1
|
Li Y, Du J, Deng S, Liu B, Jing X, Yan Y, Liu Y, Wang J, Zhou X, She Q. The molecular mechanisms of cardiac development and related diseases. Signal Transduct Target Ther 2024; 9:368. [PMID: 39715759 DOI: 10.1038/s41392-024-02069-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/28/2024] [Accepted: 11/04/2024] [Indexed: 12/25/2024] Open
Abstract
Cardiac development is a complex and intricate process involving numerous molecular signals and pathways. Researchers have explored cardiac development through a long journey, starting with early studies observing morphological changes and progressing to the exploration of molecular mechanisms using various molecular biology methods. Currently, advancements in stem cell technology and sequencing technology, such as the generation of human pluripotent stem cells and cardiac organoids, multi-omics sequencing, and artificial intelligence (AI) technology, have enabled researchers to understand the molecular mechanisms of cardiac development better. Many molecular signals regulate cardiac development, including various growth and transcription factors and signaling pathways, such as WNT signaling, retinoic acid signaling, and Notch signaling pathways. In addition, cilia, the extracellular matrix, epigenetic modifications, and hypoxia conditions also play important roles in cardiac development. These factors play crucial roles at one or even multiple stages of cardiac development. Recent studies have also identified roles for autophagy, metabolic transition, and macrophages in cardiac development. Deficiencies or abnormal expression of these factors can lead to various types of cardiac development abnormalities. Nowadays, congenital heart disease (CHD) management requires lifelong care, primarily involving surgical and pharmacological treatments. Advances in surgical techniques and the development of clinical genetic testing have enabled earlier diagnosis and treatment of CHD. However, these technologies still have significant limitations. The development of new technologies, such as sequencing and AI technologies, will help us better understand the molecular mechanisms of cardiac development and promote earlier prevention and treatment of CHD in the future.
Collapse
Affiliation(s)
- Yingrui Li
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jianlin Du
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Songbai Deng
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bin Liu
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaodong Jing
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuling Yan
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yajie Liu
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Wang
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaobo Zhou
- Department of Cardiology, Angiology, Haemostaseology, and Medical Intensive Care, Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Germany; DZHK (German Center for Cardiovascular Research), Partner Site, Heidelberg-Mannheim, Mannheim, Germany
| | - Qiang She
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
2
|
Kasimanickam V, Kastelic J, Kasimanickam R. Transcriptomics of bovine sperm and oocytes. Anim Reprod Sci 2024; 271:107630. [PMID: 39500235 DOI: 10.1016/j.anireprosci.2024.107630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 10/25/2024] [Accepted: 10/27/2024] [Indexed: 11/19/2024]
Abstract
Traditionally, sperm and embryos were studied using microscopy to assess morphology and motility. However, OMICS technologies, especially transcriptomic analysis, are now being used to screen the molecular dynamics of fertility markers at cellular and molecular levels, with high sensitivity. Transcriptomics is the study of the transcriptome - RNA transcripts produced by the genome - using high-throughput methods to understand how the RNAs are expressed. In this review, we have discussed gene contributions to sperm structure and function and their role in fertilization and early embryo development. Further, we identified miRNAs shared by sperm, oocytes, and early embryos and their roles in fertilization and early embryo development.
Collapse
Affiliation(s)
| | - John Kastelic
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | | |
Collapse
|
3
|
Hao R, Li L, Zhang D, Tian Y, Long H, Li H, Zhu X, Huang Y, Li G, Zhu C. Characterization and functional analysis of pl-miR-2188 in melanin synthesis in leopard coral grouper (Plectropomus leopardus). Comp Biochem Physiol B Biochem Mol Biol 2024; 275:111043. [PMID: 39491612 DOI: 10.1016/j.cbpb.2024.111043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/30/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
MicroRNAs (miRNAs) are known to regulate gene expression and play a role in body color formation in fish. However, the molecular mechanisms underlying miRNA involvement in the body color of leopard coral grouper (Plectropomus leopardus) remain largely unexplored. In this study, we investigated the expression levels of miR-2188 in red and black P. leopardus (pl-miR-2188) and found significantly higher expression levels in red fish samples compared to those in black fish samples. Silencing pl-miR-2188 in vivo using a pl-miR-2188 antagomir resulted in increased melanin concentration. Following pl-miR-2188 silencing, the expression levels of melanin-related genes, such as tyrosinase (tyr), TYR-related protein 1 (tyrp1-1 and tyrp1-2) and TYR-related protein 2 (tyrp2), and microphthalmia-associated transcription factor (mitf), were elevated. RNAhybrid predictions and dual-luciferase reporter assays identified sox5 as a target mRNA of pl-miR-2188. Following pl-miR-2188 antagomir injection, sox5 expression was significantly upregulated in the injection group compared to that in control groups (P < 0.05). These results suggest that pl-miR-2188 may regulate melanin synthesis in P. leopardus by targeting sox5. This study provides new insights into the miRNA-mRNA interactions involved in melanin synthesis and body color formation in the leopard coral grouper.
Collapse
Affiliation(s)
- Ruijuan Hao
- Development and research center for biological marine resources, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524006, China.
| | - Liancheng Li
- Development and research center for biological marine resources, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524006, China; Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Dongying Zhang
- Development and research center for biological marine resources, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524006, China
| | - Yali Tian
- Development and research center for biological marine resources, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524006, China; Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Hongzhao Long
- Development and research center for biological marine resources, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524006, China; Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Hang Li
- Development and research center for biological marine resources, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524006, China
| | - Xiaowen Zhu
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Zhanjiang 524088, China
| | - Yang Huang
- Development and research center for biological marine resources, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524006, China; Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Guangli Li
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Zhanjiang 524088, China
| | - Chunhua Zhu
- Development and research center for biological marine resources, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524006, China; Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Ocean University, Zhanjiang 524088, China.
| |
Collapse
|
4
|
Chang MY, Chan CK, Brune JE, Manicone AM, Bomsztyk K, Frevert CW, Altemeier WA. Regulation of versican expression in macrophages is mediated by canonical type I interferon signaling via ISGF3. Am J Physiol Cell Physiol 2024; 327:C1274-C1288. [PMID: 39400584 PMCID: PMC11559644 DOI: 10.1152/ajpcell.00174.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 09/09/2024] [Accepted: 09/23/2024] [Indexed: 10/15/2024]
Abstract
Growing evidence supports a role for versican as an important component of the inflammatory response, with both pro- and anti-inflammatory roles depending on the specific context of the system or disease under investigation. Our goal is to understand the regulation of macrophage-derived versican and the role it plays in innate immunity. In previous work, we showed that LPS triggers a signaling cascade involving Toll-like receptor (TLR)4, the Trif adaptor, type I interferons, and the type I interferon receptor, leading to increased versican expression by macrophages. In the present study, we used a combination of chromatin immunoprecipitation, siRNA, chemical inhibitors, and mouse model approaches to investigate the regulatory events downstream of the type I interferon receptor to better define the mechanism controlling versican expression. Results indicate that transcriptional regulation by canonical type I interferon signaling via interferon-stimulated gene factor 3 (ISGF3), the heterotrimeric transcription factor complex of Irf9, Stat1, and Stat2, controls versican expression in macrophages exposed to LPS. This pathway is not dependent on MAPK signaling, which has been shown to regulate versican expression in other cell types. The stability of versican mRNA may also contribute to prolonged versican expression in macrophages. These findings strongly support a role for macrophage-derived versican as a type I interferon-stimulated gene and further our understanding of versican's role in regulating inflammation.NEW & NOTEWORTHY We report the novel finding that versican expression is regulated by the interferon-stimulated gene factor 3 (ISGF3) arm of canonical type I Ifn signaling in LPS-stimulated macrophages. This pathway is distinct from mechanisms that control versican expression in other cell types. This suggests that macrophage-derived versican may play a role in limiting a potentially excessive inflammatory response. The detailed understanding of how versican expression is regulated in different cells could lead to unique approaches for enhancing its anti-inflammatory properties.
Collapse
Affiliation(s)
- Mary Y Chang
- Department of Comparative Medicine, University of Washington, Seattle, Washington, United States
- Center for Lung Biology, University of Washington at South Lake Union, Seattle, Washington, United States
| | - Christina K Chan
- Department of Comparative Medicine, University of Washington, Seattle, Washington, United States
- Center for Lung Biology, University of Washington at South Lake Union, Seattle, Washington, United States
| | - Jourdan E Brune
- Department of Comparative Medicine, University of Washington, Seattle, Washington, United States
- Center for Lung Biology, University of Washington at South Lake Union, Seattle, Washington, United States
| | - Anne M Manicone
- Center for Lung Biology, University of Washington at South Lake Union, Seattle, Washington, United States
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington, United States
| | - Karol Bomsztyk
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington, United States
| | - Charles W Frevert
- Department of Comparative Medicine, University of Washington, Seattle, Washington, United States
- Center for Lung Biology, University of Washington at South Lake Union, Seattle, Washington, United States
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington, United States
| | - William A Altemeier
- Center for Lung Biology, University of Washington at South Lake Union, Seattle, Washington, United States
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington, United States
| |
Collapse
|
5
|
Ge T, Ning B, Wu Y, Chen X, Qi H, Wang H, Zhao M. MicroRNA-specific therapeutic targets and biomarkers of apoptosis following myocardial ischemia-reperfusion injury. Mol Cell Biochem 2024; 479:2499-2521. [PMID: 37878166 DOI: 10.1007/s11010-023-04876-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/05/2023] [Indexed: 10/26/2023]
Abstract
MicroRNAs are single-stranded non-coding RNAs that participate in post-transcriptional regulation of gene expression, it is involved in the regulation of apoptosis after myocardial ischemia-reperfusion injury. For example, the alteration of mitochondrial structure is facilitated by MicroRNA-1 through the regulation of apoptosis-related proteins, such as Bax and Bcl-2, thereby mitigating cardiomyocyte apoptosis. MicroRNA-21 not only modulates the expression of NF-κB to suppress inflammatory signals but also activates the PI3K/AKT pathway to mitigate ischemia-reperfusion injury. Overexpression of MicroRNA-133 attenuates reactive oxygen species (ROS) production and suppressed the oxidative stress response, thereby mitigating cellular apoptosis. MicroRNA-139 modulates the extrinsic death signal of Fas, while MicroRNA-145 regulates endoplasmic reticulum calcium overload, both of which exert regulatory effects on cardiomyocyte apoptosis. Therefore, the article categorizes the molecular mechanisms based on the three classical pathways and multiple signaling pathways of apoptosis. It summarizes the targets and pathways of MicroRNA therapy for ischemia-reperfusion injury and analyzes future research directions.
Collapse
Affiliation(s)
- Teng Ge
- School of Graduate, Shaanxi University of Chinese Medicine, No. 1 Middle Section of Shiji Avenue, Xianyang, 712046, China
| | - Bo Ning
- School of Graduate, Shaanxi University of Chinese Medicine, No. 1 Middle Section of Shiji Avenue, Xianyang, 712046, China
| | - Yongqing Wu
- School of Graduate, Shaanxi University of Chinese Medicine, No. 1 Middle Section of Shiji Avenue, Xianyang, 712046, China
| | - Xiaolin Chen
- School of Pharmacy, Shaanxi University of Chinese Medicine, No. 1 Middle Section of Shiji Avenue, Xianyang, 712046, China
| | - Hongfei Qi
- Shaanxi Key Laboratory of Integrated Traditional and Western Medicine for Prevention and Treatment of Cardiovascular Diseases, Institute of Integrative Medicine, Shaanxi University of Chinese Medicine, No. 1 Middle Section of Shiji Avenue, Xianyang, 712046, China
| | - Haifang Wang
- Shaanxi Key Laboratory of Integrated Traditional and Western Medicine for Prevention and Treatment of Cardiovascular Diseases, Institute of Integrative Medicine, Shaanxi University of Chinese Medicine, No. 1 Middle Section of Shiji Avenue, Xianyang, 712046, China
| | - Mingjun Zhao
- Department of Cardiology, Affiliated Hospital of Shaanxi University of Chinese Medicine, Deputy 2, Weiyang West Road, Weicheng District, Xianyang, 712000, China.
| |
Collapse
|
6
|
Long M, Cheng M. Small extracellular vesicles associated miRNA in myocardial fibrosis. Biochem Biophys Res Commun 2024; 727:150336. [PMID: 38959731 DOI: 10.1016/j.bbrc.2024.150336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/20/2024] [Accepted: 06/29/2024] [Indexed: 07/05/2024]
Abstract
Myocardial fibrosis involves the loss of cardiomyocytes, myocardial fibroblast proliferation, and a reduction in angiogenesis, ultimately leading to heart failure, Given its significant implications, it is crucial to explore novel therapies for myocardial fibrosis. Recently one emerging avenue has been the use of small extracellular vesicles (sEV)-carried miRNA. In this review, we summarize the regulatory role of sEV-carried miRNA in myocardial fibrosis. We explored not only the potential diagnostic value of circulating miRNA as biomarkers for heart disease but also the therapeutic implications of sEV-carried miRNA derived from various cellular sources and applications of modified sEV. This exploration is paramount for researchers striving to develop innovative, cell-free therapies as potential drug candidates for the management of myocardial fibrosis.
Collapse
Affiliation(s)
- Minwen Long
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Cheng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
7
|
Chang MY, Chan CK, Brune JE, Manicone AM, Bomsztyk K, Frevert CW, Altemeier WA. Regulation of Versican Expression in Macrophages is Mediated by Canonical Type I Interferon Signaling via ISGF3. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.14.585097. [PMID: 38559011 PMCID: PMC10980001 DOI: 10.1101/2024.03.14.585097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Growing evidence supports a role for versican as an important component of the inflammatory response, with both pro- and anti-inflammatory roles depending on the specific context of the system or disease under investigation. Our goal is to understand the regulation of macrophage-derived versican and the role it plays in innate immunity. In previous work, we showed that LPS triggers a signaling cascade involving TLR4, the Trif adaptor, type I interferons, and the type I interferon receptor, leading to increased versican expression by macrophages. In the present study, we used a combination of chromatin immunoprecipitation, siRNA, chemical inhibitors, and mouse model approaches to investigate the regulatory events downstream of the type I interferon receptor to better define the mechanism controlling versican expression. Results indicate that transcriptional regulation by canonical type I interferon signaling via the heterotrimeric transcription factor, ISGF3, controls versican expression in macrophages exposed to LPS. This pathway is not dependent on MAPK signaling, which has been shown to regulate versican expression in other cell types. The stability of versican mRNA may also contribute to prolonged versican expression in macrophages. These findings strongly support a role for macrophage-derived versican as a type I interferon-stimulated gene and further our understanding of versican's role in regulating inflammation.
Collapse
Affiliation(s)
- Mary Y. Chang
- Department of Comparative Medicine, University of Washington, Seattle, WA
- Center for Lung Biology, University of Washington at South Lake Union, Seattle, WA
| | - Christina K. Chan
- Department of Comparative Medicine, University of Washington, Seattle, WA
- Center for Lung Biology, University of Washington at South Lake Union, Seattle, WA
| | - Jourdan E. Brune
- Department of Comparative Medicine, University of Washington, Seattle, WA
- Center for Lung Biology, University of Washington at South Lake Union, Seattle, WA
| | - Anne M. Manicone
- Center for Lung Biology, University of Washington at South Lake Union, Seattle, WA
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, WA
| | - Karol Bomsztyk
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA
| | - Charles W. Frevert
- Department of Comparative Medicine, University of Washington, Seattle, WA
- Center for Lung Biology, University of Washington at South Lake Union, Seattle, WA
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, WA
| | - William A. Altemeier
- Center for Lung Biology, University of Washington at South Lake Union, Seattle, WA
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, WA
| |
Collapse
|
8
|
Nie X, Xie R, Fan J, Wang DW. LncRNA MIR217HG aggravates pressure-overload induced cardiac remodeling by activating miR-138/THBS1 pathway. Life Sci 2024; 336:122290. [PMID: 38013141 DOI: 10.1016/j.lfs.2023.122290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/13/2023] [Accepted: 11/21/2023] [Indexed: 11/29/2023]
Abstract
AIM Cardiac hypertrophy and fibrosis are associated with cardiac remodeling and heart failure. We have previously shown that miRNA-217, embedded within the third intron of MIR217HG, aggravates pressure overload-induced cardiac hypertrophy by targeting phosphatase and tensin homolog. However, whether the MIR217HG transcript itself plays a role in cardiac remodeling remains unknown. METHODS Real-time PCR assays and RNA in situ hybridization were performed to detect MIR217HG expression. Lentiviruses and adeno-associated viruses with a cardiac-specific promoter (cTnT) were used to control MIR217HG expression in vitro and in vivo. Transverse aortic constriction (TAC) surgery was performed to develop cardiac remodeling models. Cardiac structure and function were analyzed using echocardiography and invasive pressure-volume analysis. KEY FINDINGS MIR217HG expression was increased in patients with heart failure. MIR217HG overexpression aggravated pressure-overload-induced myocyte hypertrophy and fibrosis both in vivo and in vitro, whereas MIR217HG knockdown reversed these phenotypes. Mechanistically, MIR217HG increased THBS1 expression by sponging miR-138. MiR-138 recognized the 3'UTR of THBS1 and repressed THBS1 expression in the absence of MIR217HG. Silencing THBS1 expression reversed MIR217HG-induced cardiac hypertrophy and remodeling. CONCLUSION MIR217HG acts as a potent inducer of cardiac remodeling that may contribute to heart failure by activating the miR-138/THBS1 pathway.
Collapse
Affiliation(s)
- Xiang Nie
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Rong Xie
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Jiahui Fan
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China.
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China.
| |
Collapse
|
9
|
Burgon PG, Weldrick JJ, Talab OMSA, Nadeer M, Nomikos M, Megeney LA. Regulatory Mechanisms That Guide the Fetal to Postnatal Transition of Cardiomyocytes. Cells 2023; 12:2324. [PMID: 37759546 PMCID: PMC10528641 DOI: 10.3390/cells12182324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/16/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
Heart disease remains a global leading cause of death and disability, necessitating a comprehensive understanding of the heart's development, repair, and dysfunction. This review surveys recent discoveries that explore the developmental transition of proliferative fetal cardiomyocytes into hypertrophic postnatal cardiomyocytes, a process yet to be well-defined. This transition is key to the heart's growth and has promising therapeutic potential, particularly for congenital or acquired heart damage, such as myocardial infarctions. Although significant progress has been made, much work is needed to unravel the complex interplay of signaling pathways that regulate cardiomyocyte proliferation and hypertrophy. This review provides a detailed perspective for future research directions aimed at the potential therapeutic harnessing of the perinatal heart transitions.
Collapse
Affiliation(s)
- Patrick G. Burgon
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar
| | - Jonathan J. Weldrick
- Department of Medicine, Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (J.J.W.); (L.A.M.)
| | | | - Muhammad Nadeer
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (O.M.S.A.T.)
| | - Michail Nomikos
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (O.M.S.A.T.)
| | - Lynn A. Megeney
- Department of Medicine, Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (J.J.W.); (L.A.M.)
- Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| |
Collapse
|
10
|
Xu L, Zhang X, Li G, Zhang L, Zhang S, Shi F, Hu Z. Inhibition of SIRT1 by miR-138-5p provides a mechanism for inhibiting osteoblast proliferation and promoting apoptosis under simulated microgravity. LIFE SCIENCES IN SPACE RESEARCH 2023; 36:59-69. [PMID: 36682830 DOI: 10.1016/j.lssr.2022.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 06/17/2023]
Abstract
Microgravity can inhibit osteoblast proliferation and promote apoptosis, which is related to a reduction in mechanical stress on the bones and results in disuse osteoporosis, but the detailed mechanism is still unclear. In this study, we first demonstrated that miR-138-5p was upregulated, inhibited osteoblast proliferation and induced osteoblast apoptosis under simulated microgravity. Moreover, miR-138-5p silencing partially mitigated the effects of proliferation and apoptosis of MC3T3-E1 cells. Our study further showed that sirtuin 1 (SIRT1) was downregulated and negatively correlated with the expression of miR-138-5p under simulated microgravity, which indicated that miR-138-5p inhibited osteoblast proliferation and promoted osteoblast apoptosis by targeting SIRT1. Thus, the miR-138-5p/SIRT1 pathway should be considered for preventative treatment of disuse osteoporosis.
Collapse
Affiliation(s)
- Liqun Xu
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, 710032, Xi'an, Shaanxi, China
| | - Xiaoyan Zhang
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, 710032, Xi'an, Shaanxi, China
| | - Gaozhi Li
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, 710032, Xi'an, Shaanxi, China
| | - Lijun Zhang
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, 710032, Xi'an, Shaanxi, China
| | - Shu Zhang
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, 710032, Xi'an, Shaanxi, China
| | - Fei Shi
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, 710032, Xi'an, Shaanxi, China
| | - Zebing Hu
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, 710032, Xi'an, Shaanxi, China.
| |
Collapse
|
11
|
Zhang C, Zhang S, Liu M, Wang Y, Wang D, Xu S. Screening and identification of miRNAs regulating Tbx4/5 genes of Pampus argenteus. PeerJ 2022; 10:e14300. [PMID: 36312751 PMCID: PMC9610670 DOI: 10.7717/peerj.14300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 10/05/2022] [Indexed: 01/24/2023] Open
Abstract
Background Silver pomfret (Pampus argenteus) is one of the most widely distributed and economically important pelagic fish species. However, an unique morphological feature of P. argenteus is the loss of pelvic fins, which can increase the energy requirement during food capture to some extent and is therefore not conducive to artificial culture. Tbx4/5 genes are highly conserved regulatory factors that regulate limb development in vertebrates and are in turn regulated by microRNAs (miRNAs). However, the miRNAs that directly regulate the Tbx4/5 genes in P. argenteus remain to be elucidated. Methods The Tbx4/5 genes of P. argenteus were first cloned, and the small RNA transcriptomes were sequenced by high-throughput sequencing during the critical period of the fin development at days 1, 7, and 13 of hatching. The miRNAs regulating the Tbx4/5 genes of P. argenteus were subsequently predicted by bioinformatics analysis, and the related miRNAs were verified in vitro using a dual fluorescence reporter system. Results A total of 662 miRNAs were identified, of which 257 were known miRNAs and 405 were novel miRNAs were identified. Compared to day 1, 182 miRNAs were differentially expressed (DE) on day 7, of which 77 and 105 miRNAs were downregulated and upregulated, respectively, while 278 miRNAs were DE on day 13, of which 136 and 142 miRNAs were downregulated and upregulated, respectively. Compared to day 13, four miRNAs were DE on day 7, of which three miRNAs were downregulated and one miRNA was upregulated. The results of hierarchical clustering of the miRNAs revealed that the DE genes were inversely expressed between days 1 and 7, and between days 1 and 13 of larval development, indicating that the larvae were in the peak stage of differentiation. However, the number of DE genes between days 7 and 13 of larval development was relatively small, suggesting the initiation of development. The potential target genes of the DE miRNAs were subsequently predicted, and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses of target genes were performed. The results suggested that the DE miRNAs were involved in growth, development, and signal transduction pathways, of which the Wnt and Fgfs signaling pathways are known to play important roles in the growth and development of fins. The results of dual fluorescence reporter assays demonstrated that miR-102, miR-301c, and miR-589 had a significant negative regulatory effect on the 3'-UTR of the Tbx4 gene, while miR-187, miR-201, miR-219, and miR-460 had a significant negative regulatory effect on the 3'-UTR of the Tbx5 gene. Altogether, the findings indicated that miRNAs play an important role in regulating the growth and development of pelvic fins in P. argenteus. This study provides a reference for elucidating the interactions between the miRNAs and target genes of P. argenteus in future studies.
Collapse
Affiliation(s)
| | | | | | - Yajun Wang
- Ningbo University, Zhejiang, China,Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ningbo, China
| | | | - Shanliang Xu
- Ningbo University, Zhejiang, China,Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ningbo, China
| |
Collapse
|
12
|
Investigation of Sperm and Seminal Plasma Candidate MicroRNAs of Bulls with Differing Fertility and In Silico Prediction of miRNA-mRNA Interaction Network of Reproductive Function. Animals (Basel) 2022; 12:ani12182360. [PMID: 36139221 PMCID: PMC9495167 DOI: 10.3390/ani12182360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/02/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary The objective of this study was to identify differentially expressed (DE) sperm and seminal plasma microRNAs (miRNAs) in high- and low-fertile Holstein bulls (four bulls per group), integrate miRNAs to their target genes, and categorize target genes based on predicted biological processes. Out of 84 bovine-specific, prioritized miRNAs analyzed by RT-PCR, 30 were differentially expressed in high-fertile sperm and seminal plasma compared to low-fertile sperm and seminal plasma, respectively (p ≤ 0.05, fold regulation ≥5 magnitudes). Interestingly, expression levels of DE-miRNAs in sperm and seminal plasma followed a similar pattern. Highly scored integrated genes of DE-miRNAs predicted various biological and molecular functions, cellular process, and pathways. Further in silico analysis revealed categorized genes may have a plausible association with pathways regulating sperm structure and function, fertilization, and embryo and placental development. In conclusion, highly DE-miRNAs in bovine sperm and seminal plasma could be used as a tool for predicting reproductive functions. Since the identified miRNA-mRNA interactions were mostly based on predictions from public databases, the causal regulations of miRNA-mRNA and the underlying mechanisms require further functional characterization in future studies. Abstract Recent advances in high-throughput in silico techniques portray experimental data as exemplified biological networks and help us understand the role of individual proteins, interactions, and their biological functions. The objective of this study was to identify differentially expressed (DE) sperm and seminal plasma microRNAs (miRNAs) in high- and low-fertile Holstein bulls (four bulls per group), integrate miRNAs to their target genes, and categorize the target genes based on biological process predictions. Out of 84 bovine-specific, prioritized miRNAs analyzed by RT-PCR, 30 were differentially expressed in high-fertile sperm and seminal plasma compared to low-fertile sperm and seminal plasma, respectively (p ≤ 0.05, fold regulation ≥ 5 magnitudes). The expression levels of DE-miRNAs in sperm and seminal plasma followed a similar pattern. Highly scored integrated genes of DE-miRNAs predicted various biological and molecular functions, cellular process, and pathways. Further, analysis of the categorized genes showed association with pathways regulating sperm structure and function, fertilization, and embryo and placental development. In conclusion, highly DE-miRNAs in bovine sperm and seminal plasma could be used as a tool for predicting reproductive functions. Since the identified miRNA-mRNA interactions were mostly based on predictions from public databases, the causal regulations of miRNA-mRNA and the underlying mechanisms require further functional characterization in future studies.
Collapse
|
13
|
Wang X, Cheng L, Fu H, Chan CZY, Tse G, Liu T, Li G. Endothelial-Derived APT1-Mediated Macrophage-Endothelial Cell Interactions Participate in the Development of Atherosclerosis by Regulating the Ras/MAPK Signaling Pathway. Life (Basel) 2022; 12:551. [PMID: 35455042 PMCID: PMC9026782 DOI: 10.3390/life12040551] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/30/2022] [Accepted: 03/30/2022] [Indexed: 11/29/2022] Open
Abstract
Acyl-protein thioesterase 1 (APT1) can affect H-Ras localization and function by promoting its depalmitoylation. However, relatively little attention has been paid to the effects of APT1 on H-Ras in the cardiovascular system. In this study, we revealed its roles in atherosclerosis development using oxidative low-density lipoprotein (ox-LDL)-induced endothelial dysfunction models and a Western diet-induced ApoE−/− mouse model. The results showed that APT1 expression was up-regulated, while that of miR-138-5p (miR-138) was down-regulated (p < 0.05) in this model. In the meantime, APT1 and H-Ras were translocated from the cytoplasm to the plasma membrane. Bioinformatic analysis and double fluorescence identified miR-138 as the upstream regulator of APT1. APT1 knockdown regulated H-Ras localization and expression, which subsequently affected the MAPK signaling pathway and the expression of its downstream factors. Further research indicated that human umbilical vein endothelial cells (HUVECs)-derived biogenic nanoparticles (BiNPs), hBPs secretion, and RNA expression of hBP-loaded APT1 were increased (p < 0.05) in the ox-LDL induced endothelial dysfunction model. Meanwhile, the HUVECs-derived APT1 could further affect macrophage function through hBP transportation. Altogether, this study demonstrated that the miR-138-APT1 axis may be partially responsible for atherosclerosis development by regulating the H-Ras-MAPK signaling pathway and hBP transportation. The results also shed novel insight on the underlying mechanisms of, and identify potential diagnostic and therapeutic targets for, atherosclerotic cardiovascular diseases in the future.
Collapse
Affiliation(s)
- Xinghua Wang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China; (X.W.); (L.C.); (H.F.); (G.T.)
| | - Lijun Cheng
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China; (X.W.); (L.C.); (H.F.); (G.T.)
| | - Huaying Fu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China; (X.W.); (L.C.); (H.F.); (G.T.)
| | - Calista Zhuo Yi Chan
- Department of Medicine and Therapeutics, Chinese University of Hong Kong, Hong Kong, China;
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, China
| | - Gary Tse
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China; (X.W.); (L.C.); (H.F.); (G.T.)
- Kent and Medway Medical School, Canterbury CT2 7FS, UK
- Laboratory of Cardiovascular Physiology, Cardiovascular Analytics Group, Hong Kong, China
| | - Tong Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China; (X.W.); (L.C.); (H.F.); (G.T.)
| | - Guangping Li
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China; (X.W.); (L.C.); (H.F.); (G.T.)
| |
Collapse
|
14
|
Abstract
Aggrecan (Acan) and versican (Vcan) are large chondroitin sulfate proteoglycans of the extracellular matrix. They share the same structural domains at both N and C-termini. The N-terminal G1 domain binds hyaluronan (HA), forms an HA-rich matrix, and regulates HA-mediated signaling. The C-terminal G3 domain binds other extracellular matrix molecules and forms a supramolecular structure that stores TGFb and BMPs and regulates their signaling. EGF-like motifs in the G3 domain may directly act like an EGF ligand. Both Acan and Vcan are present in cartilage, intervertebral disc, brain, heart, and aorta. Their localizations are essentially reciprocal. This review describes their structural domains, expression patterns and functions, and regulation of their expression.
Collapse
Affiliation(s)
- Hideto Watanabe
- Institute for Molecular Science of Medicine, Aichi Medical University, Nagakute, Aichi, Japan
| |
Collapse
|
15
|
Shah V, Shah J. Restoring Ravaged Heart: Molecular Mechanisms and Clinical Application of miRNA in Heart Regeneration. Front Cardiovasc Med 2022; 9:835138. [PMID: 35224063 PMCID: PMC8866653 DOI: 10.3389/fcvm.2022.835138] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/17/2022] [Indexed: 11/28/2022] Open
Abstract
Human heart development is a complex and tightly regulated process, conserving proliferation, and multipotency of embryonic cardiovascular progenitors. At terminal stage, progenitor cell type gets suppressed for terminal differentiation and maturation. In the human heart, most cardiomyocytes are terminally differentiated and so have limited proliferation capacity. MicroRNAs (miRNAs) are non-coding single-stranded RNA that regulate gene expression and mRNA silencing at the post-transcriptional level. These miRNAs play a crucial role in numerous biological events, including cardiac development, and cardiomyocyte proliferation. Several cardiac cells specific miRNAs have been discovered. Inhibition or overexpression of these miRNAs could induce cardiac regeneration, cardiac stem cell proliferation and cardiomyocyte proliferation. Clinical application of miRNAs extends to heart failure, wherein the cell cycle arrest of terminally differentiated cardiac cells inhibits the heart regeneration. The regenerative capacity of the myocardium can be enhanced by cardiomyocyte specific miRNAs controlling the cell cycle. In this review, we focus on cardiac-specific miRNAs involved in cardiac regeneration and cardiomyocyte proliferation, and their potential as a new clinical therapy for heart regeneration.
Collapse
|
16
|
Estrogenic hormones receptors in Alzheimer's disease. Mol Biol Rep 2021; 48:7517-7526. [PMID: 34657250 DOI: 10.1007/s11033-021-06792-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/15/2021] [Indexed: 02/06/2023]
Abstract
Estrogens are hormones that play a critical role during development and growth for the adequate functioning of the reproductive system of women, as well as for maintaining bones, metabolism, and cognition. During menopause, the levels of estrogens are decreased, altering their signaling mediated by their intracellular receptors such as estrogen receptor alpha and beta (ERα and ERβ), and G protein-coupled estrogen receptor (GPER). In the brain, the reduction of molecular pathways mediated by estrogenic receptors seems to favor the progression of Alzheimer's disease (AD) in postmenopausal women. In this review, we investigate the participation of estrogen receptors in AD in women during aging.
Collapse
|
17
|
Derrick CJ, Pollitt EJG, Sanchez Sevilla Uruchurtu A, Hussein F, Grierson AJ, Noël ES. Lamb1a regulates atrial growth by limiting second heart field addition during zebrafish heart development. Development 2021; 148:272294. [PMID: 34568948 DOI: 10.1242/dev.199691] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 09/19/2021] [Indexed: 12/20/2022]
Abstract
During early vertebrate heart development, the heart transitions from a linear tube to a complex asymmetric structure, a morphogenetic process that occurs simultaneously with growth of the heart. Cardiac growth during early heart morphogenesis is driven by deployment of cells from the second heart field (SHF) into both poles of the heart. Laminin is a core component of the extracellular matrix and, although mutations in laminin subunits are linked with cardiac abnormalities, no role for laminin has been identified in early vertebrate heart morphogenesis. We identified tissue-specific expression of laminin genes in the developing zebrafish heart, supporting a role for laminins in heart morphogenesis. Analysis of heart development in lamb1a zebrafish mutant embryos reveals mild morphogenetic defects and progressive cardiomegaly, and that Lamb1a functions to limit heart size during cardiac development by restricting SHF addition. lamb1a mutants exhibit hallmarks of altered haemodynamics, and blocking cardiac contractility in lamb1a mutants rescues heart size and atrial SHF addition. Together, these results suggest that laminin mediates interactions between SHF deployment and cardiac biomechanics during heart morphogenesis and growth in the developing embryo.
Collapse
Affiliation(s)
| | - Eric J G Pollitt
- Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, UK
| | | | - Farah Hussein
- Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, UK
| | - Andrew J Grierson
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK
| | - Emily S Noël
- Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|
18
|
miRNA in cardiac development and regeneration. CELL REGENERATION (LONDON, ENGLAND) 2021; 10:14. [PMID: 34060005 PMCID: PMC8166991 DOI: 10.1186/s13619-021-00077-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 02/19/2021] [Indexed: 02/07/2023]
Abstract
Ischemic heart disease is one of the main causes of morbidity and mortality in the world. In adult mammalian hearts, most cardiomyocytes are terminally differentiated and have extremely limited capacity of proliferation, making it impossible to regenerate the heart after injuries such as myocardial infarction. MicroRNAs (miRNAs), a class of non-coding single-stranded RNA, which are involved in mRNA silencing and the regulation of post-transcriptional gene expression, have been shown to play a crucial role in cardiac development and cardiomyocyte proliferation. Muscle specific miRNAs such as miR-1 are key regulators of cardiomyocyte maturation and growth, while miR-199-3p and other miRNAs display potent activity to induce proliferation of cardiomyocytes. Given their small size and relative pleiotropic effects, miRNAs have gained significant attraction as promising therapeutic targets or tools in cardiac regeneration. Increasing number of studies demonstrated that overexpression or inhibition of specific miRNAs could induce cardiomyocyte proliferation and cardiac regeneration. Some common targets of pro-proliferation miRNAs, such as the Hippo-Yap signaling pathway, were identified in multiple species, highlighting the power of miRNAs as probes to dissect core regulators of biological processes. A number of miRNAs have been shown to improve heart function after myocardial infarction in mice, and one trial in swine also demonstrated promising outcomes. However, technical difficulties, especially in delivery methods, and adverse effects, such as uncontrolled proliferation, remain. In this review, we summarize the recent progress in miRNA research in cardiac development and regeneration, examine the mechanisms of miRNA regulating cardiomyocyte proliferation, and discuss its potential as a new strategy for cardiac regeneration therapy.
Collapse
|
19
|
Wang L, Feng B, Zhu S. miR-27b-3p Down-Regulation Prevents Hypoxia-Induced Cardiomyocyte Apoptosis Through Regulating Yes-Associated Protein 1 (YAP1) Expression. J BIOMATER TISS ENG 2021. [DOI: 10.1166/jbt.2021.2633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Background: Congenital heart disease (CHD) is one of the most common birth defects. MicroR-NAs (miRNAs) are a group of endogenous, non-coding small RNAs and mediate the target genes expression. An increasing evidence showed that in recent years, miRNAs have given rise to more
and more attention in heart protection and development. In our research, the main purpose was to determine the effect of miR-27b-3p in CHD and analyze related mechanisms. Methods: We performed qRT-PCR analysis to examine miR-27b-3p expression in myocardial tissue from 30 patients with
CHD and hypoxia-induced H9C2 cells. Then, we performed biological software TargetScan to predict the relationship of miR-27b-3p and YAP1, and dual luciferase reporter gene assay was used to verify the results. H9C2 cells were transfected with inhibitor control, miR-27b-3p inhibitor, miR-27b-3p
inhibitor + control-siRNA or miR-27b-3p inhibitor + YAP1-siRNA for 6 hours and then induced by hypoxia for 72 hours. Subsequently, we performed MTT and FCM analysis to detect cell viability and apoptosis. Finally, we used western blot assay to measure the expression of apoptosis-related proteins.
Results: Our study indicated that miR-27b-3p expression in myocardial samples of cyanotic CHD patients was significantly higher than that of the acyanotic CHD patients. miR-27b-3p expression was gradually up-regulated with the increase of hypoxia induction time in H9C2 cells. Besides,
we confirmed that YAP1 was a target gene of miR-27b-3p. Moreover, our results showed that miR-27b-3p inhibitor improved cell viability, decreased apoptosis, and affected apoptosis-related proteins expression in hypoxia induced H9C2 cells. These changes were reversed by YAP1-siRNA. All data
demonstrated that miR-27b-3p/YAP1 might be new potential bio-marker and therapeutic target for CHD treatment.
Collapse
Affiliation(s)
- Lilin Wang
- Department of Electrocardiogram (ECG), The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310006, China
| | - Bo Feng
- Department of Imaging Intervention, Hangzhou Dajiangdong Hospital, Hangzhou 311225, China
| | - Shu Zhu
- Department of Internal Medicine, Xihu District Hospital of Integrated Traditional Chinese and Western Medicine, Hangzhou 310030, China
| |
Collapse
|
20
|
Chhabra R, Rockfield S, Guergues J, Nadeau OW, Hill R, Stevens SM, Nanjundan M. Global miRNA/proteomic analyses identify miRNAs at 14q32 and 3p21, which contribute to features of chronic iron-exposed fallopian tube epithelial cells. Sci Rep 2021; 11:6270. [PMID: 33737539 PMCID: PMC7973504 DOI: 10.1038/s41598-021-85342-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 03/01/2021] [Indexed: 02/06/2023] Open
Abstract
Malignant transformation of fallopian tube secretory epithelial cells (FTSECs) is a key contributing event to the development of high-grade serous ovarian carcinoma (HGSOC). Our recent findings implicate oncogenic transformative events in chronic iron-exposed FTSECs, including increased expression of oncogenic mediators, increased telomerase transcripts, and increased growth/migratory potential. Herein, we extend these studies by implementing an integrated transcriptomic and mass spectrometry-based proteomics approach to identify global miRNA and protein alterations, for which we also investigate a subset of these targets to iron-induced functional alterations. Proteomic analysis identified > 4500 proteins, of which 243 targets were differentially expressed. Sixty-five differentially expressed miRNAs were identified, of which 35 were associated with the “top” proteomic molecules (> fourfold change) identified by Ingenuity Pathway Analysis. Twenty of these 35 miRNAs are at the 14q32 locus (encoding a cluster of 54 miRNAs) with potential to be regulated by DNA methylation and histone deacetylation. At 14q32, miR-432-5p and miR-127-3p were ~ 100-fold downregulated whereas miR-138-5p was 16-fold downregulated at 3p21 in chronic iron-exposed FTSECs. Combinatorial treatment with methyltransferase and deacetylation inhibitors reversed expression of these miRNAs, suggesting chronic iron exposure alters miRNA expression via epigenetic alterations. In addition, PAX8, an important target in HGSOC and a potential miRNA target (from IPA) was epigenetically deregulated in iron-exposed FTSECs. However, both PAX8 and ALDH1A2 (another IPA-predicted target) were experimentally identified to be independently regulated by these miRNAs although TERT RNA was partially regulated by miR-138-5p. Interestingly, overexpression of miR-432-5p diminished cell numbers induced by long-term iron exposure in FTSECs. Collectively, our global profiling approaches uncovered patterns of miRNA and proteomic alterations that may be regulated by genome-wide epigenetic alterations and contribute to functional alterations induced by chronic iron exposure in FTSECs. This study may provide a platform to identify future biomarkers for early ovarian cancer detection and new targets for therapy.
Collapse
Affiliation(s)
- Ravneet Chhabra
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, 33620, USA
| | - Stephanie Rockfield
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, 33620, USA.,Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Jennifer Guergues
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, 33620, USA.,Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, 261 Mountain View Drive, Colchester, VT, 05446, USA
| | - Owen W Nadeau
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, 261 Mountain View Drive, Colchester, VT, 05446, USA
| | - Robert Hill
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, 33620, USA
| | - Stanley M Stevens
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, 33620, USA.,Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, 261 Mountain View Drive, Colchester, VT, 05446, USA
| | - Meera Nanjundan
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, 33620, USA.
| |
Collapse
|
21
|
Lim TB, Foo SYR, Chen CK. The Role of Epigenetics in Congenital Heart Disease. Genes (Basel) 2021; 12:genes12030390. [PMID: 33803261 PMCID: PMC7998561 DOI: 10.3390/genes12030390] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/23/2021] [Accepted: 03/06/2021] [Indexed: 02/06/2023] Open
Abstract
Congenital heart disease (CHD) is the most common birth defect among newborns worldwide and contributes to significant infant morbidity and mortality. Owing to major advances in medical and surgical management, as well as improved prenatal diagnosis, the outcomes for these children with CHD have improved tremendously so much so that there are now more adults living with CHD than children. Advances in genomic technologies have discovered the genetic causes of a significant fraction of CHD, while at the same time pointing to remarkable complexity in CHD genetics. For this reason, the complex process of cardiogenesis, which is governed by multiple interlinked and dose-dependent pathways, is a well investigated process. In addition to the sequence of the genome, the contribution of epigenetics to cardiogenesis is increasingly recognized. Significant progress has been made dissecting the epigenome of the heart and identified associations with cardiovascular diseases. The role of epigenetic regulation in cardiac development/cardiogenesis, using tissue and animal models, has been well reviewed. Here, we curate the current literature based on studies in humans, which have revealed associated and/or causative epigenetic factors implicated in CHD. We sought to summarize the current knowledge on the functional role of epigenetics in cardiogenesis as well as in distinct CHDs, with an aim to provide scientists and clinicians an overview of the abnormal cardiogenic pathways affected by epigenetic mechanisms, for a better understanding of their impact on the developing fetal heart, particularly for readers interested in CHD research.
Collapse
Affiliation(s)
- Tingsen Benson Lim
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore;
| | - Sik Yin Roger Foo
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore;
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore 138672, Singapore
| | - Ching Kit Chen
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore;
- Division of Cardiology, Department of Paediatrics, Khoo Teck Puat-National University Children’s Medical Institute, National University Health System, Singapore 119228, Singapore
- Correspondence:
| |
Collapse
|
22
|
Abstract
Cardiac development is a complex developmental process that is initiated soon after gastrulation, as two sets of precardiac mesodermal precursors are symmetrically located and subsequently fused at the embryonic midline forming the cardiac straight tube. Thereafter, the cardiac straight tube invariably bends to the right, configuring the first sign of morphological left–right asymmetry and soon thereafter the atrial and ventricular chambers are formed, expanded and progressively septated. As a consequence of all these morphogenetic processes, the fetal heart acquired a four-chambered structure having distinct inlet and outlet connections and a specialized conduction system capable of directing the electrical impulse within the fully formed heart. Over the last decades, our understanding of the morphogenetic, cellular, and molecular pathways involved in cardiac development has exponentially grown. Multiples aspects of the initial discoveries during heart formation has served as guiding tools to understand the etiology of cardiac congenital anomalies and adult cardiac pathology, as well as to enlighten novels approaches to heal the damaged heart. In this review we provide an overview of the complex cellular and molecular pathways driving heart morphogenesis and how those discoveries have provided new roads into the genetic, clinical and therapeutic management of the diseased hearts.
Collapse
|
23
|
Song R, Zhang L. Cardiac ECM: Its Epigenetic Regulation and Role in Heart Development and Repair. Int J Mol Sci 2020; 21:ijms21228610. [PMID: 33203135 PMCID: PMC7698074 DOI: 10.3390/ijms21228610] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 11/07/2020] [Accepted: 11/13/2020] [Indexed: 12/14/2022] Open
Abstract
The extracellular matrix (ECM) is the non-cellular component in the cardiac microenvironment, and serves essential structural and regulatory roles in establishing and maintaining tissue architecture and cellular function. The patterns of molecular and biochemical ECM alterations in developing and adult hearts depend on the underlying injury type. In addition to exploring how the ECM regulates heart structure and function in heart development and repair, this review conducts an inclusive discussion of recent developments in the role, function, and epigenetic guidelines of the ECM. Moreover, it contributes to the development of new therapeutics for cardiovascular disease.
Collapse
Affiliation(s)
- Rui Song
- Correspondence: (R.S.); (L.Z.); Tel.: +1-909-558-4325 (R.S. & L.Z.)
| | - Lubo Zhang
- Correspondence: (R.S.); (L.Z.); Tel.: +1-909-558-4325 (R.S. & L.Z.)
| |
Collapse
|
24
|
Wang L, Song F, Yin H, Zhu W, Fu J, Dong Z, Xu P. Comparative microRNAs expression profiles analysis during embryonic development of common carp, Cyprinus carpio. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2020; 37:100754. [PMID: 33186873 DOI: 10.1016/j.cbd.2020.100754] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/23/2020] [Accepted: 10/26/2020] [Indexed: 12/22/2022]
Abstract
MicroRNAs (miRNAs) play important roles in biological processes by regulating specific gene expression. Limited miRNAs information is available on embryonic development in common carp (Cyprinus carpio) so far. In this study, six important embryonic development stages of C.carpio were collected to perform a times-series of small RNA-seq experiments from cleavage, blastocyst, gastrulation, organ formation, hatching stage to 1 day post-hatching larva. The expression profiles of miRNAs were identified and differentially expressed miRNAs (DEMs) were screened out based on pairwise comparison. A mean of 12,744,989 raw reads and 9,888,123 clean reads were obtained from each library. A total of 2565 miRNAs were identified. 68 of 204 DEMs were overlapped with stage-specific miRNAs, in which 15 were known miRNAs and seemed to play a key role in embryogenesis. Additionally, time-course expression reveals several intriguing fluctuations during embryogenesis. Numerous signaling pathways were identified in embryonic development, including the phototransduction, hippo signaling pathway, Wnt, melanogenesis, histidine metabolism and fatty acid biosynthesis. The results would provide new insight into the roles of miRNAs in embryonic development, and would help us to advance the understanding of miRNA-mediated mechanisms in embryonic development of fish.
Collapse
Affiliation(s)
- Lanmei Wang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, Jiangsu, China; Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Wuxi 214081, Jiangsu, China
| | - Feibiao Song
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, Jiangsu, China
| | - Haoran Yin
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, Jiangsu, China
| | - Wenbin Zhu
- Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Wuxi 214081, Jiangsu, China
| | - Jianjun Fu
- Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Wuxi 214081, Jiangsu, China
| | - Zaijie Dong
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, Jiangsu, China; Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Wuxi 214081, Jiangsu, China.
| | - Pao Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, Jiangsu, China; Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Wuxi 214081, Jiangsu, China.
| |
Collapse
|
25
|
MicroRNAs: roles in cardiovascular development and disease. Cardiovasc Pathol 2020; 50:107296. [PMID: 33022373 DOI: 10.1016/j.carpath.2020.107296] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular diseases (CVDs) comprise a group of disorders ranging from peripheral artery, coronary artery, cardiac valve, cardiac muscle, and congenital heart diseases to arrhythmias and ultimately, heart failure. For all the advances in therapeutics, CVDs are still the leading cause of mortality the world over, hence the significance of a thorough understanding of CVDs at the molecular level. Disparities in the expressions of genes and microRNAs (miRNAs) play a crucial role in the determination of the fate of cellular pathways, which ultimately affect an organism's physiology. Indeed, miRNAs serve as the regulators of gene expressions in that they perform key functions both in several important cellular pathways and in the regulation of the onset of various diseases such as CVDs. Many miRNAs are expressed in embryonic, postnatal, and adult hearts; their aberrant expression or genetic deletion is associated with abnormal cardiac cell differentiation, disruption in heart development, and cardiac dysfunction. A substantial body of evidence implicates miRNAs in CVD development and suggests them as diagnostic biomarkers and intriguing therapeutic tools. The present review provides an overview of the history, biogenesis, and processing of miRNAs, as well as their function in the development, remodeling, and diseases of the heart.
Collapse
|
26
|
Zhuang S, Fu Y, Li J, Li M, Hu X, Zhu J, Tong M. MicroRNA-375 overexpression disrupts cardiac development of Zebrafish (Danio rerio) by targeting notch2. PROTOPLASMA 2020; 257:1309-1318. [PMID: 32468186 DOI: 10.1007/s00709-020-01490-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 02/13/2020] [Indexed: 06/11/2023]
Abstract
MicroRNAs are small noncoding RNAs that are important for proper cardiac development. In our previous study of fetuses with ventricular septal defects, we discovered that microRNA-375 (miR-375) is obviously upregulated compared with that in healthy controls. Our study also confirmed that miR-375 is crucial for cardiomyocyte differentiation. This research mainly focused on the biological significance and mechanism of miR-375 using a zebrafish model. We injected zebrafish embryos with 1-2 nl of a miR-375 mimic at various concentrations (0/2/4/8 μM) or with negative control. The deformation and mortality rates were separately assessed. The different expression levels of miR-375 and related genes were examined by qRT-PCR, and luciferase assays and in situ hybridization were used to clarify the mechanism of miR-375 during embryonic development. Overexpression of miR-375 disrupted the cardiac development of zebrafish embryos. Disruption of miR-375 led to a decreased heart rate, pericardial edema, and abnormal cardiac looping. Various genes involved in cardiac development were downregulated due to the overexpression of miR-375. Moreover, the NOTCH signaling pathway was affected, and the luciferase reporter gene assays confirmed notch2, which was predicted by bioinformatics analysis, as the target gene of miR-375. Our findings demonstrated that the overexpression of miR-375 is detrimental to embryonic development, including cardiac development, and can partially simulate a multisystemic disorder. MiR-375 has an important role during cardiac morphogenesis of zebrafish embryos by targeting notch2, indicating its potential as a diagnostic marker.
Collapse
Affiliation(s)
- Sisi Zhuang
- Department of Child Health Care, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, 123rd Tianfei Street, Mochou Road, Nanjing, 210004, China
- Department of Pediatrics, The First Affiliated Hospital, Nanjing Medical University, Jiangsu Province, Nanjing, 210029, China
| | - Yanrong Fu
- Department of Pediatrics, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 XianXia Road, Shanghai, 200336, China
| | - Jingyun Li
- Department of Child Health Care, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, 123rd Tianfei Street, Mochou Road, Nanjing, 210004, China
| | - Mengmeng Li
- Department of Pediatrics, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, 123rd Tianfei Street, Mochou Road, Nanjing, 210004, China
| | - Xiaoshan Hu
- Department of Pediatrics, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, 123rd Tianfei Street, Mochou Road, Nanjing, 210004, China
| | - Jingai Zhu
- Department of Pediatrics, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, 123rd Tianfei Street, Mochou Road, Nanjing, 210004, China.
| | - Meiling Tong
- Department of Child Health Care, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, 123rd Tianfei Street, Mochou Road, Nanjing, 210004, China.
| |
Collapse
|
27
|
Cassani M, Fernandes S, Vrbsky J, Ergir E, Cavalieri F, Forte G. Combining Nanomaterials and Developmental Pathways to Design New Treatments for Cardiac Regeneration: The Pulsing Heart of Advanced Therapies. Front Bioeng Biotechnol 2020; 8:323. [PMID: 32391340 PMCID: PMC7193099 DOI: 10.3389/fbioe.2020.00323] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 03/24/2020] [Indexed: 12/12/2022] Open
Abstract
The research for heart therapies is challenged by the limited intrinsic regenerative capacity of the adult heart. Moreover, it has been hampered by the poor results obtained by tissue engineering and regenerative medicine attempts at generating functional beating constructs able to integrate with the host tissue. For this reason, organ transplantation remains the elective treatment for end-stage heart failure, while novel strategies aiming to promote cardiac regeneration or repair lag behind. The recent discovery that adult cardiomyocytes can be ectopically induced to enter the cell cycle and proliferate by a combination of microRNAs and cardioprotective drugs, like anti-oxidant, anti-inflammatory, anti-coagulants and anti-platelets agents, fueled the quest for new strategies suited to foster cardiac repair. While proposing a revolutionary approach for heart regeneration, these studies raised serious issues regarding the efficient controlled delivery of the therapeutic cargo, as well as its timely removal or metabolic inactivation from the site of action. Especially, there is need for innovative treatment because of evidence of severe side effects caused by pleiotropic drugs. Biocompatible nanoparticles possess unique physico-chemical properties that have been extensively exploited for overcoming the limitations of standard medical therapies. Researchers have put great efforts into the optimization of the nanoparticles synthesis and functionalization, to control their interactions with the biological milieu and use as a viable alternative to traditional approaches. Nanoparticles can be used for diagnosis and deliver therapies in a personalized and targeted fashion. Regarding the treatment of cardiovascular diseases, nanoparticles-based strategies have provided very promising outcomes, in preclinical studies, during the last years. Efficient encapsulation of a large variety of cargos, specific release at the desired site and improvement of cardiac function are some of the main achievements reached so far by nanoparticle-based treatments in animal models. This work offers an overview on the recent nanomedical applications for cardiac regeneration and highlights how the versatility of nanomaterials can be combined with the newest molecular biology discoveries to advance cardiac regeneration therapies.
Collapse
Affiliation(s)
- Marco Cassani
- International Clinical Research Center, St Anne’s University Hospital, Brno, Czechia
| | - Soraia Fernandes
- International Clinical Research Center, St Anne’s University Hospital, Brno, Czechia
| | - Jan Vrbsky
- International Clinical Research Center, St Anne’s University Hospital, Brno, Czechia
| | - Ece Ergir
- International Clinical Research Center, St Anne’s University Hospital, Brno, Czechia
- Faculty of Technical Chemistry, Institute of Applied Synthetic Chemistry and Institute of Chemical Technologies and Analytics, Vienna University of Technology, Vienna, Austria
| | - Francesca Cavalieri
- School of Science, RMIT University, Melbourne, VIC, Australia
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma “Tor Vergata”, Via Della Ricerca Scientifica, Rome, Italy
| | - Giancarlo Forte
- International Clinical Research Center, St Anne’s University Hospital, Brno, Czechia
| |
Collapse
|
28
|
Comprehensive Overview of Non-coding RNAs in Cardiac Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1229:197-211. [PMID: 32285413 DOI: 10.1007/978-981-15-1671-9_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Cardiac development in the human embryo is characterized by the interactions of several transcription and growth factors leading the heart from a primordial linear tube into a synchronous contractile four-chamber organ. Studies on cardiogenesis showed that cell proliferation, differentiation, fate specification and morphogenesis are spatiotemporally coordinated by cell-cell interactions and intracellular signalling cross-talks. In recent years, research has focused on a class of inter- and intra-cellular modulators called non-coding RNAs (ncRNAs), transcribed from the noncoding portion of the DNA and involved in the proper formation of the heart. In this chapter, we will summarize the current state of the art on the roles of three major forms of ncRNAs [microRNAs (miRNAs), long ncRNAs (lncRNAs) and circular RNAs (circRNAs)] in orchestrating the four sequential phases of cardiac organogenesis.
Collapse
|
29
|
Ahkin Chin Tai JK, Freeman JL. Zebrafish as an integrative vertebrate model to identify miRNA mechanisms regulating toxicity. Toxicol Rep 2020; 7:559-570. [PMID: 32373477 PMCID: PMC7195498 DOI: 10.1016/j.toxrep.2020.03.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/22/2020] [Accepted: 03/24/2020] [Indexed: 12/12/2022] Open
Abstract
Zebrafish are an established vertebrate model for toxicity studies. Zebrafish have a fully sequenced genome and the capability to create genetic models. Zebrafish have over 80 % homology for genes related to human disease. Functions of miRNAs in the zebrafish genome are being characterized. Zebrafish are ideal for mechanistic studies on how miRNAs regulate toxicity.
Zebrafish (Danio rerio) are an integrative vertebrate model ideal for toxicity studies. The zebrafish genome is sequenced with detailed characterization of all life stages. With their genetic similarity to humans, zebrafish models are established to study biological processes including development and disease mechanisms for translation to human health. The zebrafish genome, similar to other eukaryotic organisms, contains microRNAs (miRNAs) which function along with other epigenetic mechanisms to regulate gene expression. Studies have now established that exposure to toxins and xenobiotics can change miRNA expression profiles resulting in various physiological and behavioral alterations. In this review, we cover the intersection of miRNA alterations from toxin or xenobiotic exposure with a focus on studies using the zebrafish model system to identify miRNA mechanisms regulating toxicity. Studies to date have addressed exposures to toxins, particulate matter and nanoparticles, various environmental contaminants including pesticides, ethanol, and pharmaceuticals. Current limitations of the completed studies and future directions for this research area are discussed.
Collapse
Affiliation(s)
| | - Jennifer L Freeman
- School of Health Sciences, Purdue University, West Lafayette, IN 47907 USA
| |
Collapse
|
30
|
Zhao B, Li G, Peng J, Ren L, Lei L, Ye H, Wang Z, Zhao S. CircMACF1 Attenuates Acute Myocardial Infarction Through miR-500b-5p-EMP1 Axis. J Cardiovasc Transl Res 2020; 14:161-172. [PMID: 32162171 DOI: 10.1007/s12265-020-09976-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 02/21/2020] [Indexed: 12/30/2022]
Abstract
It is widely accepted that circular RNA (circRNA) plays an important role in cardiovascular diseases. Therefore, this experiment aimed to investigate the pathogenesis of circMACF1 in acute myocardial infarction (AMI). qRT-PCR and immunoblotting were used to detect the expression levels of circMACF1, miR-500b-5p, and epithelial membrane protein 1 (EMP1). The role of circMACF1, miR-500b-5p, and EMP1 in cardiomyocyte apoptosis was assessed using annexin V-FITC/PI. Echocardiographic assessment, serum creatine kinase MB (CK-MB) and lactate dehydrogenase (LDH), myocardial infarct size, and TUNEL staining were applied in our research. In the MI group, the expression levels of circMACF1 and EMP1 were decreased with the increasing expression level of miR-500b-5p. CircMACF1 upregulated the expression of EMP1 as a sponge of miR-500b-5p, and circMACF1 was a direct target of miR-500b-5p. CircMACF1 impaired the progression of AMI by modulating the miR-500b-5p/EMP1 axis. CircMACF1 may be a potential therapeutic target for treating AMI. Graphical Abstract CircMACF1 upregulated EMP1 expression by sponge miR-500b-5p.
Collapse
Affiliation(s)
- Bo Zhao
- Department of Cardiology, Beijing Shijitan Hospital, Capital Medical University, No. 10 Tieyi Road, Haidian District, Beijing, 100038, People's Republic of China
| | - Guangping Li
- Department of Cardiology, Beijing Shijitan Hospital, Capital Medical University, No. 10 Tieyi Road, Haidian District, Beijing, 100038, People's Republic of China.
- Department of Cardiology, Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, People's Republic of China.
| | - Jianjun Peng
- Department of Cardiology, Beijing Shijitan Hospital, Capital Medical University, No. 10 Tieyi Road, Haidian District, Beijing, 100038, People's Republic of China
| | - Lihui Ren
- Department of Cardiology, Beijing Shijitan Hospital, Capital Medical University, No. 10 Tieyi Road, Haidian District, Beijing, 100038, People's Republic of China
| | - Licheng Lei
- Department of Cardiology, Beijing Shijitan Hospital, Capital Medical University, No. 10 Tieyi Road, Haidian District, Beijing, 100038, People's Republic of China
| | - Huiming Ye
- Department of Cardiology, Beijing Shijitan Hospital, Capital Medical University, No. 10 Tieyi Road, Haidian District, Beijing, 100038, People's Republic of China
| | - Zuoyan Wang
- Department of Cardiology, Beijing Shijitan Hospital, Capital Medical University, No. 10 Tieyi Road, Haidian District, Beijing, 100038, People's Republic of China
| | - Sheng Zhao
- Department of Cardiology, Beijing Shijitan Hospital, Capital Medical University, No. 10 Tieyi Road, Haidian District, Beijing, 100038, People's Republic of China
| |
Collapse
|
31
|
Dong Z, Luo M, Wang L, Yin H, Zhu W, Fu J. MicroRNA-206 Regulation of Skin Pigmentation in Koi Carp ( Cyprinus carpio L.). Front Genet 2020; 11:47. [PMID: 32117457 PMCID: PMC7029398 DOI: 10.3389/fgene.2020.00047] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 01/15/2020] [Indexed: 01/15/2023] Open
Abstract
MicroRNAs (miRNAs) are ∼22 nucleotide non-coding RNA molecules that act as crucial roles in plenty of biological processes. However, the molecular and cellular mechanisms of miRNAs to regulate skin color differentiation and pigmentation in fish have not been fully understood. Herein, we revealed that miR-206, a skin-enriched miRNA, regulates melanocortin 1 receptor (Mc1r, a key regulator of melanogenesis) expression by binding to its 3'-untranslated (UTR) region through bioinformatics and luciferase reporter assay in koi carp (Cyprinus carpio L.). The analysis of spatial and temporal expression patterns suggested that miR-206 is a potential regulator in the skin pigmentation process. Then, we silenced it in vivo with an antagomir method. The result showed a substantial increase of Mc1r mRNA expression and protein level, and also its downstream genes: tyrosinase (Tyr) and dopachrome tautomerase (Dct) that encoding key enzymes involved in melanin synthesis. Moreover, we constructed the miRNA-206 sponge lentivirus vector to transfect koi carp melanocytes in vitro, further checked the functions of melanocytes using Cck-8 and Transwell assays. As a result, inhibition of miR-206 significantly up-regulated Mc1r mRNA expression and protein level and accelerated the melanocyte proliferation and migration ability compared with the scrambled-sequence negative control group (miR-NC). Overall, these findings provide the evidence that miR-206 plays a regulatory role in the skin color pigmentation through targeting the Mc1r gene and would facilitate understanding the molecular regulatory mechanisms underlying miRNA-mediated skin color pigmentation in koi carp.
Collapse
Affiliation(s)
- Zaijie Dong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Ministry of Agriculture and Rural Affairs, Jiangsu, China.,Wuxi Fisheries College, Nanjing Agricultural University, Jiangsu, China
| | - Mingkun Luo
- Wuxi Fisheries College, Nanjing Agricultural University, Jiangsu, China
| | - Lanmei Wang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Ministry of Agriculture and Rural Affairs, Jiangsu, China
| | - Haoran Yin
- Wuxi Fisheries College, Nanjing Agricultural University, Jiangsu, China
| | - Wenbin Zhu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Ministry of Agriculture and Rural Affairs, Jiangsu, China
| | - Jianjun Fu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Ministry of Agriculture and Rural Affairs, Jiangsu, China
| |
Collapse
|
32
|
Pang JKS, Phua QH, Soh BS. Applications of miRNAs in cardiac development, disease progression and regeneration. Stem Cell Res Ther 2019; 10:336. [PMID: 31752983 PMCID: PMC6868784 DOI: 10.1186/s13287-019-1451-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/07/2019] [Accepted: 10/11/2019] [Indexed: 12/25/2022] Open
Abstract
Development of the complex human heart is tightly regulated at multiple levels, maintaining multipotency and proliferative state in the embryonic cardiovascular progenitors and thereafter suppressing progenitor characteristics to allow for terminal differentiation and maturation. Small regulatory microRNAs (miRNAs) are at the level of post-transcriptional gene suppressors, which enhance the degradation or decay of their target protein-coding mRNAs. These miRNAs are known to play roles in a large number of biological events, cardiovascular development being no exception. A number of critical cardiac-specific miRNAs have been identified, of which structural developmental defects have been linked to dysregulation of miRNAs in the proliferating cardiac stem cells. These miRNAs present in the stem cell niche are lost when the cardiac progenitors terminally differentiate, resulting in the postnatal mitotic arrest of the heart. Therapeutic applications of these miRNAs extend to the realm of heart failure, whereby the death of heart cells in the ageing heart cannot be replaced due to the arrest of cell division. By utilizing miRNA therapy to control cell cycling, the regenerative potential of matured myocardium can be restored. This review will address the various cardiac progenitor-related miRNAs that control the development and proliferative potential of the heart.
Collapse
Affiliation(s)
- Jeremy Kah Sheng Pang
- Disease Modeling and Therapeutics Laboratory, A*STAR Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore, 138673, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore
| | - Qian Hua Phua
- Disease Modeling and Therapeutics Laboratory, A*STAR Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore, 138673, Singapore
| | - Boon-Seng Soh
- Disease Modeling and Therapeutics Laboratory, A*STAR Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore, 138673, Singapore. .,Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore. .,Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
| |
Collapse
|
33
|
Li XY, Chen K, Lv ZT. APRISMA-compliant systematic review and meta-analysis determining the association of miRNA polymorphisms and risk of congenital heart disease. Medicine (Baltimore) 2019; 98:e17653. [PMID: 31702616 PMCID: PMC6855655 DOI: 10.1097/md.0000000000017653] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
PURPOSE Recent genetic association studies showed conflicting results on the relationship of miRNA single-nucleotide polymorphisms (SNPs) and congenital heart disease (CHD) risk. The purpose of the present systematic review was to collect the current available evidences to evaluate the association between miRNA polymorphisms and CHD risk. METHODS Four electronic databases including PubMed, EMBASE, ISI Web of Science, and CENTRAL were extensively searched for relevant studies published before February, 2019. Observational studies determining the association between miRNA polymorphisms and risk of CHD were included. Risk of bias was evaluated using the Newcastle-Ottawa Scale by 2 independent researchers. Major characteristics of each study and estimation of effect size of individual locus polymorphism were summarized. In addition, meta-analysis was performed to quantify the associations between miRNA polymorphisms and CHD risk. RESULTS Nine studies containing 6502 CHD patients and 6969 healthy controls were included in this systematic review. Ten loci in 9 miRNAs were reported. Only rs11614913 in miR-196a2 was determined to have significant associations with CHD susceptibility, which was supported by meta-analysis (CC vs CT+TT: odds ratio 1.54, 95% confidence interval 1.30, 1.82; P < .00001). A strong evidence indicated lack of association between rs2910164 in miR-146a and CHD. Limited or conflicting evidences were found for the associations of the other variants (rs11134527, rs139365823, rs76987351, rs3746444, rs4938723, rs2292832, rs41291957, rs895819) and risk of CHD. CONCLUSIONS Locus polymorphisms in miRNAs are not generally associated with CHD. Only rs11614913 was found to have significant associations with CHD. Further studies will be needed, using larger populations of different ethnicities, to obtain a better understanding of these associations.
Collapse
Affiliation(s)
- Xing-Yan Li
- Department of Orthopedics, The Third Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi
| | - Kun Chen
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui
| | - Zheng-Tao Lv
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
34
|
Balasubramanian S, Raghunath A, Perumal E. Role of epigenetics in zebrafish development. Gene 2019; 718:144049. [DOI: 10.1016/j.gene.2019.144049] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/13/2019] [Accepted: 08/14/2019] [Indexed: 02/07/2023]
|
35
|
Roles of microRNAs and prospective view of competing endogenous RNAs in mycotoxicosis. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2019; 782:108285. [DOI: 10.1016/j.mrrev.2019.108285] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 05/07/2019] [Accepted: 07/05/2019] [Indexed: 12/14/2022]
|
36
|
Zeng D, Xu H, Ji N, Li J, Zhou M, Dan H, Zhou Y, Zeng X, Jiang L, Chen Q. In situ measurement of miR-138 expression in oral squamous cell carcinoma tissue supports the role of this microRNA as a tumor suppressor. J Oral Pathol Med 2019; 48:911-918. [PMID: 31323152 DOI: 10.1111/jop.12933] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 06/17/2019] [Indexed: 02/05/2023]
Abstract
BACKGROUND Oral squamous cell carcinoma is the eighth most common cancer worldwide with a relatively high rate of metastasis (~40%). Previously, we showed that microRNA-138 serves as a functional tumor suppressor and plays an important role in oral squamous cell carcinoma metastasis. However, to date, microRNA-138 expression has not been examined in this tumor tissue. Herein, we demonstrated that microRNA-138 expression is downregulated in metastatic oral squamous cell carcinoma specimens using tissue microarray technology with in situ hybridization. METHODS The study included 254 oral squamous cell carcinoma patients from two centers (160 from the Chengdu center and 90 from the Guangzhou center) and four healthy volunteers. RESULTS Multivariate analysis showed that microRNA-138 expression was independent of tumor stage, age, gender, smoking, and alcohol consumption in oral squamous cell carcinoma patients. Interestingly, patients that expressed lower levels of microRNA-138 (determined by in situ hybridization) were more prone to regional lymph node metastasis and exhibited poorer outcomes. These findings support the role of microRNA-138 as a tumor suppressor in oral squamous cell carcinoma. CONCLUSION In summary, the expression level of microRNA-138 is negatively correlated with oral squamous cell carcinoma metastasis; the lower the expression of microRNA-138, the higher the rate of metastasis and the poorer the prognosis of the patients. Therefore, our study confirms that microRNA-138 serves as a tumor suppressor and plays a functional role in oral squamous cell carcinoma tumor metastasis; microRNA-138 constitutes a promising prognosis biomarker and therapeutic target for oral squamous cell carcinoma with metastasis potential.
Collapse
Affiliation(s)
- Dequan Zeng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Hao Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Ning Ji
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Min Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Hongxia Dan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yu Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xin Zeng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Lu Jiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
37
|
Li Y, Li J, Zhang P, Jiang X, Pan Z, Zheng W, Lin H. LncRNA-LET relieves hypoxia-induced injury in H9c2 cells through regulation of miR-138. J Cell Biochem 2019; 121:259-268. [PMID: 31222827 DOI: 10.1002/jcb.29146] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/15/2019] [Accepted: 05/20/2019] [Indexed: 12/30/2022]
Abstract
Ischemic heart disease (IHD) is a common cardiovascular disease, occurs when coronary artery blood circularity cannot match with the heart's need. The present work attempted to study the effects of long noncoding RNA (lncRNA) low expression in tumor (LET) on the progression of IHD. H9c2 cells were injured by hypoxia to mimic a cell model of IHD. The effects of lncRNA-LET on hypoxia-injured H9c2 cells were tested by using cell counting kit-8 assay, flow cytometry, and Western blot analysis. MicroRNA-138 (miR-138) expression was tested by a quantitative real-time polymerase chain reaction, and the expression of c-Jun N-terminal kinase (JNK) and p38MAPK (p38-mitogen-activated protein kinase) proteins was measured by Western blot analysis. We found that hypoxia exposure significantly repressed the viability of H9c2 cells, and induced apoptosis. Meanwhile, phosphorylation of JNK and p38MAPK was enhanced by hypoxia. The expression of lncRNA-LET was repressed by hypoxia. Overexpression of lncRNA-LET attenuated hypoxia-induced injury in H9c2 cells. Moreover, miR-138 was a downstream effector of lncRNA-LET, that miR-138 was highly expressed in lncRNA-LET-overexpressed cell. The cardioprotective effects of lncRNA-LET were abolished when miR-138 was silenced. In conclusion, this study revealed the cardioprotective function of lncRNA-LET. lncRNA-LET conferred its cardioprotective effects possibly via upregulation of miR-138 and thus repressing the JNK and p38MAPK pathways.
Collapse
Affiliation(s)
- Yugeng Li
- Department of Cardiovascular II, Qingdao Hiser Medical Center, Qingdao, China
| | - Jianwei Li
- Department of Cardiovascular II, Qingdao Hiser Medical Center, Qingdao, China
| | - Pengzhen Zhang
- Department of Interventional Therapy, Qingdao Hiser Medical Center, Qingdao, China
| | - Xiaoying Jiang
- Department of Cardiovascular II, Qingdao Hiser Medical Center, Qingdao, China
| | - Zhenrui Pan
- Department of Cardiovascular II, Qingdao Hiser Medical Center, Qingdao, China
| | - Wenjian Zheng
- Department of Cadre Healthcare, Qingdao Hiser Medical Center, Qingdao, China
| | - Hongli Lin
- Department of Cadre Healthcare, Qingdao Hiser Medical Center, Qingdao, China
| |
Collapse
|
38
|
Keepers B, Liu J, Qian L. What's in a cardiomyocyte - And how do we make one through reprogramming? BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1867:118464. [PMID: 30922868 DOI: 10.1016/j.bbamcr.2019.03.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/10/2019] [Accepted: 03/21/2019] [Indexed: 12/19/2022]
Abstract
Substantial progress is being made in the field cardiac reprogramming, and those in the field are hopeful that the technology will be formulated for therapeutic use. Beyond the excitement around generating a revolutionary new approach for treating ischemic heart diseases, cardiac reprogramming has delivered provocative findings that challenge common notions of cell fate and cell identity. Have we really made de novo cardiomyocytes? To answer this question, the essential characteristics of this unique and important cell type must first be defined. In this review, we walk through the history of scientific inquiry into cardiomyocytes, and then we examine the core features of cardiomyocytes as detailed in modern definitions. Informed by this, we turn to cardiac reprogramming to analyze the various screening approaches and ultimate factor combinations used in each study. We follow this with a dissection of the evidence used to support the authors' claims of successfully creating cardiomyocytes, and we end by discussing what is known about the molecular mechanisms of cardiac reprogramming. Through this analysis, we find interesting differences between the study designs and their results, but it becomes clear that the field at large is generating cells that closely match the textbook definition cardiomyocyte. However, the differences noted between the results of each study are largely unexplained, reflecting the need for further research in both cardiac reprogramming and in native cardiomyocyte biology. Knowledge gained from future research will help move the field towards better reprogramming techniques and technologies.
Collapse
Affiliation(s)
- Benjamin Keepers
- McAllister Heart Institute, Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jiandong Liu
- McAllister Heart Institute, Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Li Qian
- McAllister Heart Institute, Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
39
|
Yan Y, Shi R, Yu X, Sun C, Zang W, Tian H. Identification of atrial fibrillation-associated microRNAs in left and right atria of rheumatic mitral valve disease patients. Genes Genet Syst 2019; 94:23-34. [DOI: 10.1266/ggs.17-00043] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Yang Yan
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi’an Jiaotong University
| | - Rui Shi
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Xi’an Jiaotong University
| | - Xiaojiang Yu
- Department of Pharmacology of Xi’an Jiaotong University
| | - Chaofeng Sun
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Xi’an Jiaotong University
| | - Weijin Zang
- Department of Pharmacology of Xi’an Jiaotong University
| | - Hongyan Tian
- Department of Peripheral Vascular Disease, The First Affiliated Hospital of Xi’an Jiaotong University
| |
Collapse
|
40
|
Epigenetic Regulation of Organ Regeneration in Zebrafish. J Cardiovasc Dev Dis 2018; 5:jcdd5040057. [PMID: 30558240 PMCID: PMC6306890 DOI: 10.3390/jcdd5040057] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 12/11/2018] [Accepted: 12/12/2018] [Indexed: 02/06/2023] Open
Abstract
The zebrafish is broadly used for investigating de novo organ regeneration, because of its strong regenerative potential. Over the past two decades of intense study, significant advances have been made in identifying both the regenerative cell sources and molecular signaling pathways in a variety of organs in adult zebrafish. Epigenetic regulation has gradually moved into the center-stage of this research area, aided by comprehensive work demonstrating that DNA methylation, histone modifications, chromatin remodeling complexes, and microRNAs are essential for organ regeneration. Here, we present a brief review of how these epigenetic components are induced upon injury, and how they are involved in sophisticated organ regeneration. In addition, we highlight several prospective research directions and their potential implications for regenerative medicine.
Collapse
|
41
|
Tanaka Y, Tateishi R, Koike K. Proteoglycans Are Attractive Biomarkers and Therapeutic Targets in Hepatocellular Carcinoma. Int J Mol Sci 2018; 19:3070. [PMID: 30297672 PMCID: PMC6213444 DOI: 10.3390/ijms19103070] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/03/2018] [Accepted: 10/04/2018] [Indexed: 12/11/2022] Open
Abstract
Proteoglycans, which consist of a protein core and glycosaminoglycan chains, are major components of the extracellular matrix and play physiological roles in maintaining tissue homeostasis. In the carcinogenic tissue microenvironment, proteoglycan expression changes dramatically. Altered proteoglycan expression on tumor and stromal cells affects cancer cell signaling pathways, which alters growth, migration, and angiogenesis and could facilitate tumorigenesis. This dysregulation of proteoglycans has been implicated in the pathogenesis of diseases such as hepatocellular carcinoma (HCC) and the underlying mechanism has been studied extensively. This review summarizes the current knowledge of the roles of proteoglycans in the genesis and progression of HCC. It focuses on well-investigated proteoglycans such as serglycin, syndecan-1, glypican 3, agrin, collagen XVIII/endostatin, versican, and decorin, with particular emphasis on the potential of these factors as biomarkers and therapeutic targets in HCC regarding the future perspective of precision medicine toward the "cure of HCC".
Collapse
Affiliation(s)
- Yasuo Tanaka
- Graduate School of Medicine, Department of Gastroenterology, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.
| | - Ryosuke Tateishi
- Graduate School of Medicine, Department of Gastroenterology, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.
| | - Kazuhiko Koike
- Graduate School of Medicine, Department of Gastroenterology, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.
| |
Collapse
|
42
|
Kenagy RD, Kikuchi S, Evanko SP, Ruiter MS, Piola M, Longchamp A, Pesce M, Soncini M, Deglise S, Fiore GB, Haefliger JA, Schmidt TA, Majesky MW, Sobel M, Wight TN. Versican is differentially regulated in the adventitial and medial layers of human vein grafts. PLoS One 2018; 13:e0204045. [PMID: 30265729 PMCID: PMC6161854 DOI: 10.1371/journal.pone.0204045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 08/31/2018] [Indexed: 12/13/2022] Open
Abstract
Changes in extracellular matrix proteins may contribute significantly to the adaptation of vein grafts to the arterial circulation. We examined the production and distribution of versican and hyaluronan in intact human vein rings cultured ex vivo, veins perfused ex vivo, and cultured venous adventitial and smooth muscle cells. Immunohistochemistry revealed higher levels of versican in the intima/media compared to the adventitia, and no differences in hyaluronan. In the vasa vasorum, versican and hyaluronan associated with CD34+ progenitor cells. Culturing the vein rings for 14 days revealed increased versican immunostaining of 30–40% in all layers, with no changes in hyaluronan. Changes in versican accumulation appear to result from increased synthesis in the intima/media and decreased degradation in the adventitia as versican transcripts were increased in the intima/media, but unchanged in the adventitia, and versikine (the ADAMTS-mediated cleavage product of versican) was increased in the intima/media, but decreased in the adventitia. In perfused human veins, versican was specifically increased in the intima/media in the presence of venous pressure, but not with arterial pressure. Unexpectedly, cultured adventitial cells express and accumulate more versican and hyaluronan than smooth muscle cells. These data demonstrate a differential regulation of versican and hyaluronan in human venous adventitia vs. intima/media and suggest distinct functions for these extracellular matrix macromolecules in these venous wall compartments during the adaptive response of vein grafts to the arterial circulation.
Collapse
Affiliation(s)
- Richard D. Kenagy
- Center for Cardiovascular Biology, Institute for Stem Cells and Regenerative Medicine, and Department of Surgery, University of Washington, Seattle, WA, United States of America
- * E-mail:
| | - Shinsuke Kikuchi
- Department of Vascular Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Steve P. Evanko
- Matrix Biology Program, Benaroya Research Institute, Seattle, WA, United States of America
| | - Matthijs S. Ruiter
- Cardiovascular Tissue Engineering Unit—Centro Cardiologico Monzino, IRCCS, Via Parea, 4, Milan, Italy
| | - Marco Piola
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan, Italy
| | - Alban Longchamp
- Department of Vascular Surgery, CHUV | Lausanne University Hospital, Lausanne, Switzerland
| | - Maurizio Pesce
- Cardiovascular Tissue Engineering Unit—Centro Cardiologico Monzino, IRCCS, Via Parea, 4, Milan, Italy
| | - Monica Soncini
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan, Italy
| | - Sébastien Deglise
- Department of Vascular Surgery, CHUV | Lausanne University Hospital, Lausanne, Switzerland
| | - Gianfranco B. Fiore
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan, Italy
| | | | - Tannin A. Schmidt
- Biomedical Engineering Department, School of Dental Medicine, University of Connecticut Health Center, Farmington, CT, United States of America
| | - Mark W. Majesky
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA, United States of America
| | - Michael Sobel
- Division of Vascular Surgery, VA Puget Sound Health Care System, University of Washington, Seattle, WA, United States of America
| | - Thomas N. Wight
- Matrix Biology Program, Benaroya Research Institute, Seattle, WA, United States of America
| |
Collapse
|
43
|
|
44
|
Bhattacharya M, Ghosh S, Malick RC, Patra BC, Das BK. Therapeutic applications of zebrafish (Danio rerio) miRNAs linked with human diseases: A prospective review. Gene 2018; 679:202-211. [PMID: 30201335 DOI: 10.1016/j.gene.2018.09.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 08/31/2018] [Accepted: 09/06/2018] [Indexed: 11/17/2022]
Abstract
MicroRNAs (miRNAs) are the class of small, non-coding RNAs that are produced from precursor transcripts by subsequent processing steps mediated by members of the RNaseIII family, Dicer and Drosha protein within cell. The importance of zebrafish miRNAs in regulation of normal cellular development and support to various kinds of metabolism process. Although the zebrafish model provides a fundamental platform for the study of developmental biology but recent work with zebrafish model has expanded its appliance to a broad range of experimental studies relevant to different kind of human diseases. Presently, the zebrafish model is used for the study of cardiovascular disease, schizophrenia, bipolar I disorder in eyes, psoriasis, spinal cord injury, cancer and diabetes that showing in some selected miRNAs are regulate these diseases in molecular levels. Here, a superior drive performed to depict the fundamental utilization of the zebrafish miRNAs that targeted to several clinical diseases connected to human. This review aims to provide a summary of understanding of the cellular mechanism which is responsible for selected diseases and suggests some therapeutic application for inhibition of miRNA functions.
Collapse
Affiliation(s)
- Manojit Bhattacharya
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700 120, West Bengal, India
| | - Soumendu Ghosh
- Centre For Aquaculture Research, Extension & Livelihood, Department of Aquaculture Management & Technology, Vidyasagar University, Midnapore 721102, West Bengal, India
| | - Ramesh Chandra Malick
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700 120, West Bengal, India
| | - Bidhan Chandra Patra
- Centre For Aquaculture Research, Extension & Livelihood, Department of Aquaculture Management & Technology, Vidyasagar University, Midnapore 721102, West Bengal, India
| | - Basanta Kumar Das
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700 120, West Bengal, India.
| |
Collapse
|
45
|
Segert J, Schneider I, Berger IM, Rottbauer W, Just S. Mediator complex subunit Med12 regulates cardiac jelly development and AV valve formation in zebrafish. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 138:20-31. [PMID: 30036562 DOI: 10.1016/j.pbiomolbio.2018.07.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 05/30/2018] [Accepted: 07/17/2018] [Indexed: 11/25/2022]
Abstract
The molecular mechanism essential for the formation of heart valves involves complex interactions of signaling molecules and transcription factors. The Mediator Complex (MC) functions as multi-subunit machinery to orchestrate gene transcription, especially for tissue-specific fine-tuning of transcriptional processes during development, also in the heart. Here, we analyzed the role of the MC subunit Med12 during atrioventricular canal (AVC) development and endocardial cushion formation, using the Med12-deficient zebrafish mutant trapped (tpd). Whereas primary heart formation was only slightly affected in tpd, we identified defects in AVC development and cardiac jelly formation. We found that although misexpression of bmp4 and versican in tpd hearts can be restored by overexpression of a modified version of the Sox9b transcription factor (harboring VP16 transactivation domain) that functions independent of its co-activator Med12, endocardial cushion development in tpd was not reconstituted. Interestingly, expression of tbx2b and its target hyaluronan synthase 2 (has2) - the synthase of hyaluronan (HA) in the heart - was absent in both uninjected and Sox9b-VP16 overexpressing tpd hearts. HA is a major ECM component of the cardiac jelly and required for endocardial cushion formation. Furthermore, we found secreted phosphoprotein 1 (spp1), an endocardial marker of activated AV endocardial cells, completely absent in tpd hearts, suggesting that crucial steps of the transformation of AV endocardial cells into endocardial cushions is blocked. We demonstrate that Med12 controls cardiac jelly formation Sox9-independently by regulating tbx2b and has2 expression and therefore the production of the glycosaminoglycan HA at the AVC to guarantee proper endocardial cushion development.
Collapse
Affiliation(s)
- Julia Segert
- Molecular Cardiology, Department of Internal Medicine II, University of Ulm, Ulm, Germany
| | - Isabelle Schneider
- Molecular Cardiology, Department of Internal Medicine II, University of Ulm, Ulm, Germany
| | - Ina M Berger
- Molecular Cardiology, Department of Internal Medicine II, University of Ulm, Ulm, Germany
| | | | - Steffen Just
- Molecular Cardiology, Department of Internal Medicine II, University of Ulm, Ulm, Germany.
| |
Collapse
|
46
|
MicroRNA-499a-5p Promotes Differentiation of Human Bone Marrow-Derived Mesenchymal Stem Cells to Cardiomyocytes. Appl Biochem Biotechnol 2018; 186:245-255. [PMID: 29574510 DOI: 10.1007/s12010-018-2734-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Accepted: 03/12/2018] [Indexed: 01/09/2023]
Abstract
Since the adult mammalian heart has limited regenerative capacity, cardiac trauma, disease, and aging cause permanent loss of contractile tissue. This has fueled the development of stem cell-based strategies to provide the damaged heart with new cardiomyocytes. Bone marrow-derived mesenchymal stem cells (BM-MSCs) are capable of self-renewal and differentiation into cardiomyocytes, albeit inefficiently. MicroRNAs (miRNAs, miRs) are non-coding RNAs that have the potential to control stem cell fate decisions and are employed in cardiac regeneration and repair. In this study, we tested the hypothesis that overexpression of miR-499a induces cardiomyogenic differentiation in BM-MSCs. Human BM-MSCs (hBM-MSCs) were transduced with lentiviral vectors encoding miR-499a-3p or miR-499a-5p and analyzed by immunostaining and western blotting methods 14 days post-transduction. MiR-499a-5p-transduced cells adopted a polygonal/rod-shaped (myocyte-like) phenotype and showed an increase in the expression of the cardiomyocyte markers α-actinin and cTnI, as cardiogenic differentiation markers. These results indicate that miR-499a-5p overexpression promotes the cardiomyogenic differentiation of hBM-MSCs and may thereby increase their therapeutic efficiency in cardiac regeneration.
Collapse
|
47
|
Meng J, Xu WY, Chen X, Lin T, Deng XY. Gene locations may contribute to predicting gene regulatory relationships. J Zhejiang Univ Sci B 2018; 19:25-37. [PMID: 29308605 DOI: 10.1631/jzus.b1700303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We propose that locations of genes on chromosomes can contribute to the prediction of gene regulatory relationships. We constructed a time-based gene regulatory network of zebrafish cardiogenesis on the basis of a spatio-temporal neighborhood method. Through the network, specific regulatory pathways and order of gene expression during zebrafish cardiogenesis were obtained. By comparing the order with locations of these genes on chromosomes, we discovered that there exists a reversal phenomenon between the order and order of gene locations. The discovery provides an inherent rule to instruct exploration of gene regulatory relationships. Specifically, the discovery can help to predict if regulatory relationships between genes exist and contribute to evaluating the correctness of discovered gene regulatory relationships.
Collapse
Affiliation(s)
- Jun Meng
- Department of System Science and Engineering, School of Electrical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Wen-Yuan Xu
- Department of System Science and Engineering, School of Electrical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xiao Chen
- Department of System Science and Engineering, School of Electrical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Tao Lin
- Laboratory of Machine Learning and Optimization, École Polytechnique Fédérale de Lausanne (EPFL), Route Cantonale, 1015 Lausanne 999034, Switzerland
| | - Xiao-Yu Deng
- Department of System Science and Engineering, School of Electrical Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
48
|
Gao X, Yang L, Luo H, Tan F, Ma X, Lu C. A Rare Rs139365823 Polymorphism in Pre-miR-138 Is Associated with Risk of Congenital Heart Disease in a Chinese Population. DNA Cell Biol 2018; 37:109-116. [PMID: 29298094 DOI: 10.1089/dna.2017.4013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
miR-138 modulates cardiac morphogenesis in zebrafish. We explored whether a genetic polymorphism in miR-138 might contribute to the occurrence of sporadic congenital heart disease (CHD) and the potential mechanism. We performed a case-control study consisting of 857 CHD cases and 938 non-CHD controls by genotyping miR-138 in a Chinese population. Two SNPs, including rare rs139365823 located in the pre-miR-138 sequence and rs76987351 located in the pri-miR-138 sequence, were identified by sequencing miR-138. The results demonstrated that the genotypes and allele frequencies of the rs139365823 minor allele A were significantly associated with the increased risk of CHD cases overall or in the Tetralogy of Fallot (TOF) subtype, but not with the rs76987351 A/G allele. Real-time PCR data showed that the rs139365823 minor allele A significantly increased the expression of mature miR-138, whereas the rs76987351 minor allele A had the opposite effect. As TOF is caused by severe outflow tract (OFT) development and an alignment defect, we identified Dvl2, involved in OFT development, as a direct target of miR-138. Further, the rs139365823 minor allele A enhanced the miR-138-mediated inhibitory regulation of Dvl2. Taken together, our results demonstrated for the first time that the functional variant rs139365823 in pre-miR-138 altered the expression of mature miR-138 and its inhibitory effect on target genes and conferred the risk for CHD in the population studied here.
Collapse
Affiliation(s)
- Xiaobo Gao
- 1 Department of Genetics, National Research Institute for Family Planning , Beijing, China .,2 Graduate School of Peking Union Medical College , Beijing, China
| | - Liping Yang
- 3 Department of Cardiovascular Surgery, Union Hospital, Fujian Medical University , Fuzhou, China
| | - Haiyan Luo
- 2 Graduate School of Peking Union Medical College , Beijing, China
| | - Fengwei Tan
- 4 Department of Thoracic Surgery, National Cancer Center/Cancer Hospital , Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xu Ma
- 1 Department of Genetics, National Research Institute for Family Planning , Beijing, China .,2 Graduate School of Peking Union Medical College , Beijing, China
| | - Cailing Lu
- 1 Department of Genetics, National Research Institute for Family Planning , Beijing, China .,2 Graduate School of Peking Union Medical College , Beijing, China
| |
Collapse
|
49
|
MiR-138 protects cardiac cells against hypoxia through modulation of glucose metabolism by targetting pyruvate dehydrogenase kinase 1. Biosci Rep 2017; 37:BSR20170296. [PMID: 28899927 PMCID: PMC5696451 DOI: 10.1042/bsr20170296] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 09/08/2017] [Accepted: 09/11/2017] [Indexed: 01/01/2023] Open
Abstract
Dysfunction of cardiac cells under hypoxia has been identified as an essential event leading to myocytes functional failure. MiRNAs are importantly regulatory small-noncoding RNAs that negatively regulate gene expression through the direct binding of 3′-UTR region of their target mRNAs. Recent studies have demonstrated that miRNAs are aberrantly expressed in the cardiovascular system under pathological conditions.Pyruvate dehydrogenase kinase 1 (PDK1) is a kinase which phosphorylates pyruvate dehydrogenase to inactivate it, leading to elevated anaerobic glycolysis and decreased cellular respiration. In the present study, we report that miR-138 expressions were significantly suppressed under long exposure to hypoxia. In addition, overexpression of miR-138 protects human cardiac cells against hypoxia. We observed miR-138 inhibits glycolysis but promotes mitochondrial respiration through directly targetting PDK1. Moreover, we demonstrate that hypoxia induces cardiac cell death through increased glycolysis and decreased mitochondrial respiration. Inhibition of glycolysis by either glycolysis inhibitor or knockdown glycolysis enzymes, Glucose transportor 1 (Glut1) or PDK1 contributes to cardiac cells’ survival. The cell sentivity to hypoxia was recovered when the PDK1 level was restored in miR-138 overexpressing cardiac cells. The present study leads to the intervention of novel therapeutic strategies against cardiac cells dysfunction during surgery or ischemia.
Collapse
|
50
|
Rosenfeld CS. Brain Sexual Differentiation and Requirement of SRY: Why or Why Not? Front Neurosci 2017; 11:632. [PMID: 29200993 PMCID: PMC5696354 DOI: 10.3389/fnins.2017.00632] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 10/30/2017] [Indexed: 12/22/2022] Open
Abstract
Brain sexual differentiation is orchestrated by precise coordination of sex steroid hormones. In some species, programming of select male brain regions is dependent upon aromatization of testosterone to estrogen. In mammals, these hormones surge during the organizational and activational periods that occur during perinatal development and adulthood, respectively. In various fish and reptiles, incubation temperature during a critical embryonic period results in male or female sexual differentiation, but this can be overridden in males by early exposure to estrogenic chemicals. Testes development in mammals requires a Y chromosome and testis determining gene SRY (in humans)/Sry (all other therian mammals), although there are notable exceptions. Two species of spiny rats: Amami spiny rat (Tokudaia osimensis) and Tokunoshima spiny rat (Tokudaia tokunoshimensis) and two species of mole voles (Ellobius lutescens and Ellobius tancrei), lack a Y chromosome/Sry and possess an XO chromosome system in both sexes. Such rodent species, prototherians (monotremes, who also lack Sry), and fish and reptile species that demonstrate temperature sex determination (TSD) seemingly call into question the requirement of Sry for brain sexual differentiation. This review will consider brain regions expressing SRY/Sry in humans and rodents, respectively, and potential roles of SRY/Sry in the brain will be discussed. The evidence from various taxa disputing the requirement of Sry for brain sexual differentiation in mammals (therians and prototherians) and certain fish and reptilian species will be examined. A comparative approach to address this question may elucidate other genes, pathways, and epigenetic modifications stimulating brain sexual differentiation in vertebrate species, including humans.
Collapse
Affiliation(s)
- Cheryl S Rosenfeld
- Bond Life Sciences Center, University of Missouri, Columbia, MO, United States.,Biomedical Sciences, University of Missouri, Columbia, MO, United States.,Thompson Center for Autism and Neurobehavioral Disorders, University of Missouri, Columbia, MO, United States.,Genetics Area Program, University of Missouri, Columbia, MO, United States
| |
Collapse
|