1
|
Longmire P, Daigle O, Zeltzer S, Lee M, Svoboda M, Padilla-Rodriguez M, Bobak C, Bosco G, Goodrum F. Complex roles for proliferating cell nuclear antigen in restricting human cytomegalovirus replication. mBio 2025; 16:e0045025. [PMID: 40130902 PMCID: PMC12077088 DOI: 10.1128/mbio.00450-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 02/24/2025] [Indexed: 03/26/2025] Open
Abstract
DNA viruses at once elicit and commandeer host pathways, including DNA repair pathways, for virus replication. Despite encoding its own DNA polymerase and processivity factor, human cytomegalovirus (HCMV) recruits the cellular processivity factor, proliferating cell nuclear antigen (PCNA) and specialized host DNA polymerases involved in translesion synthesis (TLS) to replication compartments (RCs) where viral DNA (vDNA) is synthesized. While the recruitment of TLS polymerases is important for viral genome stability, the role of PCNA is poorly understood. PCNA function in DNA repair is regulated by monoubiquitination (mUb) or SUMOylation of PCNA at lysine 164 (K164). We find that mUb-PCNA increases over the course of infection, and modification of K164 is required for PCNA-mediated restriction of virus replication. mUb-PCNA plays important known roles in recruiting TLS polymerases to DNA, which we have shown are important for viral genome integrity and diversity, represented by structural variants and single nucleotide variants (SNVs), respectively. We find that PCNA drives SNVs on vDNA similar to Y-family TLS polymerases, but this did not require modification at K164. Unlike TLS polymerases, depeletion of PCNA did not result in large-scale rearrangements on vDNA. These striking results suggest separable PCNA-dependent and -independent functions of TLS polymerases on vDNA. By extension, these results imply roles for TLS polymerase beyond their canonical function in TLS in host biology. These findings highlight PCNA as a complex restriction factor for HCMV infection, likely with multiple distinct roles, and provide new insights into the PCNA-mediated regulation of DNA synthesis and repair in viral infection.IMPORTANCEGenome synthesis is a critical step of virus life cycles and a major target of antiviral drugs. Human cytomegalovirus (HCMV), like other herpesviruses, encodes machinery sufficient for viral DNA synthesis and relies on host factors for efficient replication. We have shown that host DNA repair factors play important roles in HCMV replication, but our understanding of this is incomplete. Building on previous findings that specialized host DNA polymerases contribute to HCMV genome integrity and diversity, we sought to determine the importance of proliferating cell nuclear antigen (PCNA), the central polymerase regulator. PCNA is associated with nascent viral DNA and restricts HCMV replication. While PCNA is dispensable for genome integrity, it contributes to genome diversity. Our findings suggest that host polymerases function on viral genomes by separable PCNA-dependent and -independent mechanisms. Through revealing complex roles for PCNA in HCMV replication, this study expands the repertoire of host DNA synthesis and repair proteins hijacked by this ubiquitous herpesvirus.
Collapse
Affiliation(s)
- Pierce Longmire
- Graduate Program in Molecular Medicine, University of Arizona, Tucson, Arizona, USA
- Department of Immunobiology, University of Arizona, Tucson, Arizona, USA
- BIO5 Institute, University of Arizona BIO5 Institute, Tucson, Arizona, USA
| | - Olivia Daigle
- Department of Molecular and Systems Biology, Dartmouth Geisel College of Medicine, Hanover, New Hampshire, USA
- Research Computing and Data Services, Information, Technology, and Consulting, Dartmouth College, Hanover, New Hampshire, USA
| | - Sebastian Zeltzer
- BIO5 Institute, University of Arizona BIO5 Institute, Tucson, Arizona, USA
| | - Matias Lee
- Research Computing and Data Services, Information, Technology, and Consulting, Dartmouth College, Hanover, New Hampshire, USA
| | - Marek Svoboda
- Department of Molecular and Systems Biology, Dartmouth Geisel College of Medicine, Hanover, New Hampshire, USA
| | | | - Carly Bobak
- Research Computing and Data Services, Information, Technology, and Consulting, Dartmouth College, Hanover, New Hampshire, USA
| | - Giovanni Bosco
- Department of Molecular and Systems Biology, Dartmouth Geisel College of Medicine, Hanover, New Hampshire, USA
| | - Felicia Goodrum
- Graduate Program in Molecular Medicine, University of Arizona, Tucson, Arizona, USA
- Department of Immunobiology, University of Arizona, Tucson, Arizona, USA
- BIO5 Institute, University of Arizona BIO5 Institute, Tucson, Arizona, USA
| |
Collapse
|
2
|
Hu Y, Liu K, Bai X, Chen P, Zhang K, Xiang S. Rad5 and Ubc4 directly ubiquitinate PCNA at Lys164 in vitro. J Biol Chem 2025; 301:108192. [PMID: 39826694 PMCID: PMC11871451 DOI: 10.1016/j.jbc.2025.108192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 12/27/2024] [Accepted: 01/10/2025] [Indexed: 01/22/2025] Open
Abstract
Ubiquitination of the proliferating cell nuclear antigen (PCNA) by the budding yeast protein Rad5 have important functions in replication stress responses. Rad5 together with the Ubc13-Mms2 complex attaches Lys63-linked ubiquitin chain to a highly conserved Lys164 residue in PCNA. The reaction requires prior PCNA monoubiquitination by the Rad6-Rad18 complex and signals for error-free DNA damage tolerance responses. Cellular studies suggested that Rad5 also cooperates with Ubc4 to catalyze PCNA ubiquitination in response to Okazaki fragment ligation defects, but biochemical evidence of this reaction is lacking. Here, we reconstituted this reaction and studied its biochemical properties. We found that Rad5 and Ubc4 directly ubiquitinate PCNA and the reaction requires a coordination of Rad5's HIRAN and RING domains. Most interestingly, we found that the reaction ubiquitinates PCNA at multiple sites among which Lys164 is a major ubiquitination site. These findings suggest that Rad5 may contribute to replication stress responses through a novel mechanism by directly ubiquitinating Lys164 in PCNA.
Collapse
Affiliation(s)
- Yixiong Hu
- Department of Biochemistry and Molecular Biology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, PR China
| | - Kaiyang Liu
- Department of Biochemistry and Molecular Biology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, PR China
| | - Xue Bai
- Department of Biochemistry and Molecular Biology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, PR China
| | - Pu Chen
- Department of Biochemistry and Molecular Biology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, PR China
| | - Kai Zhang
- Department of Biochemistry and Molecular Biology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, PR China
| | - Song Xiang
- Department of Biochemistry and Molecular Biology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, PR China.
| |
Collapse
|
3
|
Benfatto S, Sill M, Jones DTW, Pfister SM, Sahm F, von Deimling A, Capper D, Hovestadt V. Explainable artificial intelligence of DNA methylation-based brain tumor diagnostics. Nat Commun 2025; 16:1787. [PMID: 39979307 PMCID: PMC11842776 DOI: 10.1038/s41467-025-57078-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/07/2025] [Indexed: 02/22/2025] Open
Abstract
We have recently developed a machine learning classifier that enables fast, accurate, and affordable classification of brain tumors based on genome-wide DNA methylation profiles that is widely employed in the clinic. Neuro-oncology research would benefit greatly from understanding the underlying artificial intelligence decision process, which currently remains unclear. Here, we describe an interpretable framework to explain the classifier's decisions. We show that functional genomic regions of various sizes are predominantly employed to distinguish between different tumor classes, ranging from enhancers and CpG islands to large-scale heterochromatic domains. We detect a high degree of genomic redundancy, with many genes distinguishing individual tumor classes, explaining the robustness of the classifier and revealing potential targets for further therapeutic investigation. We anticipate that our resource will build up trust in machine learning in clinical settings, foster biomarker discovery and development of compact point-of-care assays, and enable further epigenome research of brain tumors. Our interpretable framework is accessible to the research community via an interactive web application ( https://hovestadtlab.shinyapps.io/shinyMNP/ ).
Collapse
Affiliation(s)
- Salvatore Benfatto
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Martin Sill
- Division of Pediatric Neurooncology, Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - David T W Jones
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Division of Pediatric Glioma Research, Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
| | - Stefan M Pfister
- Division of Pediatric Neurooncology, Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology & Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Felix Sahm
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Andreas von Deimling
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - David Capper
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Volker Hovestadt
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
4
|
Mentani A, Maresca M, Shiriaeva A. Prime Editing: Mechanistic Insights and DNA Repair Modulation. Cells 2025; 14:277. [PMID: 39996750 PMCID: PMC11853414 DOI: 10.3390/cells14040277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/15/2025] [Accepted: 01/24/2025] [Indexed: 02/26/2025] Open
Abstract
Prime editing is a genome editing technique that allows precise modifications of cellular DNA without relying on donor DNA templates. Recently, several different prime editor proteins have been published in the literature, relying on single- or double-strand breaks. When prime editing occurs, the DNA undergoes one of several DNA repair pathways, and these processes can be modulated with the use of inhibitors. Firstly, this review provides an overview of several DNA repair mechanisms and their modulation by known inhibitors. In addition, we summarize different published prime editors and provide a comprehensive overview of associated DNA repair mechanisms. Finally, we discuss the delivery and safety aspects of prime editing.
Collapse
Affiliation(s)
- Astrid Mentani
- Genome Engineering, Discovery Science, BioPharmaceuticals R&D, AstraZeneca, 43183 Mölndal, Sweden
| | - Marcello Maresca
- Genome Engineering, Discovery Science, BioPharmaceuticals R&D, AstraZeneca, 43183 Mölndal, Sweden
| | - Anna Shiriaeva
- Genome Engineering, Discovery Science, BioPharmaceuticals R&D, AstraZeneca, 43183 Mölndal, Sweden
| |
Collapse
|
5
|
Rogers CB, Leung W, Baxley RM, Kram RE, Wang L, Buytendorp JP, Le K, Largaespada DA, Hendrickson EA, Bielinsky AK. Cell Type Specific Suppression of Hyper-Recombination by Human RAD18 Is Linked to Proliferating Cell Nuclear Antigen K164 Ubiquitination. Biomolecules 2025; 15:150. [PMID: 39858544 PMCID: PMC11763143 DOI: 10.3390/biom15010150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/14/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025] Open
Abstract
RAD18 is a conserved eukaryotic E3 ubiquitin ligase that promotes genome stability through multiple pathways. One of these is gap-filling DNA synthesis at active replication forks and in post-replicative DNA. RAD18 also regulates homologous recombination (HR) repair of DNA breaks; however, the current literature describing the contribution of RAD18 to HR in mammalian systems has not reached a consensus. To investigate this, we examined three independent RAD18-null human cell lines. Our analyses found that loss of RAD18 in HCT116, but neither hTERT RPE-1 nor DLD1 cell lines, resulted in elevated sister chromatid exchange, gene conversion, and gene targeting, i.e., HCT116 mutants were hyper-recombinogenic (hyper-rec). Interestingly, these phenotypes were linked to RAD18's role in PCNA K164 ubiquitination, as HCT116 PCNAK164R/+ mutants were also hyper-rec, consistent with previous studies in rad18-/- and pcnaK164R avian DT40 cells. Importantly, the knockdown of UBC9 to prevent PCNA K164 SUMOylation did not affect hyper-recombination, strengthening the link between increased recombination and RAD18-catalyzed PCNA K164 ubiquitination, but not K164 SUMOylation. We propose that the hierarchy of post-replicative repair and HR, intrinsic to each cell type, dictates whether RAD18 is required for suppression of hyper-recombination and that this function is linked to PCNA K164 ubiquitination.
Collapse
Affiliation(s)
- Colette B. Rogers
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Wendy Leung
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ryan M. Baxley
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Rachel E. Kram
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Liangjun Wang
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Joseph P. Buytendorp
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Khoi Le
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - David A. Largaespada
- Departments of Pediatrics and Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Eric A. Hendrickson
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22903, USA
| | - Anja-Katrin Bielinsky
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22903, USA
| |
Collapse
|
6
|
Dyankova-Danovska T, Uzunova S, Danovski G, Stamatov R, Kanev PB, Atemin A, Ivanova A, Aleksandrov R, Stoynov S. In and out of Replication Stress: PCNA/RPA1-Based Dynamics of Fork Stalling and Restart in the Same Cell. Int J Mol Sci 2025; 26:667. [PMID: 39859385 PMCID: PMC11765805 DOI: 10.3390/ijms26020667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/08/2025] [Accepted: 01/12/2025] [Indexed: 01/27/2025] Open
Abstract
Replication forks encounter various impediments, which induce fork stalling and threaten genome stability, yet the precise dynamics of fork stalling and restart at the single-cell level remain elusive. Herein, we devise a live-cell microscopy-based approach to follow hydroxyurea-induced fork stalling and subsequent restart at 30 s resolution. We measure two distinct processes during fork stalling. One is rapid PCNA removal, which reflects the drop in DNA synthesis. The other is gradual RPA1 accumulation up to 2400 nt of ssDNA per fork despite an active intra-S checkpoint. Restoring the nucleotide pool enables a prompt restart without post-replicative ssDNA and a smooth cell cycle progression. ATR, but not ATM inhibition, accelerates hydroxyurea-induced RPA1 accumulation nine-fold, leading to RPA1 exhaustion within 20 min. Fork restart under ATR inhibition led to the persistence of ~600 nt ssDNA per fork after S-phase, which reached 2500 nt under ATR/ATM co-inhibition, with both scenarios leading to mitotic catastrophe. MRE11 inhibition had no effect on PCNA/RPA1 dynamics regardless of ATR activity. E3 ligase RAD18 was recruited at stalled replication forks in parallel to PCNA removal. Our results shed light on fork dynamics during nucleotide depletion and provide a valuable tool for interrogating the effects of replication stress-inducing anti-cancer agents.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Stoyno Stoynov
- Institute of Molecular Biology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. Bl. 21, 1113 Sofia, Bulgaria; (T.D.-D.); (S.U.); (G.D.); (R.S.); (P.-B.K.); (A.A.); (A.I.); (R.A.)
| |
Collapse
|
7
|
Kim S, Park S, Kang N, Ra J, Myung K, Lee KY. Polyubiquitinated PCNA triggers SLX4-mediated break-induced replication in alternative lengthening of telomeres (ALT) cancer cells. Nucleic Acids Res 2024; 52:11785-11805. [PMID: 39291733 PMCID: PMC11514459 DOI: 10.1093/nar/gkae785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 08/23/2024] [Accepted: 08/29/2024] [Indexed: 09/19/2024] Open
Abstract
Replication stresses are the major source of break-induced replication (BIR). Here, we show that in alternative lengthening of telomeres (ALT) cells, replication stress-induced polyubiquitinated proliferating cell nuclear antigen (PCNA) (polyUb-PCNA) triggers BIR at telomeres and the common fragile site (CFS). Consistently, depleting RAD18, a PCNA ubiquitinating enzyme, reduces the occurrence of ALT-associated promyelocytic leukemia (PML) bodies (APBs) and mitotic DNA synthesis at telomeres and CFS, both of which are mediated by BIR. In contrast, inhibiting ubiquitin-specific protease 1 (USP1), an Ub-PCNA deubiquitinating enzyme, results in an increase in the above phenotypes in a RAD18- and UBE2N (the PCNA polyubiquitinating enzyme)-dependent manner. Furthermore, deficiency of ATAD5, which facilitates USP1 activity and unloads PCNAs, augments recombination-associated phenotypes. Mechanistically, telomeric polyUb-PCNA accumulates SLX4, a nuclease scaffold, at telomeres through its ubiquitin-binding domain and increases telomere damage. Consistently, APB increase induced by Ub-PCNA depends on SLX4 and structure-specific endonucleases. Taken together, our results identified the polyUb-PCNA-SLX4 axis as a trigger for directing BIR.
Collapse
Affiliation(s)
- Sangin Kim
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Korea
- Department of Biological Sciences, College of Information-Bio Convergence Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
| | - Su Hyung Park
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Korea
- Department of Biomedical Engineering, College of Information-Bio Convergence Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
| | - Nalae Kang
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Korea
| | - Jae Sun Ra
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Korea
| | - Kyungjae Myung
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Korea
- Department of Biomedical Engineering, College of Information-Bio Convergence Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
| | - Kyoo-young Lee
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Korea
- Department of Biochemistry, College of Medicine, Hallym University, Chuncheon 24252, Gangwon-do, Republic of Korea
| |
Collapse
|
8
|
Waheed Y, Mojumdar A, Shafiq M, de Marco A, De March M. The fork remodeler helicase-like transcription factor in cancer development: all at once. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167280. [PMID: 38851303 DOI: 10.1016/j.bbadis.2024.167280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/20/2024] [Accepted: 06/02/2024] [Indexed: 06/10/2024]
Abstract
The Helicase-like Transcription Factor (HLTF) is a member of the SNF2-family of fork remodelers, primarily studied for its capacity to provide DNA Damage Tolerance (DDT) and to induce replication fork reversal (RFR). HLTF is recruited at stalled forks where both its ATPase motor and HIP116 Rad5p N-terminal (HIRAN) domains are necessary for regulating its interaction with DNA. HIRAN bestows specificity to ssDNA 3'-end and imparts branch migration as well as DNA remodeling capabilities facilitating damage repair. Both expression regulation and mutation rate affect HLTF activity. Gene hypermethylation induces loss of HLTF function, in particular in colorectal cancer (CRC), implying a tumour suppressor role. Surprisingly, a correlation between hypermethylation and HLTF mRNA upregulation has also been observed, even within the same cancer type. In many cancers, both complex mutation patterns and the presence of gene Copy Number Variations (CNVs) have been reported. These conditions affect the amount of functional HLTF and question the physiological role of this fork remodeler. This review offers a systematic collection of the presently strewed information regarding HLTF, its structural and functional characteristics, the multiple roles in DDT and the regulation in cancer progression highlighting new research perspectives.
Collapse
Affiliation(s)
- Yossma Waheed
- Department of Environmental and Biological Sciences, University of Nova Gorica, Vipaska Cesta 13, SI-5000 Nova Gorica, Slovenia; National Institute of Science and Technology, Sector H-12, Islamabad Capital Territory, Pakistan
| | - Aditya Mojumdar
- Department of Biochemistry and Microbiology, University of Victoria, BC V8W 2Y2, Victoria, Canada
| | - Mohammad Shafiq
- Department of Environmental and Biological Sciences, University of Nova Gorica, Vipaska Cesta 13, SI-5000 Nova Gorica, Slovenia
| | - Ario de Marco
- Department of Environmental and Biological Sciences, University of Nova Gorica, Vipaska Cesta 13, SI-5000 Nova Gorica, Slovenia
| | - Matteo De March
- Department of Environmental and Biological Sciences, University of Nova Gorica, Vipaska Cesta 13, SI-5000 Nova Gorica, Slovenia.
| |
Collapse
|
9
|
Rogers CB, Leung W, Baxley RM, Kram RE, Wang L, Buytendorp JP, Le K, Largaespada DA, Hendrickson EA, Bielinsky AK. Cell type specific suppression of hyper-recombination by human RAD18 is linked to PCNA K164 ubiquitination. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.03.611050. [PMID: 39282285 PMCID: PMC11398407 DOI: 10.1101/2024.09.03.611050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
Homologous recombination (HR) and translesion synthesis (TLS) promote gap-filling DNA synthesis to complete genome replication. One factor involved in both pathways is RAD18, an E3 ubiquitin ligase. Although RAD18's role in promoting TLS through the ubiquitination of PCNA at lysine 164 (K164) is well established, its requirement for HR-based mechanisms is currently less clear. To assess this, we inactivated RAD18 in three human cell lines. Our analyses found that loss of RAD18 in HCT116, but neither hTERT RPE-1 nor DLD1 cell lines, resulted in elevated sister chromatid exchange, gene conversion, and gene targeting, i.e . HCT116 mutants were hyper-recombinogenic (hyper-rec). Loss of RAD18 also impaired TLS activity in HCT116 cells, but unexpectedly, did not reduce clonogenic survival. Interestingly, these phenotypes appear linked to PCNA K164 ubiquitination, as HCT116 PCNA K164R/+ mutants were also hyper-rec and showed reduced TLS activity, consistent with previous studies in rad18 -/- or pcna K164R avian DT40 mutant cells. Importantly, knockdown of UBC9 to prevent PCNA K164 SUMOylation did not affect hyper-recombination, strengthening the link between increased recombination and RAD18-catalyzed PCNA K164 ubiquitination, but not K164 SUMOylation. Taken together, these data suggest that the roles of human RAD18 in directing distinct gap-filling DNA synthesis pathways varies depending on cell type and that these functions are linked to PCNA ubiquitination.
Collapse
|
10
|
Cybulla E, Wallace S, Meroni A, Jackson J, Agashe S, Tennakoon M, Limbu M, Quinet A, Lomonosova E, Noia H, Tirman S, Wood M, Lemacon D, Fuh K, Zou L, Vindigni A. A RAD18-UBC13-PALB2-RNF168 axis mediates replication fork recovery in BRCA1-deficient cancer cells. Nucleic Acids Res 2024; 52:8861-8879. [PMID: 38943334 PMCID: PMC11347138 DOI: 10.1093/nar/gkae563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/24/2024] [Accepted: 06/21/2024] [Indexed: 07/01/2024] Open
Abstract
BRCA1/2 proteins function in genome stability by promoting repair of double-stranded DNA breaks through homologous recombination and by protecting stalled replication forks from nucleolytic degradation. In BRCA1/2-deficient cancer cells, extensively degraded replication forks can be rescued through distinct fork recovery mechanisms that also promote cell survival. Here, we identified a novel pathway mediated by the E3 ubiquitin ligase RAD18, the E2-conjugating enzyme UBC13, the recombination factor PALB2, the E3 ubiquitin ligase RNF168 and PCNA ubiquitination that promotes fork recovery in BRCA1- but not BRCA2-deficient cells. We show that this pathway does not promote fork recovery by preventing replication fork reversal and degradation in BRCA1-deficient cells. We propose a mechanism whereby the RAD18-UBC13-PALB2-RNF168 axis facilitates resumption of DNA synthesis by promoting re-annealing of the complementary single-stranded template strands of the extensively degraded forks, thereby allowing re-establishment of a functional replication fork. We also provide preliminary evidence for the potential clinical relevance of this novel fork recovery pathway in BRCA1-mutated cancers, as RAD18 is over-expressed in BRCA1-deficient cancers, and RAD18 loss compromises cell viability in BRCA1-deficient cancer cells.
Collapse
Affiliation(s)
- Emily Cybulla
- Division of Oncology, Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Sierra Wallace
- Division of Oncology, Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Alice Meroni
- Division of Oncology, Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Jessica Jackson
- Division of Oncology, Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Sumedha Agashe
- Division of Oncology, Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Mithila Tennakoon
- Division of Oncology, Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Mangsi Limbu
- Division of Oncology, Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Annabel Quinet
- Division of Oncology, Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Elena Lomonosova
- Department of Obstetrics and Gynecology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Hollie Noia
- Department of Obstetrics and Gynecology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Stephanie Tirman
- Division of Oncology, Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Matthew Wood
- Division of Oncology, Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Delphine Lemacon
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Katherine Fuh
- Division of Gynecologic Oncology, Department of Ob/Gyn and Reproductive Sciences, University of California San Francisco, San Francisco, CA 94143, USA
| | - Lee Zou
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27708, USA
| | - Alessandro Vindigni
- Division of Oncology, Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| |
Collapse
|
11
|
Nagelberg AL, Sihota TS, Chuang YC, Shi R, Chow JLM, English J, MacAulay C, Lam S, Lam WL, Lockwood WW. Integrative genomics identifies SHPRH as a tumor suppressor gene in lung adenocarcinoma that regulates DNA damage response. Br J Cancer 2024; 131:534-550. [PMID: 38890444 PMCID: PMC11300780 DOI: 10.1038/s41416-024-02755-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Identification of driver mutations and development of targeted therapies has considerably improved outcomes for lung cancer patients. However, significant limitations remain with the lack of identified drivers in a large subset of patients. Here, we aimed to assess the genomic landscape of lung adenocarcinomas (LUADs) from individuals without a history of tobacco use to reveal new genetic drivers of lung cancer. METHODS Integrative genomic analyses combining whole-exome sequencing, copy number, and mutational information for 83 LUAD tumors was performed and validated using external datasets to identify genetic variants with a predicted functional consequence and assess association with clinical outcomes. LUAD cell lines with alteration of identified candidates were used to functionally characterize tumor suppressive potential using a conditional expression system both in vitro and in vivo. RESULTS We identified 21 genes with evidence of positive selection, including 12 novel candidates that have yet to be characterized in LUAD. In particular, SNF2 Histone Linker PHD RING Helicase (SHPRH) was identified due to its frequency of biallelic disruption and location within the familial susceptibility locus on chromosome arm 6q. We found that low SHPRH mRNA expression is associated with poor survival outcomes in LUAD patients. Furthermore, we showed that re-expression of SHPRH in LUAD cell lines with inactivating alterations for SHPRH reduces their in vitro colony formation and tumor burden in vivo. Finally, we explored the biological pathways associated SHPRH inactivation and found an association with the tolerance of LUAD cells to DNA damage. CONCLUSIONS These data suggest that SHPRH is a tumor suppressor gene in LUAD, whereby its expression is associated with more favorable patient outcomes, reduced tumor and mutational burden, and may serve as a predictor of response to DNA damage. Thus, further exploration into the role of SHPRH in LUAD development may make it a valuable biomarker for predicting LUAD risk and prognosis.
Collapse
Affiliation(s)
- Amy L Nagelberg
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
- Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Tianna S Sihota
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
- Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Yu-Chi Chuang
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
- Interdisciplinary Oncology Program, University of British Columbia, Vancouver, BC, Canada
| | - Rocky Shi
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
- Interdisciplinary Oncology Program, University of British Columbia, Vancouver, BC, Canada
| | - Justine L M Chow
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
| | - John English
- Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Calum MacAulay
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
- Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Stephen Lam
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Wan L Lam
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
- Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Interdisciplinary Oncology Program, University of British Columbia, Vancouver, BC, Canada
| | - William W Lockwood
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada.
- Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.
- Interdisciplinary Oncology Program, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
12
|
Chauhan AS, Jhujh SS, Stewart GS. E3 ligases: a ubiquitous link between DNA repair, DNA replication and human disease. Biochem J 2024; 481:923-944. [PMID: 38985307 PMCID: PMC11346458 DOI: 10.1042/bcj20240124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/20/2024] [Accepted: 05/24/2024] [Indexed: 07/11/2024]
Abstract
Maintenance of genome stability is of paramount importance for the survival of an organism. However, genomic integrity is constantly being challenged by various endogenous and exogenous processes that damage DNA. Therefore, cells are heavily reliant on DNA repair pathways that have evolved to deal with every type of genotoxic insult that threatens to compromise genome stability. Notably, inherited mutations in genes encoding proteins involved in these protective pathways trigger the onset of disease that is driven by chromosome instability e.g. neurodevelopmental abnormalities, neurodegeneration, premature ageing, immunodeficiency and cancer development. The ability of cells to regulate the recruitment of specific DNA repair proteins to sites of DNA damage is extremely complex but is primarily mediated by protein post-translational modifications (PTMs). Ubiquitylation is one such PTM, which controls genome stability by regulating protein localisation, protein turnover, protein-protein interactions and intra-cellular signalling. Over the past two decades, numerous ubiquitin (Ub) E3 ligases have been identified to play a crucial role not only in the initiation of DNA replication and DNA damage repair but also in the efficient termination of these processes. In this review, we discuss our current understanding of how different Ub E3 ligases (RNF168, TRAIP, HUWE1, TRIP12, FANCL, BRCA1, RFWD3) function to regulate DNA repair and replication and the pathological consequences arising from inheriting deleterious mutations that compromise the Ub-dependent DNA damage response.
Collapse
Affiliation(s)
- Anoop S. Chauhan
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, U.K
| | - Satpal S. Jhujh
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, U.K
| | - Grant S. Stewart
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, U.K
| |
Collapse
|
13
|
Khodaverdian V, Sano T, Maggs LR, Tomarchio G, Dias A, Tran M, Clairmont C, McVey M. REV1 coordinates a multi-faceted tolerance response to DNA alkylation damage and prevents chromosome shattering in Drosophila melanogaster. PLoS Genet 2024; 20:e1011181. [PMID: 39074150 PMCID: PMC11309488 DOI: 10.1371/journal.pgen.1011181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 08/08/2024] [Accepted: 07/09/2024] [Indexed: 07/31/2024] Open
Abstract
When replication forks encounter damaged DNA, cells utilize damage tolerance mechanisms to allow replication to proceed. These include translesion synthesis at the fork, postreplication gap filling, and template switching via fork reversal or homologous recombination. The extent to which these different damage tolerance mechanisms are utilized depends on cell, tissue, and developmental context-specific cues, the last two of which are poorly understood. To address this gap, we have investigated damage tolerance responses in Drosophila melanogaster. We report that tolerance of DNA alkylation damage in rapidly dividing larval tissues depends heavily on translesion synthesis. Furthermore, we show that the REV1 protein plays a multi-faceted role in damage tolerance in Drosophila. Larvae lacking REV1 are hypersensitive to methyl methanesulfonate (MMS) and have highly elevated levels of γ-H2Av (Drosophila γ-H2AX) foci and chromosome aberrations in MMS-treated tissues. Loss of the REV1 C-terminal domain (CTD), which recruits multiple translesion polymerases to damage sites, sensitizes flies to MMS. In the absence of the REV1 CTD, DNA polymerases eta and zeta become critical for MMS tolerance. In addition, flies lacking REV3, the catalytic subunit of polymerase zeta, require the deoxycytidyl transferase activity of REV1 to tolerate MMS. Together, our results demonstrate that Drosophila prioritize the use of multiple translesion polymerases to tolerate alkylation damage and highlight the critical role of REV1 in the coordination of this response to prevent genome instability.
Collapse
Affiliation(s)
- Varandt Khodaverdian
- Department of Biology, Tufts University, Medford, Massachusetts, United States of America
| | - Tokio Sano
- Department of Biology, Tufts University, Medford, Massachusetts, United States of America
| | - Lara R. Maggs
- Department of Biology, Tufts University, Medford, Massachusetts, United States of America
| | - Gina Tomarchio
- Department of Biology, Tufts University, Medford, Massachusetts, United States of America
| | - Ana Dias
- Department of Biology, Tufts University, Medford, Massachusetts, United States of America
| | - Mai Tran
- Department of Biology, Tufts University, Medford, Massachusetts, United States of America
| | - Connor Clairmont
- Department of Biology, Tufts University, Medford, Massachusetts, United States of America
| | - Mitch McVey
- Department of Biology, Tufts University, Medford, Massachusetts, United States of America
| |
Collapse
|
14
|
Søgaard CK, Otterlei M. Targeting proliferating cell nuclear antigen (PCNA) for cancer therapy. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2024; 100:209-246. [PMID: 39034053 DOI: 10.1016/bs.apha.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Proliferating cell nuclear antigen (PCNA) is an essential scaffold protein in many cellular processes. It is best known for its role as a DNA sliding clamp and processivity factor during DNA replication, which has been extensively reviewed by others. However, the importance of PCNA extends beyond its DNA-associated functions in DNA replication, chromatin remodelling, DNA repair and DNA damage tolerance (DDT), as new non-canonical roles of PCNA in the cytosol have recently been identified. These include roles in the regulation of immune evasion, apoptosis, metabolism, and cellular signalling. The diverse roles of PCNA are largely mediated by its myriad protein interactions, and its centrality to cellular processes makes PCNA a valid therapeutic anticancer target. PCNA is expressed in all cells and plays an essential role in normal cellular homeostasis; therefore, the main challenge in targeting PCNA is to selectively kill cancer cells while avoiding unacceptable toxicity to healthy cells. This chapter focuses on the stress-related roles of PCNA, and how targeting these PCNA roles can be exploited in cancer therapy.
Collapse
Affiliation(s)
- Caroline K Søgaard
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Marit Otterlei
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, NTNU Norwegian University of Science and Technology, Trondheim, Norway; APIM Therapeutics A/S, Trondheim, Norway.
| |
Collapse
|
15
|
Castaño BA, Schorer S, Guo Y, Calzetta NL, Gottifredi V, Wiesmüller L, Biber S. The levels of p53 govern the hierarchy of DNA damage tolerance pathway usage. Nucleic Acids Res 2024; 52:3740-3760. [PMID: 38321962 PMCID: PMC11039994 DOI: 10.1093/nar/gkae061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/12/2024] [Accepted: 02/01/2024] [Indexed: 02/08/2024] Open
Abstract
It is well-established that, through canonical functions in transcription and DNA repair, the tumor suppressor p53 plays a central role in safeguarding cells from the consequences of DNA damage. Recent data retrieved in tumor and stem cells demonstrated that p53 also carries out non-canonical functions when interacting with the translesion synthesis (TLS) polymerase iota (POLι) at DNA replication forks. This protein complex triggers a DNA damage tolerance (DDT) mechanism controlling the DNA replication rate. Given that the levels of p53 trigger non-binary rheostat-like functions in response to stress or during differentiation, we explore the relevance of the p53 levels for its DDT functions at the fork. We show that subtle changes in p53 levels modulate the contribution of some DDT factors including POLι, POLη, POLζ, REV1, PCNA, PRIMPOL, HLTF and ZRANB3 to the DNA replication rate. Our results suggest that the levels of p53 are central to coordinate the balance between DDT pathways including (i) fork-deceleration by the ZRANB3-mediated fork reversal factor, (ii) POLι-p53-mediated fork-slowing, (iii) POLι- and POLη-mediated TLS and (iv) PRIMPOL-mediated fork-acceleration. Collectively, our study reveals the relevance of p53 protein levels for the DDT pathway choice in replicating cells.
Collapse
Affiliation(s)
- Bryan A Castaño
- Department of Obstetrics and Gynecology, Ulm University, Ulm 89075, Germany
| | - Sabrina Schorer
- Department of Obstetrics and Gynecology, Ulm University, Ulm 89075, Germany
| | - Yitian Guo
- Department of Obstetrics and Gynecology, Ulm University, Ulm 89075, Germany
| | | | | | - Lisa Wiesmüller
- Department of Obstetrics and Gynecology, Ulm University, Ulm 89075, Germany
| | - Stephanie Biber
- Department of Obstetrics and Gynecology, Ulm University, Ulm 89075, Germany
| |
Collapse
|
16
|
Khodaverdian V, Sano T, Maggs L, Tomarchio G, Dias A, Clairmont C, Tran M, McVey M. REV1 Coordinates a Multi-Faceted Tolerance Response to DNA Alkylation Damage and Prevents Chromosome Shattering in Drosophila melanogaster. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.13.580051. [PMID: 38405884 PMCID: PMC10888836 DOI: 10.1101/2024.02.13.580051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
When replication forks encounter damaged DNA, cells utilize DNA damage tolerance mechanisms to allow replication to proceed. These include translesion synthesis at the fork, postreplication gap filling, and template switching via fork reversal or homologous recombination. The extent to which these different damage tolerance mechanisms are utilized depends on cell, tissue, and developmental context-specific cues, the last two of which are poorly understood. To address this gap, we have investigated damage tolerance responses following alkylation damage in Drosophila melanogaster. We report that translesion synthesis, rather than template switching, is the preferred response to alkylation-induced damage in diploid larval tissues. Furthermore, we show that the REV1 protein plays a multi-faceted role in damage tolerance in Drosophila. Drosophila larvae lacking REV1 are hypersensitive to methyl methanesulfonate (MMS) and have highly elevated levels of γ-H2Av foci and chromosome aberrations in MMS-treated tissues. Loss of the REV1 C-terminal domain (CTD), which recruits multiple translesion polymerases to damage sites, sensitizes flies to MMS. In the absence of the REV1 CTD, DNA polymerases eta and zeta become critical for MMS tolerance. In addition, flies lacking REV3, the catalytic subunit of polymerase zeta, require the deoxycytidyl transferase activity of REV1 to tolerate MMS. Together, our results demonstrate that Drosophila prioritize the use of multiple translesion polymerases to tolerate alkylation damage and highlight the critical role of REV1 in the coordination of this response to prevent genome instability.
Collapse
Affiliation(s)
- Varandt Khodaverdian
- Department of Biology, Tufts University, Medford, MA 02155
- Current address: Yarrow Biotechnology, New York, NY
| | - Tokio Sano
- Department of Biology, Tufts University, Medford, MA 02155
| | - Lara Maggs
- Department of Biology, Tufts University, Medford, MA 02155
| | - Gina Tomarchio
- Current address: Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Ana Dias
- Department of Biology, Tufts University, Medford, MA 02155
| | - Connor Clairmont
- Department of Biology, Tufts University, Medford, MA 02155
- Current address: Vertex Pharmaceuticals, Boston, MA
| | - Mai Tran
- Department of Biology, Tufts University, Medford, MA 02155
| | - Mitch McVey
- Department of Biology, Tufts University, Medford, MA 02155
| |
Collapse
|
17
|
Mellor C, Nassar J, Šviković S, Sale J. PRIMPOL ensures robust handoff between on-the-fly and post-replicative DNA lesion bypass. Nucleic Acids Res 2024; 52:243-258. [PMID: 37971291 PMCID: PMC10783524 DOI: 10.1093/nar/gkad1054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/17/2023] [Accepted: 10/24/2023] [Indexed: 11/19/2023] Open
Abstract
The primase/polymerase PRIMPOL restarts DNA synthesis when replication is arrested by template impediments. However, we do not have a comprehensive view of how PRIMPOL-dependent repriming integrates with the main pathways of damage tolerance, REV1-dependent 'on-the-fly' lesion bypass at the fork and PCNA ubiquitination-dependent post-replicative gap filling. Guided by genome-wide CRISPR/Cas9 screens to survey the genetic interactions of PRIMPOL in a non-transformed and p53-proficient human cell line, we find that PRIMPOL is needed for cell survival following loss of the Y-family polymerases REV1 and POLη in a lesion-dependent manner, while it plays a broader role in promoting survival of cells lacking PCNA K164-dependent post-replicative gap filling. Thus, while REV1- and PCNA K164R-bypass provide two layers of protection to ensure effective damage tolerance, PRIMPOL is required to maximise the effectiveness of the interaction between them. We propose this is through the restriction of post-replicative gap length provided by PRIMPOL-dependent repriming.
Collapse
Affiliation(s)
- Christopher Mellor
- Division of Protein & Nucleic Acid Chemistry, Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Joelle Nassar
- Division of Protein & Nucleic Acid Chemistry, Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Saša Šviković
- Division of Protein & Nucleic Acid Chemistry, Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Julian E Sale
- Division of Protein & Nucleic Acid Chemistry, Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| |
Collapse
|
18
|
Chai X, Tao Q, Li L. The role of RING finger proteins in chromatin remodeling and biological functions. Epigenomics 2023; 15:1053-1068. [PMID: 37964749 DOI: 10.2217/epi-2023-0234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023] Open
Abstract
Mammalian DNA duplexes are highly condensed with different components, including histones, enabling chromatin formation. Chromatin remodeling is involved in multiple biological processes, including gene transcription regulation and DNA damage repair. Recent research has highlighted the significant involvement of really interesting new gene (RING) finger proteins in chromatin remodeling, primarily attributed to their E3 ubiquitin ligase activities. In this review, we highlight the pivotal role of RING finger proteins in chromatin remodeling and provide an overview of their capacity to ubiquitinate specific histones, modulate ATP-dependent chromatin remodeling complexes and interact with various histone post-translational modifications. We also discuss the diverse biological effects of RING finger protein-mediated chromatin remodeling and explore potential therapeutic strategies for targeting these proteins.
Collapse
Affiliation(s)
- Xiaoxue Chai
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Center for Cancer, The Chinese University of Hong Kong, Hong Kong
| | - Qian Tao
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Center for Cancer, The Chinese University of Hong Kong, Hong Kong
| | - Lili Li
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Center for Cancer, The Chinese University of Hong Kong, Hong Kong
| |
Collapse
|
19
|
Hawks AL, Bergmann A, McCraw TJ, Mason JM. UBC13-mediated template switching promotes replication stress resistance in FBH1-deficient cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.04.556280. [PMID: 37732269 PMCID: PMC10508767 DOI: 10.1101/2023.09.04.556280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
The proper resolution of DNA damage during replication is essential for genome stability. FBH1, a UvrD, helicase plays crucial roles in the DNA damage response. FBH1 promotes double strand break formation and signaling in response to prolonged replication stress to initiate apoptosis. Human FBH1 regulates RAD51 to inhibit homologous recombination. A previous study suggested that mis-regulation of RAD51 may contribute to replication stress resistance in FBH1-deficient cells, but the underlying mechanism remains unknown. Here, we provide direct evidence that RAD51 promotes replication stress resistance in FBH1-deficient cells. We demonstrate inhibition of RAD51 using the small molecule, B02, partially rescues double strand break signaling in FBH1-deficient cells. We show that inhibition of only the strand exchange activity of RAD51 rescues double strand break signaling in FBH1 knockout cells. Finally, we show that depletion of UBC13, a E2 protein that promotes RAD51-dependent template switching, rescues double strand break formation and signaling sensitizing FBH1-deficient cells to replication stress. Our results suggest FBH1 regulates template switching to promote replication stress sensitivity.
Collapse
Affiliation(s)
- Alexandra L. Hawks
- Department of Genetics and Biochemistry, Clemson University, Clemson University
| | - Amy Bergmann
- Department of Genetics and Biochemistry, Clemson University, Clemson University
| | - Tyler J. McCraw
- Department of Genetics and Biochemistry, Clemson University, Clemson University
| | - Jennifer M. Mason
- Department of Genetics and Biochemistry, Clemson University, Clemson University
| |
Collapse
|
20
|
Rastokina A, Cebrián J, Mozafari N, Mandel NH, Smith CI, Lopes M, Zain R, Mirkin S. Large-scale expansions of Friedreich's ataxia GAA•TTC repeats in an experimental human system: role of DNA replication and prevention by LNA-DNA oligonucleotides and PNA oligomers. Nucleic Acids Res 2023; 51:8532-8549. [PMID: 37216608 PMCID: PMC10484681 DOI: 10.1093/nar/gkad441] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 05/02/2023] [Accepted: 05/20/2023] [Indexed: 05/24/2023] Open
Abstract
Friedreich's ataxia (FRDA) is caused by expansions of GAA•TTC repeats in the first intron of the human FXN gene that occur during both intergenerational transmissions and in somatic cells. Here we describe an experimental system to analyze large-scale repeat expansions in cultured human cells. It employs a shuttle plasmid that can replicate from the SV40 origin in human cells or be stably maintained in S. cerevisiae utilizing ARS4-CEN6. It also contains a selectable cassette allowing us to detect repeat expansions that accumulated in human cells upon plasmid transformation into yeast. We indeed observed massive expansions of GAA•TTC repeats, making it the first genetically tractable experimental system to study large-scale repeat expansions in human cells. Further, GAA•TTC repeats stall replication fork progression, while the frequency of repeat expansions appears to depend on proteins implicated in replication fork stalling, reversal, and restart. Locked nucleic acid (LNA)-DNA mixmer oligonucleotides and peptide nucleic acid (PNA) oligomers, which interfere with triplex formation at GAA•TTC repeats in vitro, prevented the expansion of these repeats in human cells. We hypothesize, therefore, that triplex formation by GAA•TTC repeats stall replication fork progression, ultimately leading to repeat expansions during replication fork restart.
Collapse
Affiliation(s)
| | - Jorge Cebrián
- Department of Biology, Tufts University, Medford, MA 02155, USA
| | - Negin Mozafari
- Department of Laboratory Medicine, Translational Research Center Karolinska (TRACK), Karolinska Institutet, Karolinska University Hospital, SE-171 77 Stockholm, Sweden
| | | | - C I Edvard Smith
- Department of Laboratory Medicine, Translational Research Center Karolinska (TRACK), Karolinska Institutet, Karolinska University Hospital, SE-171 77 Stockholm, Sweden
| | - Massimo Lopes
- Institute of Molecular Cancer Research, University of Zurich, Zurich 8057, Switzerland
| | - Rula Zain
- Department of Laboratory Medicine, Translational Research Center Karolinska (TRACK), Karolinska Institutet, Karolinska University Hospital, SE-171 77 Stockholm, Sweden
- Center for Rare Diseases, Karolinska University Hospital, SE-17176 Stockholm, Sweden
| | - Sergei M Mirkin
- Department of Biology, Tufts University, Medford, MA 02155, USA
| |
Collapse
|
21
|
Kaur G, Helmer RA, Martinez-Marin D, Sennoune SR, Washburn RL, Martinez-Zaguilan R, Dufour JM, Chilton BS. Helicase-like transcription factor (Hltf)-deletion activates Hmgb1-Rage axis and granzyme A-mediated killing of pancreatic β cells resulting in neonatal lethality. PLoS One 2023; 18:e0286109. [PMID: 37624843 PMCID: PMC10456192 DOI: 10.1371/journal.pone.0286109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 05/09/2023] [Indexed: 08/27/2023] Open
Abstract
Epigenetic mechanisms are integral to pancreatic β cell function. Promoter hypermethylation of the helicase like-transcription factor (HLTF) gene-a component of the cellular DNA damage response that contributes to genome stability-has been implicated in age-associated changes in β cells. To study HLTF, we generated global and β cell-specific (β) Hltf knockout (KO) immune competent (IC) and immune deficient (ID) Rag2-/IL2- mice. IC global and β Hltf KO mice were neonatal lethal whereas ID global and β Hltf KO newborn mice had normal survival. This focused our investigation on the effects of Rag2 interruption with common gamma chain interruption on β cell function/survival. Three-way transcriptomic (RNAseq) analyses of whole pancreata from IC and ID newborn β Hltf KO and wild type (Hltf +/+) controls combined with spatially resolved transcriptomic analysis of formalin fixed paraffin embedded tissue, immunohistochemistry and laser scanning confocal microscopy showed DNA damage caused by β Hltf KO in IC mice upregulated the Hmgb1-Rage axis and a gene signature for innate immune cells. Perforin-delivered granzyme A (GzmA) activation of DNase, Nme1, showed damaged nuclear single-stranded DNA (γH2AX immunostaining). This caspase-independent method of cell death was supported by transcriptional downregulation of Serpinc1 gene that encodes a serine protease inhibitor of GzmA. Increased transcriptional availability of complement receptors C3ar1 and C5ar1 likely invited crosstalk with Hmgb1 to amplify inflammation. This study explores the complex dialog between β cells and immune cells during development. It has implications for the initiation of type I diabetes in utero when altered gene expression that compromises genome stability invokes a localized inflammatory response.
Collapse
Affiliation(s)
- Gurvinder Kaur
- Department of Medical Education, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| | - Rebecca A. Helmer
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| | - Dalia Martinez-Marin
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
- Department of Immunology and Molecular Microbiology, Texas Tech University-Health Sciences Center, Lubbock, Texas, United States of America
| | - Souad R. Sennoune
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| | - Rachel L. Washburn
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| | - Raul Martinez-Zaguilan
- Department of Cell Physiology and Molecular Biophysics, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| | - Jannette M. Dufour
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| | - Beverly S. Chilton
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| |
Collapse
|
22
|
Venkadakrishnan J, Lahane G, Dhar A, Xiao W, Bhat KM, Pandita TK, Bhat A. Implications of Translesion DNA Synthesis Polymerases on Genomic Stability and Human Health. Mol Cell Biol 2023; 43:401-425. [PMID: 37439479 PMCID: PMC10448981 DOI: 10.1080/10985549.2023.2224199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/03/2023] [Accepted: 06/01/2023] [Indexed: 07/14/2023] Open
Abstract
Replication fork arrest-induced DNA double strand breaks (DSBs) caused by lesions are effectively suppressed in cells due to the presence of a specialized mechanism, commonly referred to as DNA damage tolerance (DDT). In eukaryotic cells, DDT is facilitated through translesion DNA synthesis (TLS) carried out by a set of DNA polymerases known as TLS polymerases. Another parallel mechanism, referred to as homology-directed DDT, is error-free and involves either template switching or fork reversal. The significance of the DDT pathway is well established. Several diseases have been attributed to defects in the TLS pathway, caused either by mutations in the TLS polymerase genes or dysregulation. In the event of a replication fork encountering a DNA lesion, cells switch from high-fidelity replicative polymerases to low-fidelity TLS polymerases, which are associated with genomic instability linked with several human diseases including, cancer. The role of TLS polymerases in chemoresistance has been recognized in recent years. In addition to their roles in the DDT pathway, understanding noncanonical functions of TLS polymerases is also a key to unraveling their importance in maintaining genomic stability. Here we summarize the current understanding of TLS pathway in DDT and its implication for human health.
Collapse
Affiliation(s)
| | - Ganesh Lahane
- Department of Pharmacy, Birla Institute of Technology and Sciences Pilani, Hyderabad Campus, Hyderabad, India
| | - Arti Dhar
- Department of Pharmacy, Birla Institute of Technology and Sciences Pilani, Hyderabad Campus, Hyderabad, India
| | - Wei Xiao
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Canada
| | - Krishna Moorthi Bhat
- Department of Molecular Medicine, University of South Florida, Tampa, Florida, USA
| | - Tej K. Pandita
- Center for Genomics and Precision Medicine, Texas A&M College of Medicine, Houston, Texas, USA
| | - Audesh Bhat
- Center for Molecular Biology, Central University of Jammu, UT Jammu and Kashmir, India
| |
Collapse
|
23
|
Oh JM, Kang Y, Park J, Sung Y, Kim D, Seo Y, Lee E, Ra J, Amarsanaa E, Park YU, Lee S, Hwang J, Kim H, Schärer O, Cho S, Lee C, Takata KI, Lee J, Myung K. MSH2-MSH3 promotes DNA end resection during homologous recombination and blocks polymerase theta-mediated end-joining through interaction with SMARCAD1 and EXO1. Nucleic Acids Res 2023; 51:5584-5602. [PMID: 37140056 PMCID: PMC10287916 DOI: 10.1093/nar/gkad308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 04/04/2023] [Accepted: 04/27/2023] [Indexed: 05/05/2023] Open
Abstract
DNA double-strand break (DSB) repair via homologous recombination is initiated by end resection. The extent of DNA end resection determines the choice of the DSB repair pathway. Nucleases for end resection have been extensively studied. However, it is still unclear how the potential DNA structures generated by the initial short resection by MRE11-RAD50-NBS1 are recognized and recruit proteins, such as EXO1, to DSB sites to facilitate long-range resection. We found that the MSH2-MSH3 mismatch repair complex is recruited to DSB sites through interaction with the chromatin remodeling protein SMARCAD1. MSH2-MSH3 facilitates the recruitment of EXO1 for long-range resection and enhances its enzymatic activity. MSH2-MSH3 also inhibits access of POLθ, which promotes polymerase theta-mediated end-joining (TMEJ). Collectively, we present a direct role of MSH2-MSH3 in the initial stages of DSB repair by promoting end resection and influencing the DSB repair pathway by favoring homologous recombination over TMEJ.
Collapse
Affiliation(s)
- Jung-Min Oh
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
- Department of Oral Biochemistry, Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea
| | - Yujin Kang
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan44919, Republic of Korea
| | - Jumi Park
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan44919, Republic of Korea
| | - Yubin Sung
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Dayoung Kim
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan44919, Republic of Korea
| | - Yuri Seo
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Eun A Lee
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Jae Sun Ra
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Enkhzul Amarsanaa
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan44919, Republic of Korea
| | - Young-Un Park
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Seon Young Lee
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Jung Me Hwang
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Hongtae Kim
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan44919, Republic of Korea
| | - Orlando Schärer
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan44919, Republic of Korea
| | - Seung Woo Cho
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan44919, Republic of Korea
| | - Changwook Lee
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan44919, Republic of Korea
| | - Kei-ichi Takata
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan44919, Republic of Korea
| | - Ja Yil Lee
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan44919, Republic of Korea
| | - Kyungjae Myung
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan44919, Republic of Korea
| |
Collapse
|
24
|
Tan Y, Wu D, Liu ZY, Yu HQ, Zheng XR, Lin XT, Bie P, Zhang LD, Xie CM. Degradation of helicase-like transcription factor (HLTF) by β-TrCP promotes hepatocarcinogenesis via activation of the p62/mTOR axis. J Mol Cell Biol 2023; 15:mjad012. [PMID: 36822623 PMCID: PMC10478628 DOI: 10.1093/jmcb/mjad012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 11/27/2022] [Accepted: 02/22/2023] [Indexed: 02/25/2023] Open
Abstract
Helicase-like transcription factor (HLTF) has been found to be involved in the maintenance of genome stability and tumour suppression, but whether its downregulation in cancers is associated with posttranslational regulation remains unclear. Here, we observed that HLTF was significantly downregulated in hepatocellular carcinoma (HCC) tissues and positively associated with the survival of HCC patients. Mechanistically, the decreased expression of HLTF in HCC was attributed to elevated β-TrCP-mediated ubiquitination and degradation. Knockdown of HLTF enhanced p62 transcriptional activity and mammalian target of rapamycin (mTOR) activation, leading to HCC tumourigenesis. Inhibition of mTOR effectively blocked β-TrCP overexpression- or HLTF knockdown-mediated HCC tumourigenesis and metastasis. Furthermore, in clinical tissues, decreased HLTF expression was positively correlated with elevated expression of β-TrCP, p62, or p-mTOR in HCC patients. Overall, our data not only uncover new roles of HLTF in HCC cell proliferation and metastasis, but also reveal a novel posttranslational modification of HLTF by β-TrCP, indicating that the β-TrCP/HLTF/p62/mTOR axis may be a new oncogenic driver involved in HCC development. This finding provides a potential therapeutic strategy for HCC patients by targeting the β-TrCP/HLTF/p62/mTOR axis.
Collapse
Affiliation(s)
- Ye Tan
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Department of Hepatobiliary and Pancreatic Surgery, The Third Affiliated Hospital of Chongqing Medical University (Gener Hospital), Chongqing 401120, China
| | - Di Wu
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Ze-Yu Liu
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Hong-Qiang Yu
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Xiang-Ru Zheng
- Department of Hepatobiliary and Pancreatic Surgery, The Third Affiliated Hospital of Chongqing Medical University (Gener Hospital), Chongqing 401120, China
| | - Xiao-Tong Lin
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Ping Bie
- Department of Hepatobiliary and Pancreatic Surgery, The Third Affiliated Hospital of Chongqing Medical University (Gener Hospital), Chongqing 401120, China
| | - Lei-Da Zhang
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Chuan-Ming Xie
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| |
Collapse
|
25
|
Moore CE, Yalcindag SE, Czeladko H, Ravindranathan R, Wijesekara Hanthi Y, Levy JC, Sannino V, Schindler D, Ciccia A, Costanzo V, Elia AE. RFWD3 promotes ZRANB3 recruitment to regulate the remodeling of stalled replication forks. J Cell Biol 2023; 222:e202106022. [PMID: 37036693 PMCID: PMC10097976 DOI: 10.1083/jcb.202106022] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/05/2022] [Accepted: 01/30/2023] [Indexed: 04/11/2023] Open
Abstract
Replication fork reversal is an important mechanism to protect the stability of stalled forks and thereby preserve genomic integrity. While multiple enzymes have been identified that can remodel forks, their regulation remains poorly understood. Here, we demonstrate that the ubiquitin ligase RFWD3, whose mutation causes Fanconi Anemia, promotes recruitment of the DNA translocase ZRANB3 to stalled replication forks and ubiquitinated sites of DNA damage. Using electron microscopy, we show that RFWD3 stimulates fork remodeling in a ZRANB3-epistatic manner. Fork reversal is known to promote nascent DNA degradation in BRCA2-deficient cells. Consistent with a role for RFWD3 in fork reversal, inactivation of RFWD3 in these cells rescues fork degradation and collapse, analogous to ZRANB3 inactivation. RFWD3 loss impairs ZRANB3 localization to spontaneous nuclear foci induced by inhibition of the PCNA deubiquitinase USP1. We demonstrate that RFWD3 promotes PCNA ubiquitination and interaction with ZRANB3, providing a mechanism for RFWD3-dependent recruitment of ZRANB3. Together, these results uncover a new role for RFWD3 in regulating ZRANB3-dependent fork remodeling.
Collapse
Affiliation(s)
- Chandler E. Moore
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Selin E. Yalcindag
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Hanna Czeladko
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ramya Ravindranathan
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Yodhara Wijesekara Hanthi
- DNA Metabolism Laboratory, IFOM ETS, The AIRC Institute for Molecular Oncology, Milan, Italy
- Department of Oncology and Haematology-Oncology, University of Milan, Milan, Italy
| | - Juliana C. Levy
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Vincenzo Sannino
- DNA Metabolism Laboratory, IFOM ETS, The AIRC Institute for Molecular Oncology, Milan, Italy
- Department of Oncology and Haematology-Oncology, University of Milan, Milan, Italy
| | - Detlev Schindler
- Department of Human Genetics, Biozentrum, University of Würzburg, Würzburg, Germany
| | - Alberto Ciccia
- Department of Genetics and Development, Institute for Cancer Genetics, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Vincenzo Costanzo
- DNA Metabolism Laboratory, IFOM ETS, The AIRC Institute for Molecular Oncology, Milan, Italy
- Department of Oncology and Haematology-Oncology, University of Milan, Milan, Italy
| | - Andrew E.H. Elia
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
26
|
Krawczyk M, Halas A, Sledziewska-Gojska E. A novel role for Mms2 in the control of spontaneous mutagenesis and Pol3 abundance. DNA Repair (Amst) 2023; 125:103484. [PMID: 36934633 DOI: 10.1016/j.dnarep.2023.103484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/27/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023]
Abstract
Mms2 is a ubiquitin E2-variant protein with a very well-documented function in the tolerance pathway that protects both human and yeast cells from the lethal and mutagenic effects of DNA damage. Interestingly, a high expression level of human MMS2 is associated with poor survival prognosis in different cancer diseases. Here we have analyzed the physiological effects of Mms2 overproduction in yeast cells. We show that an increased level of this protein causes a spontaneous mutator effect independent of Ubc13, a cognate partner of Mms2 in the PCNA-polyubiquitinating complex responsible for the template switch. Instead, this new promutagenic role of Mms2 requires Ubc4 (E2) and two ubiquitin ligases of HECT and RING families, Rsp5 and Not4, respectively. We have established that the promutagenic activity of Mms2 is dependent on the activities of error-prone DNA polymerase ζ and Rev1. Additionally, it requires the ubiquitination of K164 in PCNA which facilitates recruitment of these translesion polymerases to the replication complex. Importantly, we have established also that the cellular abundance of Mms2 influences the cellular level of Pol3, the catalytic subunit of replicative DNA polymerase δ. Lack of Mms2 increases the Pol3 abundance, whereas in response to Mms2 overproduction the Pol3 level decreases. We hypothesize that increased levels of spontaneous mutagenesis may result from the Mms2-induced reduction in Pol3 accumulation leading to increased participation of error-prone polymerase ζ in the replication complex.
Collapse
Affiliation(s)
- Michal Krawczyk
- Laboratory of Mutagenesis and DNA Damage Tolerance, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Agnieszka Halas
- Laboratory of Mutagenesis and DNA Damage Tolerance, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Ewa Sledziewska-Gojska
- Laboratory of Mutagenesis and DNA Damage Tolerance, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland.
| |
Collapse
|
27
|
González-Garrido C, Prado F. Parental histone distribution and location of the replication obstacle at nascent strands control homologous recombination. Cell Rep 2023; 42:112174. [PMID: 36862554 DOI: 10.1016/j.celrep.2023.112174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 12/09/2022] [Accepted: 02/10/2023] [Indexed: 03/03/2023] Open
Abstract
The advance and stability of replication forks rely on a tight co-regulation of DNA synthesis and nucleosome assembly. We show that mutants affected in parental histone recycling are impaired in the recombinational repair of the single-stranded DNA gaps generated in response to DNA adducts that hamper replication, which are then filled in by translesion synthesis. These recombination defects are in part due to an excess of parental nucleosomes at the invaded strand that destabilizes the sister chromatid junction formed after strand invasion through a Srs2-dependent mechanism. In addition, we show that a dCas9∗/R-loop is more recombinogenic when the dCas9∗/DNA-RNA hybrid interferes with the lagging than with the leading strand, and this recombination is particularly sensitive to problems in the deposition of parental histones at the strand that contains the hindrance. Therefore, parental histone distribution and location of the replication obstacle at the lagging or leading strand regulate homologous recombination.
Collapse
Affiliation(s)
- Cristina González-Garrido
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Universidad Pablo de Olavide, Seville, Spain
| | - Félix Prado
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Universidad Pablo de Olavide, Seville, Spain.
| |
Collapse
|
28
|
Effects of Defective Unloading and Recycling of PCNA Revealed by the Analysis of ELG1 Mutants. Int J Mol Sci 2023; 24:ijms24021568. [PMID: 36675081 PMCID: PMC9863317 DOI: 10.3390/ijms24021568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
Timely and complete replication of the genome is essential for life. The PCNA ring plays an essential role in DNA replication and repair by contributing to the processivity of DNA polymerases and by recruiting proteins that act in DNA replication-associated processes. The ELG1 gene encodes a protein that works, together with the Rfc2-5 subunits (shared by the replication factor C complex), to unload PCNA from chromatin. While ELG1 is not essential for life, deletion of the gene has strong consequences for the stability of the genome, and elg1 mutants exhibit sensitivity to DNA damaging agents, defects in genomic silencing, high mutation rates, and other striking phenotypes. Here, we sought to understand whether all the roles attributed to Elg1 in genome stability maintenance are due to its effects on PCNA unloading, or whether they are due to additional functions of the protein. By using a battery of mutants that affect PCNA accumulation at various degrees, we show that all the phenotypes measured correlate with the amount of PCNA left at the chromatin. Our results thus demonstrate the importance of Elg1 and of PCNA unloading in promoting proper chromatin structure and in maintaining a stable genome.
Collapse
|
29
|
Abstract
High-fidelity DNA replication is critical for the faithful transmission of genetic information to daughter cells. Following genotoxic stress, specialized DNA damage tolerance pathways are activated to ensure replication fork progression. These pathways include translesion DNA synthesis, template switching and repriming. In this Review, we describe how DNA damage tolerance pathways impact genome stability, their connection with tumorigenesis and their effects on cancer therapy response. We discuss recent findings that single-strand DNA gap accumulation impacts chemoresponse and explore a growing body of evidence that suggests that different DNA damage tolerance factors, including translesion synthesis polymerases, template switching proteins and enzymes affecting single-stranded DNA gaps, represent useful cancer targets. We further outline how the consequences of DNA damage tolerance mechanisms could inform the discovery of new biomarkers to refine cancer therapies.
Collapse
Affiliation(s)
- Emily Cybulla
- Division of Oncology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Alessandro Vindigni
- Division of Oncology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
30
|
Wang L, Yang K, Wang Q, Xiao W. Genetic analysis of DNA-damage tolerance pathways in Arabidopsis. PLANT CELL REPORTS 2023; 42:153-164. [PMID: 36319861 DOI: 10.1007/s00299-022-02942-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Genetic analysis revealed a two-branch DNA-damage tolerance mechanism in Arabidopsis, namely translesion DNA synthesis and error-free lesion bypass, represented by Rev3 and Rad5a-Uev1C/D, respectively. DNA-damage tolerance (DDT) is a mechanism by which cells complete replication in the presence of replication-blocking lesions. In budding yeast, DDT is achieved through Rad6-Rad18-mediated monoubiquitination of proliferating cell nuclear antigen (PCNA), which promotes translesion DNA synthesis (TLS) and is followed by Ubc13-Mms2-Rad5 mediated K63-linked PCNA polyubiquitination that promotes error-free lesion bypass. Arabidopsis and other known plant genomes contain all of the above homologous genes except RAD18, and whether plants possess an intact DDT mechanism is unclear. In this study, we created Arabidopsis UEV1 (homologous to yeast MMS2) gene mutations and obtained two sets of double mutant lines Atuev1ab and Atuev1cd. It turned out that the Atuev1cd, but not the Atuev1ab mutant, was sensitive to DNA damage. Genetic analyses revealed that AtUEV1C/D and AtRAD5a function in the same pathway, while TLS represented by AtREV3 functions in a separate pathway in response to replication-blocking lesions. Furthermore, unlike budding yeast RAD5 that also functions in the TLS pathway, AtRAD5a is not required for TLS. Observations in this study collectively establish a two-branch DDT model in plants with similarity to and difference from the yeast DDT.
Collapse
Affiliation(s)
- Linxiao Wang
- Beijing Key Laboratory of DNA Damage Responses and College of Life Sciences, Capital Normal University, Beijing, 100048, China
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - Kun Yang
- Beijing Key Laboratory of DNA Damage Responses and College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Qiuheng Wang
- Beijing Key Laboratory of DNA Damage Responses and College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Wei Xiao
- Beijing Key Laboratory of DNA Damage Responses and College of Life Sciences, Capital Normal University, Beijing, 100048, China.
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada.
| |
Collapse
|
31
|
TRIP13 Participates in Immediate-Early Sensing of DNA Strand Breaks and ATM Signaling Amplification through MRE11. Cells 2022; 11:cells11244095. [PMID: 36552858 PMCID: PMC9776959 DOI: 10.3390/cells11244095] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
Thyroid hormone receptor-interacting protein 13 (TRIP13) participates in various regulatory steps related to the cell cycle, such as the mitotic spindle assembly checkpoint and meiotic recombination, possibly by interacting with members of the HORMA domain protein family. Recently, it was reported that TRIP13 could regulate the choice of the DNA repair pathway, i.e., homologous recombination (HR) or nonhomologous end-joining (NHEJ). However, TRIP13 is recruited to DNA damage sites within a few seconds after damage and may therefore have another function in DNA repair other than regulation of the pathway choice. Furthermore, the depletion of TRIP13 inhibited both HR and NHEJ, suggesting that TRIP13 plays other roles besides regulation of choice between HR and NHEJ. To explore the unidentified functions of TRIP13 in the DNA damage response, we investigated its genome-wide interaction partners in the context of DNA damage using quantitative proteomics with proximity labeling. We identified MRE11 as a novel interacting partner of TRIP13. TRIP13 controlled the recruitment of MDC1 to DNA damage sites by regulating the interaction between MDC1 and the MRN complex. Consistently, TRIP13 was involved in ATM signaling amplification. Our study provides new insight into the function of TRIP13 in immediate-early DNA damage sensing and ATM signaling activation.
Collapse
|
32
|
Ho YC, Ku CS, Tsai SS, Shiu JL, Jiang YZ, Miriam HE, Zhang HW, Chen YT, Chiu WT, Chang SB, Shen CH, Myung K, Chi P, Liaw H. PARP1 recruits DNA translocases to restrain DNA replication and facilitate DNA repair. PLoS Genet 2022; 18:e1010545. [PMID: 36512630 PMCID: PMC9794062 DOI: 10.1371/journal.pgen.1010545] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 12/27/2022] [Accepted: 11/26/2022] [Indexed: 12/15/2022] Open
Abstract
Replication fork reversal which restrains DNA replication progression is an important protective mechanism in response to replication stress. PARP1 is recruited to stalled forks to restrain DNA replication. However, PARP1 has no helicase activity, and the mechanism through which PARP1 participates in DNA replication restraint remains unclear. Here, we found novel protein-protein interactions between PARP1 and DNA translocases, including HLTF, SHPRH, ZRANB3, and SMARCAL1, with HLTF showing the strongest interaction among these DNA translocases. Although HLTF and SHPRH share structural and functional similarity, it remains unclear whether SHPRH contains DNA translocase activity. We further identified the ability of SHPRH to restrain DNA replication upon replication stress, indicating that SHPRH itself could be a DNA translocase or a helper to facilitate DNA translocation. Although hydroxyurea (HU) and MMS induce different types of replication stress, they both induce common DNA replication restraint mechanisms independent of intra-S phase activation. Our results suggest that the PARP1 facilitates DNA translocase recruitment to damaged forks, preventing fork collapse and facilitating DNA repair.
Collapse
Affiliation(s)
- Yen-Chih Ho
- Department of Life Sciences, National Cheng Kung University, Tainan City, Taiwan
| | - Chen-Syun Ku
- Department of Life Sciences, National Cheng Kung University, Tainan City, Taiwan
| | - Siang-Sheng Tsai
- Department of Life Sciences, National Cheng Kung University, Tainan City, Taiwan
| | - Jia-Lin Shiu
- Department of Life Sciences, National Cheng Kung University, Tainan City, Taiwan
| | - Yi-Zhen Jiang
- Institute of Biochemical Sciences, National Taiwan University, Taipei City, Taiwan
| | - Hui Emmanuela Miriam
- Department of Life Sciences, National Cheng Kung University, Tainan City, Taiwan
| | - Han-Wen Zhang
- Department of Life Sciences, National Cheng Kung University, Tainan City, Taiwan
| | - Yen-Tzu Chen
- Department of Public Health & Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei City, Taiwan
| | - Wen-Tai Chiu
- Department of Biomedical Engineering, National Cheng Kung University, Tainan City, Taiwan
| | - Song-Bin Chang
- Department of Life Sciences, National Cheng Kung University, Tainan City, Taiwan
| | - Che-Hung Shen
- National Institute of Cancer Research, National Health Research Institutes, Tainan City, Taiwan
| | - Kyungjae Myung
- IBS Center for Genomic Integrity, UNIST-gil 50, Ulsan, Republic of Korea
| | - Peter Chi
- Institute of Biochemical Sciences, National Taiwan University, Taipei City, Taiwan
- Institute of Biological Chemistry, Academia Sinica, Taipei City, Taiwan
| | - Hungjiun Liaw
- Department of Life Sciences, National Cheng Kung University, Tainan City, Taiwan
- * E-mail:
| |
Collapse
|
33
|
Regulation of BRCA1 stability through the tandem UBX domains of isoleucyl-tRNA synthetase 1. Nat Commun 2022; 13:6732. [PMID: 36347866 PMCID: PMC9643514 DOI: 10.1038/s41467-022-34612-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 10/27/2022] [Indexed: 11/11/2022] Open
Abstract
Aminoacyl-tRNA synthetases (ARSs) have evolved to acquire various additional domains. These domains allow ARSs to communicate with other cellular proteins in order to promote non-translational functions. Vertebrate cytoplasmic isoleucyl-tRNA synthetases (IARS1s) have an uncharacterized unique domain, UNE-I. Here, we present the crystal structure of the chicken IARS1 UNE-I complexed with glutamyl-tRNA synthetase 1 (EARS1). UNE-I consists of tandem ubiquitin regulatory X (UBX) domains that interact with a distinct hairpin loop on EARS1 and protect its neighboring proteins in the multi-synthetase complex from degradation. Phosphomimetic mutation of the two serine residues in the hairpin loop releases IARS1 from the complex. IARS1 interacts with BRCA1 in the nucleus, regulates its stability by inhibiting ubiquitylation via the UBX domains, and controls DNA repair function.
Collapse
|
34
|
Hao X, Fan H, Yang J, Tang J, Zhou J, Zhao Y, Huang L, Xia Y. Network Pharmacology Research and Dual-omic Analyses Reveal the Molecular Mechanism of Natural Product Nodosin Inhibiting Muscle-Invasive Bladder Cancer in Vitro and in Vivo. JOURNAL OF NATURAL PRODUCTS 2022; 85:2006-2017. [PMID: 35976233 DOI: 10.1021/acs.jnatprod.2c00400] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Bladder cancer, specifically, muscle-invasive bladder cancer (MIBC), is among the most common malignant tumors. Patients with MIBC who cannot tolerate standard drugs require novel treatments. Targeting apoptosis may help treat cancer, which may be achieved with the use of some natural products. Nodosin, found in Isodon serra (Maxim.) Kudo (known as Xihuangcao), may inhibit bladder cancer cells. Transcriptomics and proteomics dual-omic analyses revealed the network pharmacological mechanism: (1) blocking the S phase by up-regulating RPA2, CLSPN, MDC1, PDCD2L, and E2F6 gene expressions, suppressing cancer cell proliferation; (2) inducing apoptosis and autophagy and restraining ferroptosis by up-regulating HMOX1, G0S2, SQSTM1, FTL, SLC7A11, and AIFM2 gene expressions; (3) preventing cancer cell migration by down-regulating NEXN, LIMA1, CFL2, PALLD, and ITGA3 gene expressions. In vivo, nodosin inhibited bladder cancer cell growth in a model of xenograft tumor in nude mice. This study is the first to report basic research findings on the network pharmacological mechanism of cytotoxicity of bladder cancer cells by nodosin, providing novel evidence for the application of nodosin in the field of oncology; however, other mechanisms may be involved in the effects of nodosin for further research. These findings provide a foundation for the development of novel MIBC drugs.
Collapse
Affiliation(s)
- Xiaopeng Hao
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan 450008, China
- Key Laboratory of Precision Oncology of Shandong Higher Education, Institute of Precision Medicine, Jining Medical University, Jining, Shandong 272067, China
| | - Huixia Fan
- Key Laboratory of Precision Oncology of Shandong Higher Education, Institute of Precision Medicine, Jining Medical University, Jining, Shandong 272067, China
| | - Jian Yang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jinfu Tang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Junhui Zhou
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yuyang Zhao
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Luqi Huang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan 450008, China
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yong Xia
- Key Laboratory of Precision Oncology of Shandong Higher Education, Institute of Precision Medicine, Jining Medical University, Jining, Shandong 272067, China
| |
Collapse
|
35
|
Kanao R, Kawai H, Taniguchi T, Takata M, Masutani C. RFWD3 and translesion DNA polymerases contribute to PCNA modification-dependent DNA damage tolerance. Life Sci Alliance 2022; 5:e202201584. [PMID: 35905994 PMCID: PMC9348633 DOI: 10.26508/lsa.202201584] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/03/2022] [Accepted: 07/06/2022] [Indexed: 11/24/2022] Open
Abstract
DNA damage tolerance pathways are regulated by proliferating cell nuclear antigen (PCNA) modifications at lysine 164. Translesion DNA synthesis by DNA polymerase η (Polη) is well studied, but less is known about Polη-independent mechanisms. Illudin S and its derivatives induce alkyl DNA adducts, which are repaired by transcription-coupled nucleotide excision repair (TC-NER). We demonstrate that in addition to TC-NER, PCNA modification at K164 plays an essential role in cellular resistance to these compounds by overcoming replication blockages, with no requirement for Polη. Polκ and RING finger and WD repeat domain 3 (RFWD3) contribute to tolerance, and are both dependent on PCNA modifications. Although RFWD3 is a FANC protein, we demonstrate that it plays a role in DNA damage tolerance independent of the FANC pathway. Finally, we demonstrate that RFWD3-mediated cellular survival after UV irradiation is dependent on PCNA modifications but is independent of Polη. Thus, RFWD3 contributes to PCNA modification-dependent DNA damage tolerance in addition to translesion DNA polymerases.
Collapse
Affiliation(s)
- Rie Kanao
- Department of Genome Dynamics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
- Department of Molecular Pharmaco-Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hidehiko Kawai
- Department of Nucleic Acids Biochemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Toshiyasu Taniguchi
- Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Japan
| | - Minoru Takata
- Laboratory of DNA Damage Signaling, Department of Late Effects Studies, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Chikahide Masutani
- Department of Genome Dynamics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
- Department of Molecular Pharmaco-Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
36
|
Miller AK, Mao G, Knicely BG, Daniels HG, Rahal C, Putnam CD, Kolodner RD, Goellner EM. Rad5 and Its Human Homologs, HLTF and SHPRH, Are Novel Interactors of Mismatch Repair. Front Cell Dev Biol 2022; 10:843121. [PMID: 35784486 PMCID: PMC9243396 DOI: 10.3389/fcell.2022.843121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 05/16/2022] [Indexed: 12/02/2022] Open
Abstract
DNA mismatch repair (MMR) repairs replication errors, and MMR defects play a role in both inherited cancer predisposition syndromes and in sporadic cancers. MMR also recognizes mispairs caused by environmental and chemotherapeutic agents; however, in these cases mispair recognition leads to apoptosis and not repair. Although mutation avoidance by MMR is fairly well understood, MMR-associated proteins are still being identified. We performed a bioinformatic analysis that implicated Saccharomyces cerevisiae Rad5 as a candidate for interacting with the MMR proteins Msh2 and Mlh1. Rad5 is a DNA helicase and E3 ubiquitin ligase involved in post-replicative repair and damage tolerance. We confirmed both interactions and found that the Mlh1 interaction is mediated by a conserved Mlh1-interacting motif (MIP box). Despite this, we did not find a clear role for Rad5 in the canonical MMR mutation avoidance pathway. The interaction of Rad5 with Msh2 and Mlh1 is conserved in humans, although each of the Rad5 human homologs, HLTF and SHPRH, shared only one of the interactions: HLTF interacts with MSH2, and SHPRH interacts with MLH1. Moreover, depletion of SHPRH, but not HLTF, results in a mild increase in resistance to alkylating agents although not as strong as loss of MMR, suggesting gene duplication led to specialization of the MMR-protein associated roles of the human Rad5 homologs. These results provide insights into how MMR accessory factors involved in the MMR-dependent apoptotic response interact with the core MMR machinery and have important health implications into how human cells respond to environmental toxins, tumor development, and treatment choices of tumors with defects in Rad5 homologs.
Collapse
Affiliation(s)
- Anna K. Miller
- College of Medicine Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, United States
| | - Guogen Mao
- College of Medicine Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, United States
| | - Breanna G. Knicely
- College of Medicine Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, United States
| | - Hannah G. Daniels
- College of Medicine Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, United States
| | - Christine Rahal
- Ludiwg Institute for Cancer Research San Diego, San Diego, CA, United States
| | - Christopher D. Putnam
- Ludiwg Institute for Cancer Research San Diego, San Diego, CA, United States
- Department of Medicine, University of California San Diego, San Diego, CA, United States
| | - Richard D. Kolodner
- Ludiwg Institute for Cancer Research San Diego, San Diego, CA, United States
- Moores-UCSD Cancer Center, San Diego, CA, United States
- Institute of Genomic Medicine, San Diego, CA, United States
- Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, CA, United States
| | - Eva M. Goellner
- College of Medicine Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, United States
- Markey Cancer Center, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
37
|
Kramarz K, Dziadkowiec D. Rrp1, Rrp2 and Uls1 - Yeast SWI2/SNF2 DNA dependent translocases in genome stability maintenance. DNA Repair (Amst) 2022; 116:103356. [PMID: 35716431 DOI: 10.1016/j.dnarep.2022.103356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/12/2022] [Accepted: 06/08/2022] [Indexed: 11/03/2022]
Abstract
Multiple eukaryotic SWI2/SNF2 DNA translocases safeguard genome integrity, mostly by remodelling nucleosomes, but also by fine-tuning mechanisms of DNA repair, such as homologous recombination. Among this large family there is a unique class of Rad5/16-like enzymes, including Saccharomyces cerevisiae Uls1 and its Schizosaccharomyces pombe orthologues Rrp1 and Rrp2, that have both translocase and E3 ubiquitin ligase activities, and are often directed towards their substrates by SUMOylation. Here we summarize recent advances in understanding how different activities of these yeast proteins jointly contribute to their important roles in replication stress response particularly at centromeres and telomeres. This extends the possible range of functions performed by this class of SNF2 enzymes in human cells involving both their translocase and ubiquitin ligase activities and related to SUMOylation pathways within the nucleus.
Collapse
Affiliation(s)
- Karol Kramarz
- Academic Excellence Hub - Research Centre for DNA Repair and Replication, Faculty of Biological Sciences, University of Wrocław, Poland.
| | | |
Collapse
|
38
|
Dusek CO, Dash RC, McPherson KS, Calhoun JT, Bezsonova I, Korzhnev DM, Hadden MK. DNA Sequence Specificity Reveals a Role of the HLTF HIRAN Domain in the Recognition of Trinucleotide Repeats. Biochemistry 2022; 61:10.1021/acs.biochem.2c00027. [PMID: 35608245 PMCID: PMC9684356 DOI: 10.1021/acs.biochem.2c00027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
DNA damage tolerance (DDT) pathways enable cells to cope with a variety of replication blocks that threaten their ability to complete DNA replication. Helicase-like transcription factor (HLTF) plays a central role in the error-free DDT pathway, template switching (TS), by serving as a ubiquitin ligase to polyubiquitinate the DNA sliding clamp PCNA, which promotes TS initiation. HLTF also serves as an ATP-dependent DNA translocase facilitating replication fork remodeling. The HIP116, Rad5p N-terminal (HIRAN) domain of HLTF specifically recognizes the unmodified 3'-end of single-stranded DNA (ssDNA) at stalled replication forks to promote fork regression. Several crystal structures of the HIRAN domain in complex with ssDNA have been reported; however, optimal ssDNA sequences for high-affinity binding with the domain have not been described. Here we elucidated DNA sequence preferences of HLTF HIRAN through systematic studies of its binding to ssDNA substrates using fluorescence polarization assays and a computational analysis of the ssDNA:HIRAN interaction. These studies reveal that the HLTF HIRAN domain preferentially recognizes a (T/C)TG sequence at the 3'-hydroxyl ssDNA end, which occurs in the CTG trinucleotide repeat (TNR) regions that are susceptible to expansion and deletion mutations identified in neuromuscular and neurodegenerative disorders. These findings support a role for HLTF in maintaining the stability of difficult to replicate TNR microsatellite regions.
Collapse
Affiliation(s)
- Christopher O Dusek
- Department of Pharmaceutical Sciences, University of Connecticut, 69 North Eagleville Road, Unit 3092, Storrs, Connecticut 06269-3092, United States
| | - Radha Charan Dash
- Department of Pharmaceutical Sciences, University of Connecticut, 69 North Eagleville Road, Unit 3092, Storrs, Connecticut 06269-3092, United States
| | - Kerry S McPherson
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, Connecticut 06030, United States
| | - Jackson T Calhoun
- Department of Pharmaceutical Sciences, University of Connecticut, 69 North Eagleville Road, Unit 3092, Storrs, Connecticut 06269-3092, United States
| | - Irina Bezsonova
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, Connecticut 06030, United States
| | - Dmitry M Korzhnev
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, Connecticut 06030, United States
| | - M Kyle Hadden
- Department of Pharmaceutical Sciences, University of Connecticut, 69 North Eagleville Road, Unit 3092, Storrs, Connecticut 06269-3092, United States
| |
Collapse
|
39
|
The role of K63-linked polyubiquitin in several types of autophagy. Biol Futur 2022; 73:137-148. [DOI: 10.1007/s42977-022-00117-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 04/05/2022] [Indexed: 01/08/2023]
Abstract
AbstractLysosomal-dependent self-degradative (autophagic) mechanisms are essential for the maintenance of normal homeostasis in all eukaryotic cells. Several types of such self-degradative and recycling pathways have been identified, based on how the cellular self material can incorporate into the lysosomal lumen. Ubiquitination, a well-known and frequently occurred posttranslational modification has essential role in all cell biological processes, thus in autophagy too. The second most common type of polyubiquitin chain is the K63-linked polyubiquitin, which strongly connects to some self-degradative mechanisms in the cells. In this review, we discuss the role of this type of polyubiquitin pattern in numerous autophagic processes.
Collapse
|
40
|
Mechanistic insights into the multiple activities of the Rad5 family of enzymes. J Mol Biol 2022; 434:167581. [DOI: 10.1016/j.jmb.2022.167581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 04/01/2022] [Accepted: 04/02/2022] [Indexed: 11/18/2022]
|
41
|
van Toorn M, Turkyilmaz Y, Han S, Zhou D, Kim HS, Salas-Armenteros I, Kim M, Akita M, Wienholz F, Raams A, Ryu E, Kang S, Theil AF, Bezstarosti K, Tresini M, Giglia-Mari G, Demmers JA, Schärer OD, Choi JH, Vermeulen W, Marteijn JA. Active DNA damage eviction by HLTF stimulates nucleotide excision repair. Mol Cell 2022; 82:1343-1358.e8. [PMID: 35271816 PMCID: PMC9473497 DOI: 10.1016/j.molcel.2022.02.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/15/2021] [Accepted: 02/10/2022] [Indexed: 10/18/2022]
Abstract
Nucleotide excision repair (NER) counteracts the onset of cancer and aging by removing helix-distorting DNA lesions via a "cut-and-patch"-type reaction. The regulatory mechanisms that drive NER through its successive damage recognition, verification, incision, and gap restoration reaction steps remain elusive. Here, we show that the RAD5-related translocase HLTF facilitates repair through active eviction of incised damaged DNA together with associated repair proteins. Our data show a dual-incision-dependent recruitment of HLTF to the NER incision complex, which is mediated by HLTF's HIRAN domain that binds 3'-OH single-stranded DNA ends. HLTF's translocase motor subsequently promotes the dissociation of the stably damage-bound incision complex together with the incised oligonucleotide, allowing for an efficient PCNA loading and initiation of repair synthesis. Our findings uncover HLTF as an important NER factor that actively evicts DNA damage, thereby providing additional quality control by coordinating the transition between the excision and DNA synthesis steps to safeguard genome integrity.
Collapse
Affiliation(s)
- Marvin van Toorn
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Yasemin Turkyilmaz
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Sueji Han
- Center for Bioanalysis, Korea Research Institute of Standards and Science, Daejeon 305-340, Republic of Korea; Department of Bio-Analytical Science, University of Science & Technology, Daejeon 305-350, Republic of Korea
| | - Di Zhou
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Hyun-Suk Kim
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
| | - Irene Salas-Armenteros
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Mihyun Kim
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea; Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Masaki Akita
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Franziska Wienholz
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Anja Raams
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Eunjin Ryu
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea; Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Sukhyun Kang
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
| | - Arjan F Theil
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Karel Bezstarosti
- Proteomics Centre, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Maria Tresini
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Giuseppina Giglia-Mari
- Institut NeuroMyoGène (INMG), CNRS UMR 5310, INSERM U1217, Université de Lyon, Université Claude Bernard Lyon1, 16 rue Dubois, 69622 Villeurbanne Cedex, France
| | - Jeroen A Demmers
- Proteomics Centre, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Orlando D Schärer
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea; Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Jun-Hyuk Choi
- Center for Bioanalysis, Korea Research Institute of Standards and Science, Daejeon 305-340, Republic of Korea; Department of Bio-Analytical Science, University of Science & Technology, Daejeon 305-350, Republic of Korea
| | - Wim Vermeulen
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Jurgen A Marteijn
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Centre, Rotterdam, the Netherlands.
| |
Collapse
|
42
|
Zhang S, Zhou T, Wang Z, Yi F, Li C, Guo W, Xu H, Cui H, Dong X, Liu J, Song X, Cao L. Post-Translational Modifications of PCNA in Control of DNA Synthesis and DNA Damage Tolerance-the Implications in Carcinogenesis. Int J Biol Sci 2021; 17:4047-4059. [PMID: 34671219 PMCID: PMC8495385 DOI: 10.7150/ijbs.64628] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/19/2021] [Indexed: 11/05/2022] Open
Abstract
The faithful DNA replication is a critical event for cell survival and inheritance. However, exogenous or endogenous sources of damage challenge the accurate synthesis of DNA, which causes DNA lesions. The DNA lesions are obstacles for replication fork progression. However, the prolonged replication fork stalling leads to replication fork collapse, which may cause DNA double-strand breaks (DSB). In order to maintain genomic stability, eukaryotic cells evolve translesion synthesis (TLS) and template switching (TS) to resolve the replication stalling. Proliferating cell nuclear antigen (PCNA) trimer acts as a slide clamp and encircles DNA to orchestrate DNA synthesis and DNA damage tolerance (DDT). The post-translational modifications (PTMs) of PCNA regulate these functions to ensure the appropriate initiation and termination of replication and DDT. The aberrant regulation of PCNA PTMs will result in DSB, which causes mutagenesis and poor response to chemotherapy. Here, we review the roles of the PCNA PTMs in DNA duplication and DDT. We propose that clarifying the regulation of PCNA PTMs may provide insights into understanding the development of cancers.
Collapse
Affiliation(s)
- Siyi Zhang
- Institute of Health Sciences, China Medical University, Shenyang, Liaoning Province, 110122, PR China
| | - Tingting Zhou
- Institute of Health Sciences, China Medical University, Shenyang, Liaoning Province, 110122, PR China
| | - Zhuo Wang
- Institute of Health Sciences, China Medical University, Shenyang, Liaoning Province, 110122, PR China
| | - Fei Yi
- Institute of Health Sciences, China Medical University, Shenyang, Liaoning Province, 110122, PR China
| | - Chunlu Li
- Institute of Health Sciences, China Medical University, Shenyang, Liaoning Province, 110122, PR China
| | - Wendong Guo
- Institute of Health Sciences, China Medical University, Shenyang, Liaoning Province, 110122, PR China
| | - Hongde Xu
- Institute of Health Sciences, China Medical University, Shenyang, Liaoning Province, 110122, PR China
| | - Hongyan Cui
- Institute of Health Sciences, China Medical University, Shenyang, Liaoning Province, 110122, PR China
| | - Xiang Dong
- Institute of Health Sciences, China Medical University, Shenyang, Liaoning Province, 110122, PR China
| | - Jingwei Liu
- Institute of Health Sciences, China Medical University, Shenyang, Liaoning Province, 110122, PR China
| | - Xiaoyu Song
- Institute of Health Sciences, China Medical University, Shenyang, Liaoning Province, 110122, PR China
| | - Liu Cao
- College of Basic Medical Science, Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning Province, 110122, PR China
| |
Collapse
|
43
|
Kryczka J, Kryczka J, Czarnecka-Chrebelska KH, Brzeziańska-Lasota E. Molecular Mechanisms of Chemoresistance Induced by Cisplatin in NSCLC Cancer Therapy. Int J Mol Sci 2021; 22:8885. [PMID: 34445588 PMCID: PMC8396273 DOI: 10.3390/ijms22168885] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 12/11/2022] Open
Abstract
Cancer cells utilise several mechanisms to increase their survival and progression as well as their resistance to anticancer therapy: deregulation of growth regulatory pathways by acquiring grow factor independence, immune system suppression, reducing the expression of antigens activating T lymphocyte cells (mimicry), induction of anti-apoptotic signals to counter the action of drugs, activation of several DNA repair mechanisms and driving the active efflux of drugs from the cell cytoplasm, and epigenetic regulation by microRNAs (miRNAs). Because it is commonly diagnosed late, lung cancer remains a major malignancy with a low five-year survival rate; when diagnosed, the cancer is often highly advanced, and the cancer cells may have acquired drug resistance. This review summarises the main mechanisms involved in cisplatin resistance and interactions between cisplatin-resistant cancer cells and the tumour microenvironment. It also analyses changes in the gene expression profile of cisplatin sensitive vs. cisplatin-resistant non-small cell lung cancer (NSCLC) cellular model using the GSE108214 Gene Expression Omnibus database. It describes a protein-protein interaction network that indicates highly dysregulated TP53, MDM2, and CDKN1A genes as they encode the top networking proteins that may be involved in cisplatin tolerance, these all being upregulated in cisplatin-resistant cells. Furthermore, it illustrates the multifactorial nature of cisplatin resistance by examining the diversity of dysregulated pathways present in cisplatin-resistant NSCLC cells based on KEGG pathway analysis.
Collapse
Affiliation(s)
- Jolanta Kryczka
- Department of Biomedicine and Genetics, Medical University of Lodz, 92-213 Lodz, Poland; (K.H.C.-C.); (E.B.-L.)
| | - Jakub Kryczka
- Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland;
| | | | - Ewa Brzeziańska-Lasota
- Department of Biomedicine and Genetics, Medical University of Lodz, 92-213 Lodz, Poland; (K.H.C.-C.); (E.B.-L.)
| |
Collapse
|
44
|
Su J, Xu R, Mongia P, Toyofuku N, Nakagawa T. Fission yeast Rad8/HLTF facilitates Rad52-dependent chromosomal rearrangements through PCNA lysine 107 ubiquitination. PLoS Genet 2021; 17:e1009671. [PMID: 34292936 PMCID: PMC8297803 DOI: 10.1371/journal.pgen.1009671] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/18/2021] [Indexed: 11/19/2022] Open
Abstract
Gross chromosomal rearrangements (GCRs), including translocation, deletion, and inversion, can cause cell death and genetic diseases such as cancer in multicellular organisms. Rad51, a DNA strand exchange protein, suppresses GCRs by repairing spontaneous DNA damage through a conservative way of homologous recombination, gene conversion. On the other hand, Rad52 that catalyzes single-strand annealing (SSA) causes GCRs using homologous sequences. However, the detailed mechanism of Rad52-dependent GCRs remains unclear. Here, we provide genetic evidence that fission yeast Rad8/HLTF facilitates Rad52-dependent GCRs through the ubiquitination of lysine 107 (K107) of PCNA, a DNA sliding clamp. In rad51Δ cells, loss of Rad8 eliminated 75% of the isochromosomes resulting from centromere inverted repeat recombination, showing that Rad8 is essential for the formation of the majority of isochromosomes in rad51Δ cells. Rad8 HIRAN and RING finger mutations reduced GCRs, suggesting that Rad8 facilitates GCRs through 3’ DNA-end binding and ubiquitin ligase activity. Mms2 and Ubc4 but not Ubc13 ubiquitin-conjugating enzymes were required for GCRs. Consistent with this, mutating PCNA K107 rather than the well-studied PCNA K164 reduced GCRs. Rad8-dependent PCNA K107 ubiquitination facilitates Rad52-dependent GCRs, as PCNA K107R, rad8, and rad52 mutations epistatically reduced GCRs. In contrast to GCRs, PCNA K107R did not significantly change gene conversion rates, suggesting a specific role of PCNA K107 ubiquitination in GCRs. PCNA K107R enhanced temperature-sensitive growth defects of DNA ligase I cdc17-K42 mutant, implying that PCNA K107 ubiquitination occurs when Okazaki fragment maturation fails. Remarkably, K107 is located at the interface between PCNA subunits, and an interface mutation D150E bypassed the requirement of PCNA K107 and Rad8 ubiquitin ligase for GCRs. These data suggest that Rad8-dependent PCNA K107 ubiquitination facilitates Rad52-dependent GCRs by changing the PCNA clamp structure. Gross chromosomal rearrangements (GCRs), including translocation, can alter gene dosage and activity, resulting in genetic diseases such as cancer. However, GCRs can occur by some enzymes, including Rad52 recombinase, and result in chromosomal evolution. Therefore, GCRs are not only pathological but also physiological phenomena from an evolutionary point of view. However, the detailed mechanism of GCRs remains unclear. Here, using fission yeast, we show that the homolog of human HLTF, Rad8 causes GCRs through noncanonical ubiquitination of proliferating cellular nuclear antigen (PCNA) at a lysine 107 (K107). Rad51, a DNA strand exchange protein, suppresses the formation of isochromosomes whose arms mirror each another and chromosomal truncation. We found that, like Rad52, Rad8 is required for isochromosome formation but not chromosomal truncation in rad51Δ cells, showing a specific role of Rad8 in homology-mediated GCRs. Mutations in Rad8 ubiquitin E3 ligase RING finger domain, Mms2-Ubc4 ubiquitin-conjugating enzymes, and PCNA K107 reduced GCRs in rad51Δ cells, suggesting that Rad8-Mms2-Ubc4-dependent PCNA K107 ubiquitination facilitates GCRs. PCNA trimers form a DNA sliding clamp. The K107 residue is located at the PCNA-PCNA interface, and an interface mutation D150E restored GCRs in PCNA K107R mutant cells. This study provides genetic evidence that Rad8-dependent PCNA K107 ubiquitination facilitates GCRs by changing the PCNA clamp structure.
Collapse
Affiliation(s)
- Jie Su
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan
| | - Ran Xu
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan
| | - Piyusha Mongia
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan
| | - Naoko Toyofuku
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan
| | - Takuro Nakagawa
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan
- * E-mail:
| |
Collapse
|
45
|
Geng Y, Guan Y, Qiong L, Lu S, An M, Crabbe MJC, Qi J, Zhao F, Qiao Q, Zhang T. Genomic analysis of field pennycress (Thlaspi arvense) provides insights into mechanisms of adaptation to high elevation. BMC Biol 2021; 19:143. [PMID: 34294107 PMCID: PMC8296595 DOI: 10.1186/s12915-021-01079-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 06/29/2021] [Indexed: 12/15/2022] Open
Abstract
Background Understanding how organisms evolve and adapt to extreme habitats is of crucial importance in evolutionary ecology. Altitude gradients are an important determinant of the distribution pattern and range of organisms due to distinct climate conditions at different altitudes. High-altitude regions often provide extreme environments including low temperature and oxygen concentration, poor soil, and strong levels of ultraviolet radiation, leading to very few plant species being able to populate elevation ranges greater than 4000 m. Field pennycress (Thlaspi arvense) is a valuable oilseed crop and emerging model plant distributed across an elevation range of nearly 4500 m. Here, we generate an improved genome assembly to understand how this species adapts to such different environments. Results We sequenced and assembled de novo the chromosome-level pennycress genome of 527.3 Mb encoding 31,596 genes. Phylogenomic analyses based on 2495 single-copy genes revealed that pennycress is closely related to Eutrema salsugineum (estimated divergence 14.32–18.58 Mya), and both species form a sister clade to Schrenkiella parvula and genus Brassica. Field pennycress contains the highest percentage (70.19%) of transposable elements in all reported genomes of Brassicaceae, with the retrotransposon proliferation in the Middle Pleistocene being likely responsible for the expansion of genome size. Moreover, our analysis of 40 field pennycress samples in two high- and two low-elevation populations detected 1,256,971 high-quality single nucleotide polymorphisms. Using three complementary selection tests, we detected 130 candidate naturally selected genes in the Qinghai-Tibet Plateau (QTP) populations, some of which are involved in DNA repair and the ubiquitin system and potential candidates involved in high-altitude adaptation. Notably, we detected a single base mutation causing loss-of-function of the FLOWERING LOCUS C protein, responsible for the transition to early flowering in high-elevation populations. Conclusions Our results provide a genome-wide perspective of how plants adapt to distinct environmental conditions across extreme elevation differences and the potential for further follow-up research with extensive data from additional populations and species. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01079-0.
Collapse
Affiliation(s)
- Yupeng Geng
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, School of Ecology and Environmental Sciences, Yunnan University, Kunming, 650500, China
| | - Yabin Guan
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, School of Ecology and Environmental Sciences, Yunnan University, Kunming, 650500, China.,School of Life Sciences, Yunnan University, Kunming, 650504, China
| | - La Qiong
- Research Center for Ecology, College of Science, Tibet University, Lhasa, 850000, China
| | - Shugang Lu
- School of Life Sciences, Yunnan University, Kunming, 650504, China
| | - Miao An
- Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200001, China
| | - M James C Crabbe
- Wolfson College, Oxford University, Oxford, OX2 6UD, UK.,Institute of Biomedical and Environmental Science & Technology, School of Life Sciences, University of Bedfordshire, Park Square, Luton, LU1 3JU, UK.,School of Life Sciences, Shanxi University, Taiyuan, 030006, China
| | - Ji Qi
- School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Fangqing Zhao
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, School of Ecology and Environmental Sciences, Yunnan University, Kunming, 650500, China. .,Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China. .,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.
| | - Qin Qiao
- School of Agriculture, Yunnan University, Kunming, 650504, China.
| | - Ticao Zhang
- College of Chinese Material Medica, Yunnan University of Chinese Medicine, Kunming, 650500, China.
| |
Collapse
|
46
|
Thakar T, Moldovan GL. The emerging determinants of replication fork stability. Nucleic Acids Res 2021; 49:7224-7238. [PMID: 33978751 PMCID: PMC8287955 DOI: 10.1093/nar/gkab344] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 04/18/2021] [Accepted: 04/20/2021] [Indexed: 12/21/2022] Open
Abstract
A universal response to replication stress is replication fork reversal, where the nascent complementary DNA strands are annealed to form a protective four-way junction allowing forks to avert DNA damage while replication stress is resolved. However, reversed forks are in turn susceptible to nucleolytic digestion of the regressed nascent DNA arms and rely on dedicated mechanisms to protect their integrity. The most well studied fork protection mechanism involves the BRCA pathway and its ability to catalyze RAD51 nucleofilament formation on the reversed arms of stalled replication forks. Importantly, the inability to prevent the degradation of reversed forks has emerged as a hallmark of BRCA deficiency and underlies genome instability and chemosensitivity in BRCA-deficient cells. In the past decade, multiple factors underlying fork stability have been discovered. These factors either cooperate with the BRCA pathway, operate independently from it to augment fork stability in its absence, or act as enablers of fork degradation. In this review, we examine these novel determinants of fork stability, explore the emergent conceptual underpinnings underlying fork protection, as well as the impact of fork protection on cellular viability and cancer therapy.
Collapse
Affiliation(s)
- Tanay Thakar
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - George-Lucian Moldovan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
47
|
Wong RP, Petriukov K, Ulrich HD. Daughter-strand gaps in DNA replication - substrates of lesion processing and initiators of distress signalling. DNA Repair (Amst) 2021; 105:103163. [PMID: 34186497 DOI: 10.1016/j.dnarep.2021.103163] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/18/2021] [Accepted: 06/19/2021] [Indexed: 10/21/2022]
Abstract
Dealing with DNA lesions during genome replication is particularly challenging because damaged replication templates interfere with the progression of the replicative DNA polymerases and thereby endanger the stability of the replisome. A variety of mechanisms for the recovery of replication forks exist, but both bacteria and eukaryotic cells also have the option of continuing replication downstream of the lesion, leaving behind a daughter-strand gap in the newly synthesized DNA. In this review, we address the significance of these single-stranded DNA structures as sites of DNA damage sensing and processing at a distance from ongoing genome replication. We describe the factors controlling the emergence of daughter-strand gaps from stalled replication intermediates, the benefits and risks of their expansion and repair via translesion synthesis or recombination-mediated template switching, and the mechanisms by which they activate local as well as global replication stress signals. Our growing understanding of daughter-strand gaps not only identifies them as targets of fundamental genome maintenance mechanisms, but also suggests that proper control over their activities has important practical implications for treatment strategies and resistance mechanisms in cancer therapy.
Collapse
Affiliation(s)
- Ronald P Wong
- Institute of Molecular Biology (IMB) gGmbH, Ackermannweg 4, D - 55128 Mainz, Germany
| | - Kirill Petriukov
- Institute of Molecular Biology (IMB) gGmbH, Ackermannweg 4, D - 55128 Mainz, Germany
| | - Helle D Ulrich
- Institute of Molecular Biology (IMB) gGmbH, Ackermannweg 4, D - 55128 Mainz, Germany.
| |
Collapse
|
48
|
Morgan JJ, Crawford LJ. The Ubiquitin Proteasome System in Genome Stability and Cancer. Cancers (Basel) 2021; 13:2235. [PMID: 34066546 PMCID: PMC8125356 DOI: 10.3390/cancers13092235] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/30/2021] [Accepted: 05/05/2021] [Indexed: 01/18/2023] Open
Abstract
Faithful DNA replication during cellular division is essential to maintain genome stability and cells have developed a sophisticated network of regulatory systems to ensure its integrity. Disruption of these control mechanisms can lead to loss of genomic stability, a key hallmark of cancer. Ubiquitination is one of the most abundant regulatory post-translational modifications and plays a pivotal role in controlling replication progression, repair of DNA and genome stability. Dysregulation of the ubiquitin proteasome system (UPS) can contribute to the initiation and progression of neoplastic transformation. In this review we provide an overview of the UPS and summarize its involvement in replication and replicative stress, along with DNA damage repair. Finally, we discuss how the UPS presents as an emerging source for novel therapeutic interventions aimed at targeting genomic instability, which could be utilized in the treatment and management of cancer.
Collapse
Affiliation(s)
| | - Lisa J. Crawford
- Patrick G Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast BT9 7BL, UK;
| |
Collapse
|
49
|
Tye S, Ronson GE, Morris JR. A fork in the road: Where homologous recombination and stalled replication fork protection part ways. Semin Cell Dev Biol 2021; 113:14-26. [PMID: 32653304 PMCID: PMC8082280 DOI: 10.1016/j.semcdb.2020.07.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/06/2020] [Accepted: 07/06/2020] [Indexed: 12/14/2022]
Abstract
In response to replication hindrances, DNA replication forks frequently stall and are remodelled into a four-way junction. In such a structure the annealed nascent strand is thought to resemble a DNA double-strand break and remodelled forks are vulnerable to nuclease attack by MRE11 and DNA2. Proteins that promote the recruitment, loading and stabilisation of RAD51 onto single-stranded DNA for homology search and strand exchange in homologous recombination (HR) repair and inter-strand cross-link repair also act to set up RAD51-mediated protection of nascent DNA at stalled replication forks. However, despite the similarities of these pathways, several lines of evidence indicate that fork protection is not simply analogous to the RAD51 loading step of HR. Protection of stalled forks not only requires separate functions of a number of recombination proteins, but also utilises nucleases important for the resection steps of HR in alternative ways. Here we discuss how fork protection arises and how its differences with HR give insights into the differing contexts of these two pathways.
Collapse
Affiliation(s)
- Stephanie Tye
- Section of Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London, SW7 2AZ, UK
| | - George E Ronson
- University of Birmingham, College of Medical Dental Schools, Institute of Cancer and Genomics Sciences, Birmingham Centre for Genome Biology, Vincent Drive, Edgbaston, Birmingham, B15 2TT, UK
| | - Joanna R Morris
- University of Birmingham, College of Medical Dental Schools, Institute of Cancer and Genomics Sciences, Birmingham Centre for Genome Biology, Vincent Drive, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
50
|
Osborne HC, Irving E, Forment JV, Schmidt CK. E2 enzymes in genome stability: pulling the strings behind the scenes. Trends Cell Biol 2021; 31:628-643. [PMID: 33685796 DOI: 10.1016/j.tcb.2021.01.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/27/2021] [Accepted: 01/29/2021] [Indexed: 02/06/2023]
Abstract
Ubiquitin and ubiquitin-like proteins (UBLs) function as critical post-translational modifiers in the maintenance of genome stability. Ubiquitin/UBL-conjugating enzymes (E2s) are responsible, as part of a wider enzymatic cascade, for transferring single moieties or polychains of ubiquitin/UBLs to one or multiple residues on substrate proteins. Recent advances in structural and mechanistic understanding of how ubiquitin/UBL substrate attachment is orchestrated indicate that E2s can exert control over chain topology, substrate-site specificity, and downstream physiological effects to help maintain genome stability. Drug discovery efforts have typically focussed on modulating other members of the ubiquitin/UBL cascades or the ubiquitin-proteasome system. Here, we review the current standing of E2s in genome stability and revisit their potential as pharmacological targets for developing novel anti-cancer therapies.
Collapse
Affiliation(s)
- Hugh C Osborne
- Manchester Cancer Research Centre, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, 555 Wilmslow Road, Manchester M20 4GJ, UK
| | - Elsa Irving
- Bioscience, Oncology R&D, AstraZeneca, Cambridge CB4 0WG, UK
| | - Josep V Forment
- Bioscience, Oncology R&D, AstraZeneca, Cambridge CB4 0WG, UK
| | - Christine K Schmidt
- Manchester Cancer Research Centre, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, 555 Wilmslow Road, Manchester M20 4GJ, UK.
| |
Collapse
|