1
|
Knittel TL, Montgomery BE, Tate AJ, Deihl EW, Nawrocki AS, Hoerndli FJ, Montgomery TA. A low-abundance class of Dicer-dependent siRNAs produced from a variety of features in C. elegans. Genome Res 2024; 34:2203-2216. [PMID: 39622635 PMCID: PMC11694761 DOI: 10.1101/gr.279083.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 10/03/2024] [Indexed: 12/25/2024]
Abstract
Canonical small interfering RNAs (siRNAs) are processed from double-stranded RNA (dsRNA) by Dicer and associate with Argonautes to direct RNA silencing. In Caenorhabditis elegans, 22G-RNAs and 26G-RNAs are often referred to as siRNAs but display distinct characteristics. For example, 22G-RNAs do not originate from dsRNA and do not depend on Dicer, whereas 26G-RNAs require Dicer but derive from an atypical RNA duplex and are produced exclusively antisense to their messenger RNA (mRNA) templates. To identify canonical siRNAs in C. elegans, we first characterized the siRNAs produced via the exogenous RNA interference (RNAi) pathway. During RNAi, dsRNA is processed into ∼23 nt duplexes with ∼2 nt, 3'-overhangs, ultimately yielding siRNAs devoid of 5'G-containing sequences that bind with high affinity to the Argonaute RDE-1, but also to the microRNA (miRNA) pathway Argonaute, ALG-1. Using these characteristics, we searched for their endogenous counterparts and identified thousands of endogenous loci representing dozens of unique elements that give rise to mostly low to moderate levels of siRNAs, called 23H-RNAs. These loci include repetitive elements, putative coding genes, pseudogenes, noncoding RNAs, and unannotated features, many of which adopt hairpin (hp) structures reminiscent of the hpRNA/RNAi pathway in flies and mice. RDE-1 competes with other Argonautes for binding to 23H-RNAs. When RDE-1 is depleted, these siRNAs are enriched in ALG-1 and ALG-2 complexes. Our results expand the known repertoire of C. elegans small RNAs and their Argonaute interactors, and demonstrate that key features of the endogenous siRNA pathway are relatively unchanged in animals.
Collapse
Affiliation(s)
- Thiago L Knittel
- Department of Biology, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Brooke E Montgomery
- Department of Biology, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Alex J Tate
- Department of Biology, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Ennis W Deihl
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Anastasia S Nawrocki
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Frederic J Hoerndli
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523, USA
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Taiowa A Montgomery
- Department of Biology, Colorado State University, Fort Collins, Colorado 80523, USA;
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523, USA
| |
Collapse
|
2
|
Yang Z, Zhou J, Su N, Zhang Z, Chen J, Liu P, Ling P. Insights into the defensive roles of lncRNAs during Mycoplasma pneumoniae infection. Front Microbiol 2024; 15:1330660. [PMID: 38585701 PMCID: PMC10995346 DOI: 10.3389/fmicb.2024.1330660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/27/2024] [Indexed: 04/09/2024] Open
Abstract
Mycoplasma pneumoniae causes respiratory tract infections, affecting both children and adults, with varying degrees of severity ranging from mild to life-threatening. In recent years, a new class of regulatory RNAs called long non-coding RNAs (lncRNAs) has been discovered to play crucial roles in regulating gene expression in the host. Research on lncRNAs has greatly expanded our understanding of cellular functions involving RNAs, and it has significantly increased the range of functions of lncRNAs. In lung cancer, transcripts associated with lncRNAs have been identified as regulators of airway and lung inflammation in a process involving protein complexes. An excessive immune response and antibacterial immunity are closely linked to the pathogenesis of M. pneumoniae. The relationship between lncRNAs and M. pneumoniae infection largely involves lncRNAs that participate in antibacterial immunity. This comprehensive review aimed to examine the dysregulation of lncRNAs during M. pneumoniae infection, highlighting the latest advancements in our understanding of the biological functions and molecular mechanisms of lncRNAs in the context of M. pneumoniae infection and indicating avenues for investigating lncRNAs-related therapeutic targets.
Collapse
Affiliation(s)
- Zhujun Yang
- Department of Critical Care Medicine, The Central Hospital of Shaoyang City and Affiliated Shaoyang Hospital, Hengyang Medical College, University of South China, Shaoyang, China
- Institute of Pathogenic Biology, Basic Medical School, Hengyang Medical School, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, China
| | - Junjun Zhou
- Department of Critical Care Medicine, The Central Hospital of Shaoyang City and Affiliated Shaoyang Hospital, Hengyang Medical College, University of South China, Shaoyang, China
- Institute of Pathogenic Biology, Basic Medical School, Hengyang Medical School, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, China
| | - Nana Su
- Department of Critical Care Medicine, The Central Hospital of Shaoyang City and Affiliated Shaoyang Hospital, Hengyang Medical College, University of South China, Shaoyang, China
- Institute of Pathogenic Biology, Basic Medical School, Hengyang Medical School, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, China
| | - Zifan Zhang
- Department of Critical Care Medicine, The Central Hospital of Shaoyang City and Affiliated Shaoyang Hospital, Hengyang Medical College, University of South China, Shaoyang, China
- Institute of Pathogenic Biology, Basic Medical School, Hengyang Medical School, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, China
| | - Jiaxin Chen
- Department of Critical Care Medicine, The Central Hospital of Shaoyang City and Affiliated Shaoyang Hospital, Hengyang Medical College, University of South China, Shaoyang, China
- Institute of Pathogenic Biology, Basic Medical School, Hengyang Medical School, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, China
| | - Peng Liu
- Department of Critical Care Medicine, The Central Hospital of Shaoyang City and Affiliated Shaoyang Hospital, Hengyang Medical College, University of South China, Shaoyang, China
- Institute of Pathogenic Biology, Basic Medical School, Hengyang Medical School, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, China
| | - Peng Ling
- Department of Critical Care Medicine, The Central Hospital of Shaoyang City and Affiliated Shaoyang Hospital, Hengyang Medical College, University of South China, Shaoyang, China
| |
Collapse
|
3
|
Liang S, Xv W, Li C, Huang Y, Qian G, Yan Y, Zou H, Li Y. Os LncRNAs Estão Envolvidos no Processo de Aterosclerose em Diversos Níveis. Arq Bras Cardiol 2022; 118:1134-1140. [PMID: 35703653 PMCID: PMC9345145 DOI: 10.36660/abc.20201383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 06/09/2021] [Indexed: 11/30/2022] Open
Abstract
A aterosclerose é a causa mais comum de doença cardiovascular em todo o mundo, ela está associada a uma alta incidência de eventos clínicos. O acúmulo de evidências elucidou que os RNAs longos não codificantes (LncRNAs) são uma nova classe de transcritos com papéis críticos nos processos fisiopatológicos da aterosclerose. Nesta revisão, resumimos o progresso recente dos LncRNAs no desenvolvimento da aterosclerose. Descrevemos principalmente os diversos mecanismos regulatórios dos LncRNAs nos níveis transcricionais e pós-transcricionais. Este estudo pode fornecer informações úteis sobre os LncRNAs como alvos terapêuticos ou biomarcadores para o tratamento da aterosclerose.
Collapse
|
4
|
Chen H, Shan G. The physiological function of long-noncoding RNAs. Noncoding RNA Res 2020; 5:178-184. [PMID: 32959025 PMCID: PMC7494506 DOI: 10.1016/j.ncrna.2020.09.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 09/15/2020] [Indexed: 12/11/2022] Open
Abstract
The physiological processes of cells and organisms are regulated by various biological macromolecules, including long-noncoding RNAs (lncRNAs), which cannot be translated into protein and are different from small-noncoding RNAs on their length. In animals, lncRNAs are involved in development, metabolism, reproduction, aging and other life events by cis or trans effects. For many functional lncRNAs, there is growing evidence that they play different roles on cellular level and organismal level. On the other hand, many annotated lncRNAs are not essential and could be transcription noises. In this minireview, we investigate the physiological function of lncRNAs in cells and focus on their functions and functional mechanisms on the organismal level. The studies on lncRNAs using different classic animal models such as worms and flies are summarized and discussed in this article.
Collapse
Affiliation(s)
- He Chen
- CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS Center for Excellence in Molecular Cell Science, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui Province, 230027, China
| | - Ge Shan
- CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS Center for Excellence in Molecular Cell Science, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui Province, 230027, China
| |
Collapse
|
5
|
Qu Z, Ji S, Zheng S. Glucose and cholesterol induce abnormal cell divisions via DAF-12 and MPK-1 in C. elegans. Aging (Albany NY) 2020; 12:16255-16269. [PMID: 32857726 PMCID: PMC7485695 DOI: 10.18632/aging.103647] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 06/19/2020] [Indexed: 12/26/2022]
Abstract
People exposed to starvation have a high risk of developing cancer later in life, and prior studies have shown these individuals have high insulin and cholesterol levels and are sensitive to glucose. Using C. elegans as a model, we found that glucose and cholesterol can promote survival and cause starved L1 diapause worms to undergo abnormal neuronal cell divisions. Starvation has also been shown to promote long-term survival; however, we found that the functions of glucose and cholesterol in relation to these cell divisions are distinct from their effects on survival. We demonstrate that glucose functions in a DAF-16/FOXO-independent IIS pathway to activate the MAPK ontogenetic signaling to induce neuronal Q-cell divisions, and cholesterol works through DAF-12/steroidogenic pathways to promote these cell divisions. daf-12 and mpk-1/MAPK mutants suppress the function of glucose and cholesterol in these divisions, and a fully functioning dpMPK-1 requires the steroid hormone receptor DAF-12 for these divisions to occur. These afflictions also can be passed on to the immediate progeny. This work indicates a possible link between glucose and cholesterol in starved animals and an increased risk of cancer.
Collapse
Affiliation(s)
- Zhi Qu
- School of Nursing and Health, Henan University, Kaifeng 475004, Henan Province, China.,Medical School, Henan University, Kaifeng 475004, Henan Province, China
| | - Shaoping Ji
- School of Basic Medical Sciences, Henan University, Kaifeng 475004, Henan Province, China.,Medical School, Henan University, Kaifeng 475004, Henan Province, China
| | - Shanqing Zheng
- School of Basic Medical Sciences, Henan University, Kaifeng 475004, Henan Province, China.,Medical School, Henan University, Kaifeng 475004, Henan Province, China
| |
Collapse
|
6
|
Vorozheykin PS, Titov II. Erratum to: How Animal miRNAs Structure Influences Their Biogenesis. RUSS J GENET+ 2020. [DOI: 10.1134/s1022795420220019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Niu LG, Liu P, Wang ZW, Chen B. Slo2 potassium channel function depends on RNA editing-regulated expression of a SCYL1 protein. eLife 2020; 9:53986. [PMID: 32314960 PMCID: PMC7195191 DOI: 10.7554/elife.53986] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 04/20/2020] [Indexed: 12/28/2022] Open
Abstract
Slo2 potassium channels play important roles in neuronal function, and their mutations in humans may cause epilepsies and cognitive defects. However, it is largely unknown how Slo2 is regulated by other proteins. Here we show that the function of C. elegans Slo2 (SLO-2) depends on adr-1, a gene important to RNA editing. ADR-1 promotes SLO-2 function not by editing the transcripts of slo-2 but those of scyl-1, which encodes an orthologue of mammalian SCYL1. Transcripts of scyl-1 are greatly decreased in adr-1 mutants due to deficient RNA editing at a single adenosine in their 3’-UTR. SCYL-1 physically interacts with SLO-2 in neurons. Single-channel open probability (Po) of neuronal SLO-2 is ~50% lower in scyl-1 knockout mutant than wild type. Moreover, human Slo2.2/Slack Po is doubled by SCYL1 in a heterologous expression system. These results suggest that SCYL-1/SCYL1 is an evolutionarily conserved regulator of Slo2 channels.
Collapse
Affiliation(s)
- Long-Gang Niu
- Department of Neuroscience, University of Connecticut Health Center, Farmington, United States
| | - Ping Liu
- Department of Neuroscience, University of Connecticut Health Center, Farmington, United States
| | - Zhao-Wen Wang
- Department of Neuroscience, University of Connecticut Health Center, Farmington, United States
| | - Bojun Chen
- Department of Neuroscience, University of Connecticut Health Center, Farmington, United States
| |
Collapse
|
8
|
|
9
|
Transcriptome alteration spectrum in rat lung induced by radiotherapy. Sci Rep 2019; 9:19701. [PMID: 31873113 PMCID: PMC6927959 DOI: 10.1038/s41598-019-56027-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 11/30/2019] [Indexed: 12/14/2022] Open
Abstract
Radiation therapy is crucial for curative treatment of lung cancer, which frequently leads to lung injury. Long non-coding RNAs (lncRNAs) are a group of RNAs longer than 200 nucleotides and lack protein-coding capacity. Increasing evidences demonstrate the important roles of lncRNAs in biological processes. However, the mechanism underlying the association of ionizing radiation with alterations in mRNA and lncRNA expression and lung injury remains unclear. In our study, the male Sprague-Dawley (SD) rats were exposed to a dose of 18 Gy of 6 MV X-ray and the transcriptome spectrum was studied. To identify the differentially expressed mRNAs and lncRNAs induced by X-ray, the RNA sequencing data of lung tissues from irradiated and normal rats for 4, 8, and 16 weeks were analyzed, using |log2_ratio| ≥ 1 and q ≤ 0.05 as thresholds for significantly differential expression. The number of differentially expressed mRNAs was 1097 (686 up- and 411 down-) for 4-week radiotherapy group, 3006 (1935 up- and 1071 down-) for 8-week group and 1838 (1178 up- and 660 down-) for 16-week group. There were 606 (279 up- and 327 down-) differentially expressed lncRNAs in 4-week group, 1715 (831 up- and 884 down-) in 8-week group and 1043 (656 up- and 387 down-) in 16-week group. The differentially expressed mRNAs were mainly involved in cell cycle regulation and Fc receptor pathway, while the lncRNA target genes were significantly enriched in cellular stress response and regulation of cell migration. Moreover, compared with the control group, the irradiated group presented higher tissue specificity of lncRNAs. Radiation-induced lung injury, especially the dynamic network of lncRNAs and mRNAs, is worthy of study. Investigation on the regulatory details of related pathways is significant for the prevention of radiation-related lung injury, as well as the improvement of radiation therapy.
Collapse
|
10
|
Schreiner WP, Pagliuso DC, Garrigues JM, Chen JS, Aalto AP, Pasquinelli AE. Remodeling of the Caenorhabditis elegans non-coding RNA transcriptome by heat shock. Nucleic Acids Res 2019; 47:9829-9841. [PMID: 31396626 PMCID: PMC6765114 DOI: 10.1093/nar/gkz693] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/23/2019] [Accepted: 08/01/2019] [Indexed: 02/07/2023] Open
Abstract
Elevated temperatures activate a heat shock response (HSR) to protect cells from the pathological effects of protein mis-folding, cellular mis-organization, organelle dysfunction and altered membrane fluidity. This response includes activation of the conserved transcription factor heat shock factor 1 (HSF-1), which binds heat shock elements (HSEs) in the promoters of genes induced by heat shock (HS). The upregulation of protein-coding genes (PCGs), such as heat shock proteins and cytoskeletal regulators, is critical for cellular survival during elevated temperatures. While the transcriptional response of PCGs to HS has been comprehensively analyzed in a variety of organisms, the effect of this stress on the expression of non-coding RNAs (ncRNAs) has not been systematically examined. Here we show that in Caenorhabditis elegans HS induces up- and downregulation of specific ncRNAs from multiple classes, including miRNA, piRNA, lincRNA, pseudogene and repeat elements. Moreover, some ncRNA genes appear to be direct targets of the HSR, as they contain HSF-1 bound HSEs in their promoters and their expression is regulated by this factor during HS. These results demonstrate that multiple ncRNA genes respond to HS, some as direct HSF-1 targets, providing new candidates that may contribute to organismal survival during this stress.
Collapse
Affiliation(s)
- William P Schreiner
- Division of Biology, University of California, San Diego, La Jolla, CA 92093-0349, USA
| | - Delaney C Pagliuso
- Division of Biology, University of California, San Diego, La Jolla, CA 92093-0349, USA
| | - Jacob M Garrigues
- Division of Biology, University of California, San Diego, La Jolla, CA 92093-0349, USA
| | - Jerry S Chen
- Division of Biology, University of California, San Diego, La Jolla, CA 92093-0349, USA
| | - Antti P Aalto
- Division of Biology, University of California, San Diego, La Jolla, CA 92093-0349, USA
| | - Amy E Pasquinelli
- Division of Biology, University of California, San Diego, La Jolla, CA 92093-0349, USA
| |
Collapse
|
11
|
Ravikumar S, Devanapally S, Jose AM. Gene silencing by double-stranded RNA from C. elegans neurons reveals functional mosaicism of RNA interference. Nucleic Acids Res 2019; 47:10059-10071. [PMID: 31501873 PMCID: PMC6821342 DOI: 10.1093/nar/gkz748] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/12/2019] [Accepted: 08/20/2019] [Indexed: 12/12/2022] Open
Abstract
Delivery of double-stranded RNA (dsRNA) into animals can silence genes of matching sequence in diverse cell types through mechanisms that have been collectively called RNA interference. In the nematode Caenorhabditis elegans, dsRNA from multiple sources can trigger the amplification of silencing signals. Amplification occurs through the production of small RNAs by two RNA-dependent RNA polymerases (RdRPs) that are thought to be tissue-specific - EGO-1 in the germline and RRF-1 in somatic cells. Here we demonstrate that EGO-1 can compensate for the lack of RRF-1 when dsRNA from neurons is used to silence genes in intestinal cells. However, the lineal origins of cells that can use EGO-1 varies. This variability could be because random sets of cells can either receive different amounts of dsRNA from the same source or use different RdRPs to perform the same function. Variability is masked in wild-type animals, which show extensive silencing by neuronal dsRNA. As a result, cells appear similarly functional despite underlying differences that vary from animal to animal. This functional mosaicism cautions against inferring uniformity of mechanism based on uniformity of outcome. We speculate that functional mosaicism could contribute to escape from targeted therapies and could allow developmental systems to drift over evolutionary time.
Collapse
Affiliation(s)
- Snusha Ravikumar
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Sindhuja Devanapally
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Antony M Jose
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
12
|
Fitzpatrick C, Bendek MF, Briones M, Farfán N, Silva VA, Nardocci G, Montecino M, Boland A, Deleuze JF, Villegas J, Villota C, Silva V, Lobos-Gonzalez L, Borgna V, Barrey E, Burzio LO, Burzio VA. Mitochondrial ncRNA targeting induces cell cycle arrest and tumor growth inhibition of MDA-MB-231 breast cancer cells through reduction of key cell cycle progression factors. Cell Death Dis 2019; 10:423. [PMID: 31142736 PMCID: PMC6541642 DOI: 10.1038/s41419-019-1649-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/05/2019] [Accepted: 04/29/2019] [Indexed: 12/24/2022]
Abstract
The family of long noncoding mitochondrial RNAs (ncmtRNAs), comprising sense (SncmtRNA), and antisense (ASncmtRNA-1 and ASncmtRNA-2) members, are differentially expressed according to cell proliferative status; SncmtRNA is expressed in all proliferating cells, while ASncmtRNAs are expressed in normal proliferating cells, but is downregulated in tumor cells. ASncmtRNA knockdown with an antisense oligonucleotide induces massive apoptosis in tumor cell lines, without affecting healthy cells. Apoptotic death is preceded by proliferation blockage, suggesting that these transcripts are involved in cell cycle regulation. Here, we show that ASncmtRNA knockdown induces cell death preceded by proliferative blockage in three different human breast cancer cell lines. This effect is mediated by downregulation of the key cell cycle progression factors cyclin B1, cyclin D1, CDK1, CDK4, and survivin, the latter also constituting an essential inhibitor of apoptosis, underlying additionally the onset of apoptosis. The treatment also induces an increase in the microRNA hsa-miR-4485-3p, whose sequence maps to ASncmtRNA-2 and transfection of MDA-MB-231 cells with a mimic of this miRNA induces cyclin B1 and D1 downregulation. Other miRNAs that are upregulated include nuclear-encoded hsa-miR-5096 and hsa-miR-3609, whose mimics downregulate CDK1. Our results suggest that ASncmtRNA targeting blocks tumor cell proliferation through reduction of essential cell cycle proteins, mediated by mitochondrial and nuclear miRNAs. This work adds to the elucidation of the molecular mechanisms behind cell cycle arrest preceding tumor cell apoptosis induced by ASncmtRNA knockdown. As proof-of-concept, we show that in vivo knockdown of ASncmtRNAs results in drastic inhibition of tumor growth in a xenograft model of MDA-MB-231 subcutaneous tumors, further supporting this approach for the development of new therapeutic strategies against breast cancer.
Collapse
Affiliation(s)
- Christopher Fitzpatrick
- Fundación Ciencia & Vida/Andes Biotechnologies SpA, 7780272, Santiago, Chile.,Department of Biological Sciences, Faculty of Life Sciences, Universidad Andrés Bello, 8370134, Santiago, Chile
| | - Maximiliano F Bendek
- Fundación Ciencia & Vida/Andes Biotechnologies SpA, 7780272, Santiago, Chile.,Department of Biological Sciences, Faculty of Life Sciences, Universidad Andrés Bello, 8370134, Santiago, Chile
| | - Macarena Briones
- Fundación Ciencia & Vida/Andes Biotechnologies SpA, 7780272, Santiago, Chile
| | - Nicole Farfán
- Fundación Ciencia & Vida/Andes Biotechnologies SpA, 7780272, Santiago, Chile.,Department of Biological Sciences, Faculty of Life Sciences, Universidad Andrés Bello, 8370134, Santiago, Chile
| | - Valeria A Silva
- Fundación Ciencia & Vida/Andes Biotechnologies SpA, 7780272, Santiago, Chile.,Valparaíso Interdisciplinary Neuroscience Center, Faculty of Sciences, Universidad de Valparaíso, Valparaíso, 2360102, Chile
| | - Gino Nardocci
- Center for Biomedical Research and FONDAP Center for Genome Regulation, Faculty of Life Sciences and Faculty of Medicine, Universidad Andrés Bello, 8370134, Santiago, Chile
| | - Martín Montecino
- Center for Biomedical Research and FONDAP Center for Genome Regulation, Faculty of Life Sciences and Faculty of Medicine, Universidad Andrés Bello, 8370134, Santiago, Chile
| | - Anne Boland
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Evry, France
| | - Jean-François Deleuze
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Evry, France
| | - Jaime Villegas
- Fundación Ciencia & Vida/Andes Biotechnologies SpA, 7780272, Santiago, Chile.,Department of Biological Sciences, Faculty of Life Sciences, Universidad Andrés Bello, 8370134, Santiago, Chile.,Andes Biotechnologies Global Inc., Burlingame, CA, USA.,Center for Veterinary Medicine, Faculty of Life Sciences, Universidad Andrés Bello, Santiago, Chile
| | - Claudio Villota
- School of Nutrition and Diet, Faculty of Health, Universidad Bernardo O'Higgins, Santiago, Chile
| | - Verónica Silva
- Fundación Ciencia & Vida/Andes Biotechnologies SpA, 7780272, Santiago, Chile
| | - Lorena Lobos-Gonzalez
- Fundación Ciencia & Vida/Andes Biotechnologies SpA, 7780272, Santiago, Chile.,Center for Regenerative Medicine, Faculty of Medicine, Clínica Alemana & Universidad del Desarrollo, Santiago, Chile
| | - Vincenzo Borgna
- Fundación Ciencia & Vida/Andes Biotechnologies SpA, 7780272, Santiago, Chile.,Faculty of Medical Sciences, Universidad de Santiago de Chile, Santiago, Chile
| | - Eric Barrey
- INRA, Génétique Animale et Biologie Intégrative UMR1313, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Luis O Burzio
- Fundación Ciencia & Vida/Andes Biotechnologies SpA, 7780272, Santiago, Chile.,Department of Biological Sciences, Faculty of Life Sciences, Universidad Andrés Bello, 8370134, Santiago, Chile.,Andes Biotechnologies Global Inc., Burlingame, CA, USA
| | - Verónica A Burzio
- Fundación Ciencia & Vida/Andes Biotechnologies SpA, 7780272, Santiago, Chile. .,Department of Biological Sciences, Faculty of Life Sciences, Universidad Andrés Bello, 8370134, Santiago, Chile. .,Andes Biotechnologies Global Inc., Burlingame, CA, USA.
| |
Collapse
|
13
|
The Long Non-Coding RNA lep-5 Promotes the Juvenile-to-Adult Transition by Destabilizing LIN-28. Dev Cell 2019; 49:542-555.e9. [PMID: 30956008 DOI: 10.1016/j.devcel.2019.03.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 10/02/2018] [Accepted: 03/06/2019] [Indexed: 12/28/2022]
Abstract
Biological roles for most long non-coding RNAs (lncRNAs) remain mysterious. Here, using forward genetics, we identify lep-5, a lncRNA acting in the C. elegans heterochronic (developmental timing) pathway. Loss of lep-5 delays hypodermal maturation and male tail tip morphogenesis (TTM), hallmarks of the juvenile-to-adult transition. We find that lep-5 is a ∼600 nt cytoplasmic RNA that is conserved across Caenorhabditis and possesses three essential secondary structure motifs but no essential open reading frames. lep-5 expression is temporally controlled, peaking prior to TTM onset. Like the Makorin LEP-2, lep-5 facilitates the degradation of LIN-28, a conserved miRNA regulator specifying the juvenile state. Both LIN-28 and LEP-2 associate with lep-5 in vivo, suggesting that lep-5 directly regulates LIN-28 stability and may function as an RNA scaffold. These studies identify a key biological role for a lncRNA: by regulating protein stability, it provides a temporal cue to facilitate the juvenile-to-adult transition.
Collapse
|
14
|
Abstract
Long double-stranded RNAs (dsRNAs) are abundantly expressed in animals, in which they frequently occur in introns and 3' untranslated regions of mRNAs. Functions of long, cellular dsRNAs are poorly understood, although deficiencies in adenosine deaminases that act on RNA, or ADARs, promote their recognition as viral dsRNA and an aberrant immune response. Diverse dsRNA-binding proteins bind cellular dsRNAs, hinting at additional roles. Understanding these roles is facilitated by mapping the genomic locations that express dsRNA in various tissues and organisms. ADAR editing provides a signature of dsRNA structure in cellular transcripts. In this review, we detail approaches to map ADAR editing sites and dsRNAs genome-wide, with particular focus on high-throughput sequencing methods and considerations for their successful application to the detection of editing sites and dsRNAs.
Collapse
Affiliation(s)
- Daniel P Reich
- Department of Biochemistry, University of Utah, Salt Lake City, Utah 84112
| | - Brenda L Bass
- Department of Biochemistry, University of Utah, Salt Lake City, Utah 84112
| |
Collapse
|
15
|
Akay A, Jordan D, Navarro IC, Wrzesinski T, Ponting CP, Miska EA, Haerty W. Identification of functional long non-coding RNAs in C. elegans. BMC Biol 2019; 17:14. [PMID: 30777050 PMCID: PMC6378714 DOI: 10.1186/s12915-019-0635-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 02/08/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Functional characterisation of the compact genome of the model organism Caenorhabditis elegans remains incomplete despite its sequencing 20 years ago. The last decade of research has seen a tremendous increase in the number of non-coding RNAs identified in various organisms. While we have mechanistic understandings of small non-coding RNA pathways, long non-coding RNAs represent a diverse class of active transcripts whose function remains less well characterised. RESULTS By analysing hundreds of published transcriptome datasets, we annotated 3392 potential lncRNAs including 143 multi-exonic loci that showed increased nucleotide conservation and GC content relative to other non-coding regions. Using CRISPR/Cas9 genome editing, we generated deletion mutants for ten long non-coding RNA loci. Using automated microscopy for in-depth phenotyping, we show that six of the long non-coding RNA loci are required for normal development and fertility. Using RNA interference-mediated gene knock-down, we provide evidence that for two of the long non-coding RNA loci, the observed phenotypes are dependent on the corresponding RNA transcripts. CONCLUSIONS Our results highlight that a large section of the non-coding regions of the C. elegans genome remains unexplored. Based on our in vivo analysis of a selection of high-confidence lncRNA loci, we expect that a significant proportion of these high-confidence regions is likely to have a biological function at either the genomic or the transcript level.
Collapse
Affiliation(s)
- Alper Akay
- Wellcome CRUK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| | - David Jordan
- Wellcome CRUK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| | - Isabela Cunha Navarro
- Wellcome CRUK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| | | | - Chris P Ponting
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Eric A Miska
- Wellcome CRUK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK.
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK.
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK.
| | | |
Collapse
|
16
|
Belicard T, Jareosettasin P, Sarkies P. The piRNA pathway responds to environmental signals to establish intergenerational adaptation to stress. BMC Biol 2018; 16:103. [PMID: 30227863 PMCID: PMC6145337 DOI: 10.1186/s12915-018-0571-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 08/30/2018] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND piRNAs have a constitutive role in genome defence by silencing transposable elements in the germline. In the nematode Caenorhabditis elegans, piRNAs also induce epigenetic silencing of transgenes, which can be maintained for many generations in the absence of the piRNA pathway. The role of multi-generational epigenetic inheritance in adaptation to the environment is unknown. RESULTS Here, we show that piRNA biogenesis is downregulated in response to a small increase in temperature. Some effects on gene expression persist into subsequent generations and are associated with a negative fitness cost. We show that simultaneous infection with pathogenic bacteria suppresses downregulation of the piRNA pathway in response to increased temperature. This effect is associated with increased fitness of progeny of infected animals in subsequent generations. CONCLUSIONS Our results show that the piRNA pathway integrates inputs from the environment to establish intergenerational responses to environmental conditions, with important consequences for the fitness of the subsequent generation.
Collapse
Affiliation(s)
- Tony Belicard
- MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK.,Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Pree Jareosettasin
- MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK.,Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Peter Sarkies
- MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK. .,Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
17
|
Hong H, Chai HH, Nam K, Lim D, Lee KT, Do YJ, Cho CY, Nam JW. Non-Coding Transcriptome Maps across Twenty Tissues of the Korean Black Chicken, Yeonsan Ogye. Int J Mol Sci 2018; 19:ijms19082359. [PMID: 30103450 PMCID: PMC6121550 DOI: 10.3390/ijms19082359] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 07/15/2018] [Accepted: 08/08/2018] [Indexed: 12/14/2022] Open
Abstract
Yeonsan Ogye is a rare Korean domestic chicken breed whose entire body, including feathers and skin, has a unique black coloring. Although some protein-coding genes related to this unique feature have been examined, non-coding elements have not been widely investigated. Thus, we evaluated coding and non-coding transcriptome expression and identified long non-coding RNAs functionally linked to protein-coding genes in Ogye. High-throughput RNA sequencing and DNA methylation sequencing were performed to profile the expression of 14,264 Ogye protein-coding and 6900 long non-coding RNA (lncRNA) genes and detect DNA methylation in 20 different tissues of an individual Ogye. Approximately 75% of Ogye lncRNAs and 45% of protein-coding genes showed tissue-specific expression. For some genes, tissue-specific expression levels were inversely correlated with DNA methylation levels in their promoters. Approximately 39% of tissue-specific lncRNAs displayed functional associations with proximal or distal protein-coding genes. Heat shock transcription factor 2-associated lncRNAs appeared to be functionally linked to protein-coding genes specifically expressed in black skin tissues, more syntenically conserved in mammals, and differentially expressed in black relative to in white tissues. Pending experimental validation, our findings increase the understanding of how the non-coding genome regulates unique phenotypes and can be used for future genomic breeding of chickens.
Collapse
Affiliation(s)
- Hyosun Hong
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 133791, Korea.
| | - Han-Ha Chai
- Department of Animal Biotechnology & Environment of National Institute of Animal Science, RDA, Wanju 55365, Korea.
- College of Pharmacy, Chonnam National University, Kwangju 61186, Korea.
| | - Kyoungwoo Nam
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 133791, Korea.
| | - Dajeong Lim
- Department of Animal Biotechnology & Environment of National Institute of Animal Science, RDA, Wanju 55365, Korea.
| | - Kyung-Tai Lee
- Department of Animal Biotechnology & Environment of National Institute of Animal Science, RDA, Wanju 55365, Korea.
| | - Yoon Jung Do
- Department of Animal Biotechnology & Environment of National Institute of Animal Science, RDA, Wanju 55365, Korea.
| | - Chang-Yeon Cho
- Animal Genetic Resource Research Center of National Institute of Animal Science, RDA, Namwon 55717, Korea.
| | - Jin-Wu Nam
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 133791, Korea.
- Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul 133791, Korea.
| |
Collapse
|
18
|
Wang TH, Yu CC, Lin YS, Chen TC, Yeh CT, Liang KH, Shieh TM, Chen CY, Hsueh C. Long noncoding RNA CPS1-IT1 suppresses the metastasis of hepatocellular carcinoma by regulating HIF-1α activity and inhibiting epithelial-mesenchymal transition. Oncotarget 2017; 7:43588-43603. [PMID: 27248828 PMCID: PMC5190046 DOI: 10.18632/oncotarget.9635] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 05/09/2016] [Indexed: 01/04/2023] Open
Abstract
Recently, increasing numbers of long noncoding RNAs (lncRNAs), with both oncogenic and tumor-suppressive potential, have been found to be aberrantly expressed in various human cancers. However, the function of lncRNAs in hepatocellular carcinoma (HCC) progression remains largely unknown. In this study, we performed a comprehensive microarray analysis of lncRNA expression using human HCC specimens. After validation in 119 human HCC tissues, we identified a novel tumor suppressor lncRNA, CPS1 intronic transcript 1 (CPS1-IT1). To elucidate the clinical significance of CPS1-IT1 in HCC, correlations between CPS1-IT1 levels, clinical parameters, and survival outcomes were analyzed. In vitro and in vivo functional assays were also performed to dissect the potential underlying mechanisms. Expression of CPS1-IT1 was significantly decreased in 73% of HCC tissues, and patients with low CPS1-IT1 expression had poor survival outcomes. Furthermore, in vitro functional assays indicated that CPS1-IT1 significantly reduced cell proliferation, migration and invasion capacities through reduced Hsp90 binding to and activation of HIF-1α, thereby suppressing the epithelial-mesenchymal transition (EMT). An in vivo animal model also demonstrated the tumor suppressor role of CPS1- IT1 via decreased tumor growth and metastasis. In conclusion, lncRNA CPS1-IT1 acts as a tumor suppressor in HCC by reducing HIF-1α activation and suppressing EMT. The findings of this study establish a function for CPS1-IT1 in HCC progression and suggest its potential as a new prognostic biomarker and target for HCC therapy.
Collapse
Affiliation(s)
- Tong-Hong Wang
- Tissue Bank, Chang Gung Memorial Hospital, Tao-Yuan, Taiwan.,Research Center for Industry of Human Ecology, Chang Gung University of Science and Technology, Tao-Yuan, Taiwan.,Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Tao-Yuan, Taiwan
| | - Cheng-Chia Yu
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan.,Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan.,Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan
| | - Yong-Shiang Lin
- Department of Anatomic Pathology, Chang Gung Memorial Hospital, Chang Gung University School of Medicine, Tao-Yuan, Taiwan
| | - Tse-Ching Chen
- Department of Anatomic Pathology, Chang Gung Memorial Hospital, Chang Gung University School of Medicine, Tao-Yuan, Taiwan
| | - Chau-Ting Yeh
- Liver Research Center, Department of Hepato-Gastroenterology, Chang Gung Memorial Hospital, Tao-Yuan, Taiwan
| | - Kung-Hao Liang
- Liver Research Center, Department of Hepato-Gastroenterology, Chang Gung Memorial Hospital, Tao-Yuan, Taiwan
| | - Tzong-Ming Shieh
- Department of Dental Hygiene, College of Health Care, China Medical University, Taichung, Taiwan
| | - Chi-Yuan Chen
- Research Center for Industry of Human Ecology, Chang Gung University of Science and Technology, Tao-Yuan, Taiwan.,Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Tao-Yuan, Taiwan
| | - Chuen Hsueh
- Tissue Bank, Chang Gung Memorial Hospital, Tao-Yuan, Taiwan.,Department of Anatomic Pathology, Chang Gung Memorial Hospital, Chang Gung University School of Medicine, Tao-Yuan, Taiwan
| |
Collapse
|
19
|
Raman P, Zaghab SM, Traver EC, Jose AM. The double-stranded RNA binding protein RDE-4 can act cell autonomously during feeding RNAi in C. elegans. Nucleic Acids Res 2017; 45:8463-8473. [PMID: 28541563 PMCID: PMC5737277 DOI: 10.1093/nar/gkx484] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 05/17/2017] [Indexed: 02/07/2023] Open
Abstract
Long double-stranded RNA (dsRNA) can silence genes of matching sequence upon ingestion in many invertebrates and is therefore being developed as a pesticide. Such feeding RNA interference (RNAi) is best understood in the worm Caenorhabditis elegans, where the dsRNA-binding protein RDE-4 initiates silencing by recruiting an endonuclease to process long dsRNA into short dsRNA. These short dsRNAs are thought to move between cells because muscle-specific rescue of rde-4 using repetitive transgenes enables silencing in other tissues. Here, we extend this observation using additional promoters, report an inhibitory effect of repetitive transgenes, and discover conditions for cell-autonomous silencing in animals with tissue-specific rescue of rde-4. While expression of rde-4(+) in intestine, hypodermis, or neurons using a repetitive transgene can enable silencing also in unrescued tissues, silencing can be inhibited wihin tissues that express a repetitive transgene. Single-copy transgenes that express rde-4(+) in body-wall muscles or hypodermis, however, enable silencing selectively in the rescued tissue but not in other tissues. These results suggest that silencing by the movement of short dsRNA between cells is not an obligatory feature of feeding RNAi in C. elegans. We speculate that similar control of dsRNA movement could modulate tissue-specific silencing by feeding RNAi in other invertebrates.
Collapse
Affiliation(s)
- Pravrutha Raman
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Soriayah M Zaghab
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Edward C Traver
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Antony M Jose
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
20
|
Abstract
In recent years, a Lamarckian theme has found its way back into academic discourse on evolution and inheritance. Especially the emerging field of transgenerational small RNAs has provided at least a proof of concept for the inheritance of acquired traits. Yet it remains unclear whether the Lamarckian concept of inheritance will in fact have its rennaisance or whether it will remain the rallying cry for the outlaws, heretics and enfants terribles of molecular biology. As unclear as the future of Lamarckian theory is its content and reference. Since the formulation of the Philosophie Zoologique, Lamarckian thought has been de- and reconfiguring in and out of the scientific literature and become an umbrella-term for all kinds of unconventional modes of inheritance. This essay will argue that heritable small RNAs might in fact provide a case of genuine Lamarckian inheritance. Moreover, it will be claimed that not only the very broad concept of “inheritance of acquired traits“ applies, but also that Lamarck's mechanistic insight into a use/disuse relation might help to explain a specific mode of transgenerational inheritance.
Collapse
|
21
|
Liu W, Yu E, Chen S, Ma X, Lu Y, Liu X. Spatiotemporal expression profiling of long intervening noncoding RNAs in Caenorhabditis elegans. Sci Rep 2017; 7:5195. [PMID: 28701691 PMCID: PMC5507858 DOI: 10.1038/s41598-017-05427-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Accepted: 06/05/2017] [Indexed: 11/12/2022] Open
Abstract
To better understand the biological function of long noncoding RNAs, it is critical to determine their spatiotemporal expression patterns. We generated transgenic reporter strains for 149 out of the 170 annotated C. elegans long intervening noncoding RNAs (lincRNAs) and profiled their temporal activity. For the 68 lincRNAs with integrated reporter lines, we profiled their expression at the resolution of single cells in L1 larvae, and revealed that the expression of lincRNAs is more specific, heterogeneous and at lower level than transcription factors (TFs). These expression patterns can be largely attributed to transcriptional regulation because they were observed in assays using reporters of promoter activity. The spatial expression patterns of the 68 lincRNAs were further examined in 18 tissue categories throughout eight developmental stages. We compared the expression dynamics of lincRNAs, miRNAs and TFs during development. lincRNA and miRNA promoters are less active at embryo stage than those of TFs, but become comparable to TFs after embryogenesis. Finally, the lincRNA gene set shows a similar tissue distribution to that of miRNAs and TFs. We also generated a database, CELE, for the storage and retrieval of lincRNA reporter expression patterns and other relevant information. The data and strains described here will provide a valuable guide and resource for future functional exploration of C. elegans lincRNAs.
Collapse
Affiliation(s)
- Weihong Liu
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Enchao Yu
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Siyu Chen
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xiaopeng Ma
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.,PTN (Peking University-Tsinghua University-National Institute of Biological Sciences) Joint Graduate Program, Beijing, 100084, China
| | - Yiwen Lu
- Department of Automation, Tsinghua University, Beijing, 100084, China
| | - Xiao Liu
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
22
|
Paces J, Nic M, Novotny T, Svoboda P. Literature review of baseline information to support the risk assessment of RNAi‐based GM plants. ACTA ACUST UNITED AC 2017. [PMCID: PMC7163844 DOI: 10.2903/sp.efsa.2017.en-1246] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jan Paces
- Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic (IMG)
| | | | | | - Petr Svoboda
- Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic (IMG)
| |
Collapse
|
23
|
Molecular mechanisms of Dicer: endonuclease and enzymatic activity. Biochem J 2017; 474:1603-1618. [PMID: 28473628 PMCID: PMC5415849 DOI: 10.1042/bcj20160759] [Citation(s) in RCA: 161] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 02/27/2017] [Accepted: 03/01/2017] [Indexed: 12/12/2022]
Abstract
The enzyme Dicer is best known for its role as a riboendonuclease in the small RNA pathway. In this canonical role, Dicer is a critical regulator of the biogenesis of microRNA and small interfering RNA, as well as a growing number of additional small RNAs derived from various sources. Emerging evidence demonstrates that Dicer's endonuclease role extends beyond the generation of small RNAs; it is also involved in processing additional endogenous and exogenous substrates, and is becoming increasingly implicated in regulating a variety of other cellular processes, outside of its endonuclease function. This review will describe the canonical and newly identified functions of Dicer.
Collapse
|
24
|
Long Noncoding RNA: Genome Organization and Mechanism of Action. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1008:47-74. [PMID: 28815536 DOI: 10.1007/978-981-10-5203-3_2] [Citation(s) in RCA: 206] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
For the last four decades, we have known that noncoding RNAs maintain critical housekeeping functions such as transcription, RNA processing, and translation. However, in the late 1990s and early 2000s, the advent of high-throughput sequencing technologies and computational tools to analyze these large sequencing datasets facilitated the discovery of thousands of small and long noncoding RNAs (lncRNAs) and their functional role in diverse biological functions. For example, lncRNAs have been shown to regulate dosage compensation, genomic imprinting, pluripotency, cell differentiation and development, immune response, etc. Here we review how lncRNAs bring about such copious functions by employing diverse mechanisms such as translational inhibition, mRNA degradation, RNA decoys, facilitating recruitment of chromatin modifiers, regulation of protein activity, regulating the availability of miRNAs by sponging mechanism, etc. In addition, we provide a detailed account of different mechanisms as well as general principles by which lncRNAs organize functionally different nuclear sub-compartments and their impact on nuclear architecture.
Collapse
|
25
|
Jiang H, Good DJ. A molecular conundrum involving hypothalamic responses to and roles of long non-coding RNAs following food deprivation. Mol Cell Endocrinol 2016; 438:52-60. [PMID: 27555291 PMCID: PMC5116272 DOI: 10.1016/j.mce.2016.08.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Revised: 08/16/2016] [Accepted: 08/16/2016] [Indexed: 12/15/2022]
Abstract
Long non-coding RNAs (lncRNAs) are one of most poorly understood RNA classes in the mammalian transcriptome. However, they are emerging as important players in transcriptional regulation, especially within the complexity of the nervous system. This review summarizes the known information about lncRNAs, and their roles in endocrine processes, as well as the lesser-known information about lncRNAs in the brain, and in the neuroendocrine hypothalamus. A "call-to-action" is presented for researchers to use archival transcriptome data to characterize differentially expressed lncRNA species within the hypothalamus. In accordance, we analyze for differential-expression of lncRNA between normal mice and mice with a targeted deletion of the nescient helix-loop-helix 2 gene, and between C57Bl/6 and 129Sv/J mice. Finally, strategies and approaches for researchers to analyze their own datasets or those on the NCBI GEO datasets repository are provided, in hopes that future studies will reveal many new roles for lncRNAs in hypothalamic physiological responses, solving this so-called "molecular conundrum" once and for all.
Collapse
Affiliation(s)
- Hao Jiang
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Deborah J Good
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA, 24061, USA.
| |
Collapse
|
26
|
Le HH, Looney M, Strauss B, Bloodgood M, Jose AM. Tissue homogeneity requires inhibition of unequal gene silencing during development. J Cell Biol 2016; 214:319-31. [PMID: 27458132 PMCID: PMC4970325 DOI: 10.1083/jcb.201601050] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 06/29/2016] [Indexed: 11/22/2022] Open
Abstract
Multicellular organisms can generate and maintain homogenous populations of cells that make up individual tissues. However, cellular processes that can disrupt homogeneity and how organisms overcome such disruption are unknown. We found that ∼100-fold differences in expression from a repetitive DNA transgene can occur between intestinal cells in Caenorhabditis elegans These differences are caused by gene silencing in some cells and are actively suppressed by parental and zygotic factors such as the conserved exonuclease ERI-1. If unsuppressed, silencing can spread between some cells in embryos but can be repeat specific and independent of other homologous loci within each cell. Silencing can persist through DNA replication and nuclear divisions, disrupting uniform gene expression in developed animals. Analysis at single-cell resolution suggests that differences between cells arise during early cell divisions upon unequal segregation of an initiator of silencing. Our results suggest that organisms with high repetitive DNA content, which include humans, could use similar developmental mechanisms to achieve and maintain tissue homogeneity.
Collapse
Affiliation(s)
- Hai H Le
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742
| | - Monika Looney
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742
| | - Benjamin Strauss
- Center for Advanced Study of Language, University of Maryland, College Park, MD 20742
| | - Michael Bloodgood
- Center for Advanced Study of Language, University of Maryland, College Park, MD 20742
| | - Antony M Jose
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742
| |
Collapse
|
27
|
Much C, Auchynnikava T, Pavlinic D, Buness A, Rappsilber J, Benes V, Allshire R, O’Carroll D. Endogenous Mouse Dicer Is an Exclusively Cytoplasmic Protein. PLoS Genet 2016; 12:e1006095. [PMID: 27254021 PMCID: PMC4890738 DOI: 10.1371/journal.pgen.1006095] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 05/10/2016] [Indexed: 12/25/2022] Open
Abstract
Dicer is a large multi-domain protein responsible for the ultimate step of microRNA and short-interfering RNA biogenesis. In human and mouse cell lines, Dicer has been shown to be important in the nuclear clearance of dsRNA as well as the establishment of chromatin modifications. Here we set out to unambiguously define the cellular localization of Dicer in mice to understand if this is a conserved feature of mammalian Dicer in vivo. To this end, we utilized an endogenously epitope tagged Dicer knock-in mouse allele. From primary mouse cell lines and adult tissues, we determined with certainty by biochemical fractionation and confocal immunofluorescence microscopy that endogenous Dicer is exclusively cytoplasmic. We ruled out the possibility that a fraction of Dicer shuttles to and from the nucleus as well as that FGF or DNA damage signaling induce Dicer nuclear translocation. We also explored Dicer localization during the dynamic and developmental context of embryogenesis, where Dicer is ubiquitously expressed and strictly cytoplasmic in all three germ layers as well as extraembryonic tissues. Our data exclude a direct role for Dicer in the nuclear RNA processing in the mouse.
Collapse
Affiliation(s)
- Christian Much
- Mouse Biology Unit, European Molecular Biology Laboratory (EMBL), Monterotondo, Italy
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Tania Auchynnikava
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Dinko Pavlinic
- Genomics Core Facility, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Andreas Buness
- Mouse Biology Unit, European Molecular Biology Laboratory (EMBL), Monterotondo, Italy
| | - Juri Rappsilber
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Vladimir Benes
- Genomics Core Facility, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Robin Allshire
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Dónal O’Carroll
- Mouse Biology Unit, European Molecular Biology Laboratory (EMBL), Monterotondo, Italy
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland, United Kingdom
- * E-mail:
| |
Collapse
|
28
|
Long Non-coding RNAs in the Cytoplasm. GENOMICS PROTEOMICS & BIOINFORMATICS 2016; 14:73-80. [PMID: 27163185 PMCID: PMC4880952 DOI: 10.1016/j.gpb.2016.03.005] [Citation(s) in RCA: 283] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 02/03/2016] [Accepted: 03/02/2016] [Indexed: 12/11/2022]
Abstract
An enormous amount of long non-coding RNAs (lncRNAs) transcribed from eukaryotic genome are important regulators in different aspects of cellular events. Cytoplasm is the residence and the site of action for many lncRNAs. The cytoplasmic lncRNAs play indispensable roles with multiple molecular mechanisms in animal and human cells. In this review, we mainly talk about functions and the underlying mechanisms of lncRNAs in the cytoplasm. We highlight relatively well-studied examples of cytoplasmic lncRNAs for their roles in modulating mRNA stability, regulating mRNA translation, serving as competing endogenous RNAs, functioning as precursors of microRNAs, and mediating protein modifications. We also elaborate the perspectives of cytoplasmic lncRNA studies.
Collapse
|
29
|
Abstract
The recognition of functional roles for transcribed long non-coding RNA (lncRNA) has provided a new dimension to our understanding of cellular physiology and disease pathogenesis. LncRNAs are a large group of structurally complex RNA genes that can interact with DNA, RNA, or protein molecules to modulate gene expression and to exert cellular effects through diverse mechanisms. The emerging knowledge regarding their functional roles and their aberrant expression in disease states emphasizes the potential for lncRNA to serve as targets for therapeutic intervention. In this concise review, we outline the mechanisms of action of lncRNAs, their functional cellular roles, and their involvement in disease. Using liver cancer as an example, we provide an overview of the emerging opportunities and potential approaches to target lncRNA-dependent mechanisms for therapeutic purposes.
Collapse
|
30
|
Jiang H, Modise T, Helm R, Jensen RV, Good DJ. Characterization of the hypothalamic transcriptome in response to food deprivation reveals global changes in long noncoding RNA, and cell cycle response genes. GENES & NUTRITION 2015; 10:48. [PMID: 26475716 PMCID: PMC4608919 DOI: 10.1007/s12263-015-0496-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 10/05/2015] [Indexed: 12/15/2022]
Abstract
The hypothalamus integrates energy balance information from the periphery using different neuronal subtypes within each of the hypothalamic areas. However, the effects of prandial state on global mRNA, microRNA and long noncoding (lnc) RNA expression within the whole hypothalamus are largely unknown. In this study, mice were given either a 24-h fast, or ad libitum access to food. RNA samples were analyzed by microarray, and then a subset was confirmed using quantitative real-time PCR (QPCR). A total of 540 mRNAs were either up- or down-regulated with food deprivation. Since gene ontology enrichment analyses identified several categories of mRNAs related to cell cycle processes, ten cell-cycle-related genes were further analyzed using QPCR with six confirmed to be significantly up-regulated and one down-regulated in response to 24-h fasting. While 22 independent microRNAs were differentially expressed by microarray, secondary analysis by QPCR failed to confirm significant changes with fasting. There were 622 lncRNAs identified as differentially expressed, and of three tested by QPCR, two were confirmed. Overall, this is the first time that expression of hypothalamic lncRNAs has been shown to be responsive to food deprivation. In addition, this study is the first to identify a list of lncRNAs with high expression in RNA extracted from hypothalamus. Individual contributions from specific miRNA, lncRNA and mRNAs to the food deprivation response can now be further studied at the physiological and biochemical levels.
Collapse
Affiliation(s)
- Hao Jiang
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, 24061, USA
- Department of Neurology, Washington University in St Louis, St Louis, MO, 63110, USA
| | - Thero Modise
- Program in Genomics, Bioinformatics and Computational Biology, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Richard Helm
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, 24061, USA
- Program in Genomics, Bioinformatics and Computational Biology, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Roderick V Jensen
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Deborah J Good
- Department of Human Nutrition Foods and Exercise, Virginia Tech, 1981 Kraft Drive (0913), Blacksburg, VA, 24061, USA.
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, 24061, USA.
- Program in Genomics, Bioinformatics and Computational Biology, Virginia Tech, Blacksburg, VA, 24061, USA.
| |
Collapse
|
31
|
Whipple JM, Youssef OA, Aruscavage PJ, Nix DA, Hong C, Johnson WE, Bass BL. Genome-wide profiling of the C. elegans dsRNAome. RNA (NEW YORK, N.Y.) 2015; 21:786-800. [PMID: 25805852 PMCID: PMC4408787 DOI: 10.1261/rna.048801.114] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Accepted: 12/23/2014] [Indexed: 06/01/2023]
Abstract
Recent studies hint that endogenous dsRNA plays an unexpected role in cellular signaling. However, a complete understanding of endogenous dsRNA signaling is hindered by an incomplete annotation of dsRNA-producing genes. To identify dsRNAs expressed in Caenorhabditis elegans, we developed a bioinformatics pipeline that identifies dsRNA by detecting clustered RNA editing sites, which are strictly limited to long dsRNA substrates of Adenosine Deaminases that act on RNA (ADAR). We compared two alignment algorithms for mapping both unique and repetitive reads and detected as many as 664 editing-enriched regions (EERs) indicative of dsRNA loci. EERs are visually enriched on the distal arms of autosomes and are predicted to possess strong internal secondary structures as well as sequence complementarity with other EERs, indicative of both intramolecular and intermolecular duplexes. Most EERs were associated with protein-coding genes, with ∼1.7% of all C. elegans mRNAs containing an EER, located primarily in very long introns and in annotated, as well as unannotated, 3' UTRs. In addition to numerous EERs associated with coding genes, we identified a population of prospective noncoding EERs that were distant from protein-coding genes and that had little or no coding potential. Finally, subsets of EERs are differentially expressed during development as well as during starvation and infection with bacterial or fungal pathogens. By combining RNA-seq with freely available bioinformatics tools, our workflow provides an easily accessible approach for the identification of dsRNAs, and more importantly, a catalog of the C. elegans dsRNAome.
Collapse
Affiliation(s)
- Joseph M Whipple
- Department of Biochemistry, University of Utah, Salt Lake City, Utah 84112-5650, USA
| | - Osama A Youssef
- Department of Biochemistry, University of Utah, Salt Lake City, Utah 84112-5650, USA
| | - P Joseph Aruscavage
- Department of Biochemistry, University of Utah, Salt Lake City, Utah 84112-5650, USA
| | - David A Nix
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah 84112-5775, USA
| | - Changjin Hong
- Division of Computational Biomedicine, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | - W Evan Johnson
- Division of Computational Biomedicine, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | - Brenda L Bass
- Department of Biochemistry, University of Utah, Salt Lake City, Utah 84112-5650, USA
| |
Collapse
|
32
|
Sinha NK, Trettin KD, Aruscavage PJ, Bass BL. Drosophila dicer-2 cleavage is mediated by helicase- and dsRNA termini-dependent states that are modulated by Loquacious-PD. Mol Cell 2015; 58:406-17. [PMID: 25891075 DOI: 10.1016/j.molcel.2015.03.012] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 02/04/2015] [Accepted: 03/09/2015] [Indexed: 12/22/2022]
Abstract
In previous studies we observed that the helicase domain of Drosophila Dicer-2 (dmDcr-2) governs substrate recognition and cleavage efficiency, and that dsRNA termini are key to this discrimination. We now provide a mechanistic basis for these observations. We show that discrimination of termini occurs during initial binding. Without ATP, dmDcr-2 binds 3' overhanging, but not blunt, termini. By contrast, with ATP, dmDcr-2 binds both types of termini, with highest-affinity binding observed with blunt dsRNA. In the presence of ATP, binding, cleavage, and ATP hydrolysis are optimal with BLT termini compared to 3'ovr termini. Limited proteolysis experiments suggest the optimal reactivity of BLT dsRNA is mediated by a conformational change that is dependent on ATP and the helicase domain. We find that dmDcr-2's partner protein, Loquacious-PD, alters termini dependence, enabling dmDcr-2 to cleave substrates normally refractory to cleavage, such as dsRNA with blocked, structured, or frayed ends.
Collapse
Affiliation(s)
- Niladri K Sinha
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Kyle D Trettin
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - P Joseph Aruscavage
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Brenda L Bass
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
33
|
Nigita G, Veneziano D, Ferro A. A-to-I RNA Editing: Current Knowledge Sources and Computational Approaches with Special Emphasis on Non-Coding RNA Molecules. Front Bioeng Biotechnol 2015; 3:37. [PMID: 25859542 PMCID: PMC4373398 DOI: 10.3389/fbioe.2015.00037] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 03/09/2015] [Indexed: 11/18/2022] Open
Abstract
RNA editing is a dynamic mechanism for gene regulation attained through the alteration of the sequence of primary RNA transcripts. A-to-I (adenosine-to-inosine) RNA editing, which is catalyzed by members of the adenosine deaminase acting on RNA (ADAR) family of enzymes, is the most common post-transcriptional modification in humans. The ADARs bind double-stranded regions and deaminate adenosine (A) into inosine (I), which in turn is interpreted by the translation and splicing machineries as guanosine (G). In recent years, this modification has been discovered to occur not only in coding RNAs but also in non-coding RNAs (ncRNA), such as microRNAs, small interfering RNAs, transfer RNAs, and long non-coding RNAs. This may have several consequences, such as the creation or disruption of microRNA/mRNA binding sites, and thus affect the biogenesis, stability, and target recognition properties of ncRNAs. The malfunction of the editing machinery is not surprisingly associated with various human diseases, such as neurodegenerative, cardiovascular, and carcinogenic diseases. Despite the enormous efforts made so far, the real biological function of this phenomenon, as well as the features of the ADAR substrate, in particular in non-coding RNAs, has still not been fully understood. In this work, we focus on the current knowledge of RNA editing on ncRNA molecules and provide a few examples of computational approaches to elucidate its biological function.
Collapse
Affiliation(s)
- Giovanni Nigita
- Department of Molecular Virology, Immunology and Medical Genetics, Ohio State University , Columbus, OH , USA
| | - Dario Veneziano
- Department of Clinical and Molecular Biomedicine, University of Catania , Catania , Italy
| | - Alfredo Ferro
- Department of Clinical and Molecular Biomedicine, University of Catania , Catania , Italy
| |
Collapse
|
34
|
Double-stranded RNA made in C. elegans neurons can enter the germline and cause transgenerational gene silencing. Proc Natl Acad Sci U S A 2015; 112:2133-8. [PMID: 25646479 DOI: 10.1073/pnas.1423333112] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
An animal that can transfer gene-regulatory information from somatic cells to germ cells may be able to communicate changes in the soma from one generation to the next. In the worm Caenorhabditis elegans, expression of double-stranded RNA (dsRNA) in neurons can result in the export of dsRNA-derived mobile RNAs to other distant cells. Here, we show that neuronal mobile RNAs can cause transgenerational silencing of a gene of matching sequence in germ cells. Consistent with neuronal mobile RNAs being forms of dsRNA, silencing of target genes that are expressed either in somatic cells or in the germline requires the dsRNA-selective importer SID-1. In contrast to silencing in somatic cells, which requires dsRNA expression in each generation, silencing in the germline is heritable after a single generation of exposure to neuronal mobile RNAs. Although initiation of inherited silencing within the germline requires SID-1, a primary Argonaute RDE-1, a secondary Argonaute HRDE-1, and an RNase D homolog MUT-7, maintenance of inherited silencing is independent of SID-1 and RDE-1, but requires HRDE-1 and MUT-7. Inherited silencing can persist for >25 generations in the absence of the ancestral source of neuronal dsRNA. Therefore, our results suggest that sequence-specific regulatory information in the form of dsRNA can be transferred from neurons to the germline to cause transgenerational silencing.
Collapse
|
35
|
Competition between target sites of regulators shapes post-transcriptional gene regulation. Nat Rev Genet 2014; 16:113-26. [PMID: 25488579 DOI: 10.1038/nrg3853] [Citation(s) in RCA: 200] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Post-transcriptional gene regulation (PTGR) of mRNA turnover, localization and translation is mediated by microRNAs (miRNAs) and RNA-binding proteins (RBPs). These regulators exert their effects by binding to specific sequences within their target mRNAs. Increasing evidence suggests that competition for binding is a fundamental principle of PTGR. Not only can miRNAs be sequestered and neutralized by the targets with which they interact through a process termed 'sponging', but competition between binding sites on different RNAs may also lead to regulatory crosstalk between transcripts. Here, we quantitatively model competition effects under physiological conditions and review the role of endogenous sponges for PTGR in light of the key features that emerge.
Collapse
|
36
|
A Variety of Dicer Substrates in Human and C. elegans. Cell 2014; 159:1153-1167. [DOI: 10.1016/j.cell.2014.10.040] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 08/18/2014] [Accepted: 10/03/2014] [Indexed: 11/19/2022]
|
37
|
Vidaurre S, Fitzpatrick C, Burzio VA, Briones M, Villota C, Villegas J, Echenique J, Oliveira-Cruz L, Araya M, Borgna V, Socías T, Lopez C, Avila R, Burzio LO. Down-regulation of the antisense mitochondrial non-coding RNAs (ncRNAs) is a unique vulnerability of cancer cells and a potential target for cancer therapy. J Biol Chem 2014; 289:27182-27198. [PMID: 25100722 PMCID: PMC4175353 DOI: 10.1074/jbc.m114.558841] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Hallmarks of cancer are fundamental principles involved in cancer progression. We propose an additional generalized hallmark of malignant transformation corresponding to the differential expression of a family of mitochondrial ncRNAs (ncmtRNAs) that comprises sense and antisense members, all of which contain stem-loop structures. Normal proliferating cells express sense (SncmtRNA) and antisense (ASncmtRNA) transcripts. In contrast, the ASncmtRNAs are down-regulated in tumor cells regardless of tissue of origin. Here we show that knockdown of the low copy number of the ASncmtRNAs in several tumor cell lines induces cell death by apoptosis without affecting the viability of normal cells. In addition, knockdown of ASncmtRNAs potentiates apoptotic cell death by inhibiting survivin expression, a member of the inhibitor of apoptosis (IAP) family. Down-regulation of survivin is at the translational level and is probably mediated by microRNAs generated by dicing of the double-stranded stem of the ASncmtRNAs, as suggested by evidence presented here, in which the ASncmtRNAs are bound to Dicer and knockdown of the ASncmtRNAs reduces reporter luciferase activity in a vector carrying the 3′-UTR of survivin mRNA. Taken together, down-regulation of the ASncmtRNAs constitutes a vulnerability or Achilles' heel of cancer cells, suggesting that the ASncmtRNAs are promising targets for cancer therapy.
Collapse
Affiliation(s)
- Soledad Vidaurre
- Andes Biotechnologies SA and Zañartu 1482, Ñuñoa, Santiago 7780272, Chile; Departamento de Ciencias Químicas y Biológicas, Universidad Bernardo ÓHiggins, General Gana 1702, Santiago, Chile
| | - Christopher Fitzpatrick
- Andes Biotechnologies SA and Zañartu 1482, Ñuñoa, Santiago 7780272, Chile; Fundación Ciencia para la Vida, Zañartu 1482, Ñuñoa, Santiago 7780272, Chile,; Facultad de Ciencias Biológicas and Universidad Andrés Bello, República 252, Santiago 8370134, Chile
| | - Verónica A Burzio
- Andes Biotechnologies SA and Zañartu 1482, Ñuñoa, Santiago 7780272, Chile; Fundación Ciencia para la Vida, Zañartu 1482, Ñuñoa, Santiago 7780272, Chile,; Facultad de Ciencias Biológicas and Universidad Andrés Bello, República 252, Santiago 8370134, Chile.
| | - Macarena Briones
- Andes Biotechnologies SA and Zañartu 1482, Ñuñoa, Santiago 7780272, Chile; Facultad de Ciencias Biológicas and Universidad Andrés Bello, República 252, Santiago 8370134, Chile
| | - Claudio Villota
- Andes Biotechnologies SA and Zañartu 1482, Ñuñoa, Santiago 7780272, Chile; Fundación Ciencia para la Vida, Zañartu 1482, Ñuñoa, Santiago 7780272, Chile,; Facultad de Ciencias Biológicas and Universidad Andrés Bello, República 252, Santiago 8370134, Chile
| | - Jaime Villegas
- Andes Biotechnologies SA and Zañartu 1482, Ñuñoa, Santiago 7780272, Chile; Fundación Ciencia para la Vida, Zañartu 1482, Ñuñoa, Santiago 7780272, Chile,; Facultad de Ciencias Biológicas and Universidad Andrés Bello, República 252, Santiago 8370134, Chile
| | - Javiera Echenique
- Andes Biotechnologies SA and Zañartu 1482, Ñuñoa, Santiago 7780272, Chile
| | - Luciana Oliveira-Cruz
- Andes Biotechnologies SA and Zañartu 1482, Ñuñoa, Santiago 7780272, Chile; Fundación Ciencia para la Vida, Zañartu 1482, Ñuñoa, Santiago 7780272, Chile
| | - Mariela Araya
- Andes Biotechnologies SA and Zañartu 1482, Ñuñoa, Santiago 7780272, Chile
| | - Vincenzo Borgna
- Andes Biotechnologies SA and Zañartu 1482, Ñuñoa, Santiago 7780272, Chile; Facultad de Medicina, Universidad Andrés Bello, República 252, Santiago 8370134, Chile, and
| | - Teresa Socías
- Andes Biotechnologies SA and Zañartu 1482, Ñuñoa, Santiago 7780272, Chile
| | - Constanza Lopez
- Andes Biotechnologies SA and Zañartu 1482, Ñuñoa, Santiago 7780272, Chile
| | - Rodolfo Avila
- Andes Biotechnologies SA and Zañartu 1482, Ñuñoa, Santiago 7780272, Chile
| | - Luis O Burzio
- Andes Biotechnologies SA and Zañartu 1482, Ñuñoa, Santiago 7780272, Chile; Fundación Ciencia para la Vida, Zañartu 1482, Ñuñoa, Santiago 7780272, Chile,; Facultad de Ciencias Biológicas and Universidad Andrés Bello, República 252, Santiago 8370134, Chile.
| |
Collapse
|
38
|
Rechavi O, Houri-Ze'evi L, Anava S, Goh WSS, Kerk SY, Hannon GJ, Hobert O. Starvation-induced transgenerational inheritance of small RNAs in C. elegans. Cell 2014; 158:277-287. [PMID: 25018105 PMCID: PMC4377509 DOI: 10.1016/j.cell.2014.06.020] [Citation(s) in RCA: 354] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 05/30/2014] [Accepted: 06/11/2014] [Indexed: 01/03/2023]
Abstract
Evidence from animal studies and human famines suggests that starvation may affect the health of the progeny of famished individuals. However, it is not clear whether starvation affects only immediate offspring or has lasting effects; it is also unclear how such epigenetic information is inherited. Small RNA-induced gene silencing can persist over several generations via transgenerationally inherited small RNA molecules in C. elegans, but all known transgenerational silencing responses are directed against foreign DNA introduced into the organism. We found that starvation-induced developmental arrest, a natural and drastic environmental change, leads to the generation of small RNAs that are inherited through at least three consecutive generations. These small, endogenous, transgenerationally transmitted RNAs target genes with roles in nutrition. We defined genes that are essential for this multigenerational effect. Moreover, we show that the F3 offspring of starved animals show an increased lifespan, corroborating the notion of a transgenerational memory of past conditions.
Collapse
Affiliation(s)
- Oded Rechavi
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel; Columbia University Medical Center, Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, New York, NY 10032, USA.
| | - Leah Houri-Ze'evi
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Sarit Anava
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Wee Siong Sho Goh
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, Howard Hughes Medical Institute, New York 11724, USA
| | - Sze Yen Kerk
- Columbia University Medical Center, Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, New York, NY 10032, USA
| | - Gregory J Hannon
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, Howard Hughes Medical Institute, New York 11724, USA
| | - Oliver Hobert
- Columbia University Medical Center, Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, New York, NY 10032, USA
| |
Collapse
|
39
|
Maciotta S, Meregalli M, Torrente Y. The involvement of microRNAs in neurodegenerative diseases. Front Cell Neurosci 2013; 7:265. [PMID: 24391543 PMCID: PMC3867638 DOI: 10.3389/fncel.2013.00265] [Citation(s) in RCA: 178] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 12/03/2013] [Indexed: 12/12/2022] Open
Abstract
Neurodegenerative diseases (NDDs) originate from a loss of neurons in the central nervous system and are severely debilitating. The incidence of NDDs increases with age, and they are expected to become more common due to extended life expectancy. Because no cure is available, these diseases have become a major challenge in neurobiology. The increasing relevance of microRNAs (miRNAs) in biology has prompted investigation into their possible involvement in neurodegeneration in order to identify new therapeutic targets. The idea of using miRNAs as therapeutic targets is not far from realization, but important issues need to be addressed before moving into the clinics. Here, we review what is known about the involvement of miRNAs in the pathogenesis of NDDs. We also report the miRNA expression levels in peripheral tissues of patients affected by NDDs in order to evaluate their application as biomarkers of disease. Finally, discrepancies, innovations, and the effectiveness of collected data will be elucidated and discussed.
Collapse
Affiliation(s)
- Simona Maciotta
- Stem Cell Laboratory, Department of Pathophysiology and Transplantation, Centro Dino Ferrari, Università degli Studi di Milano, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico Milan, Italy ; Diabetes Research Institute, University of Miami Miller School of Medicine Miami, FL, USA
| | - Mirella Meregalli
- Stem Cell Laboratory, Department of Pathophysiology and Transplantation, Centro Dino Ferrari, Università degli Studi di Milano, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico Milan, Italy
| | - Yvan Torrente
- Stem Cell Laboratory, Department of Pathophysiology and Transplantation, Centro Dino Ferrari, Università degli Studi di Milano, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico Milan, Italy
| |
Collapse
|
40
|
RNA in unexpected places: long non-coding RNA functions in diverse cellular contexts. Nat Rev Mol Cell Biol 2013; 14:699-712. [PMID: 24105322 DOI: 10.1038/nrm3679] [Citation(s) in RCA: 1147] [Impact Index Per Article: 95.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The increased application of transcriptome-wide profiling approaches has led to an explosion in the number of documented long non-coding RNAs (lncRNAs). While these new and enigmatic players in the complex transcriptional milieu are encoded by a significant proportion of the genome, their functions are mostly unknown. Early discoveries support a paradigm in which lncRNAs regulate transcription via chromatin modulation, but new functions are steadily emerging. Given the biochemical versatility of RNA, lncRNAs may be used for various tasks, including post-transcriptional regulation, organization of protein complexes, cell-cell signalling and allosteric regulation of proteins.
Collapse
|
41
|
Sarkies P, Ashe A, Le Pen J, McKie MA, Miska EA. Competition between virus-derived and endogenous small RNAs regulates gene expression in Caenorhabditis elegans. Genome Res 2013; 23:1258-70. [PMID: 23811144 PMCID: PMC3730100 DOI: 10.1101/gr.153296.112] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Positive-strand RNA viruses encompass more than one-third of known virus genera and include many medically and agriculturally relevant human, animal, and plant pathogens. The nematode Caenorhabditis elegans and its natural pathogen, the positive-strand RNA virus Orsay, have recently emerged as a new animal model to understand the mechanisms and evolution of innate immune responses. In particular, the RNA interference (RNAi) pathway is required for C. elegans resistance to viral infection. Here we report the first genome-wide analyses of gene expression upon viral infection in C. elegans. Using the laboratory strain N2, we identify a novel C. elegans innate immune response specific to viral infection. A subset of these changes is driven by the RNAi response to the virus, which redirects the Argonaute protein RDE-1 from its endogenous small RNA cofactors, leading to loss of repression of endogenous RDE-1 targets. Additionally, we show that a C. elegans wild isolate, JU1580, has a distinct gene expression signature in response to viral infection. This is associated with a reduction in microRNA (miRNA) levels and an up-regulation of their target genes. Intriguingly, alterations in miRNA levels upon JU1580 infection are associated with a transformation of the antiviral transcriptional response into an antibacterial-like response. Together our data support a model whereby antiviral RNAi competes with endogenous small RNA pathways, causing widespread transcriptional changes. This provides an elegant mechanism for C. elegans to orchestrate its antiviral response, which may have significance for the relationship between small RNA pathways and immune regulation in other organisms.
Collapse
Affiliation(s)
- Peter Sarkies
- Wellcome Trust Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, United Kingdom.
| | | | | | | | | |
Collapse
|
42
|
Abstract
Long non-coding RNAs (lncRNAs) have been found to perform various functions in a wide variety of important biological processes. To make easier interpretation of lncRNA functionality and conduct deep mining on these transcribed sequences, it is convenient to classify lncRNAs into different groups. Here, we summarize classification methods of lncRNAs according to their four major features, namely, genomic location and context, effect exerted on DNA sequences, mechanism of functioning and their targeting mechanism. In combination with the presently available function annotations, we explore potential relationships between different classification categories, and generalize and compare biological features of different lncRNAs within each category. Finally, we present our view on potential further studies. We believe that the classifications of lncRNAs as indicated above are of fundamental importance for lncRNA studies, helpful for further investigation of specific lncRNAs, for formulation of new hypothesis based on different features of lncRNA and for exploration of the underlying lncRNA functional mechanisms.
Collapse
Affiliation(s)
- Lina Ma
- CAS Key Laboratory of Genome Sciences and Information; Beijing Institute of Genomics; Chinese Academy of Sciences; Beijing, China
| | - Vladimir B. Bajic
- King Abdullah University of Science and Technology (KAUST); Computational Bioscience Research Center; Computer, Electrical and Mathematical Sciences and Engineering Division; Thuwal, Kingdom of Saudi Arabia
| | - Zhang Zhang
- CAS Key Laboratory of Genome Sciences and Information; Beijing Institute of Genomics; Chinese Academy of Sciences; Beijing, China
- Correspondence to: Zhang Zhang,
| |
Collapse
|
43
|
Li X, Wu Z, Fu X, Han W. Long Noncoding RNAs: Insights from Biological Features and Functions to Diseases. Med Res Rev 2013; 33:517-53. [PMID: 22318902 DOI: 10.1002/med.21254] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Over the past decade, genome-wide transcriptomic studies have shown that the mammalian genome is pervasively transcribed and produces many thousands of transcriptomes without bias from previous genome annotations. This finding, together with the discovery of a plethora of unexpected RNAs that have no obvious coding capacities, have challenged the traditional views that proteins are the main protagonists of cellular functions and that RNA is merely an intermediary between DNA sequence and its encoded protein. There are many different kinds of products that are generated by this pervasive transcription; this review focuses on long noncoding RNAs (lncRNAs) that have shown spatial and temporal specific patterns of expression and regulation in a wide variety of cells and tissues, adding significant complexity to the understanding of their biological roles. Recent research has shed new light onto the biological function significance of lncRNAs. Here, we review the rapidly advancing field of lncRNAs, describing their biological features and their roles in regulation of gene expression. Moreover, we highlight some recent advances in our understanding of ncRNA-mediated regulation of stem cell pluripotency, morphogenesis, and development, focusing mainly on the regulatory roles of lncRNAs. Finally, we consider the potential medical implications, and the potential use of lncRNAs in drug development and discovery and in the identification of molecular markers of diseases, including cancer.
Collapse
Affiliation(s)
- Xiaolei Li
- Department of Molecular Biology, Institute of Basic Medicine, School of Life Sciences, Chinese PLA General Hospital, Beijing, 100853, China
| | | | | | | |
Collapse
|
44
|
Libri V, Miesen P, van Rij RP, Buck AH. Regulation of microRNA biogenesis and turnover by animals and their viruses. Cell Mol Life Sci 2013; 70:3525-44. [PMID: 23354060 PMCID: PMC3771402 DOI: 10.1007/s00018-012-1257-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 12/27/2012] [Accepted: 12/27/2012] [Indexed: 12/24/2022]
Abstract
MicroRNAs (miRNAs) are a ubiquitous component of gene regulatory networks that modulate the precise amounts of proteins expressed in a cell. Despite their small size, miRNA genes contain various recognition elements that enable specificity in when, where and to what extent they are expressed. The importance of precise control of miRNA expression is underscored by functional studies in model organisms and by the association between miRNA mis-expression and disease. In the last decade, identification of the pathways by which miRNAs are produced, matured and turned-over has revealed many aspects of their biogenesis that are subject to regulation. Studies in viral systems have revealed a range of mechanisms by which viruses target these pathways through viral proteins or non-coding RNAs in order to regulate cellular gene expression. In parallel, a field of study has evolved around the activation and suppression of antiviral RNA interference (RNAi) by viruses. Virus encoded suppressors of RNAi can impact miRNA biogenesis in cases where miRNA and small interfering RNA pathways converge. Here we review the literature on the mechanisms by which miRNA biogenesis and turnover are regulated in animals and the diverse strategies that viruses use to subvert or inhibit these processes.
Collapse
Affiliation(s)
- Valentina Libri
- Centre for Immunity, Infection and Evolution, University of Edinburgh, King's Buildings, West Mains Road, Edinburgh, EH9 3JT, UK
| | | | | | | |
Collapse
|
45
|
Liu X, Li D, Zhang W, Guo M, Zhan Q. Long non-coding RNA gadd7 interacts with TDP-43 and regulates Cdk6 mRNA decay. EMBO J 2012; 31:4415-27. [PMID: 23103768 DOI: 10.1038/emboj.2012.292] [Citation(s) in RCA: 161] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 09/24/2012] [Indexed: 12/12/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) transcribed extensively from the genome have been proposed to be key regulators of diverse biological processes. However, little is known about the role of lncRNAs in regulation of the cell-cycle G1/S checkpoint following DNA damage, a key step in the maintenance of genomic fidelity. Here we show that growth-arrested DNA damage-inducible gene 7 (gadd7), a DNA damage-inducible lncRNA, regulates the G1/S checkpoint in response to UV irradiation. Interestingly, UV-induced gadd7 directly binds to TAR DNA-binding protein (TDP-43) and interferes with the interaction between TDP-43 and cyclin-dependent kinase 6 (Cdk6) mRNA, resulting in Cdk6 mRNA degradation. These findings demonstrate a role for gadd7 in controlling cell-cycle progression and define a novel mechanism by which lncRNAs modulate mRNA expression at the post-transcriptional level by altering mRNA stability.
Collapse
Affiliation(s)
- Xuefeng Liu
- State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | | | | | | | | |
Collapse
|
46
|
Warf MB, Shepherd BA, Johnson WE, Bass BL. Effects of ADARs on small RNA processing pathways in C. elegans. Genome Res 2012; 22:1488-98. [PMID: 22673872 PMCID: PMC3409262 DOI: 10.1101/gr.134841.111] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 04/02/2012] [Indexed: 11/24/2022]
Abstract
Adenosine deaminases that act on RNA (ADARs) are RNA editing enzymes that convert adenosine to inosine in double-stranded RNA (dsRNA). To evaluate effects of ADARs on small RNAs that derive from dsRNA precursors, we performed deep-sequencing, comparing small RNAs from wild-type and ADAR mutant Caenorhabditis elegans. While editing in small RNAs was rare, at least 40% of microRNAs had altered levels in at least one ADAR mutant strain, and miRNAs with significantly altered levels had mRNA targets with correspondingly affected levels. About 40% of siRNAs derived from endogenous genes (endo-siRNAs) also had altered levels in at least one mutant strain, including 63% of Dicer-dependent endo-siRNAs. The 26G class of endo-siRNAs was significantly affected by ADARs, and many altered 26G loci had intronic reads and histone modifications associated with transcriptional silencing. Our data indicate that ADARs, through both direct and indirect mechanisms, are important for maintaining wild-type levels of many small RNAs in C. elegans.
Collapse
Affiliation(s)
- M. Bryan Warf
- Department of Biochemistry, University of Utah, Salt Lake City, Utah 84112, USA
| | - Brent A. Shepherd
- Department of Statistics, Brigham Young University, Provo, Utah 84602, USA
| | - W. Evan Johnson
- Department of Medicine, Boston University, Boston, Massachusetts 02118, USA
| | - Brenda L. Bass
- Department of Biochemistry, University of Utah, Salt Lake City, Utah 84112, USA
| |
Collapse
|
47
|
Villota C, Campos A, Vidaurre S, Oliveira-Cruz L, Boccardo E, Burzio VA, Varas M, Villegas J, Villa LL, Valenzuela PDT, Socías M, Roberts S, Burzio LO. Expression of mitochondrial non-coding RNAs (ncRNAs) is modulated by high risk human papillomavirus (HPV) oncogenes. J Biol Chem 2012; 287:21303-15. [PMID: 22539350 PMCID: PMC3375551 DOI: 10.1074/jbc.m111.326694] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The study of RNA and DNA oncogenic viruses has proved invaluable in the discovery of key cellular pathways that are rendered dysfunctional during cancer progression. An example is high risk human papillomavirus (HPV), the etiological agent of cervical cancer. The role of HPV oncogenes in cellular immortalization and transformation has been extensively investigated. We reported the differential expression of a family of human mitochondrial non-coding RNAs (ncRNAs) between normal and cancer cells. Normal cells express a sense mitochondrial ncRNA (SncmtRNA) that seems to be required for cell proliferation and two antisense transcripts (ASncmtRNAs). In contrast, the ASncmtRNAs are down-regulated in cancer cells. To shed some light on the mechanisms that trigger down-regulation of the ASncmtRNAs, we studied human keratinocytes (HFK) immortalized with HPV. Here we show that immortalization of HFK with HPV-16 or 18 causes down-regulation of the ASncmtRNAs and induces the expression of a new sense transcript named SncmtRNA-2. Transduction of HFK with both E6 and E7 is sufficient to induce expression of SncmtRNA-2. Moreover, E2 oncogene is involved in down-regulation of the ASncmtRNAs. Knockdown of E2 in immortalized cells reestablishes in a reversible manner the expression of the ASncmtRNAs, suggesting that endogenous cellular factors(s) could play functions analogous to E2 during non-HPV-induced oncogenesis.
Collapse
Affiliation(s)
- Claudio Villota
- Andes Biotechnologies SA, Fundación Ciencia para la Vida, Zanartu 1482 7782272, Chile.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Okamura K. Diversity of animal small RNA pathways and their biological utility. WILEY INTERDISCIPLINARY REVIEWS-RNA 2011; 3:351-68. [PMID: 22086843 DOI: 10.1002/wrna.113] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Higher eukaryotes employ extensive post-transcriptional gene regulation to accomplish fine control of gene expression. The microRNA (miRNA) family plays important roles in the post-transcriptional gene regulation of broad networks of target mRNA expression. Most miRNAs are generated by a conserved mechanism involving two RNase III enzymes Drosha and Dicer. However, work from the past few years has uncovered diverse noncanonical miRNA pathways, which exploit a variety of other RNA processing enzymes. In addition, the discovery of another abundant small RNA family, endogenous short interfering RNAs (endo-siRNAs), has also broadened the catalogs of short regulatory RNAs. This review highlights recent studies that revealed novel small RNA biogenesis pathways, and discusses their relevance to gene regulatory networks.
Collapse
Affiliation(s)
- Katsutomo Okamura
- Department of Developmental Biology, Sloan-Kettering Institute, New York, NY, USA.
| |
Collapse
|
49
|
Amaral PP, Clark MB, Gascoigne DK, Dinger ME, Mattick JS. lncRNAdb: a reference database for long noncoding RNAs. Nucleic Acids Res 2010; 39:D146-51. [PMID: 21112873 PMCID: PMC3013714 DOI: 10.1093/nar/gkq1138] [Citation(s) in RCA: 431] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Large numbers of long RNAs with little or no protein-coding potential [long noncoding RNAs (lncRNAs)] are being identified in eukaryotes. In parallel, increasing data describing the expression profiles, molecular features and functions of individual lncRNAs in a variety of systems are accumulating. To enable the systematic compilation and updating of this information, we have developed a database (lncRNAdb) containing a comprehensive list of lncRNAs that have been shown to have, or to be associated with, biological functions in eukaryotes, as well as messenger RNAs that have regulatory roles. Each entry contains referenced information about the RNA, including sequences, structural information, genomic context, expression, subcellular localization, conservation, functional evidence and other relevant information. lncRNAdb can be searched by querying published RNA names and aliases, sequences, species and associated protein-coding genes, as well as terms contained in the annotations, such as the tissues in which the transcripts are expressed and associated diseases. In addition, lncRNAdb is linked to the UCSC Genome Browser for visualization and Noncoding RNA Expression Database (NRED) for expression information from a variety of sources. lncRNAdb provides a platform for the ongoing collation of the literature pertaining to lncRNAs and their association with other genomic elements. lncRNAdb can be accessed at: http://www.lncrnadb.org/.
Collapse
Affiliation(s)
- Paulo P Amaral
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | | | | | | | | |
Collapse
|
50
|
Posttranscriptional regulation of microRNA biogenesis in animals. Mol Cell 2010; 38:323-32. [PMID: 20471939 DOI: 10.1016/j.molcel.2010.03.013] [Citation(s) in RCA: 447] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Revised: 02/24/2010] [Accepted: 03/02/2010] [Indexed: 12/11/2022]
Abstract
MicroRNAs (miRNAs) control gene expression in animals, plants, and unicellular eukaryotes by promoting degradation or repressing translation of target mRNAs. miRNA expression is often tissue specific and developmentally regulated, and regulation occurs both transcriptionally and posttranscriptionally. This regulation is crucial, as alteration of miRNA expression has been linked to human diseases, including several cancers. Here, we discuss recent studies that shed light on how multiple steps in the miRNA biogenesis pathway are regulated to modulate miRNA function in animals.
Collapse
|