1
|
Ono S. Segregated localization of two calponin-related proteins within sarcomeric thin filaments in Caenorhabditis elegans striated muscle. Cytoskeleton (Hoboken) 2024; 81:127-140. [PMID: 37792405 PMCID: PMC11249056 DOI: 10.1002/cm.21794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 10/05/2023]
Abstract
The calponin family proteins are expressed in both muscle and non-muscle cells and involved in the regulation of cytoskeletal dynamics and cell contractility. In the nematode Caenorhabditis elegans, UNC-87 and CLIK-1 are calponin-related proteins with 42% identical amino acid sequences containing seven calponin-like motifs. Genetic studies demonstrated that UNC-87 and CLIK-1 have partially redundant function in regulating actin cytoskeletal organization in striated and non-striated muscle cells. However, biochemical studies showed that UNC-87 and CLIK-1 are different in their ability to bundle actin filaments. In this study, I extended comparison between UNC-87 and CLIK-1 and found additional differences in vitro and in vivo. Although UNC-87 and CLIK-1 bound to actin filaments similarly, UNC-87, but not CLIK-1, bound to myosin and inhibited actomyosin ATPase in vitro. In striated muscle, UNC-87 and CLIK-1 were segregated into different subregions within sarcomeric actin filaments. CLIK-1 was concentrated near the actin pointed ends, whereas UNC-87 was enriched toward the actin barbed ends. Restricted localization of UNC-87 was not altered in a clik-1-null mutant, suggesting that their segregated localization is not due to competition between the two related proteins. These results suggest that the two calponin-related proteins have both common and distinct roles in regulating actin filaments.
Collapse
Affiliation(s)
- Shoichiro Ono
- Departments of Pathology and Cell Biology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| |
Collapse
|
2
|
Kwak D, Combriat T, Jensenius AR, Olsen PA. Characterization of Mechanical and Cellular Effects of Rhythmic Vertical Vibrations on Adherent Cell Cultures. Bioengineering (Basel) 2023; 10:811. [PMID: 37508838 PMCID: PMC10376548 DOI: 10.3390/bioengineering10070811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/23/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
This paper presents an innovative experimental setup that employs the principles of audio technology to subject adherent cells to rhythmic vertical vibrations. We employ a novel approach that combines three-axis acceleration measurements and particle tracking velocimetry to evaluate the setup's performance. This allows us to estimate crucial parameters such as root mean square acceleration, fluid flow patterns, and shear stress generated within the cell culture wells when subjected to various vibration types. The experimental conditions consisted of four vibrational modes: No Vibration, Continuous Vibration, Regular Pulse, and Variable Pulse. To evaluate the effects on cells, we utilized fluorescence microscopy and a customized feature extraction algorithm to analyze the F-actin filament structures. Our findings indicate a consistent trend across all vibrated cell cultures, revealing a reduction in size and altered orientation (2D angle) of the filaments. Furthermore, we observed cell accumulations in the G1 cell cycle phase in cells treated with Continuous Vibration and Regular Pulse. Our results demonstrate a negative correlation between the magnitude of mechanical stimuli and the size of F-actin filaments, as well as a positive correlation with the accumulations of cells in the G1 phase of the cell cycle. By unraveling these analyses, this study paves the way for future investigations and provides a compelling framework for comprehending the intricate cellular responses to rhythmic mechanical stimulation.
Collapse
Affiliation(s)
- Dongho Kwak
- RITMO Centre for Interdisciplinary Studies in Rhythm, Time and Motion, Department of Musicology, University of Oslo, 0371 Oslo, Norway
- Hybrid Technology Hub, Centre for Organ on a Chip-Technology, Institute of Basic Medical Sciences, University of Oslo, 0372 Oslo, Norway
| | - Thomas Combriat
- Hybrid Technology Hub, Centre for Organ on a Chip-Technology, Institute of Basic Medical Sciences, University of Oslo, 0372 Oslo, Norway
- Department of Physics, Njord Center, University of Oslo, 0316 Oslo, Norway
| | - Alexander Refsum Jensenius
- RITMO Centre for Interdisciplinary Studies in Rhythm, Time and Motion, Department of Musicology, University of Oslo, 0371 Oslo, Norway
| | - Petter Angell Olsen
- Hybrid Technology Hub, Centre for Organ on a Chip-Technology, Institute of Basic Medical Sciences, University of Oslo, 0372 Oslo, Norway
- Unit for Cell Signaling, Department of Immunology and Transfusion Medicine, Oslo University Hospital, 0372 Oslo, Norway
| |
Collapse
|
3
|
Lv S, Chen Z, Mi H, Yu X. Cofilin Acts as a Booster for Progression of Malignant Tumors Represented by Glioma. Cancer Manag Res 2022; 14:3245-3269. [PMID: 36452435 PMCID: PMC9703913 DOI: 10.2147/cmar.s389825] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/10/2022] [Indexed: 07/20/2023] Open
Abstract
Cofilin, as a depolymerization factor of actin filaments, has been widely studied. Evidences show that cofilin has a role in actin structural reorganization and dynamic regulation. In recent years, several studies have demonstrated a regulatory role for cofilin in the migration and invasion mediated by cell dynamics and epithelial to mesenchymal transition (EMT)/EMT-like process, apoptosis, radiotherapy resistance, immune escape, and transcriptional dysregulation of malignant tumor cells, particularly glioma cells. On this basis, it is practical to evaluate cofilin as a biomarker for predicting tumor metastasis and prognosis. Targeting cofilin regulating kinases, Lin11, Isl-1 and Mec-3 kinases (LIM kinases/LIMKs) and their major upstream molecules inhibits tumor cell migration and invasion and targeting cofilin-mediated mitochondrial pathway induces apoptosis of tumor cells represent effective options for the development of novel anti-malignant tumor drug, especially anti-glioma drugs. This review explores the structure, general biological function, and regulation of cofilin, with an emphasis on the critical functions and prospects for clinical therapeutic applications of cofilin in malignant tumors represented by glioma.
Collapse
Affiliation(s)
- Shihong Lv
- Department of Gastroenterology, The Second Affiliated Hospital of Mudanjiang Medical College, Mudanjiang Medical College, Mudanjiang, 157011, People’s Republic of China
| | - Zhiye Chen
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
- Department of Histology and Embryology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| | - Hailong Mi
- Department of Histology and Embryology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| | - Xingjiang Yu
- Department of Histology and Embryology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| |
Collapse
|
4
|
Kadzik RS, Homa KE, Kovar DR. F-Actin Cytoskeleton Network Self-Organization Through Competition and Cooperation. Annu Rev Cell Dev Biol 2021; 36:35-60. [PMID: 33021819 DOI: 10.1146/annurev-cellbio-032320-094706] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Many fundamental cellular processes such as division, polarization, endocytosis, and motility require the assembly, maintenance, and disassembly of filamentous actin (F-actin) networks at specific locations and times within the cell. The particular function of each network is governed by F-actin organization, size, and density as well as by its dynamics. The distinct characteristics of different F-actin networks are determined through the coordinated actions of specific sets of actin-binding proteins (ABPs). Furthermore, a cell typically assembles and uses multiple F-actin networks simultaneously within a common cytoplasm, so these networks must self-organize from a common pool of shared globular actin (G-actin) monomers and overlapping sets of ABPs. Recent advances in multicolor imaging and analysis of ABPs and their associated F-actin networks in cells, as well as the development of sophisticated in vitro reconstitutions of networks with ensembles of ABPs, have allowed the field to start uncovering the underlying principles by which cells self-organize diverse F-actin networks to execute basic cellular functions.
Collapse
Affiliation(s)
- Rachel S Kadzik
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois 60637, USA; , .,Department of Molecular BioSciences, Northwestern University, Evanston, Illinois 60208, USA;
| | - Kaitlin E Homa
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois 60637, USA; ,
| | - David R Kovar
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois 60637, USA; , .,Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
5
|
Kučera O, Siahaan V, Janda D, Dijkstra SH, Pilátová E, Zatecka E, Diez S, Braun M, Lansky Z. Anillin propels myosin-independent constriction of actin rings. Nat Commun 2021; 12:4595. [PMID: 34321459 PMCID: PMC8319318 DOI: 10.1038/s41467-021-24474-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 06/21/2021] [Indexed: 02/07/2023] Open
Abstract
Constriction of the cytokinetic ring, a circular structure of actin filaments, is an essential step during cell division. Mechanical forces driving the constriction are attributed to myosin motor proteins, which slide actin filaments along each other. However, in multiple organisms, ring constriction has been reported to be myosin independent. How actin rings constrict in the absence of motor activity remains unclear. Here, we demonstrate that anillin, a non-motor actin crosslinker, indispensable during cytokinesis, autonomously propels the contractility of actin bundles. Anillin generates contractile forces of tens of pico-Newtons to maximise the lengths of overlaps between bundled actin filaments. The contractility is enhanced by actin disassembly. When multiple actin filaments are arranged into a ring, this contractility leads to ring constriction. Our results indicate that passive actin crosslinkers can substitute for the activity of molecular motors to generate contractile forces in a variety of actin networks, including the cytokinetic ring.
Collapse
Affiliation(s)
- Ondřej Kučera
- grid.418095.10000 0001 1015 3316Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Prague West, Czechia ,grid.5583.b0000 0001 2299 8025Present Address: CytoMorpho Lab, Laboratoire Physiologie Cellulaire & Végétale, Institut de recherche interdisciplinaire de Grenoble, Commissariat à l’énergie atomique et aux énergies alternatives (CEA), Grenoble, France
| | - Valerie Siahaan
- grid.418095.10000 0001 1015 3316Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Prague West, Czechia
| | - Daniel Janda
- grid.418095.10000 0001 1015 3316Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Prague West, Czechia
| | - Sietske H. Dijkstra
- grid.418095.10000 0001 1015 3316Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Prague West, Czechia
| | - Eliška Pilátová
- grid.418095.10000 0001 1015 3316Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Prague West, Czechia
| | - Eva Zatecka
- grid.418095.10000 0001 1015 3316Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Prague West, Czechia
| | - Stefan Diez
- grid.4488.00000 0001 2111 7257B CUBE – Center for Molecular Bioengineering, TU Dresden, Dresden, Germany ,grid.419537.d0000 0001 2113 4567Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany ,grid.4488.00000 0001 2111 7257Cluster of Excellence Physics of Life, Technische Universität Dresden, Dresden, Germany
| | - Marcus Braun
- grid.418095.10000 0001 1015 3316Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Prague West, Czechia
| | - Zdenek Lansky
- grid.418095.10000 0001 1015 3316Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Prague West, Czechia
| |
Collapse
|
6
|
Pollitt SL, Myers KR, Yoo J, Zheng JQ. LIM and SH3 protein 1 localizes to the leading edge of protruding lamellipodia and regulates axon development. Mol Biol Cell 2020; 31:2718-2732. [PMID: 32997597 PMCID: PMC7927181 DOI: 10.1091/mbc.e20-06-0366] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The actin cytoskeleton drives cell motility and is essential for neuronal development and function. LIM and SH3 protein 1 (LASP1) is a unique actin-binding protein that is expressed in a wide range of cells including neurons, but its roles in cellular motility and neuronal development are not well understood. We report that LASP1 is expressed in rat hippocampus early in development, and this expression is maintained through adulthood. High-resolution imaging reveals that LASP1 is selectively concentrated at the leading edge of lamellipodia in migrating cells and axonal growth cones. This local enrichment of LASP1 is dynamically associated with the protrusive activity of lamellipodia, depends on the barbed ends of actin filaments, and requires both the LIM domain and the nebulin repeats of LASP1. Knockdown of LASP1 in cultured rat hippocampal neurons results in a substantial reduction in axonal outgrowth and arborization. Finally, loss of the Drosophila homologue Lasp from a subset of commissural neurons in the developing ventral nerve cord produces defasciculated axon bundles that do not reach their targets. Together, our data support a novel role for LASP1 in actin-based lamellipodial protrusion and establish LASP1 as a positive regulator of both in vitro and in vivo axon development.
Collapse
Affiliation(s)
| | | | - Jin Yoo
- Emory College, Emory University, Atlanta, GA 30322
| | - James Q Zheng
- Department of Cell Biology and.,Department of Neurology and Center for Neurodegenerative Diseases, Emory University School of Medicine, and
| |
Collapse
|
7
|
Tang VW, Nadkarni AV, Brieher WM. Catastrophic actin filament bursting by cofilin, Aip1, and coronin. J Biol Chem 2020; 295:13299-13313. [PMID: 32723865 DOI: 10.1074/jbc.ra120.015018] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/24/2020] [Indexed: 11/06/2022] Open
Abstract
Cofilin is an actin filament severing protein necessary for fast actin turnover dynamics. Coronin and Aip1 promote cofilin-mediated actin filament disassembly, but the mechanism is somewhat controversial. An early model proposed that the combination of cofilin, coronin, and Aip1 disassembled filaments in bursts. A subsequent study only reported severing. Here, we used EM to show that actin filaments convert directly into globular material. A monomer trap assay also shows that the combination of all three factors produces actin monomers faster than any two factors alone. We show that coronin accelerates the release of Pi from actin filaments and promotes highly cooperative cofilin binding to actin to create long stretches of polymer with a hypertwisted morphology. Aip1 attacks these hypertwisted regions along their sides, disintegrating them into monomers or short oligomers. The results are consistent with a catastrophic mode of disassembly, not enhanced severing alone.
Collapse
Affiliation(s)
- Vivian W Tang
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, Urbana, Illinois, USA
| | - Ambika V Nadkarni
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, Urbana, Illinois, USA
| | - William M Brieher
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, Urbana, Illinois, USA.
| |
Collapse
|
8
|
Gurmessa BJ, Bitten N, Nguyen DT, Saleh OA, Ross JL, Das M, Robertson-Anderson RM. Triggered disassembly and reassembly of actin networks induces rigidity phase transitions. SOFT MATTER 2019; 15:1335-1344. [PMID: 30543255 PMCID: PMC6486790 DOI: 10.1039/c8sm01912f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Non-equilibrium soft materials, such as networks of actin proteins, have been intensely investigated over the past decade due to their promise for designing smart materials and understanding cell mechanics. However, current methods are unable to measure the time-dependent mechanics of such systems or map mechanics to the corresponding dynamic macromolecular properties. Here, we present an experimental approach that combines time-resolved optical tweezers microrheology with diffusion-controlled microfluidics to measure the time-evolution of microscale mechanical properties of dynamic systems during triggered activity. We use these methods to measure the viscoelastic moduli of entangled and crosslinked actin networks during chemically-triggered depolymerization and repolymerization of actin filaments. During disassembly, we find that the moduli exhibit two distinct exponential decays, with experimental time constants of ∼169 min and ∼47 min. Conversely, during reassembly, measured moduli initially exhibit power-law increase with time, after which steady-state values are achieved. We develop toy mathematical models that couple the time-evolution of filament lengths with rigidity percolation theory to shed light onto the molecular mechanisms underlying the observed mechanical transitions. The models suggest that these two distinct behaviors both arise from phase transitions between a rigidly percolated network and a non-rigid regime. Our approach and collective results can inform the general principles underlying the mechanics of a large class of dynamic, non-equilibrium systems and materials of current interest.
Collapse
Affiliation(s)
- Bekele J Gurmessa
- Department of Physics and Biophysics, University of San Diego, San Diego, USA.
| | | | | | | | | | | | | |
Collapse
|
9
|
Baudier J, Jenkins ZA, Robertson SP. The filamin-B–refilin axis – spatiotemporal regulators of the actin-cytoskeleton in development and disease. J Cell Sci 2018; 131:131/8/jcs213959. [DOI: 10.1242/jcs.213959] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
ABSTRACT
During development, cycles of spatiotemporal remodeling of higher-order networks of actin filaments contribute to control cell fate specification and differentiation. Programs for controlling these dynamics are hard-wired into actin-regulatory proteins. The filamin family of actin-binding proteins exert crucial mechanotransduction and signaling functions in tissue morphogenesis. Filamin-B (FLNB) is a key player in chondrocyte progenitor differentiation for endochondral ossification. Biallelic loss-of-function mutations or gain-of-function mutations in FLNB cause two groups of skeletal disorders that can be attributed to either the loss of repressive function on TGF-β signaling or a disruption in mechanosensory properties, respectively. In this Review, we highlight a unique family of vertebrate-specific short-lived filamin-binding proteins, the refilins (refilin-A and refilin-B), that modulate filamin-dependent actin crosslinking properties. Refilins are downstream TGF-β effectors in epithelial cells. Double knockout of both refilin-A and refilin-B in mice results in precocious ossification of some axial skeletal elements, leading to malformations that are similar to those seen in FLNB-deficient mice. Based on these findings, we present a model summarizing the role of refilins in regulating the mechanosensory functions of FLNB during skeletal development. We also discuss the possible contribution of refilins to FLNB-related skeletal pathologies that are associated with gain-of-function mutations.
Collapse
Affiliation(s)
- Jacques Baudier
- Aix Marseille Université, CNRS, IBDM, 13284 Marseille Cedex 07, France
- Institut de Biologie du Développement de Marseille-UMR CNRS 7288, Campus de Luminy-Case 907, 13288 Marseille Cedex 9, France
| | - Zandra A. Jenkins
- Department of Women's and Children's Health, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Stephen P. Robertson
- Department of Women's and Children's Health, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| |
Collapse
|
10
|
da Costa Fernandes CJ, Ferreira MR, Bezerra FJB, Zambuzzi WF. Zirconia stimulates ECM-remodeling as a prerequisite to pre-osteoblast adhesion/proliferation by possible interference with cellular anchorage. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2018; 29:41. [PMID: 29582191 DOI: 10.1007/s10856-018-6041-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 03/05/2018] [Indexed: 06/08/2023]
Abstract
The biological response to zirconia (ZrO2) is not completely understood, which prompted us to address its effect on pre-osteoblastic cells in both direct and indirect manner. Our results showed that zirconia triggers important intracellular signaling mainly by governing survival signals which leads to cell adhesion and proliferation by modulating signaling cascade responsible for dynamic cytoskeleton rearrangement, as observed by fluorescence microscopy. The phosphorylations of Focal Adhesion Kinase (FAK) and Rac1 decreased in response to ZrO2 enriched medium. This corroborates the result of the crystal violet assay, which indicated a significant decrease of pre-osteoblast adhesion in responding to ZrO2 enriched medium. However, we credit this decrease on pre-osteoblast adhesion to the need to govern intracellular repertory of intracellular pathways involved with cell cycle progression, because we found a significant up-phosphorylation of Mitogen-Activated Protein Kinase (MAPK)-p38 and Cyclin-dependent kinase 2 (CDK2), while p15 (a cell cycle suppressor) decreased. Importantly, Protein phosphatase 2 A (PP2A) activity decreased, guaranteeing the significant up-phosphorylation of MAPK -p38 in response to ZrO2 enriched medium. Complementarily, there was a regulation of Matrix Metalloproteinases (MMPs) in response to Zirconia and this remodeling could affect cell phenotype by interfering on cell anchorage. Altogether, our results show a repertory of signaling molecules, which suggests that ECM remodel as a pre-requisite to pre-osteoblast phenotype by affecting their anchoring in responding to zirconia.
Collapse
Affiliation(s)
- Celio J da Costa Fernandes
- Bioassays and Cell Dynamics Lab, Dept. of Chemistry and Biochemistry, Bioscience Institute, Universidade Estadual Paulista - UNESP, Botucatu, Sao Paulo, Brazil
| | - Marcel Rodrigues Ferreira
- Bioassays and Cell Dynamics Lab, Dept. of Chemistry and Biochemistry, Bioscience Institute, Universidade Estadual Paulista - UNESP, Botucatu, Sao Paulo, Brazil
| | - Fábio J B Bezerra
- Bioassays and Cell Dynamics Lab, Dept. of Chemistry and Biochemistry, Bioscience Institute, Universidade Estadual Paulista - UNESP, Botucatu, Sao Paulo, Brazil
| | - Willian F Zambuzzi
- Bioassays and Cell Dynamics Lab, Dept. of Chemistry and Biochemistry, Bioscience Institute, Universidade Estadual Paulista - UNESP, Botucatu, Sao Paulo, Brazil.
| |
Collapse
|
11
|
Fernandes CJC, Bezerra F, Ferreira MR, Andrade AFC, Pinto TS, Zambuzzi WF. Nano hydroxyapatite-blasted titanium surface creates a biointerface able to govern Src-dependent osteoblast metabolism as prerequisite to ECM remodeling. Colloids Surf B Biointerfaces 2017; 163:321-328. [PMID: 29329077 DOI: 10.1016/j.colsurfb.2017.12.049] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 12/21/2017] [Accepted: 12/27/2017] [Indexed: 11/18/2022]
Abstract
Over the last several years, we have focused on the importance of intracellular signaling pathways in dynamically governing the biointerface between pre-osteoblast and surface of biomaterial. Thus, this study investigates the molecular hallmarks involved in the pre-osteoblast relationship with different topography considering Machined (Mc), Dual Acid-Etching (DAE), and nano hydroxyapatite-blasted (nHA) groups. There was substantial differences in topography of titanium surface, considering Atomic Force Microscopy and water contact angle (Mc = 81.41 ± 0.01; DAE = 97.18 ± 0.01; nHA = 40.95 ± 0.02). Later, to investigate their topography differences on biological responses, pre-osteoblast was seeded on the different surfaces and biological samples were collected after 24 h (to consider adhesion signaling) and 10 days (to consider differentiation signaling). Preliminary results evidenced significant differences in morphological changes of pre-osteoblasts mainly resulting from the interaction with the DAE and nHA, distinguishing cellular adaptation. These results pushed us to analyze activation of specific genes by exploring qPCR technology. In sequence, we showed that Src performs crucial roles during cell adhesion and later differentiation of the pre-osteoblast in relationship with titanium-based biomaterials, as our results confirmed strong feedback of the Src activity on the integrin-based pathway, because integrin-ß1 (∼5-fold changes), FAK (∼12-fold changes), and Src (∼3.5-fold changes) were significantly up-expressed when Src was chemically inhibited by PP1 (5 μM). Moreover, ECM-related genes were rigorously reprogrammed in response to the different surfaces, resulting on Matrix Metalloproteinase (MMP) activities concomitant to a significant decrease of MMP inhibitors. In parallel, we showed PP1-based Src inhibition promotes a significant increase of MMP activity. Taking all our results into account, we showed for the first time nano hydroxyapatite-blasted titanium surface creates a biointerface able to govern Src-dependent osteoblast metabolism as pre-requisite to ECM remodeling.
Collapse
Affiliation(s)
- Célio J C Fernandes
- Department of Chemistry and Biochemistry, Bioscience Institute, São Paulo State University, UNESP, Campus Botucatu, Botucatu, São Paulo, Brazil
| | - Fábio Bezerra
- Department of Chemistry and Biochemistry, Bioscience Institute, São Paulo State University, UNESP, Campus Botucatu, Botucatu, São Paulo, Brazil
| | - Marcel R Ferreira
- Department of Chemistry and Biochemistry, Bioscience Institute, São Paulo State University, UNESP, Campus Botucatu, Botucatu, São Paulo, Brazil
| | - Amanda F C Andrade
- Department of Chemistry and Biochemistry, Bioscience Institute, São Paulo State University, UNESP, Campus Botucatu, Botucatu, São Paulo, Brazil
| | - Thais Silva Pinto
- Department of Chemistry and Biochemistry, Bioscience Institute, São Paulo State University, UNESP, Campus Botucatu, Botucatu, São Paulo, Brazil
| | - Willian F Zambuzzi
- Department of Chemistry and Biochemistry, Bioscience Institute, São Paulo State University, UNESP, Campus Botucatu, Botucatu, São Paulo, Brazil; Electron Microscopy Center, IBB, UNESP, Botucatu, SP, Brazil.
| |
Collapse
|
12
|
Grintsevich EE, Ge P, Sawaya MR, Yesilyurt HG, Terman JR, Zhou ZH, Reisler E. Catastrophic disassembly of actin filaments via Mical-mediated oxidation. Nat Commun 2017; 8:2183. [PMID: 29259197 PMCID: PMC5736627 DOI: 10.1038/s41467-017-02357-8] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 11/13/2017] [Indexed: 11/09/2022] Open
Abstract
Actin filament assembly and disassembly are vital for cell functions. MICAL Redox enzymes are important post-translational effectors of actin that stereo-specifically oxidize actin's M44 and M47 residues to induce cellular F-actin disassembly. Here we show that Mical-oxidized (Mox) actin can undergo extremely fast (84 subunits/s) disassembly, which depends on F-actin's nucleotide-bound state. Using near-atomic resolution cryoEM reconstruction and single filament TIRF microscopy we identify two dynamic and structural states of Mox-actin. Modeling actin's D-loop region based on our 3.9 Å cryoEM reconstruction suggests that oxidation by Mical reorients the side chain of M44 and induces a new intermolecular interaction of actin residue M47 (M47-O-T351). Site-directed mutagenesis reveals that this interaction promotes Mox-actin instability. Moreover, we find that Mical oxidation of actin allows for cofilin-mediated severing even in the presence of inorganic phosphate. Thus, in conjunction with cofilin, Mical oxidation of actin promotes F-actin disassembly independent of the nucleotide-bound state.
Collapse
Affiliation(s)
- Elena E Grintsevich
- Department of Chemistry and Biochemistry, University of California (UCLA), Los Angeles, CA, 90095, USA
| | - Peng Ge
- California NanoSystems Institute, UCLA, Los Angeles, CA, 90095, USA
| | - Michael R Sawaya
- Department of Chemistry and Biochemistry, University of California (UCLA), Los Angeles, CA, 90095, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, 90095, USA
| | - Hunkar Gizem Yesilyurt
- Departments of Neuroscience and Pharmacology and Neuroscience Graduate Program, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jonathan R Terman
- Departments of Neuroscience and Pharmacology and Neuroscience Graduate Program, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| | - Z Hong Zhou
- California NanoSystems Institute, UCLA, Los Angeles, CA, 90095, USA.
- Molecular Biology Institute, UCLA, Los Angeles, CA, 90095, USA.
- Department of Microbiology, Immunology & Molecular Genetics, UCLA, Los Angeles, CA, 90095, USA.
| | - Emil Reisler
- Department of Chemistry and Biochemistry, University of California (UCLA), Los Angeles, CA, 90095, USA.
- Molecular Biology Institute, UCLA, Los Angeles, CA, 90095, USA.
| |
Collapse
|
13
|
Noguchi TQP, Morimatsu M, Iwane AH, Yanagida T, Uyeda TQP. The role of structural dynamics of actin in class-specific myosin motility. PLoS One 2015; 10:e0126262. [PMID: 25945499 PMCID: PMC4422724 DOI: 10.1371/journal.pone.0126262] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Accepted: 03/31/2015] [Indexed: 11/18/2022] Open
Abstract
The structural dynamics of actin, including the tilting motion between the small and large domains, are essential for proper interactions with actin-binding proteins. Gly146 is situated at the hinge between the two domains, and we previously showed that a G146V mutation leads to severe motility defects in skeletal myosin but has no effect on motility of myosin V. The present study tested the hypothesis that G146V mutation impaired rotation between the two domains, leading to such functional defects. First, our study showed that depolymerization of G146V filaments was slower than that of wild-type filaments. This result is consistent with the distinction of structural states of G146V filaments from those of the wild type, considering the recent report that stabilization of actin filaments involves rotation of the two domains. Next, we measured intramolecular FRET efficiencies between two fluorophores in the two domains with or without skeletal muscle heavy meromyosin or the heavy meromyosin equivalent of myosin V in the presence of ATP. Single-molecule FRET measurements showed that the conformations of actin subunits of control and G146V actin filaments were different in the presence of skeletal muscle heavy meromyosin. This altered conformation of G146V subunits may lead to motility defects in myosin II. In contrast, distributions of FRET efficiencies of control and G146V subunits were similar in the presence of myosin V, consistent with the lack of motility defects in G146V actin with myosin V. The distribution of FRET efficiencies in the presence of myosin V was different from that in the presence of skeletal muscle heavy meromyosin, implying that the roles of actin conformation in myosin motility depend on the type of myosin.
Collapse
Affiliation(s)
- Taro Q. P. Noguchi
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
- Department of Chemical Science and Engineering, National Institute of Technology, Miyakonojo College, Miyakonojo, Miyazaki, Japan
- * E-mail:
| | - Masatoshi Morimatsu
- Nanobiology Laboratories, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Atsuko H. Iwane
- Nanobiology Laboratories, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
- Quantitative Biology Center (QBiC), RIKEN, Suita, Osaka, Japan
| | - Toshio Yanagida
- Nanobiology Laboratories, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
- Quantitative Biology Center (QBiC), RIKEN, Suita, Osaka, Japan
| | - Taro Q. P. Uyeda
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
- Graduate School of Medical Life Science, Yokohama City University, Tsurumi, Yokohama, Kanagawa, Japan
| |
Collapse
|
14
|
Narayanan P, Chatterton P, Ikeda A, Ikeda S, Corey DP, Ervasti JM, Perrin BJ. Length regulation of mechanosensitive stereocilia depends on very slow actin dynamics and filament-severing proteins. Nat Commun 2015; 6:6855. [PMID: 25897778 PMCID: PMC4523390 DOI: 10.1038/ncomms7855] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 03/05/2015] [Indexed: 12/15/2022] Open
Abstract
Auditory sensory hair cells depend on stereocilia with precisely regulated lengths to detect sound. Since stereocilia are primarily composed of cross-linked, parallel actin filaments, regulated actin dynamics are essential for controlling stereocilia length. Here, we assessed stereocilia actin turnover by monitoring incorporation of inducibly expressed β-actin-GFP in adult mouse hair cells in vivo and by directly measuring β-actin-GFP turnover in explants. Stereocilia actin incorporation is remarkably slow and restricted to filament barbed ends in a small tip compartment, with minimal accumulation in the rest of the actin core. Shorter rows of stereocilia, which have mechanically-gated ion channels, show more variable actin turnover than the tallest stereocilia, which lack channels. Finally, the proteins ADF and AIP1, which both mediate actin filament severing, contribute to stereocilia length maintenance. Together, the data support a model whereby stereocilia actin cores are largely static, with dynamic regulation at the tips to maintain a critical length.
Collapse
Affiliation(s)
- Praveena Narayanan
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Paul Chatterton
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Akihiro Ikeda
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Sakae Ikeda
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - David P Corey
- Department of Neurobiology, Harvard Medical School and Howard Hughes Medical Institute, Boston, Massachusetts 02115, USA
| | - James M Ervasti
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Benjamin J Perrin
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46022, USA
| |
Collapse
|
15
|
Zheng K, Kitazato K, Wang Y, He Z. Pathogenic microbes manipulate cofilin activity to subvert actin cytoskeleton. Crit Rev Microbiol 2015; 42:677-95. [PMID: 25853495 DOI: 10.3109/1040841x.2015.1010139] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Actin-depolymerizing factor (ADF)/cofilin proteins are key players in controlling the temporal and spatial extent of actin dynamics, which is crucial for mediating host-pathogen interactions. Pathogenic microbes have evolved molecular mechanisms to manipulate cofilin activity to subvert the actin cytoskeletal system in host cells, promoting their internalization into the target cells, modifying the replication niche and facilitating their intracellular and intercellular dissemination. The study of how these pathogens exploit cofilin pathways is crucial for understanding infectious disease and providing potential targets for drug therapies.
Collapse
Affiliation(s)
- Kai Zheng
- a Department of Pharmacy, School of Medicine , Shenzhen University , Shenzhen , Guangdong , People's Republic of China .,c Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University , Guangzhou , China
| | - Kaio Kitazato
- b Division of Molecular Pharmacology of Infectious Agents, Department of Molecular Microbiology and Immunology , Nagasaki University , Nagasaki , Japan , and
| | - Yifei Wang
- c Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University , Guangzhou , China
| | - Zhendan He
- a Department of Pharmacy, School of Medicine , Shenzhen University , Shenzhen , Guangdong , People's Republic of China
| |
Collapse
|
16
|
Crevenna AH, Arciniega M, Dupont A, Mizuno N, Kowalska K, Lange OF, Wedlich-Söldner R, Lamb DC. Side-binding proteins modulate actin filament dynamics. eLife 2015; 4. [PMID: 25706231 PMCID: PMC4375888 DOI: 10.7554/elife.04599] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 02/20/2015] [Indexed: 01/10/2023] Open
Abstract
Actin filament dynamics govern many key physiological processes from cell motility to tissue morphogenesis. A central feature of actin dynamics is the capacity of filaments to polymerize and depolymerize at their ends in response to cellular conditions. It is currently thought that filament kinetics can be described by a single rate constant for each end. In this study, using direct visualization of single actin filament elongation, we show that actin polymerization kinetics at both filament ends are strongly influenced by the binding of proteins to the lateral filament surface. We also show that the pointed-end has a non-elongating state that dominates the observed filament kinetic asymmetry. Estimates of flexibility as well as effects on fragmentation and growth suggest that the observed kinetic diversity arises from structural alteration. Tuning elongation kinetics by exploiting the malleability of the filament structure may be a ubiquitous mechanism to generate a rich variety of cellular actin dynamics. DOI:http://dx.doi.org/10.7554/eLife.04599.001 Actin is one of the most abundant proteins in cells. It forms networks of filaments that provide structural support and generate the forces needed for cell movement, division, and many other processes in cells. Filaments of actin continuously change in length as actin molecules are added or removed at the ends. One end of an actin filament—called the barbed-end—grows much faster than the other, known as the pointed-end. Many other proteins also help the actin filaments to form. Some of these proteins bind to the ends of the filaments, where they directly control the growth of the filaments. Other proteins bind along the length of the filaments, but how these ‘side-binding’ proteins influence the growth of filaments is not clear. In this study, Crevenna et al. used a technique called ‘total internal reflection fluorescence (TIRF) microscopy’ to study how several side-binding proteins affect the growth of actin filaments in an artificial system. The growth of the barbed-ends was strongly influenced by which side-binding protein was interacting with the filament. For example, the barbed-end grew rapidly when a protein called VASP was present but grew more slowly in the presence of the protein α-actinin. Although the growth at the pointed-end was generally slow and sporadic, the side-binding proteins also had noticeable effects. Crevenna et al. found that when the side-binding proteins were present at low levels, filament growth was similar for all proteins studied. It was only when the proteins were present at higher levels that the growth of the actin filaments was altered depending on the specific side-binding protein present. One side-binding protein called α-actinin also altered the shape of the actin filament so that when it was present at high levels, the filaments curved in a particular direction. Together, these results suggest that the growth, structure, and flexibility of actin filaments can be strongly influenced by the various proteins that bind along the length of the filaments. The next challenges are to understand the precise details of how these side-binding proteins are able to alter the growth and shape of actin and investigate how they influence other processes that control the structure of actin networks in cells. DOI:http://dx.doi.org/10.7554/eLife.04599.002
Collapse
Affiliation(s)
- Alvaro H Crevenna
- Physical Chemistry, Department of Chemistry and Center for Nanoscience, Ludwig-Maximilians-Universität München, Munich, Germany.,Cellular Dynamics and Cell Patterning, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Marcelino Arciniega
- Max Planck Institute of Biochemistry, Martinsried, Germany.,Department of Chemistry, Technische Universität München, Garching, Germany
| | - Aurélie Dupont
- Physical Chemistry, Department of Chemistry and Center for Nanoscience, Ludwig-Maximilians-Universität München, Munich, Germany.,NanoSystems Initiative Munich, Ludwig-Maximilians-Universität München, Munich, Germany.,Center for Integrated Protein Science Munich, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Naoko Mizuno
- Cellular and Membrane Trafficking, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Kaja Kowalska
- Cellular Dynamics and Cell Patterning, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Oliver F Lange
- Department of Chemistry, Technische Universität München, Garching, Germany.,Biomolecular NMR and Munich Center for Integrated Protein Science, Technische Universität München, Garching, Germany.,Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Roland Wedlich-Söldner
- Cellular Dynamics and Cell Patterning, Max Planck Institute of Biochemistry, Martinsried, Germany.,Institute of Cell Dynamics and Imaging, Cells-in-Motion Cluster of Excellence (EXC 1003 - CiM), University of Münster, Münster, Germany
| | - Don C Lamb
- Physical Chemistry, Department of Chemistry and Center for Nanoscience, Ludwig-Maximilians-Universität München, Munich, Germany.,NanoSystems Initiative Munich, Ludwig-Maximilians-Universität München, Munich, Germany.,Center for Integrated Protein Science Munich, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
17
|
Kinetics of sickle cell biorheology and implications for painful vasoocclusive crisis. Proc Natl Acad Sci U S A 2015; 112:1422-7. [PMID: 25605910 DOI: 10.1073/pnas.1424111112] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We developed a microfluidics-based model to quantify cell-level processes modulating the pathophysiology of sickle cell disease (SCD). This in vitro model enabled quantitative investigations of the kinetics of cell sickling, unsickling, and cell rheology. We created short-term and long-term hypoxic conditions to simulate normal and retarded transit scenarios in microvasculature. Using blood samples from 25 SCD patients with sickle hemoglobin (HbS) levels varying from 64 to 90.1%, we investigated how cell biophysical alterations during blood flow correlated with hematological parameters, HbS level, and hydroxyurea (HU) therapy. From these measurements, we identified two severe cases of SCD that were also independently validated as severe from a genotype-based disease severity classification. These results point to the potential of this method as a diagnostic indicator of disease severity. In addition, we investigated the role of cell density in the kinetics of cell sickling. We observed an effect of HU therapy mainly in relatively dense cell populations, and that the sickled fraction increased with cell density. These results lend support to the possibility that the microfluidic platform developed here offers a unique and quantitative approach to assess the kinetic, rheological, and hematological factors involved in vasoocclusive events associated with SCD and to develop alternative diagnostic tools for disease severity to supplement other methods. Such insights may also lead to a better understanding of the pathogenic basis and mechanism of drug response in SCD.
Collapse
|
18
|
Li X, Kolomeisky AB. Theoretical analysis of microtubule dynamics at all times. J Phys Chem B 2014; 118:13777-84. [PMID: 25390471 DOI: 10.1021/jp507206f] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Microtubules are biopolymers consisting of tubulin dimer subunits. As a major component of cytoskeleton they are essential for supporting most important cellular processes such as cell division, signaling, intracellular transport and cell locomotion. The hydrolysis of guanosine triphosphate (GTP) molecules attached to each tubulin subunit supports the nonequilibrium nature of microtubule dynamics. One of the most spectacular properties of microtubules is their dynamic instability when their growth from continuous attachment of tubulin dimers stochastically alternates with periods of shrinking. Despite the critical importance of this process to all cellular activities, its mechanism remains not fully understood. We investigated theoretically microtubule dynamics at all times by analyzing explicitly temporal evolution of various length clusters of unhydrolyzed subunits. It is found that the dynamic behavior of microtubules depends strongly on initial conditions. Our theoretical findings provide a microscopic explanation for recent experiments which found that the frequency of catastrophes increases with the lifetime of microtubules. It is argued that most growing microtubule configurations cannot transit in one step into a shrinking state, leading to a complex overall temporal behavior. Theoretical calculations combined with Monte Carlo computer simulations are also directly compared with experimental observations, and good agreement is found.
Collapse
Affiliation(s)
- Xin Li
- Department of Chemistry and Center for Theoretical Biological Physics, Rice University , Houston, Texas 77005, United States
| | | |
Collapse
|
19
|
Jégou A, Carlier MF, Romet-Lemonne G. Microfluidics pushes forward microscopy analysis of actin dynamics. BIOARCHITECTURE 2014; 1:271-276. [PMID: 22545179 PMCID: PMC3337129 DOI: 10.4161/bioa.1.6.19338] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Actin filaments, an essential part of the cytoskeleton, drive various cell processes, during which they elongate, disassemble and form different architectures. Over the past 30 years, the study of actin dynamics has relied mainly on bulk solution measurements, which revealed the kinetics and thermodynamics of actin self-assembly at barbed and pointed ends, its control by ATP hydrolysis and its regulation by proteins binding either monomeric actin or filament ends and sides. These measurements provide quantitative information on the averaged behavior of a homogeneous population of filaments. They have been complemented by light microscopy observations of stabilized individual filaments, providing information inaccessible using averaging methods, such as mechanical properties or length distributions. In the past ten years, the improvement of light microscopy techniques has allowed biophysicists to monitor the dynamics of individual actin filaments, thus giving access to the length fluctuations of filaments or the mechanism of processive assembly by formins. Recently, in order to solve some of the problems linked to these observations, such as the need to immobilize filaments on a coverslip, we have used microfluidics as a tool to improve the observation, manipulation and analysis of individual actin filaments. This microfluidic method allowed us to rapidly switch filaments from polymerizing to depolymerizing conditions, and derive the molecular mechanism of ATP hydrolysis on a single filament from the kinetic analysis of its nucleotide-dependent disassembly rate. Here, we discuss how this work sets the basis for future experiments on actin dynamics, and briefly outline promising developments of this technique.
Collapse
Affiliation(s)
- Antoine Jégou
- Cytoskeleton Dynamics and Motility Group; Laboratoire d'Enzymologie et Biochimie Structurales; Centre de Recherche de Gif; CNRS; Gif-sur-Yvette, France
| | | | | |
Collapse
|
20
|
Collins A, Huang R, Jensen MH, Moore JR, Lehman W, Wang CLA. Structural studies on maturing actin filaments. BIOARCHITECTURE 2014; 1:127-133. [PMID: 21922043 DOI: 10.4161/bioa.1.3.16714] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 05/24/2011] [Accepted: 05/25/2011] [Indexed: 12/29/2022]
Abstract
We have previously reported that actin undergoes a conformational transition (which we named "maturation") during polymerization, and that the actin-binding protein, caldesmon (CaD), when added at an early phase of polymerization, interferes with this process (Huang et al. J Biol Chem 2010; 285:71). The pre-transition filament is characterized by relatively low pyrene-fluorescence intensity when pyrene-labeled actin is used as a reporter of subunit assembly into filaments, whereas the mature filament emits a characteristic enhanced fluorescence. Previously reported co-sedimentation experiments suggest that filament formation is not inhibited by the presence of CaD, despite blocking the transition associated with filament maturation. In this study we visualized structural effects of CaD on the assembly of actin filaments by TIRF and electron microscopy. CaD-free actin forms "rough" filaments with irregular edges and indistinct subunit organization during the initial phase (∼20 min under our conditions) of polymerization as reported previously by others (Steinmetz et al. J Cell Biol 1997; 138:559; Galinska-Rakoczy et al. J Mol Biol 2009; 387:869), which most likely correspond to the pre-transition state preceding the maturation step. Later during the polymerization process "mature" filaments exhibit a smoother F-actin appearance with easily detectible double helically arranged actin subunits. While the inclusion of the actin-binding domain of CaD during actin polymerization does not affect the elongation rate, it is associated with a prolonged pre-transition phase, characterized by a delayed alteration (rough to smooth) of the appearance of filaments, consistent with a later onset of the maturation process.
Collapse
|
21
|
de Wild M, Pomp W, Koenderink GH. Thermal memory in self-assembled collagen fibril networks. Biophys J 2014; 105:200-10. [PMID: 23823240 DOI: 10.1016/j.bpj.2013.05.035] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 04/26/2013] [Accepted: 05/10/2013] [Indexed: 01/20/2023] Open
Abstract
Collagen fibrils form extracellular networks that regulate cell functions and provide mechanical strength to tissues. Collagen fibrillogenesis is an entropy-driven process promoted by warming and reversed by cooling. Here, we investigate the influence of noncovalent interactions mediated by the collagen triple helix on fibril stability. We measure the kinetics of cold-induced disassembly of fibrils formed from purified collagen I using turbimetry, probe the fibril morphology by atomic force microscopy, and measure the network connectivity by confocal microscopy and rheometry. We demonstrate that collagen fibrils disassemble by subunit release from their sides as well as their ends, with complex kinetics involving an initial fast release followed by a slow release. Surprisingly, the fibrils are gradually stabilized over time, leading to thermal memory. This dynamic stabilization may reflect structural plasticity of the collagen fibrils arising from their complex structure. In addition, we propose that the polymeric nature of collagen monomers may lead to slow kinetics of subunit desorption from the fibril surface. Dynamic stabilization of fibrils may be relevant in the initial stages of collagen assembly during embryogenesis, fibrosis, and wound healing. Moreover, our results are relevant for tissue repair and drug delivery applications, where it is crucial to control fibril stability.
Collapse
Affiliation(s)
- Martijn de Wild
- Biological Soft Matter Group, FOM Institute AMOLF, Amsterdam, The Netherlands
| | | | | |
Collapse
|
22
|
Quantitative analysis of approaches to measure cooperative phosphate release in polymerized actin. Biophys J 2013; 103:2369-78. [PMID: 23283236 DOI: 10.1016/j.bpj.2012.10.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 10/18/2012] [Accepted: 10/19/2012] [Indexed: 11/21/2022] Open
Abstract
We use stochastic simulations that treat several experimental probes of actin dynamics to explore the extent to which phosphate dissociation in filamentous actin may be cooperative. Phosphate time-courses from polymerization and copolymerization experiments of ATP- and ADP-actin are studied, including the effects of variations in filament-number concentration as well as single-filament depolymerization time-courses. We find that highly cooperative models are consistent with the treated experimental data. We also find that some types of experiments that are believed to provide strong constraints on the cooperativity of actin hydrolysis models do not provide such constraints.
Collapse
|
23
|
Mechanism of cell rear retraction in migrating cells. Curr Opin Cell Biol 2013; 25:591-9. [PMID: 23764164 DOI: 10.1016/j.ceb.2013.05.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 04/26/2013] [Accepted: 05/10/2013] [Indexed: 11/23/2022]
Abstract
For decades, ever growing data on myosin II provides strong evidence that interaction of myosin-II-motor-domain with actin filaments within cells retracts the cell rear during actin-based cell migration. Now it is clear myosin II motor-activity is not the sole force involved. Alternative force-generating mechanisms within cells clearly also exist to power cell rear retraction during actin-based cell migration. Given that nematode sperm cells migrate without actin and without cytoskeletal motor proteins it is perhaps not surprising other types of force power cell rear retraction in actin-based systems. Here, cell rear retraction driven by actin filament depolymerisation, actin filament crosslinking, cell front protrusion and possibly apparent membrane tension and their importance relative to myosin II-motor-based contractility are discussed.
Collapse
|
24
|
Graceffa P, Lee E, Stafford WF. Disulfide cross-linked antiparallel actin dimer. Biochemistry 2013; 52:1082-8. [PMID: 23293916 DOI: 10.1021/bi301208a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Oxidation of actin monomer (G-actin) with copper o-phenanthroline resulted in a rapid, high yield of disulfide cross-linked dimer. The cross-link is due to an intermolecular disulfide bond between actin Cys374 of each molecule, resulting in a tail-to-tail, i.e., antiparallel, actin dimer. Analytical ultracentrifugation profiles of G-actin can be ascribed to the existence of actin monomers with very little, if any, dimer. Thus, actin dimers are not energetically favorable, indicating that cross-linked dimers are formed during random diffusional collisions. On the other hand, a similar oxidation of actin polymer (F-actin) resulted in a much lower yield of the cross-linked actin dimer that showed no sign of leveling off. Therefore, it is proposed that the cross-linked dimer from actin polymer is due to collisional complexes of actin monomers that are in equilibrium with the polymer during actin treadmilling. These results account for the reported observation that during the early stages of actin polymerization (where the actin monomer concentration is high) cross-linked antiparallel actin dimers are formed in relatively high yield whereas none are formed at later stages of polymerization. These findings raise questions concerning the validity of the antiparallel actin dimer model of in vitro actin polymerization that is based on the assumption that the ability to form cross-linked actin dimers implies the existence of stable dimers.
Collapse
Affiliation(s)
- Philip Graceffa
- Boston Biomedical Research Institute, Watertown, MA 02472, USA.
| | | | | |
Collapse
|
25
|
|
26
|
Jain I, Lacoste D, Panda D, Padinhateeri R. History-dependent depolymerization of actin filaments. Biochemistry 2012; 51:7580-7. [PMID: 22934895 DOI: 10.1021/bi300629f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Depolymerizing cytoskeletal filaments are involved in cell division, cell motility, and other cellular functions. Understanding the dynamics of depolymerization is as important as understanding the dynamics of polymerization. We study nonequilibrium depolymerization of actin filaments using a simple two-state model. We show that the polymerization history influences the dynamics of depolymerization as well as the length fluctuations during depolymerization. We also simulate depolymerization under different experimentally feasible conditions. Under conditions of constant concentration, we show that the depolymerization happens in two regimes. Under the conditions of mass conservation, the depolymerization can have three regimes.
Collapse
Affiliation(s)
- Ishutesh Jain
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | | | | | | |
Collapse
|
27
|
Sörensen PM, Iacob RE, Fritzsche M, Engen JR, Brieher WM, Charras G, Eggert US. The natural product cucurbitacin E inhibits depolymerization of actin filaments. ACS Chem Biol 2012; 7:1502-8. [PMID: 22724897 DOI: 10.1021/cb300254s] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Although small molecule actin modulators have been widely used as research tools, only one cell-permeable small molecule inhibitor of actin depolymerization (jasplakinolide) is commercially available. We report that the natural product cucurbitacin E inhibits actin depolymerization and show that its mechanism of action is different from jasplakinolide. In assays using pure fluorescently labeled actin, cucurbitacin E specifically affects depolymerization without affecting polymerization. It inhibits actin depolymerization at substoichiometric concentrations up to 1:6 cucurbitacin E:actin. Cucurbitacin E specifically binds to filamentous actin (F-actin) forming a covalent bond at residue Cys257, but not to monomeric actin (G-actin). On the basis of its compatibility with phalloidin staining, we show that cucurbitacin E occupies a different binding site on actin filaments. Using loss of fluorescence after localized photoactivation, we found that cucurbitacin E inhibits actin depolymerization in live cells. Cucurbitacin E is a widely available plant-derived natural product, making it a useful tool to study actin dynamics in cells and actin-based processes such as cytokinesis.
Collapse
Affiliation(s)
- Pia M. Sörensen
- Dana-Farber Cancer Institute and Department of Biological Chemistry
and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, United States
| | - Roxana E. Iacob
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, United
States
| | - Marco Fritzsche
- London Centre for
Nanotechnology and Department of Physics and Astronomy, University College London, London, U.K
| | - John R. Engen
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, United
States
| | - William M. Brieher
- Department of Cell and Developmental
Biology, University of Illinois, Urbana−Champaign,
Illinois, United States
| | - Guillaume Charras
- London Centre for Nanotechnology and Department of Cell and Developmental
Biology, University College London, London,
U.K
| | - Ulrike S. Eggert
- Dana-Farber Cancer Institute and Department of Biological Chemistry
and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, United States
- Department of Chemistry and Randall Division of Cell and Molecular Biophysics King’s College London, London, U.K
| |
Collapse
|
28
|
Normoyle KPM, Brieher WM. Cyclase-associated protein (CAP) acts directly on F-actin to accelerate cofilin-mediated actin severing across the range of physiological pH. J Biol Chem 2012; 287:35722-35732. [PMID: 22904322 DOI: 10.1074/jbc.m112.396051] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Fast actin depolymerization is necessary for cells to rapidly reorganize actin filament networks. Utilizing a Listeria fluorescent actin comet tail assay to monitor actin disassembly rates, we observed that although a mixture of actin disassembly factors (cofilin, coronin, and actin-interacting protein 1 is sufficient to disassemble actin comet tails in the presence of physiological G-actin concentrations this mixture was insufficient to disassemble actin comet tails in the presence of physiological F-actin concentrations. Using biochemical complementation, we purified cyclase-associated protein (CAP) from thymus extracts as a factor that protects against the inhibition of excess F-actin. CAP has been shown to participate in actin dynamics but has been thought to act by liberating cofilin from ADP·G-actin monomers to restore cofilin activity. However, we found that CAP augments cofilin-mediated disassembly by accelerating the rate of cofilin-mediated severing. We also demonstrated that CAP acts directly on F-actin and severs actin filaments at acidic, but not neutral, pH. At the neutral pH characteristic of cytosol in most mammalian cells, we demonstrated that neither CAP nor cofilin are capable of severing actin filaments. However, the combination of CAP and cofilin rapidly severed actin at all pH values across the physiological range. Therefore, our results reveal a new function for CAP in accelerating cofilin-mediated actin filament severing and provide a mechanism through which cells can maintain high actin turnover rates without having to alkalinize cytosol, which would affect many biochemical reactions beyond actin depolymerization.
Collapse
Affiliation(s)
- Kieran P M Normoyle
- Department of Molecular and Integrative Physiology, University of Illinois, Urbana, Illinois 61801
| | - William M Brieher
- Department of Cell and Developmental Biology, University of Illinois, Urbana, Illinois 61801.
| |
Collapse
|
29
|
Jensen MH, Morris EJ, Huang R, Rebowski G, Dominguez R, Weitz DA, Moore JR, Wang CLA. The conformational state of actin filaments regulates branching by actin-related protein 2/3 (Arp2/3) complex. J Biol Chem 2012; 287:31447-53. [PMID: 22791711 DOI: 10.1074/jbc.m112.350421] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Actin is a highly ubiquitous protein in eukaryotic cells that plays a crucial role in cell mechanics and motility. Cell motility is driven by assembling actin as polymerizing actin drives cell protrusions in a process closely involving a host of other actin-binding proteins, notably the actin-related protein 2/3 (Arp2/3) complex, which nucleates actin and forms branched filamentous structures. The Arp2/3 complex preferentially binds specific actin networks at the cell leading edge and forms branched filamentous structures, which drive cell protrusions, but the exact regulatory mechanism behind this process is not well understood. Here we show using in vitro imaging and binding assays that a fragment of the actin-binding protein caldesmon added to polymerizing actin increases the Arp2/3-mediated branching activity, whereas it has no effect on branch formation when binding to aged actin filaments. Because this caldesmon effect is shown to be independent of nucleotide hydrolysis and phosphate release from actin, our results suggest a mechanism by which caldesmon maintains newly polymerized actin in a distinct state that has a higher affinity for the Arp2/3 complex. Our data show that this new state does not affect the level of cooperativity of binding by Arp2/3 complex or its distribution on actin. This presents a novel regulatory mechanism by which caldesmon, and potentially other actin-binding proteins, regulates the interactions of actin with its binding partners.
Collapse
Affiliation(s)
- Mikkel Herholdt Jensen
- Department of Physiology and Biophysics, Boston University, Boston, Massachusetts 02118, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
|
31
|
Intermittent depolymerization of actin filaments is caused by photo-induced dimerization of actin protomers. Proc Natl Acad Sci U S A 2012; 109:10769-74. [PMID: 22699501 DOI: 10.1073/pnas.1121381109] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Actin, one of the most abundant proteins within eukaryotic cells, assembles into long filaments that form intricate cytoskeletal networks and are continuously remodelled via cycles of actin polymerization and depolymerization. These cycles are driven by ATP hydrolysis, a process that also acts to destabilize the filaments as they grow older. Recently, abrupt dynamical changes during the depolymerization of single filaments have been observed and seemed to imply that old filaments are more stable than young ones [Kueh HY, et al. (2008) Proc Natl Acad Sci USA 105:16531-16536]. Using improved experimental setups and quantitative theoretical analysis, we show that these abrupt changes represent actual pauses in depolymerization, unexpectedly caused by the photo-induced formation of actin dimers within the filaments. The stochastic dimerization process is triggered by random transitions of single, fluorescently labeled protomers. Each pause represents the delayed dissociation of a single actin dimer, and the statistics of these single molecule events can be determined by optical microscopy. Unlabeled actin filaments do not exhibit pauses in depolymerization, which implies that, in vivo, older filaments become destabilized by ATP hydrolysis, unless this aging effect is overcompensated by actin-binding proteins. The latter antagonism can now be systematically studied for single filaments using our combined experimental and theoretical method. Furthermore, the dimerization process discovered here provides a molecular switch, by which one can control the length of actin filaments via changes in illumination. This process could also be used to locally "freeze" the dynamics within networks of filaments.
Collapse
|
32
|
Noguchi TQP, Komori T, Umeki N, Demizu N, Ito K, Iwane AH, Tokuraku K, Yanagida T, Uyeda TQP. G146V mutation at the hinge region of actin reveals a myosin class-specific requirement of actin conformations for motility. J Biol Chem 2012; 287:24339-45. [PMID: 22637580 DOI: 10.1074/jbc.m111.321752] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The G146V mutation in actin is dominant lethal in yeast. G146V actin filaments bind cofilin only minimally, presumably because cofilin binding requires the large and small actin domains to twist with respect to one another around the hinge region containing Gly-146, and the mutation inhibits that twisting motion. A number of studies have suggested that force generation by myosin also requires actin filaments to undergo conformational changes. This prompted us to examine the effects of the G146V mutation on myosin motility. When compared with wild-type actin filaments, G146V filaments showed a 78% slower gliding velocity and a 70% smaller stall force on surfaces coated with skeletal heavy meromyosin. In contrast, the G146V mutation had no effect on either gliding velocity or stall force on myosin V surfaces. Kinetic analyses of actin-myosin binding and ATPase activity indicated that the weaker affinity of actin filaments for myosin heads carrying ADP, as well as reduced actin-activated ATPase activity, are the cause of the diminished motility seen with skeletal myosin. Interestingly, the G146V mutation disrupted cooperative binding of myosin II heads to actin filaments. These data suggest that myosin-induced conformational changes in the actin filaments, presumably around the hinge region, are involved in mediating the motility of skeletal myosin but not myosin V and that the specific structural requirements for the actin subunits, and thus the mechanism of motility, differ among myosin classes.
Collapse
Affiliation(s)
- Taro Q P Noguchi
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Higashi, Tsukuba, Ibaraki 305-8562, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Zhou L, Jones EV, Murai KK. EphA signaling promotes actin-based dendritic spine remodeling through slingshot phosphatase. J Biol Chem 2012; 287:9346-59. [PMID: 22282498 DOI: 10.1074/jbc.m111.302802] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Actin cytoskeletal remodeling plays a critical role in transforming the morphology of subcellular structures across various cell types. In the brain, restructuring of dendritic spines through actin cytoskeleletal reorganization is implicated in the regulation of synaptic efficacy and the storage of information in neural circuits. However, the upstream pathways that provoke actin-based spine changes remain only partly understood. Here we show that EphA receptor signaling remodels spines by triggering a sequence of events involving actin filament rearrangement and synapse/spine reorganization. Rapid EphA signaling over minutes activates the actin filament depolymerizing/severing factor cofilin, alters F-actin distribution in spines, and causes transient spine elongation through the phosphatases slingshot 1 (SSH1) and calcineurin/protein phosphatase 2B (PP2B). This early phase of spine extension is followed by synaptic reorganization events that take place over minutes to hours and involve the relocation of pre/postsynaptic components and ultimately spine retraction. Thus, EphA receptors utilize discrete cellular and molecular pathways to promote actin-based structural plasticity of excitatory synapses.
Collapse
Affiliation(s)
- Lei Zhou
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, Quebec, Canada
| | | | | |
Collapse
|
34
|
Guo K, Xiao W, Qiu D. Polymerization of actin filaments coupled with adenosine triphosphate hydrolysis: Brownian dynamics and theoretical analysis. J Chem Phys 2012; 135:105101. [PMID: 21932920 DOI: 10.1063/1.3634006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Polymerization dynamics of single actin filaments coupled with adenosine triphosphate (ATP) hydrolysis is investigated via both theoretical analysis and Brownian dynamics simulations. Brownian dynamics simulations have been applied recently to study the growth behaviors of long filaments as a function of the free actin monomer concentrations, C(T), which is found to be in agreement with the associated experiments. In the present study, both ATP cap length and length diffusivity are studied as a function of the free ATP-actin monomer concentrations, C(T). The exact analytical expressions are found to be in perfect consistency with Brownian dynamics simulations. Likewise, we find that the length diffusion coefficient is peaked near the critical concentration, C(T,cr). It is, therefore, expected that the dependence of length diffusivity on ATP-actin monomer concentrations is utilized to analyze the surprising experiments on the length fluctuations of individual actin filaments.
Collapse
Affiliation(s)
- Kunkun Guo
- College of Materials Science and Engineering, Hunan University, Changsha 410082, China.
| | | | | |
Collapse
|
35
|
Abstract
Eukaryotic cells generate a diversity of actin filament networks in a common cytoplasm to optimally perform functions such as cell motility, cell adhesion, endocytosis and cytokinesis. Each of these networks maintains precise mechanical and dynamic properties by autonomously controlling the composition of its interacting proteins and spatial organization of its actin filaments. In this review, we discuss the chemical and physical mechanisms that target distinct sets of actin-binding proteins to distinct actin filament populations after nucleation, resulting in the assembly of actin filament networks that are optimized for specific functions.
Collapse
Affiliation(s)
- Alphée Michelot
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3202, USA.
| | | |
Collapse
|
36
|
Schmoller KM, Niedermayer T, Zensen C, Wurm C, Bausch AR. Fragmentation is crucial for the steady-state dynamics of actin filaments. Biophys J 2011; 101:803-8. [PMID: 21843470 DOI: 10.1016/j.bpj.2011.07.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 06/29/2011] [Accepted: 07/08/2011] [Indexed: 12/18/2022] Open
Abstract
Despite the recognition that actin filaments are important for numerous cellular processes, and decades of investigation, the dynamics of in vitro actin filaments are still not completely understood. Here, we follow the time evolution of the length distribution of labeled actin reporter filaments in an unlabeled F-actin solution via fluorescence microscopy. Whereas treadmilling and diffusive length fluctuations cannot account for the observed dynamics, our results suggest that at low salt conditions, spontaneous fragmentation is crucial.
Collapse
Affiliation(s)
- Kurt M Schmoller
- Lehrstuhl für Biophysik E27, Technische Universität München, Garching, Germany
| | | | | | | | | |
Collapse
|
37
|
McCullough BR, Grintsevich EE, Chen CK, Kang H, Hutchison AL, Henn A, Cao W, Suarez C, Martiel JL, Blanchoin L, Reisler E, De La Cruz EM. Cofilin-linked changes in actin filament flexibility promote severing. Biophys J 2011; 101:151-9. [PMID: 21723825 DOI: 10.1016/j.bpj.2011.05.049] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 05/20/2011] [Accepted: 05/24/2011] [Indexed: 11/25/2022] Open
Abstract
The actin regulatory protein, cofilin, increases the bending and twisting elasticity of actin filaments and severs them. It has been proposed that filaments partially decorated with cofilin accumulate stress from thermally driven shape fluctuations at bare (stiff) and decorated (compliant) boundaries, thereby promoting severing. This mechanics-based severing model predicts that changes in actin filament compliance due to cofilin binding affect severing activity. Here, we test this prediction by evaluating how the severing activities of vertebrate and yeast cofilactin scale with the flexural rigidities determined from analysis of shape fluctuations. Yeast actin filaments are more compliant in bending than vertebrate actin filaments. Severing activities of cofilactin isoforms correlate with changes in filament flexibility. Vertebrate cofilin binds but does not increase the yeast actin filament flexibility, and does not sever them. Imaging of filament thermal fluctuations reveals that severing events are associated with local bending and fragmentation when deformations attain a critical angle. The critical severing angle at boundaries between bare and cofilin-decorated segments is smaller than in bare or fully decorated filaments. These measurements support a cofilin-severing mechanism in which mechanical asymmetry promotes local stress accumulation and fragmentation at boundaries of bare and cofilin-decorated segments, analogous to failure of some nonprotein materials.
Collapse
Affiliation(s)
- Brannon R McCullough
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Jégou A, Niedermayer T, Orbán J, Didry D, Lipowsky R, Carlier MF, Romet-Lemonne G. Individual actin filaments in a microfluidic flow reveal the mechanism of ATP hydrolysis and give insight into the properties of profilin. PLoS Biol 2011; 9:e1001161. [PMID: 21980262 PMCID: PMC3181223 DOI: 10.1371/journal.pbio.1001161] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Accepted: 08/18/2011] [Indexed: 11/18/2022] Open
Abstract
A novel microfluidic approach allows the analysis of the dynamics of individual actin filaments, revealing both their local ADP/ADP-Pi-actin composition and that Pi release is a random mechanism. The hydrolysis of ATP associated with actin and profilin-actin polymerization is pivotal in cell motility. It is at the origin of treadmilling of actin filaments and controls their dynamics and mechanical properties, as well as their interactions with regulatory proteins. The slow release of inorganic phosphate (Pi) that follows rapid cleavage of ATP gamma phosphate is linked to an increase in the rate of filament disassembly. The mechanism of Pi release in actin filaments has remained elusive for over 20 years. Here, we developed a microfluidic setup to accurately monitor the depolymerization of individual filaments and determine their local ADP-Pi content. We demonstrate that Pi release in the filament is not a vectorial but a random process with a half-time of 102 seconds, irrespective of whether the filament is assembled from actin or profilin-actin. Pi release from the depolymerizing barbed end is faster (half-time of 0.39 seconds) and further accelerated by profilin. Profilin accelerates the depolymerization of both ADP- and ADP-Pi-F-actin. Altogether, our data show that during elongation from profilin-actin, the dissociation of profilin from the growing barbed end is not coupled to Pi release or to ATP cleavage on the terminal subunit. These results emphasize the potential of microfluidics in elucidating actin regulation at the scale of individual filaments. Actin proteins assemble into microfilaments that control cell shape and movement by polymerizing or depolymerizing. These actin monomers can bind ATP or ADP molecules. The incorporation of an ATP-actin monomer into a growing filament results in rapid cleavage of ATP into ADP and inorganic phosphate (Pi), followed by a slower release of Pi. As a consequence, actin filaments are composed mainly of ADP- and ADP-Pi-actin subunits, which have different depolymerization kinetics and mechanical properties, and can be targeted specifically by regulatory proteins that affect filament function. Hence, the understanding of many cellular processes requires a knowledge of the ADP/ADP-Pi composition of actin filaments at a molecular scale. This has so far remained elusive because traditional studies rely on measuring an average over many filaments in solution. To address this issue, we developed a microfluidics setup to monitor individual filaments with light microscopy while rapidly changing their chemical environment. We find that depolymerization accelerates progressively and corresponds to an exponential ADP-Pi-actin profile in the filament, meaning that each subunit releases its Pi with the same rate. Our method also provides novel insight into the function of profilin, a protein important for regulation of actin dynamics in cells, thus demonstrating the method's potential in the functional analysis of actin regulators.
Collapse
Affiliation(s)
- Antoine Jégou
- Laboratoire d'Enzymologie et Biochimie Structurales, Centre de Recherche de Gif, CNRS, Gif-sur-Yvette, France
| | - Thomas Niedermayer
- Theory and Biosystems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - József Orbán
- Laboratoire d'Enzymologie et Biochimie Structurales, Centre de Recherche de Gif, CNRS, Gif-sur-Yvette, France
| | - Dominique Didry
- Laboratoire d'Enzymologie et Biochimie Structurales, Centre de Recherche de Gif, CNRS, Gif-sur-Yvette, France
| | - Reinhard Lipowsky
- Theory and Biosystems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Marie-France Carlier
- Laboratoire d'Enzymologie et Biochimie Structurales, Centre de Recherche de Gif, CNRS, Gif-sur-Yvette, France
| | - Guillaume Romet-Lemonne
- Laboratoire d'Enzymologie et Biochimie Structurales, Centre de Recherche de Gif, CNRS, Gif-sur-Yvette, France
- * E-mail:
| |
Collapse
|
39
|
Heparin-binding hemagglutinin HBHA from Mycobacterium tuberculosis affects actin polymerisation. Biochem Biophys Res Commun 2011; 410:339-44. [DOI: 10.1016/j.bbrc.2011.05.159] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Accepted: 05/31/2011] [Indexed: 11/23/2022]
|
40
|
Kueh HY, Brieher WM, Mitchison TJ. Quantitative analysis of actin turnover in Listeria comet tails: evidence for catastrophic filament turnover. Biophys J 2011; 99:2153-62. [PMID: 20923649 DOI: 10.1016/j.bpj.2010.07.038] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 07/11/2010] [Accepted: 07/21/2010] [Indexed: 01/09/2023] Open
Abstract
Rapid assembly and disassembly (turnover) of actin filaments in cytoplasm drives cell motility and shape remodeling. While many biochemical processes that facilitate filament turnover are understood in isolation, it remains unclear how they work together to promote filament turnover in cells. Here, we studied cellular mechanisms of actin filament turnover by combining quantitative microscopy with mathematical modeling. Using live cell imaging, we found that actin polymer mass decay in Listeria comet tails is very well fit by a simple exponential. By analyzing candidate filament turnover pathways using stochastic modeling, we found that exponential polymer mass decay is consistent with either slow treadmilling, slow Arp2/3-dissociation, or catastrophic bursts of disassembly, but is inconsistent with acceleration of filament turnover by severing. Imaging of single filaments in Xenopus egg extract provided evidence that disassembly by bursting dominates isolated filament turnover in a cytoplasmic context. Taken together, our results point to a pathway where filaments grow transiently from barbed ends, rapidly terminate growth to enter a long-lived stable state, and then undergo a catastrophic burst of disassembly. By keeping filament lengths largely constant over time, such catastrophic filament turnover may enable cellular actin assemblies to maintain their mechanical integrity as they are turning over.
Collapse
Affiliation(s)
- Hao Yuan Kueh
- Department of Systems Biology, Harvard University, Cambridge, MA, USA.
| | | | | |
Collapse
|
41
|
Abbyad P, Tharaux PL, Martin JL, Baroud CN, Alexandrou A. Sickling of red blood cells through rapid oxygen exchange in microfluidic drops. LAB ON A CHIP 2010; 10:2505-12. [PMID: 20603684 DOI: 10.1039/c004390g] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
We have developed a microfluidic approach to study the sickling of red blood cells associated with sickle cell anemia by rapidly varying the oxygen partial pressure within flowing microdroplets. By using the perfluorinated carrier oil as a sink or source of oxygen, the oxygen level within the water droplets quickly equilibrates through exchange with the surrounding oil. This provides control over the oxygen partial pressure within an aqueous drop ranging from 1 kPa to ambient partial pressure, i.e. 21 kPa. The dynamics of the oxygen exchange is characterized through fluorescence lifetime measurements of a ruthenium compound dissolved in the aqueous phase. The gas exchange is shown to occur primarily during and directly after droplet formation, in 0.1 to 0.5 s depending on the droplet diameter and speed. The controlled deoxygenation is used to trigger the polymerization of hemoglobin within sickle red blood cells, encapsulated in drops. This process is observed using polarization microscopy, which yields a robust criterion to detect polymerization based on transmitted light intensity through crossed polarizers.
Collapse
Affiliation(s)
- Paul Abbyad
- Laboratoire d'Optique et Biosciences (LOB), Ecole Polytechnique, INSERM U696, CNRS, 91128 Palaiseau, France
| | | | | | | | | |
Collapse
|
42
|
Abstract
Recent advances in structural, biochemical, biophysical, and live cell imaging approaches have furthered our understanding of the molecular mechanisms by which regulated assembly dynamics of actin filaments drive motile processes. Attention is focused on lamellipodium protrusion, powered by the turnover of a branched filament array. ATP hydrolysis on actin is the key reaction that allows filament treadmilling. It regulates barbed-end dynamics and length fluctuations at steady state and specifies the functional interaction of actin with essential regulatory proteins such as profilin and ADF/cofilin. ATP hydrolysis on actin and Arp2/3 acts as a timer, regulating the assembly and disassembly of the branched array to generate tropomyosin-mediated heterogeneity in the structure and dynamics of the lamellipodial network. The detailed molecular mechanisms of ATP hydrolysis/Pi release on F-actin remain elusive, as well as the mechanism of filament branching with Arp2/3 complex or that of the formin-driven processive actin assembly. Novel biophysical methods involving single-molecule measurements should foster progress in these crucial issues.
Collapse
Affiliation(s)
- Beáta Bugyi
- Cytoskeleton Dynamics and Cell Motility Group, CNRS, UPR 3082, Laboratoire d'Enzymologie et Biochimie Structurales, 91198 Gif-sur-Yvette, France
| | | |
Collapse
|
43
|
Ranjith P, Mallick K, Joanny JF, Lacoste D. Role of ATP-hydrolysis in the dynamics of a single actin filament. Biophys J 2010; 98:1418-27. [PMID: 20409460 DOI: 10.1016/j.bpj.2009.12.4306] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Revised: 12/09/2009] [Accepted: 12/15/2009] [Indexed: 11/18/2022] Open
Abstract
We study the stochastic dynamics of growth and shrinkage of single actin filaments taking into account insertion, removal, and ATP hydrolysis of subunits either according to the vectorial mechanism or to the random mechanism. In a previous work, we developed a model for a single actin or microtubule filament where hydrolysis occurred according to the vectorial mechanism: the filament could grow only from one end, and was in contact with a reservoir of monomers. Here we extend this approach in two ways--by including the dynamics of both ends and by comparing two possible mechanisms of ATP hydrolysis. Our emphasis is mainly on two possible limiting models for the mechanism of hydrolysis within a single filament, namely the vectorial or the random model. We propose a set of experiments to test the nature of the precise mechanism of hydrolysis within actin filaments.
Collapse
|
44
|
Wang Z, Du J, Lam SH, Mathavan S, Matsudaira P, Gong Z. Morphological and molecular evidence for functional organization along the rostrocaudal axis of the adult zebrafish intestine. BMC Genomics 2010; 11:392. [PMID: 20565988 PMCID: PMC2996925 DOI: 10.1186/1471-2164-11-392] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Accepted: 06/22/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The zebrafish intestine is a simple tapered tube that is folded into three sections. However, whether the intestine is functionally similar along its length remains unknown. Thus, a systematic structural and functional characterization of the zebrafish intestine is desirable for future studies of the digestive tract and the intestinal biology and development. RESULTS To characterize the structure and function of the adult zebrafish intestine, we divided the intestine into seven roughly equal-length segments, S1-S7, and systematically examined the morphology of the mucosal lining, histology of the epithelium, and molecular signatures from transcriptome analysis. Prominent morphological features are circumferentially-oriented villar ridges in segments S1-S6 and the absence of crypts. Molecular characterization of the transcriptome from each segment shows that segments S1-S5 are very similar while S6 and S7 unique. Gene ontology analyses reveal that S1-S5 express genes whose functions involve metabolism of carbohydrates, transport of lipids and energy generation, while the last two segments display relatively limited function. Based on comparative Gene Set Enrichment Analysis, the first five segments share strong similarity with human and mouse small intestine while S6 shows similarity with human cecum and rectum, and S7 with human rectum. The intestinal tract does not display the anatomical, morphological, and molecular signatures of a stomach and thus we conclude that this organ is absent from the zebrafish digestive system. CONCLUSIONS Our genome-wide gene expression data indicate that, despite the lack of crypts, the rostral, mid, and caudal portions of the zebrafish intestine have distinct functions analogous to the mammalian small and large intestine, respectively. Organization of ridge structures represents a unique feature of zebrafish intestine, though they produce similar cross sections to mammalian intestines. Evolutionary lack of stomach, crypts, Paneth cells and submucosal glands has shaped the zebrafish intestine into a simpler but unique organ in vertebrate intestinal biology.
Collapse
Affiliation(s)
- Zhengyuan Wang
- Computation and Systems Biology, Singapore-MIT Alliance 117543, Singapore
| | | | | | | | | | | |
Collapse
|
45
|
Bindschadler M. Modeling actin dynamics. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2010; 2:481-488. [DOI: 10.1002/wsbm.62] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
46
|
De La Cruz EM, Sept D. The kinetics of cooperative cofilin binding reveals two states of the cofilin-actin filament. Biophys J 2010; 98:1893-901. [PMID: 20441753 PMCID: PMC2862197 DOI: 10.1016/j.bpj.2010.01.023] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Revised: 01/12/2010] [Accepted: 01/15/2010] [Indexed: 10/19/2022] Open
Abstract
The interaction of cofilin with actin filaments displays positive cooperativity. The equilibrium binding and associated thermodynamic properties of this interaction are well described by a simple, one-dimensional Ising model with nearest neighbor interactions. Here we evaluate the kinetic contributions to cooperative binding and the ability of this model to account for binding across a wide range of cofilin concentrations. A Monte Carlo-based simulation protocol that allows for nearest-neighbor interactions between adjacent binding sites was used to globally fit time courses of human cofilin binding to human nonmuscle (beta-, gamma-) actin filaments. Several extensions of the one-dimensional Ising model were tested, and a mechanism that includes isomerization of the actin filament was found to best account for time courses of association as well as irreversible dissociation from a saturated filament. This model predicts two equilibrium states of the cofilin-actin, or cofilactin, filament, and the resulting set of binding parameters are in agreement with equilibrium thermodynamic parameters. We conclude that despite its simplicity, this one-dimensional Ising model is a reliable model for analyzing and interpreting the energetics and kinetics of cooperative cofilin-actin filament interactions. The model predicts that severing activity associated with boundaries between bare and decorated segments will not be linear, but display a transient burst at short times on cofilin activation then dissipate due to a kinetic competition between severing activity and cofilin binding. A second peak of severing activity is predicted to arise from irreversible cofilin dissociation on inactivation. These behaviors predict what we believe to be novel mechanisms of cofilin severing and spatial regulation of actin filament turnover in cells. The methods developed for this system are generally applicable to the kinetic analysis of cooperative ligand binding to linear polymers.
Collapse
Affiliation(s)
- Enrique M. De La Cruz
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut
| | - David Sept
- Department of Biomedical Engineering and Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
47
|
Screening of novel dominant negative mutant actins using glycine targeted scanning identifies G146V actin that cooperatively inhibits cofilin binding. Biochem Biophys Res Commun 2010; 396:1006-11. [PMID: 20471369 DOI: 10.1016/j.bbrc.2010.05.047] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2010] [Accepted: 05/10/2010] [Indexed: 11/22/2022]
Abstract
A number of studies suggested that the structure of actin filaments changes by interaction with actin-binding proteins such as cofilin and myosin, and that the conformational changes of the actin subunits within a filament are cooperative. To understand the functions of these cooperative conformational changes induced by actin-binding proteins, we sought to obtain dominant negative mutant actins impaired in cooperative conformational changes. A series of mutant actin genes in which glycine residues in actin were systematically substituted by valine residues were constructed, and were expressed individually in yeast cells that carry a wild-type endogenous actin gene. Six dominant negative actin mutations were identified on the basis of growth inhibition. Among them, G146V mutation was chosen for further biochemical analysis because the Gly146 residue is located at the strategic hinge position connecting the large and small domains of an actin molecule. We found that G146V actin filaments hardly bind cofilin, consistent with a previous suggestion that cofilin binding causes conformational changes of actin around Gly146 (Galkin et al. [3]). Notably, copolymer that consists of 1:10 mixture of the mutant and wild-type actin molecules showed significantly reduced affinity for cofilin, suggesting that G146V mutant actin affects the conformation of neighboring wild-type actin within a filament, and inhibits cofilin binding.
Collapse
|
48
|
ADF/cofilin: a functional node in cell biology. Trends Cell Biol 2010; 20:187-95. [PMID: 20133134 DOI: 10.1016/j.tcb.2010.01.001] [Citation(s) in RCA: 561] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Revised: 12/22/2009] [Accepted: 01/05/2010] [Indexed: 12/12/2022]
Abstract
Recent findings have significantly expanded our understanding of the regulation of actin-depolymerizing factor (ADF)/cofilin proteins and the profound multifaceted impact that these well-established regulators of actin dynamics have on cell biology. In this review we discuss new aspects of previously documented regulation, such as phosphorylation, but also cover novel recently established modes of regulation and functions of ADF (also known as destrin)/cofilin. We now understand that their activity responds to a vast array of inputs far greater than previously appreciated and that these proteins not only feed back to the crucially important dynamics of actin, but also to apoptosis cascades, phospholipid metabolism, and gene expression. We argue that this ability to respond to physiological changes by modulating those same changes makes the ADF/cofilin protein family a homeostatic regulator or 'functional node' in cell biology.
Collapse
|
49
|
Wang CLA, Coluccio LM. New insights into the regulation of the actin cytoskeleton by tropomyosin. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2010; 281:91-128. [PMID: 20460184 PMCID: PMC2923581 DOI: 10.1016/s1937-6448(10)81003-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The actin cytoskeleton is regulated by a variety of actin-binding proteins including those constituting the tropomyosin family. Tropomyosins are coiled-coil dimers that bind along the length of actin filaments. In muscles, tropomyosin regulates the interaction of actin-containing thin filaments with myosin-containing thick filaments to allow contraction. In nonmuscle cells where multiple tropomyosin isoforms are expressed, tropomyosins participate in a number of cellular events involving the cytoskeleton. This chapter reviews the current state of the literature regarding tropomyosin structure and function and discusses the evidence that tropomyosins play a role in regulating actin assembly.
Collapse
|
50
|
Abstract
The dynamic nature of actin in cells manifests itself constantly. Polymerization near the cell edge is balanced by depolymerization in the interior, externally induced actin polymerization is followed by depolymerization, and spontaneous oscillations of actin at the cell periphery are frequently seen. I discuss how mathematical modeling relates quantitative measures of actin dynamics to the rates of underlying molecular level processes. The dynamic properties addressed include the rate of actin assembly at the leading edge of a moving cell, the disassembly rates of intracellular actin networks, the polymerization time course in externally stimulated cells, and spontaneous spatiotemporal patterns formed by actin. Although several aspects of actin assembly have been clarified by increasingly sophisticated models, our understanding of rapid actin disassembly is limited, and the origins of nonmonotonic features in externally stimulated actin polymerization remain unclear. Theory has generated several concrete, testable hypotheses for the origins of spontaneous actin waves and cell-edge oscillations. The development and use of more biomimetic systems applicable to the geometry of a cell will be key to obtaining a quantitative understanding of actin dynamics in cells.
Collapse
Affiliation(s)
- Anders E Carlsson
- Department of Physics, Washington University, St. Louis, Missouri 63130, USA.
| |
Collapse
|