1
|
Judy CD, Graves GR, McCormack JE, Stryjewski KF, Brumfield RT. Speciation with gene flow in an island endemic hummingbird. PNAS NEXUS 2025; 4:pgaf095. [PMID: 40235924 PMCID: PMC11997969 DOI: 10.1093/pnasnexus/pgaf095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 02/20/2025] [Indexed: 04/17/2025]
Abstract
We examined speciation in streamertail hummingbirds (Trochilus polytmus and Trochilus scitulus), Jamaican endemic taxa that challenge the rule that bird speciation cannot progress in situ on small islands. Our analysis shows that divergent selection acting on male bill color, a sexual ornament that is red in polytmus and black in scitulus, acts as a key reproductive barrier. We conducted a population-level analysis of genomic and phenotypic patterns to determine the traits that contribute the most to speciation despite ongoing gene flow across a narrow hybrid zone. We characterized genomic patterns using 6,451 single-nucleotide polymorphisms and a segment of the mitochondrial control region. Our analyses revealed high diversity within species, and low divergence between them, consistent with a recent speciation event or extensive gene flow following secondary contact. We observed narrow clines in two phenotypic traits and several SNP loci. The cline width for male bill color is only 2.3 km, marking it as one of the narrowest phenotypic clines documented in an avian hybrid zone. The coincidence of estimated cline centers with the Rio Grande Valley suggests that this landscape feature may contribute to hybrid zone stability. However, given that streamertails are highly mobile, it is unlikely that such a narrow river acts as a physical barrier to dispersal. The limited genomic divergence across scanned regions of the genome offers little support for postmating reproductive barriers. Instead, our findings point to strong premating selection acting on bill color as the primary driver of streamertail speciation.
Collapse
Affiliation(s)
- Caroline Duffie Judy
- Museum of Natural Science, Louisiana State University, Murphy J. Foster Hall, 119 Dalrymple Dr., Baton Rouge, LA 70803, USA
- Department of Biological Sciences, Louisiana State University, 202 Life Science Bldg, Baton Rouge, LA 70803, USA
- Department of Vertebrate Zoology, MRC-116, National Museum of Natural History, Smithsonian Institution, P.O. Box 37012, Washington, DC 20013, USA
| | - Gary R Graves
- Department of Vertebrate Zoology, MRC-116, National Museum of Natural History, Smithsonian Institution, P.O. Box 37012, Washington, DC 20013, USA
- Center for Macroecology, Evolution and Climate, Globe Institute, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - John E McCormack
- Museum of Natural Science, Louisiana State University, Murphy J. Foster Hall, 119 Dalrymple Dr., Baton Rouge, LA 70803, USA
- Department of Biological Sciences, Louisiana State University, 202 Life Science Bldg, Baton Rouge, LA 70803, USA
- Moore Laboratory of Zoology, Occidental College, 1600 Campus Rd, Los Angeles, CA, 90041, USA
| | - Katherine Faust Stryjewski
- Museum of Natural Science, Louisiana State University, Murphy J. Foster Hall, 119 Dalrymple Dr., Baton Rouge, LA 70803, USA
- Department of Biological Sciences, Louisiana State University, 202 Life Science Bldg, Baton Rouge, LA 70803, USA
| | - Robb T Brumfield
- Museum of Natural Science, Louisiana State University, Murphy J. Foster Hall, 119 Dalrymple Dr., Baton Rouge, LA 70803, USA
- Department of Biological Sciences, Louisiana State University, 202 Life Science Bldg, Baton Rouge, LA 70803, USA
| |
Collapse
|
2
|
Gyllenhaal EF, Andersen MJ, Moyle RG, Manthey JD. Island size shapes genomic diversity in a great speciator (Aves: Zosterops). Biol Lett 2025; 21:20240692. [PMID: 40037528 PMCID: PMC11879625 DOI: 10.1098/rsbl.2024.0692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/25/2025] [Accepted: 01/28/2025] [Indexed: 03/06/2025] Open
Abstract
Islands have long represented natural laboratories for studying many aspects of ecology and evolutionary biology, from speciation to community assembly. One aspect that has been well documented is the correlation between island size and taxonomic diversity, likely due to decreased complexity and population size on small islands. This same logic can apply to genetic diversity, which should predictably decrease with effective population size. The island size-diversity correlation has received support over the years but often focuses on single metrics of genetic diversity. Here, we use Zosterops white-eyes in the Solomon Islands to study the correlation between island size and various metrics related to genetic diversity, including runs of homozygosity and fixation of transposable elements. We find that almost all these metrics strongly correlate with island size, and in turn with each other. We infer that island size is independently correlated with these different variables, demonstrating that population size impacts genomic metrics of diversity in a variety of ways across temporal and hierarchical scales.
Collapse
Affiliation(s)
| | - Michael J. Andersen
- Department of Biology and Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM, USA
| | - Robert G. Moyle
- Department of Ecology and Evolutionary Biology and Biodiversity Institute, University of Kansas, Lawrence, KS, USA
| | - Joseph D. Manthey
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| |
Collapse
|
3
|
Hu T, Ma H, Xiao Y, Sun R, Li C, Shan L, Zhang B. Chromosome-Level Genome Assembly of Five Emberiza Species Reveals the Genomic Characteristics and Intrinsic Drivers of Adaptive Radiation. Mol Ecol Resour 2025:e14063. [PMID: 39776321 DOI: 10.1111/1755-0998.14063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 10/28/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025]
Abstract
Emberiza buntings (Aves: Emberizidae) exhibit extensive diversity and rapid diversification within the Old World, particularly in the eastern Palearctic, making them valuable models for studying rapid radiation among sympatric species. Despite their ecological and morphological diversity, there remains a significant gap in understanding the genomic underpinnings driving their rapid speciation. To fill this gap, we assembled high-quality chromosome-level genomes of five representative Emberiza species (E. aureola, E. pusilla, E. rustica, E. rutila and E. spodocephala). Comparative genomic analysis revealed distinct migration-related evolutionary adaptations in their genomes, including variations in lipid metabolism, oxidative stress response, locomotor ability and circadian regulation. These changes may facilitate the rapid occupation of emerging ecological niches and provide opportunities for species diversification. Additionally, these five species exhibited abnormal abundances of long terminal repeat retrotransposons (LTRs), comprising over 20% of their genomes, with insertion times corresponding to their divergence (~2.5 million years ago). The presence of LTRs influenced genome size, chromosomal structure and single-gene expression, suggesting their role in promoting the rapid diversification of Emberiza species. These findings offer valuable insights into the adaptive radiation of Emberiza and establish a robust theoretical foundation for further exploration of the patterns and mechanisms underlying their diversification.
Collapse
Affiliation(s)
- Tingli Hu
- School of Life Sciences, Anhui University, Hefei, Anhui, China
| | - Haohao Ma
- School of Life Sciences, Anhui University, Hefei, Anhui, China
| | - Yongxuan Xiao
- School of Life Sciences, Anhui University, Hefei, Anhui, China
| | - Ruolei Sun
- School of Life Sciences, Anhui University, Hefei, Anhui, China
| | - Chunlin Li
- School of Life Sciences, Anhui University, Hefei, Anhui, China
| | - Lei Shan
- School of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Baowei Zhang
- School of Life Sciences, Anhui University, Hefei, Anhui, China
| |
Collapse
|
4
|
DeRaad DA, Files AN, DeCicco LH, Martin RP, McCullough JM, Holland P, Pikacha D, Tigulu IG, Boseto D, Lavery TH, Andersen MJ, Moyle RG. Genomic patterns in the dwarf kingfishers of northern Melanesia reveal a mechanistic framework explaining the paradox of the great speciators. Evol Lett 2024; 8:813-827. [PMID: 39677579 PMCID: PMC11637610 DOI: 10.1093/evlett/qrae035] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/30/2024] [Accepted: 07/12/2024] [Indexed: 12/17/2024] Open
Abstract
The paradox of the great speciators describes a contradictory biogeographic pattern exhibited by numerous avian lineages in Oceania. Specifically, these lineages display broad geographic distributions across the region, implying strong over-water dispersal capabilities; yet, they also display repeated genetic and phenotypic divergence-even between geographically proximate islands-implying poor inter-island dispersal capabilities. One group originally cited as evidence for this paradox is the dwarf kingfishers of the genus Ceyx. Here, using genomic sequencing and comprehensive geographic sampling of the monophyletic Ceyx radiation from northern Melanesia, we find repeated, deep genetic divergence and no evidence for gene flow between lineages found on geographically proximate islands, providing an exceptionally clear example of the paradox of the great speciators. A dated phylogenetic reconstruction suggests a significant burst of diversification occurred rapidly after reaching northern Melanesia, between 3.9 and 2.9 MYA. This pattern supports a shift in net diversification rate, concordant with the expectations of the "colonization cycle" hypothesis, which implies a historical shift in dispersiveness among great speciator lineages during the evolutionary past. Here, we present a formalized framework that explains how repeated founder effects and shifting selection pressures on highly dispersive genotypes are the only ultimate causes needed to generate the paradox of the great speciators. Within this framework, we emphasize that lineage-specific traits and island-specific abiotic factors will result in varying levels of selection pressure against dispersiveness, caused by varying proximate eco-evolutionary mechanisms. Overall, we highlight how understanding patterns of diversification in the Ceyx dwarf kingfishers helped us generate a cohesive framework that provides a rigorous mechanistic explanation for patterns concordant with the paradox of the great speciators and the repeated emergence of geographic radiations in island archipelagoes across the globe.
Collapse
Affiliation(s)
- Devon A DeRaad
- Biodiversity Institute and Natural History Museum, University of Kansas, Lawrence, KS, United States
| | - Alexandra N Files
- Biodiversity Institute and Natural History Museum, University of Kansas, Lawrence, KS, United States
| | - Lucas H DeCicco
- Biodiversity Institute and Natural History Museum, University of Kansas, Lawrence, KS, United States
| | - Rene P Martin
- Department of Ichthyology, Division of Vertebrate Zoology, American Museum of Natural History, New York, NY, United States
| | - Jenna M McCullough
- Department of Biology, Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM, United States
| | | | | | - Ikuo G Tigulu
- Ecological Solutions Solomon Islands, Gizo, Solomon Islands
| | - David Boseto
- Ecological Solutions Solomon Islands, Gizo, Solomon Islands
| | - Tyrone H Lavery
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Michael J Andersen
- Department of Biology, Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM, United States
| | - Robert G Moyle
- Biodiversity Institute and Natural History Museum, University of Kansas, Lawrence, KS, United States
| |
Collapse
|
5
|
Radu A, Dudgeon C, Clegg SM, Foster Y, Levengood AL, Sendell-Price AT, Townsend KA, Potvin DA. Genetic patterns reveal geographic drivers of divergence in silvereyes (Zosterops lateralis). Sci Rep 2024; 14:20426. [PMID: 39227633 PMCID: PMC11372117 DOI: 10.1038/s41598-024-71364-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/26/2024] [Indexed: 09/05/2024] Open
Abstract
Identifying mechanisms that drive population divergence under varying geographic and ecological scenarios can inform our understanding of evolution and speciation. In particular, analysis of genetic data from island populations with known colonisation timelines allows us to identify potential source populations of diverging island subspecies and current relationships among populations. Silvereyes (Zosterops lateralis) are a small passerine that have served as a valuable study system to investigate evolutionary patterns on both large and small geographic scales. We examined genetic relatedness and diversity of two silvereye subspecies, the mainland Z. l. cornwalli and island Z. l. chlorocephalus, and used 18 077 single nucleotide polymorphisms (SNPs), to compare locations across southeast Queensland, Australia. Although silvereyes are prolific island colonisers our findings revealed population divergence over relatively small spatial scales was strongly influenced by geographic isolation mediated by water barriers. Strong genetic connectivity was displayed between mainland sites, but minimal inter-island connectivity was shown despite comparable sampling distances. Genetic diversity analysis showed little difference in heterozygosity between island and mainland populations, but lower inbreeding scores among the island populations. Our study confirmed the range of the Z. l. chlorocephalus subspecies throughout the southern Great Barrier Reef. Our results show that water barriers and not geographic distance per se are important in driving incipient divergence in island populations. This helps to explain the relatively high number of phenotypically differentiated, but often geographically proximate, island silvereye subspecies compared to a lower number of phenotypically less well-defined Australian continental subspecies.
Collapse
Affiliation(s)
- Annika Radu
- School of Science, Technology and Engineering, University of the Sunshine Coast, Petrie, QLD, Australia.
| | - Christine Dudgeon
- School of Science, Technology and Engineering, University of the Sunshine Coast, Petrie, QLD, Australia
| | - Sonya M Clegg
- Department of Biology, Edward Grey Institute of Field Ornithology, University of Oxford, Oxford, UK
- Centre for Planetary Health and Food Security, Griffith University, Brisbane, Australia
| | - Yasmin Foster
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | - Alexis L Levengood
- School of Science, Technology and Engineering, University of the Sunshine Coast, Petrie, QLD, Australia
| | - Ashley T Sendell-Price
- Department of Biology, Edward Grey Institute of Field Ornithology, University of Oxford, Oxford, UK
- Bioinformatics Research Technology Platform, University of Warwick, Coventry, UK
| | - Kathy A Townsend
- School of Science, Technology and Engineering, University of the Sunshine Coast, Petrie, QLD, Australia
| | - Dominique A Potvin
- School of Science, Technology and Engineering, University of the Sunshine Coast, Petrie, QLD, Australia
- Centre for Biolnnovation, University of the Sunshine Coast, Petrie, QLD, Australia
| |
Collapse
|
6
|
Quintero I, Lartillot N, Morlon H. Imbalanced speciation pulses sustain the radiation of mammals. Science 2024; 384:1007-1012. [PMID: 38815022 DOI: 10.1126/science.adj2793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 04/23/2024] [Indexed: 06/01/2024]
Abstract
The evolutionary histories of major clades, including mammals, often comprise changes in their diversification dynamics, but how these changes occur remains debated. We combined comprehensive phylogenetic and fossil information in a new "birth-death diffusion" model that provides a detailed characterization of variation in diversification rates in mammals. We found an early rising and sustained diversification scenario, wherein speciation rates increased before and during the Cretaceous-Paleogene (K-Pg) boundary. The K-Pg mass extinction event filtered out more slowly speciating lineages and was followed by a subsequent slowing in speciation rates rather than rebounds. These dynamics arose from an imbalanced speciation process, with separate lineages giving rise to many, less speciation-prone descendants. Diversity seems to have been brought about by these isolated, fast-speciating lineages, rather than by a few punctuated innovations.
Collapse
Affiliation(s)
- Ignacio Quintero
- Institut de Biologie de l'ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Nicolas Lartillot
- Université Claude Bernard Lyon 1, CNRS, VetAgroSup, LBBE, UMR 5558, F-69100 Villeurbanne, France
| | - Hélène Morlon
- Institut de Biologie de l'ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| |
Collapse
|
7
|
Lavery TH, DeRaad DA, Holland PS, Olson KV, DeCicco LH, Seddon JM, Leung LKP, Moyle RG. Parallel evolution in an island archipelago revealed by genomic sequencing of Hipposideros leaf-nosed bats. Evolution 2024; 78:1183-1192. [PMID: 38457362 PMCID: PMC11135615 DOI: 10.1093/evolut/qpae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 02/18/2024] [Accepted: 03/07/2024] [Indexed: 03/10/2024]
Abstract
Body size is a key morphological attribute, often used to delimit species boundaries among closely related taxa. But body size can evolve in parallel, reaching similar final states despite independent evolutionary and geographic origins, leading to faulty assumptions of evolutionary history. Here, we document parallel evolution in body size in the widely distributed leaf-nosed bat genus Hipposideros, which has misled both taxonomic and evolutionary inference. We sequenced reduced representation genomic loci and measured external morphological characters from three closely related species from the Solomon Islands archipelago, delimited by body size. Species tree reconstruction confirms the paraphyly of two morphologically designated species. The nonsister relationship between large-bodied H. dinops lineages found on different islands indicates that large-bodied ecomorphs have evolved independently at least twice in the history of this radiation. A lack of evidence for gene flow between sympatric, closely related taxa suggests the rapid evolution of strong reproductive isolating barriers between morphologically distinct populations. Our results position Solomon Islands Hipposideros as a novel vertebrate system for studying the repeatability of parallel evolution under natural conditions. We conclude by offering testable hypotheses for how geography and ecology could be mediating the repeated evolution of large-bodied Hipposideros lineages in the Solomon Islands.
Collapse
Affiliation(s)
- Tyrone H Lavery
- School of BioSciences, The University of Melbourne, Melbourne, VIC, Australia
- Biodiversity Institute and Department of Ecology and Evolutionary Biology, The University of Kansas, Lawrence, KS, United States
| | - Devon A DeRaad
- Biodiversity Institute and Department of Ecology and Evolutionary Biology, The University of Kansas, Lawrence, KS, United States
| | - Piokera S Holland
- Ecological Solutions Solomon Islands, Gizo, Western Province, Solomon Islands
| | - Karen V Olson
- Biodiversity Institute and Department of Ecology and Evolutionary Biology, The University of Kansas, Lawrence, KS, United States
- Department of Earth and Environmental Sciences, Rutgers University, Newark, NJ, United States
| | - Lucas H DeCicco
- Biodiversity Institute and Department of Ecology and Evolutionary Biology, The University of Kansas, Lawrence, KS, United States
| | - Jennifer M Seddon
- Research Division, James Cook University, Townsville, QLD, Australia
| | | | - Robert G Moyle
- Biodiversity Institute and Department of Ecology and Evolutionary Biology, The University of Kansas, Lawrence, KS, United States
| |
Collapse
|
8
|
Gabrielli M, Leroy T, Salmona J, Nabholz B, Milá B, Thébaud C. Demographic responses of oceanic island birds to local and regional ecological disruptions revealed by whole-genome sequencing. Mol Ecol 2024; 33:e17243. [PMID: 38108507 DOI: 10.1111/mec.17243] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/26/2023] [Accepted: 11/30/2023] [Indexed: 12/19/2023]
Abstract
Disentangling the effects of ecological disruptions operating at different spatial and temporal scales in shaping past species' demography is particularly important in the current context of rapid environmental changes driven by both local and regional factors. We argue that volcanic oceanic islands provide useful settings to study the influence of past ecological disruptions operating at local and regional scales on population demographic histories. We investigate potential drivers of past population dynamics for three closely related species of passerine birds from two volcanic oceanic islands, Reunion and Mauritius (Mascarene archipelago), with distinct volcanic history. Using ABC and PSMC inferences from complete genomes, we reconstructed the demographic history of the Reunion Grey White-eye (Zosterops borbonicus (Pennant, 1781)), the Reunion Olive White-eye (Z. olivaceus (Linnaeus, 1766)) and the Mauritius Grey White-eye (Z. mauritianus (Gmelin, 1789)) and searched for possible causes underlying similarities or differences between species living on the same or different islands. Both demographic inferences strongly support ancient and long-term expansions in all species. They also reveal different trajectories between species inhabiting different islands, but consistent demographic trajectories in species or populations from the same island. Species from Reunion appear to have experienced synchronous reductions in population size during the Last Glacial Maximum, a trend not seen in the Mauritian species. Overall, this study suggests that local events may have played a role in shaping population trajectories of these island species. It also highlights the potential of our conceptual framework to disentangle the effects of local and regional drivers on past species' demography and long-term population processes.
Collapse
Affiliation(s)
- Maëva Gabrielli
- Laboratoire Évolution et Diversité Biologique (EDB), UMR 5174 (Université Paul Sabatier, CNRS, IRD), Toulouse, France
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Thibault Leroy
- GenPhySE, INRAE, INP, ENVT, Université de Toulouse, Castanet-Tolosan, France
| | - Jordi Salmona
- Laboratoire Évolution et Diversité Biologique (EDB), UMR 5174 (Université Paul Sabatier, CNRS, IRD), Toulouse, France
| | - Benoit Nabholz
- Institut des Sciences de l'Evolution de Montpellier, UMR 5554 (Université de Montpellier, CNRS, IRD, EPHE), Montpellier, France
| | - Borja Milá
- National Museum of Natural Sciences, Spanish National Research Council (CSIC), Madrid, Spain
| | - Christophe Thébaud
- Laboratoire Évolution et Diversité Biologique (EDB), UMR 5174 (Université Paul Sabatier, CNRS, IRD), Toulouse, France
| |
Collapse
|
9
|
Sangster G, Vinciguerra NT, Gaudin J, Andersen MJ. A new genus for Dasycrotapha plateni and D. pygmaea (Aves: Zosteropidae). Zootaxa 2023; 5361:145-148. [PMID: 38220769 DOI: 10.11646/zootaxa.5361.1.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Indexed: 01/16/2024]
Affiliation(s)
- George Sangster
- Naturalis Biodiversity Center; Darwinweg 2; PO Box 9517; 2300 RA Leiden; The Netherlands.
| | - Nicholas T Vinciguerra
- Department of Biology and Museum of Southwestern Biology; University of New Mexico; Albuquerque; NM 87131 USA.
| | - Jimmy Gaudin
- 34; avenue Antoine de Saint-Exupry; 17 000 La Rochelle; France.
| | - Michael J Andersen
- Department of Biology and Museum of Southwestern Biology; University of New Mexico; Albuquerque; NM 87131 USA.
| |
Collapse
|
10
|
Estandía A, Sendell-Price AT, Oatley G, Robertson F, Potvin D, Massaro M, Robertson BC, Clegg SM. Candidate gene polymorphisms are linked to dispersive and migratory behaviour: Searching for a mechanism behind the "paradox of the great speciators". J Evol Biol 2023; 36:1503-1516. [PMID: 37750610 DOI: 10.1111/jeb.14222] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 07/22/2023] [Indexed: 09/27/2023]
Abstract
The "paradox of the great speciators" has puzzled evolutionary biologists for over half a century. A great speciator requires excellent dispersal propensity to explain its occurrence on multiple islands, but reduced dispersal ability to explain its high number of subspecies. A rapid reduction in dispersal ability is often invoked to solve this apparent paradox, but a proximate mechanism has not been identified yet. Here, we explored the role of six genes linked to migration and animal personality differences (CREB1, CLOCK, ADCYAP1, NPAS2, DRD4, and SERT) in 20 South Pacific populations of silvereye (Zosterops lateralis) that range from highly sedentary to partially migratory, to determine if genetic variation is associated with dispersal propensity and migration. We detected genetic associations in three of the six genes: (i) in a partial migrant population, migrant individuals had longer microsatellite alleles at the CLOCK gene compared to resident individuals from the same population; (ii) CREB1 displayed longer average microsatellite allele lengths in recently colonized island populations (<200 years), compared to evolutionarily older populations. Bayesian broken stick regression models supported a reduction in CREB1 length with time since colonization; and (iii) like CREB1, DRD4 showed differences in polymorphisms between recent and old colonizations but a larger sample is needed to confirm. ADCYAP1, SERT, and NPAS2 were variable but that variation was not associated with dispersal propensity. The association of genetic variants at three genes with migration and dispersal ability in silvereyes provides the impetus for further exploration of genetic mechanisms underlying dispersal shifts, and the prospect of resolving a long-running evolutionary paradox through a genetic lens.
Collapse
Affiliation(s)
- Andrea Estandía
- Edward Grey Institute of Field Ornithology, Department of Biology, University of Oxford, Oxford, UK
| | - Ashley T Sendell-Price
- Edward Grey Institute of Field Ornithology, Department of Biology, University of Oxford, Oxford, UK
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Graeme Oatley
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | - Fiona Robertson
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | - Dominique Potvin
- School of Science, Technology and Engineering, University of the Sunshine Coast, Petrie, Queensland, Australia
| | - Melanie Massaro
- Gulbali Institute and School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Albury, New South Wales, Australia
| | | | - Sonya M Clegg
- Edward Grey Institute of Field Ornithology, Department of Biology, University of Oxford, Oxford, UK
- Centre for Planetary Health and Food Security, Griffith University, Brisbane, Queensland, Australia
| |
Collapse
|
11
|
DeRaad DA, McCullough JM, DeCicco LH, Hime PM, Joseph L, Andersen MJ, Moyle RG. Mitonuclear discordance results from incomplete lineage sorting, with no detectable evidence for gene flow, in a rapid radiation of Todiramphus kingfishers. Mol Ecol 2023; 32:4844-4862. [PMID: 37515525 DOI: 10.1111/mec.17080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/15/2023] [Accepted: 06/19/2023] [Indexed: 07/31/2023]
Abstract
Many organisms possess multiple discrete genomes (i.e. nuclear and organellar), which are inherited separately and may have unique and even conflicting evolutionary histories. Phylogenetic reconstructions from these discrete genomes can yield different patterns of relatedness, a phenomenon known as cytonuclear discordance. In many animals, mitonuclear discordance (i.e. discordant evolutionary histories between the nuclear and mitochondrial genomes) has been widely documented, but its causes are often considered idiosyncratic and inscrutable. We show that a case of mitonuclear discordance in Todiramphus kingfishers can be explained by extensive genome-wide incomplete lineage sorting (ILS), likely a result of the explosive diversification history of this genus. For these kingfishers, quartet frequencies reveal that the nuclear genome is dominated by discordant topologies, with none of the internal branches in our consensus nuclear tree recovered in >50% of genome-wide gene trees. Meanwhile, a lack of inter-species shared ancestry, non-significant pairwise tests for gene flow, and little evidence for meaningful migration edges between species, leads to the conclusion that gene flow cannot explain the mitonuclear discordance we observe. This lack of evidence for gene flow combined with evidence for extensive genome-wide gene tree discordance, a hallmark of ILS, leads us to conclude that the mitonuclear discordance we observe likely results from ILS, specifically deep coalescence of the mitochondrial genome. Based on this case study, we hypothesize that similar demographic histories in other 'great speciator' taxa across the Indo-Pacific likely predispose these groups to high levels of ILS and high likelihoods of mitonuclear discordance.
Collapse
Affiliation(s)
- Devon A DeRaad
- Biodiversity Institute and Natural History Museum, University of Kansas, Lawrence, Kansas, USA
| | - Jenna M McCullough
- Department of Biology and Museum of Southwestern Biology, University of New Mexico, Albuquerque, New Mexico, USA
| | - Lucas H DeCicco
- Biodiversity Institute and Natural History Museum, University of Kansas, Lawrence, Kansas, USA
| | - Paul M Hime
- Biodiversity Institute and Natural History Museum, University of Kansas, Lawrence, Kansas, USA
| | - Leo Joseph
- Australian National Wildlife Collection, CSIRO National Research Collections Australia, Canberra, Australian Capital Territory, Australia
| | - Michael J Andersen
- Department of Biology and Museum of Southwestern Biology, University of New Mexico, Albuquerque, New Mexico, USA
| | - Robert G Moyle
- Biodiversity Institute and Natural History Museum, University of Kansas, Lawrence, Kansas, USA
| |
Collapse
|
12
|
Martins AB, Valença-Montenegro MM, Lima MGM, Lynch JW, Svoboda WK, Silva-Júnior JDSE, Röhe F, Boubli JP, Fiore AD. A New Assessment of Robust Capuchin Monkey ( Sapajus) Evolutionary History Using Genome-Wide SNP Marker Data and a Bayesian Approach to Species Delimitation. Genes (Basel) 2023; 14:genes14050970. [PMID: 37239330 DOI: 10.3390/genes14050970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 05/28/2023] Open
Abstract
Robust capuchin monkeys, Sapajus genus, are among the most phenotypically diverse and widespread groups of primates in South America, with one of the most confusing and often shifting taxonomies. We used a ddRADseq approach to generate genome-wide SNP markers for 171 individuals from all putative extant species of Sapajus to access their evolutionary history. Using maximum likelihood, multispecies coalescent phylogenetic inference, and a Bayes Factor method to test for alternative hypotheses of species delimitation, we inferred the phylogenetic history of the Sapajus radiation, evaluating the number of discrete species supported. Our results support the recognition of three species from the Atlantic Forest south of the São Francisco River, with these species being the first splits in the robust capuchin radiation. Our results were congruent in recovering the Pantanal and Amazonian Sapajus as structured into three monophyletic clades, though new morphological assessments are necessary, as the Amazonian clades do not agree with previous morphology-based taxonomic distributions. Phylogenetic reconstructions for Sapajus occurring in the Cerrado, Caatinga, and northeastern Atlantic Forest were less congruent with morphology-based phylogenetic reconstructions, as the bearded capuchin was recovered as a paraphyletic clade, with samples from the Caatinga biome being either a monophyletic clade or nested with the blond capuchin monkey.
Collapse
Affiliation(s)
- Amely Branquinho Martins
- Centro Nacional de Pesquisa e Conservação de Primatas Brasileiros, Instituto Chico Mendes de Conservação da Biodiversidade, Cabedelo 58310-000, PB, Brazil
- Primate Molecular Ecology and Evolution Laboratory, Department of Anthropology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Mônica Mafra Valença-Montenegro
- Centro Nacional de Pesquisa e Conservação de Primatas Brasileiros, Instituto Chico Mendes de Conservação da Biodiversidade, Cabedelo 58310-000, PB, Brazil
| | - Marcela Guimarães Moreira Lima
- Laboratório de Biogeografia da Conservação e Macroecologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66077-530, PA, Brazil
| | - Jessica W Lynch
- Institute for Society and Genetics, Department of Anthropology, University of California-Los Angeles, Los Angeles, CA 90095, USA
| | - Walfrido Kühl Svoboda
- Instituto Latino-Americano de Ciências da Vida e da Natureza, Centro Interdisciplinar de Ciências da Vida, Universidade Federal da Integração Latino-Americana, Foz do Iguaçu 85870-650, PR, Brazil
| | - José de Sousa E Silva-Júnior
- Museu Paraense Emílio Goeldi, Ministério da Ciência, Tecnologia, Inovações e Comunicações, Coordenação de Zoologia, Campus de Pesquisa, Setor de Mastozoologia, Belém 66077-830, PA, Brazil
| | - Fábio Röhe
- Laboratório de Evolução e Genética Animal, Universidade Federal do Amazonas, Manaus 69067-005, AM, Brazil
| | - Jean Philippe Boubli
- School of Science, Engineering and the Environment, University of Salford, Salford M5 4WT, UK
| | - Anthony Di Fiore
- Primate Molecular Ecology and Evolution Laboratory, Department of Anthropology, The University of Texas at Austin, Austin, TX 78712, USA
- Tiputini Biodiversity Station, Universidad San Francisco de Quito, Quito 170901, Ecuador
| |
Collapse
|
13
|
Richards SJ, Oliver PM. A new species of insular treefrog in the Litoria thesaurensis species group from the Nakanai Mountains, New Britain, Papua New Guinea. VERTEBRATE ZOOLOGY 2022. [DOI: 10.3897/vz.72.e91422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The Islands of East Melanesia have a unique and highly endemic frog fauna derived entirely from overseas colonisation events. Within East Melanesia New Britain is a notable centre of frog diversity and endemism, with at least 15 endemic species, mostly in the ceratobatrachid genus Cornufer. Here we describe the first endemic pelodryadid treefrog from New Britain. The new species is a member of the Litoria thesaurensis species group but can be distinguished from near relatives by aspects of body size, webbing extent, bone pigmentation and male advertisement call. The two known specimens of the new species were collected in Hill Forest on karst basement in the Nakanai Mountains in East New Britain. The new species provides new evidence of diversification of insular PelodrydidaePelodrydidae, and reinforces New Britain, and especially the predominantly karst Nakanai mountains, as a hotspot of frog diversity in East Melanesia. In light of high rates of forest loss and conversion New Britain is also a region of significant conservation concern.
Collapse
|
14
|
McCullough JM, Oliveros C, Benz BW, Zenil-Ferguson R, Cracraft J, Moyle RG, Andersen MJ. Wallacean and Melanesian Islands Promote Higher Rates of Diversification within the Global Passerine radiation Corvides. Syst Biol 2022; 71:1423-1439. [PMID: 35703981 DOI: 10.1093/sysbio/syac044] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 11/14/2022] Open
Abstract
The complex island archipelagoes of Wallacea and Melanesia have provided empirical data behind integral theories in evolutionary biology, including allopatric speciation and island biogeography. Yet, questions regarding the relative impact of the layered biogeographic barriers, such as deep-water trenches and isolated island systems, on faunal diversification remain underexplored. One such barrier is Wallace's Line, a significant biogeographic boundary that largely separates Australian and Asian biodiversity. To assess the relative roles of biogeographic barriers-specifically isolated island systems and Wallace's Line-we investigated the tempo and mode of diversification in a diverse avian radiation, Corvides (Crows and Jays, Birds-of-paradise, Vangas, and allies). We combined a genus-level dataset of thousands of ultraconserved elements (UCEs) and a species-level, 12-gene Sanger sequence matrix to produce a well-resolved supermatrix tree that we leveraged to explore the group's historical biogeography and effects of biogeographic barriers on their macroevolutionary dynamics. The tree is well-resolved and differs substantially from what has been used extensively for past comparative analyses within this group. We confirmed that Corvides, and its major constituent clades, arose in Australia and that a burst of dispersals west across Wallace's Line occurred after the uplift of Wallacea during the mid-Miocene. We found that dispersal across this biogeographic barrier were generally rare, though westward dispersals were two times more frequent than eastward dispersals. Wallacea's central position between Sundaland and Sahul no doubt acted as a bridge for island-hopping dispersal out of Australia, across Wallace's Line, to colonize the rest of Earth. In addition, we found that the complex island archipelagoes east of Wallace's Line harbor the highest rates of net diversification and are a substantial source of colonists to continental systems on both sides of this biogeographic barrier. Our results support emerging evidence that island systems, particularly the geologically complex archipelagoes of the Indo-pacific, are drivers of species diversification.
Collapse
Affiliation(s)
- Jenna M McCullough
- Department of Biology and Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM, USA
| | - Carl Oliveros
- Department of Ecology and Evolutionary Biology and Biodiversity Institute, University of Kansas, Lawrence, KS, USA
| | - Brett W Benz
- Museum of Zoology and Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | | | - Joel Cracraft
- Department of Ornithology, American Museum of Natural History, New York, NY, USA
| | - Robert G Moyle
- Department of Ecology and Evolutionary Biology and Biodiversity Institute, University of Kansas, Lawrence, KS, USA
| | - Michael J Andersen
- Department of Biology and Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM, USA
| |
Collapse
|
15
|
Niche expansion and adaptive divergence in the global radiation of crows and ravens. Nat Commun 2022; 13:2086. [PMID: 35449129 PMCID: PMC9023458 DOI: 10.1038/s41467-022-29707-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 03/09/2022] [Indexed: 11/20/2022] Open
Abstract
The processes that allow some lineages to diversify rapidly at a global scale remain poorly understood. Although earlier studies emphasized the importance of dispersal, global expansions expose populations to novel environments and may also require adaptation and diversification across new niches. In this study, we investigated the contributions of these processes to the global radiation of crows and ravens (genus Corvus). Combining a new phylogeny with comprehensive phenotypic and climatic data, we show that Corvus experienced a massive expansion of the climatic niche that was coupled with a substantial increase in the rates of species and phenotypic diversification. The initiation of these processes coincided with the evolution of traits that promoted dispersal and niche expansion. Our findings suggest that rapid global radiations may be better understood as processes in which high dispersal abilities synergise with traits that, like cognition, facilitate persistence in new environments. Traits that facilitate adaptive responses to novel environments may facilitate global radiations. Here, the authors describe diversification dynamics of crows, finding that their global radiation coincides with high rates of phenotypic and climatic niche evolution.
Collapse
|
16
|
Crouch NMA, Tobias JA. The causes and ecological context of rapid morphological evolution in birds. Ecol Lett 2022; 25:611-623. [PMID: 35199918 DOI: 10.1111/ele.13962] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/29/2021] [Accepted: 12/20/2021] [Indexed: 12/14/2022]
Abstract
Episodic pulses in morphological diversification are a prominent feature of evolutionary history, driven by factors that remain widely disputed. Resolving this question has proved challenging because comprehensive species-level data are generally unavailable at sufficient scale. Combining global phylogenetic and morphological data for birds, we show that pulses of diversification in lineages and traits tend to occur independently and in different contexts. Speciation pulses are preceded by greater differentiation in overall morphology and habitat niche, then followed by increased rates of beak evolution. Contrary to standard hypotheses, pulses of morphological diversification tend to be associated with habitat niche stability rather than adaptation to different diets and habitat types. These patterns suggest that the timing of diversification varies across traits according to their ecological function, and that pulses of morphological evolution may occur when successful lineages subdivide niche space within particular habitat types. Our results highlight the growing potential of functional trait data sets to refine macroevolutionary models.
Collapse
Affiliation(s)
- Nicholas M A Crouch
- Department of the Geophysical Sciences, University of Chicago, Chicago, Illinois, USA
| | - Joseph A Tobias
- Department of Life Sciences, Imperial College London, Ascot, UK
| |
Collapse
|
17
|
Garg KM, Chattopadhyay B, Cros E, Tomassi S, Benedick S, Edwards DP, Rheindt FE. Island Biogeography Revisited: Museomics Reveals Affinities of Shelf Island Birds Determined by Bathymetry and Paleo-Rivers, Not by Distance to Mainland. Mol Biol Evol 2022; 39:msab340. [PMID: 34893875 PMCID: PMC8789277 DOI: 10.1093/molbev/msab340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Island biogeography is one of the most powerful subdisciplines of ecology: its mathematical predictions that island size and distance to mainland determine diversity have withstood the test of time. A key question is whether these predictions follow at a population-genomic level. Using rigorous ancient-DNA protocols, we retrieved approximately 1,000 genomic markers from approximately 100 historic specimens of two Southeast Asian songbird complexes from across the Sunda Shelf archipelago collected 1893-1957. We show that the genetic affinities of populations on small shelf islands defy the predictions of geographic distance and appear governed by Earth-historic factors including the position of terrestrial barriers (paleo-rivers) and persistence of corridors (Quaternary land bridges). Our analyses suggest that classic island-biogeographic predictors may not hold well for population-genomic dynamics on the thousands of shelf islands across the globe, which are exposed to dynamic changes in land distribution during Quaternary climate change.
Collapse
Affiliation(s)
- Kritika M Garg
- Department of Biological Sciences, National University of Singapore, Singapore
- Centre for Interdisciplinary Archaeological Research, Ashoka University, Sonipat, India
- Department of Biology, Ashoka University, Sonipat, India
| | - Balaji Chattopadhyay
- Department of Biological Sciences, National University of Singapore, Singapore
- Trivedi School of Biosciences, Ashoka University, Sonipat, India
| | - Emilie Cros
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Suzanne Tomassi
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | - Suzan Benedick
- Faculty of Sustainable Agriculture, University of Malaysia, Sabah, Malaysia
| | - David P Edwards
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | - Frank E Rheindt
- Department of Biological Sciences, National University of Singapore, Singapore
| |
Collapse
|
18
|
Systematics and biogeography of the whistlers (Aves: Pachycephalidae) inferred from ultraconserved elements and ancestral area reconstruction. Mol Phylogenet Evol 2021; 168:107379. [PMID: 34965464 DOI: 10.1016/j.ympev.2021.107379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/19/2021] [Accepted: 11/24/2021] [Indexed: 11/20/2022]
Abstract
The utility of islands as natural laboratories of evolution is exemplified in the patterns of differentiation in widespread, phenotypically variable lineages. The whistlers (Aves: Pachycephalidae) are one of the most complex avian radiations, with a combination of widespread and locally endemic taxa spanning the vast archipelagos of the Indo-Pacific, making them an ideal group to study patterns and processes of diversification on islands. Here, we present a robust, species-level phylogeny of all five genera and 85% of species within Pachycephalidae, based on thousands of ultraconserved elements (UCEs) generated with a target-capture approach and high-throughput sequencing. We clarify phylogenetic relationships within Pachycephala and report on divergence timing and ancestral range estimation. We explored multiple biogeographic coding schemes that incorporated geological uncertainty in this complex region. The biogeographic origin of this group was difficult to discern, likely owing to aspects of dynamic Earth history in the Indo-Pacific. The Australo-Papuan region was the likely origin of crown-group whistlers, but the specific ancestral area could not be identified more precisely than Australia or New Guinea, and Wallacea may have played a larger role than previously realized in the evolutionary history of whistlers. Multiple independent colonizations of island archipelagos across Melanesia, Wallacea, and the Philippines contributed to the relatively high species richness of extant whistlers. This work refines our understanding of one of the regions' most celebrated bird lineages and adds to our growing knowledge about the patterns and processes of diversification in the Indo-Pacific.
Collapse
|
19
|
DeRaad DA, Manthey JD, Ostrow EN, DeCicco LH, Andersen MJ, Hosner PA, Shult HT, Joseph L, Dumbacher JP, Moyle RG. Population connectivity across a highly fragmented distribution: Phylogeography of the Chalcophaps doves. Mol Phylogenet Evol 2021; 166:107333. [PMID: 34688879 DOI: 10.1016/j.ympev.2021.107333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/15/2021] [Accepted: 10/19/2021] [Indexed: 10/20/2022]
Abstract
Chalcophaps is a morphologically conserved genus of ground-walking doves distributed from India to mainland China, south to Australia, and across the western Pacific to Vanuatu. Here, we reconstruct the evolutionary history of this genus using DNA sequence data from two nuclear genes and one mitochondrial gene, sampled from throughout the geographic range of Chalcophaps. We find support for three major evolutionary lineages in our phylogenetic reconstruction, each corresponding to the three currently recognized Chalcophaps species. Despite this general concordance, we identify discordant mitochondrial and nuclear ancestries in the subspecies C. longirostris timorensis, raising further questions about the evolutionary history of this Timor endemic population. Within each of the three species, we find evidence for isolation by distance or hierarchical population structure, indicating an important role for geography in the diversification of this genus. Despite being distributed broadly across a highly fragmented geographic region known as a hotspot for avian diversification, the Chalcophaps doves show modest levels of phenotypic and genetic diversity, a pattern potentially explained by strong population connectivity owing to high overwater dispersal capability.
Collapse
Affiliation(s)
- Devon A DeRaad
- Biodiversity Institute and Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045, USA.
| | - Joseph D Manthey
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Emily N Ostrow
- Biodiversity Institute and Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045, USA
| | - Lucas H DeCicco
- Biodiversity Institute and Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045, USA
| | - Michael J Andersen
- Department of Biology and Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM 87106, USA
| | - Peter A Hosner
- Natural History Museum of Denmark and Center for Global Mountain Biodiversity, University of Copenhagen, Copenhagen, Denmark
| | - Hannah T Shult
- Biodiversity Institute and Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045, USA
| | - Leo Joseph
- Australian National Wildlife Collection, CSIRO National Research Collections Australia, GPO Box 1700, Canberra, ACT 2601, Australia
| | - John P Dumbacher
- California Academy of Sciences, Golden Gate Park, San Francisco, CA 94118, USA
| | - Robert G Moyle
- Biodiversity Institute and Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045, USA
| |
Collapse
|
20
|
|
21
|
Yardeni G, Viruel J, Paris M, Hess J, Groot Crego C, de La Harpe M, Rivera N, Barfuss MHJ, Till W, Guzmán-Jacob V, Krömer T, Lexer C, Paun O, Leroy T. Taxon-specific or universal? Using target capture to study the evolutionary history of rapid radiations. Mol Ecol Resour 2021; 22:927-945. [PMID: 34606683 PMCID: PMC9292372 DOI: 10.1111/1755-0998.13523] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 09/09/2021] [Accepted: 09/22/2021] [Indexed: 12/20/2022]
Abstract
Target capture has emerged as an important tool for phylogenetics and population genetics in nonmodel taxa. Whereas developing taxon‐specific capture probes requires sustained efforts, available universal kits may have a lower power to reconstruct relationships at shallow phylogenetic scales and within rapidly radiating clades. We present here a newly developed target capture set for Bromeliaceae, a large and ecologically diverse plant family with highly variable diversification rates. The set targets 1776 coding regions, including genes putatively involved in key innovations, with the aim to empower testing of a wide range of evolutionary hypotheses. We compare the relative power of this taxon‐specific set, Bromeliad1776, to the universal Angiosperms353 kit. The taxon‐specific set results in higher enrichment success across the entire family; however, the overall performance of both kits to reconstruct phylogenetic trees is relatively comparable, highlighting the vast potential of universal kits for resolving evolutionary relationships. For more detailed phylogenetic or population genetic analyses, for example the exploration of gene tree concordance, nucleotide diversity or population structure, the taxon‐specific capture set presents clear benefits. We discuss the potential lessons that this comparative study provides for future phylogenetic and population genetic investigations, in particular for the study of evolutionary radiations.
Collapse
Affiliation(s)
- Gil Yardeni
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | | | - Margot Paris
- Unit of Ecology & Evolution, Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Jaqueline Hess
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria.,Department of Soil Ecology, Helmholtz Centre for Environmental Research, UFZ, Halle (Saale), Germany
| | - Clara Groot Crego
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria.,Vienna Graduate School of Population Genetics, Vienna, Austria
| | - Marylaure de La Harpe
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Norma Rivera
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Michael H J Barfuss
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Walter Till
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Valeria Guzmán-Jacob
- Biodiversity, Macroecology and Biogeography, University of Goettingen, Göttingen, Germany
| | - Thorsten Krömer
- Centro de Investigaciones Tropicales, Universidad Veracruzana, Xalapa, Mexico
| | - Christian Lexer
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Ovidiu Paun
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Thibault Leroy
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| |
Collapse
|
22
|
Oliveros CH, Andersen MJ, Moyle RG. A phylogeny of white-eyes based on ultraconserved elements. Mol Phylogenet Evol 2021; 164:107273. [PMID: 34333115 DOI: 10.1016/j.ympev.2021.107273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 07/22/2021] [Accepted: 07/27/2021] [Indexed: 10/20/2022]
Abstract
White-eyes are an iconic radiation of passerine birds that have been the subject of studies in evolutionary biology, biogeography, and speciation theory. Zosterops white-eyes in particular are thought to have radiated rapidly across continental and insular regions of the Afro- and Indo-Pacific tropics, yet their phylogenetic history remains equivocal. Here, we sampled 77% of the genera and 47% of known white-eye species and sequenced thousands of ultraconserved elements to infer the phylogeny of the avian family Zosteropidae. We used concatenated maximum likelihood and species tree methods and found strong support for seven clades of white-eyes and three clades within the species-rich Zosterops radiation.
Collapse
Affiliation(s)
- Carl H Oliveros
- Department of Ecology and Evolutionary Biology and Biodiversity Institute, University of Kansas, Lawrence, KS 66045, USA
| | - Michael J Andersen
- Department of Biology and Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Robert G Moyle
- Department of Ecology and Evolutionary Biology and Biodiversity Institute, University of Kansas, Lawrence, KS 66045, USA.
| |
Collapse
|
23
|
Barker FK. A shift in taste. Science 2021; 373:154-155. [PMID: 34244394 DOI: 10.1126/science.abj6746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- F Keith Barker
- Department of Ecology, Evolution and Behavior and Bell Museum of Natural History, University of Minnesota, St. Paul, MN, USA.
| |
Collapse
|
24
|
Ó Marcaigh F, Kelly DJ, O'Connell DP, Dunleavy D, Clark A, Lawless N, Karya A, Analuddin K, Marples NM. Evolution in the understorey: The Sulawesi babbler Pellorneum celebense (Passeriformes: Pellorneidae) has diverged rapidly on land-bridge islands in the Wallacean biodiversity hotspot. ZOOL ANZ 2021. [DOI: 10.1016/j.jcz.2021.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
25
|
Garg KM, Chattopadhyay B. Gene Flow in Volant Vertebrates: Species Biology, Ecology and Climate Change. J Indian Inst Sci 2021; 101:165-176. [PMID: 34155425 PMCID: PMC8207815 DOI: 10.1007/s41745-021-00239-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 05/05/2021] [Indexed: 02/06/2023]
Abstract
Gene flow, the exchange of genetic material between populations is an important biological process, which shapes and maintains biodiversity. The successful movement of individuals between populations depends on multiple factors determined by species biology and the environment. One of the most important factors regulating gene flow is the ability to move, and flight allows individuals to easily move across geographical barriers. Volant vertebrates are found on some of the remotest islands and contribute significantly to the biodiversity and ecosystem. The availability of next-generation sequencing data for non-model animals has substantially improved our understanding of gene flow and its consequences, allowing us to look at fine-scale patterns. However, most of our understanding regarding gene flow comes from the temperate regions and the Neotropics. The lack of studies from species-rich Asia is striking. In this review, we outline the importance of gene flow and the factors affecting gene flow, especially for volant vertebrates. We especially discuss research studies from tropical biomes of South and Southeast Asia, highlight the lacuna in literature and provide an outline for future studies in this species-rich region.
Collapse
Affiliation(s)
- Kritika M. Garg
- Institute of Bioinformatics and Applied Biotechnology, Bengaluru, Karnataka India
- Department of Biology, Ashoka University, Sonipat, Haryana India
| | | |
Collapse
|
26
|
Černý D, Madzia D, Slater GJ. Empirical and Methodological Challenges to the Model-Based Inference of Diversification Rates in Extinct Clades. Syst Biol 2021; 71:153-171. [PMID: 34110409 DOI: 10.1093/sysbio/syab045] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 06/02/2021] [Accepted: 06/09/2021] [Indexed: 02/01/2023] Open
Abstract
Changes in speciation and extinction rates are key to the dynamics of clade diversification, but attempts to infer them from phylogenies of extant species face challenges. Methods capable of synthesizing information from extant and fossil species have yielded novel insights into diversification rate variation through time, but little is known about their behavior when analyzing entirely extinct clades. Here, we use empirical and simulated data to assess how two popular methods, PyRate and Fossil BAMM, perform in this setting. We inferred the first tip-dated trees for ornithischian dinosaurs, and combined them with fossil occurrence data to test whether the clade underwent an end-Cretaceous decline. We then simulated phylogenies and fossil records under empirical constraints to determine whether macroevolutionary and preservation rates can be teased apart under paleobiologically realistic conditions. We obtained discordant inferences about ornithischian macroevolution including a long-term speciation rate decline (BAMM), mostly flat rates with a steep diversification drop (PyRate) or without one (BAMM), and episodes of implausibly accelerated speciation and extinction (PyRate). Simulations revealed little to no conflation between speciation and preservation, but yielded spuriously correlated speciation and extinction estimates while time-smearing tree-wide shifts (BAMM) or overestimating their number (PyRate). Our results indicate that the small phylogenetic datasets available to vertebrate paleontologists and the assumptions made by current model-based methods combine to yield potentially unreliable inferences about the diversification of extinct clades. We provide guidelines for interpreting the results of the existing approaches in light of their limitations, and suggest how the latter may be mitigated.
Collapse
Affiliation(s)
- David Černý
- Department of the Geophysical Sciences, University of Chicago, Chicago 60637, USA
| | - Daniel Madzia
- Institute of Paleobiology, Polish Academy of Sciences, Warsaw 00-818, Poland
| | - Graham J Slater
- Department of the Geophysical Sciences, University of Chicago, Chicago 60637, USA
| |
Collapse
|
27
|
de Alencar LRV, Quental TB. Linking population-level and microevolutionary processes to understand speciation dynamics at the macroevolutionary scale. Ecol Evol 2021; 11:5828-5843. [PMID: 34141187 PMCID: PMC8207422 DOI: 10.1002/ece3.7511] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 03/17/2021] [Indexed: 11/05/2022] Open
Abstract
Although speciation dynamics have been described for several taxonomic groups in distinct geographic regions, most macroevolutionary studies still lack a detailed mechanistic view on how or why speciation rates change. To help partially fill this gap, we suggest that the interaction between the time taken by a species to geographically expand and the time populations take to evolve reproductive isolation should be considered when we are trying to understand macroevolutionary patterns. We introduce a simple conceptual index to guide our discussion on how demographic and microevolutionary processes might produce speciation dynamics at macroevolutionary scales. Our framework is developed under different scenarios: when speciation is mediated by geographical or resource-partitioning opportunities, and when diversity is limited or not. We also discuss how organismal intrinsic properties and different overall geographical settings can influence the tempo and mode of speciation. We argue that specific conditions observed at the microscale might produce a pulse in speciation rates even without a pulse in either climate or physical barriers. We also propose a hypothesis to reconcile the apparent inconsistency between speciation measured at the microscale and macroscale, and emphasize that diversification rates are better seen as an emergent property. We hope to bring the reader's attention to interesting mechanisms to be further studied, to motivate the development of new theoretical models that connect microevolution and macroevolution, and to inspire new empirical and methodological approaches to more adequately investigate speciation dynamics either using neontological or paleontological data.
Collapse
Affiliation(s)
| | - Tiago Bosisio Quental
- Departamento de EcologiaInstituto de BiociênciasUniversidade de São PauloSão PauloBrazil
| |
Collapse
|
28
|
Cowles SA, Weeks BC, Perrin L, Chen N, Uy JAC. Comparison of adult census size and effective population size support the need for continued protection of two Solomon Island endemics. THE EMU 2021; 121:45-54. [PMID: 35264816 PMCID: PMC8903160 DOI: 10.1080/01584197.2021.1915163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 04/05/2021] [Indexed: 06/14/2023]
Abstract
Because a population's ability to respond to rapid change is dictated by standing genetic variation, we can better predict a population's long-term viability by estimating and then comparing adult census size (N) and effective population size (N e ). However, most studies only measure N or N e , which can be misleading. Using a combination of field and genomic sequence data, we here estimate and compare N and N e in two range-restricted endemics of the Solomon Islands. Two Zosterops White-eye species inhabit the small island of Kolombangara, with a high elevation species endemic to the island (Z. murphyi) and a low elevation species endemic to the Solomon Islands (Z. kulambangrae). Field observations reveal large values of N for both species with Z. kulambangrae numbering at 114,781 ± 32,233 adults, and Z. murphyi numbering at 64,412 ± 15,324 adults. In contrast, genomic analyses reveal that N e was much lower than N, with Z. kulambangrae estimated at 694.5 and Z. murphyi at 796.1 individuals. Further, positive Tajima's D values for both species suggest that they have experienced a demographic contraction, providing a mechanism for low values of N e . Comparison of N and N e suggests that Z. kulambangrae and Z. murphyi are not at immediate threat of extinction but may be at genetic risk. Our results provide important baseline data for long-term monitoring of these island endemics, and argue for measuring both population size estimates to better gauge long-term population viability.
Collapse
Affiliation(s)
- Sarah A. Cowles
- Department of Biology, University of Miami, Coral Gables, FL, USA
| | - Brian C. Weeks
- School for Environment & Sustainability, University of Michigan, Ann Arbor, MI, USA
| | - Lindsey Perrin
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Nancy Chen
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - J. Albert C. Uy
- Department of Biology, University of Miami, Coral Gables, FL, USA
- Department of Biology, University of Rochester, Rochester, NY, USA
| |
Collapse
|
29
|
Venkatraman M, Fleischer RC, Tsuchiya MTN. Comparative Analysis of Annotation Pipelines Using the First Japanese White-Eye (Zosterops japonicus) Genome. Genome Biol Evol 2021; 13:6184866. [PMID: 33760049 DOI: 10.1093/gbe/evab063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2021] [Indexed: 11/14/2022] Open
Abstract
Introduced into Hawaii in the early 1900s, the Japanese white-eye or warbling white-eye (Zosterops japonicus) is now the most abundant land bird in the archipelago. Here, we present the first Z. japonicus genome, sequenced from an individual in its invasive range. This genome provides an important resource for future studies in invasion genomics. We annotated the genome using two workflows-standalone AUGUSTUS and BRAKER2. We found that AUGUSTUS was more conservative with gene predictions when compared with BRAKER2. The final number of annotated gene models was similar between the two workflows, but standalone AUGUSTUS had over 70% of gene predictions with Blast2GO annotations versus under 30% using BRAKER2. Additionally, we tested whether using RNA-seq data from 47 samples had a significant impact on annotation quality when compared with data from a single sample, as generating RNA-seq data for genome annotation can be expensive and requires well preserved tissue. We found that more data did not significantly change the number of annotated genes using AUGUSTUS but using BRAKER2 the number increased substantially. The results presented here will aid researchers in annotating draft genomes of nonmodel species as well as those studying invasion success.
Collapse
Affiliation(s)
- Madhvi Venkatraman
- Center for Conservation Genomics, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, District of Columbia, USA.,Biological Sciences Graduate Program, University of Maryland, College Park, Maryland, USA
| | - Robert C Fleischer
- Center for Conservation Genomics, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, District of Columbia, USA
| | - Mirian T N Tsuchiya
- Center for Conservation Genomics, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, District of Columbia, USA.,Data Science Lab, Office of the Chief Information Officer, Smithsonian Institution, Washington, District of Columbia, USA
| |
Collapse
|
30
|
Gwee CY, Garg KM, Chattopadhyay B, Sadanandan KR, Prawiradilaga DM, Irestedt M, Lei F, Bloch LM, Lee JGH, Irham M, Haryoko T, Soh MCK, Peh KSH, Rowe KMC, Ferasyi TR, Wu S, Wogan GOU, Bowie RCK, Rheindt FE. Phylogenomics of white-eyes, a 'great speciator', reveals Indonesian archipelago as the center of lineage diversity. eLife 2020; 9:e62765. [PMID: 33350381 PMCID: PMC7775107 DOI: 10.7554/elife.62765] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 12/21/2020] [Indexed: 01/09/2023] Open
Abstract
Archipelagoes serve as important 'natural laboratories' which facilitate the study of island radiations and contribute to the understanding of evolutionary processes. The white-eye genus Zosterops is a classical example of a 'great speciator', comprising c. 100 species from across the Old World, most of them insular. We achieved an extensive geographic DNA sampling of Zosterops by using historical specimens and recently collected samples. Using over 700 genome-wide loci in conjunction with coalescent species tree methods and gene flow detection approaches, we untangled the reticulated evolutionary history of Zosterops, which comprises three main clades centered in Indo-Africa, Asia, and Australasia, respectively. Genetic introgression between species permeates the Zosterops phylogeny, regardless of how distantly related species are. Crucially, we identified the Indonesian archipelago, and specifically Borneo, as the major center of diversity and the only area where all three main clades overlap, attesting to the evolutionary importance of this region.
Collapse
Affiliation(s)
- Chyi Yin Gwee
- National University of Singapore, Department of Biological SciencesSingaporeSingapore
| | - Kritika M Garg
- National University of Singapore, Department of Biological SciencesSingaporeSingapore
| | - Balaji Chattopadhyay
- National University of Singapore, Department of Biological SciencesSingaporeSingapore
| | - Keren R Sadanandan
- National University of Singapore, Department of Biological SciencesSingaporeSingapore
- Max Planck Institute for OrnithologySeewiesenGermany
| | - Dewi M Prawiradilaga
- Division of Zoology, Research Center for Biology, Indonesian Institute of Sciences (LIPI), Cibinong Science CenterCibinongIndonesia
| | - Martin Irestedt
- Department of Bioinformatics and Genetics, Swedish Museum of Natural HistoryStockholmSweden
| | - Fumin Lei
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of SciencesBeijingChina
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of SciencesKunmingChina
| | - Luke M Bloch
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, BerkeleyBerkeleyUnited States
| | | | - Mohammad Irham
- Division of Zoology, Research Center for Biology, Indonesian Institute of Sciences (LIPI), Cibinong Science CenterCibinongIndonesia
| | - Tri Haryoko
- Division of Zoology, Research Center for Biology, Indonesian Institute of Sciences (LIPI), Cibinong Science CenterCibinongIndonesia
| | - Malcolm CK Soh
- University of Western Australia, School of Biological SciencesPerthAustralia
| | - Kelvin S-H Peh
- University of Southampton, School of Biological Sciences, UniversitySouthamptonUnited Kingdom
| | - Karen MC Rowe
- Sciences Department, Museums VictoriaMelbourneAustralia
| | - Teuku Reza Ferasyi
- Faculty of Veterinary Medicine, Universitas Syiah KualaDarussalamIndonesia
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal UniversityXuzhouChina
| | - Shaoyuan Wu
- Department of Biochemistry and Molecular Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical UniversityTianjinChina
- Center for Tropical Veterinary Studies – One Health Collaboration Center, Universitas Syiah KualaDarussalamIndonesia
| | - Guinevere OU Wogan
- Museum of Vertebrate Zoology and Department of Environmental Science, Policy, and Management, University of California, BerkeleyBerkeleyUnited States
| | - Rauri CK Bowie
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, BerkeleyBerkeleyUnited States
| | - Frank E Rheindt
- National University of Singapore, Department of Biological SciencesSingaporeSingapore
| |
Collapse
|
31
|
Mapel XM, Gyllenhaal EF, Modak TH, DeCicco LH, Naikatini A, Utzurrum RB, Seamon JO, Cibois A, Thibault JC, Sorenson MD, Moyle RG, Barrow LN, Andersen MJ. Inter- and intra-archipelago dynamics of population structure and gene flow in a Polynesian bird. Mol Phylogenet Evol 2020; 156:107034. [PMID: 33276120 DOI: 10.1016/j.ympev.2020.107034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 11/25/2020] [Accepted: 11/27/2020] [Indexed: 12/13/2022]
Abstract
Islands are separated by natural barriers that prevent gene flow between terrestrial populations and promote allopatric diversification. Birds in the South Pacific are an excellent model to explore the interplay between isolation and gene flow due to the region's numerous archipelagos and well-characterized avian communities. The wattled honeyeater complex (Foulehaio spp.) comprises three allopatric species that are widespread and common across Fiji, Tonga, Samoa, and Wallis and Futuna. Here, we explored patterns of diversification within and among these lineages using genomic and morphometric data. We found support for three clades of Foulehaio corresponding to three recognized species. Within F. carunculatus, population genetic analyses identified nine major lineages, most of which were composed of sub-lineages that aligned nearly perfectly to individual island populations. Despite genetic structure and great geographic distance between populations, we found low levels of gene flow between populations in adjacent archipelagos. Additionally, body size of F. carunculatus varied randomly with respect to evolutionary history (as Ernst Mayr predicted), but correlated negatively with island size, consistent with the island rule. Our findings support a hypothesis that widespread taxa can show population structure between immediately adjacent islands, and likely represent many independent lineages loosely connected by gene flow.
Collapse
Affiliation(s)
- Xena M Mapel
- Department of Biology and Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM, USA; Animal Genomics, ETH Zürich, Lindau, Switzerland.
| | - Ethan F Gyllenhaal
- Department of Biology and Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM, USA
| | - Tejashree H Modak
- Department of Biological Sciences, University of Rhode Island, Kingston, RI, USA; Department of Biology, Boston University, Boston, MA, USA
| | - Lucas H DeCicco
- Biodiversity Institute and Natural History Museum, Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, USA
| | - Alivereti Naikatini
- South Pacific Regional Herbarium, University of the South Pacific, Laucala Campus, Suva, Fiji
| | - Ruth B Utzurrum
- Department of Marine & Wildlife Resources, American Samoa Government, PO Box 3730, Pago Pago, AS 96799, USA
| | - Joshua O Seamon
- Department of Marine & Wildlife Resources, American Samoa Government, PO Box 3730, Pago Pago, AS 96799, USA
| | - Alice Cibois
- Natural History Museum of Geneva, CP 6434, CH 1211 Geneva, Switzerland
| | - Jean-Claude Thibault
- Institut Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, 57 rue Cuvier, CP50, F-75005 Paris, France
| | | | - Robert G Moyle
- Biodiversity Institute and Natural History Museum, Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, USA
| | - Lisa N Barrow
- Department of Biology and Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM, USA
| | - Michael J Andersen
- Department of Biology and Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM, USA
| |
Collapse
|
32
|
Reaney AM, Bouchenak‐Khelladi Y, Tobias JA, Abzhanov A. Ecological and morphological determinants of evolutionary diversification in Darwin's finches and their relatives. Ecol Evol 2020; 10:14020-14032. [PMID: 33391699 PMCID: PMC7771120 DOI: 10.1002/ece3.6994] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 01/03/2023] Open
Abstract
Darwin's finches are a classic example of adaptive radiation, a process by which multiple ecologically distinct species rapidly evolve from a single ancestor. Such evolutionary diversification is typically explained by adaptation to new ecological opportunities. However, the ecological diversification of Darwin's finches following their dispersal to Galápagos was not matched on the same archipelago by other lineages of colonizing land birds, which diversified very little in terms of both species number and morphology. To better understand the causes underlying the extraordinary variation in Darwin's finches, we analyze the evolutionary dynamics of speciation and trait diversification in Thraupidae, including Coerebinae (Darwin's finches and relatives) and, their closely related clade, Sporophilinae. For all traits, we observe an early pulse of speciation and morphological diversification followed by prolonged periods of slower steady-state rates of change. The primary exception is the apparent recent increase in diversification rate in Darwin's finches coupled with highly variable beak morphology, a potential key factor explaining this adaptive radiation. Our observations illustrate how the exploitation of ecological opportunity by contrasting means can produce clades with similarly high diversification rate yet strikingly different degrees of ecological and morphological differentiation.
Collapse
Affiliation(s)
- Ashley M. Reaney
- Science and Solutions for a Changing Planet DTPDepartment of Life SciencesImperial College LondonAscotUK
- Natural History MuseumLondonUK
| | | | | | - Arkhat Abzhanov
- Natural History MuseumLondonUK
- Department of Life SciencesImperial College LondonAscotUK
| |
Collapse
|
33
|
Heterogeneous relationships between rates of speciation and body size evolution across vertebrate clades. Nat Ecol Evol 2020; 5:101-110. [PMID: 33106601 DOI: 10.1038/s41559-020-01321-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 09/04/2020] [Indexed: 01/09/2023]
Abstract
Several theories predict that rates of phenotypic evolution should be related to the rate at which new lineages arise. However, drawing general conclusions regarding the coupling between these fundamental evolutionary rates has been difficult due to the inconsistent nature of previous results combined with uncertainty over the most appropriate methodology with which to investigate such relationships. Here we propose and compare the performance of several different approaches for testing associations between lineage-specific rates of speciation and phenotypic evolution using phylogenetic data. We then use the best-performing method to test relationships between rates of speciation and body size evolution in five major vertebrate clades (amphibians, birds, mammals, ray-finned fish and squamate reptiles) at two phylogenetic scales. Our results provide support for the long-standing view that rates of speciation and morphological evolution are generally positively related at broad macroevolutionary scales, but they also reveal a substantial degree of heterogeneity in the strength and direction of these associations at finer scales across the vertebrate tree of life.
Collapse
|
34
|
Gyllenhaal EF, Mapel XM, Naikatini A, Moyle RG, Andersen MJ. A test of island biogeographic theory applied to estimates of gene flow in a Fijian bird is largely consistent with neutral expectations. Mol Ecol 2020; 29:4059-4073. [DOI: 10.1111/mec.15625] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 08/28/2020] [Accepted: 09/01/2020] [Indexed: 01/25/2023]
Affiliation(s)
- Ethan F. Gyllenhaal
- Department of Biology and Museum of Southwestern Biology University of New Mexico Albuquerque NM USA
| | - Xena M. Mapel
- Department of Biology and Museum of Southwestern Biology University of New Mexico Albuquerque NM USA
| | - Alivereti Naikatini
- South Pacific Regional Herbarium Institute of Applied Sciences University of the South Pacific Suva Fiji Islands
| | - Robert G. Moyle
- Biodiversity Institute and Department of Ecology and Evolutionary Biology University of Kansas Lawrence KS USA
| | - Michael J. Andersen
- Department of Biology and Museum of Southwestern Biology University of New Mexico Albuquerque NM USA
| |
Collapse
|
35
|
Weeks BC, Naeem S, Winger BM, Cracraft J. The relationship between morphology and behavior in mixed-species flocks of island birds. Ecol Evol 2020; 10:10593-10606. [PMID: 33072282 PMCID: PMC7548193 DOI: 10.1002/ece3.6714] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/15/2020] [Accepted: 07/29/2020] [Indexed: 12/28/2022] Open
Abstract
Understanding how co‐occurring species divide ecological space is a central issue in ecology. Functional traits have the potential to serve as a means for quantitatively assessing niche partitioning by different species based on their ecological attributes, such as morphology, behavior, or trophic habit. This enables testing ecological and evolutionary questions using functional traits at spatio‐temporal scales that are not feasible using traditional field methods. Both rapid evolutionary change and inter‐ and intraspecific competition, however, may limit the utility of morphological functional traits as indicators of how niches are partitioned. To address how behavior and morphology interact, we quantified foraging behavior of mixed‐species flocks of birds in the Solomon Islands to test whether behavior and morphology are correlated in these flocks. We find that foraging behavior is significantly correlated with morphological traits (p = .05), but this correlation breaks down after correcting for phylogenetic relatedness (p = .66). These results suggest that there are consistent correlations between aspects of behavior and morphology at large taxonomic scales (e.g., across genera), but the relationship between behavior and morphology depends largely on among‐clade differences and may be idiosyncratic at shallower scales (e.g., within genera). As a result, general relationships between behaviors and morphology may not be applicable when comparing close relatives.
Collapse
Affiliation(s)
- Brian C Weeks
- School for Environment and Sustainability University of Michigan Ann Arbor MI USA.,Department of Ecology, Evolution and Environmental Biology Columbia University New York NY USA.,Department of Ornithology American Museum of Natural History New York NY USA
| | - Shahid Naeem
- Department of Ecology, Evolution and Environmental Biology Columbia University New York NY USA
| | - Benjamin M Winger
- Museum of Zoology and Department of Ecology and Evolutionary Biology University of Michigan Ann Arbor MI USA
| | - Joel Cracraft
- Department of Ornithology American Museum of Natural History New York NY USA
| |
Collapse
|
36
|
Behroozian M, Ejtehadi H, Memariani F, Pierce S, Mesdaghi M. Are endemic species necessarily ecological specialists? Functional variability and niche differentiation of two threatened Dianthus species in the montane steppes of northeastern Iran. Sci Rep 2020; 10:11774. [PMID: 32678159 PMCID: PMC7366929 DOI: 10.1038/s41598-020-68618-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 06/25/2020] [Indexed: 11/09/2022] Open
Abstract
Endemic species are believed to converge on narrow ranges of traits, with rarity reflecting adaptation to specific environmental regimes. We hypothesized that endemism is characterized by limited trait variability and environmental tolerances in two Dianthus species (Dianthus pseudocrinitus and Dianthus polylepis) endemic to the montane steppes of northeastern Iran. We measured leaf functional traits and calculated Grime's competitor/stress-tolerator/ruderal (CSR) adaptive strategies for these and co-occurring species in seventy-five 25-m2 quadrats at 15 sites, also measuring a range of edaphic, climatic, and topographic parameters. While plant communities converged on the stress-tolerator strategy, D. pseudocrinitus exhibited functional divergence from S- to R-selected (C:S:R = 12.0:7.2:80.8% to 6.8:82.3:10.9%). Canonical correspondence analysis, in concert with Pearson's correlation coefficients, suggested the strongest associations with elevation, annual temperature, precipitation seasonality, and soil fertility. Indeed, variance (s2) in R- and S-values for D. pseudocrinitus at two sites was exceptionally high, refuting the hypothesis of rarity via specialization. Rarity, in this case, is probably related to recent speciation by polyploidy (neoendemism) and dispersal limitation. Dianthus polylepis, in contrast, converged towards stress-tolerance. 'Endemism' is not synonymous with 'incapable', and polyploid neoendemics promise to be particularly responsive to conservation.
Collapse
Affiliation(s)
- Maryam Behroozian
- Quantitative Plant Ecology and Biodiversity Research Laboratory, Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Hamid Ejtehadi
- Quantitative Plant Ecology and Biodiversity Research Laboratory, Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Farshid Memariani
- Department of Botany, Research Center for Plant Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Simon Pierce
- Department of Agricultural and Environmental Sciences (DiSAA), University of Milan, Via G. Celoria 2, 20133 Milan, Italy
| | - Mansour Mesdaghi
- Department of Range and Watershed Management, Faculty of Natural Resources and Environment, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
37
|
Manthey JD, Oliveros CH, Andersen MJ, Filardi CE, Moyle RG. Gene flow and rapid differentiation characterize a rapid insular radiation in the southwest Pacific (Aves:
Zosterops
). Evolution 2020; 74:1788-1803. [DOI: 10.1111/evo.14043] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 05/08/2020] [Accepted: 05/21/2020] [Indexed: 01/14/2023]
Affiliation(s)
- Joseph D. Manthey
- Department of Biological Sciences Texas Tech University Lubbock Texas 79409
| | - Carl H. Oliveros
- Department of Biological Sciences Louisiana State University Baton Rouge Louisiana 70803
| | - Michael J. Andersen
- Department of Biology and Museum of Southwestern Biology University of New Mexico Albuquerque New Mexico 87106
| | | | - Robert G. Moyle
- Department of Ecology and Evolutionary Biology and Biodiversity Institute University of Kansas Lawrence Kansas 66045
| |
Collapse
|
38
|
McEntee JP, Burleigh JG, Singhal S. Dispersal Predicts Hybrid Zone Widths across Animal Diversity: Implications for Species Borders under Incomplete Reproductive Isolation. Am Nat 2020; 196:9-28. [PMID: 32552108 DOI: 10.1086/709109] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Hybrid zones occur as range boundaries for many animal taxa. One model for how hybrid zones form and stabilize is the tension zone model, a version of which predicts that hybrid zone widths are determined by a balance between random dispersal into hybrid zones and selection against hybrids. Here, we examine whether random dispersal and proxies for selection against hybrids (genetic distances between hybridizing pairs) can explain variation in hybrid zone widths across 131 hybridizing pairs of animals. We show that these factors alone can explain ∼40% of the variation in zone width among animal hybrid zones, with dispersal explaining far more of the variation than genetic distances. Patterns within clades were idiosyncratic. Genetic distances predicted hybrid zone widths particularly well for reptiles, while this relationship was opposite tension zone predictions in birds. Last, the data suggest that dispersal and molecular divergence set lower bounds on hybrid zone widths in animals, indicating that there are geographic restrictions on hybrid zone formation. Overall, our analyses reinforce the fundamental importance of dispersal in hybrid zone formation and more generally in the ecology of range boundaries.
Collapse
|
39
|
Deep-Time Demographic Inference Suggests Ecological Release as Driver of Neoavian Adaptive Radiation. DIVERSITY-BASEL 2020. [DOI: 10.3390/d12040164] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Assessing the applicability of theory to major adaptive radiations in deep time represents an extremely difficult problem in evolutionary biology. Neoaves, which includes 95% of living birds, is believed to have undergone a period of rapid diversification roughly coincident with the Cretaceous–Paleogene (K-Pg) boundary. We investigate whether basal neoavian lineages experienced an ecological release in response to ecological opportunity, as evidenced by density compensation. We estimated effective population sizes (Ne) of basal neoavian lineages by combining coalescent branch lengths (CBLs) and the numbers of generations between successive divergences. We used a modified version of Accurate Species TRee Algorithm (ASTRAL) to estimate CBLs directly from insertion–deletion (indel) data, as well as from gene trees using DNA sequence and/or indel data. We found that some divergences near the K-Pg boundary involved unexpectedly high gene tree discordance relative to the estimated number of generations between speciation events. The simplest explanation for this result is an increase in Ne, despite the caveats discussed herein. It appears that at least some early neoavian lineages, similar to the ancestor of the clade comprising doves, mesites, and sandgrouse, experienced ecological release near the time of the K-Pg mass extinction.
Collapse
|
40
|
Martins FC, Cox SC, Irestedt M, Prŷs-Jones RP, Day JJ. A comprehensive molecular phylogeny of Afrotropical white-eyes (Aves: Zosteropidae) highlights prior underestimation of mainland diversity and complex colonisation history. Mol Phylogenet Evol 2020; 149:106843. [PMID: 32330543 DOI: 10.1016/j.ympev.2020.106843] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 04/07/2020] [Accepted: 04/16/2020] [Indexed: 10/24/2022]
Abstract
White-eyes (Zosterops) are a hyper-diverse genus of passerine birds that have rapidly radiated across the Afrotropics and Southeast Asia. Despite their broad range, a disproportionately large number of species are currently recognised from islands compared to the mainland. Described species-level diversity of this 'great speciator' from continental Africa-Arabia is strikingly low, despite the vast size and environmental complexity of this region. However, efforts to identify natural groups using traditional approaches have been hindered by the remarkably uniform morphology and plumage of these birds. Here, we investigated the phylogenetic relationships and systematics of Afrotropical Zosterops, including the Gulf of Guinea and western Indian Ocean islands. We included exceptional sampling (~160 individuals) from all except one subspecies of the 55 taxa (32 species, plus 23 additional named sub-species) currently recognized throughout the region, in addition to a subset of extra-Afrotropical taxa, by exploiting blood and archival samples. Employing a multi-locus phylogenetic approach and applying quantitative species delimitation we tested: (1) if there has been a single colonisation event of the Afrotropical realm; (2) if constituent mainland and island birds are monophyletic; and (3) if mainland diversity has been underestimated. Our comprehensive regional phylogeny revealed a single recent colonisation of the Afrotropical realm c.1.30 Ma from Asia, but a subsequent complex colonisation history between constituent island and mainland lineages during their radiation across this vast area. Our findings suggest a significant previous underestimation of continental species diversity and, based on this, we propose a revised taxonomy. Our study highlights the need to densely sample species diversity across ranges, providing key findings for future conservation assessments and establishing a robust framework for evolutionary studies.
Collapse
Affiliation(s)
- Frederico C Martins
- Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| | - Siobhan C Cox
- Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK; Bird Group, Department of Life Sciences, The Natural History Museum, Akeman Street, Tring, Herts HP23 6AP, UK
| | - Martin Irestedt
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, PO Box 50007, Stockholm 10405, Sweden
| | - Robert P Prŷs-Jones
- Bird Group, Department of Life Sciences, The Natural History Museum, Akeman Street, Tring, Herts HP23 6AP, UK
| | - Julia J Day
- Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
41
|
Gabrielli M, Nabholz B, Leroy T, Milá B, Thébaud C. Within-island diversification in a passerine bird. Proc Biol Sci 2020; 287:20192999. [PMID: 32183633 DOI: 10.1098/rspb.2019.2999] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The presence of congeneric taxa on the same island suggests the possibility of in situ divergence, but can also result from multiple colonizations of previously diverged lineages. Here, using genome-wide data from a large population sample, we test the hypothesis that intra-island divergence explains the occurrence of four geographical forms meeting at hybrid zones in the Reunion grey white-eye (Zosterops borbonicus), a species complex endemic to the small volcanic island of Reunion. Using population genomic and phylogenetic analyses, we reconstructed the population history of the different forms. We confirmed the monophyly of the complex and found that one of the lowland forms is paraphyletic and basal relative to others, a pattern highly consistent with in situ divergence. Our results suggest initial colonization of the island through the lowlands, followed by expansion into the highlands, which led to the evolution of a distinct geographical form, genetically and ecologically different from the lowland ones. Lowland forms seem to have experienced periods of geographical isolation, but they diverged from one another by sexual selection rather than niche change. Overall, low dispersal capabilities in this island bird combined with both geographical and ecological opportunities seem to explain how divergence occurred at such a small spatial scale.
Collapse
Affiliation(s)
- Maëva Gabrielli
- Laboratoire Évolution et Diversité Biologique (EDB), UMR 5174 (Université Paul Sabatier, CNRS, IRD), Toulouse, France
| | - Benoit Nabholz
- Institut des Sciences de l'Evolution de Montpellier, UMR 5554 (Université de Montpellier, CNRS, IRD, EPHE), Montpellier, France
| | - Thibault Leroy
- Institut des Sciences de l'Evolution de Montpellier, UMR 5554 (Université de Montpellier, CNRS, IRD, EPHE), Montpellier, France
| | - Borja Milá
- National Museum of Natural Sciences, Spanish National Research Council (CSIC), Madrid, Spain
| | - Christophe Thébaud
- Laboratoire Évolution et Diversité Biologique (EDB), UMR 5174 (Université Paul Sabatier, CNRS, IRD), Toulouse, France
| |
Collapse
|
42
|
Ali JR, Aitchison JC, Meiri S. Redrawing Wallace’s Line based on the fauna of Christmas Island, eastern Indian Ocean. Biol J Linn Soc Lond 2020. [DOI: 10.1093/biolinnean/blaa018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Abstract
Based on a comprehensive literature survey, we determined the sources of the terrestrial vertebrate species on Christmas Island, asking where they originated relative to Wallace’s Line (the southern end of the divide lies 1100 km to the east, where the Lombok Strait adjoins the eastern Indian Ocean). The two bats, Pipistrellus murrayi and Pteropus natalis, are from the west. Concerning the endemic and ‘resident’ bird species, one is from the west (Collocalia natalis), four are from the east (Accipiter fasciatus, Egretta novaehollandiae, Falco cenchroides and Ninox natalis) and the other 15 are ambiguous or indeterminate. Most of the land-locked species are also from the east: rodents Rattus macleari and Rattus nativitatis, and squamates Cryptoblepharus egeriae, Emoia nativitatis and Lepidodactylus listeria. Additionally, two have westerly origins (Crocidura trichura and Cyrtodactylus sadleiri), one is ambiguous (Emoia atrocostata) and another is unknown (Ramphotyphlops exocoeti). West-directed surface currents that flow across the eastern Indian Ocean towards Christmas Island would have facilitated most of the land-animal colonizations. We therefore suggest that Wallace’s Line be redrawn such that the landmass is placed on the Australasian side of this fundamental biogeographical boundary.
Collapse
Affiliation(s)
- Jason R Ali
- Department of Earth Sciences, University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Jonathan C Aitchison
- School of Earth and Environmental Sciences, The University of Queensland, St Lucia, Australia
| | - Shai Meiri
- School of Zoology, Tel Aviv University, Tel Aviv, Israel
- The Steinhardt Museum of Natural History, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
43
|
Settlecowski AE, Cuervo AM, Tello JG, Harvey MG, Brumfield RT, Derryberry EP. Investigating the utility of traditional and genomic multi-locus datasets to resolve relationships in Lipaugus and Tijuca (Cotingidae). Mol Phylogenet Evol 2020; 147:106779. [PMID: 32135309 DOI: 10.1016/j.ympev.2020.106779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/27/2020] [Accepted: 02/26/2020] [Indexed: 12/26/2022]
Abstract
Rapid diversification limits our ability to resolve evolutionary relationships and examine diversification history, as in the case of the Neotropical cotingas. Here we present an analysis with complete taxon sampling for the cotinga genera Lipaugus and Tijuca, which include some of the most range-restricted (e.g., T. condita) and also the most widespread and familiar (e.g., L. vociferans) forest birds in the Neotropics. We used two datasets: (1) Sanger sequencing data sampled from eight loci in 34 individuals across all described taxa and (2) sequence capture data linked to 1,079 ultraconserved elements and conserved exons sampled from one or two individuals per species. Phylogenies estimated from the Sanger sequencing data failed to resolve three nodes, but the sequence capture data produced a well-supported tree. Lipaugus and Tijuca formed a single, highly supported clade, but Tijuca species were not sister and were embedded within Lipaugus. A dated phylogeny confirmed Lipaugus and Tijuca diversified rapidly in the Miocene. Our study provides a detailed evolutionary hypothesis for Lipaugus and Tijuca and demonstrates that increasing genomic sampling can prove instrumental in resolving the evolutionary history of recent radiations.
Collapse
Affiliation(s)
- Amie E Settlecowski
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA 70118, USA
| | - Andrés M Cuervo
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA 70118, USA; Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Bogotá, Colombia
| | - José G Tello
- Department of Ornithology, American Museum of Natural History, New York, NY 10024, USA; Department of Biology, Long Island University, Brooklyn, NY 11201, USA
| | - Michael G Harvey
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Robb T Brumfield
- Museum of Natural Science, Louisiana State University, Baton Rouge, LA 70803, USA; Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Elizabeth P Derryberry
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA 70118, USA.
| |
Collapse
|
44
|
Ottenburghs J. Digest: White‐eye birds provide possible answer to the paradox of the great speciator*. Evolution 2019; 73:1681-1682. [DOI: 10.1111/evo.13814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 07/29/2019] [Indexed: 11/29/2022]
Affiliation(s)
- Jente Ottenburghs
- Department of Ecology and GeneticsUppsala University Norbyvägen 18D 75236 Uppsala Sweden
| |
Collapse
|
45
|
Cowles SA, Uy JAC. Rapid, complete reproductive isolation in two closely related
Zosterops
White‐eye bird species despite broadly overlapping ranges*. Evolution 2019; 73:1647-1662. [DOI: 10.1111/evo.13797] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 06/06/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Sarah A. Cowles
- Department of BiologyUniversity of Miami Coral Gables Florida 33146
| | - J. Albert C. Uy
- Department of BiologyUniversity of Miami Coral Gables Florida 33146
| |
Collapse
|
46
|
Abstract
It has long been appreciated that analyses of genomic data (e.g., whole genome sequencing or sequence capture) have the potential to reveal the tree of life, but it remains challenging to move from sequence data to a clear understanding of evolutionary history, in part due to the computational challenges of phylogenetic estimation using genome-scale data. Supertree methods solve that challenge because they facilitate a divide-and-conquer approach for large-scale phylogeny inference by integrating smaller subtrees in a computationally efficient manner. Here, we combined information from sequence capture and whole-genome phylogenies using supertree methods. However, the available phylogenomic trees had limited overlap so we used taxon-rich (but not phylogenomic) megaphylogenies to weave them together. This allowed us to construct a phylogenomic supertree, with support values, that included 707 bird species (~7% of avian species diversity). We estimated branch lengths using mitochondrial sequence data and we used these branch lengths to estimate divergence times. Our time-calibrated supertree supports radiation of all three major avian clades (Palaeognathae, Galloanseres, and Neoaves) near the Cretaceous-Paleogene (K-Pg) boundary. The approach we used will permit the continued addition of taxa to this supertree as new phylogenomic data are published, and it could be applied to other taxa as well.
Collapse
|
47
|
Abrahamczyk S. Comparison of the ecology and evolution of plants with a generalist bird pollination system between continents and islands worldwide. Biol Rev Camb Philos Soc 2019; 94:1658-1671. [DOI: 10.1111/brv.12520] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/15/2019] [Accepted: 04/18/2019] [Indexed: 01/06/2023]
Affiliation(s)
- Stefan Abrahamczyk
- Nees‐Institute for Biodiversity of PlantsUniversity of Bonn 53115 Bonn Germany
| |
Collapse
|
48
|
Burbrink FT, Ruane S, Kuhn A, Rabibisoa N, Randriamahatantsoa B, Raselimanana AP, Andrianarimalala MSM, Cadle JE, Lemmon AR, Lemmon EM, Nussbaum RA, Jones LN, Pearson R, Raxworthy CJ. The Origins and Diversification of the Exceptionally Rich Gemsnakes (Colubroidea: Lamprophiidae: Pseudoxyrhophiinae) in Madagascar. Syst Biol 2019; 68:918-936. [DOI: 10.1093/sysbio/syz026] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 04/05/2019] [Accepted: 04/09/2019] [Indexed: 11/14/2022] Open
Abstract
Abstract
Processes leading to spectacular diversity of both form and species on islands have been well-documented under island biogeography theory, where distance from source and island size are key factors determining immigration and extinction resistance. But far less understood are the processes governing in situ diversification on the world’s mega islands, where large and isolated land masses produced morphologically distinct radiations from related taxa on continental regions. Madagascar has long been recognized as a natural laboratory due to its isolation, lack of influence from adjacent continents, and diversification of spectacular vertebrate radiations. However, only a handful of studies have examined rate shifts of in situ diversification for this island. Here, we examine rates of diversification in the Malagasy snakes of the family Pseudoxyrhophiinae (gemsnakes) to understand if rates of speciation were initially high, enhanced by diversification into distinct biomes, and associated with key dentition traits. Using a genomic sequence-capture data set for 366 samples, we determine that all previously described and newly discovered species are delimitable and therefore useful candidates for understanding diversification trajectories through time. Our analysis detected no shifts in diversification rate between clades or changes in biome or dentition type. Remarkably, we demonstrate that rates of diversification of the gemsnake radiation, which originated in Madagascar during the early Miocene, remained steady throughout the Neogene. However, we do detect a significant slowdown in diversification during the Pleistocene. We also comment on the apparent paradox where most living species originated in the Pleistocene, despite diversification rates being substantially higher during the earlier 15 myr.
Collapse
Affiliation(s)
- Frank T Burbrink
- Department of Herpetology, The American Museum of Natural History, 79th Street at Central Park West, New York, NY 10024, USA
| | - Sara Ruane
- Department of Biological Sciences, 206 Boyden Hall, Rutgers University-Newark, 195 University Ave, Newark, NJ 07102, USA
| | - Arianna Kuhn
- Department of Herpetology, The American Museum of Natural History, 79th Street at Central Park West, New York, NY 10024, USA
- Department of Biology, The Graduate School and University Center, The City University of New York, 365 Fifth Ave., New York, NY 10016, USA
| | - Nirhy Rabibisoa
- Mention Sciences de la Vie et de l’Environnement, Faculté des Sciences, de Technologies et de l’Environnement, Université de Mahajanga, Campus Universitaire d’Ambondrona, BP 652, Mahajanga 401, Madagascar
| | - Bernard Randriamahatantsoa
- Mention Sciences de la Vie et de l’Environnement, Faculté des Sciences, de Technologies et de l’Environnement, Université de Mahajanga, Campus Universitaire d’Ambondrona, BP 652, Mahajanga 401, Madagascar
| | - Achille P Raselimanana
- Mention: Zoologie et Biodiversité Animale, Faculté des Sciences, Université d’Antananarivo, BP 906, Antananarivo 101, Madagascar
| | - Mamy S M Andrianarimalala
- Mention: Zoologie et Biodiversité Animale, Faculté des Sciences, Université d’Antananarivo, BP 906, Antananarivo 101, Madagascar
| | - John E Cadle
- Department of Biology, East Georgia State College, Swainsboro, GA 30401, USA
| | - Alan R Lemmon
- Department of Scientific Computing, Florida State University, Dirac Science Library, Tallahassee, FL 32306-4102, USA
| | - Emily Moriarty Lemmon
- Department of Biological Science, Florida State University, 319 Stadium Drive, Tallahassee, FL 32306-4295, USA
| | - Ronald A Nussbaum
- Division of Reptiles and Amphibians, Museum of Zoology, Research Museums Center, 3600 Varsity Drive, University of Michigan, Ann Arbor, MI 48108, USA
| | - Leonard N Jones
- Department of Biology, University of Washington, Seattle, WA 98195-1800, USA
| | - Richard Pearson
- Centre for Biodiversity & Environment Research, Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| | - Christopher J Raxworthy
- Department of Herpetology, The American Museum of Natural History, 79th Street at Central Park West, New York, NY 10024, USA
| |
Collapse
|
49
|
O’Connell DP, Kelly DJ, Lawless N, O’Brien K, Marcaigh FÓ, Karya A, Analuddin K, Marples NM. A sympatric pair of undescribed white-eye species (Aves: Zosteropidae: Zosterops) with different origins. Zool J Linn Soc 2019. [DOI: 10.1093/zoolinnean/zlz022] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Darren P O’Connell
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
- School of Biology & Environment Science, University College Dublin, Dublin, Ireland
| | - David J Kelly
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - Naomi Lawless
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - Katie O’Brien
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - Fionn Ó Marcaigh
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - Adi Karya
- Department of Biology and Biotechnology, Universitas Halu Oleo, Kendari, South-east Sulawesi, Indonesia
| | - Kangkuso Analuddin
- Department of Biology and Biotechnology, Universitas Halu Oleo, Kendari, South-east Sulawesi, Indonesia
| | - Nicola M Marples
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
50
|
Boyce AJ, Martin TE. Interspecific aggression among parapatric and sympatric songbirds on a tropical elevational gradient. Behav Ecol 2019. [DOI: 10.1093/beheco/ary194] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
Interspecific competition is hypothesized to be a strong force that sets species range limits and drives parapatric distributions of closely related species on tropical mountains. Yet, experimental evidence that competition drives spatial segregation of closely related species on elevational gradients is rare. To test whether competition limits elevational ranges of tropical songbirds, we conducted reciprocal playback experiments on 2 pairs of species with adjacent but nonoverlapping (parapatric) distributions and 1 pair of sympatric species. We found asymmetric interspecific aggression in one parapatric pair (Pycnonotidae) and a complete absence of interspecific aggression in the other (Zosteropidae). We also found asymmetric interspecies aggression in a pair of sympatric flycatchers (Muscicapidae). Our results indicate that interspecific aggression may set range limits in some cases, but it is not a prerequisite for parapatry. Furthermore, the presence of interspecific aggression between co-occurring relatives suggests that while competition may play a role in limiting species distributions, interspecific aggression alone is not sufficient evidence to assert that competition is the primary driver of parapatric distributions.
Collapse
Affiliation(s)
- Andy J Boyce
- Wildlife Biology Program, W.A. Franke College of Forestry and Conservation, University of Montana, Missoula, MT, USA
- US Geological Survey, Montana Cooperative Wildlife Research Unit, University of Montana, Missoula, MT, USA
| | - Thomas E Martin
- US Geological Survey, Montana Cooperative Wildlife Research Unit, University of Montana, Missoula, MT, USA
| |
Collapse
|