide variety of signal transduction cascades, as well as its removal from the synaptic cleft in order to avoid its extracellular accumulation and the overstimulation of extra-synaptic receptors that might result in neuronal death through a process known as excitotoxicity. Although neurodegenerative diseases are heterogenous in clinical phenotypes and genetic etiologies, a fundamental mechanism involved in neuronal degeneration is excitotoxicity. Glutamate homeostasis is critical for brain physiology and Glutamate transporters are key players in maintaining low extracellular Glutamate levels. Therefore, the characterization of Glutamate transporters has been an active area of glutamatergic research for the last 40 years. Transporter activity its regulated at different levels: transcriptional and translational control, transporter protein trafficking and membrane mobility, and through extensive post-translational modifications. The elucidation of these mechanisms has emerged as an important piece to shape our current understanding of glutamate actions in the nervous system.
Collapse
Affiliation(s)
- Ada G Rodríguez-Campuzano
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Apartado Postal 14-740, Ciudad de México, 07000, Mexico
| | - Arturo Ortega
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Apartado Postal 14-740, Ciudad de México, 07000, Mexico.
| |
Collapse
|
12
|
Huizing M, Hackbarth ME, Adams DR, Wasserstein M, Patterson MC, Walkley SU, Gahl WA. Free sialic acid storage disorder: Progress and promise. Neurosci Lett 2021; 755:135896. [PMID: 33862140 DOI: 10.1016/j.neulet.2021.135896] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 12/27/2022]
Abstract
Lysosomal free sialic acid storage disorder (FSASD) is an extremely rare, autosomal recessive, neurodegenerative, multisystemic disorder caused by defects in the lysosomal sialic acid membrane exporter SLC17A5 (sialin). SLC17A5 defects cause free sialic acid and some other acidic hexoses to accumulate in lysosomes, resulting in enlarged lysosomes in some cell types and 10-100-fold increased urinary excretion of free sialic acid. Clinical features of FSASD include coarse facial features, organomegaly, and progressive neurodegenerative symptoms with cognitive impairment, cerebellar ataxia and muscular hypotonia. Central hypomyelination with cerebellar atrophy and thinning of the corpus callosum are also prominent disease features. Around 200 FSASD cases are reported worldwide, with the clinical spectrum ranging from a severe infantile onset form, often lethal in early childhood, to a mild, less severe form with subjects living into adulthood, also called Salla disease. The pathobiology of FSASD remains poorly understood and FSASD is likely underdiagnosed. Known patients have experienced a diagnostic delay due to the rarity of the disorder, absence of routine urine sialic acid testing, and non-specific clinical symptoms, including developmental delay, ataxia and infantile hypomyelination. There is no approved therapy for FSASD. We initiated a multidisciplinary collaborative effort involving worldwide academic clinical and scientific FSASD experts, the National Institutes of Health (USA), and the FSASD patient advocacy group (Salla Treatment and Research [S.T.A.R.] Foundation) to overcome the scientific, clinical and financial challenges facing the development of new treatments for FSASD. We aim to collect data that incentivize industry to further develop, obtain approval for, and commercialize FSASD treatments. This review summarizes current aspects of FSASD diagnosis, prevalence, etiology, and disease models, as well as challenges on the path to therapeutic approaches for FSASD.
Collapse
Affiliation(s)
- Marjan Huizing
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, United States.
| | - Mary E Hackbarth
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, United States
| | - David R Adams
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Melissa Wasserstein
- Departments of Pediatrics and Genetics, The Children's Hospital at Montefiore, Bronx, NY, 10467, United States; Dominick P. Purpura Department of Neuroscience, Rose F. Kennedy Intellectual and Developmental Disabilities Research Center, Albert Einstein College of Medicine, Bronx, NY, 10461, United States
| | - Marc C Patterson
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, United States
| | - Steven U Walkley
- Dominick P. Purpura Department of Neuroscience, Rose F. Kennedy Intellectual and Developmental Disabilities Research Center, Albert Einstein College of Medicine, Bronx, NY, 10461, United States
| | - William A Gahl
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, United States
| | | |
Collapse
|
13
|
Göhde R, Naumann B, Laundon D, Imig C, McDonald K, Cooper BH, Varoqueaux F, Fasshauer D, Burkhardt P. Choanoflagellates and the ancestry of neurosecretory vesicles. Philos Trans R Soc Lond B Biol Sci 2021; 376:20190759. [PMID: 33550951 PMCID: PMC7934909 DOI: 10.1098/rstb.2019.0759] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2020] [Indexed: 01/08/2023] Open
Abstract
Neurosecretory vesicles are highly specialized trafficking organelles that store neurotransmitters that are released at presynaptic nerve endings and are, therefore, important for animal cell-cell signalling. Despite considerable anatomical and functional diversity of neurons in animals, the protein composition of neurosecretory vesicles in bilaterians appears to be similar. This similarity points towards a common evolutionary origin. Moreover, many putative homologues of key neurosecretory vesicle proteins predate the origin of the first neurons, and some even the origin of the first animals. However, little is known about the molecular toolkit of these vesicles in non-bilaterian animals and their closest unicellular relatives, making inferences about the evolutionary origin of neurosecretory vesicles extremely difficult. By comparing 28 proteins of the core neurosecretory vesicle proteome in 13 different species, we demonstrate that most of the proteins are present in unicellular organisms. Surprisingly, we find that the vesicular membrane-associated soluble N-ethylmaleimide-sensitive factor attachment protein receptor protein synaptobrevin is localized to the vesicle-rich apical and basal pole in the choanoflagellate Salpingoeca rosetta. Our 3D vesicle reconstructions reveal that the choanoflagellates S. rosetta and Monosiga brevicollis exhibit a polarized and diverse vesicular landscape reminiscent of the polarized organization of chemical synapses that secrete the content of neurosecretory vesicles into the synaptic cleft. This study sheds light on the ancestral molecular machinery of neurosecretory vesicles and provides a framework to understand the origin and evolution of secretory cells, synapses and neurons. This article is part of the theme issue 'Basal cognition: multicellularity, neurons and the cognitive lens'.
Collapse
Affiliation(s)
- Ronja Göhde
- Sars International Centre for Molecular Marine Biology, University of Bergen, 5006 Bergen, Norway
| | - Benjamin Naumann
- Institute of Zoology and Evolutionary Research, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Davis Laundon
- Marine Biological Association of the United Kingdom, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK
| | - Cordelia Imig
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, 37075 Gottingen, Germany
| | - Kent McDonald
- Electron Microscope Laboratory, University of California, Berkeley, CA 94720, USA
| | - Benjamin H. Cooper
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, 37075 Gottingen, Germany
| | - Frédérique Varoqueaux
- Department of Fundamental Neurosciences, University of Lausanne, 1005 Lausanne, Switzerland
| | - Dirk Fasshauer
- Department of Fundamental Neurosciences, University of Lausanne, 1005 Lausanne, Switzerland
| | - Pawel Burkhardt
- Sars International Centre for Molecular Marine Biology, University of Bergen, 5006 Bergen, Norway
| |
Collapse
|
14
|
Pham C, Hérault K, Oheim M, Maldera S, Vialou V, Cauli B, Li D. Astrocytes respond to a neurotoxic Aβ fragment with state-dependent Ca 2+ alteration and multiphasic transmitter release. Acta Neuropathol Commun 2021; 9:44. [PMID: 33726852 PMCID: PMC7968286 DOI: 10.1186/s40478-021-01146-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 02/28/2021] [Indexed: 12/13/2022] Open
Abstract
Excessive amounts of amyloid β (Aβ) peptide have been suggested to dysregulate synaptic transmission in Alzheimer's disease (AD). As a major type of glial cell in the mammalian brain, astrocytes regulate neuronal function and undergo activity alterations upon Aβ exposure. Yet the mechanistic steps underlying astrocytic responses to Aβ peptide remain to be elucidated. Here by fluorescence imaging of signaling pathways, we dissected astrocytic responses to Aβ25-35 peptide, a neurotoxic Aβ fragment present in AD patients. In native health astrocytes, Aβ25-35 evoked Ca2+ elevations via purinergic receptors, being also dependent on the opening of connexin (CX) hemichannels. Aβ25-35, however, induced a Ca2+ diminution in Aβ-preconditioned astrocytes as a result of the potentiation of the plasma membrane Ca2+ ATPase (PMCA). The PMCA and CX protein expression was observed with immunostaining in the brain tissue of hAPPJ20 AD mouse model. We also observed both Ca2+-independent and Ca2+-dependent glutamate release upon astrocytic Aβ exposure, with the former mediated by CX hemichannel and the latter by both anion channels and lysosome exocytosis. Our results suggest that Aβ peptide causes state-dependent responses in astrocytes, in association with a multiphasic release of signaling molecules. This study therefore helps to understand astrocyte engagement in AD-related amyloidopathy.
Collapse
|
15
|
Abstract
The lysosome represents an important regulatory platform within numerous vesicle trafficking pathways including the endocytic, phagocytic, and autophagic pathways. Its ability to fuse with endosomes, phagosomes, and autophagosomes enables the lysosome to break down a wide range of both endogenous and exogenous cargo, including macromolecules, certain pathogens, and old or damaged organelles. Due to its center position in an intricate network of trafficking events, the lysosome has emerged as a central signaling node for sensing and orchestrating the cells metabolism and immune response, for inter-organelle and inter-cellular signaling and in membrane repair. This review highlights the current knowledge of general lysosome function and discusses these findings in their implication for renal glomerular cell types in health and disease including the involvement of glomerular cells in lysosomal storage diseases and the role of lysosomes in nongenetic glomerular injuries.
Collapse
|
16
|
Bhat S, El-Kasaby A, Freissmuth M, Sucic S. Functional and Biochemical Consequences of Disease Variants in Neurotransmitter Transporters: A Special Emphasis on Folding and Trafficking Deficits. Pharmacol Ther 2020; 222:107785. [PMID: 33310157 PMCID: PMC7612411 DOI: 10.1016/j.pharmthera.2020.107785] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/02/2020] [Indexed: 01/30/2023]
Abstract
Neurotransmitters, such as γ-aminobutyric acid, glutamate, acetyl choline, glycine and the monoamines, facilitate the crosstalk within the central nervous system. The designated neurotransmitter transporters (NTTs) both release and take up neurotransmitters to and from the synaptic cleft. NTT dysfunction can lead to severe pathophysiological consequences, e.g. epilepsy, intellectual disability, or Parkinson’s disease. Genetic point mutations in NTTs have recently been associated with the onset of various neurological disorders. Some of these mutations trigger folding defects in the NTT proteins. Correct folding is a prerequisite for the export of NTTs from the endoplasmic reticulum (ER) and the subsequent trafficking to their pertinent site of action, typically at the plasma membrane. Recent studies have uncovered some of the key features in the molecular machinery responsible for transporter protein folding, e.g., the role of heat shock proteins in fine-tuning the ER quality control mechanisms in cells. The therapeutic significance of understanding these events is apparent from the rising number of reports, which directly link different pathological conditions to NTT misfolding. For instance, folding-deficient variants of the human transporters for dopamine or GABA lead to infantile parkinsonism/dystonia and epilepsy, respectively. From a therapeutic point of view, some folding-deficient NTTs are amenable to functional rescue by small molecules, known as chemical and pharmacological chaperones.
Collapse
Affiliation(s)
- Shreyas Bhat
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Ali El-Kasaby
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Michael Freissmuth
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Sonja Sucic
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria.
| |
Collapse
|
17
|
Huizing M, Gahl WA. Inherited disorders of lysosomal membrane transporters. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2020; 1862:183336. [PMID: 32389669 PMCID: PMC7508925 DOI: 10.1016/j.bbamem.2020.183336] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/01/2020] [Accepted: 04/28/2020] [Indexed: 02/07/2023]
Abstract
Disorders caused by defects in lysosomal membrane transporters form a distinct subgroup of lysosomal storage disorders (LSDs). To date, defects in only 10 lysosomal membrane transporters have been associated with inherited disorders. The clinical presentations of these diseases resemble the phenotypes of other LSDs; they are heterogeneous and often present in children with neurodegenerative manifestations. However, for pathomechanistic and therapeutic studies, lysosomal membrane transport defects should be distinguished from LSDs caused by defective hydrolytic enzymes. The involved proteins differ in function, localization, and lysosomal targeting, and the diseases themselves differ in their stored material and therapeutic approaches. We provide an overview of the small group of disorders of lysosomal membrane transporters, emphasizing discovery, pathomechanism, clinical features, diagnostic methods and therapeutic aspects. We discuss common aspects of lysosomal membrane transporter defects that can provide the basis for preclinical research into these disorders.
Collapse
Affiliation(s)
- Marjan Huizing
- Human Biochemical Genetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - William A Gahl
- Human Biochemical Genetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
18
|
Dalangin R, Kim A, Campbell RE. The Role of Amino Acids in Neurotransmission and Fluorescent Tools for Their Detection. Int J Mol Sci 2020; 21:E6197. [PMID: 32867295 PMCID: PMC7503967 DOI: 10.3390/ijms21176197] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/17/2020] [Accepted: 08/24/2020] [Indexed: 12/20/2022] Open
Abstract
Neurotransmission between neurons, which can occur over the span of a few milliseconds, relies on the controlled release of small molecule neurotransmitters, many of which are amino acids. Fluorescence imaging provides the necessary speed to follow these events and has emerged as a powerful technique for investigating neurotransmission. In this review, we highlight some of the roles of the 20 canonical amino acids, GABA and β-alanine in neurotransmission. We also discuss available fluorescence-based probes for amino acids that have been shown to be compatible for live cell imaging, namely those based on synthetic dyes, nanostructures (quantum dots and nanotubes), and genetically encoded components. We aim to provide tool developers with information that may guide future engineering efforts and tool users with information regarding existing indicators to facilitate studies of amino acid dynamics.
Collapse
Affiliation(s)
- Rochelin Dalangin
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada; (R.D.); (A.K.)
| | - Anna Kim
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada; (R.D.); (A.K.)
| | - Robert E. Campbell
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada; (R.D.); (A.K.)
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo City, Tokyo 113-0033, Japan
| |
Collapse
|
19
|
Dubois L, Pietrancosta N, Cabaye A, Fanget I, Debacker C, Gilormini PA, Dansette PM, Dairou J, Biot C, Froissart R, Goupil-Lamy A, Bertrand HO, Acher FC, McCort-Tranchepain I, Gasnier B, Anne C. Amino Acids Bearing Aromatic or Heteroaromatic Substituents as a New Class of Ligands for the Lysosomal Sialic Acid Transporter Sialin. J Med Chem 2020; 63:8231-8249. [PMID: 32608236 DOI: 10.1021/acs.jmedchem.9b02119] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Sialin, encoded by the SLC17A5 gene, is a lysosomal sialic acid transporter defective in Salla disease, a rare inherited leukodystrophy. It also enables metabolic incorporation of exogenous sialic acids, leading to autoantibodies against N-glycolylneuraminic acid in humans. Here, we identified a novel class of human sialin ligands by virtual screening and structure-activity relationship studies. The ligand scaffold is characterized by an amino acid backbone with a free carboxylate, an N-linked aromatic or heteroaromatic substituent, and a hydrophobic side chain. The most potent compound, 45 (LSP12-3129), inhibited N-acetylneuraminic acid 1 (Neu5Ac) transport in a non-competitive manner with IC50 ≈ 2.5 μM, a value 400-fold lower than the KM for Neu5Ac. In vitro and molecular docking studies attributed the non-competitive character to selective inhibitor binding to the Neu5Ac site in a cytosol-facing conformation. Moreover, compound 45 rescued the trafficking defect of the pathogenic mutant (R39C) causing Salla disease. This new class of cell-permeant inhibitors provides tools to investigate the physiological roles of sialin and help develop pharmacological chaperones for Salla disease.
Collapse
Affiliation(s)
- Lilian Dubois
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, CNRS, UMR 8601, Université de Paris, F-75006 Paris, France
| | - Nicolas Pietrancosta
- Laboratoire des Biomolécules, LBM, Sorbonne Université, École Normale Supérieure, PSL University, CNRS, F-75005 Paris, France.,Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Sorbonne Université, INSERM, CNRS, F-75005 Paris, France
| | - Alexandre Cabaye
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, CNRS, UMR 8601, Université de Paris, F-75006 Paris, France.,BIOVIA, Dassault Systèmes, F-78140 Velizy-Villacoublay, France
| | - Isabelle Fanget
- SPPIN - Saints-Pères Paris Institute for the Neurosciences, CNRS, Université de Paris, F-75006 Paris, France
| | - Cécile Debacker
- SPPIN - Saints-Pères Paris Institute for the Neurosciences, CNRS, Université de Paris, F-75006 Paris, France
| | - Pierre-André Gilormini
- UMR 8576, UGSF, Unité de Glycobiologie et Fonctionnelle, Université de Lille, CNRS, F-59650 Lille, France
| | - Patrick M Dansette
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, CNRS, UMR 8601, Université de Paris, F-75006 Paris, France
| | - Julien Dairou
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, CNRS, UMR 8601, Université de Paris, F-75006 Paris, France
| | - Christophe Biot
- UMR 8576, UGSF, Unité de Glycobiologie et Fonctionnelle, Université de Lille, CNRS, F-59650 Lille, France
| | - Roseline Froissart
- Service de Biochimie et Biologie Moléculaire Grand Est, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, F-69677 Bron, France
| | | | | | - Francine C Acher
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, CNRS, UMR 8601, Université de Paris, F-75006 Paris, France
| | - Isabelle McCort-Tranchepain
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, CNRS, UMR 8601, Université de Paris, F-75006 Paris, France
| | - Bruno Gasnier
- SPPIN - Saints-Pères Paris Institute for the Neurosciences, CNRS, Université de Paris, F-75006 Paris, France
| | - Christine Anne
- SPPIN - Saints-Pères Paris Institute for the Neurosciences, CNRS, Université de Paris, F-75006 Paris, France
| |
Collapse
|
20
|
Eriksen J, Li F, Edwards RH. The mechanism and regulation of vesicular glutamate transport: Coordination with the synaptic vesicle cycle. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183259. [PMID: 32147354 DOI: 10.1016/j.bbamem.2020.183259] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/02/2020] [Accepted: 03/02/2020] [Indexed: 01/30/2023]
Abstract
The transport of classical neurotransmitters into synaptic vesicles generally relies on a H+ electrochemical gradient (∆μH+). Synaptic vesicle uptake of glutamate depends primarily on the electrical component ∆ψ as the driving force, rather than the chemical component ∆pH. However, the vesicular glutamate transporters (VGLUTs) belong to the solute carrier 17 (SLC17) family, which includes closely related members that function as H+ cotransporters. Recent work has also shown that the VGLUTs undergo allosteric regulation by H+ and Cl-, and exhibit an associated Cl- conductance. These properties appear to coordinate VGLUT activity with the large ionic shifts that accompany the rapid recycling of synaptic vesicles driven by neural activity. Recent structural information also suggests common mechanisms that underlie the apparently divergent function of SLC17 family members, and that confer allosteric regulation.
Collapse
Affiliation(s)
- Jacob Eriksen
- Department of Physiology, UCSF School of Medicine, United States of America; Department of Neurology, UCSF School of Medicine, United States of America
| | - Fei Li
- Department of Physiology, UCSF School of Medicine, United States of America; Department of Neurology, UCSF School of Medicine, United States of America
| | - Robert H Edwards
- Department of Physiology, UCSF School of Medicine, United States of America; Department of Neurology, UCSF School of Medicine, United States of America.
| |
Collapse
|
21
|
Serrano-Saiz E, Vogt MC, Levy S, Wang Y, Kaczmarczyk KK, Mei X, Bai G, Singson A, Grant BD, Hobert O. SLC17A6/7/8 Vesicular Glutamate Transporter Homologs in Nematodes. Genetics 2020; 214:163-178. [PMID: 31776169 PMCID: PMC6944403 DOI: 10.1534/genetics.119.302855] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 11/24/2019] [Indexed: 01/04/2023] Open
Abstract
Members of the superfamily of solute carrier (SLC) transmembrane proteins transport diverse substrates across distinct cellular membranes. Three SLC protein families transport distinct neurotransmitters into synaptic vesicles to enable synaptic transmission in the nervous system. Among them is the SLC17A6/7/8 family of vesicular glutamate transporters, which endows specific neuronal cell types with the ability to use glutamate as a neurotransmitter. The genome of the nematode Caenorhabditis elegans encodes three SLC17A6/7/8 family members, one of which, eat-4/VGLUT, has been shown to be involved in glutamatergic neurotransmission. Here, we describe our analysis of the two remaining, previously uncharacterized SLC17A6/7/8 family members, vglu-2 and vglu-3 These two genes directly neighbor one another and are the result of a recent gene duplication event in C. elegans, but not in other Caenorhabditis species. Compared to EAT-4, the VGLU-2 and VGLU-3 protein sequences display a more distant similarity to canonical, vertebrate VGLUT proteins. We tagged both genomic loci with gfp and detected no expression of vglu-3 at any stage of development in any cell type of both C. elegans sexes. In contrast, vglu-2::gfp is dynamically expressed in a restricted set of distinct cell types. Within the nervous system, vglu-2::gfp is exclusively expressed in a single interneuron class, AIA, where it localizes to vesicular structures in the soma, but not along the axon, suggesting that VGLU-2 may not be involved in synaptic transport of glutamate. Nevertheless, vglu-2 mutants are partly defective in the function of the AIA neuron in olfactory behavior. Outside the nervous system, VGLU-2 is expressed in collagen secreting skin cells where VGLU-2 most prominently localizes to early endosomes, and to a lesser degree to apical clathrin-coated pits, the trans-Golgi network, and late endosomes. On early endosomes, VGLU-2 colocalizes most strongly with the recycling promoting factor SNX-1, a retromer component. Loss of vglu-2 affects the permeability of the collagen-containing cuticle of the worm, and based on the function of a vertebrate VGLUT1 protein in osteoclasts, we speculate that vglu-2 may have a role in collagen trafficking in the skin. We conclude that C. elegans SLC17A6/7/8 family members have diverse functions within and outside the nervous system.
Collapse
Affiliation(s)
- Esther Serrano-Saiz
- Department of Biological Sciences, Columbia University, Howard Hughes Medical Institute, New York, New York 10027
- Centro de Biologia Molecular Severo Ochoa/Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Merly C Vogt
- Department of Biological Sciences, Columbia University, Howard Hughes Medical Institute, New York, New York 10027
| | - Sagi Levy
- Rockefeller University, New York, New York 10065
| | - Yu Wang
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey 08854
| | - Karolina K Kaczmarczyk
- Department of Biological Sciences, Columbia University, Howard Hughes Medical Institute, New York, New York 10027
| | - Xue Mei
- Waksman Institute, Rutgers University, Piscataway, New Jersey 08854
| | - Ge Bai
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey 08854
| | - Andrew Singson
- Waksman Institute, Rutgers University, Piscataway, New Jersey 08854
- Department of Genetics, Rutgers University, Piscataway, New Jersey 08854
| | - Barth D Grant
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey 08854
| | - Oliver Hobert
- Department of Biological Sciences, Columbia University, Howard Hughes Medical Institute, New York, New York 10027
| |
Collapse
|
22
|
Wu Y, Zhang J, Peng B, Tian D, Zhang D, Li Y, Feng X, Liu J, Li J, Zhang T, Liu X, Lu J, Chen B, Wang S. Generating viable mice with heritable embryonically lethal mutations using the CRISPR-Cas9 system in two-cell embryos. Nat Commun 2019; 10:2883. [PMID: 31253768 PMCID: PMC6599060 DOI: 10.1038/s41467-019-10748-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 05/28/2019] [Indexed: 12/26/2022] Open
Abstract
A substantial number of mouse genes, about 25%, are embryonically lethal when knocked out. Using current genetic tools, such as the CRISPR-Cas9 system, it is difficult-or even impossible-to produce viable mice with heritable embryonically lethal mutations. Here, we establish a one-step method for microinjection of CRISPR reagents into one blastomere of two-cell embryos to generate viable chimeric founder mice with a heritable embryonically lethal mutation, of either Virma or Dpm1. By examining founder mice, we identify a phenotype and role of Virma in regulating kidney metabolism in adult mice. Additionally, we generate knockout mice with a heritable postnatally lethal mutation, of either Slc17a5 or Ctla-4, and study its function in vivo. This one-step method provides a convenient system that rapidly generates knockout mice possessing lethal phenotypes. This allows relatively easy in vivo study of the associated genes' functions.
Collapse
Affiliation(s)
- Yi Wu
- Department of Neurobiology, Beijing Key Laboratory of Neural Regeneration and Repair, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
- Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, 100050, China
- Laboratory Animal Center, Capital Medical University, Beijing, 100069, China
| | - Jing Zhang
- Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, 100050, China
| | - Boya Peng
- Laboratory Animal Center, Capital Medical University, Beijing, 100069, China
| | - Dan Tian
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Dong Zhang
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Yang Li
- Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, 100050, China
| | - Xiaoyu Feng
- Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, 100050, China
| | - Jinghao Liu
- Laboratory Animal Center, Peking University, Beijing, 100871, China
| | - Jun Li
- Laboratory Animal Center, Peking University, Beijing, 100871, China
| | - Teng Zhang
- Laboratory Animal Center, Capital Medical University, Beijing, 100069, China
| | - Xiaoyong Liu
- Department of Oral Pathology, Beijing Stomatology Hospital, Capital Medical University, Beijing, 100050, China
| | - Jing Lu
- Department of Neurobiology, Beijing Key Laboratory of Neural Regeneration and Repair, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
- Laboratory Animal Center, Capital Medical University, Beijing, 100069, China
| | - Baian Chen
- Department of Neurobiology, Beijing Key Laboratory of Neural Regeneration and Repair, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.
- Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, 100050, China.
- Laboratory Animal Center, Capital Medical University, Beijing, 100069, China.
| | - Songlin Wang
- Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, 100050, China.
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
23
|
Leano JB, Batarni S, Eriksen J, Juge N, Pak JE, Kimura-Someya T, Robles-Colmenares Y, Moriyama Y, Stroud RM, Edwards RH. Structures suggest a mechanism for energy coupling by a family of organic anion transporters. PLoS Biol 2019; 17:e3000260. [PMID: 31083648 PMCID: PMC6532931 DOI: 10.1371/journal.pbio.3000260] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 05/23/2019] [Accepted: 04/24/2019] [Indexed: 11/30/2022] Open
Abstract
Members of the solute carrier 17 (SLC17) family use divergent mechanisms to concentrate organic anions. Membrane potential drives uptake of the principal excitatory neurotransmitter glutamate into synaptic vesicles, whereas closely related proteins use proton cotransport to drive efflux from the lysosome. To delineate the divergent features of ionic coupling by the SLC17 family, we determined the structure of Escherichia coli D-galactonate/H+ symporter D-galactonate transporter (DgoT) in 2 states: one open to the cytoplasmic side and the other open to the periplasmic side with substrate bound. The structures suggest a mechanism that couples H+ flux to substrate recognition. A transition in the role of H+ from flux coupling to allostery may confer regulation by trafficking to and from the plasma membrane. The first structures of a family of organic anion transporters reveal an interaction with protons that is conserved from bacterial transporters to the mammalian proteins that transport glutamate into synaptic vesicles.
Collapse
Affiliation(s)
- Jonathan B. Leano
- Department of Biochemistry & Biophysics, University of California San Francisco School of Medicine, San Francisco, California, United States of America
| | - Samir Batarni
- Departments of Neurology and Physiology, University of California San Francisco School of Medicine, San Francisco, California, United States of America
| | - Jacob Eriksen
- Departments of Neurology and Physiology, University of California San Francisco School of Medicine, San Francisco, California, United States of America
| | - Narinobu Juge
- Departments of Neurology and Physiology, University of California San Francisco School of Medicine, San Francisco, California, United States of America
| | - John E. Pak
- Department of Biochemistry & Biophysics, University of California San Francisco School of Medicine, San Francisco, California, United States of America
| | - Tomomi Kimura-Someya
- Departments of Neurology and Physiology, University of California San Francisco School of Medicine, San Francisco, California, United States of America
| | - Yaneth Robles-Colmenares
- Department of Biochemistry & Biophysics, University of California San Francisco School of Medicine, San Francisco, California, United States of America
| | - Yoshinori Moriyama
- Department of Membrane Biochemistry, Advanced Science Research Center, Okayama University, Okayama, Japan
| | - Robert M. Stroud
- Department of Biochemistry & Biophysics, University of California San Francisco School of Medicine, San Francisco, California, United States of America
- * E-mail: (RMS); (RHE)
| | - Robert H. Edwards
- Departments of Neurology and Physiology, University of California San Francisco School of Medicine, San Francisco, California, United States of America
- * E-mail: (RMS); (RHE)
| |
Collapse
|
24
|
Wang F, Li S, Xiang J, Li F. Transcriptome analysis reveals the activation of neuroendocrine-immune system in shrimp hemocytes at the early stage of WSSV infection. BMC Genomics 2019; 20:247. [PMID: 30922216 PMCID: PMC6437892 DOI: 10.1186/s12864-019-5614-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 03/14/2019] [Indexed: 02/08/2023] Open
Abstract
Background Functional communications between nervous, endocrine and immune systems are well established in both vertebrates and invertebrates. Circulating hemocytes act as fundamental players in this crosstalk, whose functions are conserved during the evolution of the main groups of metazoans. However, the roles of the neuroendocrine-immune (NEI) system in shrimp hemocytes during pathogen infection remain largely unknown. Results In this study, we sequenced six cDNA libraries prepared with hemocytes from Litopenaeus vannamei which were injected by WSSV (white spot syndrome virus) or PBS for 6 h using Illumina Hiseq 4000 platform. As a result, 3444 differentially expressed genes (DEGs), including 3240 up-regulated genes and 204 down-regulated genes, were identified from hemocytes after WSSV infection. Among these genes, 349 DEGs were correlated with innate immunity and categorized into seven groups based on their predictive function. Interestingly, 18 genes encoded putative neuropeptide precursors were induced significantly by WSSV infection. Furthermore, some genes were mapped to several typical processes in the NEI system, including proteolytic processing of prohormones, amino acid neurotransmitter pathways, biogenic amine biosynthesis and acetylcholine signaling pathway. Conclusions The data suggested that WSSV infection triggers the activation of NEI in shrimp, which throws a light on the pivotal roles of NEI system mediated by hemocytes in shrimp antiviral immunity. Electronic supplementary material The online version of this article (10.1186/s12864-019-5614-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fuxuan Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shihao Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Jianhai Xiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Fuhua Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China. .,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China. .,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China.
| |
Collapse
|
25
|
Abstract
Glucose is the long-established, obligatory fuel for brain that fulfills many critical functions, including ATP production, oxidative stress management, and synthesis of neurotransmitters, neuromodulators, and structural components. Neuronal glucose oxidation exceeds that in astrocytes, but both rates increase in direct proportion to excitatory neurotransmission; signaling and metabolism are closely coupled at the local level. Exact details of neuron-astrocyte glutamate-glutamine cycling remain to be established, and the specific roles of glucose and lactate in the cellular energetics of these processes are debated. Glycolysis is preferentially upregulated during brain activation even though oxygen availability is sufficient (aerobic glycolysis). Three major pathways, glycolysis, pentose phosphate shunt, and glycogen turnover, contribute to utilization of glucose in excess of oxygen, and adrenergic regulation of aerobic glycolysis draws attention to astrocytic metabolism, particularly glycogen turnover, which has a high impact on the oxygen-carbohydrate mismatch. Aerobic glycolysis is proposed to be predominant in young children and specific brain regions, but re-evaluation of data is necessary. Shuttling of glucose- and glycogen-derived lactate from astrocytes to neurons during activation, neurotransmission, and memory consolidation are controversial topics for which alternative mechanisms are proposed. Nutritional therapy and vagus nerve stimulation are translational bridges from metabolism to clinical treatment of diverse brain disorders.
Collapse
Affiliation(s)
- Gerald A Dienel
- Department of Neurology, University of Arkansas for Medical Sciences , Little Rock, Arkansas ; and Department of Cell Biology and Physiology, University of New Mexico , Albuquerque, New Mexico
| |
Collapse
|
26
|
Cortès-Saladelafont E, Lipstein N, García-Cazorla À. Presynaptic disorders: a clinical and pathophysiological approach focused on the synaptic vesicle. J Inherit Metab Dis 2018; 41:1131-1145. [PMID: 30022305 DOI: 10.1007/s10545-018-0230-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 06/23/2018] [Accepted: 07/02/2018] [Indexed: 12/12/2022]
Abstract
The aim of this report is to present a tentative clinical and pathophysiological approach to diseases affecting the neuronal presynaptic terminal, with a major focus on synaptic vesicles (SVs). Diseases are classified depending on which step of the neurobiology of the SV is predominantly affected: (1) biogenesis of vesicle precursors in the neuronal soma; (2) transport along the axon; (3) vesicle cycle at the presynaptic terminal (exocytosis-endocytosis cycle, with the main purpose of neurotransmitter release). Given that SVs have been defined as individual organelles, we highlight the link between the biological processes disturbed by genetic mutations and the clinical presentation of these disorders. The great majority of diseases may present as epileptic encephalopathies, intellectual disability (syndromic or nonsyndromic) with/without autism spectrum disorder (and other neuropsychiatric symptoms), and movement disorders. These symptoms may overlap and present in patients as a combination of clinical signs that results in the spectrum of the synaptopathies. A small number of diseases may also exhibit neuromuscular signs. In general, SV disorders tend to be severe, early encephalopathies that interfere with neurodevelopment. As a consequence, developmental delay and intellectual disability are constant in almost all the defects described. Considering that some of these diseases might mimic other neurometabolic conditions (and in particular treatable disorders), an initial extensive metabolic workup should always be considered. Further knowledge into pathophysiological mechanisms and biomarkers, as well as descriptions of new presynaptic disorders, will probably take place in the near future.
Collapse
Affiliation(s)
- Elisenda Cortès-Saladelafont
- Department of Neurology, Neurometabolic Unit and Synaptic Metabolism Laboratory, Institut Pediàtric de Recerca and CIBERER, ISCIII, Hospital Sant Joan de Déu, Passeig Sant Joan de Déu, 2, 08950, Esplugues, Barcelona, Spain
| | - Noa Lipstein
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Àngels García-Cazorla
- Department of Neurology, Neurometabolic Unit and Synaptic Metabolism Laboratory, Institut Pediàtric de Recerca and CIBERER, ISCIII, Hospital Sant Joan de Déu, Passeig Sant Joan de Déu, 2, 08950, Esplugues, Barcelona, Spain.
| |
Collapse
|
27
|
Zielonka M, Garbade SF, Kölker S, Hoffmann GF, Ries M. A cross-sectional quantitative analysis of the natural history of free sialic acid storage disease-an ultra-orphan multisystemic lysosomal storage disorder. Genet Med 2018; 21:347-352. [PMID: 29875421 DOI: 10.1038/s41436-018-0051-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 04/19/2018] [Indexed: 01/26/2023] Open
Abstract
PURPOSE Quantitative definition of the natural history of free sialic acid storage disease (SASD, OMIM 604369), an orphan disorder due to the deficiency of the proton-driven carrier SLC17A5. METHODS Analysis of published cases with SASD (N = 116) respecting STROBE criteria. MAIN OUTCOME PARAMETERS survival and diagnostic delay. Phenotype, phenotype-biomarker associations, and geographical patient distribution were explored. RESULTS Median age at disease onset was 0.17 years. Median age at diagnosis was 3 years with a median diagnostic delay of 2.5 years. Median survival was 11 years. The biochemical phenotype clearly predicted the disease course: patients with a urinary free sialic acid excretion below 6.37-fold or an intracellular free sialic acid storage in fibroblasts below 7.37-fold of the mean of normal survived longer than patients with biochemical values above these thresholds. Cluster analysis of disease features suggested a continuous phenotypic spectrum. Patient distribution was panethnic. CONCLUSION Combination of neurologic symptoms, visceromegaly, and dysmorphic features and/or nonimmune hydrops fetalis should prompt specific tests for SASD, reducing diagnostic delay. The present quantitative data inform clinical studies and may stimulate and accelerate development of specific therapies. Biomarker-phenotype association is particularly important for both counseling parents and study design.
Collapse
Affiliation(s)
- Matthias Zielonka
- Division of Pediatric Neurology and Metabolic Medicine, Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany. .,Heidelberg Research Center for Molecular Medicine (HRCMM), Heidelberg, Germany. .,Center for Rare Diseases, University Hospital Heidelberg, Heidelberg, Germany.
| | - Sven F Garbade
- Division of Pediatric Neurology and Metabolic Medicine, Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany.,Center for Rare Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Stefan Kölker
- Division of Pediatric Neurology and Metabolic Medicine, Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany.,Center for Rare Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Georg F Hoffmann
- Division of Pediatric Neurology and Metabolic Medicine, Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany.,Center for Rare Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Markus Ries
- Division of Pediatric Neurology and Metabolic Medicine, Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany.,Center for Rare Diseases, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
28
|
Gilormini PA, Lion C, Vicogne D, Guérardel Y, Foulquier F, Biot C. Chemical glycomics enrichment: imaging the recycling of sialic acid in living cells. J Inherit Metab Dis 2018; 41:515-523. [PMID: 29294191 PMCID: PMC5959963 DOI: 10.1007/s10545-017-0118-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/28/2017] [Accepted: 11/20/2017] [Indexed: 01/10/2023]
Abstract
The development of metabolic oligosaccharide engineering (MOE) over the past two decades enabled the bioimaging studies of glycosylation processes in physio-pathological contexts. Herein, we successfully applied the chemical reporter strategy to image the fate of sialylated glycoconjugates in healthy and sialin-deficient patient fibroblasts. This chemical glycomics enrichment is a powerful tool for tracking sialylated glycoconjugates and probing lysosomal recycling capacities. Thus, such strategies appear fundamental for the characterization of lysosomal storage diseases.
Collapse
Affiliation(s)
- Pierre André Gilormini
- University Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France
| | - Cédric Lion
- University Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France
| | - Dorothée Vicogne
- University Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France
| | - Yann Guérardel
- University Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France
| | - François Foulquier
- University Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France.
| | - Christophe Biot
- University Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France.
| |
Collapse
|
29
|
Kawakami M, Juge N, Kato Y, Omote H, Moriyama Y, Miyaji T. Efficient Mass Spectral Analysis of Active Transporters Overexpressed in Escherichia coli. J Proteome Res 2018; 17:1108-1119. [PMID: 29350038 DOI: 10.1021/acs.jproteome.7b00777] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Structural analysis of purified active membrane proteins can be performed by mass spectrometry (MS). However, no large-scale expression systems for active eukaryotic membrane proteins are available. Moreover, because membrane proteins cannot easily be digested by trypsin and ionized, they are difficult to analyze by MS. We developed a method for mass spectral analysis of eukaryotic membrane proteins combined with an overexpression system in Escherichia coli. Vesicular glutamate transporter 2 (VGLUT2/SLC17A6) with a soluble α-helical protein and histidine tag on the N- and C-terminus, respectively, was overexpressed in E. coli, solubilized with detergent, and purified by Ni-NTA affinity chromatography. Proteoliposomes containing VGLUT2 retained glutamate transport activity. For MS analysis, the detergent was removed from purified VGLUT2 by trichloroacetic acid precipitation, and VGLUT2 was then subjected to reductive alkylation and tryptic digestion. The resulting peptides were detected with 88% coverage by matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) MS with or without liquid chromatography. Vesicular excitatory amino acid transporter and vesicular acetylcholine transporter were also detected with similar coverage by the same method. Thus this methodology could be used to analyze purified eukaryotic active transporters. Structural analysis with chemical modifiers by MS could have applications in functional binding analysis for drug discovery.
Collapse
Affiliation(s)
- Mamiyo Kawakami
- Department of Molecular Membrane Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , Okayama 700-8530, Japan
| | - Narinobu Juge
- Department of Molecular Membrane Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , Okayama 700-8530, Japan.,Advanced Science Research Center, Okayama University , Okayama 700-8530, Japan.,Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency , Kawaguchi 332-0012, Japan
| | - Yuri Kato
- Advanced Science Research Center, Okayama University , Okayama 700-8530, Japan
| | - Hiroshi Omote
- Department of Membrane Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , Okayama 700-8530, Japan
| | - Yoshinori Moriyama
- Department of Membrane Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , Okayama 700-8530, Japan
| | - Takaaki Miyaji
- Department of Molecular Membrane Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , Okayama 700-8530, Japan.,Advanced Science Research Center, Okayama University , Okayama 700-8530, Japan
| |
Collapse
|
30
|
Reconstitution and Transport Analysis of Eukaryotic Transporters in the Post-Genomic Era. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2017; 1700:343-352. [PMID: 29177840 DOI: 10.1007/978-1-4939-7454-2_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Measuring transport activity through reconstituted proteoliposomes is a key technique to resolve numerous problems found in the traditional methods. The system includes overexpression, purification, and reconstitution of transporters. Mixing of purified transporter with lipid and dilution below the critical micelle concentration result in rapid generation of proteoliposomes. Incubation of proteoliposomes in the presence of a driving force initiates substrate uptake. After starting the reaction, samples are passed through a gel filtration column to separate proteoliposomes from the reaction mixture. Here, we describe step-by-step procedures for such reconstitution assays.
Collapse
|
31
|
Moriyama Y, Nomura M. Clodronate: A Vesicular ATP Release Blocker. Trends Pharmacol Sci 2017; 39:13-23. [PMID: 29146440 DOI: 10.1016/j.tips.2017.10.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 10/15/2017] [Accepted: 10/17/2017] [Indexed: 12/21/2022]
Abstract
Clodronate is a first-generation bisphosphonate used worldwide for antiresorptive therapy for osteoporosis. Although clodronate is analgesic in nature, its mechanism and efficacy were unknown for some time. Recently, clodronate was identified as a selective and potent inhibitor for vesicular nucleotide transporter (VNUT), a transporter responsible for vesicular storage of ATP. Clodronate inhibits vesicular ATP release from neurons and reduces chronic neuropathic and inflammatory pain following blockade of purinergic chemical transmission. Its effectiveness is stronger, faster acting, and longer lasting than that of existing drugs such as pregabalin. Thus, clodronate might be a promising drug for attenuating chronic neuropathic pain and opens a new field of drug discovery as a presynaptic blocker for purinergic chemical transmission.
Collapse
Affiliation(s)
- Yoshinori Moriyama
- Department of Biochemistry, Matsumoto Dental University, Shioziri 399-0781, Japan; Department of Membrane Biochemistry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-0082, Japan.
| | - Masatoshi Nomura
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine, Kurume 830-0011, Japan.
| |
Collapse
|
32
|
Pazos AJ, Ventoso P, Martínez-Escauriaza R, Pérez-Parallé ML, Blanco J, Triviño JC, Sánchez JL. Transcriptional response after exposure to domoic acid-producing Pseudo-nitzschia in the digestive gland of the mussel Mytilus galloprovincialis. Toxicon 2017; 140:60-71. [PMID: 29031804 DOI: 10.1016/j.toxicon.2017.10.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/28/2017] [Accepted: 10/08/2017] [Indexed: 01/19/2023]
Abstract
Bivalve molluscs are filter feeding species that can accumulate biotoxins in their body tissues during harmful algal blooms. Amnesic Shellfish Poisoning (ASP) is caused by species of the diatom genus Pseudo-nitzschia, which produces the toxin domoic acid. The Mytilus galloprovincialis digestive gland transcriptome was de novo assembled based on the sequencing of 12 cDNA libraries, six obtained from control mussels and six from mussels naturally exposed to domoic acid-producing diatom Pseudo-nitzschia australis. After de novo assembly 94,727 transcripts were obtained, with an average length of 1015 bp and a N50 length of 761 bp. The assembled transcripts were clustered (homology > 90%) into 69,294 unigenes. Differential gene expression analysis was performed (DESeq2 algorithm) in the digestive gland following exposure to the toxic algae. A total of 1158 differentially expressed unigenes (absolute fold change > 1.5 and p-value < 0.05) were detected: 686 up-regulated and 472 down-regulated. Several membrane transporters belonging to the family of the SLC (solute carriers) were over-expressed in exposed mussels. Functional enrichment was performed using Pfam annotations obtained from the genes differentially expressed, 37 Pfam families were found to be significantly (FDR adjusted p-value < 0.1) enriched. Some of these families (sulfotransferases, aldo/keto reductases, carboxylesterases, C1q domain and fibrinogen C-terminal globular domain) could be putatively involved in detoxification processes, in the response against of the oxidative stress and in immunological processes. Protein network analysis with STRING algorithm found alteration of the Notch signaling pathway under the action of domoic acid-producing Pseudo-nitzschia. In conclusion, this study provides a high quality reference transcriptome of M. galloprovincialis digestive gland and identifies potential genes involved in the response to domoic acid.
Collapse
Affiliation(s)
- Antonio J Pazos
- Departamento de Bioquímica y Biología Molecular, Instituto de Acuicultura, Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain.
| | - Pablo Ventoso
- Departamento de Bioquímica y Biología Molecular, Instituto de Acuicultura, Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Roi Martínez-Escauriaza
- Departamento de Bioquímica y Biología Molecular, Instituto de Acuicultura, Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - M Luz Pérez-Parallé
- Departamento de Bioquímica y Biología Molecular, Instituto de Acuicultura, Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Juan Blanco
- Centro de Investigacións Mariñas, Xunta de Galicia, Pedras de Corón s/n Apdo 13, Vilanova de Arousa, 36620, Spain
| | - Juan C Triviño
- Sistemas Genómicos, Ronda G. Marconi 6, Paterna, Valencia, 46980, Spain
| | - José L Sánchez
- Departamento de Bioquímica y Biología Molecular, Instituto de Acuicultura, Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain
| |
Collapse
|
33
|
Catabolism of N-glycoproteins in mammalian cells: Molecular mechanisms and genetic disorders related to the processes. Mol Aspects Med 2016; 51:89-103. [DOI: 10.1016/j.mam.2016.05.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 05/11/2016] [Accepted: 05/24/2016] [Indexed: 11/17/2022]
|
34
|
|
35
|
Errico F, Mothet JP, Usiello A. d-Aspartate: An endogenous NMDA receptor agonist enriched in the developing brain with potential involvement in schizophrenia. J Pharm Biomed Anal 2015; 116:7-17. [DOI: 10.1016/j.jpba.2015.03.024] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 03/11/2015] [Accepted: 03/23/2015] [Indexed: 12/14/2022]
|
36
|
Ropert N, Jalil A, Li D. Expression and cellular function of vSNARE proteins in brain astrocytes. Neuroscience 2015; 323:76-83. [PMID: 26518463 DOI: 10.1016/j.neuroscience.2015.10.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 10/07/2015] [Accepted: 10/21/2015] [Indexed: 12/27/2022]
Abstract
Gray matter protoplasmic astrocytes, a major type of glial cell in the mammalian brain, extend thin processes ensheathing neuronal synaptic terminals. Albeit electrically silent, astrocytes respond to neuronal activity with Ca(2+) signals that trigger the release of gliotransmitters, such as glutamate, d-serine, and ATP, which modulate synaptic transmission. It has been suggested that the astrocytic processes, together with neuronal pre- and post-synaptic elements, constitute a tripartite synapse, and that astrocytes actively regulate information processing. Astrocytic vesicles expressing VAMP2 and VAMP3 vesicular SNARE (vSNARE) proteins have been suggested to be a key feature of the tripartite synapse and mediate gliotransmitter release through Ca(2+)-regulated exocytosis. However, the concept of exocytotic release of gliotransmitters by astrocytes has been challenged. Here we review studies investigating the expression profile of VAMP2 and VAMP3 vSNARE proteins in rodent astrocytes, and the functional implication of VAMP2/VAMP3 vesicles in astrocyte signaling. We also discuss our recent data suggesting that astrocytic VAMP3 vesicles regulate the trafficking of glutamate transporters at the plasma membrane and glutamate uptake. A better understanding of the functional consequences of the astrocytic vSNARE vesicles on glutamate signaling, neuronal excitability and plasticity, will require the development of new strategies to selectively interrogate the astrocytic vesicles trafficking in vivo.
Collapse
Affiliation(s)
- N Ropert
- Brain Physiology Laboratory, CNRS UMR8118, Paris F-75006, France; Fédération de Recherche en Neurosciences, FR 3636, Université Paris Descartes, 45 rue des Saints Pères, Paris F-75006, France; Sorbonne Paris Cité, 190, avenue de France, Paris F-75013, France
| | - A Jalil
- Brain Physiology Laboratory, CNRS UMR8118, Paris F-75006, France; Fédération de Recherche en Neurosciences, FR 3636, Université Paris Descartes, 45 rue des Saints Pères, Paris F-75006, France; Sorbonne Paris Cité, 190, avenue de France, Paris F-75013, France
| | - D Li
- Brain Physiology Laboratory, CNRS UMR8118, Paris F-75006, France; Fédération de Recherche en Neurosciences, FR 3636, Université Paris Descartes, 45 rue des Saints Pères, Paris F-75006, France; Sorbonne Paris Cité, 190, avenue de France, Paris F-75013, France.
| |
Collapse
|
37
|
Omote H, Miyaji T, Hiasa M, Juge N, Moriyama Y. Structure, Function, and Drug Interactions of Neurotransmitter Transporters in the Postgenomic Era. Annu Rev Pharmacol Toxicol 2015; 56:385-402. [PMID: 26514205 DOI: 10.1146/annurev-pharmtox-010814-124816] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Vesicular neurotransmitter transporters are responsible for the accumulation of neurotransmitters in secretory vesicles and play essential roles in chemical transmission. The SLC17 family contributes to sequestration of anionic neurotransmitters such as glutamate, aspartate, and nucleotides. Identification and subsequent cellular and molecular biological studies of SLC17 transporters unveiled the principles underlying the actions of these transporters. Recent progress in reconstitution methods in combination with postgenomic approaches has advanced studies on neurotransmitter transporters. This review summarizes the molecular properties of SLC17-type transporters and recent findings regarding the novel SLC18 transporter.
Collapse
Affiliation(s)
- Hiroshi Omote
- Department of Membrane Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8530, Japan; ,
| | - Takaaki Miyaji
- Advanced Science Research Center, Okayama University, Okayama 700-8530, Japan
| | - Miki Hiasa
- Department of Membrane Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8530, Japan; ,
| | - Narinobu Juge
- Advanced Science Research Center, Okayama University, Okayama 700-8530, Japan
| | - Yoshinori Moriyama
- Department of Membrane Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8530, Japan; , .,Advanced Science Research Center, Okayama University, Okayama 700-8530, Japan
| |
Collapse
|
38
|
3-aminoglutarate is a “silent” false transmitter for glutamate neurons. Neuropharmacology 2015; 97:436-46. [DOI: 10.1016/j.neuropharm.2015.05.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Revised: 04/25/2015] [Accepted: 05/08/2015] [Indexed: 11/27/2022]
|
39
|
Abstract
UNLABELLED Recent evidence has resurrected the idea that the amino acid aspartate, a selective NMDA receptor agonist, is a neurotransmitter. Using a mouse that lacks the glutamate-selective vesicular transporter VGLUT1, we find that glutamate alone fully accounts for the activation of NMDA receptors at excitatory synapses in the hippocampus. This excludes a role for aspartate and, by extension, a recently proposed role for the sialic acid transporter sialin in excitatory transmission. SIGNIFICANCE STATEMENT It has been proposed that the amino acid aspartate serves as a neurotransmitter. Although aspartate is a selective agonist for NMDA receptors, we find that glutamate alone fully accounts for neurotransmission at excitatory synapses in the hippocampus, excluding a role for aspartate.
Collapse
|
40
|
Contreras L. Role of AGC1/aralar in the metabolic synergies between neuron and glia. Neurochem Int 2015; 88:38-46. [DOI: 10.1016/j.neuint.2015.04.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 03/30/2015] [Accepted: 04/07/2015] [Indexed: 10/23/2022]
|
41
|
Moriyama Y. [Vacuolar H(+)-ATPase and the Secondary Transporters: Their Identification, Mechanism, Function and Physiological Relevance]. YAKUGAKU ZASSHI 2015; 135:883-94. [PMID: 26135087 DOI: 10.1248/yakushi.15-00081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Eukaryotic cells possess acidic compartments with pH ranging from 0.1-6.5. Studies in the last couple of decades indicated that the acid pool is established by vacuolar proton ATPase, and is essential for various physiological and pathological processes. I have identified the vacuolar ATPase as well as several secondary transporters which are energetically coupled with vacuolar ATPase. I have also established the protocol for analysis of the structure and function of transporter proteins applicable to essentially all known transporters. In this article, I am going to summarize this study and describe some topics.
Collapse
Affiliation(s)
- Yoshinori Moriyama
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
| |
Collapse
|
42
|
Togawa N, Juge N, Miyaji T, Hiasa M, Omote H, Moriyama Y. Wide expression of type I Na+-phosphate cotransporter 3 (NPT3/SLC17A2), a membrane potential-driven organic anion transporter. Am J Physiol Cell Physiol 2015; 309:C71-80. [PMID: 25972451 DOI: 10.1152/ajpcell.00048.2015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 05/08/2015] [Indexed: 01/11/2023]
Abstract
Membrane potential (Δψ)-driven and Cl(-)-dependent organic anion transport is a primary function of the solute carrier family 17 (SLC17) transporter family. Although the transport substrates and physiological relevance of the major members are well understood, SLC17A2 protein known to be Na(+)-phosphate cotransporter 3 (NPT3) is far less well characterized. In the present study, we investigated the transport properties and expression patterns of mouse SLC17A2 protein (mNPT3). Proteoliposomes containing the purified mNPT3 protein took up radiolabeled p-aminohippuric acid (PAH) in a Δψ- and Cl(-)-dependent manner. The mNPT3-mediated PAH uptake was inhibited by 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDs) and Evans blue, common inhibitors of SLC17 family members. The PAH uptake was also inhibited by various anionic compounds, such as hydrophilic nonsteroidal anti-inflammatory drugs (NSAIDs) and urate. Consistent with these observations, the proteoliposome took up radiolabeled urate in a Δψ- and Cl(-)-dependent manner. Immunohistochemistry with specific antibodies against mNPT3 combined with RT-PCR revealed that mNPT3 is present in various tissues, including the hepatic bile duct, luminal membranes of the renal urinary tubules, maternal side of syncytiotrophoblast in the placenta, apical membrane of follicle cells in the thyroid, bronchiole epithelial cells in the lungs, and astrocytes around blood vessels in the cerebrum. These results suggested that mNPT3 is a polyspecific organic anion transporter that is involved in circulation of urate throughout the body.
Collapse
Affiliation(s)
- Natsuko Togawa
- Department of Membrane Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Narinobu Juge
- Advanced Science Research Center, Okayama University, Okayama, Japan; and Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Tokyo, Japan
| | - Takaaki Miyaji
- Advanced Science Research Center, Okayama University, Okayama, Japan; and
| | - Miki Hiasa
- Department of Membrane Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Hiroshi Omote
- Department of Membrane Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Yoshinori Moriyama
- Department of Membrane Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan; Advanced Science Research Center, Okayama University, Okayama, Japan; and
| |
Collapse
|
43
|
Sakamoto S, Miyaji T, Hiasa M, Ichikawa R, Uematsu A, Iwatsuki K, Shibata A, Uneyama H, Takayanagi R, Yamamoto A, Omote H, Nomura M, Moriyama Y. Impairment of vesicular ATP release affects glucose metabolism and increases insulin sensitivity. Sci Rep 2014; 4:6689. [PMID: 25331291 PMCID: PMC4204045 DOI: 10.1038/srep06689] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 09/17/2014] [Indexed: 12/04/2022] Open
Abstract
Neuroendocrine cells store ATP in secretory granules and release it along with hormones that may trigger a variety of cellular responses in a process called purinergic chemical transmission. Although the vesicular nucleotide transporter (VNUT) has been shown to be involved in vesicular storage and release of ATP, its physiological relevance in vivo is far less well understood. In Vnut knockout (Vnut(-/-)) mice, we found that the loss of functional VNUT in adrenal chromaffin granules and insulin granules in the islets of Langerhans led to several significant effects. Vesicular ATP accumulation and depolarization-dependent ATP release were absent in the chromaffin granules of Vnut(-/-) mice. Glucose-responsive ATP release was also absent in pancreatic β-cells in Vnut(-/-) mice, while glucose-responsive insulin secretion was enhanced to a greater extent than that in wild-type tissue. Vnut(-/-) mice exhibited improved glucose tolerance and low blood glucose upon fasting due to increased insulin sensitivity. These results demonstrated an essential role of VNUT in vesicular storage and release of ATP in neuroendocrine cells in vivo and suggest that vesicular ATP and/or its degradation products act as feedback regulators in catecholamine and insulin secretion, thereby regulating blood glucose homeostasis.
Collapse
Affiliation(s)
- Shohei Sakamoto
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, JAPAN
| | - Takaaki Miyaji
- Advanced Research Science Center, Okayama University, Okayama 700-8530, JAPAN
| | - Miki Hiasa
- Department of Membrane Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8530, JAPAN
| | - Reiko Ichikawa
- Institute for Innovation, Ajinomoto Co., Inc. Kawasaki 210-5893, JAPAN
| | - Akira Uematsu
- Institute for Innovation, Ajinomoto Co., Inc. Kawasaki 210-5893, JAPAN
| | - Ken Iwatsuki
- Institute for Innovation, Ajinomoto Co., Inc. Kawasaki 210-5893, JAPAN
| | - Atsushi Shibata
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, JAPAN
| | - Hisayuki Uneyama
- Institute for Innovation, Ajinomoto Co., Inc. Kawasaki 210-5893, JAPAN
| | - Ryoichi Takayanagi
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, JAPAN
| | - Akitsugu Yamamoto
- Faculty of Bioscience, Nagahama Institute of Bio-science and Technology, Nagahama 526-0829, JAPAN
| | - Hiroshi Omote
- Department of Membrane Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8530, JAPAN
| | - Masatoshi Nomura
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, JAPAN
| | - Yoshinori Moriyama
- Advanced Research Science Center, Okayama University, Okayama 700-8530, JAPAN
- Department of Membrane Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8530, JAPAN
| |
Collapse
|
44
|
Richards DS, Griffith RW, Romer SH, Alvarez FJ. Motor axon synapses on renshaw cells contain higher levels of aspartate than glutamate. PLoS One 2014; 9:e97240. [PMID: 24816812 PMCID: PMC4016288 DOI: 10.1371/journal.pone.0097240] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 04/16/2014] [Indexed: 12/17/2022] Open
Abstract
Motoneuron synapses on spinal cord interneurons known as Renshaw cells activate nicotinic, AMPA and NMDA receptors consistent with co-release of acetylcholine and excitatory amino acids (EAA). However, whether these synapses express vesicular glutamate transporters (VGLUTs) capable of accumulating glutamate into synaptic vesicles is controversial. An alternative possibility is that these synapses release other EAAs, like aspartate, not dependent on VGLUTs. To clarify the exact EAA concentrated at motor axon synapses we performed a quantitative postembedding colloidal gold immunoelectron analysis for aspartate and glutamate on motor axon synapses (identified by immunoreactivity to the vesicular acetylcholine transporter; VAChT) contacting calbindin-immunoreactive (-IR) Renshaw cell dendrites. The results show that 71% to 80% of motor axon synaptic boutons on Renshaw cells contained aspartate immunolabeling two standard deviations above average neuropil labeling. Moreover, VAChT-IR synapses on Renshaw cells contained, on average, aspartate immunolabeling at 2.5 to 2.8 times above the average neuropil level. In contrast, glutamate enrichment was lower; 21% to 44% of VAChT-IR synapses showed glutamate-IR two standard deviations above average neuropil labeling and average glutamate immunogold density was 1.7 to 2.0 times the neuropil level. The results were not influenced by antibody affinities because glutamate antibodies detected glutamate-enriched brain homogenates more efficiently than aspartate antibodies detecting aspartate-enriched brain homogenates. Furthermore, synaptic boutons with ultrastructural features of Type I excitatory synapses were always labeled by glutamate antibodies at higher density than motor axon synapses. We conclude that motor axon synapses co-express aspartate and glutamate, but aspartate is concentrated at higher levels than glutamate.
Collapse
Affiliation(s)
- Dannette S. Richards
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, Ohio, United States of America
| | - Ronald W. Griffith
- Department of Physiology, Emory University, Atlanta, Georgia, United States of America
| | - Shannon H. Romer
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, Ohio, United States of America
| | - Francisco J. Alvarez
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, Ohio, United States of America
- Department of Physiology, Emory University, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
45
|
Villar-Cerviño V, Fernández-López B, Celina Rodicio M, Anadón R. Aspartate-containing neurons of the brainstem and rostral spinal cord of the sea lampreyPetromyzon marinus: Distribution and comparison with γ-aminobutyric acid. J Comp Neurol 2014; 522:1209-31. [DOI: 10.1002/cne.23493] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 10/29/2013] [Accepted: 10/29/2013] [Indexed: 12/26/2022]
Affiliation(s)
- Verona Villar-Cerviño
- Departamento de Biología Celular y Ecología; Facultad de Biología, Universidad de Santiago de Compostela; Santiago de Compostela 15782 Spain
| | - Blanca Fernández-López
- Departamento de Biología Celular y Ecología; Facultad de Biología, Universidad de Santiago de Compostela; Santiago de Compostela 15782 Spain
| | - María Celina Rodicio
- Departamento de Biología Celular y Ecología; Facultad de Biología, Universidad de Santiago de Compostela; Santiago de Compostela 15782 Spain
| | - Ramón Anadón
- Departamento de Biología Celular y Ecología; Facultad de Biología, Universidad de Santiago de Compostela; Santiago de Compostela 15782 Spain
| |
Collapse
|
46
|
Omote H, Moriyama Y. Vesicular neurotransmitter transporters: an approach for studying transporters with purified proteins. Physiology (Bethesda) 2014; 28:39-50. [PMID: 23280356 DOI: 10.1152/physiol.00033.2012] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Vesicular storage and subsequent release of neurotransmitters are the key processes of chemical signal transmission. In this process, vesicular neurotransmitter transporters are responsible for loading the signaling molecules. The use of a "clean biochemical" approach with purified, recombinant transporters has helped in the identification of novel vesicular neurotransmitter transporters and in the analysis of the control of signal transmission.
Collapse
Affiliation(s)
- Hiroshi Omote
- Department of Membrane Biochemistry, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | | |
Collapse
|
47
|
Anne C, Gasnier B. Vesicular neurotransmitter transporters: mechanistic aspects. CURRENT TOPICS IN MEMBRANES 2014; 73:149-74. [PMID: 24745982 DOI: 10.1016/b978-0-12-800223-0.00003-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Secondary transporters driven by a V-type H⁺-ATPase accumulate nonpeptide neurotransmitters into synaptic vesicles. Distinct transporter families are involved depending on the neurotransmitter. Monoamines and acetylcholine on the one hand, and glutamate and ATP on the other hand, are accumulated by SLC18 and SLC17 transporters, respectively, which belong to the major facilitator superfamily (MFS). GABA and glycine accumulate through a common SLC32 transporter from the amino acid/polyamine/organocation (APC) superfamily. Although crystallographic structures are not yet available for any vesicular transporter, homology modeling studies of MFS-type vesicular transporters based on distantly related bacterial structures recently provided significant advances, such as the characterization of substrate-binding pockets or the identification of spatial clusters acting as hinge points during the alternating-access cycle. However, several basic issues, such as the ion stoichiometry of vesicular amino acid transporters, remain unsettled.
Collapse
Affiliation(s)
- Christine Anne
- Université Paris Descartes, Sorbonne Paris Cité, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8192, Centre Universitaire des Saints-Pères, Paris, France
| | - Bruno Gasnier
- Université Paris Descartes, Sorbonne Paris Cité, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8192, Centre Universitaire des Saints-Pères, Paris, France.
| |
Collapse
|
48
|
Debailleul F, Trubbia C, Frederickx N, Lauwers E, Merhi A, Ruysschaert JM, André B, Govaerts C. Nitrogen catabolite repressible GAP1 promoter, a new tool for efficient recombinant protein production in S. cerevisiae. Microb Cell Fact 2013; 12:129. [PMID: 24369062 PMCID: PMC3880969 DOI: 10.1186/1475-2859-12-129] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 12/18/2013] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Decades of work requiring heterologous expression of eukaryotic proteins have shown that no expression system can be considered as the panacea and the appropriate expression strategy is often protein-dependent. In a large number of cases, yeasts have proven to be reliable organisms for heterologous protein expression by combining eukaryotic cellular organization with the ease of use of simpler microorganisms. RESULTS During this work, a novel promoter system based on the nitrogen catabolite regulation has been developed to produce the general amino acid permease (Gap1) in its natural host, the yeast Saccharomyces cerevisiae. A simple purification protocol was also established that allows to purify milligrams of Gap1 from cells cultivated in a five liters bio-reactor. In order to test the ability of the system to be used for expression of other proteins, the yeast specific transporter of γ-aminobutyric acid (Uga4), a human vesicular transporter of glutamate (Vglut1) and a small secreted glycoprotein (MD-2) were also expressed using the nitrogen catabolite regulation. All proteins were fused to GFP and their presence and localization were confirmed by western blot analysis and fluorescence microscopy. CONCLUSIONS Our work shows that the nitrogen catabolite repressible GAP1 promoter can be used to obtain high levels of recombinant protein while allowing for large biomass production in S. cerevisiae. This approach can be used to express membrane and soluble proteins from higher eukaryotes (from yeast to human). Therefore, this system stands as a promising alternative to commonly used expression procedure in yeasts.
Collapse
Affiliation(s)
- Fabien Debailleul
- S.F.M.B., Université Libre de Bruxelles, Blvd. du Triomphe, Bâtiment BC, local 1C4.208, B-1050 Bruxelles, Belgium
| | - Cataldo Trubbia
- S.F.M.B., Université Libre de Bruxelles, Blvd. du Triomphe, Bâtiment BC, local 1C4.208, B-1050 Bruxelles, Belgium
| | - Nancy Frederickx
- S.F.M.B., Université Libre de Bruxelles, Blvd. du Triomphe, Bâtiment BC, local 1C4.208, B-1050 Bruxelles, Belgium
| | - Elsa Lauwers
- Lab Physiologie Moléculaire de la Cellule, Université Libre de Bruxelles, IBMM, rue des Pr. Jeener et Brachet, 12, 6041 Gosselies, Belgium
| | - Ahmad Merhi
- Lab Physiologie Moléculaire de la Cellule, Université Libre de Bruxelles, IBMM, rue des Pr. Jeener et Brachet, 12, 6041 Gosselies, Belgium
| | - Jean-Marie Ruysschaert
- S.F.M.B., Université Libre de Bruxelles, Blvd. du Triomphe, Bâtiment BC, local 1C4.208, B-1050 Bruxelles, Belgium
| | - Bruno André
- Lab Physiologie Moléculaire de la Cellule, Université Libre de Bruxelles, IBMM, rue des Pr. Jeener et Brachet, 12, 6041 Gosselies, Belgium
| | - Cédric Govaerts
- S.F.M.B., Université Libre de Bruxelles, Blvd. du Triomphe, Bâtiment BC, local 1C4.208, B-1050 Bruxelles, Belgium
| |
Collapse
|
49
|
Abstract
NAAG (N-acetylaspartylglutamate) is an abundant neuropeptide in the vertebrate nervous system. It is released from synaptic terminals in a calcium-dependent manner and has been shown to act as an agonist at the type II metabotropic glutamate receptor mGluR3. It has been proposed that NAAG may also be released from axons. So far, however, it has remained unclear how NAAG is transported into synaptic or other vesicles before it is secreted. In the present study, we demonstrate that uptake of NAAG and the related peptide NAAG2 (N-acetylaspartylglutamylglutamate) into vesicles depends on the sialic acid transporter sialin (SLC17A5). This was demonstrated using cell lines expressing a cell surface variant of sialin and by functional reconstitution of sialin in liposomes. NAAG uptake into sialin-containing proteoliposomes was detectable in the presence of an active H+-ATPase or valinomycin, indicating that transport is driven by membrane potential rather than H+ gradient. We also show that sialin is most probably the major and possibly only vesicular transporter for NAAG and NAAG2, because ATP-dependent transport of both peptides was not detectable in vesicles isolated from sialin-deficient mice.
Collapse
|
50
|
Reimer RJ. SLC17: a functionally diverse family of organic anion transporters. Mol Aspects Med 2013; 34:350-9. [PMID: 23506876 DOI: 10.1016/j.mam.2012.05.004] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 03/29/2012] [Indexed: 11/28/2022]
Abstract
Molecular studies have determined that the SLC17 transporters, a family of nine proteins initially implicated in phosphate transport, mediate the transport of organic anions. While their role in phosphate transport remains uncertain, it is now clear that the transport of organic anions facilitated by this family of proteins is involved in diverse processes ranging from the vesicular storage of the neurotransmitters, to urate metabolism, to the degradation and metabolism of glycoproteins.
Collapse
Affiliation(s)
- Richard J Reimer
- Neurogenetics Division Department of Neurology and Neurological Sciences, Stanford University School of Medicine, P211 MSLS, 1201 Welch Road, Stanford, CA 94305, USA.
| |
Collapse
|