1
|
Raguraman R, Munshi A, Ramesh R. Interleukin-24: A Multidimensional Therapeutic for Treatment of Human Diseases. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2025; 17:e70013. [PMID: 40338095 PMCID: PMC12058350 DOI: 10.1002/wnan.70013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 02/28/2025] [Accepted: 04/22/2025] [Indexed: 05/09/2025]
Abstract
The field of targeted therapy exploits the selective expression of therapeutic genes or proteins in diseased cells. While this area is gaining attraction in the context of cardiovascular diseases, diabetes, and other major health disorders, it has been most extensively explored in the realm of cancer. Targeted therapy has gained significance in the cancer field for its potential to address the limitations of conventional treatments and enhance patient survival. Interleukin-24 (IL-24), a versatile cytokine, has been evaluated as a cancer therapeutic in various preclinical cancer models and clinical trials, and has yielded promising results. Consequently, multiple studies highlight IL-24 as a viable "anti-cancer" therapeutic, with successful outcomes observed in combination therapies involving small molecule inhibitors, chemotherapeutic drugs, and radiation. Despite the evidence validating the tumor-suppressing properties of IL-24 in cancer models, there is a dearth of information regarding its role in other human diseases. The objective of this review is to offer a synopsis of the potential role of IL-24 in diverse human diseases. Additionally, it provides a comprehensive review of the progress in cancer therapy utilizing IL-24. Finally, from the author's standpoint, the review also addresses some of the limitations that impede the translational potential of IL-24-based therapy in clinical settings. It offers arguments in favor of incorporating IL-24-based targeted therapy as an effective and safer alternative for current treatment modalities, thereby highlighting its potential to revolutionize the field of therapeutics.
Collapse
Affiliation(s)
- Rajeswari Raguraman
- Department of Pathology, and OU Health Stephenson Cancer CenterUniversity of Oklahoma Health SciencesOklahoma CityOklahomaUSA
| | - Anupama Munshi
- Department of Radiation Oncology, and OU Health Stephenson Cancer CenterUniversity of Oklahoma Health SciencesOklahoma CityOklahomaUSA
| | - Rajagopal Ramesh
- Department of Pathology, and OU Health Stephenson Cancer CenterUniversity of Oklahoma Health SciencesOklahoma CityOklahomaUSA
| |
Collapse
|
2
|
Singh J, Sah B, Deng Y, Clarke R, Liu L. Molecular mechanisms underlying TXNIP's anti-tumor role in breast cancer, including interaction with a novel, pro-tumor partner: CAST. Cell Death Dis 2025; 16:236. [PMID: 40175348 PMCID: PMC11965567 DOI: 10.1038/s41419-025-07566-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 02/22/2025] [Accepted: 03/18/2025] [Indexed: 04/04/2025]
Abstract
Thioredoxin-interacting protein (TXNIP) plays a pivotal role in glucose metabolism and redox signaling. Its emerging function as a potent suppressor of cell proliferation in various cancer contexts underscores its importance in cancer development. In a previous study, we found TXNIP activation by UNC0642, an inhibitor of histone methyltransferase G9A, significantly inhibited MDA-MB-231 breast cancer cell proliferation in vitro and tumor growth in vivo. Here, we demonstrated that TXNIP knockdown increased MDA-MB-231 tumor growth and metastasis in a mouse model. Reintroducing TXNIP into TXNIP-deficient HCC-1954 breast cancer cells decreased cell proliferation and migration while boosting the generation of reactive oxygen species, alongside reductions in mitochondrial respiration, mitochondrial membrane potential, and glycolysis. To elucidate the mechanisms underlying TXNIP's antitumor effects in breast cancer cells, we conducted co-immunoprecipitation and proteomic analyses that revealed calpastatin (CAST) as a novel TXNIP-interacting protein in MDA-MB-231 and HCC-1954 cells. Overexpression of CAST, an endogenous inhibitor of calpains, significantly increased xenograft tumor growth for both MDA-MB-231 and HCC-1954 cells, underscoring its novel role as a tumor promoter. In addition, we identified a positive correlation between the expression of TXNIP and interleukin-24 (IL-24), a molecule that induces cancer-specific apoptosis in several breast cancer cell lines. Our findings also show TXNIP's ability to decrease activation of STAT3, a key driver of oncogenesis. Finally, cells with high levels of TXNIP expression displayed increased susceptibility to IL-24 and WP1066, a specific STAT3 inhibitor, suggesting possible predictive value for TXNIP. Collectively, these findings unveil novel TXNIP-dependent pathways that may contribute to breast cancer pathogenesis, enriching our understanding of this molecule's intricate role in cancer and potentially paving the way for clinical translation.
Collapse
Affiliation(s)
- Jasvinder Singh
- The Hormel Institute, University of Minnesota, Austin, MN, 55912, USA
| | - Bindeshwar Sah
- The Hormel Institute, University of Minnesota, Austin, MN, 55912, USA
| | - Yibin Deng
- Department of Urology, University of Minnesota Medical School, Minneapolis, MN, 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Robert Clarke
- The Hormel Institute, University of Minnesota, Austin, MN, 55912, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA
- Department of Biochemistry, Molecular Biology and Biophysics, Minneapolis, MN, 55455, USA
| | - Liang Liu
- The Hormel Institute, University of Minnesota, Austin, MN, 55912, USA.
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
3
|
Oka T, Smith SS, Son HG, Lee T, Oliver-Garcia VS, Mortaja M, Trerice KE, Isakoff LS, Conrad DN, Azin M, Raval NS, Tabacchi M, Emdad L, Das SK, Fisher PB, Cornelius LA, Demehri S. T helper 2 cell-directed immunotherapy eliminates precancerous skin lesions. J Clin Invest 2025; 135:e183274. [PMID: 39744942 PMCID: PMC11684800 DOI: 10.1172/jci183274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 10/08/2024] [Indexed: 01/06/2025] Open
Abstract
The continuous rise in skin cancer incidence highlights an imperative for improved skin cancer prevention. Topical calcipotriol-plus-5-fluorouracil (calcipotriol-plus-5-FU) immunotherapy effectively eliminates precancerous skin lesions and prevents squamous cell carcinoma (SCC) in patients. However, its mechanism of action remains unclear. Herein, we demonstrate that calcipotriol-plus-5-FU immunotherapy induces T helper type 2 (Th2) immunity, eliminating premalignant keratinocytes in humans. CD4+ Th2 cells were required and were sufficient downstream of thymic stromal lymphopoietin cytokine induction by calcipotriol to suppress skin cancer development. Th2-associated cytokines induced IL-24 expression in cancer cells, resulting in toxic autophagy and anoikis followed by apoptosis. Calcipotriol-plus-5-FU immunotherapy was dependent on IL-24 to suppress skin carcinogenesis in vivo. Collectively, our findings establish a critical role for Th2 immunity in cancer immunoprevention and highlight the Th2/IL-24 axis as an innovative target for skin cancer prevention and therapy.
Collapse
Affiliation(s)
- Tomonori Oka
- Center for Cancer Immunology and Cutaneous Biology Research Center, Krantz Family Center for Cancer Research and Department of Dermatology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Sabrina S. Smith
- Center for Cancer Immunology and Cutaneous Biology Research Center, Krantz Family Center for Cancer Research and Department of Dermatology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Heehwa G. Son
- Center for Cancer Immunology and Cutaneous Biology Research Center, Krantz Family Center for Cancer Research and Department of Dermatology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Truelian Lee
- Center for Cancer Immunology and Cutaneous Biology Research Center, Krantz Family Center for Cancer Research and Department of Dermatology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Valeria S. Oliver-Garcia
- Center for Cancer Immunology and Cutaneous Biology Research Center, Krantz Family Center for Cancer Research and Department of Dermatology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Mahsa Mortaja
- Center for Cancer Immunology and Cutaneous Biology Research Center, Krantz Family Center for Cancer Research and Department of Dermatology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Kathryn E. Trerice
- Center for Cancer Immunology and Cutaneous Biology Research Center, Krantz Family Center for Cancer Research and Department of Dermatology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Lily S. Isakoff
- Center for Cancer Immunology and Cutaneous Biology Research Center, Krantz Family Center for Cancer Research and Department of Dermatology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Danielle N. Conrad
- Center for Cancer Immunology and Cutaneous Biology Research Center, Krantz Family Center for Cancer Research and Department of Dermatology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Marjan Azin
- Center for Cancer Immunology and Cutaneous Biology Research Center, Krantz Family Center for Cancer Research and Department of Dermatology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Neel S. Raval
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Mary Tabacchi
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Luni Emdad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Swadesh K. Das
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Paul B. Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Lynn A. Cornelius
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Shadmehr Demehri
- Center for Cancer Immunology and Cutaneous Biology Research Center, Krantz Family Center for Cancer Research and Department of Dermatology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Qureshi S, Ahmed N, Rehman HM, Amirzada MI, Saleem F, Waheed K, Chaudhry A, Kafait I, Akram M, Bashir H. Investigation of therapeutic potential of the Il24-p20 fusion protein against breast cancer: an in-silico approach. In Silico Pharmacol 2024; 12:84. [PMID: 39301086 PMCID: PMC11408464 DOI: 10.1007/s40203-024-00252-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/13/2024] [Indexed: 09/22/2024] Open
Abstract
Targeted delivery of therapeutic anticancer chimeric molecules enhances drug efficacy. Numerous studies have focused on developing novel treatments by employing cytokines, particularly interleukins, to inhibit the growth of cancer cells. In the present study, we fused interleukin 24 with the tumor-targeting peptide P20 through a rigid linker to selectively target cancer cells. The secondary structure, tertiary structure, and physicochemical characteristics of the constructed chimeric IL-24-P20 protein were predicted by using bioinformatics tools. In-silico analysis revealed that the fusion construct has a basic nature with 175 amino acids and a molecular weight of 20 kDa. By using the Rampage and ERRAT2 servers, the validity and quality of the fusion protein were evaluated. The results indicated that 93% of the chimeric proteins contained 90.1% of the residues in the favoured region, resulting in a reliable structure. Finally, docking and simulation studies were conducted via ClusPro and Desmond Schrödinger, respectively. Our results indicate that the constructed fusion protein exhibits excellent quality, interaction capabilities, validity, and stability. These findings suggest that the fusion protein is a promising candidate for targeted cancer therapy.
Collapse
Affiliation(s)
- Shahnila Qureshi
- Centre for Applied Molecular Biology, University of the Punjab, 87-West canal, Bank Road, Lahore, 53700 Pakistan
| | - Nadeem Ahmed
- Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, 87-West canal, Bank Road, Lahore, 53700 Pakistan
| | - Hafiz Muhammad Rehman
- Centre for Applied Molecular Biology, University of the Punjab, 87-West canal, Bank Road, Lahore, 53700 Pakistan
- University Institute of Medical Laboratory Technology, Faculty of Allied Health Science, University of Lahore, Lahore, 54590 Pakistan
| | | | - Fiza Saleem
- Centre for Applied Molecular Biology, University of the Punjab, 87-West canal, Bank Road, Lahore, 53700 Pakistan
- University Institute of Medical Laboratory Technology, Faculty of Allied Health Science, University of Lahore, Lahore, 54590 Pakistan
| | - Kainat Waheed
- Centre for Applied Molecular Biology, University of the Punjab, 87-West canal, Bank Road, Lahore, 53700 Pakistan
- University Institute of Medical Laboratory Technology, Faculty of Allied Health Science, University of Lahore, Lahore, 54590 Pakistan
| | - Afeefa Chaudhry
- Department of Biology, Lahore Garrison University, Avenue 4, sector phase 6 DHA, Lahore, Pakistan
| | - Iram Kafait
- Institute of Molecular Biotechnology, Graz University of Technology, Graz, Austria
| | - Muhammad Akram
- Centre for Applied Molecular Biology, University of the Punjab, 87-West canal, Bank Road, Lahore, 53700 Pakistan
| | - Hamid Bashir
- Centre for Applied Molecular Biology, University of the Punjab, 87-West canal, Bank Road, Lahore, 53700 Pakistan
| |
Collapse
|
5
|
Bhoopathi P, Mannangatti P, Pradhan AK, Kumar A, Maji S, Lang FF, Klibanov AL, Madan E, Cavenee WK, Keoprasert T, Sun D, Bjerkvig R, Thorsen F, Gogna R, Das SK, Emdad L, Fisher PB. Noninvasive therapy of brain cancer using a unique systemic delivery methodology with a cancer terminator virus. J Cell Physiol 2024; 239:e31302. [PMID: 38775127 DOI: 10.1002/jcp.31302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/03/2024] [Accepted: 04/30/2024] [Indexed: 08/15/2024]
Abstract
Primary, glioblastoma, and secondary brain tumors, from metastases outside the brain, are among the most aggressive and therapeutically resistant cancers. A physiological barrier protecting the brain, the blood-brain barrier (BBB), functions as a deterrent to effective therapies. To enhance cancer therapy, we developed a cancer terminator virus (CTV), a unique tropism-modified adenovirus consisting of serotype 3 fiber knob on an otherwise Ad5 capsid that replicates in a cancer-selective manner and simultaneously produces a potent therapeutic cytokine, melanoma differentiation-associated gene-7/interleukin-24 (MDA-7/IL-24). A limitation of the CTV and most other viruses, including adenoviruses, is an inability to deliver systemically to treat brain tumors because of the BBB, nonspecific virus trapping, and immune clearance. These obstacles to effective viral therapy of brain cancer have now been overcome using focused ultrasound with a dual microbubble treatment, the focused ultrasound-double microbubble (FUS-DMB) approach. Proof-of-principle is now provided indicating that the BBB can be safely and transiently opened, and the CTV can then be administered in a second set of complement-treated microbubbles and released in the brain using focused ultrasound. Moreover, the FUS-DMB can be used to deliver the CTV multiple times in animals with glioblastoma growing in their brain thereby resulting in a further enhancement in survival. This strategy permits efficient therapy of primary and secondary brain tumors enhancing animal survival without promoting harmful toxic or behavioral side effects. Additionally, when combined with a standard of care therapy, Temozolomide, a further increase in survival is achieved. The FUS-DMB approach with the CTV highlights a noninvasive strategy to treat brain cancers without surgery. This innovative delivery scheme combined with the therapeutic efficacy of the CTV provides a novel potential translational therapeutic approach for brain cancers.
Collapse
Affiliation(s)
- Praveen Bhoopathi
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Padmanabhan Mannangatti
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Anjan K Pradhan
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Amit Kumar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Santanu Maji
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Frederick F Lang
- Department of Neurosurgery, MD Anderson Cancer Center, Houston, Texas, USA
| | - Alexander L Klibanov
- Biomedical Engineering, Radiology and Medical Imaging, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Esha Madan
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- Department of Surgery, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Webster K Cavenee
- Ludwig Institute for Cancer Research, University of San Diego, La Jolla, California, USA
| | - Timothy Keoprasert
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Dong Sun
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Rolf Bjerkvig
- Department of Biomedicine, Kristian Gerhard Jebsen Brain Tumour Research Centre, University of Bergen, Bergen, Norway
| | - Frits Thorsen
- Department of Biomedicine, Kristian Gerhard Jebsen Brain Tumour Research Centre, University of Bergen, Bergen, Norway
| | - Rajan Gogna
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Swadesh K Das
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Luni Emdad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| |
Collapse
|
6
|
Roy A, DePamphilis ML. Selective Termination of Autophagy-Dependent Cancers. Cells 2024; 13:1096. [PMID: 38994949 PMCID: PMC11240546 DOI: 10.3390/cells13131096] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 07/13/2024] Open
Abstract
The goal of cancer research is to identify characteristics of cancer cells that allow them to be selectively eliminated without harming the host. One such characteristic is autophagy dependence. Cancer cells survive, proliferate, and metastasize under conditions where normal cells do not. Thus, the requirement in cancer cells for more energy and macromolecular biosynthesis can evolve into a dependence on autophagy for recycling cellular components. Recent studies have revealed that autophagy, as well as different forms of cellular trafficking, is regulated by five phosphoinositides associated with eukaryotic cellular membranes and that the enzymes that synthesize them are prime targets for cancer therapy. For example, PIKFYVE inhibitors rapidly disrupt lysosome homeostasis and suppress proliferation in all cells. However, these inhibitors selectively terminate PIKFYVE-dependent cancer cells and cancer stem cells with not having adverse effect on normal cells. Here, we describe the biochemical distinctions between PIKFYVE-sensitive and -insensitive cells, categorize PIKFYVE inhibitors into four groups that differ in chemical structure, target specificity and efficacy on cancer cells and normal cells, identify the mechanisms by which they selectively terminate autophagy-dependent cancer cells, note their paradoxical effects in cancer immunotherapy, and describe their therapeutic applications against cancers.
Collapse
Affiliation(s)
- Ajit Roy
- National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Room 6N105, 10 Center Dr., Bethesda, MD 20892-0001, USA;
| | - Melvin L. DePamphilis
- National Institute of Child Health and Human Development, National Institutes of Health, 9000 Rockville Pike, Room 4B413, 6 Center Dr., Bethesda, MD 20892-2790, USA
| |
Collapse
|
7
|
Roy A, Chakraborty AR, DePamphilis ML. PIKFYVE inhibitors trigger interleukin-24-dependent cell death of autophagy-dependent melanoma. Mol Oncol 2024; 18:988-1011. [PMID: 38414326 PMCID: PMC10994231 DOI: 10.1002/1878-0261.13607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/16/2024] [Accepted: 02/02/2024] [Indexed: 02/29/2024] Open
Abstract
Inhibitors specifically targeting the 1-phosphatidylinositol 3-phosphate 5-kinase (PIKFYVE) disrupt lysosome homeostasis, thereby selectively terminating autophagy-dependent human cancer cells in vivo as well as in vitro without harming the viability of nonmalignant cells. To elucidate the mechanism by which PIKFYVE inhibition induces cell death, autophagy-dependent melanoma cells were compared with normal foreskin fibroblasts. RNA sequence profiling suggested that PIKFYVE inhibitors upregulated an endoplasmic reticulum (ER) stress response involving interleukin-24 (IL24; also known as MDA7) selectively in melanoma cells. Subsequent biochemical and genetic analyses confirmed these results and extended them to tumor xenografts in which tumor formation and expansion were inhibited. IL24 expression was upregulated by the DDIT3/CHOP/CEBPz transcription factor, a component of the PERK-dependent ER-stress response. Ectopic expression of IL24-induced cell death in melanoma cells, but not in foreskin fibroblasts, whereas ablation of the IL24 gene in melanoma cells prevented death. IL24 upregulation was triggered specifically by PIKFYVE inhibition. Thus, unlike thapsigargin and tunicamycin, which induce ER-stress indiscriminately, PIKFYVE inhibitors selectively terminated PIKFYVE-sensitive melanoma by inducing IL24-dependent ER-stress. Moreover, induction of cell death by a PIKFYVE inhibitor together with ectopic expression of IL24 protein was cumulative, thereby confirming the therapeutic potential of PIKFYVE inhibitors in the treatment of melanoma.
Collapse
Affiliation(s)
- Ajit Roy
- National Institute of Child Health & Human DevelopmentNational Institutes of HealthBethesdaMDUSA
| | - Arup R. Chakraborty
- National Institute of Child Health & Human DevelopmentNational Institutes of HealthBethesdaMDUSA
| | - Melvin L. DePamphilis
- National Institute of Child Health & Human DevelopmentNational Institutes of HealthBethesdaMDUSA
| |
Collapse
|
8
|
Smith S, Lopez S, Kim A, Kasteri J, Olumuyide E, Punu K, de la Parra C, Sauane M. Interleukin 24: Signal Transduction Pathways. Cancers (Basel) 2023; 15:3365. [PMID: 37444474 PMCID: PMC10340555 DOI: 10.3390/cancers15133365] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/16/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
Interleukin 24 is a member of the IL-10 family with crucial roles in antitumor, wound healing responses, host defense, immune regulation, and inflammation. Interleukin 24 is produced by both immune and nonimmune cells. Its canonical pathway relies on recognition and interaction with specific Interleukin 20 receptors in the plasma membrane and subsequent cytoplasmic Janus protein tyrosine kinases (JAK)/signal transducer and activator of the transcription (STAT) activation. The identification of noncanonical JAK/STAT-independent signaling pathways downstream of IL-24 relies on the interaction of IL-24 with protein kinase R in the cytosol, respiratory chain proteins in the inner mitochondrial membrane, and chaperones such as Sigma 1 Receptor in the endoplasmic reticulum. Numerous studies have shown that enhancing or inhibiting the expression of Interleukin 24 has a therapeutic effect in animal models and clinical trials in different pathologies. Successful drug targeting will require a deeper understanding of the downstream signaling pathways. In this review, we discuss the signaling pathway triggered by IL-24.
Collapse
Affiliation(s)
- Simira Smith
- Department of Biological Sciences, Herbert H. Lehman College, City University of New York, 250 Bedford Park Boulevard West, Bronx, NY 10468, USA; (S.S.); (S.L.); (J.K.); (E.O.); (K.P.)
| | - Sual Lopez
- Department of Biological Sciences, Herbert H. Lehman College, City University of New York, 250 Bedford Park Boulevard West, Bronx, NY 10468, USA; (S.S.); (S.L.); (J.K.); (E.O.); (K.P.)
| | - Anastassiya Kim
- Ph.D. Program in Biology, The Graduate Center, City University of New York, 365 Fifth Avenue, New York, NY 10016, USA; (A.K.); (C.d.l.P.)
| | - Justina Kasteri
- Department of Biological Sciences, Herbert H. Lehman College, City University of New York, 250 Bedford Park Boulevard West, Bronx, NY 10468, USA; (S.S.); (S.L.); (J.K.); (E.O.); (K.P.)
| | - Ezekiel Olumuyide
- Department of Biological Sciences, Herbert H. Lehman College, City University of New York, 250 Bedford Park Boulevard West, Bronx, NY 10468, USA; (S.S.); (S.L.); (J.K.); (E.O.); (K.P.)
| | - Kristian Punu
- Department of Biological Sciences, Herbert H. Lehman College, City University of New York, 250 Bedford Park Boulevard West, Bronx, NY 10468, USA; (S.S.); (S.L.); (J.K.); (E.O.); (K.P.)
| | - Columba de la Parra
- Ph.D. Program in Biology, The Graduate Center, City University of New York, 365 Fifth Avenue, New York, NY 10016, USA; (A.K.); (C.d.l.P.)
- Department of Chemistry, Herbert H. Lehman College, City University of New York, 250 Bedford Park Boulevard West, Bronx, NY 10468, USA
| | - Moira Sauane
- Department of Biological Sciences, Herbert H. Lehman College, City University of New York, 250 Bedford Park Boulevard West, Bronx, NY 10468, USA; (S.S.); (S.L.); (J.K.); (E.O.); (K.P.)
- Ph.D. Program in Biology, The Graduate Center, City University of New York, 365 Fifth Avenue, New York, NY 10016, USA; (A.K.); (C.d.l.P.)
| |
Collapse
|
9
|
Babazadeh SM, Zolfaghari MR, Zargar M, Baesi K, Hosseini SY, Ghaemi A. Interleukin-24-mediated antitumor effects against human glioblastoma via upregulation of P38 MAPK and endogenous TRAIL-induced apoptosis and LC3-II activation-dependent autophagy. BMC Cancer 2023; 23:519. [PMID: 37280571 DOI: 10.1186/s12885-023-11021-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 05/29/2023] [Indexed: 06/08/2023] Open
Abstract
BACKGROUND Melanoma differentiation-associated gene 7 (Mda-7) encodes IL-24, which can induce apoptosis in cancer cells. A novel gene therapy approach to treat deadly brain tumors, recombinant mda-7 adenovirus (Ad/mda-7) efficiently kills glioma cells. In this study, we investigated the factors affecting cell survival and apoptosis and autophagy mechanisms that destroy glioma cells by Ad/IL-24. METHODS Human glioblastoma U87 cell line was exposed to a multiplicity of infections of Ad/IL-24. Antitumor activities of Ad/IL-24 were assessed by cell proliferation (MTT) and lactate dehydrogenase (LDH) release analysis. Using flow cytometry, cell cycle arrest and apoptosis were investigated. Using the ELISA method, the tumor necrosis factor (TNF-α) level was determined as an apoptosis-promoting factor and Survivin level as an anti-apoptotic factor. The expression levels of TNF-related apoptosis inducing ligand(TRAIL) and P38 MAPK genes were assessed by the Reverse transcription-quantitative polymerase chain reaction(RT‑qPCR) method. The expression levels of caspase-3 and protein light chain 3-II (LC3-II) proteins were analyzed by flow cytometry as intervening factors in the processes of apoptosis and autophagy in the cell death signaling pathway, respectively. RESULTS The present findings demonstrated that transduction of IL-24 inhibited cell proliferation and induced cell cycle arrest and cell apoptosis in glioblastoma. Compared with cells of the control groups, Ad/IL24-infected U87 cells exhibited significantly increased elevated caspase-3, and TNF-α levels, while the survivin expression was decreased. TRAIL was shown to be upregulated in tumor cells after Ad/IL-24 infection and studies of the apoptotic cascade regulators indicate that Ad/IL-24 could further enhance the activation of apoptosis through the TNF family of death receptors. In the current study, we demonstrate that P38 MAPK is significantly activated by IL-24 expression. In addition, the overexpression of mda-7/IL-24 in GBM cells induced autophagy, which was triggered by the upregulation of LC3-II. CONCLUSIONS Our study demonstrates the antitumor effect of IL-24 on glioblastoma and may be a promising therapeutic approach for GBM cancer gene therapy.
Collapse
Affiliation(s)
- Seyedeh Maliheh Babazadeh
- Department of Microbiology, Faculty of Basic Science, Qom Branch, Islamic Azad University, Qom, Iran
| | - Mohammad Reza Zolfaghari
- Department of Microbiology, Faculty of Basic Science, Qom Branch, Islamic Azad University, Qom, Iran.
| | - Mohsen Zargar
- Department of Microbiology, Faculty of Basic Science, Qom Branch, Islamic Azad University, Qom, Iran
| | - Kazem Baesi
- Hepatitis and AIDS Department, Pasteur Institute of Iran, Tehran, Iran
| | - Sayed Younes Hosseini
- Bacteriology and Virology Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Ghaemi
- Department of Influenza and other Respiratory Viruses, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
10
|
Rahimi A, Esmaeili Y, Dana N, Dabiri A, Rahimmanesh I, Jandaghain S, Vaseghi G, Shariati L, Zarrabi A, Javanmard SH, Cordani M. A comprehensive review on novel targeted therapy methods and nanotechnology-based gene delivery systems in melanoma. Eur J Pharm Sci 2023:106476. [PMID: 37236377 DOI: 10.1016/j.ejps.2023.106476] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/17/2023] [Accepted: 05/22/2023] [Indexed: 05/28/2023]
Abstract
Melanoma, a malignant form of skin cancer, has been swiftly increasing in recent years. Although there have been significant advancements in clinical treatment underlying a well-understanding of melanoma-susceptible genes and the molecular basis of melanoma pathogenesis, the permanency of response to therapy is frequently constrained by the emergence of acquired resistance and systemic toxicity. Conventional therapies, including surgical resection, chemotherapy, radiotherapy, and immunotherapy, have already been used to treat melanoma and are dependent on the cancer stage. Nevertheless, ineffective side effects and the heterogeneity of tumors pose major obstacles to the therapeutic treatment of malignant melanoma through such strategies. In light of this, advanced therapies including nucleic acid therapies (ncRNA, aptamers), suicide gene therapies, and gene therapy using tumor suppressor genes, have lately gained immense attention in the field of cancer treatment. Furthermore, nanomedicine and targeted therapy based on gene editing tools have been applied to the treatment of melanoma as potential cancer treatment approaches nowadays. Indeed, nanovectors enable delivery of the therapeutic agents into the tumor sites by passive or active targeting, improving therapeutic efficiency and minimizing adverse effects. Accordingly, in this review, we summarized the recent findings related to novel targeted therapy methods as well as nanotechnology-based gene systems in melanoma. We also discussed current issues along with potential directions for future research, paving the way for the next-generation of melanoma treatments.
Collapse
Affiliation(s)
- Azadeh Rahimi
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Yasaman Esmaeili
- Biosensor Research Center, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran
| | - Nasim Dana
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Arezou Dabiri
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ilnaz Rahimmanesh
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Setareh Jandaghain
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Golnaz Vaseghi
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran; Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 8158388994, Iran
| | - Laleh Shariati
- Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering & Natural Sciences, Istinye University, Istanbul 34396, Turkey
| | - Shaghayegh Haghjooy Javanmard
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Marco Cordani
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University, 28040 Madrid, Spain; Instituto de Investigaciones Sanitarias San Carlos (IdISSC), 28040 Madrid, Spain.
| |
Collapse
|
11
|
Schütte-Nütgen K, Edeling M, Kentrup D, Heitplatz B, Van Marck V, Zarbock A, Meersch-Dini M, Pavenstädt H, Reuter S. Interleukin 24 promotes cell death in renal epithelial cells and is associated with acute renal injury. Am J Transplant 2022; 22:2548-2559. [PMID: 35801504 DOI: 10.1111/ajt.17143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 06/02/2022] [Accepted: 07/03/2022] [Indexed: 01/25/2023]
Abstract
Ischemia-reperfusion injury is a major cause of acute kidney injury. Many cytokines are involved in the pathogenesis of renal ischemia-reperfusion injury. IL24 is a member of the IL10 family and has gained importance because of its apoptosis-inducing effects in tumor disease besides its immunoregulative function. Littles is known about the role of IL24 in kidney disease. Using a mouse model, we found that IL24 is upregulated in the kidney after renal ischemia-reperfusion injury and that tubular epithelial cells and infiltrating inflammatory cells are the source of IL24. Mice lacking IL24 are protected from renal injury and inflammation. Cell culture studies showed that IL24 induces apoptosis in renal tubular epithelial cells, which is accompanied by an increased endoplasmatic reticulum stress response. Moreover, IL24 induces robust expression of endogenous IL24 in tubular cells, fostering ER-stress and apoptosis. In kidney transplant recipients with delayed graft function and patients at high risk to develop acute kidney injury after cardiac surgery IL24 is upregulated in the kidney and serum. Taken together, IL24 can serve as a biomarker, plays an important mechanistic role involving both extracellular and intracellular targets, and is a promising therapeutic target in patients at risk of or with ischemia-induced acute kidney injury.
Collapse
Affiliation(s)
- Katharina Schütte-Nütgen
- Department of Medicine D, Division of General Internal Medicine, Nephrology and Rheumatology, University Hospital of Münster, Münster, Germany
| | - Maria Edeling
- Department of Medicine D, Division of General Internal Medicine, Nephrology and Rheumatology, University Hospital of Münster, Münster, Germany
| | - Dominik Kentrup
- Department of Medicine D, Division of General Internal Medicine, Nephrology and Rheumatology, University Hospital of Münster, Münster, Germany.,Division of Nephrology and Hypertension, Department of Medicine and Center for Translational Metabolism and Health, Feinberg Cardiovascular and Renal Research Institute, Northwestern University, Chicago, Illinois, USA
| | - Barbara Heitplatz
- Department of Pathology, University Hospital Münster, Münster, Germany
| | - Veerle Van Marck
- Department of Pathology, University Hospital Münster, Münster, Germany
| | - Alexander Zarbock
- Department of Anesthesiology, Intensive Care, and Pain Medicine, University Hospital Münster, Münster, Germany
| | - Melanie Meersch-Dini
- Department of Anesthesiology, Intensive Care, and Pain Medicine, University Hospital Münster, Münster, Germany
| | - Hermann Pavenstädt
- Department of Medicine D, Division of General Internal Medicine, Nephrology and Rheumatology, University Hospital of Münster, Münster, Germany
| | - Stefan Reuter
- Department of Medicine D, Division of General Internal Medicine, Nephrology and Rheumatology, University Hospital of Münster, Münster, Germany
| |
Collapse
|
12
|
Ghosh A, Das C, Ghose S, Maitra A, Roy B, Majumder PP, Biswas NK. Integrative analysis of genomic and transcriptomic data of normal, tumour and co-occurring leukoplakia tissue triads drawn from patients with gingivobuccal oral cancer identifies signatures of tumour initiation and progression. J Pathol 2022; 257:593-606. [PMID: 35358331 PMCID: PMC9545831 DOI: 10.1002/path.5900] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 11/16/2022]
Abstract
A thickened, white patch — leukoplakia — in the oral cavity is usually benign, but sometimes (in ~9% of individuals) it progresses to malignant tumour. Because the genomic basis of this progression is poorly understood, we undertook this study and collected samples of four tissues — leukoplakia, tumour, adjacent normal, and blood — from each of 28 patients suffering from gingivobuccal oral cancer. We performed multiomics analysis of the 112 collected tissues (four tissues per patient from 28 patients) and integrated information on progressive changes in the mutational and transcriptional profiles of each patient to create this genomic narrative. Additionally, we generated and analysed whole‐exome sequence data from leukoplakia tissues collected from 11 individuals not suffering from oral cancer. Nonsynonymous somatic mutations in the CASP8 gene were identified as the likely events to initiate malignant transformation, since these were frequently shared between tumour and co‐occurring leukoplakia. CASP8 alterations were also shown to enhance expressions of genes that favour lateral spread of mutant cells. During malignant transformation, additional pathogenic mutations are acquired in key genes (TP53, NOTCH1, HRAS) (41% of patients); chromosomal‐instability (arm‐level deletions of 19p and q, focal‐deletion of DNA‐repair pathway genes and NOTCH1, amplification of EGFR) (77%), and increased APOBEC‐activity (23%) are also observed. These additional alterations were present singly (18% of patients) or in combination (68%). Some of these alterations likely impact immune‐dynamics of the evolving transformed tissue; progression to malignancy is associated with immune suppression through infiltration of regulatory T‐cells (56%), depletion of cytotoxic T‐cells (68%), and antigen‐presenting dendritic cells (72%), with a concomitant increase in inflammation (92%). Patients can be grouped into three clusters by the estimated time to development of cancer from precancer by acquiring additional mutations (range: 4–10 years). Our findings provide deep molecular insights into the evolutionary processes and trajectories of oral cancer initiation and progression. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Arnab Ghosh
- National Institute of Biomedical Genomics, Kalyani, India
| | | | - Sandip Ghose
- Dr. R. Ahmed Dental College and Hospital, Kolkata, India
| | - Arindam Maitra
- National Institute of Biomedical Genomics, Kalyani, India
| | - Bidyut Roy
- Indian Statistical Institute, Kolkata, India
| | - Partha P Majumder
- National Institute of Biomedical Genomics, Kalyani, India.,Indian Statistical Institute, Kolkata, India
| | | |
Collapse
|
13
|
Pradhan AK, Bhoopathi P, Maji S, Kumar A, Guo C, Mannangatti P, Li J, Wang XY, Sarkar D, Emdad L, Das SK, Fisher PB. Enhanced Cancer Therapy Using an Engineered Designer Cytokine Alone and in Combination With an Immune Checkpoint Inhibitor. Front Oncol 2022; 12:812560. [PMID: 35402258 PMCID: PMC8988683 DOI: 10.3389/fonc.2022.812560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/25/2022] [Indexed: 02/03/2023] Open
Abstract
melanoma differentiation associated gene-7 or Interleukin-24 (mda-7, IL-24) displays expansive anti-tumor activity without harming corresponding normal cells/tissues. This anticancer activity has been documented in vitro and in vivo in multiple preclinical animal models, as well as in patients with advanced cancers in a phase I clinical trial. To enhance the therapeutic efficacy of MDA-7 (IL-24), we engineered a designer cytokine (a "Superkine"; IL-24S; referred to as M7S) with enhanced secretion and increased stability to engender improved "bystander" antitumor effects. M7S was engineered in a two-step process by first replacing the endogenous secretory motif with an alternate secretory motif to boost secretion. Among four different signaling peptides, the insulin secretory motif significantly enhanced the secretion of MDA-7 (IL-24) protein and was chosen for M7S. The second modification engineered in M7S was designed to enhance the stability of MDA-7 (IL-24), which was accomplished by replacing lysine at position K122 with arginine. This engineered "M7S Superkine" with increased secretion and stability retained cancer specificity. Compared to parental MDA-7 (IL-24), M7S (IL-24S) was superior in promoting anti-tumor and bystander effects leading to improved outcomes in multiple cancer xenograft models. Additionally, combinatorial therapy using MDA-7 (IL-24) or M7S (IL-24S) with an immune checkpoint inhibitor, anti-PD-L1, dramatically reduced tumor progression in murine B16 melanoma cells. These results portend that M7S (IL-24S) promotes the re-emergence of an immunosuppressive tumor microenvironment, providing a solid rationale for prospective translational applications of this therapeutic designer cytokine.
Collapse
Affiliation(s)
- Anjan K. Pradhan
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States,Virginia Commonwealth University (VCU) Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States,Virginia Commonwealth University (VCU) Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Praveen Bhoopathi
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States,Virginia Commonwealth University (VCU) Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States,Virginia Commonwealth University (VCU) Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Santanu Maji
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States,Virginia Commonwealth University (VCU) Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Amit Kumar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States,Virginia Commonwealth University (VCU) Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Chunqing Guo
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States,Virginia Commonwealth University (VCU) Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Padmanabhan Mannangatti
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States,Virginia Commonwealth University (VCU) Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Jiong Li
- Virginia Commonwealth University (VCU) Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States,Virginia Commonwealth University (VCU) Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States,Department of Medicinal Chemistry, Philips Institute for Oral Health Research, Virginia Commonwealth University, School of Pharmacy, Richmond, VA, United States
| | - Xiang-Yang Wang
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States,Virginia Commonwealth University (VCU) Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States,Virginia Commonwealth University (VCU) Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States,Virginia Commonwealth University (VCU) Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States,Virginia Commonwealth University (VCU) Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Luni Emdad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States,Virginia Commonwealth University (VCU) Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States,Virginia Commonwealth University (VCU) Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Swadesh K. Das
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States,Virginia Commonwealth University (VCU) Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States,Virginia Commonwealth University (VCU) Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States,*Correspondence: Swadesh K. Das, ; Paul B. Fisher,
| | - Paul B. Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States,Virginia Commonwealth University (VCU) Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States,Virginia Commonwealth University (VCU) Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States,*Correspondence: Swadesh K. Das, ; Paul B. Fisher,
| |
Collapse
|
14
|
Casciello F, Kelly GM, Ramarao-Milne P, Kamal N, Stewart TA, Mukhopadhyay P, Kazakoff SH, Miranda M, Kim D, Davis FM, Hayward NK, Vertino PM, Waddell N, Gannon F, Lee JS. Combined inhibition of G9a and EZH2 suppresses tumor growth via synergistic induction of IL24-mediated apoptosis. Cancer Res 2022; 82:1208-1221. [PMID: 35149587 DOI: 10.1158/0008-5472.can-21-2218] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 12/07/2021] [Accepted: 02/09/2022] [Indexed: 11/16/2022]
Abstract
G9a and EZH2 are two histone methyltransferases commonly upregulated in several cancer types, yet the precise roles that these enzymes play cooperatively in cancer is unclear. We demonstrate here that frequent concurrent upregulation of both G9a and EZH2 occurs in several human tumors. These methyltransferases cooperatively repressed molecular pathways responsible for tumor cell death. In genetically distinct tumor subtypes, concomitant inhibition of G9a and EZH2 potently induced tumor cell death, highlighting the existence of tumor cell survival dependency at the epigenetic level. G9a and EZH2 synergistically repressed expression of genes involved in the induction of endoplasmic reticulum (ER) stress and the production of reactive oxygen species. IL24 was essential for the induction of tumor cell death and was identified as a common target of G9a and EZH2. Loss-of-function of G9a and EZH2 activated the IL24-ER stress axis and increased apoptosis in cancer cells while not affecting normal cells. These results indicate that G9a and EZH2 promotes the evasion of ER stress-mediated apoptosis by repressing IL24 transcription, therefore suggesting that their inhibition may represent a potential therapeutic strategy for solid cancers.
Collapse
Affiliation(s)
| | | | - Priya Ramarao-Milne
- Transformational Bioinformatics, Commonwealth Scientific and Industrial Research Organisation
| | - Nabilah Kamal
- Epigenetics and Disease Laboratory, QIMR Berghofer Medical Research Institute
| | | | | | | | | | - Dorim Kim
- Epigenetics and Disease Laboratory, QIMR Berghofer Medical Research Institute
| | - Felicity M Davis
- School of Medical Sciences, EMBL Australia Node in Single Molecule Science
| | | | - Paula M Vertino
- School of Medicine and Dentistry, University of Rochester Medical Center
| | - Nicola Waddell
- Medical Genomics Laboratory, QIMR Berghofer Medical Research Institute
| | - Frank Gannon
- Cancer, QIMR Berghofer Medical Research Institute
| | - Jason S Lee
- Epigenetics and Disease Laboratory, QIMR Berghofer Medical Research Institute
| |
Collapse
|
15
|
Insights into the Mechanisms of Action of MDA-7/IL-24: A Ubiquitous Cancer-Suppressing Protein. Int J Mol Sci 2021; 23:ijms23010072. [PMID: 35008495 PMCID: PMC8744595 DOI: 10.3390/ijms23010072] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 11/23/2022] Open
Abstract
Melanoma differentiation associated gene-7/interleukin-24 (MDA-7/IL-24), a secreted protein of the IL-10 family, was first identified more than two decades ago as a novel gene differentially expressed in terminally differentiating human metastatic melanoma cells. MDA-7/IL-24 functions as a potent tumor suppressor exerting a diverse array of functions including the inhibition of tumor growth, invasion, angiogenesis, and metastasis, and induction of potent "bystander" antitumor activity and synergy with conventional cancer therapeutics. MDA-7/IL-24 induces cancer-specific cell death through apoptosis or toxic autophagy, which was initially established in vitro and in preclinical animal models in vivo and later in a Phase I clinical trial in patients with advanced cancers. This review summarizes the history and our current understanding of the molecular/biological mechanisms of MDA-7/IL-24 action rendering it a potent cancer suppressor.
Collapse
|
16
|
Small SH, Tang EJ, Ragland RL, Ruzankina Y, Schoppy DW, Mandal RS, Glineburg MR, Ustelenca Z, Powell DJ, Simpkins F, Johnson FB, Brown EJ. Induction of IL19 expression through JNK and cGAS-STING modulates DNA damage-induced cytokine production. Sci Signal 2021; 14:eaba2611. [PMID: 34932373 PMCID: PMC9218922 DOI: 10.1126/scisignal.aba2611] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2025]
Abstract
Cytokine production is a critical component of cell-extrinsic responses to DNA damage and cellular senescence. Here, we demonstrated that expression of the gene encoding interleukin-19 (IL-19) was enhanced by DNA damage through pathways mediated by c-Jun amino-terminal kinase (JNK) and cGAS-STING and that IL19 expression was required for the subsequent production of the cytokines IL-1, IL-6, and IL-8. IL19 expression was stimulated by diverse cellular stresses, including inhibition of the DNA replication checkpoint kinase ATR (ataxia telangiectasia and Rad3-related protein), oncogene expression, replicative exhaustion, oxidative stress, and DNA double-strand breaks. Unlike the production of IL-6 and IL-8, IL19 expression was not affected by abrogation of signaling by the IL-1 receptor (IL-1R) or the mitogen-activated protein kinase p38. Instead, the DNA damage–induced production of IL-1, IL-6, and IL-8 was substantially reduced by suppression of IL19 expression. The signaling pathways required to stimulate IL19 expression selectively depended on the type of DNA-damaging agent. Reactive oxygen species and the ASK1-JNK pathway were critical for responses to ionizing radiation (IR), whereas the cGAS-STING pathway stimulated IL19 expression in response to either IR or ATR inhibition. Whereas induction of IL1, IL6, and IL8 by IR depended on IL19 expression, the cGAS-STING–dependent induction of the immune checkpoint gene PDL1 after IR and ATR inhibition was independent of IL19. Together, these results suggest that IL-19 production by diverse pathways forms a distinct cytokine regulatory arm of the response to DNA damage.
Collapse
Affiliation(s)
- Sara H. Small
- Department of Cancer Biology and the Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - E. Jessica Tang
- Department of Cancer Biology and the Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ryan L. Ragland
- Department of Cancer Biology and the Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yaroslava Ruzankina
- Department of Cancer Biology and the Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David W. Schoppy
- Department of Cancer Biology and the Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rahul S. Mandal
- Department of Cancer Biology and the Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - M. Rebecca Glineburg
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zgjim Ustelenca
- Department of Cancer Biology and the Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniel J. Powell
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Ovarian Cancer Research Center, Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Fiona Simpkins
- Penn Ovarian Cancer Research Center, Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - F. Bradley Johnson
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Eric J. Brown
- Department of Cancer Biology and the Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
17
|
Zhuo B, Wang X, Shen Y, Li J, Li S, Li Y, Wang R. Interleukin-24 inhibits the phenotype and tumorigenicity of cancer stem cell in osteosarcoma via downregulation Notch and Wnt/β-catenin signaling. J Bone Oncol 2021; 31:100403. [PMID: 34804789 PMCID: PMC8581362 DOI: 10.1016/j.jbo.2021.100403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 11/18/2022] Open
Abstract
Osteosarcoma frequently presents as recurrence and metastasis, even if the primary lesion was eradicated and/or radiotherapy and chemotherapy were administered. Osteosarcoma cancer stem cells (CSCs) are one of the key factors for the recurrence and metastasis of osteosarcoma. We have shown that interleukin-24 (IL-24) inhibits osteosarcoma cell proliferation, migration and invasion in vitro. In the current study, we investigated the role of IL-24 in inhibiting the growth of osteosarcoma CSCs. IL-24 inhibited proliferation and invasion and decreased the stemness of osteosarcoma CSCs in vitro. In a nude mouse xenograft model, IL-24 significantly inhibited the growth of tumors originating from osteosarcoma CSCs. Moreover, we found that IL-24 was able to inactivate both Notch and Wnt/β-Catenin signaling, which are important for the development of the biological characteristics of CSCs. These data demonstrate that IL-24 is able to kill not only cancer cells but also CSCs in osteosarcoma, suggesting that IL-24 might eradicate osteosarcoma and enhance long-term cure rates in patients with osteosarcoma.
Collapse
Key Words
- CSCs, cancer stem cells
- Cancer stem cell
- EGF, Epidermal Growth Factor
- HDAC6, histone deacetylase 6
- IL-24
- IL-24, interleukin-24
- JNK, c-Jun N-terminal kinase (JNK
- MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT
- NS, nucleostemin
- Notch signaling
- Osteosarcoma
- Wnt/β-catenin signaling
- bFGF, basic fibroblast growth factor
Collapse
Affiliation(s)
- Baobiao Zhuo
- Department of Surgery, Affiliated Xuzhou Children's Hospital of Xuzhou Medical University, 221002 Xuzhou, Jiangsu, China
- Corresponding authors.
| | - Xihua Wang
- Department of Surgery, Affiliated Xuzhou Children's Hospital of Xuzhou Medical University, 221002 Xuzhou, Jiangsu, China
| | - Yang Shen
- Department of Surgery, Affiliated Xuzhou Children's Hospital of Xuzhou Medical University, 221002 Xuzhou, Jiangsu, China
| | - Jiayong Li
- Department of Surgery, Affiliated Xuzhou Children's Hospital of Xuzhou Medical University, 221002 Xuzhou, Jiangsu, China
| | - Shixian Li
- Department of Surgery, Affiliated Xuzhou Children's Hospital of Xuzhou Medical University, 221002 Xuzhou, Jiangsu, China
| | - Yuan Li
- Department of Surgery, Affiliated Xuzhou Children's Hospital of Xuzhou Medical University, 221002 Xuzhou, Jiangsu, China
| | - Rong Wang
- Department of Ultrasound, The Affiliated Hospital of Xuzhou Medical University, 221006 Xuzhou, Jiangsu, China
- Corresponding authors.
| |
Collapse
|
18
|
The expression, purification, and functional evaluation of the novel tumor suppressor fusion protein IL-24-CN. Appl Microbiol Biotechnol 2021; 105:7889-7898. [PMID: 34568963 DOI: 10.1007/s00253-021-11558-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 08/23/2021] [Accepted: 08/26/2021] [Indexed: 10/20/2022]
Abstract
Interleukin-24 (IL-24) can specifically induce apoptosis in a broad range of cancer cells without harming normal cells. The interaction of contortrostatin (CN) with integrins on angiogenic vascular endothelial and tumor cells is modulated by the RGD motifs that can significantly inhibit metastasis and angiogenesis. To achieve superior therapeutic efficacy by combining anti-metastasis with tumor-selective apoptosis activity, CN was fused at the C-terminus of IL-24 with a flexible linker (G4S)2, and the recombinant IL-24-CN was expressed in Escherichia coli as a Thioredoxin (Trx)/IL-24-CN fusion protein. The target protein was purified using nickel affinity chromatography. Furthermore, we simplified the purification process by purifying Trx-IL-24-CN and cleaving the Trx tag in one step. The final yield of IL-24-CN was 27.6 mg/L based on flask fermentation. In vitro activity assay demonstrated that the recombinant IL-24-CN could more effectively suppress tumor growth and induce apoptosis of melanoma cells. Scratch and transwell assays suggested that IL-24-CN strongly reduced the migration and invasion behavior of melanoma cells. Immunofluorescence analysis and cell adhesion assay showed that CN could evidently improve the tumor inhibition capability of IL-24 by enhancing the affinity of recombinant protein toward cancer cells. In summary, a highly efficient strategy was developed for producing the bioactive IL-24-CN from prokaryotic cells, supporting IL-24-CN in melanoma therapy.Key points• Efficient heterologous production of recombinant IL-24-CN in E. coli using Trx fusion strategy.• Improved tumor growth suppression and apoptosis induction potency of IL-24-CN.• Enhanced cell adhesion ability of IL-24-CN in cancer cells.
Collapse
|
19
|
Suo F, Pan M, Li Y, Yan Q, Hu H, Hou L. Mesenchymal Stem Cells Cultured in 3D System Inhibit Non-Small Cell Lung Cancer Cells through p38 MAPK and CXCR4/AKT Pathways by IL-24 Regulating. Mol Biol 2021. [DOI: 10.1134/s0026893321030110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Liu Z, Guo C, Das SK, Yu X, Pradhan AK, Li X, Ning Y, Chen S, Liu W, Windle JJ, Bear HD, Manjili MH, Fisher PB, Wang XY. Engineering T Cells to Express Tumoricidal MDA-7/IL24 Enhances Cancer Immunotherapy. Cancer Res 2021; 81:2429-2441. [PMID: 33727225 DOI: 10.1158/0008-5472.can-20-2604] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 01/07/2021] [Accepted: 03/10/2021] [Indexed: 11/16/2022]
Abstract
Antigen-specific immunotherapy can be limited by induced tumor immunoediting (e.g., antigen loss) or through failure to recognize antigen-negative tumor clones. Melanoma differentiation-associated gene-7/IL24 (MDA-7/IL24) has profound tumor-specific cytotoxic effects in a broad spectrum of cancers. Here we report the enhanced therapeutic impact of genetically engineering mouse tumor-reactive or antigen-specific T cells to produce human MDA-7/IL24. While mock-transduced T cells only killed antigen-expressing tumor cells, MDA-7/IL24-producing T cells destroyed both antigen-positive and negative cancer targets. MDA-7/IL24-expressing T cells were superior to their mock-engineered counterparts in suppressing mouse prostate cancer and melanoma growth as well as metastasis. This enhanced antitumor potency correlated with increased tumor infiltration and expansion of antigen-specific T cells as well as induction of a Th1-skewed immunostimulatory tumor environment. MDA-7/IL24-potentiated T-cell expansion was dependent on T-cell-intrinsic STAT3 signaling. Finally, MDA-7/IL24-modified T-cell therapy significantly inhibited progression of spontaneous prostate cancers in Hi-Myc transgenic mice. Taken together, arming T cells with tumoricidal and immune-potentiating MDA-7/IL24 confers new capabilities of eradicating antigen-negative cancer cell clones and improving T-cell expansion within tumors. This promising approach may be used to optimize cellular immunotherapy for treating heterogeneous solid cancers and provides a mechanism for inhibiting tumor escape. SIGNIFICANCE: This research describes a novel strategy to overcome the antigenic heterogeneity of solid cancers and prevent tumor escape by engineering T lymphocytes to produce a broad-spectrum tumoricidal agent.
Collapse
Affiliation(s)
- Zheng Liu
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Chunqing Guo
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Swadesh K Das
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, Virginia.,VCU Institute of Molecular Medicine, Virginia Commonwealth University School of Medicine, Richmond, Virginia.,VCU Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Xiaofei Yu
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Anjan K Pradhan
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Xia Li
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Yanxia Ning
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Shixian Chen
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Wenjie Liu
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Jolene J Windle
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, Virginia.,VCU Institute of Molecular Medicine, Virginia Commonwealth University School of Medicine, Richmond, Virginia.,VCU Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Harry D Bear
- VCU Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia.,Department of Surgery, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Masoud H Manjili
- VCU Institute of Molecular Medicine, Virginia Commonwealth University School of Medicine, Richmond, Virginia.,VCU Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia.,Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, Virginia. .,VCU Institute of Molecular Medicine, Virginia Commonwealth University School of Medicine, Richmond, Virginia.,VCU Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Xiang-Yang Wang
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, Virginia. .,VCU Institute of Molecular Medicine, Virginia Commonwealth University School of Medicine, Richmond, Virginia.,VCU Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia.,Hunter Holmes McGuire VA Medical Center, Richmond, Virginia
| |
Collapse
|
21
|
Bhoopathi P, Pradhan AK, Maji S, Das SK, Emdad L, Fisher PB. Theranostic Tripartite Cancer Terminator Virus for Cancer Therapy and Imaging. Cancers (Basel) 2021; 13:cancers13040857. [PMID: 33670594 PMCID: PMC7922065 DOI: 10.3390/cancers13040857] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/10/2021] [Accepted: 02/15/2021] [Indexed: 01/07/2023] Open
Abstract
Simple Summary An optimum cancer therapeutic virus should embody unique properties, including an ability to: Selectively procreate and kill tumor but not normal cells; produce a secreted therapeutic molecule (with broad-acting anti-cancer effects on primary and distant metastatic cells because of potent “bystander” activity); and monitor therapy non-invasively by imaging primary and distant metastatic cancers. We previously created a broad-spectrum, cancer-selective and replication competent therapeutic adenovirus that embodies two of these properties, i.e., specifically reproduces in cancer cells and produces a therapeutic cytokine, MDA-7/IL-24, a “cancer terminator virus” (CTV). We now expand on this concept and demonstrate the feasibility of producing a tripartite CTV (TCTV) selectively expressing three genes from three distinct promoters that replicate in the cancer cells while producing MDA-7/IL-24 and an imaging gene (i.e., luciferase). This novel first-in-class tripartite “theranostic” TCTV expands the utility of therapeutic viruses to non-invasively image and selectively destroy primary tumors and metastases. Abstract Combining cancer-selective viral replication and simultaneous production of a therapeutic cytokine, with potent “bystander” anti-tumor activity, are hallmarks of the cancer terminator virus (CTV). To expand on these attributes, we designed a next generation CTV that additionally enables simultaneous non-invasive imaging of tumors targeted for eradication. A unique tripartite CTV “theranostic” adenovirus (TCTV) has now been created that employs three distinct promoters to target virus replication, cytokine production and imaging capabilities uniquely in cancer cells. Conditional replication of the TCTV is regulated by a cancer-selective (truncated PEG-3) promoter, the therapeutic component, MDA-7/IL-24, is under a ubiquitous (CMV) promoter, and finally the imaging capabilities are synchronized through another cancer selective (truncated tCCN1) promoter. Using in vitro studies and clinically relevant in vivo models of breast and prostate cancer, we demonstrate that incorporating a reporter gene for imaging does not compromise the exceptional therapeutic efficacy of our previously reported bipartite CTV. This TCTV permits targeted treatment of tumors while monitoring tumor regression, with potential to simultaneously detect metastasis due to the cancer-selective activity of reporter gene expression. This “theranostic” virus provides a new genetic tool for distinguishing and treating localized and metastatic cancers.
Collapse
Affiliation(s)
- Praveen Bhoopathi
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (A.K.P.); (S.M.); (S.K.D.); (L.E.)
- Correspondence: (P.B.); (P.B.F.)
| | - Anjan K. Pradhan
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (A.K.P.); (S.M.); (S.K.D.); (L.E.)
| | - Santanu Maji
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (A.K.P.); (S.M.); (S.K.D.); (L.E.)
| | - Swadesh K. Das
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (A.K.P.); (S.M.); (S.K.D.); (L.E.)
- VCU Institute of Molecular Medicine, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
- VCU Massey Cancer Center, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Luni Emdad
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (A.K.P.); (S.M.); (S.K.D.); (L.E.)
- VCU Institute of Molecular Medicine, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
- VCU Massey Cancer Center, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Paul B. Fisher
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (A.K.P.); (S.M.); (S.K.D.); (L.E.)
- VCU Institute of Molecular Medicine, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
- VCU Massey Cancer Center, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
- Correspondence: (P.B.); (P.B.F.)
| |
Collapse
|
22
|
Wu Z, Liu W, Wang Z, Zeng B, Peng G, Niu H, Chen L, Liu C, Hu Q, Zhang Y, Pan M, Wu L, Liu M, Liu X, Liang D. Mesenchymal stem cells derived from iPSCs expressing interleukin-24 inhibit the growth of melanoma in the tumor-bearing mouse model. Cancer Cell Int 2020; 20:33. [PMID: 32015693 PMCID: PMC6990536 DOI: 10.1186/s12935-020-1112-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 01/17/2020] [Indexed: 02/06/2023] Open
Abstract
Background Interleukin-24 (IL-24) is a therapeutic gene for melanoma, which can induce melanoma cell apoptosis. Mesenchymal stem cells (MSCs) show promise as a carrier to delivery anti-cancer factors to tumor tissues. Induced pluripotent stem cells (iPSCs) are an alternative source of mesenchymal stem cells (MSCs). We previously developed a novel non-viral gene targeting vector to target IL-24 to human iPSCs. This study aims to investigate whether MSCs derived from the iPSCs with the site-specific integration of IL-24 can inhibit the growth of melanoma in a tumor-bearing mouse model via retro-orbital injection. Methods IL-24-iPSCs were differentiated into IL-24-iMSCs in vitro, of which cellular properties and potential of differentiation were characterized. The expression of IL-24 in the IL-24-iMSCs was measured by qRT-PCR, Western Blotting, and ELISA analysis. IL-24-iMSCs were transplanted into the melanoma-bearing mice by retro-orbital intravenous injection. The inhibitory effect of IL-24-iMSCs on the melanoma cells was investigated in a co-culture system and tumor-bearing mice. The molecular mechanisms underlying IL-24-iMSCs in exerting anti-tumor effect were also explored. Results iPSCs-derived iMSCs have the typical profile of cell surface markers of MSCs and have the ability to differentiate into osteoblasts, adipocytes, and chondroblasts. The expression level of IL-24 in IL-24-iMSCs reached 95.39 ng/106 cells/24 h, which is significantly higher than that in iMSCs, inducing melanoma cells apoptosis more effectively in vitro compared with iMSCs. IL-24-iMSCs exerted a significant inhibitory effect on the growth of melanoma in subcutaneous mouse models, in which the migration of IL-24-iMSCs to tumor tissue was confirmed. Additionally, increased expression of Bax and Cleaved caspase-3 and down-regulation of Bcl-2 were observed in the mice treated with IL-24-iMSCs. Conclusion MSCs derived from iPSCs with the integration of IL-24 at rDNA locus can inhibit the growth of melanoma in tumor-bearing mouse models when administrated via retro-orbital injection.
Collapse
Affiliation(s)
- Zheng Wu
- 1Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan China
| | - Wei Liu
- 1Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan China
| | - Zujia Wang
- 1Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan China
| | - Baitao Zeng
- 1Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan China
| | - Guangnan Peng
- 1Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan China
| | - Hongyan Niu
- 1Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan China
| | - Linlin Chen
- 1Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan China
| | - Cong Liu
- 1Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan China
| | - Qian Hu
- 1Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan China
| | - Yuxuan Zhang
- 1Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan China
| | - Mengmeng Pan
- 1Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan China
| | - Lingqian Wu
- 1Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan China.,3Hunan Key Laboratory of Animal Model for Human Diseases, Central South University, Changsha, Hunan China
| | - Mujun Liu
- 2Department of Cell Biology, School of Life Sciences, Central South University, Changsha, Hunan China.,3Hunan Key Laboratory of Animal Model for Human Diseases, Central South University, Changsha, Hunan China
| | - Xionghao Liu
- 1Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan China.,3Hunan Key Laboratory of Animal Model for Human Diseases, Central South University, Changsha, Hunan China
| | - Desheng Liang
- 1Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan China.,3Hunan Key Laboratory of Animal Model for Human Diseases, Central South University, Changsha, Hunan China
| |
Collapse
|
23
|
Pradhan AK, Bhoopathi P, Talukdar S, Das SK, Emdad L, Sarkar D, Ivanov AI, Fisher PB. Mechanism of internalization of MDA-7/IL-24 protein and its cognate receptors following ligand-receptor docking. Oncotarget 2019; 10:5103-5117. [PMID: 31489119 PMCID: PMC6707942 DOI: 10.18632/oncotarget.27150] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 07/29/2019] [Indexed: 12/12/2022] Open
Abstract
Melanoma differentiation associated gene-7 (mda-7/IL-24) is a member of the IL-10 family of cytokines, with ubiquitous direct and "bystander" tumor-selective killing properties. MDA-7/IL-24 protein binds distinct type II cytokine heterodimeric receptor complexes, IL-20R1/IL-20R2, IL-22R1/IL-20R1 and IL-22R1/IL-20R2. Recombinant MDA-7/IL-24 protein induces endogenous mda-7/IL-24 expression in a receptor-dependent manner; since A549 cells that lack a complete set of cognate receptors are not responsive to exogenous protein. The mechanism of MDA-7/IL-24 ligand-receptor biology is not well understood. We explored the interaction of MDA-7/IL-24 with its' receptors and the consequences of ligand-receptor docking. Using both pharmacological and genetic approaches we demonstrate that MDA-7/IL-24 internalization employs the clathrin-mediated endocytic pathway leading to degradation of receptors via the lysosomal/ubiquitin proteosomal pathway. This clathrin-mediated endocytosis is dynamin-dependent. This study resolves a novel mechanism of MDA-7/IL-24 protein "bystander" function, which involves receptor/protein-mediated internalization and receptor degradation.
Collapse
Affiliation(s)
- Anjan K. Pradhan
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Praveen Bhoopathi
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Sarmistha Talukdar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Swadesh K. Das
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
- VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Luni Emdad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
- VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
- VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Andrei I. Ivanov
- Department of Inflammation and Immunity, Lerner Research Institute at Cleveland Clinic, Cleveland, OH, USA
| | - Paul B. Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
- VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| |
Collapse
|
24
|
Emdad L, Bhoopathi P, Talukdar S, Pradhan AK, Sarkar D, Wang XY, Das SK, Fisher PB. Recent insights into apoptosis and toxic autophagy: The roles of MDA-7/IL-24, a multidimensional anti-cancer therapeutic. Semin Cancer Biol 2019; 66:140-154. [PMID: 31356866 DOI: 10.1016/j.semcancer.2019.07.013] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 06/21/2019] [Accepted: 07/19/2019] [Indexed: 12/18/2022]
Abstract
Apoptosis and autophagy play seminal roles in maintaining organ homeostasis. Apoptosis represents canonical type I programmed cell death. Autophagy is viewed as pro-survival, however, excessive autophagy can promote type II cell death. Defective regulation of these two obligatory cellular pathways is linked to various diseases, including cancer. Biologic or chemotherapeutic agents, which can reprogram cancer cells to undergo apoptosis- or toxic autophagy-mediated cell death, are considered effective tools for treating cancer. Melanoma differentiation associated gene-7 (mda-7) selectively promotes these effects in cancer cells. mda-7 was identified more than two decades ago by subtraction hybridization showing elevated expression during induction of terminal differentiation of metastatic melanoma cells following treatment with recombinant fibroblast interferon and mezerein (a PKC activating agent). MDA-7 was classified as a member of the IL-10 gene family based on its chromosomal location, and the presence of an IL-10 signature motif and a secretory sequence, and re-named interleukin-24 (MDA-7/IL-24). Multiple studies have established MDA-7/IL-24 as a potent anti-cancer agent, which when administered at supra-physiological levels induces growth arrest and cell death through apoptosis and toxic autophagy in a wide variety of tumor cell types, but not in corresponding normal/non-transformed cells. Furthermore, in a phase I/II clinical trial, MDA-7/IL-24 administered by means of a non-replicating adenovirus was well tolerated and displayed significant clinical activity in patients with multiple advanced cancers. This review examines our current comprehension of the role of MDA-7/IL-24 in mediating cancer-specific cell death via apoptosis and toxic autophagy.
Collapse
Affiliation(s)
- Luni Emdad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA.
| | - Praveen Bhoopathi
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Sarmistha Talukdar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Anjan K Pradhan
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Xiang-Yang Wang
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Swadesh K Das
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA.
| |
Collapse
|
25
|
Watanabe Y, Itoh M, Nakagawa H, Asahina A, Nobeyama Y. Role of interleukin‐24 in the tumor‐suppressive effects of interferon‐β on melanoma. Exp Dermatol 2019; 28:836-844. [DOI: 10.1111/exd.13955] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 04/27/2019] [Accepted: 05/02/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Yoshinori Watanabe
- Department of Dermatology The Jikei University School of Medicine Tokyo Japan
| | - Munenari Itoh
- Department of Dermatology The Jikei University School of Medicine Tokyo Japan
| | - Hidemi Nakagawa
- Department of Dermatology The Jikei University School of Medicine Tokyo Japan
| | - Akihiko Asahina
- Department of Dermatology The Jikei University School of Medicine Tokyo Japan
| | - Yoshimasa Nobeyama
- Department of Dermatology The Jikei University School of Medicine Tokyo Japan
| |
Collapse
|
26
|
Strumillo ST, Curcio MF, de Carvalho FF, Sucupira MA, Diaz RS, Monteiro HP, Janini LMR. HIV-1 infection modulates IL-24 expression which contributes to cell apoptosis in vitro. Cell Biol Int 2019; 43:574-579. [PMID: 30761646 DOI: 10.1002/cbin.11111] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 02/10/2019] [Indexed: 11/10/2022]
Abstract
Although interleukin-24 (IL-24) has been extensively explored in the immunopathologies of autoimmune diseases, neoplasms, and infections, its role in HIV-1 infection has not been thoroughly elucidated to date. Therefore, the objective of this study was to evaluate the gene and protein expressions of IL-24 at the initial moments of HIV infection in PBMCs. Due to the pro-apoptotic role of IL-24, we evaluated the protein expression of caspase-3, as well as Annexin V/Propidium Iodide flow cytometry and phosphorylation of ERK, which may induce an apoptotic signal block when phosphorylated. The results of this study demonstrated that HIV-1 infection had an impact on the gene and protein expressions of IL-24 and ERK. Annexin V/Propidium Iodide assay demonstrated decrease in the mechanisms of apoptosis in infected cells after incubation of IL-24 neutralizing antibody. Studies on how HIV-1 regulates IL-24 expression may play a role in characterizing viral persistence mechanisms and designing antiretroviral strategies.
Collapse
Affiliation(s)
- Scheilla Teixeira Strumillo
- Disciplina de Infectologia, Laboratório de Retrovirologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Marli Ferreira Curcio
- Disciplina de Infectologia, Laboratório de Retrovirologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | | | - Ricardo Sobhie Diaz
- Disciplina de Infectologia, Laboratório de Retrovirologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Hugo Pequeno Monteiro
- Disciplina de Bioquímica, Laboratório de Sinalização Celular, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Luiz Mário Ramos Janini
- Disciplina de Infectologia, Laboratório de Retrovirologia, Universidade Federal de São Paulo, São Paulo, Brazil.,Disciplina de Microbiologia, Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
27
|
MDA-7/IL-24 regulates the miRNA processing enzyme DICER through downregulation of MITF. Proc Natl Acad Sci U S A 2019; 116:5687-5692. [PMID: 30842276 DOI: 10.1073/pnas.1819869116] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Melanoma differentiation-associated gene-7/interleukin-24 (mda-7/IL-24) is a multifunctional cytokine displaying broad-spectrum anticancer activity in vitro or in vivo in preclinical animal cancer models and in a phase 1/2 clinical trial in patients with advanced cancers. mda-7/IL-24 targets specific miRNAs, including miR-221 and miR-320, for down-regulation in a cancer-selective manner. We demonstrate that mda-7/IL-24, administered through a replication incompetent type 5 adenovirus (Ad.mda-7) or with His-MDA-7/IL-24 protein, down-regulates DICER, a critical regulator in miRNA processing. This effect is specific for mature miR-221, as it does not affect Pri-miR-221 expression, and the DICER protein, as no changes occur in other miRNA processing cofactors, including DROSHA, PASHA, or Argonaute. DICER is unchanged by Ad.mda-7/IL-24 in normal immortal prostate cells, whereas Ad.mda-7 down-regulates DICER in multiple cancer cells including glioblastoma multiforme and prostate, breast, lung, and liver carcinoma cells. MDA-7/IL-24 protein down-regulates DICER expression through canonical IL-20/IL-22 receptors. Gain- and loss-of-function studies confirm that overexpression of DICER rescues deregulation of miRNAs by mda-7/IL-24, partially rescuing cancer cells from mda-7/IL-24-mediated cell death. Stable overexpression of DICER in cancer cells impedes Ad.mda-7 or His-MDA-7/IL-24 inhibition of cell growth, colony formation, PARP cleavage, and apoptosis. In addition, stable overexpression of DICER renders cancer cells more resistant to Ad.mda-7 inhibition of primary and secondary tumor growth. MDA-7/IL-24-mediated regulation of DICER is reactive oxygen species-dependent and mediated by melanogenesis-associated transcription factor. Our research uncovers a distinct role of mda-7/IL-24 in the regulation of miRNA biogenesis through alteration of the MITF-DICER pathway.
Collapse
|
28
|
MicroRNA-4719 and microRNA-6756-5p Correlate with Castration-Resistant Prostate Cancer Progression through Interleukin-24 Regulation. Noncoding RNA 2019; 5:ncrna5010010. [PMID: 30669553 PMCID: PMC6468726 DOI: 10.3390/ncrna5010010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 01/16/2019] [Accepted: 01/18/2019] [Indexed: 12/13/2022] Open
Abstract
Prostate cancer (PCa) is the second leading cause of cancer death in the United States. The five-year survival rate for men diagnosed with localized PCa is nearly 100%, yet for those diagnosed with aggressive PCa, it is less than 30%. The pleiotropic cytokine Interleukin-24 (IL-24) has been shown to specifically kill PCa cells compared to normal cells when overexpressed in both in vitro and in vivo studies. Despite this, the mechanisms regulating IL-24 in PCa are not well understood. Since specific microRNAs (miRNAs) are dysregulated in PCa, we used miRNA target prediction algorithm tools to identify miR-4719 and miR-6556-5p as putative regulators of IL-24. This study elucidates the expression profile and role of miR-4719 and miR-6756-5p as regulators of IL-24 in PCa. qRT-PCR analysis shows miR-4719 and miR-6756-5p overexpression significantly decreases the expression of IL-24 in PCa cells compared to the negative control. Compared to the indolent PCa and normal prostate epithelial cells, miR-4719 and miR-6756-5p are significantly overexpressed in castration-resistant prostate cancer (CRPC) cell lines, indicating that their gain may be an early event in PCa progression. Moreover, miR-4719 and miR-6756-5p are significantly overexpressed in the CRPC cell line of African-American males (E006AA-hT) compared to CRPC cell lines of Caucasian males (PC-3 and DU-145), indicating that miR-4719 and miR-6756-5p may also play a role in racial disparity. Lastly, the inhibition of expression of miR-4719 and miR-6756-5p significantly increases IL-24 expression and inhibits proliferation and migration of CRPC cell lines. Our findings indicate that miR-4719 and miR-6756-5p may regulate CRPC progression through the targeting of IL-24 expression and may be biomarkers that differentiate between indolent and CRPC. Strategies to inhibit miR-4719 and miR-6756-5p expression to increase IL-24 in PCa may have therapeutic efficacy in aggressive PCa.
Collapse
|
29
|
Rasoolian M, Kheirollahi M, Hosseini SY. MDA-7/interleukin 24 (IL-24) in tumor gene therapy: application of tumor penetrating/homing peptides for improvement of the effects. Expert Opin Biol Ther 2019; 19:211-223. [PMID: 30612497 DOI: 10.1080/14712598.2019.1566453] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION MDA-7/Interleukin-24 (IL-24), as a pleiotropic cytokine, exhibits a specific tumor suppression property that has attracted a great deal of attention. While its anti-tumor induction is mostly attributed to endogenous gene expression, attachment of secreted MDA-7/IL-24 to cognate receptors also triggers the death of cancerous cell via different pathways. Therefore, precise targeting of secreted MDA-7/IL-24 to tumor cells would render it more efficacy and specificity. AREAS COVERED In order to target soluble cytokines, particularly MDA-7/IL-24 to the neighbor tumor sites and enhance their therapeutic efficiency, fusing with cell penetrating peptides (CPPs) or Tumor homing peptides (THPs) seems logical due to the improvement of their bystander effects. Although the detailed anti-tumor mechanisms of endogenous mda-7/IL-24 have been largely investigated, the significance of the secreted form in these activities and methods of its improving by CPPs or THPs need more discussion. EXPERT OPINION While the employment of CPPs/THPs for the improvement of cytokine gene therapy is desirable, to create fusions of CPPs/THPs with MDA-7/IL-24, some hurdles are not avoidable. Regarding our expertise, herein, the importance of CPPs/THPs, needs for their elegant designing in a fusion structure, and their applications in cytokine gene therapy are discussed with a special focus on mda-7/IL-24.
Collapse
Affiliation(s)
- Mohammad Rasoolian
- a Department of Genetics and Molecular Biology, School of Medicine , Isfahan University of Medical Sciences , Isfahan , Iran
| | - Majid Kheirollahi
- a Department of Genetics and Molecular Biology, School of Medicine , Isfahan University of Medical Sciences , Isfahan , Iran.,b Department of Genetics and Molecular Biology, Pediatrics Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease School of Medicine , Isfahan University of Medical Sciences , Isfahan , Iran
| | - Seyed Younes Hosseini
- c Bacteriology and Virology Department, School of Medicine , Shiraz University of Medical Sciences , Shiraz , Iran
| |
Collapse
|
30
|
Pradhan AK, Bhoopathi P, Talukdar S, Shen XN, Emdad L, Das SK, Sarkar D, Fisher PB. Recombinant MDA-7/IL24 Suppresses Prostate Cancer Bone Metastasis through Downregulation of the Akt/Mcl-1 Pathway. Mol Cancer Ther 2018; 17:1951-1960. [PMID: 29934341 DOI: 10.1158/1535-7163.mct-17-1002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 04/23/2018] [Accepted: 06/15/2018] [Indexed: 12/17/2022]
Abstract
Prostate cancer is a principal cause of cancer-associated morbidity in men. Although 5-year survival of patients with localized prostate cancer approaches 100%, survival decreases precipitously after metastasis. Bone is the preferred site for disseminated prostate cancer cell colonization, altering the equilibrium of bone homeostasis resulting in weak and fragile bones. Currently, no curative options are available for prostate cancer bone metastasis. Melanoma differentiation associated gene-7 (MDA-7)/IL24 is a well-studied cytokine established as a therapeutic in a wide array of cancers upon delivery as a gene therapy. In this study, we explored the potential anticancer properties of MDA-7/IL24 delivered as a recombinant protein. Using bone metastasis experimental models, animals treated with recombinant MDA-7/IL24 had significantly less metastatic lesions in their femurs as compared with controls. The inhibitory effects of MDA-7/IL24 on bone metastasis resulted from prostate cancer-selective killing and inhibition of osteoclast differentiation, which is necessary for bone resorption. Gain- and loss-of-function genetic approaches document that prosurvival Akt and Mcl-1 pathways are critically important in the antibone metastatic activity of MDA-7/IL24. Our previous findings showed that MDA-7/IL24 gene therapy plus Mcl-1 inhibitors cooperate synergistically. Similarly, an Mcl-1 small-molecule inhibitor synergized with MDA-7/IL24 and induced robust antibone metastatic activity. These results expand the potential applications of MDA-7/IL24 as an anticancer molecule and demonstrate that purified recombinant protein is nontoxic in preclinical animal models and has profound inhibitory effects on bone metastasis, which can be enhanced further when combined with an Mcl-1 inhibitory small molecule. Mol Cancer Ther; 17(9); 1951-60. ©2018 AACR.
Collapse
Affiliation(s)
- Anjan K Pradhan
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Praveen Bhoopathi
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Sarmistha Talukdar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Xue-Ning Shen
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Luni Emdad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia.,VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia.,VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Swadesh K Das
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia.,VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia.,VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia.,VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia.,VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia. .,VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia.,VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| |
Collapse
|
31
|
Zhong X, Persaud L, Muharam H, Francis A, Das D, Aktas BH, Sauane M. Eukaryotic Translation Initiation Factor 4A Down-Regulation Mediates Interleukin-24-Induced Apoptosis through Inhibition of Translation. Cancers (Basel) 2018; 10:cancers10050153. [PMID: 29786657 PMCID: PMC5977126 DOI: 10.3390/cancers10050153] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 05/13/2018] [Accepted: 05/17/2018] [Indexed: 12/13/2022] Open
Abstract
Dysregulated activity of helicase eIF4A drives transformation to and maintenance of cancer cell phenotype by reprogramming cellular translation. Interleukin 24 (IL-24) is a tumor-suppressing protein, which has the ability to inhibit angiogenesis, sensitize cancer cells to chemotherapy, and induce cancer cell-specific apoptosis. In this study, we found that eIF4A is inhibited by IL-24. Consequently, selective reduction of translation was observed for mRNAs harboring strong secondary structures in their 5′-untranslated regions (5′UTRs). These mRNAs encode proteins, which function in cell survival and proliferation. Consistently, overexpression of eIF4A conferred cancer cells with resistance to IL-24-induced cell death. It has been established that inhibition of eIF4A triggers mitochondrial-mediated apoptosis. We showed that IL-24 induces eIF4A-dependent mitochondrial depolarization. We also showed that IL-24 induces Sigma 1 Receptor-dependent eIF4A down-regulation and mitochondrial depolarization. Thus, the progress of apoptosis triggered by IL-24 is characterized by a complex program of changes in regulation of several initiation factors, including the eIF4A.
Collapse
Affiliation(s)
- Xuelin Zhong
- Department of Biological Sciences, Herbert H. Lehman College, City University of New York, 250 Bedford Park Boulevard West, Bronx, NY 10468, USA.
- Department of Biology, The Graduate Center, City University of New York, 365 Fifth Avenue, Room 4315, New York, NY 10016, USA.
| | - Leah Persaud
- Department of Biological Sciences, Herbert H. Lehman College, City University of New York, 250 Bedford Park Boulevard West, Bronx, NY 10468, USA.
- Department of Biology, The Graduate Center, City University of New York, 365 Fifth Avenue, Room 4315, New York, NY 10016, USA.
| | - Hilal Muharam
- Department of Biological Sciences, Herbert H. Lehman College, City University of New York, 250 Bedford Park Boulevard West, Bronx, NY 10468, USA.
| | - Ashleigh Francis
- Department of Biological Sciences, Herbert H. Lehman College, City University of New York, 250 Bedford Park Boulevard West, Bronx, NY 10468, USA.
| | - Dibash Das
- Department of Biological Sciences, Herbert H. Lehman College, City University of New York, 250 Bedford Park Boulevard West, Bronx, NY 10468, USA.
- Department of Biology, The Graduate Center, City University of New York, 365 Fifth Avenue, Room 4315, New York, NY 10016, USA.
| | - Bertal Huseyin Aktas
- Department of Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA.
- Harvard Medical School, Laboratory for Translational Research, One Kendall Square, Building 600, 3rd Floor, Cambridge, MA 02139, USA.
| | - Moira Sauane
- Department of Biological Sciences, Herbert H. Lehman College, City University of New York, 250 Bedford Park Boulevard West, Bronx, NY 10468, USA.
- Department of Biology, The Graduate Center, City University of New York, 365 Fifth Avenue, Room 4315, New York, NY 10016, USA.
| |
Collapse
|
32
|
Liu B, Chen F, Wu Y, Wang X, Feng M, Li Z, Zhou M, Wang Y, Wu L, Liu X, Liang D. Enhanced tumor growth inhibition by mesenchymal stem cells derived from iPSCs with targeted integration of interleukin24 into rDNA loci. Oncotarget 2018; 8:40791-40803. [PMID: 28388559 PMCID: PMC5522332 DOI: 10.18632/oncotarget.16584] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 03/13/2017] [Indexed: 12/16/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) are a promising source of mesenchymal stem cells (MSCs) for clinical applications. In this study, we transformed human iPSCs using a non-viral vector carrying the IL24 transgene pHrn-IL24. PCR and southern blotting confirmed IL24 integration into the rDNA loci in four of 68 iPSC clones. We then differentiated a high expressing IL24-iPSC clone into MSCs (IL24-iMSCs) that showed higher expression of IL24 in culture supernatants and in cell lysates than control iMSCs. IL24-iMSCs efficiently differentiated into osteoblasts, chondrocytes and adipocytes. Functionally, IL24-iMSCs induced in vitro apoptosis in B16-F10 melanoma cells more efficiently than control iMSCs when co-cultured in Transwell assays. In vivo tumor xenograft studies in mice demonstrated that IL24-iMSCs inhibited melanoma growth more than control iMSCs did. Immunofluorescence and histochemical analysis showed larger necrotic areas and cell nuclear aggregation in tumors with IL24-iMSCs than control iMSCs, indicating that IL24-iMSCs inhibited tumor growth by inducing apoptosis. These findings demonstrate efficient transformation of iPSCs through gene targeting with non-viral vectors into a rDNA locus. The ability of these genetically modified MSCs to inhibit in vivo melanoma growth is suggestive of the clinical potential of autologous cell therapy in cancer.
Collapse
Affiliation(s)
- Bo Liu
- The State Key Laboratory of Medical Genetics and School of Life Sciences, Central South University, Changsha, China
| | - Fei Chen
- The State Key Laboratory of Medical Genetics and School of Life Sciences, Central South University, Changsha, China
| | - Yong Wu
- The State Key Laboratory of Medical Genetics and School of Life Sciences, Central South University, Changsha, China
| | - Xiaolin Wang
- The State Key Laboratory of Medical Genetics and School of Life Sciences, Central South University, Changsha, China
| | - Mai Feng
- The State Key Laboratory of Medical Genetics and School of Life Sciences, Central South University, Changsha, China
| | - Zhuo Li
- The State Key Laboratory of Medical Genetics and School of Life Sciences, Central South University, Changsha, China
| | - Miaojin Zhou
- The State Key Laboratory of Medical Genetics and School of Life Sciences, Central South University, Changsha, China
| | - Yanchi Wang
- The State Key Laboratory of Medical Genetics and School of Life Sciences, Central South University, Changsha, China
| | - Lingqian Wu
- The State Key Laboratory of Medical Genetics and School of Life Sciences, Central South University, Changsha, China
| | - Xionghao Liu
- The State Key Laboratory of Medical Genetics and School of Life Sciences, Central South University, Changsha, China
| | - Desheng Liang
- The State Key Laboratory of Medical Genetics and School of Life Sciences, Central South University, Changsha, China
| |
Collapse
|
33
|
Abstract
Subtraction hybridization identified genes displaying differential expression as metastatic human melanoma cells terminally differentiated and lost tumorigenic properties by treatment with recombinant fibroblast interferon and mezerein. This approach permitted cloning of multiple genes displaying enhanced expression when melanoma cells terminally differentiated, called melanoma differentiation associated (mda) genes. One mda gene, mda-7, has risen to the top of the list based on its relevance to cancer and now inflammation and other pathological states, which based on presence of a secretory sequence, chromosomal location, and an IL-10 signature motif has been named interleukin-24 (MDA-7/IL-24). Discovered in the early 1990s, MDA-7/IL-24 has proven to be a potent, near ubiquitous cancer suppressor gene capable of inducing cancer cell death through apoptosis and toxic autophagy in cancer cells in vitro and in preclinical animal models in vivo. In addition, MDA-7/IL-24 embodied profound anticancer activity in a Phase I/II clinical trial following direct injection with an adenovirus (Ad.mda-7; INGN-241) in tumors in patients with advanced cancers. In multiple independent studies, MDA-7/IL-24 has been implicated in many pathological states involving inflammation and may play a role in inflammatory bowel disease, psoriasis, cardiovascular disease, rheumatoid arthritis, tuberculosis, and viral infection. This review provides an up-to-date review on the multifunctional gene mda-7/IL-24, which may hold potential for the therapy of not only cancer, but also other pathological states.
Collapse
|
34
|
Jamhiri I, Zahri S, Mehrabani D, Khodabandeh Z, Dianatpour M, Yaghobi R, Hosseini SY. Enhancing the apoptotic effect of IL-24/mda-7 on the human hepatic stellate cell through RGD peptide modification. Immunol Invest 2018; 47:335-350. [DOI: 10.1080/08820139.2018.1433202] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Iman Jamhiri
- Department of Biology, Cell and Molecular Laboratory, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Saber Zahri
- Department of Biology, Cell and Molecular Laboratory, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Davood Mehrabani
- Stem Cell Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Khodabandeh
- Stem Cell Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Dianatpour
- Stem Cell Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Human Genetics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ramin Yaghobi
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Younes Hosseini
- Department of Bacteriology and Virology, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
35
|
Emdad L, Das SK, Wang XY, Sarkar D, Fisher PB. Cancer terminator viruses (CTV): A better solution for viral-based therapy of cancer. J Cell Physiol 2018; 233:5684-5695. [PMID: 29278667 DOI: 10.1002/jcp.26421] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 12/20/2017] [Indexed: 12/30/2022]
Abstract
In principle, viral gene therapy holds significant potential for the therapy of solid cancers. However, this promise has not been fully realized and systemic administration of viruses has not proven as successful as envisioned in the clinical arena. Our research is focused on developing the next generation of efficacious viruses to specifically treat both primary cancers and a major cause of cancer lethality, metastatic tumors (that have spread from a primary site of origin to other areas in the body and are responsible for an estimated 90% of cancer deaths). We have generated a chimeric tropism-modified type 5 and 3 adenovirus that selectively replicates in cancer cells and simultaneously produces a secreted anti-cancer toxic cytokine, melanoma differentiation associated gene-7/Interleukin-24 (mda-7/IL-24), referred to as a Cancer Terminator Virus (CTV) (Ad.5/3-CTV). In preclinical animal models, injection into a primary tumor causes selective cell death and therapeutic activity is also observed in non-injected distant tumors, that is, "bystander anti-tumor activity." To enhance the impact and therapeutic utility of the CTV, we have pioneered an elegant approach in which viruses are encapsulated in microbubbles allowing "stealth delivery" to tumor cells that when treated with focused ultrasound causes viral release killing tumor cells through viral replication, and producing and secreting MDA-7/IL-24, which stimulates the immune system to attack distant cancers, inhibits tumor angiogenesis and directly promotes apoptosis in distant cancer cells. This strategy is called UTMD (ultrasound-targeted microbubble-destruction). This novel CTV and UTMD approach hold significant promise for the effective therapy of primary and disseminated tumors.
Collapse
Affiliation(s)
- Luni Emdad
- Department of Human and Molecular Genetics, School of Medicine, VCU Institute of Molecular Medicine and VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Swadesh K Das
- Department of Human and Molecular Genetics, School of Medicine, VCU Institute of Molecular Medicine and VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Xiang-Yang Wang
- Department of Human and Molecular Genetics, School of Medicine, VCU Institute of Molecular Medicine and VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, School of Medicine, VCU Institute of Molecular Medicine and VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Paul B Fisher
- Department of Human and Molecular Genetics, School of Medicine, VCU Institute of Molecular Medicine and VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
36
|
TAT-IL-24-KDEL-induced apoptosis is inhibited by survivin but restored by the small molecular survivin inhibitor, YM155, in cancer cells. Oncotarget 2018; 7:37030-37042. [PMID: 27203744 PMCID: PMC5095056 DOI: 10.18632/oncotarget.9458] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 04/19/2016] [Indexed: 11/25/2022] Open
Abstract
Interleukin-24 (IL-24) is a cytokine belonging to the IL-10 gene family. This cytokine selectively induces apoptosis in cancer cells, without harming normal cells, through a mechanism involving endoplasmic reticulum (ER) stress response. TAT-IL-24-KDEL is a fusion protein that efficiently enters the tumor cells and locates in the ER. Here we report that TAT-IL-24-KDEL induced apoptosis in human cancer cells, mediated by the ER stress cell death pathway. This process was accompanied by the inhibition of the transcription of an antiapoptotic protein, survivin. The forced expression of survivin partially protected cancer cells from the induction of apoptosis by TAT-IL-24-KDEL, increased their clonogenic survival, and attenuated TAT-IL-24-KDEL-induced activation of caspase-3/7. RNA interference of survivin markedly sensitized the transformed cells to TAT-IL-24-KDEL. Survivin was expressed at higher levels among isolated clones that resistant to TAT-IL-24-KDEL. These observations show the important role of survivin in attenuating cancer-specific apoptosis induced by TAT-IL-24-KDEL. The pharmacological inhibition of survivin expression by a selective small-molecule survivin suppressant YM155 synergistically sensitized cancer cells to TAT-IL-24-KDEL-induced apoptosis in vitro and in vivo. The combined regimen caused significantly higher activation of ER stress and dysfunction of mitochondria than either treatment alone. As survivin is overexpressed in a majority of cancers, the combined TAT-IL-24-KDEL and YM155 treatment provides a promising alternative to the existing therapies.
Collapse
|
37
|
Kawada S, Nagasawa Y, Kawabe M, Ohyama H, Kida A, Kato-Kogoe N, Nanami M, Hasuike Y, Kuragano T, Kishimoto H, Nakasho K, Nakanishi T. Iron-induced calcification in human aortic vascular smooth muscle cells through interleukin-24 (IL-24), with/without TNF-alpha. Sci Rep 2018; 8:658. [PMID: 29330517 PMCID: PMC5766506 DOI: 10.1038/s41598-017-19092-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 12/20/2017] [Indexed: 12/14/2022] Open
Abstract
In CKD patients, arteriosclerotic lesions, including calcification, can occur in vascular smooth muscle cells in a process called Moenckeberg's medial arteriosclerosis. Iron overload induces several complications, including the acceleration of arteriosclerosis. However, the relationship between Moenckeberg's arteriosclerosis in vascular smooth muscle cells and iron accumulation has remained unknown. We tested the accelerated effect of iron on calcification in cultured human aortic vascular smooth muscle cells (HASMCs). After establishment of this model, we performed a microarray analysis using mRNA from early stage culture HASMCs after iron stimulation with or without TNF-alpha stimulation. The role of interleukin-24 (IL-24) was confirmed from candidate genes that might contribute to calcification. HASMCs demonstrated calcification induced by iron and TNF-alpha. Calcification of HASMCs was synergistically enhanced by stimulation with both iron and TNF-alpha. In the early phase of calcification, microarray analysis revealed up-regulation of IL-24. Stimulation of HASMCs by IL-24 instead of iron induced calcification. The anti-IL-24 antibody reversed the effect of IL-24, supporting the important role of IL-24 in HASMCs calcification. In conclusion, iron-induced calcification in vascular smooth muscle cells occurred via IL-24, IL-24 was increased during the calcification process induced by iron, and IL-24 itself caused calcification in the absence of iron.
Collapse
Affiliation(s)
- Sayuri Kawada
- Department of Internal Medicine, Division of Kidney and Dialysis, Hyogo College of Medicine, 1-1 Mukogawa-Cho, Nishinomiya, Hyogo, Japan
| | - Yasuyuki Nagasawa
- Department of Internal Medicine, Division of Kidney and Dialysis, Hyogo College of Medicine, 1-1 Mukogawa-Cho, Nishinomiya, Hyogo, Japan.
| | - Mutsuki Kawabe
- Department of Pathology, Hyogo College of Medicine, 1-1 Mukogawa-Cho, Nishinomiya, Hyogo, Japan.,Department of Oral and Maxillofacial Surgery, Hyogo College of Medicine, 1-1 Mukogawa-Cho, Nishinomiya, Hyogo, Japan
| | - Hideki Ohyama
- Department of Pathology, Hyogo College of Medicine, 1-1 Mukogawa-Cho, Nishinomiya, Hyogo, Japan
| | - Aritoshi Kida
- Department of Internal Medicine, Division of Kidney and Dialysis, Hyogo College of Medicine, 1-1 Mukogawa-Cho, Nishinomiya, Hyogo, Japan
| | - Nahoko Kato-Kogoe
- Department of Pathology, Hyogo College of Medicine, 1-1 Mukogawa-Cho, Nishinomiya, Hyogo, Japan
| | - Masayoshi Nanami
- Department of Internal Medicine, Division of Kidney and Dialysis, Hyogo College of Medicine, 1-1 Mukogawa-Cho, Nishinomiya, Hyogo, Japan
| | - Yukiko Hasuike
- Department of Internal Medicine, Division of Kidney and Dialysis, Hyogo College of Medicine, 1-1 Mukogawa-Cho, Nishinomiya, Hyogo, Japan
| | - Takahiro Kuragano
- Department of Internal Medicine, Division of Kidney and Dialysis, Hyogo College of Medicine, 1-1 Mukogawa-Cho, Nishinomiya, Hyogo, Japan
| | - Hiromitsu Kishimoto
- Department of Oral and Maxillofacial Surgery, Hyogo College of Medicine, 1-1 Mukogawa-Cho, Nishinomiya, Hyogo, Japan
| | - Keiji Nakasho
- Department of Pathology, Hyogo College of Medicine, 1-1 Mukogawa-Cho, Nishinomiya, Hyogo, Japan
| | - Takeshi Nakanishi
- Department of Internal Medicine, Division of Kidney and Dialysis, Hyogo College of Medicine, 1-1 Mukogawa-Cho, Nishinomiya, Hyogo, Japan
| |
Collapse
|
38
|
Wechman SL, Pradhan AK, DeSalle R, Das SK, Emdad L, Sarkar D, Fisher PB. New Insights Into Beclin-1: Evolution and Pan-Malignancy Inhibitor Activity. Adv Cancer Res 2017; 137:77-114. [PMID: 29405978 DOI: 10.1016/bs.acr.2017.11.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Autophagy is a functionally conserved self-degradation process that facilitates the survival of eukaryotic life via the management of cellular bioenergetics and maintenance of the fidelity of genomic DNA. The first known autophagy inducer was Beclin-1. Beclin-1 is expressed in multicellular eukaryotes ranging throughout plants to animals, comprising a nonmonophyllic group, as shown in this report via aggressive BLAST searches. In humans, Beclin-1 is a haploinsuffient tumor suppressor as biallelic deletions have not been observed in patient tumors clinically. Therefore, Beclin-1 fails the Knudson hypothesis, implicating expression of at least one Beclin-1 allele is essential for cancer cell survival. However, Beclin-1 is frequently monoallelically deleted in advanced human cancers and the expression of two Beclin-1 allelles is associated with greater anticancer effects. Overall, experimental evidence suggests that Beclin-1 inhibits tumor formation, angiogenesis, and metastasis alone and in cooperation with the tumor suppressive molecules UVRAG, Bif-1, Ambra1, and MDA-7/IL-24 via diverse mechanisms of action. Conversely, Beclin-1 is upregulated in cancer stem cells (CSCs), portending a role in cancer recurrence, and highlighting this molecule as an intriguing molecular target for the treatment of CSCs. Many aspects of Beclin-1's biological effects remain to be studied. The consequences of these BLAST searches on the molecular evolution of Beclin-1, and the eukaryotic branches of the tree of life, are discussed here in greater detail with future inquiry focused upon protist taxa. Also in this review, the effects of Beclin-1 on tumor suppression and cancer malignancy are discussed. Beclin-1 holds significant promise for the development of novel targeted cancer therapeutics and is anticipated to lead to a many advances in our understanding of eukaryotic evolution, multicellularity, and even the treatment of CSCs in the coming decades.
Collapse
Affiliation(s)
- Stephen L Wechman
- Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Anjan K Pradhan
- Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Rob DeSalle
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY, United States
| | - Swadesh K Das
- Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Luni Emdad
- Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Devanand Sarkar
- Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Paul B Fisher
- Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.
| |
Collapse
|
39
|
Abstract
MicroRNAs (miRNAs or miRs) are small 19-22 nucleotide long, noncoding, single-stranded, and multifunctional RNAs that regulate a diverse assortment of gene and protein functions that impact on a vast network of pathways. Lin-4, a noncoding transcript discovered in 1993 and named miRNA, initiated the exploration of research into these intriguing molecules identified in almost all organisms. miRNAs interfere with translation or posttranscriptional regulation of their target gene and regulate multiple biological actions exerted by these target genes. In cancer, they function as both oncogenes and tumor suppressor genes displaying differential activity in various cellular contexts. Although the role of miRNAs on target gene functions has been extensively investigated, less is currently known about the upstream regulatory molecules that regulate miRNAs. This chapter focuses on the factors and processes involved in miRNA regulation.
Collapse
Affiliation(s)
- Anjan K Pradhan
- Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Luni Emdad
- Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Swadesh K Das
- Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Devanand Sarkar
- Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Paul B Fisher
- Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.
| |
Collapse
|
40
|
Persaud L, Zhong X, Alvarado G, Do W, Dejoie J, Zybtseva A, Aktas BH, Sauane M. eIF2α Phosphorylation Mediates IL24-Induced Apoptosis through Inhibition of Translation. Mol Cancer Res 2017; 15:1117-1124. [PMID: 28461326 DOI: 10.1158/1541-7786.mcr-16-0454] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 04/01/2017] [Accepted: 04/26/2017] [Indexed: 11/16/2022]
Abstract
IL24 is an immunomodulatory cytokine that also displays broad cancer-specific suppressor effects. The tumor-suppressor activities of IL24 include inhibition of angiogenesis, sensitization to chemotherapy, and cancer-specific apoptosis. Supra-physiologic activation and/or overexpression of translation initiation factors are implicated in the initiation and progression of cancer animal models as well as a subset of human cancers. Activation and/or overexpression of translation initiation factors correlate with aggressiveness of cancer and poor prognosis. Two rate-limiting translation initiation complexes, the ternary complex and the eIF4F complex, are regulated by eIF2α and 4E-BP1 phosphorylation, respectively. The work reported here provides direct evidence that IL24 induces inhibition of translation initiation leading to apoptosis in squamous cell carcinoma. A dominant constitutively active mutant of eIF2α, which is resistant to phosphorylation, was used to determine the involvement of eIF2α in IL24-induced apoptosis. Treatment with IL24 resulted in inhibition of protein synthesis, expression of downstream biomarkers of ternary complex depletion such as CHOP, and induction of apoptosis in cancer cells. The constitutively active nonphosphorylatable mutant of eIF2α, eIF2α-S51A, reversed both the IL24-mediated translational block and IL24-induced apoptosis. Intriguingly, IL24 treatment also caused hypophosphorylation of 4E-BP1, which binds to eIF4E with high affinity, thus preventing its association with eIF4G and therefore preventing elF4F complex assembly.Implications: These results demonstrate a previously unrecognized role of IL24 in inhibition of translation, mediated through both phosphorylation of eIF2α and dephosphorylation of 4E-BP1, and provide the first direct evidence for translation control of gene-specific expression by IL24. Mol Cancer Res; 15(8); 1117-24. ©2017 AACR.
Collapse
Affiliation(s)
- Leah Persaud
- Department of Biological Sciences, Herbert H. Lehman College, City University of New York, Bronx, New York.,Department of Biology, the Graduate Center, City University of New York, New York, New York
| | - Xuelin Zhong
- Department of Biological Sciences, Herbert H. Lehman College, City University of New York, Bronx, New York.,Department of Biology, the Graduate Center, City University of New York, New York, New York
| | - Giselle Alvarado
- Department of Biological Sciences, Herbert H. Lehman College, City University of New York, Bronx, New York
| | - Winchie Do
- Department of Biological Sciences, Herbert H. Lehman College, City University of New York, Bronx, New York
| | - Jordan Dejoie
- Department of Biological Sciences, Herbert H. Lehman College, City University of New York, Bronx, New York
| | - Anna Zybtseva
- Department of Biological Sciences, Herbert H. Lehman College, City University of New York, Bronx, New York
| | - Bertal Huseyin Aktas
- Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts.,Harvard Medical School, Laboratory for Translational Research, Cambridge, Massachusetts
| | - Moira Sauane
- Department of Biological Sciences, Herbert H. Lehman College, City University of New York, Bronx, New York. .,Department of Biology, the Graduate Center, City University of New York, New York, New York
| |
Collapse
|
41
|
Pradhan AK, Talukdar S, Bhoopathi P, Shen XN, Emdad L, Das SK, Sarkar D, Fisher PB. mda-7/IL-24 Mediates Cancer Cell-Specific Death via Regulation of miR-221 and the Beclin-1 Axis. Cancer Res 2016; 77:949-959. [PMID: 27940575 DOI: 10.1158/0008-5472.can-16-1731] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 11/03/2016] [Accepted: 11/23/2016] [Indexed: 12/19/2022]
Abstract
Melanoma differentiation-associated gene-7/IL-24 (mda-7/IL-24) displays broad-spectrum anticancer activity in vitro, in vivo in preclinical animal models, and in a phase I/II clinical trial in patients with advanced cancers without harming normal cells or tissues. Here we demonstrate that mda-7/IL-24 regulates a specific subset of miRNAs, including cancer-associated miR-221. Either ectopic expression of mda-7/IL-24 or treatment with recombinant His-MDA-7 protein resulted in downregulation of miR-221 and upregulation of p27 and PUMA in a panel of cancer cells, culminating in cell death. Mda-7/IL-24-induced cancer cell death was dependent on reactive oxygen species induction and was rescued by overexpression of miR-221. Beclin-1 was identified as a new transcriptional target of miR-221, and mda-7/IL-24 regulated autophagy through a miR-221/beclin-1 feedback loop. In a human breast cancer xenograft model, miR-221-overexpressing MDA-MB-231 clones were more aggressive and resistant to mda-7/IL-24-mediated cell death than parental clones. This is the first demonstration that mda-7/IL-24 directly regulates miRNA expression in cancer cells and highlights the novelty of the mda-7/IL-24-miR-221-beclin-1 loop in mediating cancer cell-specific death. Cancer Res; 77(4); 949-59. ©2016 AACR.
Collapse
Affiliation(s)
- Anjan K Pradhan
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Sarmistha Talukdar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Praveen Bhoopathi
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Xue-Ning Shen
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Luni Emdad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia.,VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia.,VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Swadesh K Das
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia.,VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia.,VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia.,VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia.,VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia. .,VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia.,VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| |
Collapse
|
42
|
Hosseini E, Hosseini SY, Hashempour T, Fattahi MR, Sadeghizadeh M. Effect of RGD coupled MDA-7/IL-24 on apoptosis induction in a hepatocellular carcinoma cell line. Mol Med Rep 2016; 15:495-501. [DOI: 10.3892/mmr.2016.6009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 11/02/2016] [Indexed: 11/05/2022] Open
|
43
|
Shao J, Zhang B, Yu JJ, Wei CY, Zhou WJ, Chang KK, Yang HL, Jin LP, Zhu XY, Li MQ. Macrophages promote the growth and invasion of endometrial stromal cells by downregulating IL-24 in endometriosis. Reproduction 2016; 152:673-682. [DOI: 10.1530/rep-16-0278] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 09/13/2016] [Indexed: 11/08/2022]
Abstract
Macrophages play an important role in the origin and development of endometriosis. Estrogen promoted the growth of decidual stromal cells (DSCs) by downregulating the level of interleukin (IL)-24. The aim of this study was to clarify the role and mechanism of IL-24 and its receptors in the regulation of biological functions of endometrial stromal cells (ESCs) during endometriosis. The level of IL-24 and its receptors in endometrium was measured by immunohistochemistry.In vitroanalysis was used to measure the level of IL-24 and receptors and the biological behaviors of ESCs. Here, we found that the expression of IL-24 and its receptors (IL-20R1 and IL-20R2) in control endometrium was significantly higher than that in eutopic and ectopic endometrium of women with endometriosis. Recombinant human IL-24 (rhIL-24) significantly inhibited the viability of ESCs in a dosage-dependent manner. Conversely, blocking IL-24 with anti-IL-24 neutralizing antibody promoted ESCs viability. In addition, rhIL-24 could downregulate the invasiveness of ESCsin vitro. After co-culture, macrophages markedly reduced the expression of IL-24 and IL-20R1 in ESCs, but not IL-22R1. Moreover, macrophages significantly restricted the inhibitory effect of IL-24 on the viability, invasion, the proliferation relative gene Ki-67, proliferating cell nuclear antigen (PCNA) and cyclooxygenase2 (COX-2), and the stimulatory effect on the tumor metastasis suppressor gene CD82 in ESCs. These results indicate that the abnormally low level of IL-24 in ESCs possibly induced by macrophages may lead to the enhancement of ESCs’ proliferation and invasiveness and contribute to the development of endometriosis.
Collapse
|
44
|
Fry EA, Taneja P, Inoue K. Clinical applications of mouse models for breast cancer engaging HER2/neu. INTEGRATIVE CANCER SCIENCE AND THERAPEUTICS 2016; 3:593-603. [PMID: 28133539 PMCID: PMC5267336 DOI: 10.15761/icst.1000210] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Human c-ErbB2 (HER2) has long been used as a marker of breast cancer (BC) for sub-categorization for the prediction of prognosis, and determination of therapeutic strategies. HER2 overexpressing BCs are more invasive/metastatic; but patients respond to monoclonal antibody therapy with trastuzumab or tyrosine kinase inhibitors, at least at early stages. To date, numerous mouse models that faithfully reproduce HER2(+) BCs have been created in mice. We recently reviewed different mouse models of BC overexpressing wild type or mutant neu driven by MMTV, neu, or doxycycline-inducible promoters. These mice have been used to demonstrate the histopathology, oncogenic signaling pathways initiated by aberrant overexpression of HER2 in the mammary epithelium, and interaction between oncogenes and tumor suppressor genes at molecular levels. In this review, we focus on their clinical applications. They can be used to test the efficacy of HER(2) inhibitors before starting clinical trials, characterize the tumor-initiating cells that could be the cause of relapse after therapy as well as to analyze the molecular mechanisms of therapeutic resistance targeting HER2. MMTV-human ErbB2 (HER2) mouse models have recently been established since the monoclonal antibody to HER2 (trastuzumab; Herceptin®) does not recognize the rat neu protein. It has been reported that early intervention with HER2 monoclonal antibody would be beneficial for preventing mammary carcinogenesis. MDA-7/IL-24 as well as naturally-occurring chemicals have also been tested using MMTV-neu models. Recent studies have shown that MMTV-neu models are useful to develop vaccines to HER2 for immunotherapy. The mouse models employing HER2/neu will be essential for future antibody or drug screenings to overcome resistance to trastuzumab or HER(2)-specific tyrosine kinase inhibitors.
Collapse
Affiliation(s)
- Elizabeth A. Fry
- The Department of Pathology, Wake Forest University Health Sciences, Medical Center Boulevard, Winston-Salem, NC 27157 USA
| | - Pankaj Taneja
- Department of Biotechnology, Sharda University, Knowledge Park III, Greater Noida 201306, India
| | - Kazushi Inoue
- The Department of Pathology, Wake Forest University Health Sciences, Medical Center Boulevard, Winston-Salem, NC 27157 USA
| |
Collapse
|
45
|
Li YJ, Liu G, Xia L, Xiao X, Liu JC, Menezes ME, Das SK, Emdad L, Sarkar D, Fisher PB, Archer MC, Zacksenhaus E, Ben-David Y. Suppression of Her2/Neu mammary tumor development in mda-7/IL-24 transgenic mice. Oncotarget 2016; 6:36943-54. [PMID: 26460950 PMCID: PMC4741907 DOI: 10.18632/oncotarget.6046] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 09/23/2015] [Indexed: 12/21/2022] Open
Abstract
Melanoma differentiation associated gene-7/interleukin-24 (mda-7/IL-24) encodes a tumor suppressor gene implicated in the growth of various tumor types including breast cancer. We previously demonstrated that recombinant adenovirus-mediated mda-7/IL-24 expression in the mammary glands of carcinogen-treated (methylnitrosourea, MNU) rats suppressed mammary tumor development. Since most MNU-induced tumors in rats contain activating mutations in Ha-ras, which arenot frequently detected in humans, we presently examined the effect of MDA-7/IL-24 on Her2/Neu-induced mammary tumors, in which the RAS pathway is induced. We generated tet-inducible MDA-7/IL-24 transgenic mice and crossed them with Her2/Neu transgenic mice. Triple compound transgenic mice treated with doxycycline exhibited a strong inhibition of tumor development, demonstrating tumor suppressor activity by MDA-7/IL-24 in immune-competent mice. MDA-7/IL-24 induction also inhibited growth of tumors generated following injection of Her2/Neu tumor cells isolated from triple compound transgenic mice that had not been treated with doxycycline, into the mammary fat pads of isogenic FVB mice. Despite initial growth suppression, tumors in triple compound transgenic mice lost mda-7/IL-24 expression and grew, albeit after longer latency, indicating that continuous presence of this cytokine within tumor microenvironment is crucial to sustain tumor inhibitory activity. Mechanistically, MDA-7/IL-24 exerted its tumor suppression effect on HER2+ breast cancer cells, at least in part, through PERP, a member of PMP-22 family with growth arrest and apoptosis-inducing capacity. Overall, our results establish mda-7/IL-24 as a suppressor of mammary tumor development and provide a rationale for using this cytokine in the prevention/treatment of human breast cancer.
Collapse
Affiliation(s)
- You-Jun Li
- Department of Anatomy, Norman Bethune College of Medicine, Jilin University, Changchun, Jilin, China
| | - Guodong Liu
- Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Lei Xia
- Division of Biology, The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, China
| | - Xiao Xiao
- Division of Biology, The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, China
| | - Jeff C Liu
- Toronto General Research Institute - University Health Network, Toronto, Ontario, Canada
| | - Mitchell E Menezes
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Swadesh K Das
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Luni Emdad
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Paul B Fisher
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Michael C Archer
- Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Eldad Zacksenhaus
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Toronto General Research Institute - University Health Network, Toronto, Ontario, Canada
| | - Yaacov Ben-David
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Division of Biology, The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, China
| |
Collapse
|
46
|
Loss of tumorigenic potential upon transdifferentiation from keratinocytic into melanocytic lineage. Sci Rep 2016; 6:28891. [PMID: 27387763 PMCID: PMC4937495 DOI: 10.1038/srep28891] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 06/09/2016] [Indexed: 12/13/2022] Open
Abstract
Lineage-specific transcription factors determine the cell fate during development. Direct conversion of several cell types into other lineages has been achieved by the overexpression of specific transcription factors. Even cancer cells have been demonstrated to be amenable to transdifferentiation. Here, we identified a distinct set of transcription factors, which are sufficient to transform cells of the keratinocytic lineage to melanocyte-like cells. Melanocyte marker expression was induced and melanosome formation was observed in non-tumorigenic keratinocytes (HaCaT) and tumorigenic squamous cell carcinoma (MET-4) cells. Moreover, reduced proliferation, cell metabolism, invasion and migration were measured in vitro in transdifferentiated MT-MET-4 cells. A loss of tumorigenic potential of squamous cell carcinoma cells could be due to the upregulation of the melanocyte differentiation associated gene IL-24. Our data show that cells from the keratinocytic lineage can be transdifferented into the melanocytic lineage and provide a proof of principle for a potential new therapeutic strategy.
Collapse
|
47
|
Mechanism of Action and Applications of Interleukin 24 in Immunotherapy. Int J Mol Sci 2016; 17:ijms17060869. [PMID: 27271601 PMCID: PMC4926403 DOI: 10.3390/ijms17060869] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 05/23/2016] [Accepted: 05/30/2016] [Indexed: 12/15/2022] Open
Abstract
Interleukin 24 (IL-24) is an important pleiotropic immunoregulatory cytokine, whose gene is located in human chromosome 1q32-33. IL-24's signaling pathways have diverse biological functions related to cell differentiation, proliferation, development, apoptosis, and inflammation, placing it at the center of an active area of research. IL-24 is well known for its apoptotic effect in cancer cells while having no such effect on normal cells. IL-24 can also be secreted by both immune and non-immune cells. Downstream effects of IL-24, after binding to the IL-20 receptor, can occur dependently or independently of the JAK/STAT signal transduction pathway, which is classically involved in cytokine-mediated activities. After exogenous addition of IL-24, apoptosis is induced in tumor cells independently of the JAK/STAT pathway. We have shown that IL-24 binds to Sigma 1 Receptor and this event induces endoplasmic reticulum stress, calcium mobilization, reactive oxygen species generation, p38MAPK activity, and ceramide production. Here we review IL-24's role in autoimmunity, infectious disease response, wound repair, and vascular disease. Detailed understanding of the pleiotropic roles of IL-24 signaling can assist in the selection of more accurate therapeutic approaches, as well as targeting of appropriate cell types in treatment strategy development, and ultimately achieve desired therapeutic effects.
Collapse
|
48
|
Therapy of prostate cancer using a novel cancer terminator virus and a small molecule BH-3 mimetic. Oncotarget 2016; 6:10712-27. [PMID: 25926554 PMCID: PMC4484414 DOI: 10.18632/oncotarget.3544] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 02/16/2015] [Indexed: 01/15/2023] Open
Abstract
Despite recent advances, treatment options for advanced prostate cancer (CaP) remain limited. We are pioneering approaches to treat advanced CaP that employ conditionally replication-competent oncolytic adenoviruses that simultaneously produce a systemically active cancer-specific therapeutic cytokine, mda-7/IL-24, Cancer Terminator Viruses (CTV). A truncated version of the CCN1/CYR61 gene promoter, tCCN1-Prom, was more active than progression elevated gene-3 promoter (PEG-Prom) in regulating transformation-selective transgene expression in CaP and oncogene-transformed rat embryo cells. Accordingly, we developed a new CTV, Ad.tCCN1-CTV-m7, which displayed dose-dependent killing of CaP without harming normal prostate epithelial cells in vitro with significant anti-cancer activity in vivo in both nude mouse CaP xenograft and transgenic Hi-Myc mice (using ultrasound-targeted microbubble (MB)-destruction, UTMD, with decorated MBs). Resistance to mda-7/IL-24-induced cell deathcorrelated with overexpression of Bcl-2 family proteins. Inhibiting Mcl-1 using an enhanced BH3 mimetic, BI-97D6, sensitized CaP cell lines to mda-7/IL-24-induced apoptosis. Combining BI-97D6 with Ads expressing mda-7/IL-24promoted ER stress, decreased anti-apoptotic Mcl-1 expression and enhanced mda-7/IL-24expression through mRNA stabilization selectively in CaP cells. In Hi-myc mice, the combination induced enhanced apoptosis and tumor growth suppression. These studies highlight therapeutic efficacy of combining a BH3 mimetic with a novel CTV, supporting potential clinical applications for treating advanced CaP.
Collapse
|
49
|
MA QUNFENG, JIN BANGMING, ZHANG YAO, SHI YINAN, ZHANG CHI, LUO DAN, WANG PENGKUN, DUAN CUIMI, SONG HEYU, LI XUE, DENG XUEFENG, CHEN ZHINAN, WANG ZILING, JIANG HONG, LIU YAN. Secreted recombinant human IL-24 protein inhibits the proliferation of esophageal squamous cell carcinoma Eca-109 cells in vitro and in vivo. Oncol Rep 2016; 35:2681-90. [DOI: 10.3892/or.2016.4633] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 12/16/2015] [Indexed: 11/05/2022] Open
|
50
|
Zhang J, Sun A, Xu R, Tao X, Dong Y, Lv X, Wei D. Cell-penetrating and endoplasmic reticulum-locating TAT-IL-24-KDEL fusion protein induces tumor apoptosis. J Cell Physiol 2016; 231:84-93. [PMID: 26031207 DOI: 10.1002/jcp.25054] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 05/20/2015] [Indexed: 01/27/2023]
Abstract
Interleukin-24 (IL-24) is a unique IL-10 family cytokine that could selectively induce apoptosis in cancer cells without harming normal cells. Previous research demonstrated that intracellular IL-24 protein induces an endoplasmic reticulum (ER) stress response only in cancer cells, culminating in apoptosis. In this study, we developed a novel recombinant fusion protein to penetrate into cancer cells and locate on ER. It is composed of three distinct functional domains, IL-24, and the targeting domain of transactivator of transcription (TAT) and an ER retention four-peptide sequence KDEL (Lys-Asp-Glu-Leu) that link at its NH2 and COOH terminal, respectively. The in vitro results indicated that TAT-IL-24-KDEL inhibited growth in bladder cancer cells, as well as in non-small cell lung cancer cell line and breast cancer cell line, but the normal human lung fibroblast cell line was not affected, indicating the cancer specificity of TAT-IL-24-KDEL. Western blot analysis showed that apoptosis activation was induced by TAT-IL-24-KDEL through the ER stress-mediated cell death pathway. Treatment with TAT-IL-24-KDEL significantly inhibited the growth of human H460 xenografts in nude mice, and the tumor growth inhibition was correlated with increased hematoxylin and eosin (H&E) staining and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining. These findings suggest that the artificially designed recombinant fusion protein TAT-IL-24-KDEL may be highly effective in cancer therapy and worthy of further evaluation and development.
Collapse
Affiliation(s)
- Jian Zhang
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Aiyou Sun
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Rui Xu
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Xinyi Tao
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Yuguo Dong
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Xinxin Lv
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Dongzhi Wei
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, People's Republic of China
| |
Collapse
|