1
|
Yan S, Gao C, Tian K, Xiao C, Shi J, Jia X, Wang K, Sun G, Li D, Li W, Kang X. Comparative population genomics analysis for chicken body sizes using genome-wide single nucleotide polymorphisms. Anim Biosci 2025; 38:600-611. [PMID: 39482999 PMCID: PMC11917417 DOI: 10.5713/ab.24.0347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/27/2024] [Accepted: 10/22/2024] [Indexed: 11/03/2024] Open
Abstract
OBJECTIVE This study aims to investigate the selection history, genome regions, and candidate genes associated with different chicken body sizes, thereby providing insights into the genetic basis of complex economic traits such as chicken body size and growth. METHODS In this study, a total of 217 individuals from eight breeds were selected. According to body size, they were divided into two groups: large chickens and bantam chickens, with four breeds in each group. Firstly, we investigate population structure by principal component analysis (PCA), phylogenetic tree, and ancestry component analysis. Next, we recognize runs of homozygosity (ROH) islands through calculating ROH. Finally, we carry out selection signatures analysis utilizing population differentiation index and nucleic acid diversity. RESULTS The population structure analysis show that large and bantam chickens are clearly separated. Large chickens are clustered together, the bantam chickens are relatively dispersed. The results of ROH island analysis show that 48 and 56 ROH islands were identified in large and bantam chickens respectively. Among the interesting ROH islands, a total of eight candidate genes were identified. In selection signatures analysis, a total of 322 selected genes were annotated in large chickens, such as POU1F1, BMP10, enrichment in 16 gene ontology (GO) terms. In bantam chickens, a total of 447 selected genes were annotated, such as IGF1, GRB10, enrichment in 20 GO terms and 2 Kyoto encyclopedia of genes and genomes pathways. The haplotype analysis results show that GRB10 has differences in chickens of different body sizes. CONCLUSION By population structure, ROH islands, and selection signatures analysis, we have identified multiple genes associated with chicken body size, growth, and development (such as BMP10, IGF1, GRB10, etc). This provides a theoretical reference for the subsequent development of molecular markers for chicken body size and the analysis of the genetic mechanism of chicken body size.
Collapse
Affiliation(s)
- Sensen Yan
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046,
China
- The Shennong Laboratory, Zhengzhou 450046,
China
| | - Chaoqun Gao
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046,
China
- The Shennong Laboratory, Zhengzhou 450046,
China
| | - Kaiyuan Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046,
China
- The Shennong Laboratory, Zhengzhou 450046,
China
| | - Chengpeng Xiao
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046,
China
- The Shennong Laboratory, Zhengzhou 450046,
China
| | - Junlai Shi
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046,
China
- The Shennong Laboratory, Zhengzhou 450046,
China
| | - Xintao Jia
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046,
China
- The Shennong Laboratory, Zhengzhou 450046,
China
| | - Kejun Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046,
China
| | - Guirong Sun
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046,
China
- The Shennong Laboratory, Zhengzhou 450046,
China
| | - Donghua Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046,
China
- The Shennong Laboratory, Zhengzhou 450046,
China
| | - Wenting Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046,
China
- The Shennong Laboratory, Zhengzhou 450046,
China
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046,
China
- The Shennong Laboratory, Zhengzhou 450046,
China
| |
Collapse
|
2
|
Lü Z, Wang Y, Yu J, Yang Y, Xu A, Gong L, Liu J, Li F, Liu L. Comparison of muscle structure and transcriptome analysis of eyed-side muscle and blind-side muscle in Cynoglossussemilaevis (Osteichthyes, Cynoglossidae). Zookeys 2025; 1230:213-229. [PMID: 40093692 PMCID: PMC11907266 DOI: 10.3897/zookeys.1230.139837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 12/11/2024] [Indexed: 03/19/2025] Open
Abstract
Cynoglossussemilaevis (Osteichthyes, Cynoglossidae) is one of the most significant commercial marine fish species in China and has evolved a specialized asymmetrical body axis. In addition, C.semilaevis displays different muscle thickness between the eyed side and the blind side. However, the mechanisms underlying the muscle development difference between the two sides in C.semilaevis are unclear. In this study, we generated the first comparative investigation on the structure of muscle cells, and transcriptome analysis between the eyed-side muscle (ESM) and blind-side muscle (BSM) in C.semilaevis. Histological assays showed the obvious mosaic appearance of muscles on both the eyed side and blind side. However, the number of new muscle cells in ESM was significantly more than that in the BSM group. Comparative analyses of RNA-seq data showed that 1177 differentially expressed genes (DEGs) were identified between ESM and BSM groups, including 291 up-regulated and 886 down-regulated genes. The expression levels of myosin family genes (actin, myosin-binding protein C, titin, troponin, tnnil, and astrotactin-2) were significantly higher in ESM and might be a candidate regulator of muscle filament assembly in C.semilaevis. Murine double minute 2 (Mdm2) and cyclin A2 (ccna2) were also up-regulated in ESM, which indicates that the muscle development difference between ESM and BSM in C.semilaevis might be owing to the variation in myofibroblast proliferation. In addition, KEGG pathway enrichment analyses suggested that the glycolysis/gluconeogenesis pathway may be involved in the muscle development of C.semilaevis. Taken together, this study may provide useful information to understand the molecular mechanism of muscle development in flatfishes.
Collapse
Affiliation(s)
- Zhenming Lü
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, College of Marine Sciences and Technology, Zhejiang Ocean University, Zhoushan 316022, China Zhejiang Ocean University Zhoushan China
| | - Yuzhen Wang
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, College of Marine Sciences and Technology, Zhejiang Ocean University, Zhoushan 316022, China Zhejiang Ocean University Zhoushan China
| | - Jing Yu
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, College of Marine Sciences and Technology, Zhejiang Ocean University, Zhoushan 316022, China Zhejiang Ocean University Zhoushan China
| | - Yijing Yang
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, College of Marine Sciences and Technology, Zhejiang Ocean University, Zhoushan 316022, China Zhejiang Ocean University Zhoushan China
| | - An Xu
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, College of Marine Sciences and Technology, Zhejiang Ocean University, Zhoushan 316022, China Zhejiang Ocean University Zhoushan China
| | - Li Gong
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, College of Marine Sciences and Technology, Zhejiang Ocean University, Zhoushan 316022, China Zhejiang Ocean University Zhoushan China
| | - Jing Liu
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, College of Marine Sciences and Technology, Zhejiang Ocean University, Zhoushan 316022, China Zhejiang Ocean University Zhoushan China
| | - Fenghui Li
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, College of Marine Sciences and Technology, Zhejiang Ocean University, Zhoushan 316022, China Zhejiang Ocean University Zhoushan China
| | - Liqin Liu
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, College of Marine Sciences and Technology, Zhejiang Ocean University, Zhoushan 316022, China Zhejiang Ocean University Zhoushan China
| |
Collapse
|
3
|
Wang H, Zhao X, Wen J, Wang C, Zhang X, Ren X, Zhang J, Li H, Muhatai G, Qu L. Comparative population genomics analysis uncovers genomic footprints and genes influencing body weight trait in Chinese indigenous chicken. Poult Sci 2023; 102:103031. [PMID: 37716235 PMCID: PMC10511812 DOI: 10.1016/j.psj.2023.103031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/27/2023] [Accepted: 08/11/2023] [Indexed: 09/18/2023] Open
Abstract
Body weight of chicken is a typical quantitative trait, which shows phenotypic variations due to selective breeding. Despite some QTL loci have been obtained, the body weight of native chicken breeds in different geographic regions varies greatly, its genetic basis remains unresolved questions. To address this issue, we analyzed 117 Chinese indigenous chickens from 10 breeds (Huiyang Bearded, Xinhua, Hotan Black, Baicheng You, Liyang, Yunyang Da, Jining Bairi, Lindian, Beijing You, Tibetan). We applied fixation index (FST) analysis to find selected genomic regions and genes associated with body weight traits. Our study suggests that NELL1, XYLT1, and NCAPG/LCORL genes are strongly selected in the body weight trait of Chinese indigenous chicken breeds. In addition, the IL1RAPL1 gene was strongly selected in large body weight chickens, while the PCDH17 and CADM2 genes were strongly selected in small body weight chickens. This result suggests that the patterns of genetic variation of native chicken and commercial chicken, and/or distinct local chicken breeds may follow different evolutionary mechanisms.
Collapse
Affiliation(s)
- Huie Wang
- Xinjiang Production & Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, College of Life Science and Technology, College of Animal Science and Technology, Tarim University, Alar 843300, China
| | - Xiurong Zhao
- State Key Laboratory of Animal Nutrition, Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Junhui Wen
- State Key Laboratory of Animal Nutrition, Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Chengqian Wang
- Xinjiang Production & Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, College of Life Science and Technology, College of Animal Science and Technology, Tarim University, Alar 843300, China
| | - Xinye Zhang
- State Key Laboratory of Animal Nutrition, Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xufang Ren
- State Key Laboratory of Animal Nutrition, Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jinxin Zhang
- State Key Laboratory of Animal Nutrition, Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Haiying Li
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830000, China
| | - Gemingguli Muhatai
- Xinjiang Production & Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, College of Life Science and Technology, College of Animal Science and Technology, Tarim University, Alar 843300, China
| | - Lujiang Qu
- Xinjiang Production & Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, College of Life Science and Technology, College of Animal Science and Technology, Tarim University, Alar 843300, China; State Key Laboratory of Animal Nutrition, Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
4
|
Noshair I, Kanwal Z, Jabeen G, Arshad M, Yunus FUN, Hafeez R, Mairaj R, Haider I, Ahmad N, Alomar SY. Assessment of Dietary Supplementation of Lactobacillus rhamnosus Probiotic on Growth Performance and Disease Resistance in Oreochromis niloticus. Microorganisms 2023; 11:1423. [PMID: 37374925 DOI: 10.3390/microorganisms11061423] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/17/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
Probiotics play a significant role in aquaculture by improving the growth, health, and survival rate of fish against pathogenic organisms. In the present study, we have evaluated the effects of a Lactobacillus rhamnosus (L. rhamnosus) probiotic on growth performance and disease resistance in Oreochromis niloticus (O. niloticus) fingerlings. Four different concentrations of L. rhamnosus (T1: 0.5 × 1010, T2: 1 × 1010, T3: 1.5 × 1010, and T4: 2 × 1010 CFU/kg feed) were administered to fish over a period of three months. L. rhamnosus treated fish revealed a high growth increment as compared to the control, and the values of macromolecules (amino acids, fatty acids, and carbohydrates) varied significantly among the treated and control groups. Levels of thyroid hormones were noted to be high in the probiotic-treated groups. A challenge assay was performed with Aeromonas hydrophila (A. hydrophila). The optimum calculated concentration of probiotics from the growth assay (1.5 × 1010 CFU/kg feed) was used for the challenge assay. Fish were divided into four groups as follows: control (Con), probiotic-treated (PL), infected (I), and infected + probiotic-treated (I + PL) groups. Significant variations in hematological parameters were observed among control and treated groups. Histopathological changes were recorded in infected fish, while the infected + probiotic-treated group showed less deformations indicating the positive effect of the probiotic supplementation. The survival rate of fish was also better in the probiotic-treated group. Based on these findings, we conclude that probiotic supplementation enhances the growth and improves immunity of O. niloticus. Therefore, we propose that probiotics can be used as promising feed supplements for promoting fish production and disease resistance in aquaculture.
Collapse
Affiliation(s)
- Iqra Noshair
- Department of Zoology, Faculty of Natural Sciences, Lahore College for Women University, Lahore 54000, Pakistan
| | - Zakia Kanwal
- Department of Zoology, Faculty of Natural Sciences, Lahore College for Women University, Lahore 54000, Pakistan
| | - Ghazala Jabeen
- Department of Zoology, Faculty of Natural Sciences, Lahore College for Women University, Lahore 54000, Pakistan
| | - Mateen Arshad
- Department of Zoology, Faculty of Natural Sciences, Lahore College for Women University, Lahore 54000, Pakistan
| | - Fakhar-Un-Nisa Yunus
- Department of Zoology, Faculty of Natural Sciences, Lahore College for Women University, Lahore 54000, Pakistan
| | - Ramsha Hafeez
- Department of Zoology, Faculty of Natural Sciences, Lahore College for Women University, Lahore 54000, Pakistan
| | - Rida Mairaj
- Department of Zoology, Faculty of Natural Sciences, Lahore College for Women University, Lahore 54000, Pakistan
| | - Imran Haider
- Swammerdam Institute for Life Sciences, University of Amsterdam, 1012 Amsterdam, The Netherlands
| | - Naushad Ahmad
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Suliman Yousef Alomar
- Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
5
|
Hull KL, Greenwood MP, Lloyd M, Bester-van der Merwe AE, Rhode C. Gene expression differentials driven by mass rearing and artificial selection in black soldier fly colonies. INSECT MOLECULAR BIOLOGY 2023; 32:86-105. [PMID: 36322045 DOI: 10.1111/imb.12816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
The micro-evolutionary forces that shape genetic diversity during domestication have been assessed in many plant and animal systems. However, the impact of these processes on gene expression, and consequent functional adaptation to artificial environments, remains under-investigated. In this study, whole-transcriptome dynamics associated with the early stages of domestication of the black soldier fly (BSF), Hermetia illucens, were assessed. Differential gene expression (DGE) was evaluated in relation to (i) generational time within the cultured environment (F2 vs. F3), and (ii) two selection strategies [no artificial selective pressure (NS); and selection for greater larval mass (SEL)]. RNA-seq was conducted on 5th instar BSF larvae (n = 36), representing equal proportions of the NS (F2 = 9; F3 = 9) and SEL (F2 = 9; F3 = 9) groups. A multidimensional scaling plot revealed greater gene expression variability within the NS and F2 subgroups, while the SEL group clustered separately with lower levels of variation. Comparisons between generations revealed 898 differentially expressed genes (DEGs; FDR-corrected p < 0.05), while between selection strategies, 213 DEGs were observed (FDR-corrected p < 0.05). Enrichment analyses revealed that metabolic, developmental, and defence response processes were over-expressed in the comparison between F2 and F3 larvae, while metabolic processes were the main differentiating factor between NS and SEL lines. This illustrates the functional adaptations that occur in BSF colonies across generations due to mass rearing; as well as highlighting genic dynamics associated with artificial selection for production traits that might inform future selective breeding strategies.
Collapse
Affiliation(s)
- Kelvin L Hull
- Department of Genetics, Stellenbosch University, Stellenbosch, South Africa
| | | | - Melissa Lloyd
- Research and Development Department, Insect Technology Group Holdings UK Ltd., Guildford, UK
| | | | - Clint Rhode
- Department of Genetics, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
6
|
Martinez-Silva MA, Dupont-Prinet A, Houle C, Vagner M, Garant D, Bernatchez L, Audet C. Growth regulation in brook charr Salvelinus fontinalis. Gen Comp Endocrinol 2023; 331:114160. [PMID: 36356646 DOI: 10.1016/j.ygcen.2022.114160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 09/12/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022]
Abstract
Fish growth can be modulated through genetic selection. However, it is not known whether growth regulatory mechanisms modulated by genetic selection can provide information about phenotypic growth variations among families or populations. Following a five-generation breeding program that selected for the absence of early sexual maturity and increased growth in brook charr we aimed to understand how the genetic selection process modifies the growth regulatory pathway of brook charr at the molecular level. To achieve this, we studied the regulation of growth traits at three different levels: 1) between lines-one under selection, the other not, 2) among-families expressing differences in average growth phenotypes, which we termed family performance, and 3) among individuals within families that expressed extreme growth phenotypes, which we termed slow- and fast-growing. At age 1+, individuals from four of the highest performing and four of the lowest performing families in terms of growth were sampled in both the control and selected lines. The gene expression levels of three reference and ten target genes were analyzed by real-time PCR. Results showed that better growth performance (in terms of weight and length at age) in the selected line was associated with an upregulation in the expression of genes involved in the growth hormone (GH)/insulin growth factor-1 (IGF-1) axis, including the igf-1 receptor in pituitary; the gh-1 receptor and igf-1 in liver; and ghr and igf-1r in white muscle. When looking at gene expression within families, family performance and individual phenotypes were associated with upregulations of the leptin receptor and neuropeptid Y-genes related to appetite regulation-in the slower-growing phenotypes. However, other genes related to appetite (ghrelin, somatostatin) or involved in muscle growth (myosin heavy chain, myogenin) were not differentially expressed. This study highlights how transcriptomics may improve our understanding of the roles of different key endocrine steps that regulate physiological performance. Large variations in growth still exist in the selected line, indicating that the full genetic selection potential has not been reached.
Collapse
Affiliation(s)
| | - Aurélie Dupont-Prinet
- Institut des Sciences de la mer de Rimouski, Université du Québec à Rimouski, Rimouski, QC G5L 3A1, Canada
| | - Carolyne Houle
- Département de Biologie, Université du Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| | - Marie Vagner
- Laboratoire des Sciences de l'Environnement Marin, UMR 6539 (CNRS/Univ Brest/IRD/Ifremer), Plouzané 29280, France
| | - Dany Garant
- Département de Biologie, Université du Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| | - Louis Bernatchez
- Institut de Biologie Intégrative et des Systèmes (IBIS), Département de Biologie, Université du Laval, Québec, QC G1V 0A6, Canada
| | - Céline Audet
- Institut des Sciences de la mer de Rimouski, Université du Québec à Rimouski, Rimouski, QC G5L 3A1, Canada
| |
Collapse
|
7
|
Bull JK, Stanford BCM, Bokvist JK, Josephson MP, Rogers SM. Environment and genotype predict the genomic nature of domestication of salmonids as revealed by gene expression. Proc Biol Sci 2022; 289:20222124. [PMID: 36475438 PMCID: PMC9727666 DOI: 10.1098/rspb.2022.2124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Billions of salmonids are produced annually by artificial reproduction for harvest and conservation. Morphologically, behaviourally and physiologically these fish differ from wild-born fish, including in ways consistent with domestication. Unlike most studied domesticates, which diverged from wild ancestors millennia ago, salmonids offer a tractable model for early-stage domestication. Here, we review a fundamental mechanism for domestication-driven differences in early-stage domestication, differentially expressed genes (DEGs), in salmonids. We found 34 publications examining DEGs under domestication driven by environment and genotype, covering six species, over a range of life-history stages and tissues. Three trends emerged. First, domesticated genotypes have increased expression of growth hormone and related metabolic genes, with differences magnified under artificial environments with increased food. Regulatory consequences of these DEGs potentially drive overall DEG patterns. Second, immune genes are often DEGs under domestication and not simply owing to release from growth-immune trade-offs under increased food. Third, domesticated genotypes exhibit reduced gene expression plasticity, with plasticity further reduced in low-complexity environments typical of production systems. Recommendations for experimental design improvements, coupled with tissue-specific expression and emerging analytical approaches for DEGs present tractable avenues to understand the evolution of domestication in salmonids and other species.
Collapse
Affiliation(s)
- James K. Bull
- Department of Biological Sciences, University of Calgary, Alberta, Canada T2N 1N4
| | | | - Jessy K. Bokvist
- Department of Biological Sciences, University of Calgary, Alberta, Canada T2N 1N4,Fisheries and Oceans Canada, South Coast Area Office, Nanaimo, British Columbia, Canada V9T 1K3
| | - Matthew P. Josephson
- Department of Biological Sciences, University of Calgary, Alberta, Canada T2N 1N4
| | - Sean M. Rogers
- Department of Biological Sciences, University of Calgary, Alberta, Canada T2N 1N4,Bamfield Marine Sciences Centre, Bamfield, British Columbia, Canada V0R 1B0
| |
Collapse
|
8
|
Islam SS, Xue X, Caballero-Solares A, Bradbury IR, Rise ML, Fleming IA. Distinct early life stage gene expression effects of hybridization among European and North American farmed and wild Atlantic salmon populations. Mol Ecol 2022; 31:2712-2729. [PMID: 35243721 DOI: 10.1111/mec.16418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 01/29/2022] [Accepted: 02/21/2022] [Indexed: 11/27/2022]
Abstract
Due to multi-generation domestication selection, farmed and wild Atlantic salmon diverge genetically, which raises concerns about potential genetic interactions among escaped farmed and wild populations and disruption of local adaptation through introgression. When farmed strains of distant geographic origin are used, it is unknown whether the genetic consequences posed by escaped farmed fish will be greater than if more locally derived strains are used. Quantifying gene transcript expression differences among divergent farmed, wild and F1 hybrids under controlled conditions is one of the ways to explore the consequences of hybridization. We compared the transcriptomes of fry at the end of yolk sac absorption of a European (EO) farmed ("StofnFiskur", Norwegian strain), a North American (NA) farmed (Saint John River, NB strain), a Newfoundland (NF) wild population with EO ancestry, and related F1 hybrids using 44K microarrays. Our findings indicate that the wild population showed greater transcriptome differences from the EO farmed strain than that of the NA farmed strain. We also found the largest differences in global gene expression between the two farmed strains. We detected the fewest differentially expressed transcripts between F1 hybrids and domesticated/wild maternal strains. We also found that the differentially expressed genes between cross types over-represented GO terms associated with metabolism, development, growth, immune response, and redox homeostasis processes. These findings suggest that the interbreeding of escaped EO/NA farmed and NF wild population would alter gene transcription, and the consequences of hybridization would be greater from escaped EO farmed than NA farmed salmon, resulting in potential effects on the wild populations.
Collapse
Affiliation(s)
- Shahinur S Islam
- Department of Ocean Sciences, Ocean Sciences Centre, Memorial University of Newfoundland, St John's, NL, A1C 5S7, Canada
| | - Xi Xue
- Department of Ocean Sciences, Ocean Sciences Centre, Memorial University of Newfoundland, St John's, NL, A1C 5S7, Canada
| | - Albert Caballero-Solares
- Department of Ocean Sciences, Ocean Sciences Centre, Memorial University of Newfoundland, St John's, NL, A1C 5S7, Canada
| | - Ian R Bradbury
- Department of Ocean Sciences, Ocean Sciences Centre, Memorial University of Newfoundland, St John's, NL, A1C 5S7, Canada.,Salmonids Section, Fisheries and Oceans Canada, Northwest Atlantic Fisheries Centre, 80 East White Hills Road, St. John's, NL, A1C 5X, Canada
| | - Matthew L Rise
- Department of Ocean Sciences, Ocean Sciences Centre, Memorial University of Newfoundland, St John's, NL, A1C 5S7, Canada
| | - Ian A Fleming
- Department of Ocean Sciences, Ocean Sciences Centre, Memorial University of Newfoundland, St John's, NL, A1C 5S7, Canada
| |
Collapse
|
9
|
Zhao L, He K, Xiao Q, Liu Q, Luo W, Luo J, Fu H, Li J, Wu X, Du J, Gong Q, Wang X, Yang S. Comparative transcriptome profiles of large and small bodied large-scale loaches cultivated in paddy fields. Sci Rep 2021; 11:4936. [PMID: 33654201 PMCID: PMC7925675 DOI: 10.1038/s41598-021-84519-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 02/03/2021] [Indexed: 01/31/2023] Open
Abstract
Fish culture in paddy fields is a traditional aquaculture mode, which has a long history in East Asia. Large-scale loach (Paramisgurnus dabryanus) fast growth is suitable for paddy fields aquaculture in China. The objective of this study was to identify differential expression genes (DEGs) in the brain, liver and muscle tissues between large (LG, top 5% of maximum total length) and small (SG, top 5% of minimum total length) groups using RNA-seq. In total, 150 fish were collected each week and 450 fish were collected at twelfth week from three paddy fields for all the experimental. Histological observation found that the muscle fibre diameter of LG loaches was greater than that of SG loaches. Transcriptome results revealed that the high expression genes (HEGs) in LG loaches (fold change ≥ 2, p < 0.05) were mainly concentrated in metabolic pathways, such as "Thyroid hormone signalling pathway", "Citrate cycle (TCA cycle)", "Carbon metabolism", "Fatty acid metabolism", and "Cholesterol metabolism", and the HEGs in SG loaches were enriched in the pathways related to environmental information processing such as "Cell adhesion molecules (CAMs)", "ECM- receptor interaction" and "Rap1 signalling pathway"; cellular processes such as "Tight junction", "Focal adhesion", "Phagosome" and "Adherens junction". Furthermore, IGFs gene family may play an important role in loach growth for their different expression pattern between the two groups. These findings can enhance our understanding about the molecular mechanism of different growth and development levels of loaches in paddy fields.
Collapse
Affiliation(s)
- Liulan Zhao
- grid.80510.3c0000 0001 0185 3134College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Kuo He
- grid.80510.3c0000 0001 0185 3134College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Qing Xiao
- grid.80510.3c0000 0001 0185 3134College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Qiao Liu
- grid.80510.3c0000 0001 0185 3134College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Wei Luo
- grid.80510.3c0000 0001 0185 3134College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Jie Luo
- grid.80510.3c0000 0001 0185 3134College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Hongmei Fu
- grid.80510.3c0000 0001 0185 3134College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Jiayao Li
- grid.412514.70000 0000 9833 2433Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, 200090 China
| | - Xugan Wu
- grid.412514.70000 0000 9833 2433Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, 200090 China
| | - Jun Du
- grid.465230.60000 0004 1777 7721Fisheries Institute, Sichuan Academy of Agricultural Science, Chengdu, 611731 China
| | - Quan Gong
- grid.465230.60000 0004 1777 7721Fisheries Institute, Sichuan Academy of Agricultural Science, Chengdu, 611731 China
| | - Xun Wang
- grid.80510.3c0000 0001 0185 3134College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Song Yang
- grid.80510.3c0000 0001 0185 3134College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| |
Collapse
|
10
|
Christensen KA, Le Luyer J, Chan MTT, Rondeau EB, Koop BF, Bernatchez L, Devlin RH. Assessing the effects of genotype-by-environment interaction on epigenetic, transcriptomic, and phenotypic response in a Pacific salmon. G3 (BETHESDA, MD.) 2021; 11:jkab021. [PMID: 33712817 PMCID: PMC8022943 DOI: 10.1093/g3journal/jkab021] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/13/2021] [Indexed: 12/24/2022]
Abstract
Genotype-by-environment (GxE) interactions are non-parallel reaction norms among individuals with different genotypes in response to different environmental conditions. GxE interactions are an extension of phenotypic plasticity and consequently studying such interactions improves our ability to predict effects of different environments on phenotype as well as the fitness of genetically distinct organisms and their capacity to interact with ecosystems. Growth hormone transgenic coho salmon grow much faster than non-transgenics when raised in tank environments, but show little difference in growth when reared in nature-like streams. We used this model system to evaluate potential mechanisms underlying this growth rate GxE interaction, performing RNA-seq to measure gene transcription and whole-genome bisulfite sequencing to measure gene methylation in liver tissue. Gene ontology (GO) term analysis revealed stress as an important biological process potentially influencing growth rate GxE interactions. While few genes with transcription differences also had methylation differences, in promoter or gene regions, many genes were differentially methylated between tank and stream environments. A GO term analysis of differentially methylated genes between tank and stream environments revealed increased methylation in the stream environment of more than 95% of the differentially methylated genes, many with biological processes unrelated to liver function. The lower nutritional condition of the stream environment may cause increased negative regulation of genes less vital for liver tissue function than when fish are reared in tanks with unlimited food availability. These data show a large effect of rearing environment both on gene expression and methylation, but it is less clear that the detected epigenetic marks are responsible for the observed altered growth and physiological responses.
Collapse
Affiliation(s)
- Kris A Christensen
- Fisheries and Oceans Canada, West Vancouver, BC V7V 1N6, Canada
- Department of Biology, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Jérémy Le Luyer
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC G1V OA6, Canada
| | - Michelle T T Chan
- Fisheries and Oceans Canada, West Vancouver, BC V7V 1N6, Canada
- Molecular Biology and Biochemistry Department, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Eric B Rondeau
- Fisheries and Oceans Canada, West Vancouver, BC V7V 1N6, Canada
- Department of Biology, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Ben F Koop
- Department of Biology, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Louis Bernatchez
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC G1V OA6, Canada
| | - Robert H Devlin
- Fisheries and Oceans Canada, West Vancouver, BC V7V 1N6, Canada
| |
Collapse
|
11
|
Chan MTT, Muttray A, Sakhrani D, Woodward K, Kim JH, Christensen KA, Koop BF, Devlin RH. Sexually Dimorphic Growth Stimulation in a Strain of Growth Hormone Transgenic Coho Salmon (Oncorhynchus kisutch). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2021; 23:140-148. [PMID: 33481139 PMCID: PMC7929968 DOI: 10.1007/s10126-020-10012-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 11/29/2020] [Indexed: 06/12/2023]
Abstract
Growth hormone (GH) transgenic fish often exhibit remarkable transformations in growth rate and other phenotypes relative to wild-type. The 5750A transgenic coho salmon strain exhibits strong sexually dimorphic growth, with females possessing growth stimulation at a level typical of that seen for both sexes in other strains harbouring the same gene construct (e.g. M77), while males display a modest level of growth stimulation. GH mRNA levels were significantly higher in females than in males of the 5750A strain but equivalent in the M77 strain, indicating sex and transgene insertion locus altered transgene expression. We found that acute estradiol treatments did not influence GH expression in either strain (5750A and M77) or the transgene promoter (metallothionein-B), suggesting that estradiol level was not a significant factor influencing transgene activity. The feminization of XX and XY fish of the 5750A and M77 strains generated all-female groups and resulted in equalized growth of the two genetic sexes, suggesting that the presence of the Y chromosome was not directly capable of influencing the GH transgene-mediated growth in a physiological female conditions. These data suggest that the difference in growth rate seen between the sexes in the 5750A strain arises from non-estradiol-mediated sex influences on gene regulation at the transgene locus. This study shows how genetic factors and transgene insertion sites can influence transgene expression with significant consequent effects on phenotype.
Collapse
Affiliation(s)
- Michelle T T Chan
- Fisheries and Oceans Canada, 4160 Marine Drive, West Vancouver, BC, V7V 1N6, Canada.
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada.
| | - Annette Muttray
- Fisheries and Oceans Canada, 4160 Marine Drive, West Vancouver, BC, V7V 1N6, Canada
- New York Institute of Technology, #1700-701 West Georgia Street, Vancouver, BC, V7Y 1K8, Canada
| | - Dionne Sakhrani
- Fisheries and Oceans Canada, 4160 Marine Drive, West Vancouver, BC, V7V 1N6, Canada
| | - Krista Woodward
- Fisheries and Oceans Canada, 4160 Marine Drive, West Vancouver, BC, V7V 1N6, Canada
| | - Jin-Hyoung Kim
- Fisheries and Oceans Canada, 4160 Marine Drive, West Vancouver, BC, V7V 1N6, Canada
- Division of Life Sciences, Korea Polar Research Institute, 26 Sondomirae-ro, Yeonsu-gu, Incheon, 21990, South Korea
| | - Kris A Christensen
- Department of Biology, University of Victoria, Victoria, BC, V8W 2Y2, Canada
| | - Ben F Koop
- Department of Biology, University of Victoria, Victoria, BC, V8W 2Y2, Canada
| | - Robert H Devlin
- Fisheries and Oceans Canada, 4160 Marine Drive, West Vancouver, BC, V7V 1N6, Canada
| |
Collapse
|
12
|
Konstantinidis I, Sætrom P, Mjelle R, Nedoluzhko AV, Robledo D, Fernandes JMO. Major gene expression changes and epigenetic remodelling in Nile tilapia muscle after just one generation of domestication. Epigenetics 2020; 15:1052-1067. [PMID: 32264748 PMCID: PMC7116051 DOI: 10.1080/15592294.2020.1748914] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 02/23/2020] [Accepted: 03/25/2020] [Indexed: 12/29/2022] Open
Abstract
The historically recent domestication of fishes has been essential to meet the protein demands of a growing human population. Selection for traits of interest during domestication is a complex process whose epigenetic basis is poorly understood. Cytosine hydroxymethylation is increasingly recognized as an important DNA modification involved in epigenetic regulation. In the present study, we investigated if hydroxymethylation plays a role in fish domestication and demonstrated for the first time at a genome-wide level and single nucleotide resolution that the muscle hydroxymethylome changes after a single generation of Nile tilapia (Oreochromis niloticus, Linnaeus) domestication. The overall decrease in hydroxymethylcytosine levels was accompanied by the downregulation of 2015 genes in fish reared in captivity compared to their wild progenitors. In contrast, several myogenic and metabolic genes that can affect growth potential were upregulated. There were 126 differentially hydroxymethylated cytosines between groups, which were not due to genetic variation; they were associated with genes involved in immune-, growth- and neuronal-related pathways. Taken together, our data unveil a new role for DNA hydroxymethylation in epigenetic regulation of fish domestication with impact in aquaculture and implications in artificial selection, environmental adaptation and genome evolution.
Collapse
Affiliation(s)
| | - Pål Sætrom
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Computer Science, Norwegian University of Science and Technology, Trondheim, Norway
- Bioinformatics Core facility-BioCore, Norwegian University of Science and Technology, Trondheim, Norway
- K.G. Jebsen Center for Genetic Epidemiology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Robin Mjelle
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | | | - Diego Robledo
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | | |
Collapse
|
13
|
Liu X, Zeng S, Liu S, Wang G, Lai H, Zhao X, Bi S, Guo D, Chen X, Yi H, Su Y, Zhang Y, Li G. Identifying the Related Genes of Muscle Growth and Exploring the Functions by Compensatory Growth in Mandarin Fish ( Siniperca chuatsi). Front Physiol 2020; 11:553563. [PMID: 33117188 PMCID: PMC7552573 DOI: 10.3389/fphys.2020.553563] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 08/31/2020] [Indexed: 01/16/2023] Open
Abstract
How organisms display many different biochemical, physiological processes through genes expression and regulatory mechanisms affecting muscle growth is a central issue in growth and development. In Siniperca chuatsi, the growth-related genes and underlying relevant mechanisms are poorly understood, especially for difference of body sizes and compensatory growth performance. Muscle from 3-month old individuals of different sizes was used for transcriptome analysis. Results showed that 8,942 different expression genes (DEGs) were identified after calculating the RPKM. The DEGs involved in GH-IGF pathways, protein synthesis, ribosome synthesis and energy metabolisms, which were expressed significantly higher in small individuals (S) than large fish (L). In repletion feeding and compensatory growth experiments, eight more significant DEGs were used for further research (GHR2, IGFR1, 4ebp, Mhc, Mlc, Myf6, MyoD, troponin). When food was plentiful, eight genes participated in and promoted growth and muscle synthesis, respectively. Starvation can be shown to inhibit the expression of Mhc, Mlc and troponin, and high expression of GHR2, IGFR1, and 4ebp inhibited growth. Fasting promoted the metabolic actions of GHR2, IGFR1, and 4ebp rather than the growth-promoting actions. MyoD can sense and regulate the hunger, which also worked with Mhc and Mlc to accelerate the compensatory growth of S. chuatsi. This study is helpful to understand the regulation mechanisms of muscle growth-related genes. The elected genes will contribute to the selective breeding in future as candidate genes.
Collapse
Affiliation(s)
- Xuange Liu
- Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| | - Shuang Zeng
- Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| | - Shuang Liu
- Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| | - Gongpei Wang
- Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| | - Han Lai
- Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| | - Xiaopin Zhao
- Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| | - Sheng Bi
- Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| | - Dingli Guo
- Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| | - Xiaoli Chen
- Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| | - Huadong Yi
- Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| | - Yuqin Su
- Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| | - Yong Zhang
- Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| | - Guifeng Li
- Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| |
Collapse
|
14
|
Lu X, Chen HM, Qian XQ, Gui JF. Transcriptome analysis of grass carp (Ctenopharyngodon idella) between fast- and slow-growing fish. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2020; 35:100688. [PMID: 32454298 DOI: 10.1016/j.cbd.2020.100688] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 04/11/2020] [Accepted: 04/30/2020] [Indexed: 12/15/2022]
Abstract
Grass carp is one of the most important freshwater aquaculture species in China. However, the mechanisms underlying the growth of muscle tissue in the fish are unclear. High-throughput RNA-Seq was used to analyze the transcriptome of grass carp muscle tissue between fast- and slow-growing fish family groups. Twenty-four individuals each from 4 fast-growing families and 4 slow-growing families were used to reduce background noise. 71 up-regulated and 35 down-regulated genes were identified in the differentially expressed genes (DEGs). GO and KEGG enrichment analyses revealed the DEGs were involved in the GH/IGF axis, calcium metabolism, protein and glycogen synthesis, oxygen transport, cytoskeletal and myofibrillar components. IGFBP1 was up-regulated in big fish while GHR2 was down-regulated. Glutamic pyruvate transaminase 2, an indicator of liver tissue damage, was down-regulated in big grass carp, which indicates that the fish was better adapted to an artificially formulated diet. GAPDH, the rate-limiting enzyme in glycolytic flux was highly expressed in fast-growing grass carp, reflecting enhanced carbohydrate metabolism. Higher expression of ALAS2 and myoglobin 1 in big grass carp, related to oxygen transport might promote aerobic exercise along with food intake and muscle growth. Genes for cytoskeletal and myofibrillar components such as tropomyosin, meromyosin, and troponin I were also up-regulated in big grass carp. These results provide valuable information about the key genes for use as biomarkers of growth in selective breeding programs for grass carp and contribute to our understanding of the molecular mechanisms and regulative pathways regulating growth in fish.
Collapse
Affiliation(s)
- Xue Lu
- Key Laboratory of Utilization for Microbiological Resources in Breeding Industries, Ministry of Agriculture and Rural Affairs, Haid Central Research Institute, Animal Husbandry and Fisheries Research Center of Guangdong Haid Group Co., Ltd., Guangzhou 511400, China
| | - Hui-Min Chen
- Key Laboratory of Utilization for Microbiological Resources in Breeding Industries, Ministry of Agriculture and Rural Affairs, Haid Central Research Institute, Animal Husbandry and Fisheries Research Center of Guangdong Haid Group Co., Ltd., Guangzhou 511400, China
| | - Xue-Qiao Qian
- Key Laboratory of Utilization for Microbiological Resources in Breeding Industries, Ministry of Agriculture and Rural Affairs, Haid Central Research Institute, Animal Husbandry and Fisheries Research Center of Guangdong Haid Group Co., Ltd., Guangzhou 511400, China.
| | - Jian-Fang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
15
|
McClelland EK, Chan MTT, Lin X, Sakhrani D, Vincelli F, Kim JH, Heath DD, Devlin RH. Loci associated with variation in gene expression and growth in juvenile salmon are influenced by the presence of a growth hormone transgene. BMC Genomics 2020; 21:185. [PMID: 32106818 PMCID: PMC7045383 DOI: 10.1186/s12864-020-6586-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 02/17/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Growth regulation is a complex process influenced by genetic and environmental factors. We examined differences between growth hormone (GH) transgenic (T) and non-transgenic (NT) coho salmon to elucidate whether the same loci were involved in controlling body size and gene expression phenotypes, and to assess whether physiological transformations occurring from GH transgenesis were under the influence of alternative pathways. The following genomic techniques were used to explore differences between size classes within and between transgenotypes (T vs. NT): RNA-Seq/Differentially Expressed Gene (DEG) analysis, quantitative PCR (qPCR) and OpenArray analysis, Genotyping-by-Sequencing, and Genome-Wide Association Study (GWAS). RESULTS DEGs identified in comparisons between the large and small tails of the size distributions of T and NT salmon (NTLarge, NTSmall, TLarge and TSmall) spanned a broad range of biological processes, indicating wide-spread influence of the transgene on gene expression. Overexpression of growth hormone led to differences in regulatory loci between transgenotypes and size classes. Expression levels were significantly greater in T fish at 16 of 31 loci and in NT fish for 10 loci. Eleven genes exhibited different mRNA levels when the interaction of size and transgenotype was considered (IGF1, IGFBP1, GH, C3-4, FAS, FAD6, GLUT1, G6PASE1, GOGAT, MID1IP1). In the GWAS, 649 unique SNPs were significantly associated with at least one study trait, with most SNPs associated with one of the following traits: C3_4, ELA1, GLK, IGF1, IGFBP1, IGFII, or LEPTIN. Only 1 phenotype-associated SNP was found in common between T and NT fish, and there were no SNPs in common between transgenotypes when size was considered. CONCLUSIONS Multiple regulatory loci affecting gene expression were shared between fast-growing and slow-growing fish within T or NT groups, but no such regulatory loci were found to be shared between NT and T groups. These data reveal how GH overexpression affects the regulatory responses of the genome resulting in differences in growth, physiological pathways, and gene expression in T fish compared with the wild type. Understanding the complexity of regulatory gene interactions to generate phenotypes has importance in multiple fields ranging from applications in selective breeding to quantifying influences on evolutionary processes.
Collapse
Affiliation(s)
- Erin Kathleen McClelland
- Fisheries and Oceans Canada, 4160 Marine Drive, West Vancouver, BC, V7V 1N6, Canada. .,, EKM Consulting 730 Drake St, Nanaimo, BC, V9S 2T1, Canada.
| | - Michelle T T Chan
- Fisheries and Oceans Canada, 4160 Marine Drive, West Vancouver, BC, V7V 1N6, Canada
| | - Xiang Lin
- Fisheries and Oceans Canada, 4160 Marine Drive, West Vancouver, BC, V7V 1N6, Canada
| | - Dionne Sakhrani
- Fisheries and Oceans Canada, 4160 Marine Drive, West Vancouver, BC, V7V 1N6, Canada
| | - Felicia Vincelli
- Great Lakes Institute for Environmental Research, University of Windsor, 401 Sunset Ave, Windsor, ON, N9B 3P4, Canada
| | - Jin-Hyoung Kim
- Fisheries and Oceans Canada, 4160 Marine Drive, West Vancouver, BC, V7V 1N6, Canada.,Korea Polar Research Institute (KOPRI), 26, Songdomirae-ro, Yeonsu-gu, Incheon, 21990, South Korea
| | - Daniel D Heath
- Great Lakes Institute for Environmental Research, University of Windsor, 401 Sunset Ave, Windsor, ON, N9B 3P4, Canada
| | - Robert H Devlin
- Fisheries and Oceans Canada, 4160 Marine Drive, West Vancouver, BC, V7V 1N6, Canada
| |
Collapse
|
16
|
Kim JH, Macqueen DJ, Winton JR, Hansen JD, Park H, Devlin RH. Effect of growth rate on transcriptomic responses to immune stimulation in wild-type, domesticated, and GH-transgenic coho salmon. BMC Genomics 2019; 20:1024. [PMID: 31881844 PMCID: PMC6935076 DOI: 10.1186/s12864-019-6408-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 12/17/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Transcriptomic responses to immune stimulation were investigated in coho salmon (Oncorhynchus kisutch) with distinct growth phenotypes. Wild-type fish were contrasted to strains with accelerated growth arising either from selective breeding (i.e. domestication) or genetic modification. Such distinct routes to accelerated growth may have unique implications for relationships and/or trade-offs between growth and immune function. RESULTS RNA-Seq was performed on liver and head kidney in four 'growth response groups' injected with polyinosinic-polycytidylic acid (Poly I:C; viral mimic), peptidoglycan (PGN; bacterial mimic) or PBS (control). These groups were: 1) 'W': wild-type, 2) 'TF': growth hormone (GH) transgenic salmon with ~ 3-fold higher growth-rate than W, 3) 'TR': GH transgenic fish ration restricted to possess a growth-rate equal to W, and 4) 'D': domesticated non-transgenic fish showing growth-rate intermediate to W and TF. D and TF showed a higher similarity in transcriptomic response compared to W and TR. Several immune genes showed constitutive expression differences among growth response groups, including perforin 1 and C-C motif chemokine 19-like. Among the affected immune pathways, most were up-regulated by Poly I:C and PGN. In response to PGN, the c-type lectin receptor signalling pathway responded uniquely in TF and TR. In response to stimulation with both immune mimics, TR responded more strongly than other groups. Further, group-specific pathway responses to PGN stimulation included NOD-like receptor signalling in W and platelet activation in TR. TF consistently showed the most attenuated immune response relative to W, and more DEGs were apparent in TR than TF and D relative to W, suggesting that a non-satiating ration coupled with elevated circulating GH levels may cause TR to possess enhanced immune capabilities. Alternatively, TF and D salmon are prevented from acquiring the same level of immune response as TR due to direction of energy to high overall somatic growth. Further study of the effects of ration restriction in growth-modified fishes is warranted. CONCLUSIONS These findings improve our understanding of the pleiotropic effects of growth modification on the immunological responses of fish, revealing unique immune pathway responses depending on the mechanism of growth acceleration and nutritional availability.
Collapse
Affiliation(s)
- Jin-Hyoung Kim
- Fisheries and Oceans Canada, 4160 Marine Drive, West Vancouver, BC, V7V 1N6, Canada.,Present Address: Korea Polar Research Institute, Unit of Polar Genomics, 26 Sondomirae-ro, Yeonsu-gu, Incheon, 21990, Republic of Korea
| | - Daniel J Macqueen
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, EH25 9RG, UK
| | - James R Winton
- US Geological Survey, Western Fisheries Research Center, 6505 NE 65th Street, Seattle, 98115, USA
| | - John D Hansen
- US Geological Survey, Western Fisheries Research Center, 6505 NE 65th Street, Seattle, 98115, USA
| | - Hyun Park
- Divison of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Robert H Devlin
- Fisheries and Oceans Canada, 4160 Marine Drive, West Vancouver, BC, V7V 1N6, Canada.
| |
Collapse
|
17
|
Zhong H, Zhang X, Xu Q, Yan J, Han Z, Zheng H, Xiao J, Tang Z, Wang F, Luo Y, Zhou Y. Nonadditive and Asymmetric Allelic Expression of Growth Hormone in Hybrid Tilapia. Front Genet 2019; 10:961. [PMID: 31681414 PMCID: PMC6803431 DOI: 10.3389/fgene.2019.00961] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 09/09/2019] [Indexed: 12/04/2022] Open
Abstract
Hybridization is a common breeding technique that can improve germplasm through heterosis in aquaculture. However, the regulation of key gene expression, including the details of transcriptional level changes at the beginning of hybridization events, remains largely undefined, especially in teleosts. In this study, by interspecies crossing between two pure lines of Nile tilapia and blue tilapia, we obtained a hybrid tilapia population as a model to elucidate heterosis, and we traced the molecular outcomes of growth hormone (GH) expression and allele-specific expression (ASE) in hybrids. The hybrids display growth vigor compared to their parents in the 120-day growth trial. GH mRNA expression was uniquely expressed in the pituitary. Higher GH expression was found in the hybrid than the midparent value, in both males and females, showing a nonadditive pattern. We identified four single-nucleotide polymorphism sites between Nile tilapia and blue tilapia. Subsequently, by pyrosequencing, we found asymmetric allelic expression in hybrids with higher maternal allelic transcript ratios in both males and females. Fasting significantly increased GH expression in hybrids, but asymmetric allelic expression was not affected by feeding or fasting conditions. Finally, we identified cis and trans effects via overall expression and ASE values in the hybrid, which showed that the cis and trans effects promoted the expression of maternal subgenome in the hybrid, contributing to the expression superiority of GH in hybrid tilapia. Taken together, the results of our study first illustrated the concept of GH expression superiority and its formation mechanism in hybrid fish with growth vigor.
Collapse
Affiliation(s)
- Huan Zhong
- Tilapia Genetics and Breeding Center, Guangxi Academy of Fishery Sciences, Nanning, China
| | - Xiaojin Zhang
- Tilapia Genetics and Breeding Center, Guangxi Academy of Fishery Sciences, Nanning, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Qian Xu
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
| | - Jinpeng Yan
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
| | - Zhuojun Han
- Tilapia Genetics and Breeding Center, Guangxi Academy of Fishery Sciences, Nanning, China.,College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Huifang Zheng
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Jun Xiao
- Tilapia Genetics and Breeding Center, Guangxi Academy of Fishery Sciences, Nanning, China
| | - Zhanyang Tang
- Tilapia Genetics and Breeding Center, Guangxi Academy of Fishery Sciences, Nanning, China
| | - Fenghua Wang
- Sports Biochemistry Laboratory, Institute of Physical Education, Xinjiang Normal University, Urumqi, China
| | - Yongju Luo
- Tilapia Genetics and Breeding Center, Guangxi Academy of Fishery Sciences, Nanning, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Yi Zhou
- Tilapia Genetics and Breeding Center, Guangxi Academy of Fishery Sciences, Nanning, China
| |
Collapse
|
18
|
Christensen KA, Sakhrani D, Rondeau EB, Richards J, Koop BF, Devlin RH. Effect of triploidy on liver gene expression in coho salmon (Oncorhynchus kisutch) under different metabolic states. BMC Genomics 2019; 20:336. [PMID: 31053056 PMCID: PMC6500012 DOI: 10.1186/s12864-019-5655-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 03/27/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Triploid coho salmon are excellent models for studying gene dosage and the effects of increased cell volume on gene expression. Triploids have an additional haploid genome in each cell and have fewer but larger cells than diploid coho salmon to accommodate the increased genome size. Studying gene expression in triploid coho salmon provides insight into how gene expression may have been affected after the salmonid-specific genome duplication which occurred some 90 MYA. Triploid coho salmon are sterile and consequently can live longer and grow larger than diploid congeners in many semelparous species (spawning only once) because they never reach maturity and post-spawning mortality is averted. Triploid fishes are also of interest to the commercial sector (larger fish are more valuable) and to fisheries management since sterile fish can potentially minimize negative impacts of escaped fish in the wild. RESULTS The vast majority of genes in liver tissue had similar expression levels between diploid and triploid coho salmon, indicating that the same amount of mRNA transcripts were being produced per gene copy (positive gene dosage effects) within a larger volume cell. Several genes related to nutrition and compensatory growth were differentially expressed between diploid and triploid salmon, indicating that some loci are sensitive to cell size and/or DNA content per cell. To examine how robust expression between ploidies is under different conditions, a genetic/metabolic modifier in the form of different doses of a growth hormone transgene was used to assess gene expression under conditions that the genome has not naturally experienced or adapted to. While many (up to 1400) genes were differentially expressed between non-transgenic and transgenic fish, relatively few genes were differentially expressed between diploids and triploids with similar doses of the transgene. These observations indicate that the small effect of ploidy on gene expression is robust to large changes in physiological state. CONCLUSIONS These findings are of interest from a gene regulatory perspective, but also valuable for understanding phenotypic effects in triploids, transgenics, and triploid transgenics that could affect their utility in culture conditions and their fitness and potential consequences of release into nature.
Collapse
Affiliation(s)
- Kris A Christensen
- Fisheries and Oceans Canada, West Vancouver, BC, Canada.,Department of Biology, University of Victoria, Victoria, BC, Canada
| | | | - Eric B Rondeau
- Fisheries and Oceans Canada, West Vancouver, BC, Canada.,Department of Biology, University of Victoria, Victoria, BC, Canada
| | - Jeffery Richards
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - Ben F Koop
- Department of Biology, University of Victoria, Victoria, BC, Canada
| | | |
Collapse
|
19
|
Domestication and Temperature Modulate Gene Expression Signatures and Growth in the Australasian Snapper Chrysophrys auratus. G3-GENES GENOMES GENETICS 2019; 9:105-116. [PMID: 30591433 PMCID: PMC6325909 DOI: 10.1534/g3.118.200647] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Identifying genes and pathways involved in domestication is critical to understand how species change in response to human-induced selection pressures, such as increased temperatures. Given the profound influence of temperature on fish metabolism and organismal performance, a comparison of how temperature affects wild and domestic strains of snapper is an important question to address. We experimentally manipulated temperature conditions for F1-hatchery and wild Australasian snapper (Chrysophrys auratus) for 18 days to mimic seasonal extremes and measured differences in growth, white muscle RNA transcription and hematological parameters. Over 2.2 Gb paired-end reads were assembled de novo for a total set of 33,017 transcripts (N50 = 2,804). We found pronounced growth and gene expression differences between wild and domesticated individuals related to global developmental and immune pathways. Temperature-modulated growth responses were linked to major pathways affecting metabolism, cell regulation and signaling. This study is the first step toward gaining an understanding of the changes occurring in the early stages of domestication, and the mechanisms underlying thermal adaptation and associated growth in poikilothermic vertebrates. Our study further provides the first transcriptome resources for studying biological questions in this non-model fish species.
Collapse
|
20
|
López ME, Benestan L, Moore J, Perrier C, Gilbey J, Di Genova A, Maass A, Diaz D, Lhorente J, Correa K, Neira R, Bernatchez L, Yáñez JM. Comparing genomic signatures of domestication in two Atlantic salmon ( Salmo salar L.) populations with different geographical origins. Evol Appl 2019; 12:137-156. [PMID: 30622641 PMCID: PMC6304691 DOI: 10.1111/eva.12689] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 06/29/2018] [Accepted: 07/17/2018] [Indexed: 12/16/2022] Open
Abstract
Selective breeding and genetic improvement have left detectable signatures on the genomes of domestic species. The elucidation of such signatures is fundamental for detecting genomic regions of biological relevance to domestication and improving management practices. In aquaculture, domestication was carried out independently in different locations worldwide, which provides opportunities to study the parallel effects of domestication on the genome of individuals that have been selected for similar traits. In this study, we aimed to detect potential genomic signatures of domestication in two independent pairs of wild/domesticated Atlantic salmon populations of Canadian and Scottish origins, respectively. Putative genomic regions under divergent selection were investigated using a 200K SNP array by combining three different statistical methods based either on allele frequencies (LFMM, Bayescan) or haplotype differentiation (Rsb). We identified 337 and 270 SNPs potentially under divergent selection in wild and hatchery populations of Canadian and Scottish origins, respectively. We observed little overlap between results obtained from different statistical methods, highlighting the need to test complementary approaches for detecting a broad range of genomic footprints of selection. The vast majority of the outliers detected were population-specific but we found four candidate genes that were shared between the populations. We propose that these candidate genes may play a role in the parallel process of domestication. Overall, our results suggest that genetic drift may have override the effect of artificial selection and/or point toward a different genetic basis underlying the expression of similar traits in different domesticated strains. Finally, it is likely that domestication may predominantly target polygenic traits (e.g., growth) such that its genomic impact might be more difficult to detect with methods assuming selective sweeps.
Collapse
Affiliation(s)
- Maria E. López
- Facultad de Ciencias Veterinarias y PecuariasUniversidad de ChileSantiagoChile
- Facultad de Ciencias AgronómicasUniversidad de ChileSantiagoChile
| | - Laura Benestan
- IBISInstitut de Biologie Intégrative et des SystèmesUniversité LavalQuébec CityQuébecCanada
| | - Jean‐Sebastien Moore
- IBISInstitut de Biologie Intégrative et des SystèmesUniversité LavalQuébec CityQuébecCanada
| | - Charles Perrier
- Centre d’Écologie Fonctionnelle et ÉvolutiveUnité Mixte de Recherche CNRS 5175MontpellierFrance
| | - John Gilbey
- Marine Scotland ScienceFreshwater Fisheries LaboratoryFaskallyPitlochryUK
| | - Alex Di Genova
- Laboratory of Bioinformatics and Mathematics of the GenomeCenter for Mathematical Modeling (UMI 2807 CNRS) and Center for Genome Regulation (Fondap 15090007)Universidad de ChileSantiagoChile
| | - Alejandro Maass
- Laboratory of Bioinformatics and Mathematics of the GenomeCenter for Mathematical Modeling (UMI 2807 CNRS) and Center for Genome Regulation (Fondap 15090007)Universidad de ChileSantiagoChile
| | - Diego Diaz
- Laboratory of Bioinformatics and Mathematics of the GenomeCenter for Mathematical Modeling (UMI 2807 CNRS) and Center for Genome Regulation (Fondap 15090007)Universidad de ChileSantiagoChile
| | | | | | - Roberto Neira
- Facultad de Ciencias AgronómicasUniversidad de ChileSantiagoChile
| | - Louis Bernatchez
- IBISInstitut de Biologie Intégrative et des SystèmesUniversité LavalQuébec CityQuébecCanada
| | - José M. Yáñez
- Facultad de Ciencias Veterinarias y PecuariasUniversidad de ChileSantiagoChile
- AquainnovoPuerto MonttChile
- Núcleo Milenio INVASALConcepciónChile
| |
Collapse
|
21
|
Kodama M, Naish KA, Devlin RH. Influence of a growth hormone transgene on the genetic architecture of growth-related traits: A comparative analysis between transgenic and wild-type coho salmon. Evol Appl 2018; 11:1886-1900. [PMID: 30459836 PMCID: PMC6231474 DOI: 10.1111/eva.12692] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 07/26/2018] [Accepted: 07/28/2018] [Indexed: 12/20/2022] Open
Abstract
Genetic engineering has been increasingly applied to many commercially important plant and animal species, generating phenotypic changes that are not observed in natural populations and creating genetic interactions that have not experienced natural selection. The degree to and way in which such human-induced genetic variation interacts with the rest of the genome is currently largely unknown. Integrating such information into ecological and risk assessment frameworks is crucial to understand the potential effects of genetically modified organisms in natural environments. Here, we performed QTL mapping to investigate the genetic architecture of growth-related traits in nontransgenic (NT) and growth hormone transgenic (T) coho salmon with large changes in growth and related physiology, with the aim of identifying how an inserted transgene might influence the opportunity for selection. These fish shared the same parental genetic background, thus allowing us to determine whether the same or different loci influence these traits within the two groups. The use of over 1,700 loci, derived from restriction site-associated DNA sequencing, revealed that different genomic regions were linked with growth over time between the two groups. Additionally, the effect sizes of detected QTL appear to have been influenced by the transgene. Direct comparison of QTL between the T and NT fish during two size-matched periods identified little overlap in their location. Taken together, the results showed that the transgene altered the genetic basis of growth-related traits in this species. The study has important implications for effective conservation and management of wild populations experiencing introduction of transgenes. Evolutionary changes and their ecological consequences may occur at different rates and in different directions in NT versus T individuals in response to selection. Thus, assessments of phenotypic change, and hence ecological risk, should be determined periodically to evaluate whether initial estimates made with founder strains remain valid.
Collapse
Affiliation(s)
- Miyako Kodama
- Fisheries and Oceans CanadaWest VancouverBritish ColumbiaCanada
- School of Aquatic and Fishery SciencesUniversity of WashingtonSeattle, Washington
- Present address:
Natural History Museum of DenmarkUniversity of CopenhagenCopenhagenDenmark
- Present address:
Genome Research and Molecular BiomedicineDepartment of BiologyUniversity of CopenhagenCopenhagenDenmark
| | - Kerry A. Naish
- School of Aquatic and Fishery SciencesUniversity of WashingtonSeattle, Washington
| | | |
Collapse
|
22
|
Causey DR, Kim JH, Stead DA, Martin SAM, Devlin RH, Macqueen DJ. Proteomic comparison of selective breeding and growth hormone transgenesis in fish: Unique pathways to enhanced growth. J Proteomics 2018; 192:114-124. [PMID: 30153513 PMCID: PMC7086150 DOI: 10.1016/j.jprot.2018.08.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 08/23/2018] [Indexed: 12/14/2022]
Abstract
In fish used for food production and scientific research, fast growth can be achieved via selective breeding or induced instantaneously via growth hormone (GH) transgenesis (GHT). The proteomic basis for these distinct routes towards a similar higher phenotype remains uncharacterized, as are associated implications for health parameters. We addressed this knowledge gap using skeletal muscle proteomics in coho salmon (Oncorhynchus kisutch), hypothesising that i) selective breeding and GHT are underpinned by both parallel and unique changes in growth systems, and ii) rapidly-growing fish strains have lowered scope to allocate resources towards immune function. Quantitative profiling of GHT and growth-selected strains was done in comparison to wild-type after injection with PBS (control) or Poly I:C (to mimic infection). We identified remodelling of the muscle proteome in each growth-enhanced strain that was strikingly non-overlapping. GHT was characterized by focal upregulation of systems driving protein synthesis, while the growth-selected fish presented a larger and more diverse set of changes, consistent with complex alterations to many metabolic and cellular pathways. Poly I:C had little detectable effect on the muscle proteome. This study demonstrates that distinct proteome profiles can explain outwardly similar enhanced growth phenotypes, improving our understanding of growth mechanisms in anthropogenic animal strains. Significance This work provides the first proteomic insights into mechanisms underpinning different anthropogenic routes to rapid growth in salmon. High-throughput proteomic profiling was used to reveal changes supporting enhanced growth, comparing skeletal muscle of growth hormone transgenic (GHT) and selectively-bred salmon strains with their wild-type counterparts. Contrasting past mRNA-level comparisons of the same fish strains, our data reveals a surprisingly substantial proteomic divergence between the GHT and selectively bred strains. The findings demonstrate that many unique molecular mechanisms underlie growth-enhanced phenotypes in different types of fish strain used for food production and scientific research. Mechanistic basis for rapid growth poorly understood in fish. Comparative proteomic profiling done in fish strains showing highly enhanced growth. Distinct basis for enhanced growth comparing transgenic and domesticated fish strains. Highly distinct proteome profiles may explain outwardly similar growth phenotypes. Study enhances understanding of how rapid growth is achieved in anthropogenic animal strains.
Collapse
Affiliation(s)
- Dwight R Causey
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - Jin-Hyoung Kim
- Fisheries and Oceans Canada, West Vancouver, British Columbia V7V 1N6, Canada; Korea Polar Research Institute (KOPRI), Yeonsu-gu, Incheon 21990, Republic of Korea
| | - David A Stead
- Aberdeen Proteomics, University of Aberdeen, Rowett Institute, Aberdeen, UK
| | | | - Robert H Devlin
- Fisheries and Oceans Canada, West Vancouver, British Columbia V7V 1N6, Canada
| | - Daniel J Macqueen
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK.
| |
Collapse
|
23
|
Debode F, Janssen E, Marien A, Devlin RH, Lieske K, Mankertz J, Berben G. Detection of Transgenic Atlantic and Coho Salmon by Real-time PCR. FOOD ANAL METHOD 2018. [DOI: 10.1007/s12161-018-1214-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
24
|
Vélez EJ, Perelló M, Azizi S, Moya A, Lutfi E, Pérez-Sánchez J, Calduch-Giner JA, Navarro I, Blasco J, Fernández-Borràs J, Capilla E, Gutiérrez J. Recombinant bovine growth hormone (rBGH) enhances somatic growth by regulating the GH-IGF axis in fingerlings of gilthead sea bream (Sparus aurata). Gen Comp Endocrinol 2018; 257:192-202. [PMID: 28666853 DOI: 10.1016/j.ygcen.2017.06.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 06/16/2017] [Accepted: 06/22/2017] [Indexed: 02/07/2023]
Abstract
The growth hormone (GH)/insulin-like growth factors (IGFs) endocrine axis is the main growth-regulator system in vertebrates. Some authors have demonstrated the positive effects on growth of a sustained-release formulation of a recombinant bovine GH (rBGH) in different fish species. The aim of this work was to characterize the effects of a single injection of rBGH in fingerlings of gilthead sea bream on growth, GH-IGF axis, and both myogenic and osteogenic processes. Thus, body weight and specific growth rate were significantly increased in rBGH-treated fish respect to control fish at 6weeks post-injection, whereas the hepatosomatic index was decreased and the condition factor and mesenteric fat index were unchanged, altogether indicating enhanced somatic growth. Moreover, rBGH injection increased the plasma IGF-I levels in parallel with a rise of hepatic mRNA from total IGF-I, IGF-Ic and IGF-II, the binding proteins IGFBP-1a and IGFBP-2b, and also the receptors IGF-IRb, GHR-I and GHR-II. In skeletal muscle, the expression of IGF-Ib and GHR-I was significantly increased but that of IGF-IRb was reduced; the mRNA levels of myogenic regulatory factors, proliferation and differentiation markers (PCNA and MHC, respectively), or that of different molecules of the signaling pathway (TOR/AKT) were unaltered. Besides, the growth inhibitor myostatin (MSTN1 and MSTN2) and the hypertrophic marker (MLC2B) expression resulted significantly enhanced, suggesting altogether that the muscle is in a non-proliferative stage of development. Contrarily in bone, although the expression of most molecules of the GH/IGF axis was decreased, the mRNA levels of several osteogenic genes were increased. The histology analysis showed a GH induced lipolytic effect with a clear decrease in the subcutaneous fat layer. Overall, these results reveal that a better growth potential can be achieved on this species and supports the possibility to improve growth and quality through the optimization of its culture conditions.
Collapse
Affiliation(s)
- Emilio J Vélez
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Miquel Perelló
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Sheida Azizi
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Alberto Moya
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Esmail Lutfi
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Jaume Pérez-Sánchez
- Nutrigenomics and Fish Growth Endocrinology, Institute of Aquaculture Torre de la Sal (CSIC), 12595 Ribera de Cabanes, Castellón, Spain
| | - Josep A Calduch-Giner
- Nutrigenomics and Fish Growth Endocrinology, Institute of Aquaculture Torre de la Sal (CSIC), 12595 Ribera de Cabanes, Castellón, Spain
| | - Isabel Navarro
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Josefina Blasco
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Jaume Fernández-Borràs
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Encarnación Capilla
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Joaquim Gutiérrez
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain.
| |
Collapse
|
25
|
Alzaid A, Kim JH, Devlin RH, Martin SAM, Macqueen DJ. Growth hormone transgenesis in coho salmon disrupts muscle immune function impacting cross-talk with growth systems. J Exp Biol 2018; 221:jeb.173146. [DOI: 10.1242/jeb.173146] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 04/23/2018] [Indexed: 12/18/2022]
Abstract
Suppression of growth during infection may aid resource allocation towards effective immune function. Past work supporting this hypothesis in salmonid fish revealed an immune-responsive regulation of the insulin-like growth factor (IGF) system, an endocrine pathway downstream of growth hormone (GH). Skeletal muscle is the main target for growth and energetic storage in fish, yet little is known about how its growth is regulated during an immune response. We addressed this knowledge gap by characterizing muscle immune responses in size-matched coho salmon (Oncorhynchus kisutch) achieving different growth rates. We compared a wild-type strain with two GH transgenic groups from the same genetic background achieving either maximal or suppressed growth, a design separating GH's direct effects from its influence on growth rate and nutritional state. Fish were sampled 30h post-injection with PBS (control) or mimics of bacterial or viral infection. We quantified mRNA expression levels for genes from the GH, GH receptor, IGF hormone, IGF1 receptor and IGF-binding protein families, along with immune genes involved in inflammatory or antiviral responses and muscle growth status marker genes. We demonstrate dampened immune function in GH transgenics compared to wild-type. The muscle of GH transgenics achieving rapid growth showed no detectable antiviral response, coupled with evidence of a constitutive inflammatory state. GH and IGF system gene expression was strongly altered by GH transgenesis and fast growth, both for baseline expression and responses to immune stimulation. Thus, GH transgenesis strongly disrupts muscle immune status and normal GH and IGF system expression responses to immune stimulation.
Collapse
Affiliation(s)
- Abdullah Alzaid
- School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK
| | - Jin-Hyoung Kim
- Fisheries and Oceans Canada, West Vancouver, British Columbia, V7V 1N6, Canada
- Current address: Korea Polar Research Institute (KOPRI), Yeonsu-gu, Incheon 21990, Korea
| | - Robert H. Devlin
- Fisheries and Oceans Canada, West Vancouver, British Columbia, V7V 1N6, Canada
| | - Samuel A. M. Martin
- School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK
| | - Daniel J. Macqueen
- School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK
| |
Collapse
|
26
|
Uusi-Heikkilä S, Sävilammi T, Leder E, Arlinghaus R, Primmer CR. Rapid, broad-scale gene expression evolution in experimentally harvested fish populations. Mol Ecol 2017; 26:3954-3967. [PMID: 28500794 DOI: 10.1111/mec.14179] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 04/26/2017] [Accepted: 04/28/2017] [Indexed: 01/19/2023]
Abstract
Gene expression changes potentially play an important role in adaptive evolution under human-induced selection pressures, but this has been challenging to demonstrate in natural populations. Fishing exhibits strong selection pressure against large body size, thus potentially inducing evolutionary changes in life history and other traits that may be slowly reversible once fishing ceases. However, there is a lack of convincing examples regarding the speed and magnitude of fisheries-induced evolution, and thus, the relevant underlying molecular-level effects remain elusive. We use wild-origin zebrafish (Danio rerio) as a model for harvest-induced evolution. We experimentally demonstrate broad-scale gene expression changes induced by just five generations of size-selective harvesting, and limited genetic convergence following the cessation of harvesting. We also demonstrate significant allele frequency changes in genes that were differentially expressed after five generations of size-selective harvesting. We further show that nine generations of captive breeding induced substantial gene expression changes in control stocks likely due to inadvertent selection in the captive environment. The large extent and rapid pace of the gene expression changes caused by both harvest-induced selection and captive breeding emphasizes the need for evolutionary enlightened management towards sustainable fisheries.
Collapse
Affiliation(s)
| | | | - Erica Leder
- Department of Biology, University of Turku, Turku, Finland.,Natural History Museum, University of Oslo, Oslo, Norway.,Department of Aquaculture, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - Robert Arlinghaus
- Department of Biology and Ecology of Fishes, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany.,Division of Integrative Fisheries Management, Department of Crop and Animal Sciences, Faculty of Life Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| | | |
Collapse
|
27
|
Verburg-van Kemenade BML, Cohen N, Chadzinska M. Neuroendocrine-immune interaction: Evolutionarily conserved mechanisms that maintain allostasis in an ever-changing environment. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 66:2-23. [PMID: 27296493 DOI: 10.1016/j.dci.2016.05.015] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 05/23/2016] [Accepted: 05/23/2016] [Indexed: 05/02/2023]
Abstract
It has now become accepted that the immune system and neuroendocrine system form an integrated part of our physiology. Immunological defense mechanisms act in concert with physiological processes like growth and reproduction, energy intake and metabolism, as well as neuronal development. Not only are psychological and environmental stressors communicated to the immune system, but also, vice versa, the immune response and adaptation to a current pathogen challenge are communicated to the entire body, including the brain, to evoke adaptive responses (e.g., fever, sickness behavior) that ensure allocation of energy to fight the pathogen. This phenomenon is evolutionarily conserved. Hence it is both interesting and important to consider the evolutionary history of this bi-directional neuroendocrine-immune communication to reveal phylogenetically ancient or relatively recently acquired mechanisms. Indeed, such considerations have already disclosed an extensive "common vocabulary" of information pathways as well as molecules and their receptors used by both the neuroendocrine and immune systems. This review focuses on the principal mechanisms of bi-directional communication and the evidence for evolutionary conservation of the important physiological pathways involved.
Collapse
Affiliation(s)
- B M Lidy Verburg-van Kemenade
- Cell Biology and Immunology Group, Dept. of Animal Sciences, Wageningen University, P.O. Box 338, 6700 AH Wageningen, The Netherlands.
| | - Nicholas Cohen
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14620, USA
| | - Magdalena Chadzinska
- Department of Evolutionary Immunology, Institute of Zoology, Jagiellonian University, Gronostajowa 9, PL30-387 Krakow, Poland
| |
Collapse
|
28
|
Gonzalez-Pena D, Gao G, Baranski M, Moen T, Cleveland BM, Kenney PB, Vallejo RL, Palti Y, Leeds TD. Genome-Wide Association Study for Identifying Loci that Affect Fillet Yield, Carcass, and Body Weight Traits in Rainbow Trout ( Oncorhynchus mykiss). Front Genet 2016; 7:203. [PMID: 27920797 PMCID: PMC5118429 DOI: 10.3389/fgene.2016.00203] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 11/02/2016] [Indexed: 11/22/2022] Open
Abstract
Fillet yield (FY, %) is an economically-important trait in rainbow trout aquaculture that affects production efficiency. Despite that, FY has received little attention in breeding programs because it is difficult to measure on a large number of fish and cannot be directly measured on breeding candidates. The recent development of a high-density SNP array for rainbow trout has provided the needed tool for studying the underlying genetic architecture of this trait. A genome-wide association study (GWAS) was conducted for FY, body weight at 10 (BW10) and 13 (BW13) months post-hatching, head-off carcass weight (CAR), and fillet weight (FW) in a pedigreed rainbow trout population selectively bred for improved growth performance. The GWAS analysis was performed using the weighted single-step GBLUP method (wssGWAS). Phenotypic records of 1447 fish (1.5 kg at harvest) from 299 full-sib families in three successive generations, of which 875 fish from 196 full-sib families were genotyped, were used in the GWAS analysis. A total of 38,107 polymorphic SNPs were analyzed in a univariate model with hatch year and harvest group as fixed effects, harvest weight as a continuous covariate, and animal and common environment as random effects. A new linkage map was developed to create windows of 20 adjacent SNPs for use in the GWAS. The two windows with largest effect for FY and FW were located on chromosome Omy9 and explained only 1.0-1.5% of genetic variance, thus suggesting a polygenic architecture affected by multiple loci with small effects in this population. One window on Omy5 explained 1.4 and 1.0% of the genetic variance for BW10 and BW13, respectively. Three windows located on Omy27, Omy17, and Omy9 (same window detected for FY) explained 1.7, 1.7, and 1.0%, respectively, of genetic variance for CAR. Among the detected 100 SNPs, 55% were located directly in genes (intron and exons). Nucleotide sequences of intragenic SNPs were blasted to the Mus musculus genome to create a putative gene network. The network suggests that differences in the ability to maintain a proliferative and renewable population of myogenic precursor cells may affect variation in growth and fillet yield in rainbow trout.
Collapse
Affiliation(s)
- Dianelys Gonzalez-Pena
- United States Department of Agriculture, National Center for Cool and Cold Water Aquaculture, Agricultural Research ServiceKearneysville, WV, USA
| | - Guangtu Gao
- United States Department of Agriculture, National Center for Cool and Cold Water Aquaculture, Agricultural Research ServiceKearneysville, WV, USA
| | | | | | - Beth M. Cleveland
- United States Department of Agriculture, National Center for Cool and Cold Water Aquaculture, Agricultural Research ServiceKearneysville, WV, USA
| | - P. Brett Kenney
- Division of Animal and Nutritional Sciences, West Virginia UniversityMorgantown, WV, USA
| | - Roger L. Vallejo
- United States Department of Agriculture, National Center for Cool and Cold Water Aquaculture, Agricultural Research ServiceKearneysville, WV, USA
| | - Yniv Palti
- United States Department of Agriculture, National Center for Cool and Cold Water Aquaculture, Agricultural Research ServiceKearneysville, WV, USA
| | - Timothy D. Leeds
- United States Department of Agriculture, National Center for Cool and Cold Water Aquaculture, Agricultural Research ServiceKearneysville, WV, USA
| |
Collapse
|
29
|
Wang MS, Huo YX, Li Y, Otecko NO, Su LY, Xu HB, Wu SF, Peng MS, Liu HQ, Zeng L, Irwin DM, Yao YG, Wu DD, Zhang YP. Comparative population genomics reveals genetic basis underlying body size of domestic chickens. J Mol Cell Biol 2016; 8:542-552. [PMID: 27744377 DOI: 10.1093/jmcb/mjw044] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 08/16/2016] [Accepted: 10/14/2016] [Indexed: 12/30/2022] Open
Abstract
Body size is the most important economic trait for animal production and breeding. Several hundreds of loci have been reported to be associated with growth trait and body weight in chickens. The loci are mapped to large genomic regions due to the low density and limited number of genetic markers in previous studies. Herein, we employed comparative population genomics to identify genetic basis underlying the small body size of Yuanbao chicken (a famous ornamental chicken) based on 89 whole genomes. The most significant signal was mapped to the BMP10 gene, whose expression was upregulated in the Yuanbao chicken. Overexpression of BMP10 induced a significant decrease in body length by inhibiting angiogenic vessel development in zebrafish. In addition, three other loci on chromosomes 1, 2, and 24 were also identified to be potentially involved in the development of body size. Our results provide a paradigm shift in identification of novel loci controlling body size variation, availing a fast and efficient strategy. These loci, particularly BMP10, add insights into ongoing research of the evolution of body size under artificial selection and have important implications for future chicken breeding.
Collapse
Affiliation(s)
- Ming-Shan Wang
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences , Kunming 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Yong-Xia Huo
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences , Kunming 650223, China
- College of Life Science, Anhui University, Hefei 230601, China
| | - Yan Li
- Laboratory for Conservation and Utilization of Bio-Resource, Yunnan University, Kunming 650091, China
| | - Newton O Otecko
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences , Kunming 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Ling-Yan Su
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming 650223, China
| | - Hai-Bo Xu
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences , Kunming 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Shi-Fang Wu
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences , Kunming 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Min-Sheng Peng
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences , Kunming 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - He-Qun Liu
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences , Kunming 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Lin Zeng
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences , Kunming 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - David M Irwin
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences , Kunming 650223, China
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Banting and Best Diabetes Centre, University of Toronto, Toronto, Ontario M5G 2C4, Canada
| | - Yong-Gang Yao
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming 650223, China
| | - Dong-Dong Wu
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences , Kunming 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Ya-Ping Zhang
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences , Kunming 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
- Laboratory for Conservation and Utilization of Bio-Resource, Yunnan University, Kunming 650091, China
| |
Collapse
|
30
|
Identification of differentially expressed genes associated with differential body size in mandarin fish (Siniperca chuatsi). Genetica 2016; 144:445-55. [PMID: 27393605 DOI: 10.1007/s10709-016-9913-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 07/04/2016] [Indexed: 10/21/2022]
Abstract
Body size is an obvious and important characteristic of fish. Mandarin fish Siniperca chuatsi (Basilewsky) is one of the most valuable perciform species widely cultured in China. Individual differences in body size are common in mandarin fish and significantly influence the aquaculture production. However, little is currently known about its genetic control. In this study, digital gene expression profiling and transcriptome sequencing were performed in mandarin fish with differential body size at 30 and 180 days post-hatch (dph), respectively. Body weight, total length and body length of fish with big-size were significantly higher than those with small-size at both 30 and 180 dph (P < 0.05). 2171 and 2014 differentially expressed genes were identified between small-size and big-size fish at 30 and 180 dph, respectively. RT quantitative PCR (qPCR) analysis showed that the differential expression of 10 selected genes in mandarin fish that went through the same training procedure. The genes were involved in the growth hormone-insulin-like growth factor axis, cell proliferation and differentiation, appetite control, glucose metabolism, reproduction and sexual size dimorphism pathways. This study will help toward a comprehensive understanding of the complexity of regulation of body size in mandarin fish individuals and provide valuable information for future research.
Collapse
|
31
|
Bicskei B, Taggart JB, Glover KA, Bron JE. Comparing the transcriptomes of embryos from domesticated and wild Atlantic salmon (Salmo salar L.) stocks and examining factors that influence heritability of gene expression. Genet Sel Evol 2016; 48:20. [PMID: 26987528 PMCID: PMC4797325 DOI: 10.1186/s12711-016-0200-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 03/07/2016] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Due to selective breeding, domesticated and wild Atlantic salmon are genetically diverged, which raises concerns about farmed escapees having the potential to alter the genetic composition of wild populations and thereby disrupting local adaptation. Documenting transcriptional differences between wild and domesticated stocks under controlled conditions is one way to explore the consequences of domestication and selection. We compared the transcriptomes of wild and domesticated Atlantic salmon embryos, by using a custom 44k oligonucleotide microarray to identify perturbed gene pathways between the two stocks, and to document the inheritance patterns of differentially-expressed genes by examining gene expression in their reciprocal hybrids. RESULTS Data from 24 array interrogations were analysed: four reciprocal cross types (W♀ × W♂, D♀ × W♂; W♀ × D♂, D♀ × D♂) × six biological replicates. A common set of 31,491 features on the microarrays passed quality control, of which about 62 % were assigned a KEGG Orthology number. A total of 6037 distinct genes were identified for gene-set enrichment/pathway analysis. The most highly enriched functional groups that were perturbed between the two stocks were cellular signalling and immune system, ribosome and RNA transport, and focal adhesion and gap junction pathways, relating to cell communication and cell adhesion molecules. Most transcripts that were differentially expressed between the stocks were governed by additive gene interaction (33 to 42 %). Maternal dominance and over-dominance were also prevalent modes of inheritance, with no convincing evidence for a stock effect. CONCLUSIONS Our data indicate that even at this relatively early developmental stage, transcriptional differences exist between the two stocks and affect pathways that are relevant to wild versus domesticated environments. Many of the identified differentially perturbed pathways are involved in organogenesis, which is expected to be an active process at the eyed egg stage. The dominant effects are more largely due to the maternal line than to the origin of the stock. This finding is particularly relevant in the context of potential introgression between farmed and wild fish, since female escapees tend to have a higher spawning success rate compared to males.
Collapse
Affiliation(s)
- Beatrix Bicskei
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK.
| | - John B Taggart
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Kevin A Glover
- Institute of Marine Research, Bergen, Norway.,Department of Biology, University of Bergen, Bergen, Norway
| | - James E Bron
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| |
Collapse
|
32
|
Leggatt RA, Sundström LF, Vandersteen WE, Devlin RH. Alternate Directed Anthropogenic Shifts in Genotype Result in Different Ecological Outcomes in Coho Salmon Oncorhynchus kisutch Fry. PLoS One 2016; 11:e0148687. [PMID: 26848575 PMCID: PMC4744014 DOI: 10.1371/journal.pone.0148687] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 01/20/2016] [Indexed: 11/19/2022] Open
Abstract
Domesticated and growth hormone (GH) transgenic salmon provide an interesting model to compare effects of selected versus engineered phenotypic change on relative fitness in an ecological context. Phenotype in domestication is altered via polygenic selection of traits over multiple generations, whereas in transgenesis is altered by a single locus in one generation. These established and emerging technologies both result in elevated growth rates in culture, and are associated with similar secondary effects such as increased foraging, decreased predator avoidance, and similar endocrine and gene expression profiles. As such, there is concern regarding ecological consequences should fish that have been genetically altered escape to natural ecosystems. To determine if the type of genetic change influences fitness components associated with ecological success outside of the culture environments they were produced for, we examined growth and survival of domesticated, transgenic, and wild-type coho salmon fry under different environmental conditions. In simple conditions (i.e. culture) with unlimited food, transgenic fish had the greatest growth, while in naturalized stream tanks (limited natural food, with or without predators) domesticated fish had greatest growth and survival of the three fish groups. As such, the largest growth in culture conditions may not translate to the greatest ecological effects in natural conditions, and shifts in phenotype over multiple rather than one loci may result in greater success in a wider range of conditions. These differences may arise from very different historical opportunities of transgenic and domesticated strains to select for multiple growth pathways or counter-select against negative secondary changes arising from elevated capacity for growth, with domesticated fish potentially obtaining or retaining adaptive responses to multiple environmental conditions not yet acquired in recently generated transgenic strains.
Collapse
Affiliation(s)
- Rosalind A. Leggatt
- Centre for Aquaculture and Environmental Research, Fisheries and Oceans Canada, 4160 Marine Drive, West Vancouver, BC, V7V 1N6, Canada
- * E-mail:
| | - L. Fredrik Sundström
- Centre for Aquaculture and Environmental Research, Fisheries and Oceans Canada, 4160 Marine Drive, West Vancouver, BC, V7V 1N6, Canada
| | - Wendy E. Vandersteen
- Centre for Aquaculture and Environmental Research, Fisheries and Oceans Canada, 4160 Marine Drive, West Vancouver, BC, V7V 1N6, Canada
| | - Robert H. Devlin
- Centre for Aquaculture and Environmental Research, Fisheries and Oceans Canada, 4160 Marine Drive, West Vancouver, BC, V7V 1N6, Canada
| |
Collapse
|
33
|
Kim JH, Leggatt RA, Chan M, Volkoff H, Devlin RH. Effects of chronic growth hormone overexpression on appetite-regulating brain gene expression in coho salmon. Mol Cell Endocrinol 2015; 413:178-88. [PMID: 26123591 DOI: 10.1016/j.mce.2015.06.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 06/22/2015] [Indexed: 10/23/2022]
Abstract
Organisms must carefully regulate energy intake and expenditure to balance growth and trade-offs with other physiological processes. This regulation is influenced by key pathways controlling appetite, feeding behaviour and energy homeostasis. Growth hormone (GH) transgenesis provides a model where food intake can be elevated, and is associated with dramatic modifications of growth, metabolism, and feeding behaviour, particularly in fish. RNA-Seq and qPCR analyses were used to compare the expression of multiple genes important in appetite regulation within brain regions and the pituitary gland (PIT) of GH transgenic (fed fully to satiation or restricted to a wild-type ration throughout their lifetime) and wild-type coho salmon (Oncorhynchus kisutch). RNA-Seq results showed that differences in both genotype and ration levels resulted in differentially expressed genes associated with appetite regulation in transgenic fish, including elevated Agrp1 in hypothalamus (HYP) and reduced Mch in PIT. Altered mRNA levels for Agrp1, Npy, Gh, Ghr, Igf1, Mch and Pomc were also assessed using qPCR analysis. Levels of mRNA for Agrp1, Gh, and Ghr were higher in transgenic than wild-type fish in HYP and in the preoptic area (POA), with Agrp1 more than 7-fold higher in POA and 12-fold higher in HYP of transgenic salmon compared to wild-type fish. These data are consistent with the known roles of orexigenic factors on foraging behaviour acting via GH and through MC4R receptor-mediated signalling. Igf1 mRNA was elevated in fully-fed transgenic fish in HYP and POA, but not in ration-restricted fish, yet both of these types of transgenic animals have very pronounced feeding behaviour relative to wild-type fish, suggesting IGF1 is not playing a direct role in appetite stimulation acting via paracrine or autocrine mechanisms. The present findings provide new insights on mechanisms ruling altered appetite regulation in response to chronically elevated GH, and on potential pathways by which elevated feeding response is controlled, independently of food availability and growth.
Collapse
Affiliation(s)
- Jin-Hyoung Kim
- Fisheries and Oceans Canada, Centre for Aquaculture and Environmental Research, 4160 Marine Drive, West Vancouver, BC V7V 1N6 Canada
| | - Rosalind A Leggatt
- Fisheries and Oceans Canada, Centre for Aquaculture and Environmental Research, 4160 Marine Drive, West Vancouver, BC V7V 1N6 Canada
| | - Michelle Chan
- Fisheries and Oceans Canada, Centre for Aquaculture and Environmental Research, 4160 Marine Drive, West Vancouver, BC V7V 1N6 Canada
| | - Hélène Volkoff
- Department of Biology, Memorial University of Newfoundland, St. John's, NL A1B 3X9 Canada; Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X9 Canada
| | - Robert H Devlin
- Fisheries and Oceans Canada, Centre for Aquaculture and Environmental Research, 4160 Marine Drive, West Vancouver, BC V7V 1N6 Canada.
| |
Collapse
|
34
|
Kocmarek AL, Ferguson MM, Danzmann RG. Co-localization of growth QTL with differentially expressed candidate genes in rainbow trout. Genome 2015; 58:393-403. [PMID: 26360524 DOI: 10.1139/gen-2015-0047] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We tested whether genes differentially expressed between large and small rainbow trout co-localized with familial QTL regions for body size. Eleven chromosomes, known from previous work to house QTL for weight and length in rainbow trout, were examined for QTL in half-sibling families produced in September (1 XY male and 1 XX neomale) and December (1 XY male). In previous studies, we identified 108 candidate genes for growth expressed in the liver and white muscle in a subset of the fish used in this study. These gene sequences were BLASTN aligned against the rainbow trout and stickleback genomes to determine their location (rainbow trout) and inferred location based on synteny with the stickleback genome. Across the progeny of all three males used in the study, 63.9% of the genes with differential expression appear to co-localize with the QTL regions on 6 of the 11 chromosomes tested in these males. Genes that co-localized with QTL in the mixed-sex offspring of the two XY males primarily showed up-regulation in the muscle of large fish and were related to muscle growth, metabolism, and the stress response.
Collapse
Affiliation(s)
- Andrea L Kocmarek
- Department of Integrative Biology, 50 Stone Rd. East, University of Guelph, Guelph, ON N1G 2W1, Canada.,Department of Integrative Biology, 50 Stone Rd. East, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Moira M Ferguson
- Department of Integrative Biology, 50 Stone Rd. East, University of Guelph, Guelph, ON N1G 2W1, Canada.,Department of Integrative Biology, 50 Stone Rd. East, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Roy G Danzmann
- Department of Integrative Biology, 50 Stone Rd. East, University of Guelph, Guelph, ON N1G 2W1, Canada.,Department of Integrative Biology, 50 Stone Rd. East, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
35
|
Lievens A, Petrillo M, Querci M, Patak A. Genetically modified animals: Options and issues for traceability and enforcement. Trends Food Sci Technol 2015. [DOI: 10.1016/j.tifs.2015.05.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
36
|
Garcia de la Serrana D, Devlin RH, Johnston IA. RNAseq analysis of fast skeletal muscle in restriction-fed transgenic coho salmon (Oncorhynchus kisutch): an experimental model uncoupling the growth hormone and nutritional signals regulating growth. BMC Genomics 2015; 16:564. [PMID: 26228074 PMCID: PMC4521378 DOI: 10.1186/s12864-015-1782-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 07/15/2015] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Coho salmon (Oncorhynchus kisutch) transgenic for growth hormone (Gh) express Gh in multiple tissues which results in increased appetite and continuous high growth with satiation feeding. Restricting Gh-transgenics to the same lower ration (TR) as wild-type fish (WT) results in similar growth, but with the recruitment of fewer, larger diameter, muscle skeletal fibres to reach a given body size. In order to better understand the genetic mechanisms behind these different patterns of muscle growth and to investigate how the decoupling of Gh and nutritional signals affects gene regulation we used RNA-seq to compare the fast skeletal muscle transcriptome in TR and WT coho salmon. RESULTS Illumina sequencing of individually barcoded libraries from 6 WT and 6 TR coho salmon yielded 704,550,985 paired end reads which were used to construct 323,115 contigs containing 19,093 unique genes of which >10,000 contained >90 % of the coding sequence. Transcripts coding for 31 genes required for myoblast fusion were identified with 22 significantly downregulated in TR relative to WT fish, including 10 (vaspa, cdh15, graf1, crk, crkl, dock1, trio, plekho1a, cdc42a and dock5) associated with signaling through the cell surface protein cadherin. Nineteen out of 44 (43 %) translation initiation factors and 14 of 47 (30 %) protein chaperones were upregulated in TR relative to WT fish. CONCLUSIONS TR coho salmon showed increased growth hormone transcripts and gene expression associated with protein synthesis and folding than WT fish even though net rates of protein accretion were similar. The uncoupling of Gh and amino acid signals likely results in additional costs of transcription associated with protein turnover in TR fish. The predicted reduction in the ionic costs of homeostasis in TR fish associated with increased fibre size were shown to involve multiple pathways regulating myotube fusion, particularly cadherin signaling.
Collapse
Affiliation(s)
| | - Robert H Devlin
- Department of Fisheries and Oceans, Centre for Aquaculture and Environmental Research, 4160 Marine Drive, West Vancouver, BC, V7V 1N6, Canada.
| | - Ian A Johnston
- Scottish Oceans Institute, School of Biology, University of St Andrews, KY16 8LB, St Andrews, Scotland, UK.
| |
Collapse
|
37
|
Moreau DTR. Ecological risk analysis and genetically modified salmon: management in the face of uncertainty. Annu Rev Anim Biosci 2015; 2:515-33. [PMID: 25384154 DOI: 10.1146/annurev-animal-022513-114231] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The commercialization of growth hormone transgenic Atlantic salmon for aquaculture has become a controversial public policy issue. Concerns exist over the potential ecological effects of this biotechnology should animals escape captivity. From within an ecological risk-analysis framework, science has been sought to provide decision makers with evidence upon which to base regulatory decisions pertaining to genetically modified salmon. Here I review the available empirical information on the potential ecological and genetic effects of transgenic salmon and discuss the underlying eco-evolutionary science behind the topic. I conclude that data gaps and irreducible epistemic uncertainties limit the role of scientific inference in support of ecological risk management for transgenic salmon. I argue that predictive uncertainties are pervasive in complex eco-evolutionary systems and that it behooves those involved in the risk-analysis process to accept and communicate these limitations in the interest of timely, clear, and cautious risk-management options.
Collapse
Affiliation(s)
- Darek T R Moreau
- Department of Fisheries & Aquaculture, Government of Newfoundland & Labrador, St. John's, Newfoundland & Labrador, Canada, A1B 4J6; ; Twitter: @darekmoreau
| |
Collapse
|
38
|
Early life-history consequences of growth-hormone transgenesis in rainbow trout reared in stream ecosystem mesocosms. PLoS One 2015; 10:e0120173. [PMID: 25807001 PMCID: PMC4373795 DOI: 10.1371/journal.pone.0120173] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 01/29/2015] [Indexed: 11/19/2022] Open
Abstract
There is persistent commercial interest in the use of growth modified fishes for shortening production cycles and increasing overall food production, but there is concern over the potential impact that transgenic fishes might have if ever released into nature. To explore the ecological consequences of transgenic fish, we performed two experiments in which the early growth and survival of growth-hormone transgenic rainbow trout (Oncorhynchus mykiss) were assessed in naturalized stream mesocosms that either contained predators or were predator-free. We paid special attention to the survival bottleneck that occurs during the early life-history of salmonids, and conducted experiments at two age classes (first-feeding fry and 60 days post-first-feeding) that lie on either side of the bottleneck. In the late summer, the first-feeding transgenic trout could not match the growth potential of their wild-type siblings when reared in a hydrodynamically complex and oligotrophic environment, irrespective of predation pressure. Furthermore, overall survival of transgenic fry was lower than in wild-type (transgenic = 30% without predators, 8% with predators; wild-type = 81% without predators, 31% with predators). In the experiment with 60-day old fry, we explored the effects of the transgene in different genetic backgrounds (wild versus domesticated). We found no difference in overwinter survival but significantly higher growth by transgenic trout, irrespective of genetic background. We conclude that the high mortality of GH-transgenic trout during first-feeding reflects an inability to sustain the basic metabolic requirements necessary for life in complex, stream environments. However, when older, GH-transgenic fish display a competitive advantage over wild-type fry, and show greater growth and equal survival as wild-type. These results demonstrate how developmental age and time of year can influence the response of genotypes to environmental conditions. We therefore urge caution when extrapolating the results of GH-transgenesis risk assessment studies across multiple life-history or developmental stages.
Collapse
|
39
|
He L, Pei Y, Jiang Y, Li Y, Liao L, Zhu Z, Wang Y. Global gene expression patterns of grass carp following compensatory growth. BMC Genomics 2015; 16:184. [PMID: 25887225 PMCID: PMC4374334 DOI: 10.1186/s12864-015-1427-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 03/02/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Compensatory growth is accelerated compared with normal growth and occurs when growth-limiting conditions are overcome. Most animals, especially fish, are capable of compensatory growth, but the mechanisms remain unclear. Further investigation of the mechanism of compensatory growth in fish is needed to improve feeding efficiency, reduce cost, and explore growth-related genes. RESULTS In the study, grass carp, an important farmed fish in China, were subjected to a compensatory growth experiment followed by transcriptome analysis by RNA-sequencing. Samples of fish from starved and re-feeding conditions were compared with the control. Under starved conditions, 4061 and 1988 differentially expressed genes (DEGs) were detected in muscle and liver tissue when compared the experimental group with control group, respectively. After re-feeding, 349 and 247 DEGs were identified in muscle and liver when the two groups were compared. Moreover, when samples from experimental group in starved and re-feeding conditions were compared, 4903 and 2444 DEGs were found in muscle and liver. Most of these DEGs were involved in metabolic processes, or encoded enzymes or proteins with catalytic activity or binding functions, or involved in metabolic and biosynthetic pathways. A number of the more significant DEGs were subjected to further analysis. Under fasting conditions, many up-regulated genes were associated with protein ubiquitination or degradation, whereas many down-regulated genes were involved in the metabolism of glucose and fatty acids. Under re-feeding conditions, genes participating in muscle synthesis and fatty acid metabolism were up-regulated significantly, and genes related to protein ubiquitination or degradation were down-regulated. Moreover, Several DEGs were random selected for confirmation by real-time quantitative PCR. CONCLUSIONS Global gene expression patterns of grass carp during compensatory growth were determined. To our knowledge, this is a first reported for a teleost fish. The results will enhance our understanding of the mechanism of compensatory growth in teleost fish.
Collapse
Affiliation(s)
- Libo He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Yongyan Pei
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Yao Jiang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Yongming Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Lanjie Liao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Zuoyan Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Yaping Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
40
|
Transcriptomic responses of Atlantic salmon (Salmo salar) to environmental enrichment during juvenile rearing. PLoS One 2015; 10:e0118378. [PMID: 25742646 PMCID: PMC4350989 DOI: 10.1371/journal.pone.0118378] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 01/15/2015] [Indexed: 12/30/2022] Open
Abstract
Captive rearing programs (hatcheries) are often used in conservation and management efforts for at-risk salmonid fish populations. However, hatcheries typically rear juveniles in environments that contrast starkly with natural conditions, which may lead to phenotypic and/or genetic changes that adversely affect the performance of juveniles upon their release to the wild. Environmental enrichment has been proposed as a mechanism to improve the efficacy of population restoration efforts from captive-rearing programs; in this study, we examine the influence of environmental enrichment during embryo and yolk-sac larval rearing on the transcriptome of Atlantic salmon (Salmo salar). Full siblings were reared in either a hatchery environment devoid of structure or an environment enriched with gravel substrate. At the end of endogenous feeding by juveniles, we examined patterns of gene transcript abundance in head tissues using the cGRASP-designed Agilent 4×44K microarray. Significance analysis of microarrays (SAM) indicated that 808 genes were differentially transcribed between the rearing environments and a total of 184 gene ontological (GO) terms were over- or under-represented in this gene list, several associated with mitosis/cell cycle and muscle and heart development. There were also pronounced differences among families in the degree of transcriptional response to rearing environment enrichment, suggesting that gene-by-environment effects, possibly related to parental origin, could influence the efficacy of enrichment interventions.
Collapse
|
41
|
Solberg MF, Fjelldal PG, Nilsen F, Glover KA. Hatching time and alevin growth prior to the onset of exogenous feeding in farmed, wild and hybrid Norwegian Atlantic salmon. PLoS One 2014; 9:e113697. [PMID: 25438050 PMCID: PMC4249964 DOI: 10.1371/journal.pone.0113697] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 10/30/2014] [Indexed: 11/20/2022] Open
Abstract
The onset of exogenous feeding, when juveniles emerge from the gravel, is a critical event for salmonids where early emergence and large size provide a competitive advantage in the wild. Studying 131 farmed, hybrid and wild Norwegian Atlantic salmon families, originating from four wild populations and two commercial strains, we investigated whether approximately 10 generations of selection for faster growth has also resulted in increased somatic growth prior to the onset of exogenous feeding. In addition, we tested whether relaxed selection in farms has allowed for alterations in hatching time between farmed and wild salmon. Across three cohorts, wild salmon families hatched earlier than farmed salmon families, while hybrid families displayed intermediate hatching times. While the observed differences were small, i.e., 1–15 degree-days (0–3 days, as water temperatures were c. 5–6°C), these data suggest additive genetic variation for hatching time. Alevin length prior to exogenous feeding was positively related to egg size. After removal of egg size effects, no systematic differences in alevin length were observed between the wild and farmed salmon families. While these results indicate additive genetic variation for egg development timing, and wild salmon families consistently hatched earlier than farmed salmon families, these differences were so small they are unlikely to significantly influence early life history competition of farmed and wild salmon in the natural environment. This is especially the case given that the timing of spawning among females can vary by several weeks in some rivers. The general lack of difference in size between farmed and wild alevins, strongly suggest that the documented differences in somatic growth rate between wild and farmed Norwegian Atlantic salmon under hatchery conditions are first detectable after the onset of exogenous feeding.
Collapse
Affiliation(s)
- Monica Favnebøe Solberg
- Population genetics research group, Institute of Marine Research, Nordnes, Bergen, Norway
- * E-mail:
| | - Per Gunnar Fjelldal
- Reproduction and development biology research group, Matre Research Station, Institute of Marine Research, Matredal, Norway
| | - Frank Nilsen
- Sea lice Research Centre, Department of Biology, University of Bergen, Bergen, Norway
| | - Kevin Alan Glover
- Population genetics research group, Institute of Marine Research, Nordnes, Bergen, Norway
- Sea lice Research Centre, Department of Biology, University of Bergen, Bergen, Norway
| |
Collapse
|
42
|
Garcia-Reyero N, Tingaud-Sequeira A, Cao M, Zhu Z, Perkins EJ, Hu W. Endocrinology: advances through omics and related technologies. Gen Comp Endocrinol 2014; 203:262-73. [PMID: 24726988 DOI: 10.1016/j.ygcen.2014.03.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 03/20/2014] [Accepted: 03/22/2014] [Indexed: 12/27/2022]
Abstract
The rapid development of new omics technologies to measure changes at genetic, transcriptomic, proteomic, and metabolomics levels together with the evolution of methods to analyze and integrate the data at a systems level are revolutionizing the study of biological processes. Here we discuss how new approaches using omics technologies have expanded our knowledge especially in nontraditional models. Our increasing knowledge of these interactions and evolutionary pathway conservation facilitates the use of nontraditional species, both invertebrate and vertebrate, as new model species for biological and endocrinology research. The increasing availability of technology to create organisms overexpressing key genes in endocrine function allows manipulation of complex regulatory networks such as growth hormone (GH) in transgenic fish where disregulation of GH production to produce larger fish has also permitted exploration of the role that GH plays in testis development, suggesting that it does so through interactions with insulin-like growth factors. The availability of omics tools to monitor changes at nearly any level in any organism, manipulate gene expression and behavior, and integrate data across biological levels, provides novel opportunities to explore endocrine function across many species and understand the complex roles that key genes play in different aspects of the endocrine function.
Collapse
Affiliation(s)
- Natàlia Garcia-Reyero
- Institute for Genomics Biocomputing and Biotechnology, Mississippi State University, Starkville, MS 39759, USA.
| | - Angèle Tingaud-Sequeira
- Laboratoire MRMG, Maladies Rares: Génétique et Métabolisme, Université de Bordeaux, 33405 Talence Cedex, France
| | - Mengxi Cao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Zuoyan Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Edward J Perkins
- US Army Engineer Research and Development Center, Vicksburg, MS 39180, USA
| | - Wei Hu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
43
|
Glucose metabolic gene expression in growth hormone transgenic coho salmon. Comp Biochem Physiol A Mol Integr Physiol 2014; 170:38-45. [DOI: 10.1016/j.cbpa.2014.01.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 01/17/2014] [Accepted: 01/23/2014] [Indexed: 12/31/2022]
|
44
|
Trojan Genes and Transparent Genomes: Sexual Selection, Regulatory Evolution and the Real Hopeful Monsters. Evol Biol 2014. [DOI: 10.1007/s11692-014-9276-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
45
|
Houdebine LM. Impacts of genetically modified animals on the ecosystem and human activities. Glob Bioeth 2014. [DOI: 10.1080/11287462.2014.894709] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
46
|
Kocmarek AL, Ferguson MM, Danzmann RG. Differential gene expression in small and large rainbow trout derived from two seasonal spawning groups. BMC Genomics 2014; 15:57. [PMID: 24450799 PMCID: PMC3931318 DOI: 10.1186/1471-2164-15-57] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 01/17/2014] [Indexed: 12/24/2022] Open
Abstract
Background Growth in fishes is regulated via many environmental and physiological factors and is shaped by the genetic background of each individual. Previous microarray studies of salmonid growth have examined fish experiencing either muscle wastage or accelerated growth patterns following refeeding, or the influence of growth hormone and transgenesis. This study determines the gene expression profiles of genetically unmanipulated large and small fish from a domesticated salmonid strain reared on a typical feeding regime. Gene expression profiles of white muscle and liver from rainbow trout (Oncorhynchus mykiss) from two seasonal spawning groups (September and December lots) within a single strain were examined when the fish were 15 months of age to assess the influence of season (late fall vs. onset of spring) and body size (large vs. small). Results Although IGFBP1 gene expression was up-regulated in the livers of small fish in both seasonal lots, few expression differences were detected in the liver overall. Faster growing Dec. fish showed a greater number of differences in white muscle expression compared to Sept. fish. Significant differences in the GO Generic Level 3 categories ‘response to external stimulus’, ‘establishment of localization’, and ‘response to stress’ were detected in white muscle tissue between large and small fish. Larger fish showed up-regulation of cytoskeletal component genes while many genes related to myofibril components of muscle tissue were up-regulated in small fish. Most of the genes up-regulated in large fish within the ‘response to stress’ category are involved in immunity while in small fish most of these gene functions are related to apoptosis. Conclusions A higher proportion of genes in white muscle compared to liver showed similar patterns of up- or down-regulation within the same size class across seasons supporting their utility as biomarkers for growth in rainbow trout. Differences between large and small Sept. fish in the ‘response to stress’ and ‘response to external stimulus’ categories for white muscle tissue, suggests that smaller fish have a greater inability to handle stress compared to the large fish. Sampling season had a significant impact on the expression of genes related to the growth process in rainbow trout.
Collapse
Affiliation(s)
- Andrea L Kocmarek
- Department of Integrative Biology, University of Guelph, 50 Stone Rd, East, Guelph, Ontario N1G 2W1, Canada.
| | | | | |
Collapse
|
47
|
Devlin RH, Sakhrani D, Biagi CA, Smith JL, Fujimoto T, Beckman B. Growth and endocrine effect of growth hormone transgene dosage in diploid and triploid coho salmon. Gen Comp Endocrinol 2014; 196:112-22. [PMID: 24321178 DOI: 10.1016/j.ygcen.2013.11.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 11/19/2013] [Accepted: 11/26/2013] [Indexed: 12/14/2022]
Abstract
Growth-hormone transgene dosage, polyploidy, and parental effects on growth and endocrine responses have been assessed in coho salmon. Diploid fry with one or two transgene doses grew equally, whereas later-stage juvenile homozygotes grew faster than hemizygotes. In contrast, homozygotes and hemizygotes grew equally after smoltification, both in sea water and fresh water. Triploid transgenic salmon showed impaired growth which could not be fully overcome with additional transgene copies. Levels of muscle GH mRNA were elevated in two vs. one transgene dose diploids, but in triploids, a dosage effect was observed in muscle but not for animals carrying three transgene doses. IGF-I mRNA levels were elevated in transgenic vs. non-transgenic animals, but a dosage effect was not observed. Diploids and triploids with two transgenes had higher plasma GH levels than one-dose animals, but three-dose triploids showed no further elevation. Circulating IGF-I levels also showed a dosage effect in diploids, but not among any transgene doses in triploids. The present study reveals complex interactions among transgene dosage, maternal effects, developmental stage, and ploidy on growth and endocrine parameters in GH transgenic coho salmon. Specifically, GH transgenes do not always express nor have effects on growth that are directly correlated with the number of transgenes. Further, the reduced growth rate seen in triploid transgenic animals could not be fully overcome by increasing transgene dosage. The findings have relevance for understanding growth physiology, transgene function, and for environmental risk assessments that require understanding phenotypes of hemizygous vs. homozygous transgenic animals in populations.
Collapse
Affiliation(s)
- Robert H Devlin
- Fisheries and Oceans Canada, 4160 Marine Drive, West Vancouver, BC V7K 1N6, Canada.
| | - Dionne Sakhrani
- Fisheries and Oceans Canada, 4160 Marine Drive, West Vancouver, BC V7K 1N6, Canada
| | - Carlo A Biagi
- Fisheries and Oceans Canada, 4160 Marine Drive, West Vancouver, BC V7K 1N6, Canada
| | - Jack L Smith
- Fisheries and Oceans Canada, 4160 Marine Drive, West Vancouver, BC V7K 1N6, Canada
| | - Takafumi Fujimoto
- Faculty and Graduate School of Fisheries Sciences, Hokkaido University, 3-1-1 Minato, Hakodate, Hokkaido 041-8611, Japan
| | - Brian Beckman
- Northwest Fisheries Science Center, 2725 Montlake Boulevard East, Seattle, WA 98112, USA
| |
Collapse
|
48
|
Devlin RH, Sakhrani D, White S, Overturf K. Effects of domestication and growth hormone transgenesis on mRNA profiles in rainbow trout (Oncorhynchus mykiss)1. J Anim Sci 2013; 91:5247-58. [PMID: 24045478 DOI: 10.2527/jas.2013-6612] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- R. H. Devlin
- Fisheries and Oceans Canada, 4160 Marine Drive, West Vancouver, BC, Canada, V7V 1N6
| | - D. Sakhrani
- Fisheries and Oceans Canada, 4160 Marine Drive, West Vancouver, BC, Canada, V7V 1N6
| | - S. White
- Fisheries and Oceans Canada, 4160 Marine Drive, West Vancouver, BC, Canada, V7V 1N6
| | - K. Overturf
- USDA-ARS, Hagerman Fish Culture Experiment Station, 3059-F National Fish Hatchery Road, Hagerman, ID 83332
| |
Collapse
|
49
|
Xu Q, Feng CY, Hori TS, Plouffe DA, Buchanan JT, Rise ML. Family-specific differences in growth rate and hepatic gene expression in juvenile triploid growth hormone (GH) transgenic Atlantic salmon (Salmo salar). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2013; 8:317-33. [PMID: 24145116 DOI: 10.1016/j.cbd.2013.09.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 09/24/2013] [Accepted: 09/26/2013] [Indexed: 01/13/2023]
Abstract
Growth hormone transgenic (GHTg) Atlantic salmon (Salmo salar) have enhanced growth when compared to their non-transgenic counterparts, and this trait can be beneficial for aquaculture production. Biological confinement of GHTg Atlantic salmon may be achieved through the induction of triploidy (3N). The growth rates of triploid GH transgenic (3NGHTg) Atlantic salmon juveniles were found to significantly vary between families in the AquaBounty breeding program. In order to characterize gene expression associated with enhanced growth in juvenile 3NGHTg Atlantic salmon, a functional genomics approach (32K cDNA microarray hybridizations followed by QPCR) was used to identify and validate liver transcripts that were differentially expressed between two fast-growing 3NGHTg Atlantic salmon families (AS11, AS26) and a slow-growing 3NGHTg Atlantic salmon family (AS25); juvenile growth rate was evaluated over a 45-day period. Of 687 microarray-identified differentially expressed features, 143 (116 more highly expressed in fast-growing and 27 more highly expressed in slow-growing juveniles) were identified in the AS11 vs. AS25 microarray study, while 544 (442 more highly expressed in fast-growing and 102 more highly expressed in slow-growing juveniles) were identified in the AS26 vs. AS25 microarray study. Forty microarray features (39 putatively associated with fast growth and 1 putatively associated with slow growth) were present in both microarray experiment gene lists. The expression levels of 15 microarray-identified transcripts were studied using QPCR with individual RNA samples to validate microarray results and to study biological variability of transcript expression. The QPCR results agreed with the microarray results for 12 of 13 putative fast-growth associated transcripts, but QPCR did not validate the microarray results for 2 putative slow-growth associated transcripts. Many of the 39 microarray-identified genes putatively associated at the transcript expression level with fast-growing 3NGHTg salmon juveniles (including APOA1, APOA4, B2M, FADSD6, FTM, and GAPDH) are involved in metabolism, iron homeostasis and oxygen transport, and immune- or stress-related responses. The results of this study increase our knowledge of family-specific impacts on growth rate and hepatic gene expression in juvenile 3NGHTg Atlantic salmon. In addition, this study provides a suite of putative rapid growth rate-associated transcripts that may contribute to the development of molecular markers [e.g. intronic, exonic or regulatory region single nucleotide polymorphisms (SNPs)] for the selection of GHTg Atlantic salmon broodstock that can be utilized to produce sterile triploids of desired growth performance for future commercial applications.
Collapse
Affiliation(s)
- Qingheng Xu
- Ocean Sciences Centre, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
| | | | | | | | | | | |
Collapse
|
50
|
White SL, Sakhrani D, Danzmann RG, Devlin RH. Influence of developmental stage and genotype on liver mRNA levels among wild, domesticated, and hybrid rainbow trout (Oncorhynchus mykiss). BMC Genomics 2013; 14:673. [PMID: 24088438 PMCID: PMC3851433 DOI: 10.1186/1471-2164-14-673] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 09/24/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Release of domesticated strains of fish into nature may pose a threat to wild populations with respect to their evolved genetic structure and fitness. Understanding alterations that have occurred in both physiology and genetics as a consequence of domestication can assist in evaluating the risks posed by introgression of domesticated genomes into wild genetic backgrounds, however the molecular causes of these consequences are currently poorly defined. The present study has examined levels of mRNA in fast-growing pure domesticated (D), slow-growing age-matched pure wild (Wa), slow-growing size-matched pure wild (Ws), and first generation hybrid cross (W/D) rainbow trout (Oncorhynchus mykiss) to investigate the influence of genotype (domesticated vs. wild, and their interactions in hybrids) and developmental stage (age- or size-matched animals) on genetic responses (i.e. dominant vs. recessive) and specific physiological pathways. RESULTS Highly significant differences in mRNA levels were found between domesticated and wild-type rainbow trout genotypes (321 mRNAs), with many mRNAs in the wild-domesticated hybrid progeny showing intermediate levels. Differences were also found between age-matched and size-matched wild-type trout groups (64 mRNAs), with unique mRNA differences for each of the wild-type groups when compared to domesticated trout (Wa: 114 mRNAs, Ws: 88 mRNAs), illustrating an influence of fish developmental stage affecting findings when used as comparator groups to other genotypes. Analysis of differentially expressed mRNAs (found for both wild-type trout to domesticated comparisons) among the genotypes indicates that 34.8% are regulated consistent with an additive genetic model, whereas 39.1% and 26.1% show a recessive or dominant mode of regulation, respectively. These molecular data are largely consistent with phenotypic data (growth and behavioural assessments) assessed in domesticated and wild trout strains. CONCLUSIONS The present molecular data are concordant with domestication having clearly altered rainbow trout genomes and consequent phenotype from that of native wild populations. Although mainly additive responses were noted in hybrid progeny, the prevalence of dominant and non-additive responses reveals that introgression of domesticated and wild genotypes alters the type of genetic control of mRNA levels from that of wild-type, which may lead to disruption of gene regulation systems important for developing phenotypes for optimal fitness in nature. A clear influence of both fish age and size (developmental stage) on mRNA levels was also noted in this study, which highlights the importance of examining multiple control samples to provide a comprehensive understanding of changes observed between strains possessing differences in growth rate.
Collapse
Affiliation(s)
- Samantha L White
- Fisheries and Oceans Canada, 4160 Marine Drive, West Vancouver, BC V7V 1N6, Canada
| | - Dionne Sakhrani
- Fisheries and Oceans Canada, 4160 Marine Drive, West Vancouver, BC V7V 1N6, Canada
| | - Roy G Danzmann
- Department of Integrative Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Robert H Devlin
- Fisheries and Oceans Canada, 4160 Marine Drive, West Vancouver, BC V7V 1N6, Canada
| |
Collapse
|