1
|
Lenarcic EM, Hale AE, Vincent HA, Dickmander RJ, Sanders W, Moorman NJ. Protein phosphatase 1 suppresses PKR/EIF2α signaling during human cytomegalovirus infection. J Virol 2024; 98:e0059024. [PMID: 39470211 PMCID: PMC11575161 DOI: 10.1128/jvi.00590-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 09/15/2024] [Indexed: 10/30/2024] Open
Abstract
Human cytomegalovirus (HCMV) is a ubiquitous pathogen that infects the majority of the world's population. Lytic HCMV replication in immunocompromised individuals or neonates can lead to severe disease in multiple organ systems and even death. The establishment of lytic replication is driven by the first viral proteins expressed upon infection, the immediate early proteins, which play a key role in creating an intracellular environment conducive to virus replication. Two immediate early proteins, the functional orthologs pTRS1 and pIRS1, stimulate immediate early gene expression by suppressing antiviral PKR/eIF2α signaling and enhance the translation of viral mRNAs independent of PKR antagonism. To better understand the molecular functions of pTRS1, we used proximity labeling proteomics to identify proteins that interact with pTRS1 in infected cells. Multiple novel host and viral interactors were identified, including the catalytic subunits of the protein phosphatase 1 (PP1) holoenzyme. Mutations to a PP1 catalytic subunit known to disrupt binding to PP1 regulatory subunits decreased binding to pTRS1. pTRS1 immune complexes contained phosphatase activity, and inhibition of phosphatase activity in transfected or infected cells reversed the ability of pTRS1 to inhibit the antiviral kinase PKR. Depletion of individual PP1 catalytic subunits decreased virus replication and increased the phosphorylation of the PKR substrate eIF2α. Taken together, our data suggest potential novel functions for pTRS1 and define a novel role for PP1 as an antagonist of the antiviral PKR/eIF2α signaling axis during HCMV infection.IMPORTANCEThe human cytomegalovirus (HCMV) pTRS1 and pIRS1 proteins are critical regulators of HCMV replication, both during primary infection and during reactivation from viral latency. Thus, defining the molecular functions of pTRS1/pIRS1 is important for understanding the molecular events controlling HCMV replication and viral disease. These data provide new insights into potential pTRS1 functional roles, providing a starting point for others to understand new features of infected cell biology. Another important result of this study is the finding that specific protein phosphatase 1 (PP1) regulatory subunits are required to suppress PKR/eIF2α signaling, a critical cellular innate immune defense to viral infection. These data lay the groundwork for future efforts to discover therapeutics that disrupt pTRS1 interaction with PP1 allowing cellular defenses to limit HCMV replication and disease.
Collapse
Affiliation(s)
- Erik M. Lenarcic
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Andrew E. Hale
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Heather A. Vincent
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Rebekah J. Dickmander
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Wes Sanders
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Nathaniel J. Moorman
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
2
|
Haller SL, Park C, Bruneau RC, Megawati D, Zhang C, Vipat S, Peng C, Senkevich TG, Brennan G, Tazi L, Rothenburg S. Host species-specific activity of the poxvirus PKR inhibitors E3 and K3 mediate host range function. J Virol 2024; 98:e0133124. [PMID: 39480085 PMCID: PMC11575334 DOI: 10.1128/jvi.01331-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/24/2024] [Indexed: 11/02/2024] Open
Abstract
The antiviral protein kinase R (PKR) is activated by viral double-stranded RNA and phosphorylates translation initiation factor eIF2α, thereby inhibiting translation and virus replication. Most poxviruses contain two PKR inhibitors, called E3 and K3 in vaccinia virus (VACV), which are determinants of viral host range. The prevailing model for E3 function is that it inhibits PKR through the non-specific sequestration of double-stranded (ds) RNA. Our data revealed that Syrian hamster PKR was resistant to E3, which is at odds with the sequestration model. However, Syrian hamster PKR was still sensitive to K3 inhibition. In contrast, Armenian hamster PKR showed opposite sensitivities, being sensitive to E3 and resistant to K3 inhibition. Mutational analyses of hamster PKRs showed that sensitivity to E3 inhibition was largely determined by the region linking the dsRNA-binding domains and the kinase domain of PKR, whereas two amino acid residues in the kinase domain (helix αG) determined sensitivity to K3. The expression of PKRs in congenic cells showed that Syrian hamster PKR containing the two Armenian hamster PKR residues in helix αG was resistant to wild-type VACV infection and that cells expressing either hamster PKR recapitulated the phenotypes observed in species-derived cell lines. The observed resistance of Syrian hamster PKR to E3 explains its host range function and challenges the paradigm that dsRNA-binding PKR inhibitors mainly act by the sequestration of dsRNA.IMPORTANCEThe molecular mechanisms that govern the host range of viruses are incompletely understood. We show that the host range functions of E3 and K3, two host range factors from vaccinia virus, are a result of species-specific interactions with the antiviral protein kinase R (PKR) and that PKR from closely related species displayed dramatic differences in their sensitivities to these viral inhibitors. The current model for E3-mediated PKR inhibition is that E3 non-specifically sequesters double-stranded (ds) RNA to prevent PKR activation. This model does not predict species-specific sensitivity to E3; therefore, our data suggest that the current model is incomplete and that dsRNA sequestration is not the primary mechanism for E3 activity.
Collapse
Affiliation(s)
- Sherry L Haller
- Division of Biology, Kansas State University, Manhattan, Kansas, USA
| | - Chorong Park
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California, USA
| | - Ryan C Bruneau
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California, USA
| | - Dewi Megawati
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California, USA
| | - Chi Zhang
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California, USA
| | - Sameera Vipat
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California, USA
| | - Chen Peng
- Division of Biology, Kansas State University, Manhattan, Kansas, USA
| | - Tatiana G Senkevich
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Greg Brennan
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California, USA
| | - Loubna Tazi
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California, USA
| | - Stefan Rothenburg
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California, USA
| |
Collapse
|
3
|
Chambers MJ, Scobell SB, Sadhu MJ. Systematic genetic characterization of the human PKR kinase domain highlights its functional malleability to escape a poxvirus substrate mimic. eLife 2024; 13:RP99575. [PMID: 39531012 PMCID: PMC11556786 DOI: 10.7554/elife.99575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
Evolutionary arms races can arise at the contact surfaces between host and viral proteins, producing dynamic spaces in which genetic variants are continually pursued. However, the sampling of genetic variation must be balanced with the need to maintain protein function. A striking case is given by protein kinase R (PKR), a member of the mammalian innate immune system. PKR detects viral replication within the host cell and halts protein synthesis to prevent viral replication by phosphorylating eIF2α, a component of the translation initiation machinery. PKR is targeted by many viral antagonists, including poxvirus pseudosubstrate antagonists that mimic the natural substrate, eIF2α, and inhibit PKR activity. Remarkably, PKR has several rapidly evolving residues at this interface, suggesting it is engaging in an evolutionary arms race, despite the surface's critical role in phosphorylating eIF2α. To systematically explore the evolutionary opportunities available at this dynamic interface, we generated and characterized a library of 426 SNP-accessible nonsynonymous variants of human PKR for their ability to escape inhibition by the model pseudosubstrate inhibitor K3, encoded by the vaccinia virus gene K3L. We identified key sites in the PKR kinase domain that harbor K3-resistant variants, as well as critical sites where variation leads to loss of function. We find K3-resistant variants are readily available throughout the interface and are enriched at sites under positive selection. Moreover, variants beneficial against K3 were also beneficial against an enhanced variant of K3, indicating resilience to viral adaptation. Overall, we find that the eIF2α-binding surface of PKR is highly malleable, potentiating its evolutionary ability to combat viral inhibition.
Collapse
Affiliation(s)
- Michael James Chambers
- Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of HealthBethesdaUnited States
- Department of Microbiology & Immunology, Georgetown UniversityWashingtonUnited States
| | - Sophia B Scobell
- Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of HealthBethesdaUnited States
| | - Meru J Sadhu
- Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of HealthBethesdaUnited States
| |
Collapse
|
4
|
Chambers MJ, Scobell SB, Sadhu MJ. Systematic genetic characterization of the human PKR kinase domain highlights its functional malleability to escape a poxvirus substrate mimic. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.29.596416. [PMID: 38903081 PMCID: PMC11188142 DOI: 10.1101/2024.05.29.596416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Evolutionary arms races can arise at the contact surfaces between host and viral proteins, producing dynamic spaces in which genetic variants are continually pursued. However, the sampling of genetic variation must be balanced with the need to maintain protein function. A striking case is given by protein kinase R (PKR), a member of the mammalian innate immune system. PKR detects viral replication within the host cell and halts protein synthesis to prevent viral replication by phosphorylating eIF2α, a component of the translation initiation machinery. PKR is targeted by many viral antagonists, including poxvirus pseudosubstrate antagonists that mimic the natural substrate, eIF2α, and inhibit PKR activity. Remarkably, PKR has several rapidly evolving residues at this interface, suggesting it is engaging in an evolutionary arms race, despite the surface's critical role in phosphorylating eIF2α. To systematically explore the evolutionary opportunities available at this dynamic interface, we generated and characterized a library of 426 SNP-accessible nonsynonymous variants of human PKR for their ability to escape inhibition by the model pseudosubstrate inhibitor K3, encoded by the vaccinia virus gene K3L. We identified key sites in the PKR kinase domain that harbor K3-resistant variants, as well as critical sites where variation leads to loss of function. We find K3-resistant variants are readily available throughout the interface and are enriched at sites under positive selection. Moreover, variants beneficial against K3 were also beneficial against an enhanced variant of K3, indicating resilience to viral adaptation. Overall, we find that the eIF2α-binding surface of PKR is highly malleable, potentiating its evolutionary ability to combat viral inhibition.
Collapse
Affiliation(s)
- Michael J Chambers
- Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
- Department of Microbiology & Immunology, Georgetown University, Washington DC, USA
| | - Sophia B Scobell
- Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Meru J Sadhu
- Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
5
|
Wu Z, Chu L, Gong Z, Han GZ. The making of a nucleic acid sensor at the dawn of jawed vertebrate evolution. SCIENCE ADVANCES 2024; 10:eado7464. [PMID: 39110805 PMCID: PMC11305385 DOI: 10.1126/sciadv.ado7464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/28/2024] [Indexed: 08/10/2024]
Abstract
Self and nonself discrimination is fundamental to immunity. However, it remains largely enigmatic how the mechanisms of distinguishing nonself from self originated. As an intracellular nucleic acid sensor, protein kinase R (PKR) recognizes double-stranded RNA (dsRNA) and represents a crucial component of antiviral innate immunity. Here, we combine phylogenomic and functional analyses to show that PKR proteins probably originated from a preexisting kinase protein through acquiring dsRNA binding domains at least before the last common ancestor of jawed vertebrates during or before the Silurian period. The function of PKR appears to be conserved across jawed vertebrates. Moreover, we repurpose a protein closely related to PKR proteins into a putative dsRNA sensor, recapturing the making of PKR. Our study illustrates how a nucleic acid sensor might have originated via molecular tinkering with preexisting proteins and provides insights into the origins of innate immunity.
Collapse
Affiliation(s)
- Zhiwei Wu
- College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Lingyu Chu
- College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Zhen Gong
- College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Guan-Zhu Han
- College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| |
Collapse
|
6
|
Gibbs VJ, Lin YH, Ghuge AA, Anderson RA, Schiemann AH, Conaglen L, Sansom BJM, da Silva RC, Sattlegger E. GCN2 in Viral Defence and the Subversive Tactics Employed by Viruses. J Mol Biol 2024; 436:168594. [PMID: 38724002 DOI: 10.1016/j.jmb.2024.168594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/01/2024] [Accepted: 05/01/2024] [Indexed: 06/10/2024]
Abstract
The recent SARS-CoV-2 pandemic and associated COVID19 disease illustrates the important role of viral defence mechanisms in ensuring survival and recovery of the host or patient. Viruses absolutely depend on the host's protein synthesis machinery to replicate, meaning that impeding translation is a powerful way to counteract viruses. One major approach used by cells to obstruct protein synthesis is to phosphorylate the alpha subunit of eukaryotic translation initiation factor 2 (eIF2α). Mammals possess four different eIF2α-kinases: PKR, HRI, PEK/PERK, and GCN2. While PKR is currently considered the principal eIF2α-kinase involved in viral defence, the other eIF2α-kinases have also been found to play significant roles. Unsurprisingly, viruses have developed mechanisms to counteract the actions of eIF2α-kinases, or even to exploit them to their benefit. While some of these virulence factors are specific to one eIF2α-kinase, such as GCN2, others target all eIF2α-kinases. This review critically evaluates the current knowledge of viral mechanisms targeting the eIF2α-kinase GCN2. A detailed and in-depth understanding of the molecular mechanisms by which viruses evade host defence mechanisms will help to inform the development of powerful anti-viral measures.
Collapse
Affiliation(s)
- Victoria J Gibbs
- School of Food Technology and Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Yu H Lin
- School of Food Technology and Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Aditi A Ghuge
- School of Food Technology and Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Reuben A Anderson
- School of Food Technology and Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Anja H Schiemann
- School of Food Technology and Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Layla Conaglen
- School of Food Technology and Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Bianca J M Sansom
- School of Natural Sciences, Massey University, Auckland, New Zealand
| | - Richard C da Silva
- School of Natural Sciences, Massey University, Auckland, New Zealand; Genome Biology and Epigenetics, Department of Biology, Utrecht University, Utrecht, the Netherlands
| | - Evelyn Sattlegger
- School of Food Technology and Natural Sciences, Massey University, Palmerston North, New Zealand; School of Natural Sciences, Massey University, Auckland, New Zealand; Maurice Wilkins Centre for Molecular BioDiscovery, Palmerston North, New Zealand.
| |
Collapse
|
7
|
Haller SL, Park C, Bruneau RC, Megawati D, Zhang C, Vipat S, Peng C, Senkevich TG, Brennan G, Tazi L, Rothenburg S. Molecular basis for the host range function of the poxvirus PKR inhibitor E3. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.16.594589. [PMID: 38798513 PMCID: PMC11118487 DOI: 10.1101/2024.05.16.594589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The antiviral protein kinase R (PKR) is activated by viral double-stranded RNA and phosphorylates translation initiation factor eIF2α, thereby inhibiting translation and virus replication. Most poxviruses contain two PKR inhibitors, called E3 and K3 in vaccinia virus (VACV), which are determinants of viral host range. The prevailing model for E3 function is that it inhibits PKR through the non-specific sequestration of double-stranded (ds) RNA. Our data revealed that Syrian hamster PKR was resistant to E3, which is at odds with the sequestration model. However, Syrian hamster PKR was still sensitive to K3 inhibition. In contrast, Armenian hamster PKR showed opposite sensitivities, being sensitive to E3 and resistant to K3 inhibition. Mutational analyses of hamster PKRs showed that sensitivity to E3 inhibition was largely determined by the region linking the dsRNA-binding domains and the kinase domain of PKR, whereas two amino acid residues in the kinase domain (helix αG) determined sensitivity to K3. Expression of PKRs in congenic cells showed that Syrian hamster PKR containing the two Armenian hamster PKR residues in helix-αG was resistant to wild type VACV infection, and that cells expressing either hamster PKR recapitulated the phenotypes observed in species-derived cell lines. The observed resistance of Syrian hamster PKR to E3 explains its host range function and challenges the paradigm that dsRNA-binding PKR inhibitors mainly act by the sequestration of dsRNA. Significance The molecular mechanisms that govern the host range of viruses are incompletely understood. A small number of poxvirus genes have been identified that influence the host range of poxviruses. We show that the host range functions of E3 and K3, two host range factors from vaccinia virus, are a result of species-specific interactions with the antiviral protein kinase R (PKR) and that PKR from closely related species displayed dramatic differences in their sensitivities to these viral inhibitors. While there is a substantial body of work demonstrating host-specific interactions with K3, the current model for E3-mediated PKR inhibition is that E3 non-specifically sequesters dsRNA to prevent PKR activation. This model does not predict species-specific sensitivity to E3; therefore, our data suggest that the current model is incomplete, and that dsRNA sequestration is not the primary mechanism for E3 activity.
Collapse
|
8
|
Chambers MJ, Scobell S, Sadhu MJ. Systematic characterization of the local evolutionary space available to human PKR and vaccinia virus K3. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.21.568178. [PMID: 38076952 PMCID: PMC10705557 DOI: 10.1101/2023.11.21.568178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
The interfaces between host and viral proteins can be dynamic spaces in which genetic variants are continually pursued, giving rise to evolutionary arms races. One such scenario is found between the mammalian innate immunity protein PKR (protein kinase R) and the poxvirus antagonist K3. Once activated, PKR phosphorylates the natural substrate eIF2α, which halts protein synthesis within the cell and prevents viral replication. K3 acts as a pseudosubstrate antagonist against PKR by directly antagonizing this halt in protein synthesis, enabling poxviruses to replicate in the cell. Exploring the impact of genetic variants in both PKR and K3 is necessary not only to highlight residues of evolutionary constraint and opportunity but also to elucidate the mechanism by which human PKR is able to subvert a rapidly evolving viral antagonist. To systematically explore this dynamic interface, we have generated a combinatorial library of PKR and K3 missense variants to be co-expressed and characterized in a high-throughput yeast selection assay. This assay allows us to characterize hundreds of thousands of unique PKR-K3 genetic combinations in a single pooled experiment. Our results highlight specific missense variants available to PKR that subvert the K3 antagonist. We find that improved PKR variants are readily available at sites under positive selection, with limited opportunity at sites interfacing with K3 and eIF2α. Additionally, we find many variants that improve and disable K3 antagonism, suggesting a pliable interface. We reason that this approach can be leveraged to explore the evolutionary plasticity of many other host-virus interfaces.
Collapse
Affiliation(s)
- Michael J Chambers
- Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
- Department of Microbiology & Immunology, Georgetown University, Washington DC, USA
| | - Sophia Scobell
- Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Meru J Sadhu
- Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
9
|
Brownsword MJ, Locker N. A little less aggregation a little more replication: Viral manipulation of stress granules. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1741. [PMID: 35709333 PMCID: PMC10078398 DOI: 10.1002/wrna.1741] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/29/2022] [Accepted: 05/05/2022] [Indexed: 01/31/2023]
Abstract
Recent exciting studies have uncovered how membrane-less organelles, also known as biocondensates, are providing cells with rapid response pathways, allowing them to re-organize their cellular contents and adapt to stressful conditions. Their assembly is driven by the phase separation of their RNAs and intrinsically disordered protein components into condensed foci. Among these, stress granules (SGs) are dynamic cytoplasmic biocondensates that form in response to many stresses, including activation of the integrated stress response or viral infections. SGs sit at the crossroads between antiviral signaling and translation because they concentrate signaling proteins and components of the innate immune response, in addition to translation machinery and stalled mRNAs. Consequently, they have been proposed to contribute to antiviral activities, and therefore are targeted by viral countermeasures. Equally, SGs components can be commandeered by viruses for their own efficient replication. Phase separation processes are an important component of the viral life cycle, for example, driving the assembly of replication factories or inclusion bodies. Therefore, in this review, we will outline the recent understanding of this complex interplay and tug of war between viruses, SGs, and their components. This article is categorized under: RNA in Disease and Development > RNA in Disease Translation > Regulation RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes.
Collapse
Affiliation(s)
- Matthew J. Brownsword
- Faculty of Health and Medical Sciences, School of Biosciences and MedicineUniversity of SurreyGuildfordSurreyUK
| | - Nicolas Locker
- Faculty of Health and Medical Sciences, School of Biosciences and MedicineUniversity of SurreyGuildfordSurreyUK
| |
Collapse
|
10
|
Burgess HM, Vink EI, Mohr I. Minding the message: tactics controlling RNA decay, modification, and translation in virus-infected cells. Genes Dev 2022; 36:108-132. [PMID: 35193946 PMCID: PMC8887129 DOI: 10.1101/gad.349276.121] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
With their categorical requirement for host ribosomes to translate mRNA, viruses provide a wealth of genetically tractable models to investigate how gene expression is remodeled post-transcriptionally by infection-triggered biological stress. By co-opting and subverting cellular pathways that control mRNA decay, modification, and translation, the global landscape of post-transcriptional processes is swiftly reshaped by virus-encoded factors. Concurrent host cell-intrinsic countermeasures likewise conscript post-transcriptional strategies to mobilize critical innate immune defenses. Here we review strategies and mechanisms that control mRNA decay, modification, and translation in animal virus-infected cells. Besides settling infection outcomes, post-transcriptional gene regulation in virus-infected cells epitomizes fundamental physiological stress responses in health and disease.
Collapse
Affiliation(s)
- Hannah M Burgess
- Department of Microbial Sciences, School of Biosciences and Medicine, University of Surrey, Guildford GU2 7XH, United Kingdom
| | - Elizabeth I Vink
- Department of Microbiology, New York University School of Medicine, New York, New York 10016, USA
| | - Ian Mohr
- Department of Microbiology, New York University School of Medicine, New York, New York 10016, USA
- Laura and Isaac Perlmutter Cancer Institute, New York University School of Medicine, New York, New York 10016, USA
| |
Collapse
|
11
|
Relevance of oxidative stress in inhibition of eIF2 alpha phosphorylation and stress granules formation during Usutu virus infection. PLoS Negl Trop Dis 2021; 15:e0009072. [PMID: 33493202 PMCID: PMC7861526 DOI: 10.1371/journal.pntd.0009072] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 02/04/2021] [Accepted: 12/14/2020] [Indexed: 12/12/2022] Open
Abstract
Usutu virus (USUV) is an African mosquito-borne flavivirus closely related to West Nile, Japanese encephalitis, Zika, and dengue viruses. USUV emerged in 1996 in Europe, where quickly spread across the continent causing a considerable number of bird deaths and varied neurological disorders in humans, including encephalitis, meningoencephalitis, or facial paralysis, thus warning about USUV as a potential health threat. USUV replication takes place on the endoplasmic reticulum (ER) of infected cells, inducing ER stress and resulting in the activation of stress-related cellular pathways collectively known as the integrated stress response (ISR). The alpha subunit of the eukaryotic initiation factor eIF2 (eIF2α), the core factor in this pathway, is phosphorylated by stress activated kinases: protein kinase R (PKR), PKR-like endoplasmic reticulum kinase (PERK), heme-regulated inhibitor kinase (HRI), and general control non-repressed 2 kinase (GCN2). Its phosphorylation results, among others, in the downstream inhibition of translation with accumulation of discrete foci in the cytoplasm termed stress granules (SGs). Our results indicated that USUV infection evades cellular stress response impairing eIF2α phosphorylation and SGs assembly induced by treatment with the HRI activator ArsNa. This protective effect was related with oxidative stress responses in USUV-infected cells. Overall, these results provide new insights into the complex connections between the stress response and flavivirus infection in order to maintain an adequate cellular environment for viral replication. Usutu virus (USUV) infection impairs eIF2α phosphorylation and SGs assembly, in an oxidative stress related manner, as a mechanism to evade cellular stress response. Our results provide new insights into the complex connections between the stress response and USUV infection to maintain a better cellular environment for viral replication.
Collapse
|
12
|
Bou-Nader C, Gordon JM, Henderson FE, Zhang J. The search for a PKR code-differential regulation of protein kinase R activity by diverse RNA and protein regulators. RNA (NEW YORK, N.Y.) 2019; 25:539-556. [PMID: 30770398 PMCID: PMC6467004 DOI: 10.1261/rna.070169.118] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The interferon-inducible protein kinase R (PKR) is a key component of host innate immunity that restricts viral replication and propagation. As one of the four eIF2α kinases that sense diverse stresses and direct the integrated stress response (ISR) crucial for cell survival and proliferation, PKR's versatile roles extend well beyond antiviral defense. Targeted by numerous host and viral regulators made of RNA and proteins, PKR is subject to multiple layers of endogenous control and external manipulation, driving its rapid evolution. These versatile regulators include not only the canonical double-stranded RNA (dsRNA) that activates the kinase activity of PKR, but also highly structured viral, host, and artificial RNAs that exert a full spectrum of effects. In this review, we discuss our deepening understanding of the allosteric mechanism that connects the regulatory and effector domains of PKR, with an emphasis on diverse structured RNA regulators in comparison to their protein counterparts. Through this analysis, we conclude that much of the mechanistic details that underlie this RNA-regulated kinase await structural and functional elucidation, upon which we can then describe a "PKR code," a set of structural and chemical features of RNA that are both descriptive and predictive for their effects on PKR.
Collapse
Affiliation(s)
- Charles Bou-Nader
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892, USA
| | - Jackson M Gordon
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892, USA
| | - Frances E Henderson
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892, USA
| | - Jinwei Zhang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892, USA
| |
Collapse
|
13
|
Stern-Ginossar N, Thompson SR, Mathews MB, Mohr I. Translational Control in Virus-Infected Cells. Cold Spring Harb Perspect Biol 2019; 11:a033001. [PMID: 29891561 PMCID: PMC6396331 DOI: 10.1101/cshperspect.a033001] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
As obligate intracellular parasites, virus reproduction requires host cell functions. Despite variations in genome size and configuration, nucleic acid composition, and their repertoire of encoded functions, all viruses remain unconditionally dependent on the protein synthesis machinery resident within their cellular hosts to translate viral messenger RNAs (mRNAs). A complex signaling network responsive to physiological stress, including infection, regulates host translation factors and ribosome availability. Furthermore, access to the translation apparatus is patrolled by powerful host immune defenses programmed to restrict viral invaders. Here, we review the tactics and mechanisms used by viruses to appropriate control over host ribosomes, subvert host defenses, and dominate the infected cell translational landscape. These not only define aspects of infection biology paramount for virus reproduction, but continue to drive fundamental discoveries into how cellular protein synthesis is controlled in health and disease.
Collapse
Affiliation(s)
- Noam Stern-Ginossar
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sunnie R Thompson
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Michael B Mathews
- Department of Medicine, Rutgers New Jersey Medical School, Newark, New Jersey 07103
| | - Ian Mohr
- Department of Microbiology, New York University School of Medicine, New York, New York 10016
| |
Collapse
|
14
|
Park C, Peng C, Brennan G, Rothenburg S. Species-specific inhibition of antiviral protein kinase R by capripoxviruses and vaccinia virus. Ann N Y Acad Sci 2019; 1438:18-29. [PMID: 30644558 DOI: 10.1111/nyas.14000] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/17/2018] [Accepted: 12/20/2018] [Indexed: 12/22/2022]
Abstract
Double-stranded RNA-activated protein kinase R (PKR) is an important and rapidly evolving antiviral kinase. Most poxviruses contain two distinct PKR inhibitors, called E3 and K3 in vaccinia virus (VACV), the prototypic orthopoxvirus. E3 prevents PKR homodimerization by binding double-stranded RNA, while K3 acts as a pseudosubstrate inhibitor by binding directly to activated PKR and thereby inhibiting interaction with its substrate eIF2α. In our study here, we analyzed E3 and K3 orthologs from the phylogenetically distinct capripoxviruses (CaPVs), which include lumpy skin disease virus, sheeppox virus, and goatpox virus. Whereas the sheeppox virus E3 ortholog did not substantially inhibit PKR, all three CaPV K3 orthologs showed species-specific inhibition of PKR, with strong inhibition of sheep, goat, and human PKR but only weak inhibition of cow and mouse PKR. In contrast, VACV K3 strongly inhibited cow and mouse PKR but not sheep, goat, or human PKR. Infection of cell lines from the respective species with engineered VACV strains that contained different K3 orthologs showed a good correlation of PKR inhibition with virus replication and eIF2α phosphorylation. Our results show that K3 orthologs can have dramatically different effects on PKR of different species and indicate that effective PKR inhibition by K3 orthologs is crucial for virus replication.
Collapse
Affiliation(s)
- Chorong Park
- School of Medicine, Department of Medial Microbiology and Immunology, University of California Davis, Davis, California
| | - Chen Peng
- Division of Biology, Kansas State University, Manhattan, Kansas
| | - Greg Brennan
- School of Medicine, Department of Medial Microbiology and Immunology, University of California Davis, Davis, California
| | - Stefan Rothenburg
- School of Medicine, Department of Medial Microbiology and Immunology, University of California Davis, Davis, California
| |
Collapse
|
15
|
Meade N, DiGiuseppe S, Walsh D. Translational control during poxvirus infection. WILEY INTERDISCIPLINARY REVIEWS-RNA 2018; 10:e1515. [PMID: 30381906 DOI: 10.1002/wrna.1515] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/31/2018] [Accepted: 10/01/2018] [Indexed: 02/06/2023]
Abstract
Poxviruses are an unusual family of large double-stranded (ds) DNA viruses that exhibit an incredible degree of self-sufficiency and complexity in their replication and immune evasion strategies. Indeed, amongst their approximately 200 open reading frames (ORFs), poxviruses encode approximately 100 immunomodulatory proteins to counter host responses along with complete DNA synthesis, transcription, mRNA processing and cytoplasmic redox systems that enable them to replicate exclusively in the cytoplasm of infected cells. However, like all other viruses poxviruses do not encode ribosomes and therefore remain completely dependent on gaining access to the host translational machinery in order to synthesize viral proteins. Early studies of these intriguing viruses helped discover the mRNA cap and polyadenylated (polyA) tail that we now know to be present on most eukaryotic messages and which play fundamental roles in mRNA translation, while more recent studies have begun to reveal the remarkable lengths poxviruses go to in order to control both host and viral protein synthesis. Here, we discuss some of the central strategies used by poxviruses and the broader battle that ensues with the host cell to control the translation system, the outcome of which ultimately dictates the fate of infection. This article is categorized under: Translation > Translation Regulation.
Collapse
Affiliation(s)
- Nathan Meade
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Stephen DiGiuseppe
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Derek Walsh
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| |
Collapse
|
16
|
Krishna KH, Kumar MS. Molecular evolution and functional divergence of eukaryotic translation initiation factor 2-alpha kinases. PLoS One 2018. [PMID: 29538447 PMCID: PMC5851622 DOI: 10.1371/journal.pone.0194335] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Eukaryotic translation initiation factor 2-alpha kinase (EIF2AK) proteins inhibit protein synthesis at translation initiation level, in response to various stress conditions, including oxidative stress, heme deficiency, osmotic shock, and heat shock. Origin and functional diversification of EIF2AK sequences remain ambiguous. Here we determine the origin and molecular evolution of EIF2AK proteins in lower eukaryotes and studied the molecular basis of divergence among sub-family sequences. Present work emphasized primitive origin of EIF2AK4 sub-family gene in lower eukaryotes of protozoan lineage. Phylogenetic analysis supported common origin and sub-family based classification of EIF2AKs. Functional divergence studies across sub-families revealed several putative amino acid sites, which assist in altered protein interactions of kinase domains. The data can facilitate designing site-directed experimental studies aiming at elucidating diverse functional aspects of kinase domains regarding down-regulation of protein synthesis.
Collapse
Affiliation(s)
- K. Hari Krishna
- Centre for Bioinformatics, Pondicherry University, Kalapet, Pondicherry, India
- Department of Biotechnology, Vignan's Foundation for Science, Technology & Research (VFSTR) University, Vadlamudi, Andhra Pradesh, India
| | - Muthuvel Suresh Kumar
- Centre for Bioinformatics, Pondicherry University, Kalapet, Pondicherry, India
- * E-mail:
| |
Collapse
|
17
|
Auto-phosphorylation Represses Protein Kinase R Activity. Sci Rep 2017; 7:44340. [PMID: 28281686 PMCID: PMC5345052 DOI: 10.1038/srep44340] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 02/07/2017] [Indexed: 12/11/2022] Open
Abstract
The central role of protein kinases in controlling disease processes has spurred efforts to develop pharmaceutical regulators of their activity. A rational strategy to achieve this end is to determine intrinsic auto-regulatory processes, then selectively target these different states of kinases to repress their activation. Here we investigate auto-regulation of the innate immune effector protein kinase R, which phosphorylates the eukaryotic initiation factor 2α to inhibit global protein translation. We demonstrate that protein kinase R activity is controlled by auto-inhibition via an intra-molecular interaction. Part of this mechanism of control had previously been reported, but was then controverted. We account for the discrepancy and extend our understanding of the auto-inhibitory mechanism by identifying that auto-inhibition is paradoxically instigated by incipient auto-phosphorylation. Phosphor-residues at the amino-terminus instigate an intra-molecular interaction that enlists both of the N-terminal RNA-binding motifs of the protein with separate surfaces of the C-terminal kinase domain, to co-operatively inhibit kinase activation. These findings identify an innovative mechanism to control kinase activity, providing insight for strategies to better regulate kinase activity.
Collapse
|
18
|
Mechanism of Protein Kinase R Inhibition by Human Cytomegalovirus pTRS1. J Virol 2017; 91:JVI.01574-16. [PMID: 27974558 DOI: 10.1128/jvi.01574-16] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Accepted: 12/06/2016] [Indexed: 01/20/2023] Open
Abstract
Double-stranded RNAs (dsRNA) produced during human cytomegalovirus (HCMV) infection activate the antiviral kinase protein kinase R (PKR), which potently inhibits virus replication. The HCMV pTRS1 and pIRS1 proteins antagonize PKR to promote HCMV protein synthesis and replication; however, the mechanism by which pTRS1 inhibits PKR is unclear. PKR activation occurs in a three-step cascade. First, binding to dsRNA triggers PKR homodimerizaton. PKR dimers then autophosphorylate, leading to a conformational shift that exposes the binding site for the PKR substrate eIF2α. Consistent with previous in vitro studies, we found that pTRS1 bound and inhibited PKR. pTRS1 binding to PKR was not mediated by an RNA intermediate, and mutations in the pTRS1 RNA binding domain did not affect PKR binding or inhibition. Rather, mutations that disrupted the pTRS1 interaction with PKR ablated the ability of pTRS1 to antagonize PKR activation by dsRNA. pTRS1 did not block PKR dimerization and could bind and inhibit a constitutively dimerized PKR kinase domain. In addition, pTRS1 binding to PKR inhibited PKR kinase activity. Single amino acid point mutations in the conserved eIF2α binding domain of PKR disrupted pTRS1 binding and rendered PKR resistant to inhibition by pTRS1. Consistent with a critical role for the conserved eIF2α contact site in PKR binding, pTRS1 bound an additional eIF2α kinase, heme-regulated inhibitor (HRI), and inhibited eIF2α phosphorylation in response to an HRI agonist. Together our data suggest that pTRS1 inhibits PKR by binding to conserved amino acids in the PKR eIF2α binding site and blocking PKR kinase activity.IMPORTANCE The antiviral kinase PKR plays a critical role in controlling HCMV replication. This study furthered our understanding of how HCMV evades inhibition by PKR and identified new strategies for how PKR activity might be restored during infection to limit HCMV disease.
Collapse
|
19
|
Jan E, Mohr I, Walsh D. A Cap-to-Tail Guide to mRNA Translation Strategies in Virus-Infected Cells. Annu Rev Virol 2016; 3:283-307. [PMID: 27501262 DOI: 10.1146/annurev-virology-100114-055014] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Although viruses require cellular functions to replicate, their absolute dependence upon the host translation machinery to produce polypeptides indispensable for their reproduction is most conspicuous. Despite their incredible diversity, the mRNAs produced by all viruses must engage cellular ribosomes. This has proven to be anything but a passive process and has revealed a remarkable array of tactics for rapidly subverting control over and dominating cellular regulatory pathways that influence translation initiation, elongation, and termination. Besides enforcing viral mRNA translation, these processes profoundly impact host cell-intrinsic immune defenses at the ready to deny foreign mRNA access to ribosomes and block protein synthesis. Finally, genome size constraints have driven the evolution of resourceful strategies for maximizing viral coding capacity. Here, we review the amazing strategies that work to regulate translation in virus-infected cells, highlighting both virus-specific tactics and the tremendous insight they provide into fundamental translational control mechanisms in health and disease.
Collapse
Affiliation(s)
- Eric Jan
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada;
| | - Ian Mohr
- Department of Microbiology and New York University Cancer Institute, New York University School of Medicine, New York, NY 10016;
| | - Derek Walsh
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611;
| |
Collapse
|
20
|
Burgess HM, Mohr I. Cellular 5'-3' mRNA exonuclease Xrn1 controls double-stranded RNA accumulation and anti-viral responses. Cell Host Microbe 2015; 17:332-344. [PMID: 25766294 PMCID: PMC4826345 DOI: 10.1016/j.chom.2015.02.003] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 12/23/2014] [Accepted: 01/28/2015] [Indexed: 12/30/2022]
Abstract
By accelerating global mRNA decay, many viruses impair host protein synthesis, limiting host defenses and stimulating virus mRNA translation. Vaccinia virus (VacV) encodes two decapping enzymes (D9, D10) that remove protective 5′ caps on mRNAs, presumably generating substrates for degradation by the host exonuclease Xrn1. Surprisingly, we find VacV infection of Xrn1-depleted cells inhibits protein synthesis, compromising virus growth. These effects are aggravated by D9 deficiency and dependent upon a virus transcription factor required for intermediate and late mRNA biogenesis. Considerable double-stranded RNA (dsRNA) accumulation in Xrn1-depleted cells is accompanied by activation of host dsRNA-responsive defenses controlled by PKR and 2′-5′ oligoadenylate synthetase (OAS), which respectively inactivate the translation initiation factor eIF2 and stimulate RNA cleavage by RNase L. This proceeds despite VacV-encoded PKR and RNase L antagonists being present. Moreover, Xrn1 depletion sensitizes uninfected cells to dsRNA treatment. Thus, Xrn1 is a cellular factor regulating dsRNA accumulation and dsRNA-responsive innate immune effectors. Vaccinia virus (VacV) replication requires the host Xrn1 mRNA decay enzyme The 5′-3′ mRNA exonuclease Xrn1 limits dsRNA accumulation In the absence of Xrn1, host dsRNA-responsive innate immune defenses are activated VacV antagonists of dsRNA-responsive host defenses are Xrn1 dependent
Collapse
Affiliation(s)
- Hannah M Burgess
- Department of Microbiology and NYU Cancer Institute, NYU School of Medicine, New York, NY 10016, USA
| | - Ian Mohr
- Department of Microbiology and NYU Cancer Institute, NYU School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
21
|
Baculovirus protein PK2 subverts eIF2α kinase function by mimicry of its kinase domain C-lobe. Proc Natl Acad Sci U S A 2015. [PMID: 26216977 DOI: 10.1073/pnas.1505481112] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Phosphorylation of eukaryotic translation initiation factor 2α (eIF2α) by eIF2α family kinases is a conserved mechanism to limit protein synthesis under specific stress conditions. The baculovirus-encoded protein PK2 inhibits eIF2α family kinases in vivo, thereby increasing viral fitness. However, the precise mechanism by which PK2 inhibits eIF2α kinase function remains an enigma. Here, we probed the mechanism by which PK2 inhibits the model eIF2α kinase human RNA-dependent protein kinase (PKR) as well as native insect eIF2α kinases. Although PK2 structurally mimics the C-lobe of a protein kinase domain and possesses the required docking infrastructure to bind eIF2α, we show that PK2 directly binds the kinase domain of PKR (PKR(KD)) but not eIF2α. The PKR(KD)-PK2 interaction requires a 22-residue N-terminal extension preceding the globular PK2 body that we term the "eIF2α kinase C-lobe mimic" (EKCM) domain. The functional insufficiency of the N-terminal extension of PK2 implicates a role for the adjacent EKCM domain in binding and inhibiting PKR. Using a genetic screen in yeast, we isolated PK2-activating mutations that cluster to a surface of the EKCM domain that in bona fide protein kinases forms the catalytic cleft through sandwiching interactions with a kinase N-lobe. Interaction assays revealed that PK2 associates with the N- but not the C-lobe of PKR(KD). We propose an inhibitory model whereby PK2 engages the N-lobe of an eIF2α kinase domain to create a nonfunctional pseudokinase domain complex, possibly through a lobe-swapping mechanism. Finally, we show that PK2 enhances baculovirus fitness in insect hosts by targeting the endogenous insect heme-regulated inhibitor (HRI)-like eIF2α kinase.
Collapse
|
22
|
Ferrao R, Zhou H, Shan Y, Liu Q, Li Q, Shaw DE, Li X, Wu H. IRAK4 dimerization and trans-autophosphorylation are induced by Myddosome assembly. Mol Cell 2014; 55:891-903. [PMID: 25201411 DOI: 10.1016/j.molcel.2014.08.006] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 06/23/2014] [Accepted: 07/31/2014] [Indexed: 11/25/2022]
Abstract
Trans-autophosphorylation is among the most prevalent means of protein kinase activation, yet its molecular basis is poorly defined. In Toll-like receptor and interleukin-1 receptor signaling pathways, the kinase IRAK4 is recruited to the membrane-proximal adaptor MyD88 through death domain (DD) interactions, forming the oligomeric Myddosome and mediating NF-κB activation. Here we show that unphosphorylated IRAK4 dimerizes in solution with a KD of 2.5 μM and that Myddosome assembly greatly enhances IRAK4 kinase domain (KD) autophosphorylation at sub-KD concentrations. The crystal structure of the unphosphorylated IRAK4(KD) dimer captures a conformation that appears to represent the actual trans-autophosphorylation reaction, with the activation loop phosphosite of one IRAK4 monomer precisely positioned for phosphotransfer by its partner. We show that dimerization is crucial for IRAK4 autophosphorylation in vitro and ligand-dependent signaling in cells. These studies identify a mechanism for oligomerization-driven allosteric autoactivation of IRAK4 that may be general to other kinases activated by autophosphorylation.
Collapse
Affiliation(s)
- Ryan Ferrao
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
| | - Hao Zhou
- Department of Immunology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | | | - Qun Liu
- New York Structural Biology Center, National Synchrotron Light Source X4, Brookhaven National Laboratory, Upton, NY 11961, USA
| | - Qiubai Li
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - David E Shaw
- D.E. Shaw Research, New York, NY 10036, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Xiaoxia Li
- Department of Immunology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Hao Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA.
| |
Collapse
|
23
|
Thakur M, Seo EJ, Dever TE. Variola virus E3L Zα domain, but not its Z-DNA binding activity, is required for PKR inhibition. RNA (NEW YORK, N.Y.) 2014; 20:214-27. [PMID: 24335187 PMCID: PMC3895273 DOI: 10.1261/rna.042341.113] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Responding to viral infection, the interferon-induced, double-stranded RNA (dsRNA)-activated protein kinase PKR phosphorylates translation initiation factor eIF2α to inhibit cellular and viral protein synthesis. To overcome this host defense mechanism, many poxviruses express the protein E3L, containing an N-terminal Z-DNA binding (Zα) domain and a C-terminal dsRNA-binding domain (dsRBD). While E3L is thought to inhibit PKR activation by sequestering dsRNA activators and by directly binding the kinase, the role of the Zα domain in PKR inhibition remains unclear. Here, we show that the E3L Zα domain is required to suppress the growth-inhibitory properties associated with expression of human PKR in yeast, to inhibit PKR kinase activity in vitro, and to reverse the inhibitory effects of PKR on reporter gene expression in mammalian cells treated with dsRNA. Whereas previous studies revealed that the Z-DNA binding activity of E3L is critical for viral pathogenesis, we identified point mutations in E3L that functionally uncouple Z-DNA binding and PKR inhibition. Thus, our studies reveal a molecular distinction between the nucleic acid binding and PKR inhibitory functions of the E3L Zα domain, and they support the notion that E3L contributes to viral pathogenesis by targeting PKR and other components of the cellular anti-viral defense pathway.
Collapse
|
24
|
Walsh D, Mathews MB, Mohr I. Tinkering with translation: protein synthesis in virus-infected cells. Cold Spring Harb Perspect Biol 2013; 5:a012351. [PMID: 23209131 DOI: 10.1101/cshperspect.a012351] [Citation(s) in RCA: 190] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Viruses are obligate intracellular parasites, and their replication requires host cell functions. Although the size, composition, complexity, and functions encoded by their genomes are remarkably diverse, all viruses rely absolutely on the protein synthesis machinery of their host cells. Lacking their own translational apparatus, they must recruit cellular ribosomes in order to translate viral mRNAs and produce the protein products required for their replication. In addition, there are other constraints on viral protein production. Crucially, host innate defenses and stress responses capable of inactivating the translation machinery must be effectively neutralized. Furthermore, the limited coding capacity of the viral genome needs to be used optimally. These demands have resulted in complex interactions between virus and host that exploit ostensibly virus-specific mechanisms and, at the same time, illuminate the functioning of the cellular protein synthesis apparatus.
Collapse
Affiliation(s)
- Derek Walsh
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA.
| | | | | |
Collapse
|
25
|
Bratke KA, McLysaght A, Rothenburg S. A survey of host range genes in poxvirus genomes. INFECTION GENETICS AND EVOLUTION 2012; 14:406-25. [PMID: 23268114 DOI: 10.1016/j.meegid.2012.12.002] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 12/01/2012] [Accepted: 12/06/2012] [Indexed: 12/17/2022]
Abstract
Poxviruses are widespread pathogens, which display extremely different host ranges. Whereas some poxviruses, including variola virus, display narrow host ranges, others such as cowpox viruses naturally infect a wide range of mammals. The molecular basis for differences in host range are poorly understood but apparently depend on the successful manipulation of the host antiviral response. Some poxvirus genes have been shown to confer host tropism in experimental settings and are thus called host range factors. Identified host range genes include vaccinia virus K1L, K3L, E3L, B5R, C7L and SPI-1, cowpox virus CP77/CHOhr, ectromelia virus p28 and 022, and myxoma virus T2, T4, T5, 11L, 13L, 062R and 063R. These genes encode for ankyrin repeat-containing proteins, tumor necrosis factor receptor II homologs, apoptosis inhibitor T4-related proteins, Bcl-2-related proteins, pyrin domain-containing proteins, cellular serine protease inhibitors (serpins), short complement-like repeats containing proteins, KilA-N/RING domain-containing proteins, as well as inhibitors of the double-stranded RNA-activated protein kinase PKR. We conducted a systematic survey for the presence of known host range genes and closely related family members in poxvirus genomes, classified them into subgroups based on their phylogenetic relationship and correlated their presence with the poxvirus phylogeny. Common themes in the evolution of poxvirus host range genes are lineage-specific duplications and multiple independent inactivation events. Our analyses yield new insights into the evolution of poxvirus host range genes. Implications of our findings for poxvirus host range and virulence are discussed.
Collapse
Affiliation(s)
- Kirsten A Bratke
- Smurfit Institute of Genetics, University of Dublin, Trinity College, Dublin 2, Ireland
| | | | | |
Collapse
|
26
|
Morimoto H, Baba R. [Cellular stress and eIF-2alpha kinase]. J UOEH 2012; 34:331-338. [PMID: 23270257 DOI: 10.7888/juoeh.34.331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The alpha subunit of eukaryotic initiation factor -2 (eIF-2alpha) is a molecule related to the first step of protein synthesis initiation in eukaryotes. eIF-2alpha is phosphorylated in response to a wide variety of stimuli, including viral infection, starvation, ischemia, and heat shock. Four mammalian eIF-2alpha kinases have been reported: PKR (double-stranded RNA dependent protein kinase), HRI (heme-regulated inhibitor), GCN2 (general control non-derepressible 2), and PERK (PKR-like endoplasmic reticulum kinase). Each kinase contains unique domains that recognize a different cellular stress and transmits the signals to eIF-2alpha. Hence, eIF-2alpha is considered to be a key molecule in integrated stress response. Understanding eIF-2alpha as a component of the integrated stress response may be helpful in revealing stress sitmulus and the responses to stress at the cellular level. This knowledge will contribute to the development of preventive and therapeutic approaches to stress mediated diseases.
Collapse
Affiliation(s)
- Hiroyuki Morimoto
- Department of Anatomy, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807-8555 Japan
| | | |
Collapse
|
27
|
Rothenburg S, Chinchar VG, Dever TE. Characterization of a ranavirus inhibitor of the antiviral protein kinase PKR. BMC Microbiol 2011; 11:56. [PMID: 21418572 PMCID: PMC3068933 DOI: 10.1186/1471-2180-11-56] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 03/18/2011] [Indexed: 01/06/2023] Open
Abstract
Background Ranaviruses (family Iridoviridae) are important pathogens of lower vertebrates. However, little is known about how they circumvent the immune response of their hosts. Many ranaviruses contain a predicted protein, designated vIF2α, which shows homology with the eukaryotic translation initiation factor 2α. In analogy to distantly related proteins found in poxviruses vIF2α might act as an inhibitor of the antiviral protein kinase PKR. Results We have characterized the function of vIF2α from Rana catesbeiana virus Z (RCV-Z). Multiple sequence alignments and secondary structure prediction revealed homology of vIF2α with eIF2α throughout the S1-, helical- and C-terminal domains. Genetic and biochemical analyses showed that vIF2α blocked the toxic effects of human and zebrafish PKR in a heterologous yeast system. Rather than complementing eIF2α function, vIF2α acted in a manner comparable to the vaccinia virus (VACV) K3L protein (K3), a pseudosubstrate inhibitor of PKR. Both vIF2α and K3 inhibited human PKR-mediated eIF2α phosphorylation, but not PKR autophosphorylation on Thr446. In contrast the E3L protein (E3), another poxvirus inhibitor of PKR, inhibited both Thr446 and eIF2α Ser51 phosphorylation. Interestingly, phosphorylation of eIF2α by zebrafish PKR was inhibited by vIF2α and E3, but not by K3. Effective inhibition of PKR activity coincided with increased PKR expression levels, indicative of relieved autoinhibition of PKR expression. Experiments with vIF2α deletion constructs, showed that both the N-terminal and helical domains were sufficient for inhibition of PKR, whereas the C-terminal domain was dispensable. Conclusions Our results show that RCV-Z vIF2α is a functional inhibitor of human and zebrafish PKR, and probably functions in similar fashion as VACV K3. This constitutes an important step in understanding the interaction of ranaviruses and the host innate immune system.
Collapse
Affiliation(s)
- Stefan Rothenburg
- Laboratory of Gene Regulation and Development, NICHD, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
28
|
Roles of vaccinia virus genes E3L and K3L and host genes PKR and RNase L during intratracheal infection of C57BL/6 mice. J Virol 2010; 85:550-67. [PMID: 20943971 DOI: 10.1128/jvi.00254-10] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The importance of the 2'-5' oligoadenylate synthetase (OAS)/RNase L and double-stranded RNA (dsRNA)-dependent protein kinase (PKR) pathways in host interferon induction resulting from virus infection in response to dsRNA has been well documented. In poxvirus infections, the interactions between the vaccinia virus (VV) genes E3L and K3L, which target RNase L and PKR, respectively, serve to prevent the induction of the dsRNA-dependent induced interferon response in cell culture. To determine the importance of these host genes in controlling VV infections, mouse single-gene knockouts of RNase L and PKR and double-knockout mice were studied following intratracheal infection with VV, VVΔK3L, or VVΔE3L. VV caused lethal disease in all mouse strains. The single-knockout animals were more susceptible than wild-type animals, while the RNase L(-/-) PKR(-/-) mice were the most susceptible. VVΔE3L infections of wild-type mice were asymptomatic, demonstrating that E3L plays a critical role in controlling the host immune response. RNase L(-/-) mice showed no disease, whereas 20% of the PKR(-/-) mice succumbed at a dose of 10(8) PFU. Lethal disease was routinely observed in RNase L(-/-) PKR(-/-) mice inoculated with 10(8) PFU of VVΔE3L, with a distinct pathology. VVΔK3L infections exhibited no differences in virulence among any of the mouse constructs, suggesting that PKR is not the exclusive target of K3L. Surprisingly, VVΔK3L did not disseminate to other tissues from the lung. Hence, the cause of death in this model is respiratory disease. These results also suggest that an unanticipated role of the K3L gene is to facilitate virus dissemination.
Collapse
|
29
|
Liu J, Wennier S, McFadden G. The immunoregulatory properties of oncolytic myxoma virus and their implications in therapeutics. Microbes Infect 2010; 12:1144-52. [PMID: 20832500 DOI: 10.1016/j.micinf.2010.08.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Revised: 08/30/2010] [Accepted: 08/31/2010] [Indexed: 12/20/2022]
Abstract
Myxoma virus (MYXV) is a poxvirus with a strict rabbit-specific host-tropism for pathogenesis. The immunoregulatory factors encoded by MYXV can suppress some functions of immune effectors from other species. We review their mechanisms of action, implications in therapeutics and the potential to improve MYXV as an oncolytic agent in humans.
Collapse
Affiliation(s)
- Jia Liu
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, 1600 SW Archer Rd, P.O. box 100266, Gainesville, FL 32610, USA
| | | | | |
Collapse
|
30
|
Galluzzi L, Kepp O, Morselli E, Vitale I, Senovilla L, Pinti M, Zitvogel L, Kroemer G. Viral strategies for the evasion of immunogenic cell death. J Intern Med 2010; 267:526-42. [PMID: 20433579 DOI: 10.1111/j.1365-2796.2010.02223.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Viral strategies for the evasion of immunogenic cell death (Symposium). J Intern Med 2010; 267: 526-542. Driven by co-evolutionary forces, viruses have refined a wide arsenal of strategies to interfere with the host defences. On one hand, viruses can block/retard programmed cell death in infected cells, thereby suppressing one of the most ancient mechanisms against viral dissemination. On the other hand, multiple viral factors can efficiently trigger the death of infected cells and uninfected cells from the immune system, which favours viral spreading and prevents/limits an active antiviral response, respectively. Moreover, several viruses are able to inhibit the molecular machinery that drives the translocation of calreticulin to the surface of dying cells. Thereby, viruses block the exposure of an engulfment signal that is required for the efficient uptake of dying cells by dendritic cells and for the induction of the immune response. In this review, we discuss a variety of mechanisms by which viruses interfere with the cell death machinery and, in particular, by which they subvert immunogenic cell death.
Collapse
|
31
|
Rich RL, Myszka DG. Grading the commercial optical biosensor literature-Class of 2008: 'The Mighty Binders'. J Mol Recognit 2010; 23:1-64. [PMID: 20017116 DOI: 10.1002/jmr.1004] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Optical biosensor technology continues to be the method of choice for label-free, real-time interaction analysis. But when it comes to improving the quality of the biosensor literature, education should be fundamental. Of the 1413 articles published in 2008, less than 30% would pass the requirements for high-school chemistry. To teach by example, we spotlight 10 papers that illustrate how to implement the technology properly. Then we grade every paper published in 2008 on a scale from A to F and outline what features make a biosensor article fabulous, middling or abysmal. To help improve the quality of published data, we focus on a few experimental, analysis and presentation mistakes that are alarmingly common. With the literature as a guide, we want to ensure that no user is left behind.
Collapse
Affiliation(s)
- Rebecca L Rich
- Center for Biomolecular Interaction Analysis, University of Utah, Salt Lake City, UT 84132, USA
| | | |
Collapse
|
32
|
George CX, Li Z, Okonski KM, Toth AM, Wang Y, Samuel CE. Tipping the balance: antagonism of PKR kinase and ADAR1 deaminase functions by virus gene products. J Interferon Cytokine Res 2009; 29:477-87. [PMID: 19715457 PMCID: PMC2956706 DOI: 10.1089/jir.2009.0065] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Accepted: 06/29/2009] [Indexed: 12/11/2022] Open
Abstract
The protein kinase regulated by RNA (PKR) and the adenosine deaminase acting on RNA (ADAR1) are interferon-inducible enzymes that play important roles in biologic processes including the antiviral actions of interferons, signal transduction, and apoptosis. PKR catalyzes the RNA-dependent phosphorylation of protein synthesis initiation factor eIF-2 alpha, thereby leading to altered translational patterns in interferon-treated and virus-infected cells. PKR also modulates signal transduction responses, including the induction of interferon. ADAR1 catalyzes the deamination of adenosine (A) to generate inosine (I) in RNAs with double-stranded character. Because I is recognized as G instead of A, A-to-I editing by ADAR1 can lead to genetic recoding and altered RNA structures. The importance of PKR and ADAR1 in innate antiviral immunity is illustrated by a number of viruses that encode either RNA or protein viral gene products that antagonize PKR and ADAR1 enzymatic activity, localization, or stability.
Collapse
Affiliation(s)
- Cyril X George
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, California 93106, USA
| | | | | | | | | | | |
Collapse
|
33
|
Rapid evolution of protein kinase PKR alters sensitivity to viral inhibitors. Nat Struct Mol Biol 2008; 16:63-70. [PMID: 19043413 PMCID: PMC3142916 DOI: 10.1038/nsmb.1529] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2008] [Accepted: 11/18/2008] [Indexed: 12/23/2022]
Abstract
Protein kinase PKR (also known as EIF2AK2) is activated during viral infection and phosphorylates the alpha subunit of eukaryotic translation initiation factor 2 (eIF2), leading to inhibition of translation and viral replication. We report fast evolution of the PKR kinase domain in vertebrates, coupled with positive selection of specific sites. Substitution of positively selected residues in human PKR with residues found in related species altered sensitivity to PKR inhibitors from different poxviruses. Species-specific differences in sensitivity to poxviral pseudosubstrate inhibitors were identified between human and mouse PKR, and these differences were traced to positively selected residues near the eIF2alpha binding site. Our findings indicate how an antiviral protein evolved to evade viral inhibition while maintaining its primary function. Moreover, the identified species-specific differences in the susceptibility to viral inhibitors have important implications for studying human infections in nonhuman model systems.
Collapse
|