1
|
Tsemperouli M, Cheppali SK, Rivera-Molina F, Chetrit D, Landajuela A, Toomre D, Karatekin E. Vesicle docking and fusion pore modulation by the neuronal calcium sensor Synaptotagmin-1. Biophys J 2024:S0006-3495(24)04104-3. [PMID: 39719826 DOI: 10.1016/j.bpj.2024.12.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/19/2024] [Accepted: 12/20/2024] [Indexed: 12/26/2024] Open
Abstract
Synaptotagmin-1 (Syt1) is a major calcium sensor for rapid neurotransmitter release in neurons and hormone release in many neuroendocrine cells. It possesses two tandem cytosolic C2 domains that bind calcium, negatively charged phospholipids, and the neuronal SNARE complex. Calcium binding to Syt1 triggers exocytosis, but how this occurs is not well understood. Syt1 has additional roles in docking dense-core vesicles (DCVs) and synaptic vesicles to the plasma membrane and in regulating fusion pore dynamics. Thus, Syt1 perturbations could affect release through vesicle docking, fusion triggering, fusion pore regulation, or a combination of these. Here, using a human neuroendocrine cell line, we show that neutralization of highly conserved polybasic patches in either C2 domain of Syt1 impairs both DCV docking and efficient release of serotonin from DCVs. Interestingly, the same mutations resulted in larger fusion pores and faster release of serotonin during individual fusion events. Thus, Syt1's roles in vesicle docking, fusion triggering, and fusion pore control may be functionally related.
Collapse
Affiliation(s)
- Maria Tsemperouli
- Cellular and Molecular Physiology, School of Medicine, Yale University, New Haven, Connecticut; Nanobiology Institute, Yale University, West Haven, Connecticut
| | - Sudheer Kumar Cheppali
- Cellular and Molecular Physiology, School of Medicine, Yale University, New Haven, Connecticut; Nanobiology Institute, Yale University, West Haven, Connecticut
| | - Félix Rivera-Molina
- Cell Biology, School of Medicine, Yale University, New Haven, Connecticut; CINEMA Lab, School of Medicine, Yale University, New Haven, Connecticut
| | - David Chetrit
- Cellular and Molecular Physiology, School of Medicine, Yale University, New Haven, Connecticut; Nanobiology Institute, Yale University, West Haven, Connecticut
| | - Ane Landajuela
- Cellular and Molecular Physiology, School of Medicine, Yale University, New Haven, Connecticut; Nanobiology Institute, Yale University, West Haven, Connecticut
| | - Derek Toomre
- Cell Biology, School of Medicine, Yale University, New Haven, Connecticut; CINEMA Lab, School of Medicine, Yale University, New Haven, Connecticut
| | - Erdem Karatekin
- Cellular and Molecular Physiology, School of Medicine, Yale University, New Haven, Connecticut; Nanobiology Institute, Yale University, West Haven, Connecticut; Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut; Saints-Pères Paris Institute for the Neurosciences (SPPIN), Université de Paris, Centre National de la Recherche Scientifique (CNRS) UMR 8003, Paris, France; Wu Tsai Institute, Yale University, New Haven, Connecticut.
| |
Collapse
|
2
|
Zhu J, Li M, Lu H, Li Y, Ren M, Xu J, Ding W, Wang Y, Wu Y, Liu Y, Wu Z, Mo X, Mao C. The t-SNARE protein OsSYP132 is required for vesicle fusion and root morphogenesis in rice. THE NEW PHYTOLOGIST 2024; 244:2413-2429. [PMID: 39449241 DOI: 10.1111/nph.20180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/20/2024] [Indexed: 10/26/2024]
Abstract
Root morphogenesis is crucial for water and nutrient acquisition, but many aspects of root morphogenesis in crops are not well-understood. Here, we cloned and functionally characterized a key gene for root morphogenesis in rice (Oryza sativa) based on mutant analysis. The stop root morphogenesis 1 (srm1) mutant lacks crown roots (CRs) and lateral roots (LRs) and carries a point mutation in the t-SNARE coding gene SYNTAXIN OF PLANTS 132 (OsSYP132), leading to a premature stop codon and ablating the post-transmembrane (PTM) region of OsSYP132. We identified the functional SNARE complex OsSYP132-OsNPSN13-OsSYP71-OsVAMP721/722 and determined that the integrity of the PTM region of OsSYP132 is essential for OsSYP132-based SNARE complex-mediated fusion of OsVAMP721/722 vesicles with the plasma membrane. The loss of this region in srm1 disrupts the intercellular trafficking and plasma membrane localization of OsPIN1b, preventing proper auxin distribution in the primordia of CRs and LRs and inhibiting their outgrowth.
Collapse
Affiliation(s)
- Jianshu Zhu
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Mengzhen Li
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hong Lu
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yong Li
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Meiyan Ren
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jiming Xu
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wona Ding
- Ningbo Key Laboratory of Agricultural Germplasm Resources Mining and Environmental Regulation, College of Science and Technology, Ningbo University, Ningbo, 315300, China
| | - Yong Wang
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yunrong Wu
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yu Liu
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhongchang Wu
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiaorong Mo
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chuanzao Mao
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Sanya, Hainan, 572025, China
| |
Collapse
|
3
|
Tsemperouli M, Cheppali SK, Molina FR, Chetrit D, Landajuela A, Toomre D, Karatekin E. Vesicle docking and fusion pore modulation by the neuronal calcium sensor Synaptotagmin-1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.12.612660. [PMID: 39314345 PMCID: PMC11419119 DOI: 10.1101/2024.09.12.612660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Synaptotagmin-1 (Syt1) is a major calcium sensor for rapid neurotransmitter release in neurons and hormone release in many neuroendocrine cells. It possesses two tandem cytosolic C2 domains that bind calcium, negatively charged phospholipids, and the neuronal SNARE complex. Calcium binding to Syt1 triggers exocytosis, but how this occurs is not well understood. Syt1 has additional roles in docking dense core vesicles (DCV) and synaptic vesicles (SV) to the plasma membrane (PM) and in regulating fusion pore dynamics. Thus, Syt1 perturbations could affect release through vesicle docking, fusion triggering, fusion pore regulation, or a combination of these. Here, using a human neuroendocrine cell line, we show that neutralization of highly conserved polybasic patches in either C2 domain of Syt1 impairs both DCV docking and efficient release of serotonin from DCVs. Interestingly, the same mutations resulted in larger fusion pores and faster release of serotonin during individual fusion events. Thus, Syt1's roles in vesicle docking, fusion triggering, and fusion pore control may be functionally related.
Collapse
Affiliation(s)
- Maria Tsemperouli
- Cellular and Molecular Physiology, School of Medicine, Yale University, New Haven, CT
- Nanobiology Institute, Yale University, West Haven, CT
| | - Sudheer Kumar Cheppali
- Cellular and Molecular Physiology, School of Medicine, Yale University, New Haven, CT
- Nanobiology Institute, Yale University, West Haven, CT
| | - Felix Rivera Molina
- Cell Biology, School of Medicine, Yale University
- CINEMA Lab, School of Medicine, Yale University
| | - David Chetrit
- Cellular and Molecular Physiology, School of Medicine, Yale University, New Haven, CT
- Nanobiology Institute, Yale University, West Haven, CT
| | - Ane Landajuela
- Cellular and Molecular Physiology, School of Medicine, Yale University, New Haven, CT
- Nanobiology Institute, Yale University, West Haven, CT
| | - Derek Toomre
- Cell Biology, School of Medicine, Yale University
- CINEMA Lab, School of Medicine, Yale University
| | - Erdem Karatekin
- Cellular and Molecular Physiology, School of Medicine, Yale University, New Haven, CT
- Nanobiology Institute, Yale University, West Haven, CT
- Molecular Biophysics and Biochemistry, Yale University, New Haven, CT
- Saints-Pères Paris Institute for the Neurosciences (SPPIN), Université de Paris, Centre National de la Recherche Scientifique (CNRS) UMR 8003, Paris, France
- Wu Tsai Institute, Yale University
| |
Collapse
|
4
|
Bayonés L, Guerra-Fernández MJ, Figueroa-Cares C, Gallo LI, Alfonso-Bueno S, Caspe O, Canal MP, Báez-Matus X, González-Jamett A, Cárdenas AM, Marengo FD. Dynamin-2 mutations linked to neonatal-onset centronuclear myopathy impair exocytosis and endocytosis in adrenal chromaffin cells. J Neurochem 2024; 168:3268-3283. [PMID: 39126680 DOI: 10.1111/jnc.16194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/28/2024] [Accepted: 07/17/2024] [Indexed: 08/12/2024]
Abstract
Dynamins are large GTPases whose primary function is not only to catalyze membrane scission during endocytosis but also to modulate other cellular processes, such as actin polymerization and vesicle trafficking. Recently, we reported that centronuclear myopathy associated dynamin-2 mutations, p.A618T, and p.S619L, impair Ca2+-induced exocytosis of the glucose transporter GLUT4 containing vesicles in immortalized human myoblasts. As exocytosis and endocytosis occur within rapid timescales, here we applied high-temporal resolution techniques, such as patch-clamp capacitance measurements and carbon-fiber amperometry to assess the effects of these mutations on these two cellular processes, using bovine chromaffin cells as a study model. We found that the expression of any of these dynamin-2 mutants inhibits a dynamin and F-actin-dependent form of fast endocytosis triggered by single action potential stimulus, as well as inhibits a slow compensatory endocytosis induced by 500 ms square depolarization. Both dynamin-2 mutants further reduced the exocytosis induced by 500 ms depolarizations, and the frequency of release events and the recruitment of neuropeptide Y (NPY)-labeled vesicles to the cell cortex after stimulation of nicotinic acetylcholine receptors with 1,1-dimethyl-4-phenyl piperazine iodide (DMPP). They also provoked a significant decrease in the Ca2+-induced formation of new actin filaments in permeabilized chromaffin cells. In summary, our results indicate that the centronuclear myopathy (CNM)-linked p.A618T and p.S619L mutations in dynamin-2 affect exocytosis and endocytosis, being the disruption of F-actin dynamics a possible explanation for these results. These impaired cellular processes might underlie the pathogenic mechanisms associated with these mutations.
Collapse
Affiliation(s)
- Lucas Bayonés
- Instituto de Fisiología, Biología Molecular y Neurociencias. CONICET. Departamento de Fisiología y Biología Molecular y Celular. Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María José Guerra-Fernández
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Cindel Figueroa-Cares
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Luciana I Gallo
- Instituto de Fisiología, Biología Molecular y Neurociencias. CONICET. Departamento de Fisiología y Biología Molecular y Celular. Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Samuel Alfonso-Bueno
- Instituto de Fisiología, Biología Molecular y Neurociencias. CONICET. Departamento de Fisiología y Biología Molecular y Celular. Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Octavio Caspe
- Instituto de Fisiología, Biología Molecular y Neurociencias. CONICET. Departamento de Fisiología y Biología Molecular y Celular. Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María Pilar Canal
- Instituto de Fisiología, Biología Molecular y Neurociencias. CONICET. Departamento de Fisiología y Biología Molecular y Celular. Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ximena Báez-Matus
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Arlek González-Jamett
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
- Escuela de Química y Farmacia, Facultad de Farmacia, Universidad de Valparaíso, Valparaíso, Chile
- Centro para la Investigación Traslacional en Neurofarmacología, CitNe, Universidad de Valparaíso, Valparaiso, Chile
| | - Ana M Cárdenas
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Fernando D Marengo
- Instituto de Fisiología, Biología Molecular y Neurociencias. CONICET. Departamento de Fisiología y Biología Molecular y Celular. Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
5
|
Abstract
Membrane fusion and budding mediate fundamental processes like intracellular trafficking, exocytosis, and endocytosis. Fusion is thought to open a nanometer-range pore that may subsequently close or dilate irreversibly, whereas budding transforms flat membranes into vesicles. Reviewing recent breakthroughs in real-time visualization of membrane transformations well exceeding this classical view, we synthesize a new model and describe its underlying mechanistic principles and functions. Fusion involves hemi-to-full fusion, pore expansion, constriction and/or closure while fusing vesicles may shrink, enlarge, or receive another vesicle fusion; endocytosis follows exocytosis primarily by closing Ω-shaped profiles pre-formed through the flat-to-Λ-to-Ω-shape transition or formed via fusion. Calcium/SNARE-dependent fusion machinery, cytoskeleton-dependent membrane tension, osmotic pressure, calcium/dynamin-dependent fission machinery, and actin/dynamin-dependent force machinery work together to generate fusion and budding modes differing in pore status, vesicle size, speed and quantity, controls release probability, synchronization and content release rates/amounts, and underlies exo-endocytosis coupling to maintain membrane homeostasis. These transformations, underlying mechanisms, and functions may be conserved for fusion and budding in general.
Collapse
Affiliation(s)
- Ling-Gang Wu
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA.
| | - Chung Yu Chan
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| |
Collapse
|
6
|
Biton T, Scher N, Carmon S, Elbaz-Alon Y, Schejter ED, Shilo BZ, Avinoam O. Fusion pore dynamics of large secretory vesicles define a distinct mechanism of exocytosis. J Cell Biol 2023; 222:e202302112. [PMID: 37707500 PMCID: PMC10501449 DOI: 10.1083/jcb.202302112] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/06/2023] [Accepted: 08/24/2023] [Indexed: 09/15/2023] Open
Abstract
Exocrine cells utilize large secretory vesicles (LSVs) up to 10 μm in diameter. LSVs fuse with the apical surface, often recruiting actomyosin to extrude their content through dynamic fusion pores. The molecular mechanism regulating pore dynamics remains largely uncharacterized. We observe that the fusion pores of LSVs in the Drosophila larval salivary glands expand, stabilize, and constrict. Arp2/3 is essential for pore expansion and stabilization, while myosin II is essential for pore constriction. We identify several Bin-Amphiphysin-Rvs (BAR) homology domain proteins that regulate fusion pore expansion and stabilization. We show that the I-BAR protein Missing-in-Metastasis (MIM) localizes to the fusion site and is essential for pore expansion and stabilization. The MIM I-BAR domain is essential but not sufficient for localization and function. We conclude that MIM acts in concert with actin, myosin II, and additional BAR-domain proteins to control fusion pore dynamics, mediating a distinct mode of exocytosis, which facilitates actomyosin-dependent content release that maintains apical membrane homeostasis during secretion.
Collapse
Affiliation(s)
- Tom Biton
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Nadav Scher
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Shari Carmon
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Yael Elbaz-Alon
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Eyal D. Schejter
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Ben-Zion Shilo
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Ori Avinoam
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
7
|
Yan C, Jiang J, Yang Y, Geng X, Dong W. The function of VAMP2 in mediating membrane fusion: An overview. Front Mol Neurosci 2022; 15:948160. [PMID: 36618823 PMCID: PMC9816800 DOI: 10.3389/fnmol.2022.948160] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Vesicle-associated membrane protein 2 (VAMP2, also known as synaptobrevin-2), encoded by VAMP2 in humans, is a key component of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex. VAMP2 combined with syntaxin-1A (SYX-1A) and synaptosome-associated protein 25 (SNAP-25) produces a force that induces the formation of fusion pores, thereby mediating the fusion of synaptic vesicles and the release of neurotransmitters. VAMP2 is largely unstructured in the absence of interaction partners. Upon interaction with other SNAREs, the structure of VAMP2 stabilizes, resulting in the formation of four structural domains. In this review, we highlight the current knowledge of the roles of the VAMP2 domains and the interaction between VAMP2 and various fusion-related proteins in the presynaptic cytoplasm during the fusion process. Our summary will contribute to a better understanding of the roles of the VAMP2 protein in membrane fusion.
Collapse
Affiliation(s)
- Chong Yan
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Jie Jiang
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Yuan Yang
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Xiaoqi Geng
- Department of Neurosurgery, Neurosurgical Clinical Research Center of Sichuan Province, Affiliated Hospital of Southwest Medical University, Luzhou, China,*Correspondence: Xiaoqi Geng,
| | - Wei Dong
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China,Wei Dong,
| |
Collapse
|
8
|
Zhang Y, Ma L, Bao H. Energetics, kinetics, and pathways of SNARE assembly in membrane fusion. Crit Rev Biochem Mol Biol 2022; 57:443-460. [PMID: 36151854 PMCID: PMC9588726 DOI: 10.1080/10409238.2022.2121804] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Fusion of transmitter-containing vesicles with plasma membranes at the synaptic and neuromuscular junctions mediates neurotransmission and muscle contractions, respectively, thereby underlying all thoughts and actions. The fusion process is driven by the coupled folding and assembly of three synaptic SNARE proteins--syntaxin-1 and SNAP-25 on the target plasma membrane (t-SNAREs) and VAMP2 on the vesicular membrane (v-SNARE) into a four-helix bundle. Their assembly is chaperoned by Munc18-1 and many other proteins to achieve the speed and accuracy required for neurotransmission. However, the physiological pathway of SNARE assembly and its coupling to membrane fusion remains unclear. Here, we review recent progress in understanding SNARE assembly and membrane fusion, with a focus on results obtained by single-molecule manipulation approaches and electric recordings of single fusion pores. We describe two pathways of synaptic SNARE assembly, their associated intermediates, energetics, and kinetics. Assembly of the three SNAREs in vitro begins with the formation of a t-SNARE binary complex, on which VAMP2 folds in a stepwise zipper-like fashion. Munc18-1 significantly alters the SNARE assembly pathway: syntaxin-1 and VAMP2 first bind on the surface of Munc18-1 to form a template complex, with which SNAP-25 associates to conclude SNARE assembly and displace Munc18-1. During membrane fusion, multiple trans-SNARE complexes cooperate to open a dynamic fusion pore in a manner dependent upon their copy number and zippering states. Together, these results demonstrate that stepwise and cooperative SNARE assembly drive stagewise membrane fusion.
Collapse
Affiliation(s)
- Yongli Zhang
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510, USA;,Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA;,Conatct: and
| | - Lu Ma
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510, USA;,Present address: Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Huan Bao
- Department of Molecular Medicine, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida, 33458,Conatct: and
| |
Collapse
|
9
|
Ge L, Shin W, Arpino G, Wei L, Chan CY, Bleck CKE, Zhao W, Wu LG. Sequential compound fusion and kiss-and-run mediate exo- and endocytosis in excitable cells. SCIENCE ADVANCES 2022; 8:eabm6049. [PMID: 35714180 PMCID: PMC9205584 DOI: 10.1126/sciadv.abm6049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 05/03/2022] [Indexed: 06/15/2023]
Abstract
Vesicle fusion at preestablished plasma membrane release sites releases transmitters and hormones to mediate fundamental functions like neuronal network activities and fight-or-flight responses. This half-a-century-old concept-fusion at well-established release sites in excitable cells-needs to be modified to include the sequential compound fusion reported here-vesicle fusion at previously fused Ω-shaped vesicular membrane. With superresolution STED microscopy in excitable neuroendocrine chromaffin cells, we real-time visualized sequential compound fusion pore openings and content releases in generating multivesicular and asynchronous release from single release sites, which enhances exocytosis strength and dynamic ranges in excitable cells. We also visualized subsequent compound fusion pore closure, a new mode of endocytosis termed compound kiss-and-run that enhances vesicle recycling capacity. These results suggest modifying current exo-endocytosis concepts by including rapid release-site assembly at fused vesicle membrane, where sequential compound fusion and kiss-and-run take place to enhance exo-endocytosis capacity and dynamic ranges.
Collapse
Affiliation(s)
- Lihao Ge
- National Institute of Neurological Disorders and Stroke, 35 Convent Dr., Bldg. 35, Rm. 2B-1012, Bethesda, MD 20892, USA
| | - Wonchul Shin
- National Institute of Neurological Disorders and Stroke, 35 Convent Dr., Bldg. 35, Rm. 2B-1012, Bethesda, MD 20892, USA
| | - Gianvito Arpino
- National Institute of Neurological Disorders and Stroke, 35 Convent Dr., Bldg. 35, Rm. 2B-1012, Bethesda, MD 20892, USA
| | - Lisi Wei
- National Institute of Neurological Disorders and Stroke, 35 Convent Dr., Bldg. 35, Rm. 2B-1012, Bethesda, MD 20892, USA
| | - Chung Yu Chan
- National Institute of Neurological Disorders and Stroke, 35 Convent Dr., Bldg. 35, Rm. 2B-1012, Bethesda, MD 20892, USA
| | | | - Weidong Zhao
- National Institute of Neurological Disorders and Stroke, 35 Convent Dr., Bldg. 35, Rm. 2B-1012, Bethesda, MD 20892, USA
| | - Ling-Gang Wu
- National Institute of Neurological Disorders and Stroke, 35 Convent Dr., Bldg. 35, Rm. 2B-1012, Bethesda, MD 20892, USA
| |
Collapse
|
10
|
Houy S, Streit L, Drissa I, Rame M, Decraene C, Moog S, Brunaud L, Lanoix J, Chelbi R, Bihain F, Lacomme S, Lomazzi S, Campoli P, Vix M, Mutter D, Paramithiotis E, Dubessy C, Vitale N, Ory S, Gasman S. Dysfunction of calcium-regulated exocytosis at a single-cell level causes catecholamine hypersecretion in patients with pheochromocytoma. Cancer Lett 2022; 543:215765. [PMID: 35680072 DOI: 10.1016/j.canlet.2022.215765] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 05/13/2022] [Accepted: 05/28/2022] [Indexed: 11/27/2022]
Abstract
Neuroendocrine tumors constitute a heterogeneous group of tumors arising from hormone-secreting cells and are generally associated with a dysfunction of secretion. Pheochromocytoma (Pheo) is a neuroendocrine tumor that develops from chromaffin cells of the adrenal medulla, and is responsible for an excess of catecholamine secretion leading to severe clinical symptoms such as hypertension, elevated stroke risk and various cardiovascular complications. Surprisingly, while the hypersecretory activity of Pheo is well known to pathologists and clinicians, it has never been carefully explored at the cellular and molecular levels. In the present study, we have combined catecholamine secretion measurement by carbon fiber amperometry on human tumor cells directly cultured from freshly resected Pheos, with the analysis by mass spectrometry of the exocytotic proteins differentially expressed between the tumor and the matched adjacent non-tumor tissue. In most patients, catecholamine secretion recordings from single Pheo cells revealed a higher number of exocytic events per cell associated with faster kinetic parameters. Accordingly, we unravel significant tumor-associated modifications in the expression of key proteins involved in different steps of the calcium-regulated exocytic pathway. Altogether, our findings indicate that dysfunction of the calcium-regulated exocytosis at the level of individual Pheo cell is a cause of the tumor-associated hypersecretion of catecholamines.
Collapse
Affiliation(s)
- Sébastien Houy
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, F-67000, Strasbourg, France
| | - Laura Streit
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, F-67000, Strasbourg, France
| | - Inès Drissa
- Univ. Rouen, INSERM, Normandie Univ., Différenciation et Communication Neuroendocrine, Endocrine et Germinale, F-76000, Rouen, France
| | - Marion Rame
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, F-67000, Strasbourg, France
| | - Charles Decraene
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, F-67000, Strasbourg, France; Centre National de la Recherche Scientifique, Université de Strasbourg, Laboratoire de Neurosciences Cognitives et Adaptatives, F-67000 Strasbourg, France
| | - Sophie Moog
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, F-67000, Strasbourg, France
| | - Laurent Brunaud
- Département de Chirurgie Viscérale, Métabolique et Cancérologique (CVMC), INSERM NGERE-U1256, Université de Lorraine, CHRU NANCY, Hôpital Brabois adultes, F-54511, Vandœuvre-lès-Nancy, France
| | - Joël Lanoix
- Institut de Recherche en Immunologie et en Cancérologie (IRIC), Université de Montréal, Montréal, Canada, Département de Médecine, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Rabie Chelbi
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, F-67000, Strasbourg, France; Inovarion, F-75005, Paris, France
| | - Florence Bihain
- Département de Chirurgie Viscérale, Métabolique et Cancérologique (CVMC), INSERM NGERE-U1256, Université de Lorraine, CHRU NANCY, Hôpital Brabois adultes, F-54511, Vandœuvre-lès-Nancy, France
| | - Stéphanie Lacomme
- Centre de Ressources Biologiques Lorrain, CHRU Nancy, Hôpitaux de Brabois, F-54511, Vandœuvre-lès-Nancy, France
| | - Sandra Lomazzi
- Centre de Ressources Biologiques Lorrain, CHRU Nancy, Hôpitaux de Brabois, F-54511, Vandœuvre-lès-Nancy, France
| | - Philippe Campoli
- Department of Biopathology, CHRU-ICL, CHRU Nancy, Vandoeuvre-lès-Nancy, France and Faculty of Medicine, Université de Lorraine, F-54511, Vandoeuvre-lès-Nancy, France
| | - Michel Vix
- NHC Strasbourg, Service de Chirurgie Digestive et Endocrinienne des Hôpitaux Universitaires de Strasbourg, Hôpital Civil, F-67000, Strasbourg, France
| | - Didier Mutter
- NHC Strasbourg, Service de Chirurgie Digestive et Endocrinienne des Hôpitaux Universitaires de Strasbourg, Hôpital Civil, F-67000, Strasbourg, France
| | | | - Christophe Dubessy
- Univ. Rouen, INSERM, Normandie Univ., Différenciation et Communication Neuroendocrine, Endocrine et Germinale, F-76000, Rouen, France; Univ. Rouen, INSERM, CNRS, HERACLES, PRIMACEN, F-76000, Rouen, France
| | - Nicolas Vitale
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, F-67000, Strasbourg, France
| | - Stéphane Ory
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, F-67000, Strasbourg, France
| | - Stéphane Gasman
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, F-67000, Strasbourg, France.
| |
Collapse
|
11
|
Alten B, Guzikowski NJ, Zurawski Z, Hamm HE, Kavalali ET. Presynaptic mechanisms underlying GABA B-receptor-mediated inhibition of spontaneous neurotransmitter release. Cell Rep 2022; 38:110255. [PMID: 35045279 PMCID: PMC8793855 DOI: 10.1016/j.celrep.2021.110255] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/15/2021] [Accepted: 12/21/2021] [Indexed: 01/08/2023] Open
Abstract
Inhibition of neurotransmitter release by neurotransmitter substances constitutes a fundamental means of neuromodulation. In contrast to well-delineated mechanisms that underlie inhibition of evoked release via suppression of voltage-gated Ca2+ channels, processes that underlie neuromodulatory inhibition of spontaneous release remain unclear. Here, we interrogated inhibition of spontaneous glutamate and GABA release by presynaptic metabotropic GABAB receptors. Our findings show that this inhibition relies on Gβγ subunit action at the membrane, and it is largely independent of presynaptic Ca2+ signaling for both forms of release. In the case of spontaneous glutamate release, inhibition requires Gβγ interaction with the C terminus of the key fusion machinery component SNAP25, and it is modulated by synaptotagmin-1. Inhibition of spontaneous GABA release, on the other hand, is independent of these pathways and likely requires alternative Gβγ targets at the presynaptic terminal.
Collapse
Affiliation(s)
- Baris Alten
- Department of Pharmacology, Vanderbilt University, 7130A MRB III 465 21st Avenue South, Nashville, TN 37240-7933, USA,Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37240-7933, USA
| | - Natalie J. Guzikowski
- Department of Pharmacology, Vanderbilt University, 7130A MRB III 465 21st Avenue South, Nashville, TN 37240-7933, USA,Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37240-7933, USA
| | - Zack Zurawski
- Department of Pharmacology, Vanderbilt University, 7130A MRB III 465 21st Avenue South, Nashville, TN 37240-7933, USA
| | - Heidi E. Hamm
- Department of Pharmacology, Vanderbilt University, 7130A MRB III 465 21st Avenue South, Nashville, TN 37240-7933, USA
| | - Ege T. Kavalali
- Department of Pharmacology, Vanderbilt University, 7130A MRB III 465 21st Avenue South, Nashville, TN 37240-7933, USA,Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37240-7933, USA,Lead contact,Correspondence:
| |
Collapse
|
12
|
Cai S, Kumar R, Singh BR. Clostridial Neurotoxins: Structure, Function and Implications to Other Bacterial Toxins. Microorganisms 2021; 9:2206. [PMID: 34835332 PMCID: PMC8618262 DOI: 10.3390/microorganisms9112206] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/19/2021] [Accepted: 10/19/2021] [Indexed: 01/20/2023] Open
Abstract
Gram-positive bacteria are ancient organisms. Many bacteria, including Gram-positive bacteria, produce toxins to manipulate the host, leading to various diseases. While the targets of Gram-positive bacterial toxins are diverse, many of those toxins use a similar mechanism to invade host cells and exert their functions. Clostridial neurotoxins produced by Clostridial tetani and Clostridial botulinum provide a classical example to illustrate the structure-function relationship of bacterial toxins. Here, we critically review the recent progress of the structure-function relationship of clostridial neurotoxins, including the diversity of the clostridial neurotoxins, the mode of actions, and the flexible structures required for the activation of toxins. The mechanism clostridial neurotoxins use for triggering their activity is shared with many other Gram-positive bacterial toxins, especially molten globule-type structures. This review also summarizes the implications of the molten globule-type flexible structures to other Gram-positive bacterial toxins. Understanding these highly dynamic flexible structures in solution and their role in the function of bacterial toxins not only fills in the missing link of the high-resolution structures from X-ray crystallography but also provides vital information for better designing antidotes against those toxins.
Collapse
Affiliation(s)
- Shuowei Cai
- Department of Chemistry and Biochemistry, University of Massachusetts Dartmouth, Dartmouth, MA 02747, USA
| | - Raj Kumar
- Botulinum Research Center, Institute of Advanced Sciences, Dartmouth, MA 02747, USA; (R.K.); (B.R.S.)
| | - Bal Ram Singh
- Botulinum Research Center, Institute of Advanced Sciences, Dartmouth, MA 02747, USA; (R.K.); (B.R.S.)
| |
Collapse
|
13
|
Fusion pores with low conductance are cation selective. Cell Rep 2021; 36:109580. [PMID: 34433034 PMCID: PMC8500334 DOI: 10.1016/j.celrep.2021.109580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 06/01/2021] [Accepted: 07/30/2021] [Indexed: 11/23/2022] Open
Abstract
Many neurotransmitters are organic ions that carry a net charge, and their release from secretory vesicles is therefore an electrodiffusion process. The selectivity of early exocytotic fusion pores is investigated by combining electrodiffusion theory, measurements of amperometric foot signals from chromaffin cells with anion substitution, and molecular dynamics simulation. The results reveal that very narrow fusion pores are cation selective, but more dilated fusion pores become anion permeable. The transition occurs around a fusion pore conductance of ~300 pS. The cation selectivity of a narrow fusion pore accelerates the release of positively charged transmitters such as dopamine, noradrenaline, adrenaline, serotonin, and acetylcholine, while glutamate release may require a more dilated fusion pore. For transmission, a fusion pore forms when vesicle and target membranes are brought together by SNARE proteins. Delacruz et al. demonstrate that selectivity of the pore accelerates release of positively charged transmitters such as dopamine, noradrenaline, adrenaline, serotonin, and acetylcholine, while glutamate release may require a more dilated fusion pore.
Collapse
|
14
|
Otrin L, Witkowska A, Marušič N, Zhao Z, Lira RB, Kyrilis FL, Hamdi F, Ivanov I, Lipowsky R, Kastritis PL, Dimova R, Sundmacher K, Jahn R, Vidaković-Koch T. En route to dynamic life processes by SNARE-mediated fusion of polymer and hybrid membranes. Nat Commun 2021; 12:4972. [PMID: 34404795 PMCID: PMC8371082 DOI: 10.1038/s41467-021-25294-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 07/30/2021] [Indexed: 12/11/2022] Open
Abstract
A variety of artificial cells springs from the functionalization of liposomes with proteins. However, these models suffer from low durability without repair and replenishment mechanisms, which can be partly addressed by replacing the lipids with polymers. Yet natural membranes are also dynamically remodeled in multiple cellular processes. Here, we show that synthetic amphiphile membranes also undergo fusion, mediated by the protein machinery for synaptic secretion. We integrated fusogenic SNAREs in polymer and hybrid vesicles and observed efficient membrane and content mixing. We determined bending rigidity and pore edge tension as key parameters for fusion and described its plausible progression through cryo-EM snapshots. These findings demonstrate that dynamic membrane phenomena can be reconstituted in synthetic materials, thereby providing new tools for the assembly of synthetic protocells.
Collapse
Affiliation(s)
- Lado Otrin
- Electrochemical Energy Conversion, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany.
| | - Agata Witkowska
- Laboratory of Neurobiology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
- Department of Molecular Pharmacology and Cell Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Nika Marušič
- Process Systems Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Ziliang Zhao
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Rafael B Lira
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, Groningen, Netherlands
| | - Fotis L Kyrilis
- Interdisciplinary Research Center HALOmem & Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Biozentrum, Halle/Saale, Germany
| | - Farzad Hamdi
- Interdisciplinary Research Center HALOmem & Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Biozentrum, Halle/Saale, Germany
| | - Ivan Ivanov
- Process Systems Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Reinhard Lipowsky
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Panagiotis L Kastritis
- Interdisciplinary Research Center HALOmem & Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Biozentrum, Halle/Saale, Germany
| | - Rumiana Dimova
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Kai Sundmacher
- Process Systems Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Reinhard Jahn
- Laboratory of Neurobiology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Tanja Vidaković-Koch
- Electrochemical Energy Conversion, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| |
Collapse
|
15
|
Wu Z, Dharan N, McDargh ZA, Thiyagarajan S, O'Shaughnessy B, Karatekin E. The neuronal calcium sensor Synaptotagmin-1 and SNARE proteins cooperate to dilate fusion pores. eLife 2021; 10:68215. [PMID: 34190041 PMCID: PMC8294851 DOI: 10.7554/elife.68215] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/29/2021] [Indexed: 02/07/2023] Open
Abstract
All membrane fusion reactions proceed through an initial fusion pore, including calcium-triggered release of neurotransmitters and hormones. Expansion of this small pore to release cargo is energetically costly and regulated by cells, but the mechanisms are poorly understood. Here, we show that the neuronal/exocytic calcium sensor Synaptotagmin-1 (Syt1) promotes expansion of fusion pores induced by SNARE proteins. Pore dilation relied on calcium-induced insertion of the tandem C2 domain hydrophobic loops of Syt1 into the membrane, previously shown to reorient the C2 domain. Mathematical modelling suggests that C2B reorientation rotates a bound SNARE complex so that it exerts force on the membranes in a mechanical lever action that increases the height of the fusion pore, provoking pore dilation to offset the bending energy penalty. We conclude that Syt1 exerts novel non-local calcium-dependent mechanical forces on fusion pores that dilate pores and assist neurotransmitter and hormone release.
Collapse
Affiliation(s)
- Zhenyong Wu
- Department of Cellular and Molecular Physiology, Yale University, New Haven, United States.,Nanobiology Institute, Yale University, West Haven, United States
| | - Nadiv Dharan
- Department of Chemical Engineering, Columbia University, New York, United States
| | - Zachary A McDargh
- Department of Chemical Engineering, Columbia University, New York, United States
| | - Sathish Thiyagarajan
- Department of Chemical Engineering, Columbia University, New York, United States
| | - Ben O'Shaughnessy
- Department of Chemical Engineering, Columbia University, New York, United States
| | - Erdem Karatekin
- Department of Cellular and Molecular Physiology, Yale University, New Haven, United States.,Nanobiology Institute, Yale University, West Haven, United States.,Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, United States.,Saints-Pères Paris Institute for the Neurosciences (SPPIN), Université de Paris, Centre National de la Recherche Scientifique (CNRS) UMR 8003, Paris, France
| |
Collapse
|
16
|
Hikima T, Lee CR, Witkovsky P, Chesler J, Ichtchenko K, Rice ME. Activity-dependent somatodendritic dopamine release in the substantia nigra autoinhibits the releasing neuron. Cell Rep 2021; 35:108951. [PMID: 33826884 PMCID: PMC8189326 DOI: 10.1016/j.celrep.2021.108951] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/20/2020] [Accepted: 03/15/2021] [Indexed: 12/12/2022] Open
Abstract
Somatodendritic dopamine (DA) release from midbrain DA neurons activates D2 autoreceptors on these cells to regulate their activity. However, the source of autoregulatory DA remains controversial. Here, we test the hypothesis that D2 autoreceptors on a given DA neuron in the substantia nigra pars compacta (SNc) are activated primarily by DA released from that same cell, rather than from its neighbors. Voltage-clamp recording allows monitoring of evoked D2-receptor-mediated inhibitory currents (D2ICs) in SNc DA neurons as an index of DA release. Single-cell application of antibodies to Na+ channels via the recording pipette decreases spontaneous activity of recorded neurons and attenuates evoked D2ICs; antibodies to SNAP-25, a soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) protein, also decrease D2IC amplitude. Evoked D2ICs are nearly abolished by the light chain of botulinum neurotoxin A, which cleaves SNAP-25, whereas synaptically activated GABAB-receptor-mediated currents are unaffected. Thus, somatodendritic DA release in the SNc autoinhibits the neuron that releases it.
Collapse
Affiliation(s)
- Takuya Hikima
- Department of Neurosurgery, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Christian R Lee
- Department of Neurosurgery, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Paul Witkovsky
- Department of Neurosurgery, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Julia Chesler
- Department of Neurosurgery, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Konstantin Ichtchenko
- Department of Biochemistry & Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Margaret E Rice
- Department of Neurosurgery, New York University Grossman School of Medicine, New York, NY 10016, USA; Department of Neuroscience & Physiology, New York University Grossman School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
17
|
White KA, Kim BN. Quantifying neurotransmitter secretion at single-vesicle resolution using high-density complementary metal-oxide-semiconductor electrode array. Nat Commun 2021; 12:431. [PMID: 33462204 PMCID: PMC7813837 DOI: 10.1038/s41467-020-20267-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 11/17/2020] [Indexed: 11/21/2022] Open
Abstract
Neuronal exocytosis facilitates the propagation of information through the nervous system pertaining to bodily function, memory, and emotions. Using amperometry, the sub-millisecond dynamics of exocytosis can be monitored and the modulation of exocytosis due to drug treatment or neurodegenerative diseases can be studied. Traditional single-cell amperometry is a powerful technique for studying the molecular mechanisms of exocytosis, but it is both costly and labor-intensive to accumulate statistically significant data. To surmount these limitations, we have developed a silicon-based electrode array with 1024 on-chip electrodes that measures oxidative signal in 0.1 millisecond intervals. Using the developed device, we are able to capture the modulation of exocytosis due to Parkinson's disease treatment (L-Dopa), with statistical significance, within 30 total minutes of recording. The validation study proves our device's capability to accelerate the study of many pharmaceutical treatments for various neurodegenerative disorders that affect neurotransmitter secretion to a matter of minutes.
Collapse
Affiliation(s)
- Kevin A White
- Department of Electrical and Computer Engineering, University of Central Florida, Orlando, FL, 32827, USA
| | - Brian N Kim
- Department of Electrical and Computer Engineering, University of Central Florida, Orlando, FL, 32827, USA.
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32827, USA.
| |
Collapse
|
18
|
Agahari FA, Stricker C. Serotonergic Modulation of Spontaneous and Evoked Transmitter Release in Layer II Pyramidal Cells of Rat Somatosensory Cortex. Cereb Cortex 2021; 31:1182-1200. [PMID: 33063109 DOI: 10.1093/cercor/bhaa285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
As axons from the raphe nuclei densely innervate the somatosensory cortex, we investigated how serotonin (5-HT) modulates transmitter release in layer II pyramidal cells of rat barrel cortex. In the presence of tetrodotoxin and gabazine, 10 μM 5-HT caused a waxing and waning in the frequency of miniature excitatory postsynaptic currents (mEPSC) with no effect on amplitude. Specifically, within 15 min of recording the mEPSC frequency initially increased by 28 ± 7%, then dropped to below control (-15 ± 3%), before resurging back to 27 ± 7% larger than control. These changes were seen in 47% of pyramidal cells (responders) and were mediated by 5-HT2C receptors (5-HT2CR). Waxing resulted from phospholipase C activation, IP3 production, and Ca2+ release from presynaptic stores. Waning was prevented if PKC was blocked. In contrast, in paired recordings, the unitary EPSC amplitude was reduced by 50 ± 3% after 5-HT exposure in almost all cases with no significant effect on paired-pulse ratio and synaptic dynamics. This sustained EPSC reduction was also caused by 5-HT2R, but was mediated by presynaptic Gβγ subunits likely limiting influx through CaV2 channels. EPSC reduction, together with enhanced spontaneous noise in a restricted subset of inputs, could temporarily diminish the signal-to-noise ratio and affect the computation in the neocortical microcircuit.
Collapse
Affiliation(s)
- Fransiscus Adrian Agahari
- Neuronal Network Laboratory, Eccles Institute of Neuroscience, The John Curtin School of Medical Research, Australian National University, Acton ACT 2601, Australia.,Division of Cerebral Circuitry, National Institute for Physiological Sciences, Okazaki 444-8787, Japan.,Brain Science Institute, Tamagawa University, Tokyo 194-8610, Japan
| | - Christian Stricker
- Neuronal Network Laboratory, Eccles Institute of Neuroscience, The John Curtin School of Medical Research, Australian National University, Acton ACT 2601, Australia
| |
Collapse
|
19
|
Thompson Gray AD, Simonetti J, Adegboye F, Jones CK, Zurawski Z, Hamm HE. Sexual Dimorphism in Stress-induced Hyperthermia in SNAP25Δ3 mice, a mouse model with disabled Gβγ regulation of the exocytotic fusion apparatus. Eur J Neurosci 2020; 52:2815-2826. [PMID: 32449556 DOI: 10.1111/ejn.14836] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 05/14/2020] [Accepted: 05/18/2020] [Indexed: 11/28/2022]
Abstract
Behavioral assays in the mouse can show marked differences between male and female animals of a given genotype. These differences identified in such preclinical studies may have important clinical implications. We recently made a mouse model with impaired presynaptic inhibition through Gβγ-SNARE signaling. Here, we examine the role of sexual dimorphism in the severity of the phenotypes of this model, the SNAP25Δ3 mouse. In males, we already reported that SNAP25Δ3 homozygotes demonstrated phenotypes in motor coordination, nociception, spatial memory and stress processing. We now report that while minimal sexually dimorphic effects were observed for the nociceptive, motor or memory phenotypes, large differences were observed in the stress-induced hyperthermia paradigm, with male SNAP25Δ3 homozygotes exhibiting an increase in body temperature subsequent to handling relative to wild-type littermates, while no such genotype-dependent effect was observed in females. This suggests sexually dimorphic mechanisms of Gβγ-SNARE signaling for stress processing or thermoregulation within the mouse. Second, we examined the effects of heterozygosity with respect to the SNAP25Δ3 mutation. Heterozygote SNAP25Δ3 animals were tested alongside homozygote and wild-type littermates in all of the aforementioned paradigms and displayed phenotypes similar to wild-type animals or an intermediate state. From this, we conclude that the SNAP25Δ3 mutation does not behave in an autosomal dominant manner, but rather displays incomplete dominance for many phenotypes.
Collapse
Affiliation(s)
| | - Justice Simonetti
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Feyisayo Adegboye
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Carrie K Jones
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, USA
| | - Zack Zurawski
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA.,Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - Heidi E Hamm
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
20
|
Abstract
Biological transmission of vesicular content occurs by opening of a fusion pore. Recent experimental observations have illustrated that fusion pores between vesicles that are docked by an extended flat contact zone are located at the edge (vertex) of this zone. We modeled this experimentally observed scenario by coarse-grained molecular simulations and elastic theory. This revealed that fusion pores experience a direct attraction toward the vertex. The size adopted by the resulting vertex pore strongly depends on the apparent contact angle between the adhered vesicles even in the absence of membrane surface tension. Larger contact angles substantially increase the equilibrium size of the vertex pore. Because the cellular membrane fusion machinery actively docks membranes, it facilitates a collective expansion of the contact zone and increases the contact angle. In this way, the fusion machinery can drive expansion of the fusion pore by free energy equivalents of multiple tens of kBT from a distance and not only through the fusion proteins that reside within the fusion pore.
Collapse
Affiliation(s)
- Edgar M Blokhuis
- Leiden Institute of Chemistry (LIC) , Leiden University , 2333 CD Leiden , The Netherlands
| | - Massimo D'Agostino
- Department of Molecular Medicine and Medical Biotechnology , University of Naples Federico II , 80138 Naples , Italy
| | - Andreas Mayer
- Département de Biochimie , Université de Lausanne , CH-1015 Epalinges , Switzerland
| | - H Jelger Risselada
- Leiden Institute of Chemistry (LIC) , Leiden University , 2333 CD Leiden , The Netherlands
- Department of Theoretical Physics , Georg-August University of Goettingen , 37077 Goettingen , Germany
| |
Collapse
|
21
|
Resolving kinetic intermediates during the regulated assembly and disassembly of fusion pores. Nat Commun 2020; 11:231. [PMID: 31932584 PMCID: PMC6957489 DOI: 10.1038/s41467-019-14072-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 12/10/2019] [Indexed: 11/08/2022] Open
Abstract
The opening of a fusion pore during exocytosis creates the first aqueous connection between the lumen of a vesicle and the extracellular space. Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) mediate the formation of these dynamic structures, and their kinetic transitions are tightly regulated by accessory proteins at the synapse. Here, we utilize two single molecule approaches, nanodisc-based planar bilayer electrophysiology and single-molecule FRET, to address the relationship between SNARE complex assembly and rapid (micro-millisecond) fusion pore transitions, and to define the role of accessory proteins. Synaptotagmin (syt) 1, a major Ca2+-sensor for synaptic vesicle exocytosis, drove the formation of an intermediate: committed trans-SNARE complexes that form large, stable pores. Once open, these pores could only be closed by the action of the ATPase, NSF. Time-resolved measurements revealed that NSF-mediated pore closure occurred via a complex ‘stuttering’ mechanism. This simplified system thus reveals the dynamic formation and dissolution of fusion pores. SNAREs mediate the formation of a fusion pore during exocytosis which connects the lumen of a vesicle with the extracellular space. Here, authors use single molecule approaches to define the role of synaptotagmin 1 and NSF in synaptic pore formation and dissolution.
Collapse
|
22
|
Varga K, Jiang ZJ, Gong LW. Phosphatidylserine is critical for vesicle fission during clathrin-mediated endocytosis. J Neurochem 2019; 152:48-60. [PMID: 31587282 DOI: 10.1111/jnc.14886] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/25/2019] [Accepted: 10/01/2019] [Indexed: 12/11/2022]
Abstract
Phosphatidylserine (PS), a negatively charged phospholipid present predominantly at the inner leaflet of the plasma membrane, has been widely implicated in many cellular processes including membrane trafficking. Along this line, PS has been demonstrated to be important for endocytosis, however, the involved mechanisms remain uncertain. By monitoring clathrin-mediated endocytosis (CME) of single vesicles in mouse chromaffin cells using cell-attached capacitance measurements that offer millisecond time resolution, we demonstrate in the present study that the fission-pore duration is reduced by PS addition, indicating a stimulatory role of PS in regulating the dynamics of vesicle fission during CME. Furthermore, our results show that the PS-mediated effect on the fission-pore duration is Ca2+ -dependent and abolished in the absence of synaptotagmin 1 (Syt1), implying that Syt1 is necessary for the stimulatory role of PS in vesicle fission during CME. Consistently, a Syt1 mutant with a defective PS-Syt1 interaction increases the fission-pore duration. Taken together, our study suggests that PS-Syt1 interaction may be critical in regulating fission dynamics during CME.
Collapse
Affiliation(s)
- Kelly Varga
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, USA.,Department of Biological Sciences, University of North Texas at Dallas, Dallas, Texas, USA
| | - Zhong-Jiao Jiang
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Liang-Wei Gong
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
23
|
Zurawski Z, Thompson Gray AD, Brady LJ, Page B, Church E, Harris NA, Dohn MR, Yim YY, Hyde K, Mortlock DP, Jones CK, Winder DG, Alford S, Hamm HE. Disabling the Gβγ-SNARE interaction disrupts GPCR-mediated presynaptic inhibition, leading to physiological and behavioral phenotypes. Sci Signal 2019; 12:12/569/eaat8595. [PMID: 30783011 DOI: 10.1126/scisignal.aat8595] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
G protein-coupled receptors (GPCRs) that couple to Gi/o proteins modulate neurotransmission presynaptically by inhibiting exocytosis. Release of Gβγ subunits from activated G proteins decreases the activity of voltage-gated Ca2+ channels (VGCCs), decreasing excitability. A less understood Gβγ-mediated mechanism downstream of Ca2+ entry is the binding of Gβγ to SNARE complexes, which facilitate the fusion of vesicles with the cell plasma membrane in exocytosis. Here, we generated mice expressing a form of the SNARE protein SNAP25 with premature truncation of the C terminus and that were therefore partially deficient in this interaction. SNAP25Δ3 homozygote mice exhibited normal presynaptic inhibition by GABAB receptors, which inhibit VGCCs, but defective presynaptic inhibition by receptors that work directly on the SNARE complex, such as 5-hydroxytryptamine (serotonin) 5-HT1b receptors and adrenergic α2a receptors. Simultaneously stimulating receptors that act through both mechanisms showed synergistic inhibitory effects. SNAP25Δ3 homozygote mice had various behavioral phenotypes, including increased stress-induced hyperthermia, defective spatial learning, impaired gait, and supraspinal nociception. These data suggest that the inhibition of exocytosis by Gi/o-coupled GPCRs through the Gβγ-SNARE interaction is a crucial component of numerous physiological and behavioral processes.
Collapse
Affiliation(s)
- Zack Zurawski
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA.,Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | | - Lillian J Brady
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Brian Page
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Emily Church
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Nicholas A Harris
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Michael R Dohn
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Yun Young Yim
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Karren Hyde
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Douglas P Mortlock
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Carrie K Jones
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA
| | - Danny G Winder
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Simon Alford
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Heidi E Hamm
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
24
|
Weiss AN. Synaptobrevin-2 C-Terminal Flexible Region Regulates the Discharge of Catecholamine Molecules. Biophys J 2019; 116:921-929. [PMID: 30795871 PMCID: PMC6400860 DOI: 10.1016/j.bpj.2019.01.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 01/17/2019] [Accepted: 01/24/2019] [Indexed: 12/23/2022] Open
Abstract
The discharge of neurotransmitters from vesicles is a regulated process. Synaptobrevin-2, a snap receptor (SNARE) protein, participates in this process by interacting with other SNARE and associated proteins. Synaptobrevin-2 transmembrane domain is embedded into the vesicle lipid bilayer except for its last three residues. These residues are hydrophilic and constitute synaptobrevin-2 C-terminal flexible region. The residue Y113 of synaptobrevin-2 flexible region was mutated to lysine and glutamate. The effects of these mutations on the exocytotic process in chromaffin cells were assessed using capacitance measurements combined with amperometry and stimulation by flash photolysis of caged Ca2+. Both Y113E and Y113K mutations reduced the number of fusion-competent vesicles and reduced the rates of release of catecholamine molecules in quanta release events. These results exclude any direct interaction of this domain with the catecholamine molecules that are escaping through the fusion pore but favor its interaction with the vesicle membrane as a mean of regulating exocytosis.
Collapse
Affiliation(s)
- Annita N Weiss
- Laboratory for Nanoscale Cell Biology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany.
| |
Collapse
|
25
|
Karmakar S, Sharma LG, Roy A, Patel A, Pandey LM. Neuronal SNARE complex: A protein folding system with intricate protein-protein interactions, and its common neuropathological hallmark, SNAP25. Neurochem Int 2018; 122:196-207. [PMID: 30517887 DOI: 10.1016/j.neuint.2018.12.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 11/08/2018] [Accepted: 12/01/2018] [Indexed: 12/26/2022]
Abstract
SNARE (Soluble NSF(N-ethylmaleimide-sensitive factor) Attachment Receptor) complex is a trimeric supramolecular organization of SNAP25, syntaxin, and VAMP which mediates fusion of synaptic vesicles with the presynaptic plasma membrane. The functioning of this entire protein assembly is dependent on its tetrahelical coiled coil structure alongside its interaction with a large spectrum of regulatory proteins like synaptotagmin, complexin, intersectin, etc. Defects arising in SNARE complex assembly due to mutations or faulty post-translational modifications are associated to severe synaptopathies like Schizophrenia and also proteopathies like Alzheimer's disease. The review primarily focuses on SNAP25, which is the prime contributor in the complex assembly. It is conceptualized that the network of protein interactions of this helical protein assists as a chaperoning system for attaining functional structure. Additionally, the innate disordered nature of SNAP25 and its amyloidogenic propensities have been highlighted employing computational methods. The intrinsic nature of SNAP25 is anticipated to form higher-order aggregates due to its cysteine rich domain, which is also a target for several post-translational modifications. Furthermore, the aberrations in the structure and expression profile of the protein display common patterns in the pathogenesis of a diverse synaptopathies and proteopathies. This work of SNARE literature aims to provide a new comprehensive outlook and research directions towards SNARE complex and presents SNAP25 as a common neuropathological hallmark which can be a diagnostic or therapeutic target.
Collapse
Affiliation(s)
- Srijeeb Karmakar
- Bio-Interface & Environmental Engineering Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, 781039, India.
| | - Laipubam Gayatri Sharma
- Bio-Interface & Environmental Engineering Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, 781039, India.
| | - Abhishek Roy
- Bio-Interface & Environmental Engineering Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, 781039, India.
| | - Anjali Patel
- Bio-Interface & Environmental Engineering Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, 781039, India.
| | - Lalit Mohan Pandey
- Bio-Interface & Environmental Engineering Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, 781039, India.
| |
Collapse
|
26
|
White KA, Mulberry G, Smith J, Lindau M, Minch BA, Sugaya K, Kim BN. Single-Cell Recording of Vesicle Release From Human Neuroblastoma Cells Using 1024-ch Monolithic CMOS Bioelectronics. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2018; 12:1345-1355. [PMID: 30059319 PMCID: PMC6361518 DOI: 10.1109/tbcas.2018.2861220] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Human neuroblastoma cells, SH-SY5Y, are often used as a neuronal model to study Parkinson's disease and dopamine release in the substantia nigra, a midbrain region that plays an important role in motor control. Using amperometric single-cell recordings of single vesicle release events, we can study molecular manipulations of dopamine release and gain a better understanding of the mechanisms of neurological diseases. However, single-cell analysis of neurotransmitter release using traditional techniques yields results with very low throughput. In this paper, we will discuss a monolithically-integrated CMOS sensor array that has the low-noise performance, fine temporal resolution, and 1024 parallel channels to observe dopamine release from many single cells with single-vesicle resolution. The measured noise levels of our transimpedance amplifier are 415, 622, and 1083 [Formula: see text], at sampling rates of 10, 20, and 30 kS/s, respectively, without additional filtering. Post-CMOS processing is used to monolithically integrate 1024 on-chip gold electrodes, with an individual electrode size of 15 μm × 15 μm, directly on 1024 transimpedance amplifiers in the CMOS device. SU-8 traps are fabricated on individual electrodes to allow single cells to be interrogated and to reject multicellular clumps. Dopamine secretions from 76 cells are simultaneously recorded by loading the CMOS device with SH-SY5Y cells. In the 42-s measurement, a total of 7147 single vesicle release events are monitored. The study shows the CMOS device's capability of recording vesicle secretion at a single-cell level, with 1024 parallel channels, to provide detailed information on the dynamics of dopamine release at a single-vesicle resolution.
Collapse
Affiliation(s)
- Kevin A. White
- Department of Electrical and Computer Engineering, University of Central Florida, Orlando, FL 32816 USA ()
| | - Geoffrey Mulberry
- Department of Electrical and Computer Engineering, University of Central Florida, Orlando, FL 32816 USA ()
| | - Jonhoi Smith
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827 USA ()
| | - Manfred Lindau
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853 USA ()
| | | | - Kiminobu Sugaya
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827 USA ()
| | - Brian N. Kim
- Department of Electrical and Computer Engineering, University of Central Florida, Orlando, FL 32816 USA ()
| |
Collapse
|
27
|
Molecular mechanism of fusion pore formation driven by the neuronal SNARE complex. Proc Natl Acad Sci U S A 2018; 115:12751-12756. [PMID: 30482862 DOI: 10.1073/pnas.1816495115] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Release of neurotransmitters from synaptic vesicles begins with a narrow fusion pore, the structure of which remains unresolved. To obtain a structural model of the fusion pore, we performed coarse-grained molecular dynamics simulations of fusion between a nanodisc and a planar bilayer bridged by four partially unzipped SNARE complexes. The simulations revealed that zipping of SNARE complexes pulls the polar C-terminal residues of the synaptobrevin 2 and syntaxin 1A transmembrane domains to form a hydrophilic core between the two distal leaflets, inducing fusion pore formation. The estimated conductances of these fusion pores are in good agreement with experimental values. Two SNARE protein mutants inhibiting fusion experimentally produced no fusion pore formation. In simulations in which the nanodisc was replaced by a 40-nm vesicle, an extended hemifusion diaphragm formed but a fusion pore did not, indicating that restricted SNARE mobility is required for rapid fusion pore formation. Accordingly, rapid fusion pore formation also occurred in the 40-nm vesicle system when SNARE mobility was restricted by external forces. Removal of the restriction is required for fusion pore expansion.
Collapse
|
28
|
Karatekin E. Toward a unified picture of the exocytotic fusion pore. FEBS Lett 2018; 592:3563-3585. [PMID: 30317539 PMCID: PMC6353554 DOI: 10.1002/1873-3468.13270] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 09/30/2018] [Accepted: 10/10/2018] [Indexed: 11/07/2022]
Abstract
Neurotransmitter and hormone release involve calcium-triggered fusion of a cargo-loaded vesicle with the plasma membrane. The initial connection between the fusing membranes, called the fusion pore, can evolve in various ways, including rapid dilation to allow full cargo release, slow expansion, repeated opening-closing and resealing. Pore dynamics determine the kinetics of cargo release and the mode of vesicle recycling, but how these processes are controlled is poorly understood. Previous reconstitutions could not monitor single pores, limiting mechanistic insight they could provide. Recently developed nanodisc-based fusion assays allow reconstitution and monitoring of single pores with unprecedented detail and hold great promise for future discoveries. They recapitulate various aspects of exocytotic fusion pores, but comparison is difficult because different approaches suggested very different exocytotic fusion pore properties, even for the same cell type. In this Review, I discuss how most of the data can be reconciled, by recognizing how different methods probe different aspects of the same fusion process. The resulting picture is that fusion pores have broadly distributed properties arising from stochastic processes which can be modulated by physical constraints imposed by proteins, lipids and membranes.
Collapse
Affiliation(s)
- Erdem Karatekin
- Department of Cellular and Molecular Physiology, Yale University, New Haven, CT, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
- Nanobiology Institute, Yale University, West Haven, CT, USA
- Centre National de la Recherche Scientifique (CNRS), Paris, France
| |
Collapse
|
29
|
Sharma S, Lindau M. The fusion pore, 60 years after the first cartoon. FEBS Lett 2018; 592:3542-3562. [PMID: 29904915 DOI: 10.1002/1873-3468.13160] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/07/2018] [Accepted: 06/12/2018] [Indexed: 11/10/2022]
Abstract
Neurotransmitter release occurs in the form of quantal events by fusion of secretory vesicles with the plasma membrane, and begins with the formation of a fusion pore that has a conductance similar to that of a large ion channel or gap junction. In this review, we propose mechanisms of fusion pore formation and discuss their implications for fusion pore structure and function. Accumulating evidence indicates a direct role of soluble N-ethylmaleimide-sensitive-factor attachment receptor proteins in the opening of fusion pores. Fusion pores are likely neither protein channels nor purely lipid, but are of proteolipidic composition. Future perspectives to gain better insight into the molecular structure of fusion pores are discussed.
Collapse
Affiliation(s)
- Satyan Sharma
- Laboratory for Nanoscale Cell Biology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | - Manfred Lindau
- Laboratory for Nanoscale Cell Biology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany.,School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA
| |
Collapse
|
30
|
Kreft M, Jorgačevski J, Stenovec M, Zorec R. Ångstrom-size exocytotic fusion pore: Implications for pituitary hormone secretion. Mol Cell Endocrinol 2018; 463:65-71. [PMID: 28457949 DOI: 10.1016/j.mce.2017.04.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 04/26/2017] [Accepted: 04/26/2017] [Indexed: 02/08/2023]
Abstract
In the past, vesicle content release was thought to occur immediately and completely after triggering of exocytosis. However, vesicles may merge with the plasma membrane to form an Ångstrom diameter fusion pore that prevents the exit of secretions from the vesicle lumen. The advantage of such a narrow pore is to minimize the delay between the trigger and the release. Instead of stimulating a sequence of processes, leading to vesicle merger with the plasma membrane and a formation of a fusion pore, the stimulus only widens the pre-established fusion pore. The fusion pore may be stable and may exhibit repetitive opening of the vesicle lumen to the cell exterior accompanied by a content discharge. Such release of vesicle content is partial (subquantal), and depends on fusion pore open time, diameter and the diffusibility of the cargo. Such transient mode of fusion pore opening was not confirmed until the development of the membrane capacitance patch-clamp technique, which enables high-resolution measurement of changes in membrane surface area. It allows millisecond dwell-time measurements of fusion pores with subnanometer diameters. Currently, the soluble N-ethylmaleimide-sensitive factor-attachment protein receptor (SNARE) proteins are considered to be key entities in end-stage exocytosis, and the SNARE complex assembly/disassembly may regulate the fusion pore. Moreover, lipids or other membrane constituents with anisotropic (non-axisymmetric) geometry may also favour the establishment of stable narrow fusion pores, if positioned in the neck of the fusion pore.
Collapse
Affiliation(s)
- Marko Kreft
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia; Celica Biomedical, Tehnološki Park 24, 1000 Ljubljana, Slovenia; Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna Pot 111, 1000 Ljubljana, Slovenia
| | - Jernej Jorgačevski
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia; Celica Biomedical, Tehnološki Park 24, 1000 Ljubljana, Slovenia
| | - Matjaž Stenovec
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia; Celica Biomedical, Tehnološki Park 24, 1000 Ljubljana, Slovenia
| | - Robert Zorec
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia; Celica Biomedical, Tehnološki Park 24, 1000 Ljubljana, Slovenia.
| |
Collapse
|
31
|
Bradford AB, Machamer JB, Russo TM, McNutt PM. 3,4-diaminopyridine reverses paralysis in botulinum neurotoxin-intoxicated diaphragms through two functionally distinct mechanisms. Toxicol Appl Pharmacol 2018; 341:77-86. [PMID: 29366638 DOI: 10.1016/j.taap.2018.01.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 01/15/2018] [Accepted: 01/18/2018] [Indexed: 01/11/2023]
Abstract
Botulinum neurotoxins (BoNTs) are exceedingly potent neurological poisons that prevent neurotransmitter release from peripheral nerve terminals by cleaving presynaptic proteins required for synaptic vesicle fusion. The ensuing neuromuscular paralysis causes death by asphyxiation. Although no antidotal treatments exist to block toxin activity within the nerve terminal, aminopyridine antagonists of voltage-gated potassium channels have been proposed as symptomatic treatments for botulism toxemia. However, clinical evaluation of aminopyridines as symptomatic treatments for botulism has been inconclusive, in part because mechanisms responsible for reversal of paralysis in BoNT-poisoned nerve terminals are not understood. Here we measured the effects of 3,4-diaminopyridine (DAP) on phrenic nerve-elicited diaphragm contraction and end-plate potentials at various times after intoxication with BoNT serotypes A, B, or E. We found that DAP-mediated increases in quantal content promote neurotransmission from intoxicated nerve terminals through two functionally distinguishable mechanisms. First, DAP increases the probability of neurotransmission at non-intoxicated release sites. This mechanism is serotype-independent, becomes less effective as nerve terminals become progressively impaired, and remains susceptible to ongoing intoxication. Second, DAP elicits persistent production of toxin-resistant endplate potentials from nerve terminals fully intoxicated by BoNT/A, but not serotypes B or E. Since this effect appears specific to BoNT/A intoxication, we propose that DAP treatment enables BoNT/A-cleaved SNAP-25 to productively engage in fusogenic release by increasing the opportunity for low-efficiency fusion events. These findings have important implications for DAP as a botulism therapeutic by defining conditions under which DAP may be clinically effective in reversing botulism symptoms.
Collapse
Affiliation(s)
- Aaron B Bradford
- Department of Neuroscience, United States Army Medical Research Institute of Chemical Defense, 2900 Ricketts Point Road, Gunpowder, MD 21010, USA
| | - James B Machamer
- Department of Neuroscience, United States Army Medical Research Institute of Chemical Defense, 2900 Ricketts Point Road, Gunpowder, MD 21010, USA
| | - Trisha M Russo
- Department of Neuroscience, United States Army Medical Research Institute of Chemical Defense, 2900 Ricketts Point Road, Gunpowder, MD 21010, USA
| | - Patrick M McNutt
- Department of Neuroscience, United States Army Medical Research Institute of Chemical Defense, 2900 Ricketts Point Road, Gunpowder, MD 21010, USA.
| |
Collapse
|
32
|
How does the stimulus define exocytosis in adrenal chromaffin cells? Pflugers Arch 2017; 470:155-167. [DOI: 10.1007/s00424-017-2052-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 07/28/2017] [Accepted: 08/01/2017] [Indexed: 12/28/2022]
|
33
|
Abstract
Regulated exocytosis can be split into a sequence of steps ending with the formation and the dilation of a fusion pore, a neck-like connection between the vesicle and the plasma membrane. Each of these steps is precisely controlled to achieve the optimal spatial and temporal profile of the release of signalling molecules. At the level of the fusion pore, tuning of the exocytosis can be achieved by preventing its formation, by stabilizing the unproductive narrow fusion pore, by altering the speed of fusion pore expansion and by completely closing the fusion pore. The molecular structure and dynamics of fusion pores have become a major focus of cell research, especially as a promising target for therapeutic strategies. Electrophysiological, optical and electrochemical methods have been used extensively to illuminate how cells regulate secretion at the level of a single fusion pore. Here, we describe recent advances in the structure and mechanisms of the initial fusion pore formation and the progress in therapeutic strategies with the focus on exocytosis.
Collapse
|
34
|
González-Jamett AM, Guerra MJ, Olivares MJ, Haro-Acuña V, Baéz-Matus X, Vásquez-Navarrete J, Momboisse F, Martinez-Quiles N, Cárdenas AM. The F-Actin Binding Protein Cortactin Regulates the Dynamics of the Exocytotic Fusion Pore through its SH3 Domain. Front Cell Neurosci 2017; 11:130. [PMID: 28522963 PMCID: PMC5415606 DOI: 10.3389/fncel.2017.00130] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 04/18/2017] [Indexed: 11/20/2022] Open
Abstract
Upon cell stimulation, the network of cortical actin filaments is rearranged to facilitate the neurosecretory process. This actin rearrangement includes both disruption of the preexisting actin network and de novo actin polymerization. However, the mechanism by which a Ca2+ signal elicits the formation of new actin filaments remains uncertain. Cortactin, an actin-binding protein that promotes actin polymerization in synergy with the nucleation promoting factor N-WASP, could play a key role in this mechanism. We addressed this hypothesis by analyzing de novo actin polymerization and exocytosis in bovine adrenal chromaffin cells expressing different cortactin or N-WASP domains, or cortactin mutants that fail to interact with proline-rich domain (PRD)-containing proteins, including N-WASP, or to be phosphorylated by Ca2+-dependent kinases, such as ERK1/2 and Src. Our results show that the activation of nicotinic receptors in chromaffin cells promotes cortactin translocation to the cell cortex, where it colocalizes with actin filaments. We further found that, in association with PRD-containing proteins, cortactin contributes to the Ca2+-dependent formation of F-actin, and regulates fusion pore dynamics and the number of exocytotic events induced by activation of nicotinic receptors. However, whereas the actions of cortactin on the fusion pore dynamics seems to depend on the availability of monomeric actin and its phosphorylation by ERK1/2 and Src kinases, cortactin regulates the extent of exocytosis by a mechanism independent of actin polymerization. Together our findings point out a role for cortactin as a critical modulator of actin filament formation and exocytosis in neuroendocrine cells.
Collapse
Affiliation(s)
- Arlek M González-Jamett
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de ValparaísoValparaíso, Chile
| | - María J Guerra
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de ValparaísoValparaíso, Chile
| | - María J Olivares
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de ValparaísoValparaíso, Chile
| | - Valentina Haro-Acuña
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de ValparaísoValparaíso, Chile
| | - Ximena Baéz-Matus
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de ValparaísoValparaíso, Chile
| | - Jacqueline Vásquez-Navarrete
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de ValparaísoValparaíso, Chile
| | - Fanny Momboisse
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de ValparaísoValparaíso, Chile
| | - Narcisa Martinez-Quiles
- Departamento de Microbiología (Inmunología), Facultad de Medicina, Universidad Complutense de MadridMadrid, Spain
| | - Ana M Cárdenas
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de ValparaísoValparaíso, Chile
| |
Collapse
|
35
|
Liang K, Wei L, Chen L. Exocytosis, Endocytosis, and Their Coupling in Excitable Cells. Front Mol Neurosci 2017; 10:109. [PMID: 28469555 PMCID: PMC5395637 DOI: 10.3389/fnmol.2017.00109] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 03/31/2017] [Indexed: 11/13/2022] Open
Abstract
Evoked exocytosis in excitable cells is fast and spatially confined and must be followed by coupled endocytosis to enable sustained exocytosis while maintaining the balance of the vesicle pool and the plasma membrane. Various types of exocytosis and endocytosis exist in these excitable cells, as those has been found from different types of experiments conducted in different cell types. Correlating these diversified types of exocytosis and endocytosis is problematic. By providing an outline of different exocytosis and endocytosis processes and possible coupling mechanisms here, we emphasize that the endocytic pathway may be pre-determined at the time the vesicle chooses to fuse with the plasma membrane in one specific mode. Therefore, understanding the early intermediate stages of vesicle exocytosis may be instrumental in exploring the mechanism of tailing endocytosis.
Collapse
Affiliation(s)
- Kuo Liang
- Department of General Surgery, XuanWu Hospital, Capital Medical UniversityBeijing, China
| | - Lisi Wei
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking UniversityBeijing, China
| | - Liangyi Chen
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking UniversityBeijing, China
| |
Collapse
|
36
|
Wu Z, Bello OD, Thiyagarajan S, Auclair SM, Vennekate W, Krishnakumar SS, O'Shaughnessy B, Karatekin E. Dilation of fusion pores by crowding of SNARE proteins. eLife 2017; 6. [PMID: 28346138 PMCID: PMC5404929 DOI: 10.7554/elife.22964] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 03/26/2017] [Indexed: 01/29/2023] Open
Abstract
Hormones and neurotransmitters are released through fluctuating exocytotic fusion pores that can flicker open and shut multiple times. Cargo release and vesicle recycling depend on the fate of the pore, which may reseal or dilate irreversibly. Pore nucleation requires zippering between vesicle-associated v-SNAREs and target membrane t-SNAREs, but the mechanisms governing the subsequent pore dilation are not understood. Here, we probed the dilation of single fusion pores using v-SNARE-reconstituted ~23-nm-diameter discoidal nanolipoprotein particles (vNLPs) as fusion partners with cells ectopically expressing cognate, 'flipped' t-SNAREs. Pore nucleation required a minimum of two v-SNAREs per NLP face, and further increases in v-SNARE copy numbers did not affect nucleation rate. By contrast, the probability of pore dilation increased with increasing v-SNARE copies and was far from saturating at 15 v-SNARE copies per face, the NLP capacity. Our experimental and computational results suggest that SNARE availability may be pivotal in determining whether neurotransmitters or hormones are released through a transient ('kiss and run') or an irreversibly dilating pore (full fusion).
Collapse
Affiliation(s)
- Zhenyong Wu
- Department of Cellular and Molecular Physiology, School of Medicine, Yale University, New Haven, United States.,Nanobiology Institute, Yale University, West Haven, United States
| | - Oscar D Bello
- Nanobiology Institute, Yale University, West Haven, United States.,Department of Cell Biology, School of Medicine, Yale University, New Haven, United States
| | | | - Sarah Marie Auclair
- Nanobiology Institute, Yale University, West Haven, United States.,Department of Cell Biology, School of Medicine, Yale University, New Haven, United States
| | - Wensi Vennekate
- Department of Cellular and Molecular Physiology, School of Medicine, Yale University, New Haven, United States.,Nanobiology Institute, Yale University, West Haven, United States
| | - Shyam S Krishnakumar
- Nanobiology Institute, Yale University, West Haven, United States.,Department of Cell Biology, School of Medicine, Yale University, New Haven, United States
| | - Ben O'Shaughnessy
- Department of Chemical Engineering, Columbia University, New York, United States
| | - Erdem Karatekin
- Department of Cellular and Molecular Physiology, School of Medicine, Yale University, New Haven, United States.,Nanobiology Institute, Yale University, West Haven, United States.,Molecular Biophysics and Biochemistry, Yale University, New Haven, United States.,Laboratoire de Neurophotonique, Université Paris Descartes, Faculté des Sciences Fondamentales et Biomédicales, Centre National de la Recherche Scientifique, Paris, France
| |
Collapse
|
37
|
Kweon DH, Kong B, Shin YK. Hemifusion in Synaptic Vesicle Cycle. Front Mol Neurosci 2017; 10:65. [PMID: 28360835 PMCID: PMC5352705 DOI: 10.3389/fnmol.2017.00065] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 02/27/2017] [Indexed: 01/04/2023] Open
Abstract
In the neuron, early neurotransmitters are released through the fusion pore prior to the complete vesicle fusion. It has been thought that the fusion pore is a gap junction-like structure made of transmembrane domains (TMDs) of soluble N-ethylmaleimide-sensitive-factor attachment protein receptor (SNARE) proteins. However, evidence has accumulated that lipid mixing occurs prior to the neurotransmitter release through the fusion pore lined predominantly with lipids. To explain these observations, the hemifusion, a membrane structure in which two bilayers are partially merged, has emerged as a key step preceding the formation of the fusion pore. Furthermore, the hemifusion appears to be the bona fide intermediate step not only for the synaptic vesicle cycle, but for a wide range of membrane remodeling processes, such as viral membrane fusion and endocytotic membrane fission.
Collapse
Affiliation(s)
- Dae-Hyuk Kweon
- Department of Genetic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University Suwon, South Korea
| | - Byoungjae Kong
- Department of Genetic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University Suwon, South Korea
| | - Yeon-Kyun Shin
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University Ames, IA, USA
| |
Collapse
|
38
|
Chang CW, Chiang CW, Jackson MB. Fusion pores and their control of neurotransmitter and hormone release. J Gen Physiol 2017; 149:301-322. [PMID: 28167663 PMCID: PMC5339513 DOI: 10.1085/jgp.201611724] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 01/06/2017] [Accepted: 01/19/2017] [Indexed: 11/20/2022] Open
Abstract
Chang et al. review fusion pore structure and dynamics and discuss the implications for hormone and neurotransmitter release Ca2+-triggered exocytosis functions broadly in the secretion of chemical signals, enabling neurons to release neurotransmitters and endocrine cells to release hormones. The biological demands on this process can vary enormously. Although synapses often release neurotransmitter in a small fraction of a millisecond, hormone release can be orders of magnitude slower. Vesicles usually contain multiple signaling molecules that can be released selectively and conditionally. Cells are able to control the speed, concentration profile, and content selectivity of release by tuning and tailoring exocytosis to meet different biological demands. Much of this regulation depends on the fusion pore—the aqueous pathway by which molecules leave a vesicle and move out into the surrounding extracellular space. Studies of fusion pores have illuminated how cells regulate secretion. Furthermore, the formation and growth of fusion pores serve as a readout for the progress of exocytosis, thus revealing key kinetic stages that provide clues about the underlying mechanisms. Herein, we review the structure, composition, and dynamics of fusion pores and discuss the implications for molecular mechanisms as well as for the cellular regulation of neurotransmitter and hormone release.
Collapse
Affiliation(s)
- Che-Wei Chang
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705
| | - Chung-Wei Chiang
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705
| | - Meyer B Jackson
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705
| |
Collapse
|
39
|
Cholesterol Increases the Openness of SNARE-Mediated Flickering Fusion Pores. Biophys J 2016; 110:1538-1550. [PMID: 27074679 DOI: 10.1016/j.bpj.2016.02.019] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 02/03/2016] [Accepted: 02/04/2016] [Indexed: 11/22/2022] Open
Abstract
Flickering of fusion pores during exocytotic release of hormones and neurotransmitters is well documented, but without assays that use biochemically defined components and measure single-pore dynamics, the mechanisms remain poorly understood. We used total internal reflection fluorescence microscopy to quantify fusion-pore dynamics in vitro and to separate the roles of soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins and lipid bilayer properties. When small unilamellar vesicles bearing neuronal v-SNAREs fused with planar bilayers reconstituted with cognate t-SNARES, lipid and soluble cargo transfer rates were severely reduced, suggesting that pores flickered. From the lipid release times we computed pore openness, the fraction of time the pore is open, which increased dramatically with cholesterol. For most lipid compositions tested, SNARE-mediated and nonspecifically nucleated pores had similar openness, suggesting that pore flickering was controlled by lipid bilayer properties. However, with physiological cholesterol levels, SNAREs substantially increased the fraction of fully open pores and fusion was so accelerated that there was insufficient time to recruit t-SNAREs to the fusion site, consistent with t-SNAREs being preclustered by cholesterol into functional docking and fusion platforms. Our results suggest that cholesterol opens pores directly by reducing the fusion-pore bending energy, and indirectly by concentrating several SNAREs into individual fusion events.
Collapse
|
40
|
Single cell amperometry reveals curcuminoids modulate the release of neurotransmitters during exocytosis from PC12 cells. J Electroanal Chem (Lausanne) 2016; 781:30-35. [PMID: 28579928 DOI: 10.1016/j.jelechem.2016.10.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We used single cell amperometry to examine whether curcumin and bisdemethoxycurcumin (BDMC), substances that are suggested to affect learning and memory, can modulate monoamine release from PC12 cells. Our results indicate both curcumin and BDMC need long-term treatment (72 h in this study) to influence exocytosis effectively. By analyzing the parameters calculated from single exocytosis events, it can be concluded that curcumin and BDMC affect exocytosis through different mechanisms. Curcumin accelerates the event dynamics with no significant change of the monoamine amount released from single exocytotic events, whereas BDMC attenuates the amount from single exocytotic event with no significant change of the event dynamics. This comparison of the effect of curcumin and BDMC on exocytosis at the single cell level brings insight into their different mechanisms, which might lead to different biological actions. The effect of curcumin and BDMC on the opening and closing of the exocytotic fusion pore were also investigated. These results might be helpful for understanding the improvement of learning and memory and the anti-depression properties of curcuminoids.
Collapse
|
41
|
Wen PJ, Grenklo S, Arpino G, Tan X, Liao HS, Heureaux J, Peng SY, Chiang HC, Hamid E, Zhao WD, Shin W, Näreoja T, Evergren E, Jin Y, Karlsson R, Ebert SN, Jin A, Liu AP, Shupliakov O, Wu LG. Actin dynamics provides membrane tension to merge fusing vesicles into the plasma membrane. Nat Commun 2016; 7:12604. [PMID: 27576662 PMCID: PMC5013665 DOI: 10.1038/ncomms12604] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 07/13/2016] [Indexed: 01/22/2023] Open
Abstract
Vesicle fusion is executed via formation of an Ω-shaped structure (Ω-profile), followed by closure (kiss-and-run) or merging of the Ω-profile into the plasma membrane (full fusion). Although Ω-profile closure limits release but recycles vesicles economically, Ω-profile merging facilitates release but couples to classical endocytosis for recycling. Despite its crucial role in determining exocytosis/endocytosis modes, how Ω-profile merging is mediated is poorly understood in endocrine cells and neurons containing small ∼30–300 nm vesicles. Here, using confocal and super-resolution STED imaging, force measurements, pharmacology and gene knockout, we show that dynamic assembly of filamentous actin, involving ATP hydrolysis, N-WASP and formin, mediates Ω-profile merging by providing sufficient plasma membrane tension to shrink the Ω-profile in neuroendocrine chromaffin cells containing ∼300 nm vesicles. Actin-directed compounds also induce Ω-profile accumulation at lamprey synaptic active zones, suggesting that actin may mediate Ω-profile merging at synapses. These results uncover molecular and biophysical mechanisms underlying Ω-profile merging. As vesicles fuse to the plasma membrane, they form intermediate Ω-shaped structures followed by either closure of the pore or full merging with the plasma membrane. Here Wen et al. show that dynamic actin assembly provides membrane tension to promote Ω merging in neuroendocrine cells and synapses.
Collapse
Affiliation(s)
- Peter J Wen
- National Institute of Neurological Disorders and Stroke, 35 Convent Drive, Building 35, Room 2B-1012, Bethesda, Maryland 20892, USA
| | - Staffan Grenklo
- Center of Excellence in Developmental Biology, Department of Neuroscience, Karolinska Institutet, S-171 77 Stockholm, Sweden.,Department of Cell Biology, WGI, Stockholm University, 106 91 Stockholm, Sweden
| | - Gianvito Arpino
- National Institute of Neurological Disorders and Stroke, 35 Convent Drive, Building 35, Room 2B-1012, Bethesda, Maryland 20892, USA.,Center of Excellence in Developmental Biology, Department of Neuroscience, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Xinyu Tan
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Hsien-Shun Liao
- National Institute of Biomedical Imaging and Bioengineering (NIBIB), Bethesda, Maryland 20892, USA
| | - Johanna Heureaux
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Shi-Yong Peng
- National Institute of Neurological Disorders and Stroke, 35 Convent Drive, Building 35, Room 2B-1012, Bethesda, Maryland 20892, USA
| | - Hsueh-Cheng Chiang
- National Institute of Neurological Disorders and Stroke, 35 Convent Drive, Building 35, Room 2B-1012, Bethesda, Maryland 20892, USA
| | - Edaeni Hamid
- National Institute of Neurological Disorders and Stroke, 35 Convent Drive, Building 35, Room 2B-1012, Bethesda, Maryland 20892, USA
| | - Wei-Dong Zhao
- National Institute of Neurological Disorders and Stroke, 35 Convent Drive, Building 35, Room 2B-1012, Bethesda, Maryland 20892, USA
| | - Wonchul Shin
- National Institute of Neurological Disorders and Stroke, 35 Convent Drive, Building 35, Room 2B-1012, Bethesda, Maryland 20892, USA
| | - Tuomas Näreoja
- Center of Excellence in Developmental Biology, Department of Neuroscience, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Emma Evergren
- Center of Excellence in Developmental Biology, Department of Neuroscience, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Yinghui Jin
- National Institute of Neurological Disorders and Stroke, 35 Convent Drive, Building 35, Room 2B-1012, Bethesda, Maryland 20892, USA
| | - Roger Karlsson
- Department of Cell Biology, WGI, Stockholm University, 106 91 Stockholm, Sweden
| | - Steven N Ebert
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 6900 Lake Nona Boulevard, Orlando, Florida 32827, USA
| | - Albert Jin
- National Institute of Biomedical Imaging and Bioengineering (NIBIB), Bethesda, Maryland 20892, USA
| | - Allen P Liu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Oleg Shupliakov
- Center of Excellence in Developmental Biology, Department of Neuroscience, Karolinska Institutet, S-171 77 Stockholm, Sweden.,Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Ling-Gang Wu
- National Institute of Neurological Disorders and Stroke, 35 Convent Drive, Building 35, Room 2B-1012, Bethesda, Maryland 20892, USA
| |
Collapse
|
42
|
Li X, Dunevall J, Ewing AG. Using Single-Cell Amperometry To Reveal How Cisplatin Treatment Modulates the Release of Catecholamine Transmitters during Exocytosis. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201602977] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Xianchan Li
- Department of Chemistry and Molecular Biology; University of Gothenburg; Kemivägen 10 41296 Gothenburg Sweden
| | - Johan Dunevall
- Department of Chemistry and Chemical Engineering; Chalmers University of Technology; Kemivägen 10 41296 Gothenburg Sweden
| | - Andrew G. Ewing
- Department of Chemistry and Molecular Biology; University of Gothenburg; Kemivägen 10 41296 Gothenburg Sweden
- Department of Chemistry and Chemical Engineering; Chalmers University of Technology; Kemivägen 10 41296 Gothenburg Sweden
| |
Collapse
|
43
|
Li X, Dunevall J, Ewing AG. Using Single-Cell Amperometry To Reveal How Cisplatin Treatment Modulates the Release of Catecholamine Transmitters during Exocytosis. Angew Chem Int Ed Engl 2016; 55:9041-4. [PMID: 27239950 DOI: 10.1002/anie.201602977] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Indexed: 11/08/2022]
Abstract
The pretreatment of cultured pheochromocytoma (PC12) cells with cis-diamminedichloroplatinum (cisplatin), an anti-cancer drug, influences the exocytotic ability of the cells in a dose-dependent manner. Low concentrations of cisplatin stimulate catecholamine release whereas high concentrations inhibit it. Single-cell amperometry reflects that 2 μm cisplatin treatment increases the frequency of exocytotic events and reduces their duration, whereas 100 μm cisplatin treatment decreases the frequency of exocytotic events and increases their duration. Furthermore, the stability of the initial fusion pore that is formed in the lipid membrane during exocytosis is also regulated differentially by different cisplatin concentrations. This study thus suggests that cisplatin influences exocytosis by multiple mechanisms.
Collapse
Affiliation(s)
- Xianchan Li
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemivägen 10, 41296, Gothenburg, Sweden
| | - Johan Dunevall
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 10, 41296, Gothenburg, Sweden
| | - Andrew G Ewing
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemivägen 10, 41296, Gothenburg, Sweden. , .,Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 10, 41296, Gothenburg, Sweden. ,
| |
Collapse
|
44
|
|
45
|
Chang CW, Jackson MB. Synaptobrevin transmembrane domain influences exocytosis by perturbing vesicle membrane curvature. Biophys J 2016; 109:76-84. [PMID: 26153704 DOI: 10.1016/j.bpj.2015.05.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 04/29/2015] [Accepted: 05/11/2015] [Indexed: 01/12/2023] Open
Abstract
Membrane fusion requires that nearly flat lipid bilayers deform into shapes with very high curvature. This makes membrane bending a critical force in determining fusion mechanisms. A lipid bilayer will bend spontaneously when material is distributed asymmetrically between its two monolayers, and its spontaneous curvature (C0) will influence the stability of curved fusion intermediates. Prior work on Ca(2+)-triggered exocytosis revealed that fusion pore lifetime (τ) varies with vesicle content (Q), and showed that this relation reflects membrane bending energetics. Lipids that alter C0 change the dependence of τ on Q. These results suggested that the greater stability of an initial exocytotic fusion pore associated with larger vesicles reflects the need to bend more membrane during fusion pore dilation. In this study, we explored the possibility of manipulating C0 by mutating the transmembrane domain (TMD) of the vesicle membrane protein synaptobrevin 2 (syb2). Amperometric measurements of exocytosis in mouse chromaffin cells revealed that syb2 TMD mutations altered the relation between τ and Q. The effects of these mutations showed a striking periodicity, changing sign as the structural perturbation moved through the inner and outer leaflets. Some glycine and charge mutations also influenced the dependence of τ on Q in a manner consistent with expected changes in C0. These results suggest that side chains in the syb2 TMD influence the kinetics of exocytosis by perturbing the packing of the surrounding lipids. The present results support the view that membrane bending occurs during fusion pore expansion rather than during fusion pore formation. This supports the view of an initial fusion pore through two relatively flat membranes formed by protein.
Collapse
Affiliation(s)
- Che-Wei Chang
- Department of Neuroscience, Physiology Graduate Training Program, University of Wisconsin, Madison, Wisconsin
| | - Meyer B Jackson
- Department of Neuroscience, Physiology Graduate Training Program, University of Wisconsin, Madison, Wisconsin.
| |
Collapse
|
46
|
Zurawski Z, Rodriguez S, Hyde K, Alford S, Hamm HE. Gβγ Binds to the Extreme C Terminus of SNAP25 to Mediate the Action of Gi/o-Coupled G Protein-Coupled Receptors. Mol Pharmacol 2016; 89:75-83. [PMID: 26519224 PMCID: PMC4702098 DOI: 10.1124/mol.115.101600] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 10/30/2015] [Indexed: 11/22/2022] Open
Abstract
Gi/o-coupled G protein-coupled receptors can exert an inhibitory effect on vesicle release through several G protein-driven mechanisms, more than one of which may be concurrently present in individual presynaptic terminals. The synaptosomal-associated protein of 25 kDa (SNAP25) is a key downstream effector of Gβγ subunits. It has previously been shown that proteolytic cleavage of SNAP25 by botulinum toxin A reduces the ability of Gβγ to compete with the calcium sensor synaptotagmin 1 (Syt1) for binding to SNAP25 in a calcium-dependent manner. These truncated SNAP25 proteins sustain a low level of exocytosis but are unable to support serotonin-mediated inhibition of exocytosis in lamprey spinal neurons. Here, we generate a SNAP25 extreme C-terminal mutant that is deficient in its ability to bind Gβγ while retaining normal calcium-dependent Syt1 binding to soluble N-ethylmaleimide attachment protein receptor (SNARE) and vesicle release. The SNAP25Δ3 mutant, in which residue G204 is replaced by a stop codon, features a partial reduction in Gβ1γ2 binding in vitro as well as a partial reduction in the ability of the lamprey 5-hydroxytryptamine1b-type serotonin receptor to reduce excitatory postsynaptic current amplitudes, an effect previously shown to be mediated through the interaction of Gβγ with SNAP25. Syt1 calcium-dependent binding to SNAP25Δ3 was reduced by a small extent compared with the wild type. We conclude that the extreme C terminus of SNAP25 is a critical region for the Gβγ-SNARE interaction.
Collapse
Affiliation(s)
- Zack Zurawski
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee (Z.Z., K.H., H.E.H.); and Department of Biological Sciences, University of Illinois, Chicago, Illinois (S.R., S.A.)
| | - Shelagh Rodriguez
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee (Z.Z., K.H., H.E.H.); and Department of Biological Sciences, University of Illinois, Chicago, Illinois (S.R., S.A.)
| | - Karren Hyde
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee (Z.Z., K.H., H.E.H.); and Department of Biological Sciences, University of Illinois, Chicago, Illinois (S.R., S.A.)
| | - Simon Alford
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee (Z.Z., K.H., H.E.H.); and Department of Biological Sciences, University of Illinois, Chicago, Illinois (S.R., S.A.)
| | - Heidi E Hamm
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee (Z.Z., K.H., H.E.H.); and Department of Biological Sciences, University of Illinois, Chicago, Illinois (S.R., S.A.)
| |
Collapse
|
47
|
Raghupathi R, Jessup CF, Lumsden AL, Keating DJ. Fusion Pore Size Limits 5-HT Release From Single Enterochromaffin Cell Vesicles. J Cell Physiol 2015; 231:1593-600. [PMID: 26574734 DOI: 10.1002/jcp.25256] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 11/13/2015] [Indexed: 12/15/2022]
Abstract
Enterochromaffin cells are the major site of serotonin (5-HT) synthesis and secretion providing ∼95% of the body's total 5-HT. 5-HT can act as a neurotransmitter or hormone and has several important endocrine and paracrine roles. We have previously demonstrated that EC cells release small amounts of 5-HT per exocytosis event compared to other endocrine cells. We utilized a recently developed method to purify EC cells to demonstrate the mechanisms underlying 5-HT packaging and release. Using the fluorescent probe FFN511, we demonstrate that EC cells express VMAT and that VMAT plays a functional role in 5-HT loading into vesicles. Carbon fiber amperometry studies illustrate that the amount of 5-HT released per exocytosis event from EC cells is dependent on both VMAT and the H(+)-ATPase pump, as demonstrated with reserpine or bafilomycin, respectively. We also demonstrate that increasing the amount of 5-HT loaded into EC cell vesicles does not result in an increase in quantal release. As this indicates that fusion pore size may be a limiting factor involved, we compared pore diameter in EC and chromaffin cells by assessing the vesicle capture of different-sized fluorescent probes to measure the extent of fusion pore dilation. This identified that EC cells have a reduced fusion pore expansion that does not exceed 9 nm in diameter. These results demonstrate that the small amounts of 5-HT released per fusion event in EC cells can be explained by a smaller fusion pore that limits 5-HT release capacity from individual vesicles.
Collapse
Affiliation(s)
- Ravinarayan Raghupathi
- Department of Human Physiology and Centre for Neuroscience, Flinders University, Adelaide, Australia
| | - Claire F Jessup
- Department of Anatomy and Histology and Centre for Neuroscience, Flinders University, Adelaide, Australia.,Discipline of Medicine, University of Adelaide, Adelaide, Australia
| | - Amanda L Lumsden
- Department of Human Physiology and Centre for Neuroscience, Flinders University, Adelaide, Australia
| | - Damien J Keating
- Department of Human Physiology and Centre for Neuroscience, Flinders University, Adelaide, Australia.,South Australian Health and Medical Research Institute, Adelaide, Australia
| |
Collapse
|
48
|
Chang CW, Chiang CW, Gaffaney JD, Chapman ER, Jackson MB. Lipid-anchored Synaptobrevin Provides Little or No Support for Exocytosis or Liposome Fusion. J Biol Chem 2015; 291:2848-57. [PMID: 26663078 DOI: 10.1074/jbc.m115.701169] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Indexed: 12/11/2022] Open
Abstract
SNARE proteins catalyze many forms of biological membrane fusion, including Ca(2+)-triggered exocytosis. Although fusion mediated by SNAREs generally involves proteins anchored to each fusing membrane by a transmembrane domain (TMD), the role of TMDs remains unclear, and previous studies diverge on whether SNAREs can drive fusion without a TMD. This issue is important because it relates to the question of the structure and composition of the initial fusion pore, as well as the question of whether SNAREs mediate fusion solely by creating close proximity between two membranes versus a more active role in transmitting force to the membrane to deform and reorganize lipid bilayer structure. To test the role of membrane attachment, we generated four variants of the synaptic v-SNARE synaptobrevin-2 (syb2) anchored to the membrane by lipid instead of protein. These constructs were tested for functional efficacy in three different systems as follows: Ca(2+)-triggered dense core vesicle exocytosis, spontaneous synaptic vesicle exocytosis, and Ca(2+)-synaptotagmin-enhanced SNARE-mediated liposome fusion. Lipid-anchoring motifs harboring one or two lipid acylation sites completely failed to support fusion in any of these assays. Only the lipid-anchoring motif from cysteine string protein-α, which harbors many lipid acylation sites, provided support for fusion but at levels well below that achieved with wild type syb2. Thus, lipid-anchored syb2 provides little or no support for exocytosis, and anchoring syb2 to a membrane by a TMD greatly improves its function. The low activity seen with syb2-cysteine string protein-α may reflect a slower alternative mode of SNARE-mediated membrane fusion.
Collapse
Affiliation(s)
| | | | | | - Edwin R Chapman
- Biophysics Ph.D. Program, Howard Hughes Medical Institute, and Department of Neuroscience, University of Wisconsin, Madison, Wisconsin 53705
| | - Meyer B Jackson
- From the Physiology Ph.D. Graduate Training Program, Biophysics Ph.D. Program, Department of Neuroscience, University of Wisconsin, Madison, Wisconsin 53705
| |
Collapse
|
49
|
Nitric Oxide-Mediated Posttranslational Modifications: Impacts at the Synapse. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:5681036. [PMID: 26635909 PMCID: PMC4655263 DOI: 10.1155/2016/5681036] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 06/28/2015] [Indexed: 11/18/2022]
Abstract
Nitric oxide (NO) is an important gasotransmitter molecule that is involved in numerous physiological processes throughout the nervous system. In addition to its involvement in physiological plasticity processes (long-term potentiation, LTP; long-term depression, LTD) which can include NMDAR-mediated calcium-dependent activation of neuronal nitric oxide synthase (nNOS), new insights into physiological and pathological consequences of nitrergic signalling have recently emerged. In addition to the canonical cGMP-mediated signalling, NO is also implicated in numerous pathways involving posttranslational modifications. In this review we discuss the multiple effects of S-nitrosylation and 3-nitrotyrosination on proteins with potential modulation of function but limit the analyses to signalling involved in synaptic transmission and vesicular release. Here, crucial proteins which mediate synaptic transmission can undergo posttranslational modifications with either pre- or postsynaptic origin. During normal brain function, both pathways serve as important cellular signalling cascades that modulate a diverse array of physiological processes, including synaptic plasticity, transcriptional activity, and neuronal survival. In contrast, evidence suggests that aging and disease can induce nitrosative stress via excessive NO production. Consequently, uncontrolled S-nitrosylation/3-nitrotyrosination can occur and represent pathological features that contribute to the onset and progression of various neurodegenerative diseases, including Parkinson's, Alzheimer's, and Huntington's.
Collapse
|
50
|
Lu B. The destructive effect of botulinum neurotoxins on the SNARE protein: SNAP-25 and synaptic membrane fusion. PeerJ 2015; 3:e1065. [PMID: 26157630 PMCID: PMC4493708 DOI: 10.7717/peerj.1065] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 06/09/2015] [Indexed: 11/20/2022] Open
Abstract
Synaptic exocytosis requires the assembly of syntaxin 1A and SNAP-25 on the plasma membrane and synaptobrevin 2 (VAMP2) on the vesicular membrane to bridge the two opposite membranes. It is believed that the three SNARE proteins assemble in steps along the dynamic assembly pathway. The C-terminus of SNAP-25 is known to be the target of botulinum neurotoxins (BoNT/A and BoNT/E) that block neurotransmitters release in vivo. In this study, we employed electron paramagnetic resonance (EPR) spectroscopy to investigate the conformation of the SNAP-25 C-terminus in binary and ternary SNARE complexes. The fluorescence lipid mixing assay shows that the C-terminal of SNAP-25 is essential for membrane fusion, and that the truncated SNAP-25 mutants cleaved by BoNT/A and BoNT/E display different inhibition effects on membrane fusion: SNAP-25E (Δ26) abolishes the fusion activity of the SNARE complex, while SNAP-25A (Δ9) loses most of its function, although it can still form a SDS-resistant SNARE complex as the wild-type SNAP-25. CW-EPR spectra validate the unstable structures of the SNARE complex formed by SNAP-25 mutants. We propose that the truncated SNAP-25 mutants will disrupt the assembly of the SNARE core complex, and then inhibit the synaptic membrane fusion accordingly.
Collapse
Affiliation(s)
- Bin Lu
- Center for Membrane Biology, University of Virginia , Charlottesville, VA , USA
| |
Collapse
|