1
|
Conith AJ, Pascarella SM, Hope SA, Albertson RC. The evolution and genetic basis of a functionally critical skull bone, the parasphenoid, among Lake Malawi cichlids. EVOLUTIONARY JOURNAL OF THE LINNEAN SOCIETY 2024; 3:kzae039. [PMID: 39758838 PMCID: PMC11694647 DOI: 10.1093/evolinnean/kzae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/19/2024] [Accepted: 11/22/2024] [Indexed: 01/07/2025]
Abstract
Adaptive radiation, whereby a clade pairs rapid speciation with rapid phenotypic evolution, can result in an uneven distribution of biodiversity across the Metazoan tree. The cichlid fishes of East Africa have undergone multiple adaptive radiations within the major rift lakes. Cichlid radiations are marked by divergence across distinct habitat gradients producing many morphological and behavioural adaptations. Here, we characterize the shape of the parasphenoid, a bone in the neurocranium that dissipates forces generated during feeding. We examine Tropheops, a group that has transitioned between deep and shallow habitats multiple times, to examine habitat-specific differences in parasphenoid shape. We find differences in the depth and length of the parasphenoid between Tropheops residing in each habitat, variation that may impact the ability of the cranium to resist force. We next use a hybrid cross between two cichlid species that differ in parasphenoid shape, Labeotropheus and Tropheops, to examine the genetic basis of these morphological differences. We perform genetic mapping and identify two genomic regions responsible for variation in parasphenoid shape. These regions are implicated in other functional traits including the oral jaws and neurocranium, indicating that the genetic landscape for adaptive evolution may be limited to a few loci with broad effects. Repurposing the same gene(s) for multiple traits via regulatory evolution may be sufficient for selection to drive transitions between habitats important for incipient stages of adaptive radiations.
Collapse
Affiliation(s)
- Andrew J Conith
- Department of Biological Sciences, DePaul University, Chicago, IL 60614, United States
| | - Sarah M Pascarella
- Department of Biological Sciences, DePaul University, Chicago, IL 60614, United States
| | - Sylvie A Hope
- Biology Department, University of Massachusetts Amherst, Amherst, MA, 01002, United States
| | - R Craig Albertson
- Biology Department, University of Massachusetts Amherst, Amherst, MA, 01002, United States
| |
Collapse
|
2
|
Akalın A, Ayaz E, Soğukpınar M, Avcı-Durmuşalioğlu E, Ürel-Demir G, Yıldız AE, Atik T, Elcioglu NH, Eda Utine G, Şimşek-Kiper PÖ. Further defining the molecular spectrum and long-term follow-up of 17 patients with Dyggve-Melchior-Clausen and Smith-McCort dysplasia type 2. Am J Med Genet A 2024; 194:e63785. [PMID: 38860472 DOI: 10.1002/ajmg.a.63785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/27/2024] [Accepted: 05/30/2024] [Indexed: 06/12/2024]
Abstract
Dyggve-Melchior-Clausen dysplasia (DMC) and Smith-McCort dysplasia (SMC types 1 and 2) are rare spondylo-epi-metaphyseal dysplasias with identical radiological and clinical findings. DMC and SMC type 1 are allelic disorders caused by homozygous or compound heterozygous variants in DYM, while biallelic causative variants in RAB33B lead to SMC type 2. The terminology "skeletal golgipathies" has been recently used to describe these conditions, highlighting the pivotal role of these two genes in the organization and intracellular trafficking of the Golgi apparatus. In this study, we investigated 17 affected individuals (8 males, 9 females) from 10 unrelated consanguineous families, 10 diagnosed with DMC and seven with SMC type 2. The mean age at diagnosis was 9.61 ± 9.72 years, ranging from 20 months to 34 years, and the average height at diagnosis was 92.85 ± 15.50 cm. All patients exhibited variable degrees of short trunk with a barrel chest, protruding abdomen, hyperlordosis, and decreased joint mobility. A total of nine different biallelic variants were identified, with six being located in the DYM gene and the remaining three detected in RAB33B. Notably, five variants were classified as novel, four in the DYM gene and one in the RAB33B gene. This study aims to comprehensively assess clinical, radiological, and molecular findings along with the long-term follow-up findings in 17 patients with DMC and SMC type 2. Our results suggest that clinical symptoms of the disorder typically appear from infancy to early childhood. The central notches of the vertebral bodies were identified as early as 20 months and tended to become rectangular, particularly around 15 years of age. Pseudoepiphysis was observed in five patients; we believe this finding should be taken into consideration when evaluating hand radiographs in clinical assessments. Furthermore, our research contributes to an enhanced understanding of clinical and molecular aspects in these rare "skeletal golgipathies," expanding the mutational spectrum and offering insights into long-term disease outcomes.
Collapse
Affiliation(s)
- Akçahan Akalın
- Department of Pediatric Genetics, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
- Department of Pediatric Genetics, Diyarbakir Children's Hospital, Diyarbakır, Turkey
| | - Ercan Ayaz
- Department of Pediatric Radiology, Diyarbakir Children's Hospital, Diyarbakır, Turkey
| | - Merve Soğukpınar
- Department of Pediatric Genetics, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Enise Avcı-Durmuşalioğlu
- Division of Pediatric Genetics, Department of Pediatrics, School of Medicine, Ege University, Izmir, Turkey
| | - Gizem Ürel-Demir
- Department of Pediatric Genetics, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Adalet Elçin Yıldız
- Department of Radiology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Tahir Atik
- Division of Pediatric Genetics, Department of Pediatrics, School of Medicine, Ege University, Izmir, Turkey
| | - Nursel H Elcioglu
- Department of Pediatric Genetics, Marmara University Faculty of Medicine, Istanbul, Turkey
- Department of Pediatric Genetics, Eastern Mediterranean University Medical School, Famagusta, Turkey
| | - Gulen Eda Utine
- Department of Pediatric Genetics, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Pelin Özlem Şimşek-Kiper
- Department of Pediatric Genetics, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
3
|
Nahalka J. 1-L Transcription in Prion Diseases. Int J Mol Sci 2024; 25:9961. [PMID: 39337449 PMCID: PMC11431846 DOI: 10.3390/ijms25189961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/17/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Understanding the pathogenesis and mechanisms of prion diseases can significantly expand our knowledge in the field of neurodegenerative diseases. Prion biology is increasingly recognized as being relevant to the pathophysiology of Alzheimer's disease and Parkinson's disease, both of which affect millions of people each year. This bioinformatics study used a theoretical protein-RNA recognition code (1-L transcription) to reveal the post-transcriptional regulation of the prion protein (PrPC). The principle for this method is directly elucidated on PrPC, in which an octa-repeat can be 1-L transcribed into a GGA triplet repeat RNA aptamer known to reduce the misfolding of normal PrPC into abnormal PrPSc. The identified genes/proteins are associated with mitochondria, cancer, COVID-19 and ER-stress, and approximately half are directly or indirectly associated with prion diseases. For example, the octa-repeat supports CD44, and regions of the brain with astrocytic prion accumulation also display high levels of CD44.
Collapse
Affiliation(s)
- Jozef Nahalka
- Centre for Glycomics, Institute of Chemistry, Slovak Academy of Sciences, Dubravska Cesta 9, SK-84538 Bratislava, Slovakia
- Centre of Excellence for White-Green Biotechnology, Slovak Academy of Sciences, Trieda Andreja Hlinku 2, SK-94976 Nitra, Slovakia
| |
Collapse
|
4
|
Yacoubian V, Cutter B, Alvarado C. Total Hip Arthroplasty in Dyggve-Melchior-Clausen Syndrome: Literature Review and Case Report. Arthroplast Today 2024; 27:101402. [PMID: 38741921 PMCID: PMC11090059 DOI: 10.1016/j.artd.2024.101402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 04/02/2024] [Accepted: 04/07/2024] [Indexed: 05/16/2024] Open
Abstract
Dyggve-Melchior-Clausen (DMC) disease is a rare spondyloepiphyseal autosomal recessive disorder characterized by skeletal dysplasia and intellectual disability. Hip arthritis, often secondary to hip dysplasia, presents at an early age. Current literature suggests that osteotomies do not benefit DMC syndrome-associated hip disease but reports of total hip arthroplasty in these patients are lacking. We present a case of bilateral hip replacement in a 31-year-old patient with DMC syndrome. After planning the operation with the use of computed tomography, we chose to use a small-dimension porous cup along with an appropriately sized version control stem in order to address the unique acetabular and femoral deformities. In conclusion, we consider total hip replacement in DMC syndrome to be safe and effective in addressing a challenging hip pathology.
Collapse
Affiliation(s)
- Vahe Yacoubian
- Department of Orthopaedic Surgery, Tufts University School of Medicine, Boston, MA, USA
| | - Brenden Cutter
- Department of Orthopaedic Surgery, Montefiore Medical Center, New York City, NY, USA
| | - Carlos Alvarado
- Department of Orthopaedic Surgery, Montefiore Medical Center, New York City, NY, USA
| |
Collapse
|
5
|
Dimori M, Pokrovskaya ID, Liu S, Sherrill JT, Gomez-Acevedo H, Fu Q, Storrie B, Lupashin VV, Morello R. A Rab33b missense mouse model for Smith-McCort dysplasia shows bone resorption defects and altered protein glycosylation. Front Genet 2023; 14:1204296. [PMID: 37359363 PMCID: PMC10285484 DOI: 10.3389/fgene.2023.1204296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023] Open
Abstract
Smith McCort (SMC) dysplasia is a rare, autosomal recessive, osteochondrodysplasia that can be caused by pathogenic variants in either RAB33B or DYM genes. These genes codes for proteins that are located at the Golgi apparatus and have a role in intracellular vesicle trafficking. We generated mice that carry a Rab33b disease-causing variant, c.136A>C (p.Lys46Gln), which is identical to that of members from a consanguineous family diagnosed with SMC. In male mice at 4 months of age, the Rab33b variant caused a mild increase in trabecular bone thickness in the spine and femur and in femoral mid-shaft cortical thickness with a concomitant reduction of the femoral medullary area, suggesting a bone resorption defect. In spite of the increase in trabecular and cortical thickness, bone histomorphometry showed a 4-fold increase in osteoclast parameters in homozygous Rab33b mice suggesting a putative impairment in osteoclast function, while dynamic parameters of bone formation were similar in mutant versus control mice. Femur biomechanical tests showed an increased in yield load and a progressive elevation, from WT to heterozygote to homozygous mutants, of bone intrinsic properties. These findings suggest an overall impact on bone material properties which may be caused by disturbed protein glycosylation in cells contributing to skeletal formation, supported by the altered and variable pattern of lectin staining in murine and human tissue cultured cells and in liver and bone murine tissues. The mouse model only reproduced some of the features of the human disease and was sex-specific, manifesting in male but not female mice. Our data reveal a potential novel role of RAB33B in osteoclast function and protein glycosylation and their dysregulation in SMC and lay the foundation for future studies.
Collapse
Affiliation(s)
- Milena Dimori
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Irina D Pokrovskaya
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Shijie Liu
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - John T Sherrill
- Department of Orthopaedic Surgery, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Horacio Gomez-Acevedo
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Qiang Fu
- Department of Internal Medicine, Division of Endocrinology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Brian Storrie
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Vladimir V Lupashin
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Roy Morello
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- Department of Orthopaedic Surgery, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- Division of Genetics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| |
Collapse
|
6
|
Varshney K, Narayanachar SG, Girisha KM, Bhavani GS, Narayanan D, Phadke S, Nampoothiri S, Udupi GA, Raghupathy P, Nair M, Geetha TS, Bhat M. Clinical, radiological and molecular studies in 24 individuals with Dyggve-Melchior-Clausen dysplasia and Smith-McCort dysplasia from India. J Med Genet 2023; 60:204-211. [PMID: 35477554 DOI: 10.1136/jmedgenet-2021-108098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 04/10/2022] [Indexed: 01/27/2023]
Abstract
BACKGROUND Dyggve-Melchior-Clausen dysplasia (DMC) and Smith-McCort dysplasia (SMC types 1 and 2) are rare spondyloepimetaphyseal dysplasias with identical radiological findings. The presence of intellectual disability in DMC and normal intellect in SMC differentiates the two. DMC and SMC1 are allelic and caused by homozygous or compound heterozygous variants in DYM. SMC2 is caused by variations in RAB33B. Both DYM and RAB33B are important in intravesicular transport and function in the Golgi apparatus. METHODS Detailed clinical phenotyping and skeletal radiography followed by molecular testing were performed in all affected individuals. Next-generation sequencing and Sanger sequencing were used to confirm DYM and RAB33B variants. Sanger sequencing of familial variants was done in all parents. RESULTS 24 affected individuals from seven centres are described. 18 had DMC and 6 had SMC2. Parental consanguinity was present in 15 of 19 (79%). Height <3 SD and gait abnormalities were seen in 20 and 14 individuals, respectively. The characteristic radiological findings of lacy iliac crests and double-humped vertebral bodies were seen in 96% and 88% of the affected. Radiological findings became attenuated with age. 23 individuals harboured biallelic variants in either DYM or RAB33B. Fourteen different variants were identified, out of which 10 were novel. The most frequently occurring variants in this group were c.719 C>A (3), c.1488_1489del (2), c.1484dup (2) and c.1563+2T>C (2) in DYM and c.400C>T (2) and c.186del (2) in RAB33B. The majority of these have not been reported previously. CONCLUSION This large cohort from India contributes to the increasing knowledge of clinical and molecular findings in these rare 'Golgipathies'.
Collapse
Affiliation(s)
- Kruti Varshney
- Department of Clinical Genetics, Centre for Human Genetics, Bangalore, Karnataka, India
| | | | - Katta M Girisha
- Department of Medical Genetics, Kasturba Medical College Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Gandham SriLakshmi Bhavani
- Department of Medical Genetics, Kasturba Medical College Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Dhanyalakshmi Narayanan
- Department of Medical Genetics, Kasturba Medical College Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Shubha Phadke
- Department of Medical Genetics, SGPGIMS, Lucknow, Uttar Pradesh, India
| | - Sheela Nampoothiri
- Department of Pediatric Genetics, Amrita Institute of Medical Sciences and Reseacrh Centre, Kochi, Kerala, India
| | - Gautham Arunachal Udupi
- Department of Human Genetics, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - Palany Raghupathy
- Department of Paediatric Endocrinology, Indira Gandhi Institute of Child Health, Bangalore, Karnataka, India
| | - Mohandas Nair
- Department of Paediatrics, Government Medical College, Kozhikode, Kerala, India
| | | | - Meenakshi Bhat
- Department of Clinical Genetics, Centre for Human Genetics, Bangalore, Karnataka, India
- Department of Paediatric Genetics, Indira Gandhi Institute of Child Health, Bangalore, Karnataka, India
| |
Collapse
|
7
|
Obara K, Abe E, Toyoshima I. Dyggve-Melchior-Clausen Syndrome Caused by a Novel Frameshift Variant in a Japanese Patient. Mol Syndromol 2022; 13:350-359. [PMID: 36158050 PMCID: PMC9421667 DOI: 10.1159/000521516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/15/2021] [Indexed: 01/03/2023] Open
Abstract
Introduction Dyggve-Melchior-Clausen syndrome (DMC) is a rare autosomal recessive spondyloepimetaphyseal dysplasia characterized by short stature, microcephaly, intellectual disability, and coarse face. This disorder is caused by pathogenic/likely pathogenic variants of the DYM gene which encodes dymeclin. Case Presentation Herein, we report a 60-year-old Japanese man who was born to consanguineous parents. He presented with abdominal distention and rectal prolapse in addition to the common features of DMC. We identified a novel homozygous frameshift variant [c.1670delT, p.(Leu557Argfs*20)] in the DYM gene, which introduces a premature stop codon. Histological analysis revealed disarrangement of actin filaments in cultured fibroblasts. Discussion To the best of our knowledge, this is the first Japanese case of DMC with a confirmed variant in the DYM gene. This report provides more information about the geographic distribution and phenotypic spectrum of DMC. Moreover, it presents a novel DYM variant and insights about DMC pathology that may be associated with the disarrangement of actin filaments.
Collapse
|
8
|
A Case of Growth Hormone Use in Dyggve–Melchior–Clausen Syndrome. Case Rep Endocrinol 2022; 2022:8542281. [PMID: 35340400 PMCID: PMC8941567 DOI: 10.1155/2022/8542281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/21/2022] [Indexed: 11/18/2022] Open
Abstract
Short stature has many causes including genetic disease, skeletal dysplasias, endocrinopathies, familial short stature, and nutritional deficiencies. Recombinant growth hormone (rGH) therapy may be employed to improve stature based on the underlying etiology and growth velocity. Skeletal dysplasia in Dyggve–Melchior–Clausen (DMC) syndrome tends to be progressive, typically with hip involvement, and ultimately leads to bilateral dislocation of the hip joints. Here, we present a pediatric patient with short stature treated with rGH therapy, complicated by the development of debilitating, bilateral hip pain, and found to have DMC syndrome. Our patient had limited range of motion at several joints including the hips after receiving 6 months of rGH therapy. Given the timing of the patient's rGH therapy and the progression of her disease, it is difficult to determine if there were any benefits and instead, is concerning for worsening of her skeletal dysplasia with rGH therapy use. Consequently, patients with severe short stature should have a thorough workup for genetic causes like DMC syndrome, before initiating rGH therapy to determine any potential benefits or harms of treatment.
Collapse
|
9
|
Conith AJ, Albertson RC. The cichlid oral and pharyngeal jaws are evolutionarily and genetically coupled. Nat Commun 2021; 12:5477. [PMID: 34531386 PMCID: PMC8445992 DOI: 10.1038/s41467-021-25755-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 08/30/2021] [Indexed: 02/08/2023] Open
Abstract
Evolutionary constraints may significantly bias phenotypic change, while "breaking" from such constraints can lead to expanded ecological opportunity. Ray-finned fishes have broken functional constraints by developing two jaws (oral-pharyngeal), decoupling prey capture (oral jaw) from processing (pharyngeal jaw). It is hypothesized that the oral and pharyngeal jaws represent independent evolutionary modules and this facilitated diversification in feeding architectures. Here we test this hypothesis in African cichlids. Contrary to our expectation, we find integration between jaws at multiple evolutionary levels. Next, we document integration at the genetic level, and identify a candidate gene, smad7, within a pleiotropic locus for oral and pharyngeal jaw shape that exhibits correlated expression between the two tissues. Collectively, our data show that African cichlid evolutionary success has occurred within the context of a coupled jaw system, an attribute that may be driving adaptive evolution in this iconic group by facilitating rapid shifts between foraging habitats, providing an advantage in a stochastic environment such as the East African Rift-Valley.
Collapse
Affiliation(s)
- Andrew J Conith
- Biology Department, University of Massachusetts Amherst, Amherst, MA, 01003, USA.
| | - R Craig Albertson
- Biology Department, University of Massachusetts Amherst, Amherst, MA, 01003, USA.
| |
Collapse
|
10
|
Jones G, Trajanoska K, Santanasto AJ, Stringa N, Kuo CL, Atkins JL, Lewis JR, Duong T, Hong S, Biggs ML, Luan J, Sarnowski C, Lunetta KL, Tanaka T, Wojczynski MK, Cvejkus R, Nethander M, Ghasemi S, Yang J, Zillikens MC, Walter S, Sicinski K, Kague E, Ackert-Bicknell CL, Arking DE, Windham BG, Boerwinkle E, Grove ML, Graff M, Spira D, Demuth I, van der Velde N, de Groot LCPGM, Psaty BM, Odden MC, Fohner AE, Langenberg C, Wareham NJ, Bandinelli S, van Schoor NM, Huisman M, Tan Q, Zmuda J, Mellström D, Karlsson M, Bennett DA, Buchman AS, De Jager PL, Uitterlinden AG, Völker U, Kocher T, Teumer A, Rodriguéz-Mañas L, García FJ, Carnicero JA, Herd P, Bertram L, Ohlsson C, Murabito JM, Melzer D, Kuchel GA, Ferrucci L, Karasik D, Rivadeneira F, Kiel DP, Pilling LC. Genome-wide meta-analysis of muscle weakness identifies 15 susceptibility loci in older men and women. Nat Commun 2021; 12:654. [PMID: 33510174 PMCID: PMC7844411 DOI: 10.1038/s41467-021-20918-w] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 12/22/2020] [Indexed: 02/07/2023] Open
Abstract
Low muscle strength is an important heritable indicator of poor health linked to morbidity and mortality in older people. In a genome-wide association study meta-analysis of 256,523 Europeans aged 60 years and over from 22 cohorts we identify 15 loci associated with muscle weakness (European Working Group on Sarcopenia in Older People definition: n = 48,596 cases, 18.9% of total), including 12 loci not implicated in previous analyses of continuous measures of grip strength. Loci include genes reportedly involved in autoimmune disease (HLA-DQA1 p = 4 × 10-17), arthritis (GDF5 p = 4 × 10-13), cell cycle control and cancer protection, regulation of transcription, and others involved in the development and maintenance of the musculoskeletal system. Using Mendelian randomization we report possible overlapping causal pathways, including diabetes susceptibility, haematological parameters, and the immune system. We conclude that muscle weakness in older adults has distinct mechanisms from continuous strength, including several pathways considered to be hallmarks of ageing.
Collapse
Affiliation(s)
- Garan Jones
- Epidemiology and Public Health Group, Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Katerina Trajanoska
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Adam J Santanasto
- University of Pittsburgh, Department of Epidemiology, Pittsburgh, PA, USA
| | - Najada Stringa
- Department of Epidemiology and Biostatistics, Amsterdam UMC- Vrije Universiteit, Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Chia-Ling Kuo
- Biostatistics Center, Connecticut Convergence Institute for Translation in Regenerative Engineering, UConn Health, Farmington, CT, USA
| | - Janice L Atkins
- Epidemiology and Public Health Group, Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Joshua R Lewis
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- School fo Public Health University of Sydney, Sydney, NSW, Australia
- Medical School, University of Western Australia, Crawley, WA, Australia
| | - ThuyVy Duong
- McKusick-Nathans Institute, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Shengjun Hong
- Lübeck Interdisciplinary Plattform for Genome Analytics, Institutes of Neurogenetics and Cardiogenetics, University of Lübeck, Lübeck, Germany
| | - Mary L Biggs
- Cardiovascular Health Research Unit, Department of Medicine, and Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Jian'an Luan
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, CB2 0QQ, UK
| | - Chloe Sarnowski
- Biostatistics Department, Boston University School of Public Health, Boston, MA, USA
| | - Kathryn L Lunetta
- Biostatistics Department, Boston University School of Public Health, Boston, MA, USA
| | - Toshiko Tanaka
- Longitudinal Study Section, Translational Gerontology branch, National Institute on Aging, Baltimore, MD, USA
| | - Mary K Wojczynski
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Ryan Cvejkus
- University of Pittsburgh, Department of Epidemiology, Pittsburgh, PA, USA
| | - Maria Nethander
- Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Bioinformatics Core Facility, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Sahar Ghasemi
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Jingyun Yang
- Rush Alzheimer's Disease Center & Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - M Carola Zillikens
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Stefan Walter
- Department of Medicine and Public Health, Rey Juan Carlos University, Madrid, Spain
- CIBER of Frailty and Healthy Aging (CIBERFES), Madrid, Spain
| | - Kamil Sicinski
- Center for Demography of Health and Aging, University of Wisconsin-Madison, Madison, WI, USA
| | - Erika Kague
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | | | - Dan E Arking
- McKusick-Nathans Institute, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - B Gwen Windham
- Department of Medicine/Geriatrics, University of Mississippi School of Medicine, Jackson, MS, USA
| | - Eric Boerwinkle
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Megan L Grove
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Misa Graff
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, 27516, USA
| | - Dominik Spira
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health, Department of Endocrinology and Metabolism, Berlin, Germany
| | - Ilja Demuth
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health, Department of Endocrinology and Metabolism, Berlin, Germany
- Charité - Universitätsmedizin Berlin, BCRT - Berlin Institute of Health Center for Regenerative Therapies, Berlin, Germany
| | - Nathalie van der Velde
- Department of Internal Medicine, Section of Geriatric Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Lisette C P G M de Groot
- Wageningen University, Division of Human Nutrition, PO-box 17, 6700 AA, Wageningen, The Netherlands
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Departments of Medicine, Epidemiology, and Health services, University of Washington, Seattle, WA, USA
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
| | - Michelle C Odden
- Department of Epidemiology and Population Health, Stanford University, Stanford, CA, USA
| | - Alison E Fohner
- Department of Epidemiology and Institute of Public Genetics, University of Washington, Seattle, WA, USA
| | - Claudia Langenberg
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, CB2 0QQ, UK
| | - Nicholas J Wareham
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, CB2 0QQ, UK
| | | | - Natasja M van Schoor
- Department of Epidemiology and Biostatistics, Amsterdam UMC- Vrije Universiteit, Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Martijn Huisman
- Department of Epidemiology and Biostatistics, Amsterdam UMC- Vrije Universiteit, Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Qihua Tan
- Epidemiology and Biostatistics, Department of Public Health, Faculty of Health Science, University of Southern Denmark, Odense, Denmark
| | - Joseph Zmuda
- University of Pittsburgh, Department of Epidemiology, Pittsburgh, PA, USA
| | - Dan Mellström
- Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Geriatric Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Magnus Karlsson
- Clinical and Molecular Osteoporosis Research Unit, Department of Orthopedics and Clinical Sciences, Lund University, Skåne University Hospital, Malmö, Sweden
| | - David A Bennett
- Rush Alzheimer's Disease Center & Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Aron S Buchman
- Rush Alzheimer's Disease Center & Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Philip L De Jager
- Center for Translational and Systems Neuroimmunology, Department of Neurology, Columbia University Medical Center, New York, NY, USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
| | - Andre G Uitterlinden
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Thomas Kocher
- Department of Restorative Dentistry, Periodontology, Endodontology, and Preventive and Pediatric Dentistry, University Medicine Greifswald, Greifswald, Germany
| | - Alexander Teumer
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Leocadio Rodriguéz-Mañas
- CIBER of Frailty and Healthy Aging (CIBERFES), Madrid, Spain
- Department of Geriatrics, Getafe University Hospital, Getafe, Spain
| | - Francisco J García
- CIBER of Frailty and Healthy Aging (CIBERFES), Madrid, Spain
- Department of Geriatrics, Hospital Virgen del Valle, Complejo Hospitalario de Toledo, Toledo, Spain
| | | | - Pamela Herd
- Professor of Public Policy, Georgetown University, Washington, DC, USA
| | - Lars Bertram
- Lübeck Interdisciplinary Plattform for Genome Analytics, Institutes of Neurogenetics and Cardiogenetics, University of Lübeck, Lübeck, Germany
| | - Claes Ohlsson
- Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Sahlgrenska University Hospital, Department of Drug Treatment, Gothenburg, Sweden
| | - Joanne M Murabito
- Section of General Internal Medicine, Boston University School of Medicine, Boston, MA, USA
| | - David Melzer
- Epidemiology and Public Health Group, Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - George A Kuchel
- Center on Aging, University of Connecticut Health, 263 Farmington Avenue, Farmington, CT, 06030, USA
| | | | - David Karasik
- Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA, USA
- Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
| | - Fernando Rivadeneira
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Douglas P Kiel
- Marcus Institute for Aging Research, Hebrew SeniorLife and Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Broad Institute of MIT & Harvard, Boston, MA, USA
| | - Luke C Pilling
- Epidemiology and Public Health Group, Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK.
| |
Collapse
|
11
|
Cody JD. The Consequences of Abnormal Gene Dosage: Lessons from Chromosome 18. Trends Genet 2020; 36:764-776. [PMID: 32660784 DOI: 10.1016/j.tig.2020.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 12/18/2022]
Abstract
Accurate interpretation of genomic copy number variation (CNV) remains a challenge and has important consequences for both congenital and late-onset disease. Hemizygosity dosage characterization of the genes on chromosome 18 reveals a spectrum of outcomes ranging from no clinical effect, to risk factors for disease, to both low- and high-penetrance disease. These data are important for accurate and predictive clinical management. Additionally, the potential mechanisms of reduced penetrance due to dosage compensation are discussed as a key to understanding avenues for potential treatment. This review describes the chromosome 18 findings, and discusses the molecular mechanisms that allow haploinsufficiency, reduced penetrance, and dosage compensation.
Collapse
Affiliation(s)
- Jannine DeMars Cody
- Department of Pediatrics, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Chromosome 18 Registry and Research Society, San Antonio, TX 78229, USA.
| |
Collapse
|
12
|
Gaboon NEA, Parveen A, Ahmad KA, Shuaib T, Al-Aama JY, Abdelwehab L, Arif A, Wasif N. A Novel Homozygous Frameshift Variant in DYM Causing Dyggve-Melchior-Clausen Syndrome in Pakistani Patients. Front Pediatr 2020; 8:383. [PMID: 32766185 PMCID: PMC7378890 DOI: 10.3389/fped.2020.00383] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/05/2020] [Indexed: 12/15/2022] Open
Abstract
Background: Dyggve-Melchior-Clausen syndrome (DMC) is a skeletal dysplasia with associated defects of brain development and intelligence. The truncating pathogenic variants in DYM are the most frequent cause of DMC. Smith-McCort (SMC), another skeletal dysplasia, is also caused by non-synonymous DYM variants. Methods and Results: In the current study, we examined a Pakistani consanguineous family with three affected members. Clinical features like spondyloepimetaphyseal dysplasia, indicative of characteristic skeletal abnormalities, and intellectual disability were observed. Our male patients had microcephaly and coarse facial features while the female patient did not represent microcephaly or abnormal facies, which are significant features of DMC patients. Sanger sequencing identified a novel homozygous frameshift insertion (c.95_96insT, p.W33Lfs*14) in DYM, which likely leads to nonsense-mediated decay (NMD). Conclusion: The novel frameshift change verifies the fact that pathogenic variants in DYM are the most frequent cause of DMC.
Collapse
Affiliation(s)
- Nagwa E A Gaboon
- Faculty of Medicine, Medical Genetics Center, Ain Shams University, Cairo, Egypt
| | - Asia Parveen
- Center for Research in Molecular Medicine (CRiMM), Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore, Lahore, Pakistan.,Faculty of Life Sciences, University of Central Punjab (UCP), Lahore, Pakistan
| | - Khaled A Ahmad
- Department of Radiology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Taghreed Shuaib
- Pediatric Department, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Jumana Y Al-Aama
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia.,Princess Al-Jawhara Albrahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Amina Arif
- Faculty of Life Sciences, University of Central Punjab (UCP), Lahore, Pakistan
| | - Naveed Wasif
- Center for Research in Molecular Medicine (CRiMM), Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore, Lahore, Pakistan.,Institute of Human Genetics, University of Ulm and University of Ulm Medical Center, Ulm, Germany.,Institute of Human Genetics, University Hospital Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
13
|
Liu L, Wang S, Cen C, Peng S, Chen Y, Li X, Diao N, Li Q, Ma L, Han P. Identification of differentially expressed genes in pancreatic ductal adenocarcinoma and normal pancreatic tissues based on microarray datasets. Mol Med Rep 2019; 20:1901-1914. [PMID: 31257501 DOI: 10.3892/mmr.2019.10414] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 05/01/2019] [Indexed: 11/06/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignant tumor with rapid progression and poor prognosis. In the present study, 11 high‑quality microarray datasets, comprising 334 tumor samples and 151 non‑tumor samples from the Gene Expression Omnibus, were screened, and integrative meta‑analysis of expression data was used to identify gene signatures that differentiate between PDAC and normal pancreatic tissues. Following the identification of differentially expressed genes (DEGs), two‑way hierarchical clustering analysis was performed for all DEGs using the gplots package in R software. Hub genes were then determined through protein‑protein interaction network analysis using NetworkAnalyst. In addition, functional annotation and pathway enrichment analyses of all DEGs were conducted in the Database for Annotation, Visualization, and Integrated Discovery. The expression levels and Kaplan‑Meier analysis of the top 10 upregulated and downregulated genes were verified in The Cancer Genome Atlas. A total of 1,587 DEGs, including 1,004 upregulated and 583 downregulated genes, were obtained by comparing PDAC with normal tissues. Of these, hematological and neurological expressed 1, integrin subunit α2 (ITGA2) and S100 calcium‑binding protein A6 (S100A6) were the top upregulated genes, and kinesin family member 1A, Dymeclin and β‑secretase 1 were the top downregulated genes. Reverse transcription‑quantitative PCR was performed to examine the expression levels of S100A6, KRT19 and GNG7, and the results suggested that S100A6 was significantly upregulated in PDAC compared with normal pancreatic tissues. ITGA2 overexpression was significantly associated with shorter overall survival times, whereas family with sequence similarity 46 member C overexpression was strongly associated with longer overall survival times. In addition, network‑based meta‑analysis confirmed growth factor receptor‑bound protein 2 and histone deacetylase 5 as pivotal hub genes in PDAC compared with normal tissue. In conclusion, the results of the present meta‑analysis identified PDAC‑related gene signatures, providing new perspectives and potential targets for PDAC diagnosis and treatment.
Collapse
Affiliation(s)
- Liying Liu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Siqi Wang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Chunyuan Cen
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Shuyi Peng
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Yan Chen
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Xin Li
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Nan Diao
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Qian Li
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Ling Ma
- Advanced Application Team, GE Healthcare, Shanghai 201203, P.R. China
| | - Ping Han
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
14
|
Rasika S, Passemard S, Verloes A, Gressens P, El Ghouzzi V. Golgipathies in Neurodevelopment: A New View of Old Defects. Dev Neurosci 2019; 40:396-416. [PMID: 30878996 DOI: 10.1159/000497035] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 01/16/2019] [Indexed: 11/19/2022] Open
Abstract
The Golgi apparatus (GA) is involved in a whole spectrum of activities, from lipid biosynthesis and membrane secretion to the posttranslational processing and trafficking of most proteins, the control of mitosis, cell polarity, migration and morphogenesis, and diverse processes such as apoptosis, autophagy, and the stress response. In keeping with its versatility, mutations in GA proteins lead to a number of different disorders, including syndromes with multisystem involvement. Intriguingly, however, > 40% of the GA-related genes known to be associated with disease affect the central or peripheral nervous system, highlighting the critical importance of the GA for neural function. We have previously proposed the term "Golgipathies" in relation to a group of disorders in which mutations in GA proteins or their molecular partners lead to consequences for brain development, in particular postnatal-onset microcephaly (POM), white-matter defects, and intellectual disability (ID). Here, taking into account the broader role of the GA in the nervous system, we refine and enlarge this emerging concept to include other disorders whose symptoms may be indicative of altered neurodevelopmental processes, from neurogenesis to neuronal migration and the secretory function critical for the maturation of postmitotic neurons and myelination.
Collapse
Affiliation(s)
- Sowmyalakshmi Rasika
- NeuroDiderot, INSERM UMR1141, Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,AP HP, Hôpital Robert Debré, UF de Génétique Clinique, Paris, France
| | - Sandrine Passemard
- NeuroDiderot, INSERM UMR1141, Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,AP HP, Hôpital Robert Debré, UF de Génétique Clinique, Paris, France
| | - Alain Verloes
- NeuroDiderot, INSERM UMR1141, Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,AP HP, Hôpital Robert Debré, UF de Génétique Clinique, Paris, France
| | - Pierre Gressens
- NeuroDiderot, INSERM UMR1141, Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, United Kingdom
| | - Vincent El Ghouzzi
- NeuroDiderot, INSERM UMR1141, Université Paris Diderot, Sorbonne Paris Cité, Paris, France,
| |
Collapse
|
15
|
Abstract
The Golgi apparatus is a central sorting station in the cell. It receives newly synthesized molecules from the endoplasmic reticulum and directs them to different subcellular destinations, such as the plasma membrane or the endocytic pathway. Importantly, in the last few years, it has emerged that the maintenance of Golgi structure is connected to the proper regulation of membrane trafficking. Rab proteins are small GTPases that are considered to be the master regulators of the intracellular membrane trafficking. Several of the over 60 human Rabs are involved in the regulation of transport pathways at the Golgi as well as in the maintenance of its architecture. This chapter will summarize the different roles of Rab GTPases at the Golgi, both as regulators of membrane transport, scaffold, and tethering proteins and in preserving the structure and function of this organelle.
Collapse
|
16
|
Paganini C, Monti L, Costantini R, Besio R, Lecci S, Biggiogera M, Tian K, Schwartz JM, Huber C, Cormier-Daire V, Gibson BG, Pirog KA, Forlino A, Rossi A. Calcium activated nucleotidase 1 (CANT1) is critical for glycosaminoglycan biosynthesis in cartilage and endochondral ossification. Matrix Biol 2018; 81:70-90. [PMID: 30439444 PMCID: PMC6598859 DOI: 10.1016/j.matbio.2018.11.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/05/2018] [Accepted: 11/05/2018] [Indexed: 11/24/2022]
Abstract
Desbuquois dysplasia type 1 (DBQD1) is a chondrodysplasia caused by mutations in CANT1 gene encoding an ER/Golgi calcium activated nucleotidase 1 that hydrolyses UDP. Here, using Cant1 knock-in and knock-out mice recapitulating DBQD1 phenotype, we report that CANT1 plays a crucial role in cartilage proteoglycan synthesis and in endochondral ossification. Specifically, the glycosaminoglycan synthesis was decreased in chondrocytes from Cant1 knock-out mice and their hydrodynamic size was reduced, whilst the sulfation was increased and the overall proteoglycan secretion was delayed. Interestingly, knock-out chondrocytes had dilated ER cisternae suggesting delayed protein secretion and cellular stress; however, no canonical ER stress response was detected using microarray analysis, Xbp1 splicing and protein levels of BiP and ATF4. The observed proteoglycan defects caused deregulated chondrocyte proliferation and maturation in the growth plate resulting in the reduced skeletal growth. In conclusion, the pathogenic mechanism of DBQD1 comprises deregulated chondrocyte performance due to defective intracellular proteoglycan synthesis and altered proteoglycan properties in the extracellular matrix. Desbuquois dysplasia type 1 (DBQD1) is a recessive skeletal dysplasia caused by mutations in CANT1 gene, a Calcium activated nucleotidase of the ER/Golgi. The Cant1 knock-out mouse recapitulates human DBQD1. Cant1 is critical for different steps of proteoglycan biosynthesis including glycosaminoglycan chain synthesis, length and sulfation. The intracellular GAG synthesis defects cause delayed proteoglycan secretion with ER enlargement. In Cant1 knock-out chondrocytes ER enlargement is not linked to canonical ER stress. The proteoglycan defects cause deregulated chondrocyte proliferation and maturation in the growth plate resulting in reduced skeletal growth.
Collapse
Affiliation(s)
- Chiara Paganini
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, Pavia, Italy; Scuola Universitaria Superiore IUSS, Pavia, Italy
| | - Luca Monti
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, Pavia, Italy
| | - Rossella Costantini
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, Pavia, Italy
| | - Roberta Besio
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, Pavia, Italy
| | - Silvia Lecci
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, Pavia, Italy
| | - Marco Biggiogera
- Department of Biology & Biotechnology, University of Pavia, Pavia, Italy
| | - Kun Tian
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Jean-Marc Schwartz
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Céline Huber
- Department of Genetics, INSERM UMR1163, Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, AP-HP, Hôpital Necker Enfants Malades, Paris, France
| | - Valérie Cormier-Daire
- Department of Genetics, INSERM UMR1163, Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, AP-HP, Hôpital Necker Enfants Malades, Paris, France
| | - Beth G Gibson
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Katarzyna A Pirog
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Antonella Forlino
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, Pavia, Italy
| | - Antonio Rossi
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, Pavia, Italy.
| |
Collapse
|
17
|
Ferreira CR, Xia ZJ, Clément A, Parry DA, Davids M, Taylan F, Sharma P, Turgeon CT, Blanco-Sánchez B, Ng BG, Logan CV, Wolfe LA, Solomon BD, Cho MT, Douglas G, Carvalho DR, Bratke H, Haug MG, Phillips JB, Wegner J, Tiemeyer M, Aoki K, Nordgren A, Hammarsjö A, Duker AL, Rohena L, Hove HB, Ek J, Adams D, Tifft CJ, Onyekweli T, Weixel T, Macnamara E, Radtke K, Powis Z, Earl D, Gabriel M, Russi AHS, Brick L, Kozenko M, Tham E, Raymond KM, Phillips JA, Tiller GE, Wilson WG, Hamid R, Malicdan MC, Nishimura G, Grigelioniene G, Jackson A, Westerfield M, Bober MB, Gahl WA, Freeze HH, Gahl WA, Freeze HH. A Recurrent De Novo Heterozygous COG4 Substitution Leads to Saul-Wilson Syndrome, Disrupted Vesicular Trafficking, and Altered Proteoglycan Glycosylation. Am J Hum Genet 2018; 103:553-567. [PMID: 30290151 DOI: 10.1016/j.ajhg.2018.09.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 08/31/2018] [Indexed: 12/18/2022] Open
Abstract
The conserved oligomeric Golgi (COG) complex is involved in intracellular vesicular transport, and is composed of eight subunits distributed in two lobes, lobe A (COG1-4) and lobe B (COG5-8). We describe fourteen individuals with Saul-Wilson syndrome, a rare form of primordial dwarfism with characteristic facial and radiographic features. All affected subjects harbored heterozygous de novo variants in COG4, giving rise to the same recurrent amino acid substitution (p.Gly516Arg). Affected individuals' fibroblasts, whose COG4 mRNA and protein were not decreased, exhibited delayed anterograde vesicular trafficking from the ER to the Golgi and accelerated retrograde vesicular recycling from the Golgi to the ER. This altered steady-state equilibrium led to a decrease in Golgi volume, as well as morphologic abnormalities with collapse of the Golgi stacks. Despite these abnormalities of the Golgi apparatus, protein glycosylation in sera and fibroblasts from affected subjects was not notably altered, but decorin, a proteoglycan secreted into the extracellular matrix, showed altered Golgi-dependent glycosylation. In summary, we define a specific heterozygous COG4 substitution as the molecular basis of Saul-Wilson syndrome, a rare skeletal dysplasia distinct from biallelic COG4-CDG.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - William A Gahl
- Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hudson H Freeze
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| |
Collapse
|
18
|
Cutrona MB, Morgan NE, Simpson JC. Heritable Skeletal Disorders Arising from Defects in Processing and Transport of Type I Procollagen from the ER: Perspectives on Possible Therapeutic Approaches. Handb Exp Pharmacol 2018; 245:191-225. [PMID: 29071510 DOI: 10.1007/164_2017_67] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Rare bone disorders are a heterogeneous group of diseases, initially associated with mutations in type I procollagen (PC) genes. Recent developments from dissection at the molecular and cellular level have expanded the list of disease-causing proteins, revealing that disruption of the machinery that handles protein secretion can lead to failure in PC secretion and in several cases result in skeletal dysplasia. In parallel, cell-based in vitro studies of PC trafficking pathways offer clues to the identification of new disease candidate genes. Together, this raises the prospect of heritable bone disorders as a paradigm for biosynthetic protein traffic-related diseases, and an avenue through which therapeutic strategies can be explored.Here, we focus on human syndromes linked to defects in type I PC secretion with respect to the landscape of biosynthetic and protein transport steps within the early secretory pathway. We provide a perspective on possible therapeutic interventions for associated heritable craniofacial and skeletal disorders, considering different orders of complexity, from the cellular level by manipulation of proteostasis pathways to higher levels involving cell-based therapies for bone repair and regeneration.
Collapse
Affiliation(s)
- Meritxell B Cutrona
- School of Biology and Environmental Science, Conway Institute of Biomolecular and Biomedical Research, University College Dublin (UCD), Dublin, Ireland
| | - Niamh E Morgan
- School of Biology and Environmental Science, Conway Institute of Biomolecular and Biomedical Research, University College Dublin (UCD), Dublin, Ireland
| | - Jeremy C Simpson
- School of Biology and Environmental Science, Conway Institute of Biomolecular and Biomedical Research, University College Dublin (UCD), Dublin, Ireland.
| |
Collapse
|
19
|
Golgi trafficking defects in postnatal microcephaly: The evidence for “Golgipathies”. Prog Neurobiol 2017; 153:46-63. [DOI: 10.1016/j.pneurobio.2017.03.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 02/22/2017] [Accepted: 03/29/2017] [Indexed: 12/17/2022]
|
20
|
Dupuis N, Fafouri A, Bayot A, Kumar M, Lecharpentier T, Ball G, Edwards D, Bernard V, Dournaud P, Drunat S, Vermelle-Andrzejewski M, Vilain C, Abramowicz M, Désir J, Bonaventure J, Gareil N, Boncompain G, Csaba Z, Perez F, Passemard S, Gressens P, El Ghouzzi V. Dymeclin deficiency causes postnatal microcephaly, hypomyelination and reticulum-to-Golgi trafficking defects in mice and humans. Hum Mol Genet 2015; 24:2771-83. [PMID: 25652408 DOI: 10.1093/hmg/ddv038] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 01/31/2015] [Indexed: 01/02/2023] Open
Abstract
Dymeclin is a Golgi-associated protein whose deficiency causes Dyggve-Melchior-Clausen syndrome (DMC, MIM #223800), a rare recessively inherited spondyloepimetaphyseal dysplasia consistently associated with postnatal microcephaly and intellectual disability. While the skeletal phenotype of DMC patients has been extensively described, very little is known about their cerebral anomalies, which result in brain growth defects and cognitive dysfunction. We used Dymeclin-deficient mice to determine the cause of microcephaly and to identify defective mechanisms at the cellular level. Brain weight and volume were reduced in all mutant mice from postnatal day 5 onward. Mutant mice displayed a narrowing of the frontal cortex, although cortical layers were normally organized. Interestingly, the corpus callosum was markedly thinner, a characteristic we also identified in DMC patients. Consistent with this, the myelin sheath was thinner, less compact and not properly rolled, while the number of mature oligodendrocytes and their ability to produce myelin basic protein were significantly decreased. Finally, cortical neurons from mutant mice and primary fibroblasts from DMC patients displayed substantially delayed endoplasmic reticulum to Golgi trafficking, which could be fully rescued upon Dymeclin re-expression. These findings indicate that Dymeclin is crucial for proper myelination and anterograde neuronal trafficking, two processes that are highly active during postnatal brain maturation.
Collapse
Affiliation(s)
- Nina Dupuis
- Inserm, U1141, Paris, France, Sorbonne Paris Cité, Univ Paris Diderot, UMRS 1141, Paris, France
| | - Assia Fafouri
- Inserm, U1141, Paris, France, Sorbonne Paris Cité, Univ Paris Diderot, UMRS 1141, Paris, France
| | - Aurélien Bayot
- Inserm, U1141, Paris, France, Sorbonne Paris Cité, Univ Paris Diderot, UMRS 1141, Paris, France
| | - Manoj Kumar
- Inserm, U1141, Paris, France, Sorbonne Paris Cité, Univ Paris Diderot, UMRS 1141, Paris, France
| | - Tifenn Lecharpentier
- Inserm, U1141, Paris, France, Sorbonne Paris Cité, Univ Paris Diderot, UMRS 1141, Paris, France
| | - Gareth Ball
- Centre for the Developing Brain, Department of Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, UK
| | - David Edwards
- Centre for the Developing Brain, Department of Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, UK
| | - Véronique Bernard
- CNRS UMR7224, Inserm, U952, Paris, France, Univ Pierre et Marie Curie, Paris, France
| | - Pascal Dournaud
- Inserm, U1141, Paris, France, Sorbonne Paris Cité, Univ Paris Diderot, UMRS 1141, Paris, France
| | - Séverine Drunat
- Inserm, U1141, Paris, France, Sorbonne Paris Cité, Univ Paris Diderot, UMRS 1141, Paris, France, Service de Génétique Clinique, AP-HP, Hôpital Robert Debré, Paris, France
| | | | - Catheline Vilain
- Medical Genetics Department, Hôpital Erasme, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Marc Abramowicz
- Medical Genetics Department, Hôpital Erasme, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Julie Désir
- Medical Genetics Department, Hôpital Erasme, Université Libre de Bruxelles (ULB), Brussels, Belgium, Institut de Pathologie et de Génétique, Gosselies, Belgium
| | - Jacky Bonaventure
- CNRS UMR3347, Orsay, France, Institut Curie, Centre de Recherche, Paris, France
| | - Nelly Gareil
- CNRS UMR144, Paris, France and Institut Curie, Centre de Recherche, Paris, France
| | - Gaelle Boncompain
- CNRS UMR144, Paris, France and Institut Curie, Centre de Recherche, Paris, France
| | - Zsolt Csaba
- Inserm, U1141, Paris, France, Sorbonne Paris Cité, Univ Paris Diderot, UMRS 1141, Paris, France
| | - Franck Perez
- CNRS UMR144, Paris, France and Institut Curie, Centre de Recherche, Paris, France
| | - Sandrine Passemard
- Inserm, U1141, Paris, France, Sorbonne Paris Cité, Univ Paris Diderot, UMRS 1141, Paris, France, Service de Génétique Clinique, AP-HP, Hôpital Robert Debré, Paris, France
| | - Pierre Gressens
- Inserm, U1141, Paris, France, Sorbonne Paris Cité, Univ Paris Diderot, UMRS 1141, Paris, France, Centre for the Developing Brain, Department of Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, UK
| | - Vincent El Ghouzzi
- Inserm, U1141, Paris, France, Sorbonne Paris Cité, Univ Paris Diderot, UMRS 1141, Paris, France,
| |
Collapse
|
21
|
De Matteis MA, Vicinanza M, Venditti R, Wilson C. Cellular Assays for Drug Discovery in Genetic Disorders of Intracellular Trafficking. Annu Rev Genomics Hum Genet 2013; 14:159-90. [DOI: 10.1146/annurev-genom-091212-153415] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | | | | | - Cathal Wilson
- Telethon Institute of Genetics and Medicine, 80131 Naples, Italy;
| |
Collapse
|
22
|
Dupuis N, Lebon S, Kumar M, Drunat S, Graul-Neumann LM, Gressens P, El Ghouzzi V. A novel RAB33B mutation in Smith-McCort dysplasia. Hum Mutat 2012; 34:283-6. [PMID: 23042644 DOI: 10.1002/humu.22235] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 09/27/2012] [Indexed: 11/10/2022]
Abstract
Smith-McCort dysplasia (SMC) is a rare autosomal recessive spondylo-epi-metaphyseal dysplasia with skeletal features identical to those of Dyggve-Melchior-Clausen syndrome (DMC) but with normal intelligence and no microcephaly. Although both syndromes were shown to result from mutations in the DYM gene, which encodes the Golgi protein DYMECLIN, a few SMC patients remained negative in DYM mutation screening. Recently, autozygosity mapping and exome sequencing in a large SMC family have allowed the identification of a missense mutation in RAB33B, another Golgi protein involved in retrograde transport of Golgi vesicles. Here, we report a novel RAB33B mutation in a second SMC case that leads to a marked reduction of the protein as shown by Western blot and immunofluorescence. These data confirm the genetic heterogeneity of SMC dysplasia and highlight the role of Golgi transport in the pathogenesis of SMC and DMC syndromes.
Collapse
|
23
|
Gun K, Uludag M, Unalan H, Mogulkoc N, Battal H, Sucuoglu H, Kantarci F, Koyuncu H. A 14-year-old girl with Smith-McCort dysplasia misdiagnosed as seronegative juvenile idiopathic arthritis. Int J Rheum Dis 2012; 15:e55-7. [PMID: 22709503 DOI: 10.1111/j.1756-185x.2011.01690.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
Katayama K, Sasaki T, Goto S, Ogasawara K, Maru H, Suzuki K, Suzuki H. Insertional mutation in the Golgb1 gene is associated with osteochondrodysplasia and systemic edema in the OCD rat. Bone 2011; 49:1027-36. [PMID: 21851869 DOI: 10.1016/j.bone.2011.08.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 08/01/2011] [Accepted: 08/01/2011] [Indexed: 02/04/2023]
Abstract
Homozygous rats (ocd/ocd) of a mutant inbred strain, OCD (osteochondrodysplasia), show osteochondrodysplasia, systemic edema, cleft palate, protruding tongue, disproportionate dwarfism, and lethality immediately after birth. Their epiphyses show decreased levels of glycosaminoglycans and weak staining for extracellular matrix proteins. The epiphyseal chondrocytes have large vesicles and expanded endoplasmic reticulum and Golgi apparatus. These phenotypic features are inherited in an autosomal recessive manner, and the ocd locus responsible for these phenotypes has been mapped close to D11Mgh3 on rat chromosome 11. In the present study, we characterized the embryonic pathogenesis of ocd/ocd rats and identified the mutant gene. Subcutaneous edema in the dorsal portion was found at embryonic day (E) 16.5, and the other anomalies described above were apparent after E18.5 in ocd/ocd. Whole mount immunohistochemistry for Sox9 revealed that mesenchymal condensation was delayed in limb bud in ocd/ocd, and skeletal preparation showed that the progression of whole-body chondrogenesis was delayed in ocd/ocd. Histological and immunohistological analyses of the femur showed that cell proliferations of resting and proliferative zones of growth plate were significantly reduced in ocd/ocd embryos. Fine linkage mapping localized the ocd locus within 84kb of positions 65,584-65,668kb containing a part of Golgb1 gene on chromosome 11. Expression of Golgb1 mRNA was found in limb buds, somite derivatives and calvaria. Sequence analysis identified a 10-bp insertion in exon 13 of the Golgb1 gene in ocd/ocd rats. The Golgb1 gene encodes the COPI vesicle tethering factor, giantin. This insertion mutation causes a frame shift, and introduces a premature termination codon at codon 1082, leading to truncation of the C-terminal two thirds of giantin. By in-gel Western analysis using anti-giantin antibody that recognizes an epitope within 200 aa of the C-terminus, the expression of giantin was not detected in ocd/ocd embryos. As the C-terminal region of giantin is required for localization to the Golgi apparatus, these results strongly suggested that giantin is functionally defective in ocd/ocd rats. Therefore, we concluded that mutation of the Golgb1 gene is responsible for the phenotypic characteristics including osteochondrodysplasia of ocd/ocd, and that giantin plays a pivotal role in multiple aspects of chondrogenesis.
Collapse
Affiliation(s)
- Kentaro Katayama
- Laboratory of Veterinary Physiology, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino-shi, Tokyo 180–8602, Japan
| | | | | | | | | | | | | |
Collapse
|
25
|
Denais C, Dent CL, Southgate L, Hoyle J, Dafou D, Trembath RC, Machado RD. Dymeclin, the gene underlying Dyggve-Melchior-Clausen syndrome, encodes a protein integral to extracellular matrix and golgi organization and is associated with protein secretion pathways critical in bone development. Hum Mutat 2011; 32:231-9. [PMID: 21280149 DOI: 10.1002/humu.21413] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Dyggve-Melchior-Clausen syndrome (DMC), a severe autosomal recessive skeletal disorder with mental retardation, is caused by mutation of the gene encoding Dymeclin (DYM). Employing patient fibroblasts with mutations characterized at the genomic and, for the first time, transcript level, we identified profound disruption of Golgi organization as a pathogenic feature, resolved by transfection of heterologous wild-type Dymeclin. Collagen targeting appeared defective in DMC cells leading to near complete absence of cell surface collagen fibers. DMC cells have an elevated apoptotic index (P< 0.01) likely due to a stress response contingent upon Golgi-related trafficking defects. We performed spatiotemporal mapping of Dymeclin expression in zebrafish embryos and identified high levels of transcript in brain and cartilage during early development. Finally, in a chondrocyte cDNA library, we identified two novel secretion pathway proteins as Dymeclin interacting partners: GOLM1 and PPIB. Together these data identify the role of Dymeclin in secretory pathways essential to endochondral bone formation during early development.
Collapse
Affiliation(s)
- Celine Denais
- King's College London, Department of Medical & Molecular Genetics, School of Medicine, Guy's Hospital, London, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
26
|
Dyggve-Melchior-Clausen syndrome: novel splice mutation with atlanto-axial subluxation. Eur J Pediatr 2011; 170:121-6. [PMID: 20865280 DOI: 10.1007/s00431-010-1298-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2010] [Accepted: 09/08/2010] [Indexed: 10/19/2022]
Abstract
Dyggve-Melchior-Clausen (DMC) syndrome is a rare autosomal recessive disorder characterized by the association of a progressive spondyloepimetaphyseal dysplasia and mental retardation ranging from mild to severe. The disorder results from mutations in the dymeclin (DYM) gene in the 18q12-12.1 chromosomal region. We report two siblings with classical clinical and radiological features of DMC and asymptomatic atlanto-axial dislocation. A novel homozygous splice-site mutation (IVS15+3G>T) was detected. Reverse transcriptase polymerase chain reaction (RT-PCR) confirmed that this mutation affects normal splicing. To the best of our knowledge, this is the first report of DMC from Saudi Arabia. The splice mutation noted in our patients was compared to the previously reported cases and supports the hypothesis that loss of DYM function is the likely mechanism of disease pathogenesis. In conclusion, distinction between this type of skeletal dysplasia and Morquio disease (MPS IV) is important for paediatricians and clinical geneticist in providing standard patient care and genetic counselling.
Collapse
|
27
|
Abstract
hid-1 was originally identified as a Caenorhabditis elegans gene encoding a novel conserved protein that regulates the decision to enter into the enduring dauer larval stage. We isolated a novel allele of hid-1 in a forward genetic screen for mutants mislocalizing RBF-1 rabphilin, a RAB-27 effector. Here we demonstrate that HID-1 functions in the nervous system to regulate neuromuscular signaling and in the intestine to regulate the defecation motor program. We further show that a conserved N-terminal myristoylated motif of both invertebrate and vertebrate HID-1 is essential for its association with intracellular membranes in nematodes and PC12 cells. C. elegans neuronal HID-1 resides on intracellular membranes in neuronal cell somas; however, the kinesin UNC-104 also transports HID-1 to synaptic regions. HID-1 accumulates in the axons of unc-13 and unc-31 mutants, suggesting it is associated with neurosecretory vesicles. Consistent with this, genetic studies place HID-1 in a peptidergic signaling pathway. Finally, a hid-1 null mutation reduces the levels of endogenous neuropeptides and alters the secretion of fluorescent-tagged cargos derived from neuronal and intestinal dense core vesicles (DCVs). Taken together, our findings indicate that HID-1 is a novel component of a DCV-based neurosecretory pathway and that it regulates one or more aspects of the biogenesis, maturation, or trafficking of DCVs.
Collapse
|
28
|
Lee JJ, Essers JB, Kugathasan S, Escher JC, Lettre G, Butler JL, Stephens MC, Ramoni MF, Grand RJ, Hirschhorn J. Association of linear growth impairment in pediatric Crohn's disease and a known height locus: a pilot study. Ann Hum Genet 2010; 74:489-97. [PMID: 20846217 DOI: 10.1111/j.1469-1809.2010.00606.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The etiology of growth impairment in Crohn's disease (CD) has been inadequately explained by nutritional, hormonal, and/or disease-related factors, suggesting that genetics may be an additional contributor. The aim of this cross-sectional study was to investigate genetic variants associated with linear growth in pediatric-onset CD. We genotyped 951 subjects (317 CD patient-parent trios) for 64 polymorphisms within 14 CD-susceptibility and 23 stature-associated loci. Patient height-for-age Z-score < -1.64 was used to dichotomize probands into growth-impaired and nongrowth-impaired groups. The transmission disequilibrium test (TDT) was used to study association to growth impairment. There was a significant association between growth impairment in CD (height-for-age Z-score < -1.64) and a stature-related polymorphism in the dymeclin gene DYM (rs8099594) (OR = 3.2, CI [1.57-6.51], p = 0.0007). In addition, there was nominal over-transmission of two CD-susceptibility alleles, 10q21.1 intergenic region (rs10761659) and ATG16L1 (rs10210302), in growth-impaired CD children (OR = 2.36, CI [1.26-4.41] p = 0.0056 and OR = 2.45, CI [1.22-4.95] p = 0.0094, respectively). Our data indicate that genetic influences due to stature-associated and possibly CD risk alleles may predispose CD patients to alterations in linear growth. This is the first report of a link between a stature-associated locus and growth impairment in CD.
Collapse
|
29
|
Yazaki S, Koga M, Ishiguro H, Inada T, Ujike H, Itokawa M, Otowa T, Watanabe Y, Someya T, Iwata N, Kunugi H, Ozaki N, Arinami T. An association study between the dymeclin gene and schizophrenia in the Japanese population. J Hum Genet 2010; 55:631-4. [PMID: 20555340 DOI: 10.1038/jhg.2010.72] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Many gene variants are involved in the susceptibility to schizophrenia and some of them are expected to be associated with other human characters. Recently reported meta-analysis of genetic associations revealed nucleotide variants in synaptic vesicular transport/Golgi apparatus genes with schizophrenia. In this study, we selected the dymeclin gene (DYM) as a candidate gene for schizophrenia. The DYM gene encodes dymeclin that has been identified to be associated with the Golgi apparatus and with transitional vesicles of the reticulum-Golgi interface. A three-step case-control study of total of 2105 Japanese cases of schizophrenia and 2087 Japanese control subjects was carried out for tag single-nucleotide polymorphisms (SNPs) in the DYM gene and an association between an SNP, rs833497, and schizophrenia was identified (allelic P=2 × 10(-5), in the total sample). DYM is the causal gene for Dyggve-Melchior-Clausen syndrome and this study shows the second neuropsychiatric disorder in which the DYM gene is involved. The present data support the involvement of Golgi function and vesicular transport in the presynapse in schizophrenia.
Collapse
Affiliation(s)
- Saori Yazaki
- Department of Medical Genetics, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Smits P, Bolton AD, Funari V, Hong M, Boyden ED, Lu L, Manning DK, Dwyer ND, Moran JL, Prysak M, Merriman B, Nelson SF, Bonafé L, Superti-Furga A, Ikegawa S, Krakow D, Cohn DH, Kirchhausen T, Warman ML, Beier DR. Lethal skeletal dysplasia in mice and humans lacking the golgin GMAP-210. N Engl J Med 2010; 362:206-16. [PMID: 20089971 PMCID: PMC3108191 DOI: 10.1056/nejmoa0900158] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND Establishing the genetic basis of phenotypes such as skeletal dysplasia in model organisms can provide insights into biologic processes and their role in human disease. METHODS We screened mutagenized mice and observed a neonatal lethal skeletal dysplasia with an autosomal recessive pattern of inheritance. Through genetic mapping and positional cloning, we identified the causative mutation. RESULTS Affected mice had a nonsense mutation in the thyroid hormone receptor interactor 11 gene (Trip11), which encodes the Golgi microtubule-associated protein 210 (GMAP-210); the affected mice lacked this protein. Golgi architecture was disturbed in multiple tissues, including cartilage. Skeletal development was severely impaired, with chondrocytes showing swelling and stress in the endoplasmic reticulum, abnormal cellular differentiation, and increased cell death. Golgi-mediated glycosylation events were altered in fibroblasts and chondrocytes lacking GMAP-210, and these chondrocytes had intracellular accumulation of perlecan, an extracellular matrix protein, but not of type II collagen or aggrecan, two other extracellular matrix proteins. The similarities between the skeletal and cellular phenotypes in these mice and those in patients with achondrogenesis type 1A, a neonatal lethal form of skeletal dysplasia in humans, suggested that achondrogenesis type 1A may be caused by GMAP-210 deficiency. Sequence analysis revealed loss-of-function mutations in the 10 unrelated patients with achondrogenesis type 1A whom we studied. CONCLUSIONS GMAP-210 is required for the efficient glycosylation and cellular transport of multiple proteins. The identification of a mutation affecting GMAP-210 in mice, and then in humans, as the cause of a lethal skeletal dysplasia underscores the value of screening for abnormal phenotypes in model organisms and identifying the causative mutations.
Collapse
Affiliation(s)
- Patrick Smits
- Orthopedic Research Laboratories, Department of Orthopedic Surgery, Children's Hospital, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Current world literature. Curr Opin Endocrinol Diabetes Obes 2009; 16:470-80. [PMID: 19858911 DOI: 10.1097/med.0b013e3283339a46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
32
|
Aglan MS, Temtamy SA, Fateen E, Ashour AM, Eldeeb K, Hosny GA. Dyggve-Melchior-Clausen syndrome: clinical, genetic, and radiological study of 15 Egyptian patients from nine unrelated families. J Child Orthop 2009; 3:451-8. [PMID: 19816730 PMCID: PMC2782068 DOI: 10.1007/s11832-009-0211-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Accepted: 09/23/2009] [Indexed: 02/03/2023] Open
Abstract
INTRODUCTION Dyggve-Melchior-Clausen (DMC) syndrome is a rare autosomal recessive type of skeletal dysplasia. It is characterized by the association of progressive spondyloepimetaphyseal dysplasia (SEMD), microcephaly, mental retardation (MR), and coarse facies. The radiographic appearance of generalized platyspondyly with double-humped end plates and the lace-like appearance of iliac crests are pathognomonic and distinctive of DMC syndrome. The disorder results from mutations in the DYM gene mapped in the 18q12-12.1 chromosomal region. MATERIALS AND METHODS In this report, we studied 15 Egyptian cases with DMC syndrome from nine unrelated families. We aimed to emphasize the characteristic clinical and radiological features in order to differentiate the condition from other SEMDs and mucopolysaccharidosis (MPS). Patients were subjected to detailed history taking, three-generation family pedigree analysis, complete physical examination, anthropometric measurements, quantitative estimation, and two-dimensional electrophoresis of glycosaminoglycans in the urine and measurement of α-l-iduronidase and galactose-6-sulfatase enzyme activities to exclude Hurler and Morquio diseases (MPS type I and MPS type IVA), respectively. Other investigations were carried out whenever indicated. All patients were the offspring of consanguineous apparently normal parents. Positive family history and similarly affected sibs were noted, confirming the autosomal recessive inheritance pattern of the syndrome. Short stature, microcephaly, variable degree of MR, and coarse facies were constant features. The frequency of characteristic orthopedic and radiological findings was reported. Orthopedic surgical intervention was carried out for two patients. CONCLUSIONS The study concluded that DMC syndrome may be more frequent in Egypt than previously thought, especially due to misdiagnosis. Characteristic facial dysmorphism, body habitus, and pathognomonic radiological signs suggest the diagnosis and differentiate it from other types of SEMDs and MPS for proper genetic counseling and management.
Collapse
Affiliation(s)
- Mona S. Aglan
- />Human Genetics and Genome Research Division, Clinical Genetics Department, National Research Centre, El-Buhouth Street, Dokki, Cairo, 12311 Egypt
| | - Samia A. Temtamy
- />Human Genetics and Genome Research Division, Clinical Genetics Department, National Research Centre, El-Buhouth Street, Dokki, Cairo, 12311 Egypt
| | - Ekram Fateen
- />Human Genetics and Genome Research Division, Biochemical Genetics Department, National Research Centre, Cairo, Egypt
| | - Adel M. Ashour
- />Human Genetics and Genome Research Division, Clinical Genetics Department, National Research Centre, El-Buhouth Street, Dokki, Cairo, 12311 Egypt
| | - Khamis Eldeeb
- />Orthopedics Department, Alexandria University, Alexandria, Egypt
| | | |
Collapse
|
33
|
Dimitrov A, Paupe V, Gueudry C, Sibarita JB, Raposo G, Vielemeyer O, Gilbert T, Csaba Z, Attie-Bitach T, Cormier-Daire V, Gressens P, Rustin P, Perez F, El Ghouzzi V. The gene responsible for Dyggve-Melchior-Clausen syndrome encodes a novel peripheral membrane protein dynamically associated with the Golgi apparatus. Hum Mol Genet 2008; 18:440-53. [PMID: 18996921 DOI: 10.1093/hmg/ddn371] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Dyggve-Melchior-Clausen dysplasia (DMC) is a rare inherited dwarfism with severe mental retardation due to mutations in the DYM gene which encodes Dymeclin, a 669-amino acid protein of yet unknown function. Despite a high conservation across species and several predicted transmembrane domains, Dymeclin could not be ascribed to any family of proteins. Here we show, using in situ hybridization, that DYM is widely expressed in human embryos, especially in the cortex, the hippocampus and the cerebellum. Both the endogenous and the recombinant protein fused to green fluorescent protein co-localized with Golgi apparatus markers. Electron microscopy revealed that Dymeclin associates with the Golgi apparatus and with transitional vesicles of the reticulum-Golgi interface. Moreover, permeabilization assays revealed that Dymeclin is not a transmembrane but a peripheral protein of the Golgi apparatus as it can be completely released from the Golgi after permeabilization of the plasma membrane. Time lapse confocal microscopy experiments on living cells further showed that the protein shuttles between the cytosol and the Golgi apparatus in a highly dynamic manner and recognizes specifically a subset of mature Golgi membranes. Finally, we found that DYM mutations associated with DMC result in mis-localization and subsequent degradation of Dymeclin. These data indicate that DMC results from a loss-of-function of Dymeclin, a novel peripheral membrane protein which shuttles rapidly between the cytosol and mature Golgi membranes and point out a role of Dymeclin in cellular trafficking.
Collapse
|