1
|
Qin Y. Nearly a Century of Nuclear Transfer Research: Milestones, Applications, and Challenges. Cell Reprogram 2025; 27:56-74. [PMID: 40064535 DOI: 10.1089/cell.2024.0089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025] Open
Abstract
From the first cloning of animals-salamanders-to the cloning of primates-monkeys-nuclear transfer research has spanned an extensive 96-year history. Over the course of nearly a century, it has addressed fundamental scientific questions and found applications across a wide range of practical fields. This review provides a comprehensive overview of the key milestones in its development, its practical applications, and the challenges it continues to face.
Collapse
Affiliation(s)
- Yiren Qin
- Black Family Stem Cell Institute, Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
2
|
Wakayama S, Wakayama T. Can Humanity Thrive Beyond the Galaxy? J Reprod Dev 2025; 71:10-16. [PMID: 39756865 PMCID: PMC11808306 DOI: 10.1262/jrd.2024-099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 12/19/2024] [Indexed: 01/07/2025] Open
Abstract
In the future, human beings will surely expand into space. But given its unique risks, will humanity thrive in space environments? For example, when humans begin living and reproducing in space habitats or on other planets in the solar system, are there risks that future generations may suffer from adverse mutations induced by space radiation, or that embryos and fetuses will develop abnormally in gravitational environments that differ from that of Earth? Moreover, human expansion to other stellar systems requires that for each breed of animal, thousands of individuals must be transported to destination planets to prevent populations from experiencing inbreeding-related degeneration. In even more distant future, when humans have spread throughout the galaxy, all genetic resources on Earth, the planet where humans originated, must be permanently and safely stored- but is this even possible? Such issues with future space colonization may not be an urgent research priority, but research and technological development accompanying advancements in spaceflight will excite many people and contribute to technological improvements that can improve living standards in the present day (e.g., more effective treatments for infertility, etc.). This review will therefore focus primarily on issues related to mammalian reproduction in space environments.
Collapse
Affiliation(s)
- Sayaka Wakayama
- Advanced Biotechnology Center, University of Yamanashi, Yamanashi 400-8510, Japan
| | - Teruhiko Wakayama
- Advanced Biotechnology Center, University of Yamanashi, Yamanashi 400-8510, Japan
| |
Collapse
|
3
|
Zhang X, Liu X, Liu XL, Wu DY, Zhou K, Yu ZS, Dou CL, Xu T, Yu M, Miao YL. Preserving Porcine Genetics: A Simple and Effective Method for On-Site Cryopreservation of Ear Tissue Using Direct Cover Vitrification. Int J Mol Sci 2023; 24:ijms24087469. [PMID: 37108632 PMCID: PMC10139005 DOI: 10.3390/ijms24087469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/14/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
Cell cryopreservation is widely used for porcine genetic conservation; however, isolating and freezing primary cells in farms without adequate experimental equipment and environment poses a significant challenge. Therefore, it is necessary to establish a quick and simple method to freeze tissues on-site, which can be used for deriving primary fibroblasts when needed to achieve porcine genetic conservation. In this study, we explored a suitable approach for porcine ear tissue cryopreservation. The porcine ear tissues were cut into strips and frozen by direct cover vitrification (DCV) in the cryoprotectant solution with 15% EG, 15% DMSO and 0.1 M trehalose. Histological analysis and ultrastructural evaluation revealed that thawed tissues had normal tissue structure. More importantly, viable fibroblasts could be derived from these tissues frozen in liquid nitrogen for up to 6 months. Cells derived from thawed tissues did not show any cell apoptosis, had normal karyotypes and could be used for nuclear transfer. These results suggest that this quick and simple ear tissue cryopreservation method can be applied for porcine genetic conservation, especially in the face of a deadly emerging disease in pigs.
Collapse
Affiliation(s)
- Xia Zhang
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
- National Demonstration Center for Experimental Veterinary Medicine Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Xin Liu
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
| | - Xiao-Li Liu
- National Demonstration Center for Experimental Veterinary Medicine Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Dan-Ya Wu
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
| | - Kai Zhou
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
| | - Zhi-Sheng Yu
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
| | - Cheng-Li Dou
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
| | - Tian Xu
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
| | - Mei Yu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
| | - Yi-Liang Miao
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
| |
Collapse
|
4
|
Moura MT. Cloning by SCNT: Integrating Technical and Biology-Driven Advances. Methods Mol Biol 2023; 2647:1-35. [PMID: 37041327 DOI: 10.1007/978-1-0716-3064-8_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Somatic cell nuclear transfer (SCNT) into enucleated oocytes initiates nuclear reprogramming of lineage-committed cells to totipotency. Pioneer SCNT work culminated with cloned amphibians from tadpoles, while technical and biology-driven advances led to cloned mammals from adult animals. Cloning technology has been addressing fundamental questions in biology, propagating desired genomes, and contributing to the generation of transgenic animals or patient-specific stem cells. Nonetheless, SCNT remains technically complex and cloning efficiency relatively low. Genome-wide technologies revealed barriers to nuclear reprogramming, such as persistent epigenetic marks of somatic origin and reprogramming resistant regions of the genome. To decipher the rare reprogramming events that are compatible with full-term cloned development, it will likely require technical advances for large-scale production of SCNT embryos alongside extensive profiling by single-cell multi-omics. Altogether, cloning by SCNT remains a versatile technology, while further advances should continuously refresh the excitement of its applications.
Collapse
Affiliation(s)
- Marcelo Tigre Moura
- Chemical Biology Graduate Program, Federal University of São Paulo - UNIFESP, Campus Diadema, Diadema - SP, Brazil
| |
Collapse
|
5
|
Nagamatsu G. Oocyte aging in comparison to stem cells in mice. FRONTIERS IN AGING 2023; 4:1158510. [PMID: 37114094 PMCID: PMC10126682 DOI: 10.3389/fragi.2023.1158510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 03/27/2023] [Indexed: 04/29/2023]
Abstract
To maintain homeostasis, many tissues contain stem cells that can self-renew and differentiate. Based on these functions, stem cells can reconstitute the tissue even after injury. In reproductive organs, testes have spermatogonial stem cells that generate sperm in men throughout their lifetime. However, in the ovary, oocytes enter meiosis at the embryonic stage and maintain sustainable oogenesis in the absence of stem cells. After birth, oocytes are maintained in a dormant state in the primordial follicle, which is the most premature follicle in the ovary, and some are activated to form mature oocytes. Thus, regulation of dormancy and activation of primordial follicles is critical for a sustainable ovulatory cycle and is directly related to the female reproductive cycle. However, oocyte storage is insufficient to maintain a lifelong ovulation cycle. Therefore, the ovary is one of the earliest organs to be involved in aging. Although stem cells are capable of proliferation, they typically exhibit slow cycling or dormancy. Therefore, there are some supposed similarities with oocytes in primordial follicles, not only in their steady state but also during aging. This review aims to summarise the sustainability of oogenesis and aging phenotypes compared to tissue stem cells. Finally, it focuses on the recent breakthroughs in vitro culture and discusses future prospects.
Collapse
Affiliation(s)
- Go Nagamatsu
- Center for Advanced Assisted Reproductive Technologies, University of Yamanashi, Kofu, Yamanashi, Japan
- Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
- *Correspondence: Go Nagamatsu,
| |
Collapse
|
6
|
Rodger JC, Clulow J. Resetting the paradigm of reproductive science and conservation. Anim Reprod Sci 2022; 246:106911. [PMID: 34955327 DOI: 10.1016/j.anireprosci.2021.106911] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 12/14/2022]
Abstract
In the application of reproductive science to conservation breeding, it has long been assumed that artificial insemination using frozen thawed sperm would be the default technology. This has always been problematic considering the wide range of tolerance to freeze thawing among vertebrate sperm. Furthermore, those providing leadership for genome banking should be proactive to preserve maximum genetic diversity, however, for many species there is little or no sperm motility after thawing of cryopreserved sperm. In this review article, there is the contention that a much wider range of tissues should be banked, and the range of evolving advanced reproductive and developmental technologies should be considered for conservation breeding programs, to realize the maximum opportunities of genome banking to contribute to conservation of animal species.
Collapse
Affiliation(s)
- John C Rodger
- FAUNA Research Alliance, PO Box 5092, Kahibah, NSW, Australia; Conservation Science Research Group, The University of Newcastle, Callaghan, NSW, Australia.
| | - John Clulow
- FAUNA Research Alliance, PO Box 5092, Kahibah, NSW, Australia; Conservation Science Research Group, The University of Newcastle, Callaghan, NSW, Australia
| |
Collapse
|
7
|
Wakayama S, Ito D, Hayashi E, Ishiuchi T, Wakayama T. Healthy cloned offspring derived from freeze-dried somatic cells. Nat Commun 2022; 13:3666. [PMID: 35790715 PMCID: PMC9256722 DOI: 10.1038/s41467-022-31216-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/08/2022] [Indexed: 12/14/2022] Open
Abstract
Maintaining biodiversity is an essential task, but storing germ cells as genetic resources using liquid nitrogen is difficult, expensive, and easily disrupted during disasters. Our aim is to generate cloned mice from freeze-dried somatic cell nuclei, preserved at -30 °C for up to 9 months after freeze drying treatment. All somatic cells died after freeze drying, and nucleic DNA damage significantly increased. However, after nuclear transfer, we produced cloned blastocysts from freeze-dried somatic cells, and established nuclear transfer embryonic stem cell lines. Using these cells as nuclear donors for re-cloning, we obtained healthy cloned female and male mice with a success rate of 0.2-5.4%. Here, we show that freeze-dried somatic cells can produce healthy, fertile clones, suggesting that this technique may be important for the establishment of alternative, cheaper, and safer liquid nitrogen-free bio-banking solutions.
Collapse
Affiliation(s)
- Sayaka Wakayama
- Faculty of Life and Environmental Science, University of Yamanashi, Kofu, 400-8510, Japan. .,Advanced Biotechnology Center, University of Yamanashi, Kofu, 400-8510, Japan.
| | - Daiyu Ito
- Faculty of Life and Environmental Science, University of Yamanashi, Kofu, 400-8510, Japan
| | - Erika Hayashi
- Faculty of Life and Environmental Science, University of Yamanashi, Kofu, 400-8510, Japan
| | - Takashi Ishiuchi
- Faculty of Life and Environmental Science, University of Yamanashi, Kofu, 400-8510, Japan
| | - Teruhiko Wakayama
- Faculty of Life and Environmental Science, University of Yamanashi, Kofu, 400-8510, Japan. .,Advanced Biotechnology Center, University of Yamanashi, Kofu, 400-8510, Japan.
| |
Collapse
|
8
|
Aberrant nucleosome organization in mouse SCNT embryos revealed by ULI-MNase-seq. Stem Cell Reports 2022; 17:1730-1742. [PMID: 35750045 PMCID: PMC9287678 DOI: 10.1016/j.stemcr.2022.05.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 11/23/2022] Open
Abstract
Somatic cell nuclear transfer (SCNT) can reprogram terminally differentiated somatic cells into totipotent embryos, but with multiple defects. The nucleosome positioning, as an important epigenetic regulator for gene expression, is largely unexplored during SCNT embryonic development. Here, we mapped genome-wide nucleosome profiles in mouse SCNT embryos using ultra-low-input MNase-seq (ULI-MNase-seq). We found that the nucleosome-depleted regions (NDRs) around promoters underwent dramatic reestablishment, which is consistent with the cell cycle. Dynamics of nucleosome position in SCNT embryos were delayed compared to fertilized embryos. Subsequently, we found that the aberrant gene expression levels in inner cell mass (ICM) were positively correlated with promoter NDRs in donor cells, which indicated that the memory of nucleosome occupancy in donor cells was a potential barrier for SCNT-mediated reprogramming. We further confirmed that the histone acetylation level of donor cells was associated with the memory of promoter NDRs. Our study provides insight into nucleosome reconfiguration during SCNT preimplantation embryonic development.
Collapse
|
9
|
Cao W, Zhao J, Qu P, Liu E. Current Progress and Prospects in Rabbit Cloning. Cell Reprogram 2022; 24:63-70. [PMID: 35167365 DOI: 10.1089/cell.2021.0090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Somatic cell nuclear transfer (SCNT) shows great value in the generation of transgenic animals, protection of endangered animals, and stem cell therapy. The combination of SCNT and gene editing has produced a variety of genetically modified animals for life science and medical research. Rabbits have unique advantages as transgenic bioreactors and human disease models; however, the low SCNT efficiency severely impedes the application of this technology. The difficulty in SCNT may be attributable to the abnormal reprogramming of somatic cells in rabbits. This review focuses on the abnormal reprogramming of cloned mammalian embryos and evaluates the progress and prospects of rabbit somatic cell cloning.
Collapse
Affiliation(s)
- Wenbin Cao
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Jinpeng Zhao
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Pengxiang Qu
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Enqi Liu
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, Xi'an, China
| |
Collapse
|
10
|
Technical, Biological and Molecular Aspects of Somatic Cell Nuclear Transfer – A Review. ANNALS OF ANIMAL SCIENCE 2022. [DOI: 10.2478/aoas-2021-0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Abstract
Since the announcement of the birth of the first cloned mammal in 1997, Dolly the sheep, 24 animal species including laboratory, farm, and wild animals have been cloned. The technique for somatic cloning involves transfer of the donor nucleus of a somatic cell into an enucleated oocyte at the metaphase II (MII) stage for the generation of a new individual, genetically identical to the somatic cell donor. There is increasing interest in animal cloning for different purposes such as rescue of endangered animals, replication of superior farm animals, production of genetically engineered animals, creation of biomedical models, and basic research. However, the efficiency of cloning remains relatively low. High abortion, embryonic, and fetal mortality rates are frequently observed. Moreover, aberrant developmental patterns during or after birth are reported. Researchers attribute these abnormal phenotypes mainly to incomplete nuclear remodeling, resulting in incomplete reprogramming. Nevertheless, multiple factors influence the success of each step of the somatic cloning process. Various strategies have been used to improve the efficiency of nuclear transfer and most of the phenotypically normal born clones can survive, grow, and reproduce. This paper will present some technical, biological, and molecular aspects of somatic cloning, along with remarkable achievements and current improvements.
Collapse
|
11
|
Zhang YT, Yao W, Chai MJ, Liu WJ, Liu Y, Liu ZH, Weng XG. Evaluation of porcine urine-derived cells as nuclei donor for somatic cell nuclear transfer. J Vet Sci 2022; 23:e40. [PMID: 35363444 PMCID: PMC8977534 DOI: 10.4142/jvs.21297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/17/2022] [Accepted: 01/20/2022] [Indexed: 11/20/2022] Open
Affiliation(s)
- Yu-Ting Zhang
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin 150030, Heilongjiang, P.R. China
| | - Wang Yao
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin 150030, Heilongjiang, P.R. China
| | - Meng-Jia Chai
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin 150030, Heilongjiang, P.R. China
| | - Wen-Jing Liu
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin 150030, Heilongjiang, P.R. China
| | - Yan Liu
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin 150030, Heilongjiang, P.R. China
| | - Zhong-Hua Liu
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin 150030, Heilongjiang, P.R. China
| | - Xiao-Gang Weng
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin 150030, Heilongjiang, P.R. China
| |
Collapse
|
12
|
Gao W, Yu T, Li G, Shu W, Jin Y, Zhang M, Yu X. Antioxidant Activity and Anti-Apoptotic Effect of the Small Molecule Procyanidin B1 in Early Mouse Embryonic Development Produced by Somatic Cell Nuclear Transfer. Molecules 2021; 26:molecules26206150. [PMID: 34684730 PMCID: PMC8540974 DOI: 10.3390/molecules26206150] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/08/2021] [Accepted: 10/10/2021] [Indexed: 12/22/2022] Open
Abstract
As an antioxidant, procyanidin B1(PB1) can improve the development of somatic cell nuclear transfer (SCNT) embryos; PB1 reduces the level of oxidative stress (OS) during the in vitro development of SCNT embryos by decreasing the level of reactive oxygen species (ROS) and increasing the level of glutathione (GSH) and mitochondrial membrane potential (MMP). Metabolite hydrogen peroxide (H2O2) produces OS. Catalase (CAT) can degrade hydrogen peroxide so that it produces less toxic water (H2O) and oxygen (O2) in order to reduce the harm caused by H2O2. Therefore, we tested the CAT level in the in vitro development of SCNT embryos; it was found that PB1 can increase the expression of CAT, indicating that PB1 can offset the harm caused by oxidative stress by increasing the level of CAT. Moreover, if H2O2 accumulates excessively, it produces radical-(HO-) through Fe2+/3+ and damage to DNA. The damage caused to the DNA is mainly repaired by the protein encoded by the DNA damage repair gene. Therefore, we tested the expression of the DNA damage repair gene, OGG1. It was found that PB1 can increase the expression of OGG1 and increase the expression of protein. Through the above test, we proved that PB1 can improve the repairability of DNA damage. DNA damage can lead to cell apoptosis; therefore, we also tested the level of apoptosis of blastocysts, and we found that PB1 reduced the level of apoptosis. In summary, our results show that PB1 reduces the accumulation of H2O2 by decreasing the level of OS during the in vitro development of SCNT embryos and improves the repairability of DNA damage to reduce cell apoptosis. Our results have important significance for the improvement of the development of SCNT embryos in vitro and provide important reference significance for diseases that can be treated using SCNT technology.
Collapse
Affiliation(s)
- Wei Gao
- Jilin Provincial Key Laboratory of Animal Model, College of Animal Science, Jilin University, Changchun 130062, China; (W.G.); (Y.J.); (M.Z.)
- Group of Non-Human Primates of Reproductive and Stem Cell, Kunming Institute of Zoology, CAS, Kunming 650203, China; (T.Y.); (G.L.); (W.S.)
| | - Tingting Yu
- Group of Non-Human Primates of Reproductive and Stem Cell, Kunming Institute of Zoology, CAS, Kunming 650203, China; (T.Y.); (G.L.); (W.S.)
| | - Guomeng Li
- Group of Non-Human Primates of Reproductive and Stem Cell, Kunming Institute of Zoology, CAS, Kunming 650203, China; (T.Y.); (G.L.); (W.S.)
| | - Wei Shu
- Group of Non-Human Primates of Reproductive and Stem Cell, Kunming Institute of Zoology, CAS, Kunming 650203, China; (T.Y.); (G.L.); (W.S.)
| | - Yongxun Jin
- Jilin Provincial Key Laboratory of Animal Model, College of Animal Science, Jilin University, Changchun 130062, China; (W.G.); (Y.J.); (M.Z.)
| | - Mingjun Zhang
- Jilin Provincial Key Laboratory of Animal Model, College of Animal Science, Jilin University, Changchun 130062, China; (W.G.); (Y.J.); (M.Z.)
| | - Xianfeng Yu
- Jilin Provincial Key Laboratory of Animal Model, College of Animal Science, Jilin University, Changchun 130062, China; (W.G.); (Y.J.); (M.Z.)
- Correspondence: ; Tel.: +86-431-8783-6536
| |
Collapse
|
13
|
Hossein MS, Yu X, Son YB, Jeong YI, Jeong YW, Choi EJ, Tinson AH, Singh KK, Singh R, Noura AS, Hwang WS. The Resurrection of Mabrokan: Production of Multiple Cloned Offspring from Decade-Old Vitrified Tissue Collected from a Deceased Champion Show Camel. Animals (Basel) 2021; 11:ani11092691. [PMID: 34573657 PMCID: PMC8469105 DOI: 10.3390/ani11092691] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/09/2021] [Accepted: 09/11/2021] [Indexed: 12/12/2022] Open
Abstract
Somatic cell nuclear transfer (SCNT) provides a unique opportunity to reproduce animals with superior genetics. Viable cell lines are usually established from tissues collected by biopsy from living animals in the SCNT program. In the present study, tissues were collected and preserved from a suddenly deceased champion camel. We established cell lines from these decade-old tissues and used them as nuclear donors. After 42 h of in vitro maturation, 68.00 ± 2.40% of oocytes reached the metaphase II (M II) stage while 87.31 ± 2.57% in vivo collected oocytes were matured at collection (p < 0.05). We observed a higher blastocyst formation rate when in vivo matured oocytes (43.45 ± 2.07%) were used compared to in vitro matured oocytes (21.52 ± 1.74%). The live birth rate was 6.45% vs. 16.67% for in vitro and in vivo matured oocytes, respectively. Microsatellite analysis of 13 camel loci revealed that all the SCNT-derived offspring were identical to each other and with their somatic cell donor. The present study succeeded in the resurrection of 11 healthy offspring from the decade-old vitrified tissues of a single somatic cell donor individual using both in vitro and in vivo matured oocytes.
Collapse
Affiliation(s)
- Mohammad Shamim Hossein
- UAE Biotech Research Center, Al Wathba South, Abu Dhabi 30310, United Arab Emirates; (M.S.H.); (X.Y.); (Y.-B.S.); (Y.-I.J.); (Y.-W.J.); (E.-J.C.)
| | - Xianfeng Yu
- UAE Biotech Research Center, Al Wathba South, Abu Dhabi 30310, United Arab Emirates; (M.S.H.); (X.Y.); (Y.-B.S.); (Y.-I.J.); (Y.-W.J.); (E.-J.C.)
- Jilin Provincial Key Laboratory of Animal Model, College of Animal Science, Jilin University, Changchun 130062, China
| | - Young-Bum Son
- UAE Biotech Research Center, Al Wathba South, Abu Dhabi 30310, United Arab Emirates; (M.S.H.); (X.Y.); (Y.-B.S.); (Y.-I.J.); (Y.-W.J.); (E.-J.C.)
| | - Yeon-Ik Jeong
- UAE Biotech Research Center, Al Wathba South, Abu Dhabi 30310, United Arab Emirates; (M.S.H.); (X.Y.); (Y.-B.S.); (Y.-I.J.); (Y.-W.J.); (E.-J.C.)
| | - Yeon-Woo Jeong
- UAE Biotech Research Center, Al Wathba South, Abu Dhabi 30310, United Arab Emirates; (M.S.H.); (X.Y.); (Y.-B.S.); (Y.-I.J.); (Y.-W.J.); (E.-J.C.)
| | - Eun-Ji Choi
- UAE Biotech Research Center, Al Wathba South, Abu Dhabi 30310, United Arab Emirates; (M.S.H.); (X.Y.); (Y.-B.S.); (Y.-I.J.); (Y.-W.J.); (E.-J.C.)
| | - Alex H. Tinson
- Hilli E.T. Cloning and Surgical Centre, Presidential Camels and Camel Racing Affairs, Al-Ain 17292, United Arab Emirates; (A.H.T.); (K.K.S.); (R.S.); (A.S.N.)
| | - Kuhad Kuldip Singh
- Hilli E.T. Cloning and Surgical Centre, Presidential Camels and Camel Racing Affairs, Al-Ain 17292, United Arab Emirates; (A.H.T.); (K.K.S.); (R.S.); (A.S.N.)
| | - Rajesh Singh
- Hilli E.T. Cloning and Surgical Centre, Presidential Camels and Camel Racing Affairs, Al-Ain 17292, United Arab Emirates; (A.H.T.); (K.K.S.); (R.S.); (A.S.N.)
| | - Al Shamsi Noura
- Hilli E.T. Cloning and Surgical Centre, Presidential Camels and Camel Racing Affairs, Al-Ain 17292, United Arab Emirates; (A.H.T.); (K.K.S.); (R.S.); (A.S.N.)
| | - Woo-Suk Hwang
- UAE Biotech Research Center, Al Wathba South, Abu Dhabi 30310, United Arab Emirates; (M.S.H.); (X.Y.); (Y.-B.S.); (Y.-I.J.); (Y.-W.J.); (E.-J.C.)
- Correspondence:
| |
Collapse
|
14
|
Abstract
Somatic cell nuclear transfer (SCNT) is a powerful technique, although challenging, to study reprograming into the totipotent state of differentiated nuclei in mammals. This procedure was initially applied in farm animals, then rodents, and more recently in primates. Nuclear transfer of embryonic stem cells is known to be more efficient, but many types of somatic cells have now been successfully reprogramed with this procedure. Moreover, SCNT reprograming is more effective on a per cell basis than induced Pluripotent Stem Cells (iPSC) and provides interesting clues regarding the underlying processes. In this chapter, we describe the protocol of nuclear transfer in mouse that combines cell cycle synchronization of the donor cells, enucleation of metaphase II oocyte and Piezo-driven injection of a donor cell nucleus followed by activation of the reconstructed embryos and nonsurgical transfer into pseudo-pregnant mice. Moreover, this protocol includes two facultative steps to erase the epigenetic "memory" of the donor cells and improve chromatin remodeling by histones modifications targeting.
Collapse
Affiliation(s)
- Vincent Brochard
- Université Paris-Saclay, INRAE, ENVA, BREED U1198, Jouy-en-Josas, France
| | - Nathalie Beaujean
- Université Paris-Saclay, INRAE, ENVA, BREED U1198, Jouy-en-Josas, France. .,Univ Lyon, Université Lyon 1, Inserm, INRAE, Stem Cell and Brain Research Institute U1208, USC 1361, Bron, France.
| |
Collapse
|
15
|
|
16
|
Extranuclear Inheritance of Mitochondrial Genome and Epigenetic Reprogrammability of Chromosomal Telomeres in Somatic Cell Cloning of Mammals. Int J Mol Sci 2021; 22:ijms22063099. [PMID: 33803567 PMCID: PMC8002851 DOI: 10.3390/ijms22063099] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 03/16/2021] [Indexed: 12/11/2022] Open
Abstract
The effectiveness of somatic cell nuclear transfer (SCNT) in mammals seems to be still characterized by the disappointingly low rates of cloned embryos, fetuses, and progeny generated. These rates are measured in relation to the numbers of nuclear-transferred oocytes and can vary depending on the technique applied to the reconstruction of enucleated oocytes. The SCNT efficiency is also largely affected by the capability of donor nuclei to be epigenetically reprogrammed in a cytoplasm of reconstructed oocytes. The epigenetic reprogrammability of donor nuclei in SCNT-derived embryos appears to be biased, to a great extent, by the extranuclear (cytoplasmic) inheritance of mitochondrial DNA (mtDNA) fractions originating from donor cells. A high frequency of mtDNA heteroplasmy occurrence can lead to disturbances in the intergenomic crosstalk between mitochondrial and nuclear compartments during the early embryogenesis of SCNT-derived embryos. These disturbances can give rise to incorrect and incomplete epigenetic reprogramming of donor nuclei in mammalian cloned embryos. The dwindling reprogrammability of donor nuclei in the blastomeres of SCNT-derived embryos can also be impacted by impaired epigenetic rearrangements within terminal ends of donor cell-descended chromosomes (i.e., telomeres). Therefore, dysfunctions in epigenetic reprogramming of donor nuclei can contribute to the enhanced attrition of telomeres. This accelerates the processes of epigenomic aging and replicative senescence in the cells forming various tissues and organs of cloned fetuses and progeny. For all the above-mentioned reasons, the current paper aims to overview the state of the art in not only molecular mechanisms underlying intergenomic communication between nuclear and mtDNA molecules in cloned embryos but also intrinsic determinants affecting unfaithful epigenetic reprogrammability of telomeres. The latter is related to their abrasion within somatic cell-inherited chromosomes.
Collapse
|
17
|
Konno S, Wakayama S, Ito D, Kazama K, Hirose N, Ooga M, Wakayama T. Removal of remodeling/reprogramming factors from oocytes and the impact on the full-term development of cloned embryos. Development 2020; 147:dev.190777. [PMID: 32665239 DOI: 10.1242/dev.190777] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 06/25/2020] [Indexed: 12/19/2022]
Abstract
The reason for the poor development of cloned embryos is not yet clear. Several reports have suggested that some nuclear remodeling/reprogramming factors (RRFs) are removed from oocytes at the time of enucleation, which might cause the low success rate of animal cloning. However, there is currently no method to manipulate the amount of RRFs in oocytes. Here, we describe techniques we have developed to gradually reduce RRFs in mouse oocytes by injecting somatic cell nuclei into oocytes. These injected nuclei were remodeled and reprogrammed using RRFs, and then RRFs were removed by subsequent deletion of somatic nuclei from oocytes. The size of the metaphase II spindle reduced immediately, but did recover when transferred into fresh oocytes. Though affected, the full-term developmental potential of these RRF-reduced oocytes with MII-spindle shrinkage was not lost after fertilization. When somatic cell nuclear transfer was performed, the successful generation of cloned mice was somewhat improved and abnormalities were reduced when oocytes with slightly reduced RRF levels were used. These results suggest that a change in RRFs in oocytes, as achieved by the method described in this paper or by enucleation, is important but not the main reason for the incomplete reprogramming of somatic cell nuclei.
Collapse
Affiliation(s)
- Shunsuke Konno
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi, 400-8510, Japan
| | - Sayaka Wakayama
- Advanced Biotechnology Center, University of Yamanashi, Yamanashi, 400-8510, Japan
| | - Daiyu Ito
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi, 400-8510, Japan
| | - Kousuke Kazama
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi, 400-8510, Japan
| | - Naoki Hirose
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi, 400-8510, Japan
| | - Masatoshi Ooga
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi, 400-8510, Japan
| | - Teruhiko Wakayama
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi, 400-8510, Japan .,Advanced Biotechnology Center, University of Yamanashi, Yamanashi, 400-8510, Japan
| |
Collapse
|
18
|
Jeong Y, Olson OP, Lian C, Lee ES, Jeong YW, Hwang WS. Dog cloning from post-mortem tissue frozen without cryoprotectant. Cryobiology 2020; 97:226-230. [PMID: 32268132 DOI: 10.1016/j.cryobiol.2020.03.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 03/05/2020] [Accepted: 03/29/2020] [Indexed: 11/28/2022]
Abstract
Successful reproductive cloning depends on obtaining intact donor nuclei from viable cells, ideally isolated by tissue biopsy of a living donor. However, owners and veterinarians often freeze deceased animals, which eventually causes damage to cellular micro-organelles due to the formation of intracellular water crystals. In the present study, we have reported the production of viable cloned puppies using donor nuclei of cells obtained from frozen carcasses. Five cases of deceased and frozen canine specimens were presented to be cloned. Skin fibroblast cell lines were successfully established for four specimens. Significant longer time was needed for the cell growth from frozen tissues (4 days) to reach 80% confluency compared to fresh tissue and frozen tissues frozen for 1- or 2-days. Similarly, SA-βgal positive cells (death cells) were significantly higher in frozen cells for 2- or 4- days compared to samples from fresh or frozen (1 day) sources. The cloning efficiency (CE) and the pregnancy rates (PR) of frozen cells were lower than those obtained from fresh or living donors (CE 2.4 ± 1.8% vs. 0.6 ± 0.3%, PR 21.7 ± 16.1% vs. 7.7 ± 5.3% for fresh vs. frozen, respectively). Here we demonstrate is the possibility to produce healthy offspring from cell lines obtained from frozen tissue collected post-mortem.
Collapse
Affiliation(s)
- Yeonik Jeong
- Sooam Biotech Research Foundation, 64 Kyunginro, Guro-gu, Seoul, 08359, Republic of Korea; Laboratory of Theriogenology, College of Veterinary Medicine, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Olof P Olson
- Sooam Biotech Research Foundation, 64 Kyunginro, Guro-gu, Seoul, 08359, Republic of Korea
| | - Cai Lian
- Sooam Biotech Research Foundation, 64 Kyunginro, Guro-gu, Seoul, 08359, Republic of Korea
| | - Eun Song Lee
- Laboratory of Theriogenology, College of Veterinary Medicine, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Yeon Woo Jeong
- Sooam Biotech Research Foundation, 64 Kyunginro, Guro-gu, Seoul, 08359, Republic of Korea.
| | - Woo Suk Hwang
- Sooam Biotech Research Foundation, 64 Kyunginro, Guro-gu, Seoul, 08359, Republic of Korea
| |
Collapse
|
19
|
Tolerance of the freeze-dried mouse sperm nucleus to temperatures ranging from -196 °C to 150 °C. Sci Rep 2019; 9:5719. [PMID: 30952922 PMCID: PMC6450870 DOI: 10.1038/s41598-019-42062-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 03/20/2019] [Indexed: 02/06/2023] Open
Abstract
It has long been believed that tolerance against extreme environments is possible only for ‘lower’ groups, such as archaea, bacteria or tardigrades, and not for more ‘advanced’ species. Here, we demonstrated that the mammalian sperm nucleus also exhibited strong tolerance to cold and hot temperatures. When mouse spermatozoa were freeze-dried (FD), similar to the anhydrobiosis of Tardigrades, all spermatozoa were ostensibly dead after rehydration. However, offspring were obtained from recovered FD sperm nuclei, even after repeated treatment with conditions from liquid nitrogen to room temperature. Conversely, when FD spermatozoa were heated at 95 °C, although the birth rate was decreased with increasing duration of the treatment, offspring were obtained even for FD spermatozoa that had been heat-treated for 2 h. This period was improved up to 6 h when glucose was replaced with trehalose in the freeze-drying medium, and the resistance temperature was extended up to 150 °C for short periods of treatment. Randomly selected offspring grew into healthy adults. Our results suggest that, when considering the sperm nucleus/DNA as the material that is used as a blueprint of life, rather than cell viability, a significant tolerance to extreme temperatures is present even in ‘higher’ species, such as mammals.
Collapse
|
20
|
Abstract
Somatic cell nuclear transfer (SCNT) technology has become a useful tool for animal cloning, gene manipulation, and genomic reprograming research. The original SCNT was performed using cell fusion between the donor cell and oocyte. This method remains very popular, but we have recently developed an alternative method that relies on nuclear injection rather than cell fusion. The advantages of nuclear injection include a shortened experimental procedure and reduced contamination of donor cytoplasm in the oocyte. In particular, only this method allows us to perform SCNT using dead cells or naked nuclei such as those from cadavers or body wastes. This chapter describes a basic protocol for the production of cloned mice by the nuclear injection method using a piezo-actuated micromanipulator as well as our recent advances in SCNT using noninvasively collected donor cells such as urine-derived somatic cells. This technique will greatly help not only SCNT but also other forms of micromanipulation, including sperm microinjection into oocytes and embryonic stem cell injection into blastocysts.
Collapse
|
21
|
Kamimura S, Wakayama S, Kuwayama H, Tanabe Y, Kishigami S, Wakayama T. Generation of two-cell cloned embryos from mouse faecal cell. Sci Rep 2018; 8:14922. [PMID: 30297864 PMCID: PMC6175847 DOI: 10.1038/s41598-018-33304-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 09/26/2018] [Indexed: 12/18/2022] Open
Abstract
Cloning animals using nuclear transfer (NT) provides the opportunity to preserve endangered species. However, there are risks associated with the collection of donor cells from a body, which may cause accidental death of the animal. Here, we tried to collect faeces-derived cells and examined the usability of those nuclei as a donor for NT. A relatively large number of cells could be collected from GFP-Tg mouse faeces by this method. After NT, only 4.2% of the reconstructed oocytes formed pseudo-pronucleus. This rate increased up to 25% when GFP and Hoechst were used as a marker to select better cells. However, the reconstructed oocytes/embryos showed several abnormalities, such as shrunken nuclear membranes and abnormal distribution of tubulin, and none of them developed beyond one-cell stage embryos. These developmental failures were caused by not only toxic substances derived from faeces but also intrinsic DNA damage of donor cell nuclei. However, when the serial NT was performed, some of the cloned embryos could develop to the two-cell stage. This method may remove toxic substances and enhance DNA repair in the oocyte cytoplasm. Thus, these results indicate that faeces cells might be useful for the conservation of endangered species when technical improvements are achieved.
Collapse
Affiliation(s)
- Satoshi Kamimura
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi, 400-8510, Japan. .,Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, Chiba, 263-8555, Japan.
| | - Sayaka Wakayama
- Advanced Biotechnology Centre, University of Yamanashi, Yamanashi, 400-8510, Japan
| | - Hiroki Kuwayama
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi, 400-8510, Japan
| | - Yoshiaki Tanabe
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi, 400-8510, Japan
| | - Satoshi Kishigami
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi, 400-8510, Japan.,Advanced Biotechnology Centre, University of Yamanashi, Yamanashi, 400-8510, Japan
| | - Teruhiko Wakayama
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi, 400-8510, Japan. .,Advanced Biotechnology Centre, University of Yamanashi, Yamanashi, 400-8510, Japan.
| |
Collapse
|
22
|
Abstract
Successful cloning of monkeys, the first non-human primate species, by somatic cell nuclear transfer (SCNT) attracted worldwide attention earlier this year. Remarkably, it has taken more than 20 years since the cloning of Dolly the sheep in 1997 to achieve this feat. This success was largely due to recent understanding of epigenetic barriers that impede SCNT-mediated reprogramming and the establishment of key methods to overcome these barriers, which also allowed efficient derivation of human pluripotent stem cells for cell therapy. Here, we summarize recent advances in SCNT technology and its potential applications for both reproductive and therapeutic cloning.
Collapse
Affiliation(s)
- Shogo Matoba
- RIKEN Bioresource Research Center, Tsukuba, Ibaraki 305-0074, Japan; Cooperative Division of Veterinary Sciences, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan.
| | - Yi Zhang
- Howard Hughes Medical Institute; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Boston, MA 02115, USA.
| |
Collapse
|
23
|
Kamada Y, Wakayama S, Shibasaki I, Ito D, Kamimura S, Ooga M, Wakayama T. Assessing the tolerance to room temperature and viability of freeze-dried mice spermatozoa over long-term storage at room temperature under vacuum. Sci Rep 2018; 8:10602. [PMID: 30006561 PMCID: PMC6045625 DOI: 10.1038/s41598-018-28896-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 07/02/2018] [Indexed: 01/22/2023] Open
Abstract
Freeze-drying has been frequently used to preserve food and microorganisms at room temperature (RT) for extended periods of time; however, its application to mammalian species is difficult. Here, we developed a method to prolong the stability of freeze-dried (FD) mice spermatozoa at RT for more than one year without using any cryoprotectant agents. Our data showed that maintaining a vacuum in ampoules is critical to ensuring the viability of FD spermatozoa, as the stability of spermatozoa DNA increased when imperfectly vacuumed ampoules were detected using a non-destructive test and eliminated. Finally a large number of healthy offspring were obtained from mice oocytes fertilized with FD spermatozoa stored at RT for more than one year. Although the birth rate from three-month stored spermatozoa was lower than that from one-day stored spermatozoa, no further reduction was observed even in one-year stored spermatozoa. Therefore, FD spermatozoa preserved in this study were highly tolerant to warm temperatures. This method of storage shows a great potential for the preservation of genetic resources of mammalian species, such as genetically-modified mouse strains, without the use of electric power.
Collapse
Affiliation(s)
- Yuko Kamada
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi, 400-8510, Japan
| | - Sayaka Wakayama
- Advanced Biotechnology Centre, University of Yamanashi, Yamanashi, 400-8510, Japan.
| | - Ikue Shibasaki
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi, 400-8510, Japan
| | - Daiyu Ito
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi, 400-8510, Japan
| | - Satoshi Kamimura
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi, 400-8510, Japan
| | - Masatoshi Ooga
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi, 400-8510, Japan
| | - Teruhiko Wakayama
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi, 400-8510, Japan. .,Advanced Biotechnology Centre, University of Yamanashi, Yamanashi, 400-8510, Japan.
| |
Collapse
|
24
|
Walcott B, Singh M. Recovery of proliferative cells up to 15- and 49-day postmortem from bovine skin stored at 25°C and 4°C, respectively. ACTA ACUST UNITED AC 2017. [DOI: 10.1080/23312025.2017.1333760] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Brian Walcott
- Animal Biotechnology Program, Agricultural Research Station, Fort Valley State University, Fort Valley, GA 31088, USA
| | - Mahipal Singh
- Animal Biotechnology Program, Agricultural Research Station, Fort Valley State University, Fort Valley, GA 31088, USA
| |
Collapse
|
25
|
Kuwayama H, Tanabe Y, Wakayama T, Kishigami S. Birth of cloned mice from vaginal smear cells after somatic cell nuclear transfer. Theriogenology 2017; 94:79-85. [DOI: 10.1016/j.theriogenology.2017.02.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 02/15/2017] [Accepted: 02/15/2017] [Indexed: 12/23/2022]
|
26
|
Miyamoto K, Tajima Y, Yoshida K, Oikawa M, Azuma R, Allen GE, Tsujikawa T, Tsukaguchi T, Bradshaw CR, Jullien J, Yamagata K, Matsumoto K, Anzai M, Imai H, Gurdon JB, Yamada M. Reprogramming towards totipotency is greatly facilitated by synergistic effects of small molecules. Biol Open 2017; 6:415-424. [PMID: 28412714 PMCID: PMC5399555 DOI: 10.1242/bio.023473] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Animal cloning has been achieved in many species by transplanting differentiated cell nuclei to unfertilized oocytes. However, the low efficiencies of cloning have remained an unresolved issue. Here we find that the combination of two small molecules, trichostatin A (TSA) and vitamin C (VC), under culture condition with bovine serum albumin deionized by ion-exchange resins, dramatically improves the cloning efficiency in mice and 15% of cloned embryos develop to term by means of somatic cell nuclear transfer (SCNT). The improvement was not observed by adding the non-treated, rather than deionized, bovine serum. RNA-seq analyses of SCNT embryos at the two-cell stage revealed that the treatment with TSA and VC resulted in the upregulated expression of previously identified reprogramming-resistant genes. Moreover, the expression of early-embryo-specific retroelements was upregulated by the TSA and VC treatment. The enhanced gene expression was relevant to the VC-mediated reduction of histone H3 lysine 9 methylation in SCNT embryos. Our study thus shows a simply applicable method to greatly improve mouse cloning efficiency, and furthers our understanding of how somatic nuclei acquire totipotency. Summary: The optimized culture condition with small molecules is sufficient to allow highly efficient mouse cloning by removing epigenetic barriers to reprogramming.
Collapse
Affiliation(s)
- Kei Miyamoto
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK .,Laboratory of Molecular Developmental Biology, Graduate School of Biology-Oriented Science and Technology, Kindai University, Wakayama 649-6493, Japan
| | - Yosuke Tajima
- Laboratory of Reproductive Biology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Koki Yoshida
- Laboratory of Reproductive Biology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Mami Oikawa
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK.,Laboratory of Molecular Developmental Biology, Graduate School of Biology-Oriented Science and Technology, Kindai University, Wakayama 649-6493, Japan
| | - Rika Azuma
- Laboratory of Molecular Developmental Biology, Graduate School of Biology-Oriented Science and Technology, Kindai University, Wakayama 649-6493, Japan.,Institute of Advanced Technology, Kindai University, Wakayama 642-0017, Japan
| | - George E Allen
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Tomomi Tsujikawa
- Laboratory of Reproductive Biology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Tomomasa Tsukaguchi
- Laboratory of Molecular Developmental Biology, Graduate School of Biology-Oriented Science and Technology, Kindai University, Wakayama 649-6493, Japan
| | - Charles R Bradshaw
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Jerome Jullien
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Kazuo Yamagata
- Laboratory of Molecular Developmental Biology, Graduate School of Biology-Oriented Science and Technology, Kindai University, Wakayama 649-6493, Japan
| | - Kazuya Matsumoto
- Laboratory of Molecular Developmental Biology, Graduate School of Biology-Oriented Science and Technology, Kindai University, Wakayama 649-6493, Japan
| | - Masayuki Anzai
- Institute of Advanced Technology, Kindai University, Wakayama 642-0017, Japan
| | - Hiroshi Imai
- Laboratory of Reproductive Biology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - John B Gurdon
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Masayasu Yamada
- Laboratory of Reproductive Biology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
27
|
Moulavi F, Hosseini S, Tanhaie-Vash N, Ostadhosseini S, Hosseini S, Hajinasrollah M, Asghari M, Gourabi H, Shahverdi A, Vosough A, Nasr-Esfahani M. Interspecies somatic cell nuclear transfer in Asiatic cheetah using nuclei derived from post-mortem frozen tissue in absence of cryo-protectant and in vitro matured domestic cat oocytes. Theriogenology 2017; 90:197-203. [DOI: 10.1016/j.theriogenology.2016.11.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Revised: 11/25/2016] [Accepted: 11/26/2016] [Indexed: 11/28/2022]
|
28
|
Yang J, Cai N, Zhai H, Zhang J, Zhu Y, Zhang L. Natural zwitterionic betaine enables cells to survive ultrarapid cryopreservation. Sci Rep 2016; 6:37458. [PMID: 27874036 PMCID: PMC5118695 DOI: 10.1038/srep37458] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 10/25/2016] [Indexed: 12/22/2022] Open
Abstract
Cryoprotectants (CPAs) play a critical role in cryopreservation because they can resist the cell damage caused by the freezing process. Current state-of-the-art CPAs are mainly based on an organic solvent dimethyl sulfoxide (DMSO), and several DMSO-cryopreserved cell products have been brought to market. However, the intrinsic toxicity and complex freezing protocol of DMSO still remain as the bottleneck of the wide use for clinical applications. Herein, we reported that betaine, a natural zwitterionic molecule, could serve as a nontoxic and high efficient CPA. At optimum concentration of betaine, different cell types exhibited exceptional post-thaw survival efficiency with ultrarapid freezing protocol, which was straightforward, cost efficient but difficult to succeed using DMSO. Moreover, betaine showed negligible cytotoxicity even after long-term exposure of cells. Mechanistically, we hypothesized that betaine could be ultra-rapidly taken up by cells for intracellular protection during the freezing process. This technology unlocks the possibility of alternating the traditional toxic CPAs and is applicable to a variety of clinical applications.
Collapse
Affiliation(s)
- Jing Yang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Key Laboratory of Systems Bioengineering of the Ministry of Education, Tianjin University, Tianjin 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, P. R. China
| | - Nana Cai
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Key Laboratory of Systems Bioengineering of the Ministry of Education, Tianjin University, Tianjin 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, P. R. China
| | - Hongwen Zhai
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Key Laboratory of Systems Bioengineering of the Ministry of Education, Tianjin University, Tianjin 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, P. R. China
| | - Jiamin Zhang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Key Laboratory of Systems Bioengineering of the Ministry of Education, Tianjin University, Tianjin 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, P. R. China
| | - Yingnan Zhu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Key Laboratory of Systems Bioengineering of the Ministry of Education, Tianjin University, Tianjin 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, P. R. China
| | - Lei Zhang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Key Laboratory of Systems Bioengineering of the Ministry of Education, Tianjin University, Tianjin 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, P. R. China
| |
Collapse
|
29
|
Shapiro B. Pathways to de‐extinction: how close can we get to resurrection of an extinct species? Funct Ecol 2016. [DOI: 10.1111/1365-2435.12705] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Beth Shapiro
- Department of Ecology and Evolutionary Biology and UCSC Genomics Institute University of California Santa Cruz 1156 High Street Santa Cruz CA95064 USA
| |
Collapse
|
30
|
Duah EKA, Mohapatra SK, Sood TJ, Sandhu A, Singla SK, Chauhan MS, Manik RS, Palta P. Production of hand-made cloned buffalo (Bubalus bubalis) embryos from non-viable somatic cells. In Vitro Cell Dev Biol Anim 2016; 52:983-988. [DOI: 10.1007/s11626-016-0071-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 07/03/2016] [Indexed: 01/26/2023]
|
31
|
Hosseini SM, Nasr-Esfahani MH. What does the cryopreserved oocyte look like? A fresh look at the characteristic oocyte features following cryopreservation. Reprod Biomed Online 2016; 32:377-87. [DOI: 10.1016/j.rbmo.2015.12.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 11/10/2015] [Accepted: 12/15/2015] [Indexed: 11/26/2022]
|
32
|
Mizutani E, Torikai K, Wakayama S, Nagatomo H, Ohinata Y, Kishigami S, Wakayama T. Generation of cloned mice and nuclear transfer embryonic stem cell lines from urine-derived cells. Sci Rep 2016; 6:23808. [PMID: 27033801 PMCID: PMC4817122 DOI: 10.1038/srep23808] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 03/15/2016] [Indexed: 11/24/2022] Open
Abstract
Cloning animals by nuclear transfer provides the opportunity to preserve endangered mammalian species. However, there are risks associated with the collection of donor cells from the body such as accidental injury to or death of the animal. Here, we report the production of cloned mice from urine-derived cells collected noninvasively. Most of the urine-derived cells survived and were available as donors for nuclear transfer without any pretreatment. After nuclear transfer, 38–77% of the reconstructed embryos developed to the morula/blastocyst, in which the cell numbers in the inner cell mass and trophectoderm were similar to those of controls. Male and female cloned mice were delivered from cloned embryos transferred to recipient females, and these cloned animals grew to adulthood and delivered pups naturally when mated with each other. The results suggest that these cloned mice had normal fertility. In additional experiments, 26 nuclear transfer embryonic stem cell lines were established from 108 cloned blastocysts derived from four mouse strains including inbreds and F1 hybrids with relatively high success rates. Thus, cells derived from urine, which can be collected noninvasively, may be used in the rescue of endangered mammalian species by using nuclear transfer without causing injury to the animal.
Collapse
Affiliation(s)
- Eiji Mizutani
- Faculty of Life and Environmental Sciences, University of Yamanashi, 4-4-37 Takeda, Kofu-shi, Yamanashi, Japan.,Advanced Biotechnology Center, University of Yamanashi, 4-4-37 Takeda, Kofu-shi, Yamanashi, Japan
| | - Kohei Torikai
- Faculty of Life and Environmental Sciences, University of Yamanashi, 4-4-37 Takeda, Kofu-shi, Yamanashi, Japan
| | - Sayaka Wakayama
- Advanced Biotechnology Center, University of Yamanashi, 4-4-37 Takeda, Kofu-shi, Yamanashi, Japan
| | - Hiroaki Nagatomo
- COC Promotion Center, University of Yamanashi, 4-4-37 Takeda, Kofu-shi, Yamanashi, Japan
| | - Yasuhide Ohinata
- Faculty of Life and Environmental Sciences, University of Yamanashi, 4-4-37 Takeda, Kofu-shi, Yamanashi, Japan
| | - Satoshi Kishigami
- Faculty of Life and Environmental Sciences, University of Yamanashi, 4-4-37 Takeda, Kofu-shi, Yamanashi, Japan
| | - Teruhiko Wakayama
- Faculty of Life and Environmental Sciences, University of Yamanashi, 4-4-37 Takeda, Kofu-shi, Yamanashi, Japan.,Advanced Biotechnology Center, University of Yamanashi, 4-4-37 Takeda, Kofu-shi, Yamanashi, Japan
| |
Collapse
|
33
|
Lee S, Seki S, Katayama N, Yoshizaki G. Production of viable trout offspring derived from frozen whole fish. Sci Rep 2015; 5:16045. [PMID: 26522018 PMCID: PMC4629203 DOI: 10.1038/srep16045] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 10/07/2015] [Indexed: 11/09/2022] Open
Abstract
Long-term preservation of fish fertility is essential for the conservation of endangered fishes. However, cryopreservation techniques for fish oocytes and embryos have not yet been developed. In the present study, functional eggs and sperm were derived from whole rainbow trout that had been frozen in a freezer and stored without the aid of exogenous cryoprotectants. Type A spermatogonia retrieved from frozen-thawed whole trout remained viable after freezing duration up to 1,113 days. Long-term-frozen trout spermatogonia that were intraperitoneally transplanted into triploid salmon hatchlings migrated toward the recipient gonads, where they were incorporated, and proliferated rapidly. Although all triploid recipients that did not undergo transplantation were functionally sterile, 2 of 12 female recipients and 4 of 13 male recipients reached sexual maturity. Eggs and sperm obtained from the salmon recipients were capable of producing donor-derived trout offspring. This methodology is thus a convenient emergency tool for the preservation of endangered fishes.
Collapse
Affiliation(s)
- Seungki Lee
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo 108-8477, Japan.,Biological and Genetic Resources Assessment Division, National Institute of Biological Resources, Incheon 404-708, Korea
| | - Shinsuke Seki
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo 108-8477, Japan
| | - Naoto Katayama
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo 108-8477, Japan
| | - Goro Yoshizaki
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo 108-8477, Japan
| |
Collapse
|
34
|
Wisely SM, Ryder OA, Santymire RM, Engelhardt JF, Novak BJ. A Road Map for 21st Century Genetic Restoration: Gene Pool Enrichment of the Black-Footed Ferret. J Hered 2015; 106:581-92. [PMID: 26304983 PMCID: PMC4567841 DOI: 10.1093/jhered/esv041] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 06/07/2015] [Indexed: 12/15/2022] Open
Abstract
Interspecies somatic cell nuclear transfer (iSCNT) could benefit recovery programs of critically endangered species but must be weighed with the risks of failure. To weigh the risks and benefits, a decision-making process that evaluates progress is needed. Experiments that evaluate the efficiency and efficacy of blastocyst, fetal, and post-parturition development are necessary to determine the success or failure or species-specific iSCNT programs. Here, we use the black-footed ferret (Mustela nigripes) as a case study for evaluating this emerging biomedical technology as a tool for genetic restoration. The black-footed ferret has depleted genetic variation yet genome resource banks contain genetic material of individuals not currently represented in the extant lineage. Thus, genetic restoration of the species is in theory possible and could help reduce the persistent erosion of genetic diversity from drift. Extensive genetic, genomic, and reproductive science tools have previously been developed in black-footed ferrets and would aid in the process of developing an iSCNT protocol for this species. Nonetheless, developing reproductive cloning will require years of experiments and a coordinated effort among recovery partners. The information gained from a well-planned research effort with the goal of genetic restoration via reproductive cloning could establish a 21st century model for evaluating and implementing conservation breeding that would be applicable to other genetically impoverished species.
Collapse
Affiliation(s)
- Samantha M Wisely
- From the Department of Wildlife Ecology and Conservation, University of Florida, 110 Newins-Ziegler Hall, Gainesville, Florida, 32611 USA (Wisely); San Diego Zoo Institute for Conservation Research, 15600 San Pasqual Valley Road, San Diego Zoo Global, Escondido, California, 92027 USA (Ryder); Davee Center for Epidemiology and Endocrinology, 2001 North Clark Street, Lincoln Park Zoo, Chicago, Illinois, 60614 USA (Santymire); Department of Anatomy and Cell Biology, 51 Newton Road, University of Iowa, Iowa City, Iowa, 52242 USA (Engelhardt); and Revive & Restore, The Long Now Foundation, 2 Marina Boulevard Building A, San Francisco, California, 94123 USA (Novak).
| | - Oliver A Ryder
- From the Department of Wildlife Ecology and Conservation, University of Florida, 110 Newins-Ziegler Hall, Gainesville, Florida, 32611 USA (Wisely); San Diego Zoo Institute for Conservation Research, 15600 San Pasqual Valley Road, San Diego Zoo Global, Escondido, California, 92027 USA (Ryder); Davee Center for Epidemiology and Endocrinology, 2001 North Clark Street, Lincoln Park Zoo, Chicago, Illinois, 60614 USA (Santymire); Department of Anatomy and Cell Biology, 51 Newton Road, University of Iowa, Iowa City, Iowa, 52242 USA (Engelhardt); and Revive & Restore, The Long Now Foundation, 2 Marina Boulevard Building A, San Francisco, California, 94123 USA (Novak)
| | - Rachel M Santymire
- From the Department of Wildlife Ecology and Conservation, University of Florida, 110 Newins-Ziegler Hall, Gainesville, Florida, 32611 USA (Wisely); San Diego Zoo Institute for Conservation Research, 15600 San Pasqual Valley Road, San Diego Zoo Global, Escondido, California, 92027 USA (Ryder); Davee Center for Epidemiology and Endocrinology, 2001 North Clark Street, Lincoln Park Zoo, Chicago, Illinois, 60614 USA (Santymire); Department of Anatomy and Cell Biology, 51 Newton Road, University of Iowa, Iowa City, Iowa, 52242 USA (Engelhardt); and Revive & Restore, The Long Now Foundation, 2 Marina Boulevard Building A, San Francisco, California, 94123 USA (Novak)
| | - John F Engelhardt
- From the Department of Wildlife Ecology and Conservation, University of Florida, 110 Newins-Ziegler Hall, Gainesville, Florida, 32611 USA (Wisely); San Diego Zoo Institute for Conservation Research, 15600 San Pasqual Valley Road, San Diego Zoo Global, Escondido, California, 92027 USA (Ryder); Davee Center for Epidemiology and Endocrinology, 2001 North Clark Street, Lincoln Park Zoo, Chicago, Illinois, 60614 USA (Santymire); Department of Anatomy and Cell Biology, 51 Newton Road, University of Iowa, Iowa City, Iowa, 52242 USA (Engelhardt); and Revive & Restore, The Long Now Foundation, 2 Marina Boulevard Building A, San Francisco, California, 94123 USA (Novak)
| | - Ben J Novak
- From the Department of Wildlife Ecology and Conservation, University of Florida, 110 Newins-Ziegler Hall, Gainesville, Florida, 32611 USA (Wisely); San Diego Zoo Institute for Conservation Research, 15600 San Pasqual Valley Road, San Diego Zoo Global, Escondido, California, 92027 USA (Ryder); Davee Center for Epidemiology and Endocrinology, 2001 North Clark Street, Lincoln Park Zoo, Chicago, Illinois, 60614 USA (Santymire); Department of Anatomy and Cell Biology, 51 Newton Road, University of Iowa, Iowa City, Iowa, 52242 USA (Engelhardt); and Revive & Restore, The Long Now Foundation, 2 Marina Boulevard Building A, San Francisco, California, 94123 USA (Novak)
| |
Collapse
|
35
|
Nucleus transfer efficiency of ear fibroblast cells isolated from Bama miniature pigs at various ages. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/s11596-015-1475-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
36
|
Yanagimachi R. Germ cells and fertilization: why I studied these topics and what I learned along the path of my study. Andrology 2015; 2:787-93. [PMID: 25327579 DOI: 10.1111/j.2047-2927.2014.00238.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- R Yanagimachi
- Department of Anatomy, Biochemistry and Physiology, Institute for Biogenesis Research, University of Hawaii Medical School, Honolulu, HI, USA.
| |
Collapse
|
37
|
Mizutani E, Oikawa M, Kassai H, Inoue K, Shiura H, Hirasawa R, Kamimura S, Matoba S, Ogonuki N, Nagatomo H, Abe K, Wakayama T, Aiba A, Ogura A. Generation of Cloned Mice from Adult Neurons by Direct Nuclear Transfer1. Biol Reprod 2015; 92:81. [DOI: 10.1095/biolreprod.114.123455] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
38
|
Abstract
Nuclear transfer (NT) technique provides a powerful experimental tool to study the mechanisms of reprogramming processes and to derive NT-embryonic stem (ntES) cells from living or frozen animals. The Piezo-driven direct microinjection NT method has proved to be a valid technique to clone mice and other species. In addition, this method has been broadly used as a versatile tool for many fields of mouse micromanipulation. This chapter describes the "one step method" protocol of nuclear transfer in mouse, which combines injection of a donor cell nucleus and enucleation of MII metaphase in a single manipulation procedure. This protocol describes the isolation and collection of oocytes, treatment of donor cells, visualization of spindle-chromosomal complex, direct injection and enucleation, activation of reconstructed embryos and their in vitro culture and transfer into pseudopregnant mice.
Collapse
Affiliation(s)
- Vincent Brochard
- INRA, UMR1198 Biologie du Développement et Reproduction, Jouy-en-Josas, 78350, France
| | | |
Collapse
|
39
|
Recovery of fibroblast-like cells from refrigerated goat skin up to 41 d of animal death. In Vitro Cell Dev Biol Anim 2014; 51:463-9. [PMID: 25539865 DOI: 10.1007/s11626-014-9856-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 12/03/2014] [Indexed: 10/24/2022]
Abstract
Successful cloning of animals using somatic cell nuclear transfer requires undamaged nuclear DNA from desired donor cell types. In vitro culture of cells is one way of ensuring nuclear integrity. The goal of this study was to evaluate the limits of postmortem cell survival/culture in refrigerated goat ear skin tissues which could be used for long-term storage and cloning of animals in future. To achieve this, 60 explants from 6 different goats were cultured after 0, 3, 6, 9, 13, 16, 20, 23, 27, 30, 33, 37, and 41 d postmortem and observed under inverted microscope for outgrowth of fibroblast-like cells, after 10-12 d of culture. Explants from all time points including 19% from 41-dpm tissues exhibited outgrowth. However, the percentage of outgrowth positive explants, as well as culture confluence, reduced with increasing postmortem time interval. Cell cultures established from primary outgrowth of 41-dpm tissues when compared for their growth profile with similarly obtained 0-dpm cultures revealed similar growth curve and cell morphology. Cytogenetic analysis of 41-dpm tissue-derived cell populations revealed a normal female karyotype with 60 XX homologous chromosomes indicating genetic stability of the cell population. In conclusion, these results show that refrigerated skin tissue remains alive for more than a month and that the cells derived from such tissues are normal and can be cryopreserved for long-term storage and future cloning of animals with desired genetics.
Collapse
|
40
|
Clulow J, Trudeau VL, Kouba AJ. Amphibian Declines in the Twenty-First Century: Why We Need Assisted Reproductive Technologies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 753:275-316. [DOI: 10.1007/978-1-4939-0820-2_12] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
41
|
Bielanski A. Biosafety in Embryos and Semen Cryopreservation, Storage, Management and Transport. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 753:429-65. [DOI: 10.1007/978-1-4939-0820-2_17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
42
|
Cetinkaya G, Hatipoglu I, Arat S. The value of frozen cartilage tissues without cryoprotection for genetic conservation. Cryobiology 2013; 68:65-70. [PMID: 24291088 DOI: 10.1016/j.cryobiol.2013.11.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 11/12/2013] [Accepted: 11/20/2013] [Indexed: 10/26/2022]
Abstract
Animal tissues frozen without cryoprotection are thought to be inappropriate for use as a donor for somatic cell nuclear transfer (SCNT) studies. Cells in tissues that have been frozen without a cryoprotectant are commonly thought to be dead or to have lost genomic integrity. However, in this study we show that the frozen auricular cartilage tissues of anatolian buffalo contain a considerable number of viable healthy cells. The cells in auricular cartilage tissues are resistant to cryo-injury at -80°C. Primary cell cultures were established from defrosted ear tissues which were frozen without cryoprotectant. The growth and functional characteristics of primary cell cultures are characterized according to cell growth curve, cell cycle analysis, karyotype and GAG synthesis. The results indicate that frozen cartilage tissues could be valuable materials for the conservation of species and SCNT technology.
Collapse
Affiliation(s)
- Gaye Cetinkaya
- TUBITAK MRC-Genetic Engineering and Biotechnology Institute (GEBI), 41470 Gebze, Kocaeli, Turkey.
| | - Ibrahim Hatipoglu
- TUBITAK MRC-Genetic Engineering and Biotechnology Institute (GEBI), 41470 Gebze, Kocaeli, Turkey.
| | - Sezen Arat
- Namık Kemal University, Faculty of Agriculture, Department of Agricultural Biotechnology, Tekirdağ, Turkey.
| |
Collapse
|
43
|
Successful serial recloning in the mouse over multiple generations. Cell Stem Cell 2013; 12:293-7. [PMID: 23472871 DOI: 10.1016/j.stem.2013.01.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 11/20/2012] [Accepted: 01/04/2013] [Indexed: 12/29/2022]
Abstract
Previous studies of serial cloning in animals showed a decrease in efficiency over repeated iterations and a failure in all species after a few generations. This limitation led to the suggestion that repeated recloning might be inherently impossible because of the accumulation of lethal genetic or epigenetic abnormalities. However, we have now succeeded in carrying out repeated recloning in the mouse through a somatic cell nuclear transfer method that includes a histone deacetylase inhibitor. The cloning efficiency did not decrease over 25 generations, and, to date, we have obtained more than 500 viable offspring from a single original donor mouse. The reprogramming efficiency also did not increase over repeated rounds of nuclear transfer, and we did not see the accumulation of reprogramming errors or clone-specific abnormalities. Therefore, our results show that repeated iterative recloning is possible and suggest that, with adequately efficient techniques, it may be possible to reclone animals indefinitely.
Collapse
|
44
|
Kishigami S, Lee AR, Wakayama T. Using somatic-cell nuclear transfer to study aging. Methods Mol Biol 2013; 1048:109-26. [PMID: 23929101 DOI: 10.1007/978-1-62703-556-9_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
In mammals, a diploid genome following fertilization of haploid cells, an egg, and a spermatozoon is unique and irreproducible. This implies that the generated unique diploid genome is doomed with the individual's inevitable demise. Since it was first reported in 1997 that Dolly the sheep had been cloned, many mammalian species have been cloned successfully using somatic-cell nuclear transfer (SCNT). The success of SCNT in mammals enables us not only to reproduce offspring without germ cells, that is, to "passage" a unique diploid genome, but also to address valuable biological questions on development, nuclear reprogramming, and epigenetic memory. Successful cloning can also support epigenetic reprogramming where the aging clock is reset or reversed. Recent work using iPS cell technology has explored the practicality and led to the recapitulation of premature aging with iPSCs from progeroid laminopathies. As a result, reprogramming tools are also expected to contribute to studying biological age. However, the efficiency of animal cloning is still low in most cases and the mechanism of reprogramming in cloned embryos is still largely unclear. Here, based on recent advances, we describe an improved, more efficient mouse cloning protocol using histone deacetylase inhibitors (HDACis) and latrunculin A, which increases the success rates of producing cloned mice or establishing ES cells fivefold. This improved method of cloning will provide a strong tool to address many issues including biological aging more easily and with lower cost.
Collapse
Affiliation(s)
- Satoshi Kishigami
- Division of Biological Science, Graduate School of Biology-Oriented Science and Technology, KINKI University, Wakayama, Japan
| | | | | |
Collapse
|
45
|
Kamimura S, Inoue K, Ogonuki N, Hirose M, Oikawa M, Yo M, Ohara O, Miyoshi H, Ogura A. Mouse Cloning Using a Drop of Peripheral Blood1. Biol Reprod 2013; 89:24. [DOI: 10.1095/biolreprod.113.110098] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
46
|
Ogura A, Inoue K, Wakayama T. Recent advancements in cloning by somatic cell nuclear transfer. Philos Trans R Soc Lond B Biol Sci 2013; 368:20110329. [PMID: 23166393 DOI: 10.1098/rstb.2011.0329] [Citation(s) in RCA: 148] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Somatic cell nuclear transfer (SCNT) cloning is the sole reproductive engineering technology that endows the somatic cell genome with totipotency. Since the first report on the birth of a cloned sheep from adult somatic cells in 1997, many technical improvements in SCNT have been made by using different epigenetic approaches, including enhancement of the levels of histone acetylation in the chromatin of the reconstructed embryos. Although it will take a considerable time before we fully understand the nature of genomic programming and totipotency, we may expect that somatic cell cloning technology will soon become broadly applicable to practical purposes, including medicine, pharmaceutical manufacturing and agriculture. Here we review recent progress in somatic cell cloning, with a special emphasis on epigenetic studies using the laboratory mouse as a model.
Collapse
Affiliation(s)
- Atsuo Ogura
- RIKEN BioResource Center, Tsukuba, Ibaraki, Japan.
| | | | | |
Collapse
|
47
|
Abstract
The nuclear transfer (NT) technique in the mouse has enabled us to generate cloned mice and to establish NT embryonic stem (ntES) cells. Direct nuclear injection into mouse oocytes with a piezo impact drive unit can aid in the bypass of several steps of the original cell fusion procedure. It is important to note that only the NT approach can reveal dynamic and global modifications in the epigenome without using genetic modification as well as generating live animals from single cells. Thus, these techniques could also be applied to the preservation of genetic material from any mouse strain instead of preserving embryos or gametes. Moreover, with this technique, we can use not only living cells but also the nuclei of dead cells from frozen mouse carcasses for NT. This chapter describes our most recent protocols of NT into the mouse oocyte for cloning mice and for the establishment of ntES cells from cloned embryos.
Collapse
Affiliation(s)
- Eiji Mizutani
- Center for Developmental Biology, RIKEN Kobe institute, Kobe, Japan,
| | | | | |
Collapse
|
48
|
Effect of postmortem time interval on in vitro culture potential of goat skin tissues stored at room temperature. In Vitro Cell Dev Biol Anim 2012; 48:478-82. [PMID: 22872525 DOI: 10.1007/s11626-012-9539-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 07/12/2012] [Indexed: 10/28/2022]
Abstract
Animal cloning using somatic cell nuclear transfer technology has renewed the interest in postmortem tissue storage, since these tissues can be used to reintroduce the lost genes back into the breeding pool in animal agriculture, preserve the genetic diversity, and revive the endangered species. However, for successful cloning of animals, integrity of nuclear DNA is essential. Cell viability and their potential to in vitro culture ensure nuclear integrity. The aim of this study was to determine the limits of postmortem time interval within which live cells can be recovered from goat skin tissues. To test the postmortem tissue storage limits, we cultured 2-3 mm(2) skin pieces (n = 70) from the ears of three breeds of goats (n = 7) after 0, 2, 4, and 6 days of postmortem storage at 24°C. After 10 days of culture, outgrowth of fibroblast-like cells (>50 cells) around the explants was scored. All the explants irrespective of breed displayed outgrowth of cells on the dish containing fresh tissues (i.e., day 0 of storage). However, the number of explants exhibiting outgrowth reduced with increasing time interval. Only 53.85 % explants displayed outgrowth after 2 days of tissue storage. The number of explants displaying outgrowth was much smaller after 4 (16.67 %) and 6 days (13.3 %) of storage. In general, the number of outgrowing cells per explant, on a given day, also decreased with increasing postmortem storage time interval. To test the differences between cell cultures, we established secondary cultures from one of the goats exhibiting outgrowth of cells after 6 days of tissue storage and compared them to similar cells from fresh tissues. Comparison of both the cell lines revealed similar cell morphology and growth curves and had doubling times of 23.04 and 22.56 h, respectively. These results suggest that live cells can be recovered from goat (and perhaps other animal) tissues stored at room temperature even after 6 days of their death with comparable growth profiles and, thus, can be used for tissue banking for preservation of superior genetics, genetic diversity, and cloning of animals.
Collapse
|
49
|
Smits K, Hoogewijs M, Woelders H, Daels P, Van Soom A. Breeding or Assisted Reproduction? Relevance of the Horse Model Applied to the Conservation of Endangered Equids. Reprod Domest Anim 2012; 47 Suppl 4:239-48. [DOI: 10.1111/j.1439-0531.2012.02082.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
50
|
Huynen L, Millar CD, Lambert DM. Resurrecting ancient animal genomes: the extinct moa and more. Bioessays 2012; 34:661-9. [PMID: 22674514 DOI: 10.1002/bies.201200040] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Recently two developments have had a major impact on the field of ancient DNA (aDNA). First, new advances in DNA sequencing, in combination with improved capture/enrichment methods, have resulted in the recovery of orders of magnitude more DNA sequence data from ancient animals. Second, there has been an increase in the range of tissue types employed in aDNA. Hair in particular has proven to be very successful as a source of DNA because of its low levels of contamination and high level of ancient endogenous DNA. These developments have resulted in significant advances in our understanding of recently extinct animals: namely their evolutionary relationships, physiology, and even behaviour. Hair has been used to recover the first complete ancient nuclear genome, that of the extinct woolly mammoth, which then facilitated the expression and functional analysis of haemoglobins. Finally, we speculate on the consequences of these developments for the possibility of recreating extinct animals.
Collapse
Affiliation(s)
- Leon Huynen
- Griffith School of Environment and the School of Biomolecular and Physical Sciences, Griffith University, Nathan, Australia
| | | | | |
Collapse
|