1
|
Santana-Molina C, Williams TA, Snel B, Spang A. Chimeric origins and dynamic evolution of central carbon metabolism in eukaryotes. Nat Ecol Evol 2025; 9:613-627. [PMID: 40033103 PMCID: PMC11976288 DOI: 10.1038/s41559-025-02648-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 01/24/2025] [Indexed: 03/05/2025]
Abstract
The origin of eukaryotes was a key event in the history of life. Current leading hypotheses propose that a symbiosis between an asgardarchaeal host cell and an alphaproteobacterial endosymbiont represented a crucial step in eukaryotic origin and that metabolic cross-feeding between the partners provided the basis for their subsequent evolutionary integration. A major unanswered question is whether the metabolism of modern eukaryotes bears any vestige of this ancestral syntrophy. Here we systematically analyse the evolutionary origins of the eukaryotic gene repertoires mediating central carbon metabolism. Our phylogenetic and sequence analyses reveal that this gene repertoire is chimeric, with ancestral contributions from Asgardarchaeota and Alphaproteobacteria operating predominantly in glycolysis and the tricarboxylic acid cycle, respectively. Our analyses also reveal the extent to which this ancestral metabolic interplay has been remodelled via gene loss, transfer and subcellular retargeting in the >2 billion years since the origin of eukaryotic cells, and we identify genetic contributions from other prokaryotic sources in addition to the asgardarchaeal host and alphaproteobacterial endosymbiont. Our work demonstrates that, in contrast to previous assumptions, modern eukaryotic metabolism preserves information about the nature of the original asgardarchaeal-alphaproteobacterial interactions and supports syntrophy scenarios for the origin of the eukaryotic cell.
Collapse
Affiliation(s)
- Carlos Santana-Molina
- Department of Marine Microbiology and Biogeochemistry, NIOZ, Royal Netherlands Institute for Sea Research, AB Den Burg, the Netherlands
| | - Tom A Williams
- Bristol Palaeobiology Group, School of Biological Sciences, University of Bristol, Bristol, UK
| | - Berend Snel
- Theoretical Biology & Bioinformatics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands.
| | - Anja Spang
- Department of Marine Microbiology and Biogeochemistry, NIOZ, Royal Netherlands Institute for Sea Research, AB Den Burg, the Netherlands.
- Department of Evolutionary & Population Biology, Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
2
|
Malla A, Gupta S, Sur R. Glycolytic enzymes in non-glycolytic web: functional analysis of the key players. Cell Biochem Biophys 2024; 82:351-378. [PMID: 38196050 DOI: 10.1007/s12013-023-01213-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/26/2023] [Indexed: 01/11/2024]
Abstract
To survive in the tumour microenvironment, cancer cells undergo rapid metabolic reprograming and adaptability. One of the key characteristics of cancer is increased glycolytic selectivity and decreased oxidative phosphorylation (OXPHOS). Apart from ATP synthesis, glycolysis is also responsible for NADH regeneration and macromolecular biosynthesis, such as amino acid biosynthesis and nucleotide biosynthesis. This allows cancer cells to survive and proliferate even in low-nutrient and oxygen conditions, making glycolytic enzymes a promising target for various anti-cancer agents. Oncogenic activation is also caused by the uncontrolled production and activity of glycolytic enzymes. Nevertheless, in addition to conventional glycolytic processes, some glycolytic enzymes are involved in non-canonical functions such as transcriptional regulation, autophagy, epigenetic changes, inflammation, various signaling cascades, redox regulation, oxidative stress, obesity and fatty acid metabolism, diabetes and neurodegenerative disorders, and hypoxia. The mechanisms underlying the non-canonical glycolytic enzyme activities are still not comprehensive. This review summarizes the current findings on the mechanisms fundamental to the non-glycolytic actions of glycolytic enzymes and their intermediates in maintaining the tumor microenvironment.
Collapse
Affiliation(s)
- Avirup Malla
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, Kolkata, India
| | - Suvroma Gupta
- Department of Aquaculture Management, Khejuri college, West Bengal, Baratala, India.
| | - Runa Sur
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, Kolkata, India.
| |
Collapse
|
3
|
Schroeder HT, De Lemos Muller CH, Heck TG, Krause M, Homem de Bittencourt PI. The dance of proteostasis and metabolism: Unveiling the caloristatic controlling switch. Cell Stress Chaperones 2024; 29:175-200. [PMID: 38331164 PMCID: PMC10939077 DOI: 10.1016/j.cstres.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 02/02/2024] [Accepted: 02/04/2024] [Indexed: 02/10/2024] Open
Abstract
The heat shock response (HSR) is an ancient and evolutionarily conserved mechanism designed to restore cellular homeostasis following proteotoxic challenges. However, it has become increasingly evident that disruptions in energy metabolism also trigger the HSR. This interplay between proteostasis and energy regulation is rooted in the fundamental need for ATP to fuel protein synthesis and repair, making the HSR an essential component of cellular energy management. Recent findings suggest that the origins of proteostasis-defending systems can be traced back over 3.6 billion years, aligning with the emergence of sugar kinases that optimized glycolysis around 3.594 billion years ago. This evolutionary connection is underscored by the spatial similarities between the nucleotide-binding domain of HSP70, the key player in protein chaperone machinery, and hexokinases. The HSR serves as a hub that integrates energy metabolism and resolution of inflammation, further highlighting its role in maintaining cellular homeostasis. Notably, 5'-adenosine monophosphate-activated protein kinase emerges as a central regulator, promoting the HSR during predominantly proteotoxic stress while suppressing it in response to predominantly metabolic stress. The complex relationship between 5'-adenosine monophosphate-activated protein kinase and the HSR is finely tuned, with paradoxical effects observed under different stress conditions. This delicate equilibrium, known as caloristasis, ensures that cellular homeostasis is maintained despite shifting environmental and intracellular conditions. Understanding the caloristatic controlling switch at the heart of this interplay is crucial. It offers insights into a wide range of conditions, including glycemic control, obesity, type 2 diabetes, cardiovascular and neurodegenerative diseases, reproductive abnormalities, and the optimization of exercise routines. These findings highlight the profound interconnectedness of proteostasis and energy metabolism in cellular function and adaptation.
Collapse
Affiliation(s)
- Helena Trevisan Schroeder
- Laboratory of Cellular Physiology (FisCel) Department of Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Carlos Henrique De Lemos Muller
- Laboratory of Inflammation, Metabolism and Exercise Research (LAPIMEX), Department of Physiology, ICBS, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Thiago Gomes Heck
- Post Graduate Program in Integral Health Care (PPGAIS-UNIJUÍ/UNICRUZ/URI), Regional University of Northwestern Rio Grande Do Sul State (UNIJUI) and Post Graduate Program in Mathematical and Computational Modeling (PPGMMC), UNIJUI, Ijuí, Rio Grande do Sul, Brazil
| | - Mauricio Krause
- Laboratory of Inflammation, Metabolism and Exercise Research (LAPIMEX), Department of Physiology, ICBS, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Paulo Ivo Homem de Bittencourt
- Laboratory of Cellular Physiology (FisCel) Department of Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
4
|
Soultanas P, Janniere L. The metabolic control of DNA replication: mechanism and function. Open Biol 2023; 13:230220. [PMID: 37582405 PMCID: PMC10427196 DOI: 10.1098/rsob.230220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 07/26/2023] [Indexed: 08/17/2023] Open
Abstract
Metabolism and DNA replication are the two most fundamental biological functions in life. The catabolic branch of metabolism breaks down nutrients to produce energy and precursors used by the anabolic branch of metabolism to synthesize macromolecules. DNA replication consumes energy and precursors for faithfully copying genomes, propagating the genetic material from generation to generation. We have exquisite understanding of the mechanisms that underpin and regulate these two biological functions. However, the molecular mechanism coordinating replication to metabolism and its biological function remains mostly unknown. Understanding how and why living organisms respond to fluctuating nutritional stimuli through cell-cycle dynamic changes and reproducibly and distinctly temporalize DNA synthesis in a wide-range of growth conditions is important, with wider implications across all domains of life. After summarizing the seminal studies that founded the concept of the metabolic control of replication, we review data linking metabolism to replication from bacteria to humans. Molecular insights underpinning these links are then presented to propose that the metabolic control of replication uses signalling systems gearing metabolome homeostasis to orchestrate replication temporalization. The remarkable replication phenotypes found in mutants of this control highlight its importance in replication regulation and potentially genetic stability and tumorigenesis.
Collapse
Affiliation(s)
- Panos Soultanas
- Biodiscovery Institute, School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Laurent Janniere
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Evry, Université Paris-Saclay, 91057 Evry, France
| |
Collapse
|
5
|
Wang M, Li CJ, Zhang Z, Li PP, Yang LL, Zhi XY. The evolution of morphological development is congruent with the species phylogeny in the genus Streptomyces. Front Microbiol 2023; 14:1102250. [PMID: 37065118 PMCID: PMC10090380 DOI: 10.3389/fmicb.2023.1102250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 03/14/2023] [Indexed: 03/31/2023] Open
Abstract
As the canonical model organism to dissect bacterial morphological development, Streptomyces species has attracted much attention from the microbiological society. However, the evolution of development-related genes in Streptomyces remains elusive. Here, we evaluated the distribution of development-related genes, thus indicating that the majority of these genes were ubiquitous in Streptomyces genomes. Furthermore, the phylogenetic topologies of related strict orthologous genes were compared to the species tree of Streptomyces from both concatenation and single-gene tree analyses. Meanwhile, the reconciled gene tree and normalization based on the number of parsimony-informative sites were also employed to reduce the impact of phylogenetic conflicts, which was induced by uncertainty in single-gene tree inference based merely on the sequence and the bias in the amount of phylogenetic information caused by variable numbers of parsimony-informative sites. We found that the development-related genes had higher congruence to the species tree than other strict orthologous genes. Considering that the development-related genes could also be tracked back to the common ancestor of Streptomyces, these results suggest that morphological development follows the same pattern as species divergence.
Collapse
Affiliation(s)
- Min Wang
- Key Laboratory of Microbial Diversity in Southwest China of Ministry of Education, School of Life Sciences, Yunnan Institute of Microbiology, Yunnan University, Kunming, China
- Zhaotong Health Vocational College, Zhaotong, China
| | - Cong-Jian Li
- Key Laboratory of Microbial Diversity in Southwest China of Ministry of Education, School of Life Sciences, Yunnan Institute of Microbiology, Yunnan University, Kunming, China
| | - Zhen Zhang
- Key Laboratory of Microbial Diversity in Southwest China of Ministry of Education, School of Life Sciences, Yunnan Institute of Microbiology, Yunnan University, Kunming, China
| | - Pan-Pan Li
- Key Laboratory of Microbial Diversity in Southwest China of Ministry of Education, School of Life Sciences, Yunnan Institute of Microbiology, Yunnan University, Kunming, China
| | - Ling-Ling Yang
- Key Laboratory of Microbial Diversity in Southwest China of Ministry of Education, School of Life Sciences, Yunnan Institute of Microbiology, Yunnan University, Kunming, China
| | - Xiao-Yang Zhi
- Key Laboratory of Microbial Diversity in Southwest China of Ministry of Education, School of Life Sciences, Yunnan Institute of Microbiology, Yunnan University, Kunming, China
- *Correspondence: Xiao-Yang Zhi,
| |
Collapse
|
6
|
Wu T, Jia L, Lei S, Jiang H, Liu J, Li N, Langford PR, Liu H, Lei L. Host HSPD1 Translocation from Mitochondria to the Cytoplasm Induced by Streptococcus suis Serovar 2 Enolase Mediates Apoptosis and Loss of Blood-Brain Barrier Integrity. Cells 2022; 11:2071. [PMID: 35805155 PMCID: PMC9265368 DOI: 10.3390/cells11132071] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/25/2022] [Accepted: 06/27/2022] [Indexed: 02/01/2023] Open
Abstract
Streptococcus suis serovar 2 (S. suis serovar 2) is a zoonotic pathogen that causes meningitis in pigs and humans, and is a serious threat to the swine industry and public health. Understanding the mechanism(s) by which S. suis serovar 2 penetrates the blood-brain barrier (BBB) is crucial to elucidating the pathogenesis of meningitis. In a previous study, we found that expression of the virulence factor enolase (Eno) by S. suis serovar 2 promotes the expression of host heat shock protein family D member 1 (HSPD1) in brain tissue, which leads to the apoptosis of porcine brain microvascular endothelial cells (PBMECs) and increased BBB permeability, which in turn promotes bacterial translocation across the BBB. However, the mechanism by which HSPD1 mediates Eno-induced apoptosis remains unclear. In this study, we demonstrate that Eno promotes the translocation of HSPD1 from mitochondria to the cytoplasm, where HSPD1 binds to β-actin (ACTB), the translocated HSPD1, and its interaction with ACTB led to adverse changes in cell morphology and promoted the expression of apoptosis-related proteins, second mitochondria-derived activator of caspases (Smac), and cleaved caspase-3; inhibited the expression of X-linked inhibitor of apoptosis protein (XIAP); and finally promoted cell apoptosis. These results further elucidate the role of HSPD1 in the process of Eno-induced apoptosis and increased BBB permeability, increasing our understanding of the pathogenic mechanisms of meningitis, and providing a framework for novel therapeutic strategies.
Collapse
Affiliation(s)
- Tong Wu
- State Key Laboratory for Zoonotic Diseases/Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (T.W.); (L.J.); (H.J.); (J.L.); (N.L.)
| | - Li Jia
- State Key Laboratory for Zoonotic Diseases/Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (T.W.); (L.J.); (H.J.); (J.L.); (N.L.)
| | - Siyu Lei
- School of Basic Medicine, Jilin University, Changchun 130021, China;
| | - Hexiang Jiang
- State Key Laboratory for Zoonotic Diseases/Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (T.W.); (L.J.); (H.J.); (J.L.); (N.L.)
| | - Jianan Liu
- State Key Laboratory for Zoonotic Diseases/Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (T.W.); (L.J.); (H.J.); (J.L.); (N.L.)
| | - Na Li
- State Key Laboratory for Zoonotic Diseases/Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (T.W.); (L.J.); (H.J.); (J.L.); (N.L.)
| | - Paul R. Langford
- Section of Paediatric Infectious Disease, Imperial College London, London W2 1NY, UK;
| | - Hongtao Liu
- State Key Laboratory for Zoonotic Diseases/Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (T.W.); (L.J.); (H.J.); (J.L.); (N.L.)
| | - Liancheng Lei
- State Key Laboratory for Zoonotic Diseases/Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (T.W.); (L.J.); (H.J.); (J.L.); (N.L.)
- Department of Veterinary Medicine, College of Animal Science, Yangtze University, Jingzhou 434023, China
| |
Collapse
|
7
|
The Retrospective on Atypical Brucella Species Leads to Novel Definitions. Microorganisms 2022; 10:microorganisms10040813. [PMID: 35456863 PMCID: PMC9025488 DOI: 10.3390/microorganisms10040813] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 02/01/2023] Open
Abstract
The genus Brucella currently comprises twelve species of facultative intracellular bacteria with variable zoonotic potential. Six of them have been considered as classical, causing brucellosis in terrestrial mammalian hosts, with two species originated from marine mammals. In the past fifteen years, field research as well as improved pathogen detection and typing have allowed the identification of four new species, namely Brucella microti, Brucella inopinata, Brucella papionis, Brucella vulpis, and of numerous strains, isolated from a wide range of hosts, including for the first time cold-blooded animals. While their genome sequences are still highly similar to those of classical strains, some of them are characterized by atypical phenotypes such as higher growth rate, increased resistance to acid stress, motility, and lethality in the murine infection model. In our review, we provide an overview of state-of-the-art knowledge about these novel Brucella sp., with emphasis on their phylogenetic positions in the genus, their metabolic characteristics, acid stress resistance mechanisms, and their behavior in well-established in cellulo and in vivo infection models. Comparison of phylogenetic classification and phenotypical properties between classical and novel Brucella species and strains finally lead us to propose a more adapted terminology, distinguishing between core and non-core, and typical versus atypical brucellae, respectively.
Collapse
|
8
|
Cheng L, Min W, Li M, Zhou L, Hsu CC, Yang X, Jiang X, Ruan Z, Zhong Y, Wang ZY, Wang W. Quantitative Proteomics Reveals that GmENO2 Proteins Are Involved in Response to Phosphate Starvation in the Leaves of Glycine max L. Int J Mol Sci 2021; 22:E920. [PMID: 33477636 PMCID: PMC7831476 DOI: 10.3390/ijms22020920] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 12/24/2022] Open
Abstract
Soybean (Glycine max L.) is a major crop providing important source for protein and oil for human life. Low phosphate (LP) availability is a critical limiting factor affecting soybean production. Soybean plants develop a series of strategies to adapt to phosphate (Pi) limitation condition. However, the underlying molecular mechanisms responsible for LP stress response remain largely unknown. Here, we performed a label-free quantification (LFQ) analysis of soybean leaves grown under low and high phosphate conditions. We identified 267 induced and 440 reduced differential proteins from phosphate-starved leaves. Almost a quarter of the LP decreased proteins are involved in translation processes, while the LP increased proteins are accumulated in chlorophyll biosynthetic and carbon metabolic processes. Among these induced proteins, an enolase protein, GmENO2a was found to be mostly induced protein. On the transcriptional level, GmENO2a and GmENO2b, but not GmENO2c or GmENO2d, were dramatically induced by phosphate starvation. Among 14 enolase genes, only GmENO2a and GmENO2b genes contain the P1BS motif in their promoter regions. Furthermore, GmENO2b was specifically induced in the GmPHR31 overexpressing soybean plants. Our findings provide molecular insights into how soybean plants tune basic carbon metabolic pathway to adapt to Pi deprivation through the ENO2 enzymes.
Collapse
Affiliation(s)
- Ling Cheng
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.C.); (X.J.); (Z.R.)
| | - Wanling Min
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (W.M.); (M.L.); (L.Z.)
| | - Man Li
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (W.M.); (M.L.); (L.Z.)
| | - Lili Zhou
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (W.M.); (M.L.); (L.Z.)
| | - Chuan-Chih Hsu
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA; (C.-C.H.); (X.Y.); (Z.-Y.W.)
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Xuelian Yang
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA; (C.-C.H.); (X.Y.); (Z.-Y.W.)
| | - Xue Jiang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.C.); (X.J.); (Z.R.)
| | - Zhijie Ruan
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.C.); (X.J.); (Z.R.)
| | - Yongjia Zhong
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Zhi-Yong Wang
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA; (C.-C.H.); (X.Y.); (Z.-Y.W.)
| | - Wenfei Wang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.C.); (X.J.); (Z.R.)
| |
Collapse
|
9
|
Yang Y, Hu P, Zhou X, Wu P, Si X, Lu B, Zhu Y, Xia Y. Transcriptome analysis of Aconitum carmichaelii and exploration of the salsolinol biosynthetic pathway. Fitoterapia 2020; 140:104412. [DOI: 10.1016/j.fitote.2019.104412] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 10/28/2019] [Accepted: 11/04/2019] [Indexed: 02/06/2023]
|
10
|
Debray K, Marie-Magdelaine J, Ruttink T, Clotault J, Foucher F, Malécot V. Identification and assessment of variable single-copy orthologous (SCO) nuclear loci for low-level phylogenomics: a case study in the genus Rosa (Rosaceae). BMC Evol Biol 2019; 19:152. [PMID: 31340752 PMCID: PMC6657147 DOI: 10.1186/s12862-019-1479-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 07/16/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND With an ever-growing number of published genomes, many low levels of the Tree of Life now contain several species with enough molecular data to perform shallow-scale phylogenomic studies. Moving away from using just a few universal phylogenetic markers, we can now target thousands of other loci to decipher taxa relationships. Making the best possible selection of informative sequences regarding the taxa studied has emerged as a new issue. Here, we developed a general procedure to mine genomic data, looking for orthologous single-copy loci capable of deciphering phylogenetic relationships below the generic rank. To develop our strategy, we chose the genus Rosa, a rapid-evolving lineage of the Rosaceae family in which several species genomes have recently been sequenced. We also compared our loci to conventional plastid markers, commonly used for phylogenetic inference in this genus. RESULTS We generated 1856 sequence tags in putative single-copy orthologous nuclear loci. Associated in silico primer pairs can potentially amplify fragments able to resolve a wide range of speciation events within the genus Rosa. Analysis of parsimony-informative site content showed the value of non-coding genomic regions to obtain variable sequences despite the fact that they may be more difficult to target in less related species. Dozens of nuclear loci outperform the conventional plastid phylogenetic markers in terms of phylogenetic informativeness, for both recent and ancient evolutionary divergences. However, conflicting phylogenetic signals were found between nuclear gene tree topologies and the species-tree topology, shedding light on the many patterns of hybridization and/or incomplete lineage sorting that occur in the genus Rosa. CONCLUSIONS With recently published genome sequence data, we developed a set of single-copy orthologous nuclear loci to resolve species-level phylogenomics in the genus Rosa. This genome-wide scale dataset contains hundreds of highly variable loci which phylogenetic interest was assessed in terms of phylogenetic informativeness and topological conflict. Our target identification procedure can easily be reproduced to identify new highly informative loci for other taxonomic groups and ranks.
Collapse
Affiliation(s)
- Kevin Debray
- IRHS, Agrocampus-Ouest, INRA, UNIV Angers, SFR 4207 QuaSaV, Beaucouzé, France.
| | | | - Tom Ruttink
- ILVO, Flanders Research Institute for Agriculture, Fisheries and Food, Plant Sciences Unit, Melle, Belgium
| | - Jérémy Clotault
- IRHS, Agrocampus-Ouest, INRA, UNIV Angers, SFR 4207 QuaSaV, Beaucouzé, France
| | - Fabrice Foucher
- IRHS, Agrocampus-Ouest, INRA, UNIV Angers, SFR 4207 QuaSaV, Beaucouzé, France
| | - Valéry Malécot
- IRHS, Agrocampus-Ouest, INRA, UNIV Angers, SFR 4207 QuaSaV, Beaucouzé, France.
| |
Collapse
|
11
|
Gonzalez-Gil L, Carballa M, Corvini PFX, Lema JM. Reversibility of enzymatic reactions might limit biotransformation of organic micropollutants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 665:574-578. [PMID: 30776629 DOI: 10.1016/j.scitotenv.2019.02.143] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/08/2019] [Accepted: 02/09/2019] [Indexed: 06/09/2023]
Abstract
Biotransformation of many organic micropollutants (OMPs) in sewage treatment plants is incomplete leading to their release into the environment. Recent findings suggest that thermodynamic aspects of the reaction as chemical equilibrium limit biotransformation, while kinetic parameters have a lower influence. Reversibility of enzymatic reactions might result in a chemical equilibrium between the OMP and the transformation product, thus impeding a total removal of the compound. To the best of our knowledge, no study has focused on proving the reversible action of enzymes towards OMPs so far. Therefore, we aimed at demonstrating this hypothesis through in vitro assays with bisphenol A (BPA) in the presence of kinase enzymes, namely acetate kinase and hexokinase, which are key enzymes in anaerobic processes. Results suggest that BPA is phosphorylated by acetate kinase and hexokinase in the presence of ATP (adenosine 5-triphosphate), but when the concentration of this co-substrate decreases and the enzymes loss their activity, the backward reaction occurs, revealing a reversible biotransformation mechanism. This information is particularly relevant to address new removal strategies, which up to now were mainly focused on modifying the kinetic parameters of the reaction.
Collapse
Affiliation(s)
- Lorena Gonzalez-Gil
- Department of Chemical Engineering, School of Engineering, Universidade de Santiago de Compostela, Rúa Lope Gómez de Marzoa, E-15782 Santiago de Compostela, Spain.
| | - Marta Carballa
- Department of Chemical Engineering, School of Engineering, Universidade de Santiago de Compostela, Rúa Lope Gómez de Marzoa, E-15782 Santiago de Compostela, Spain.
| | - Philippe F-X Corvini
- Institute for Ecopreneurship, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, 4132 Muttenz, Switzerland.
| | - Juan M Lema
- Department of Chemical Engineering, School of Engineering, Universidade de Santiago de Compostela, Rúa Lope Gómez de Marzoa, E-15782 Santiago de Compostela, Spain.
| |
Collapse
|
12
|
Troncoso-Ponce MA, Rivoal J, Dorion S, Sánchez R, Venegas-Calerón M, Moreno-Pérez AJ, Baud S, Garcés R, Martínez-Force E. Molecular and biochemical characterization of the sunflower (Helianthus annuus L.) cytosolic and plastidial enolases in relation to seed development. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 272:117-130. [PMID: 29807582 DOI: 10.1016/j.plantsci.2018.04.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/08/2018] [Accepted: 04/10/2018] [Indexed: 05/19/2023]
Abstract
In the present study, we describe the molecular and biochemical characterization of sunflower (Helianthus annuus L.) enolase (ENO, EC 4.2.1.11) proteins, which catalyze the formation of phosphoenolpyruvate, the penultimate intermediate in the glycolytic pathway. We cloned and characterized three cDNAs encoding different ENO isoforms from developing sunflower seeds. Studies using fluorescently tagged ENOs confirmed the predicted subcellular localization of ENO isoforms: HaENO1 in the plastid while HaENO2 and HaENO3 were found in the cytosol. The cDNAs were used to express the corresponding 6(His)-tagged proteins in Escherichia coli. The proteins were purified to electrophoretic homogeneity, using immobilized metal ion affinity chromatography, and biochemically characterized. Recombinant HaENO1 and HaENO2, but not HaENO3 were shown to have enolase activity, in agreement with data obtained with the Arabidopsis homolog proteins. Site directed mutagenesis of several critical amino acids was used to attempt to recover enolase activity in recombinant HaENO3, resulting in very small increases that were not additive. A kinetic characterization of the two active isoforms showed that pH had similar effect on their velocity, that they had similar affinity for 2-phosphoglycerate, but that the kcat/Km of the plastidial enzyme was higher than that of the cytosolic isoform. Even though HaENO2 was always the most highly expressed transcript, the levels of expression of the three ENO genes were remarkably distinct in all the vegetative and reproductive tissues studied. This indicates that in seeds the conversion of 2-phosphoglycerate to phosphoenolpyruvate takes place through the cytosolic and the plastidial pathways therefore both routes could contribute to the supply of carbon for lipid synthesis. The identity of the main source of carbon during the period of stored products synthesis is discussed.
Collapse
Affiliation(s)
- M A Troncoso-Ponce
- Instituto de la Grasa (CSIC), Edificio 46, Campus Universitario Pablo de Olavide, Carretera de Utrera Km 1, 41013, Sevilla, Spain; Sorbonne University, Université de technologie de Compiègne, CNRS, Institute for Enzyme and Cell Engineering, Centre de recherche Royallieu, CS 60 319, 60 203 Compiègne cedex, France.
| | - J Rivoal
- Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Rue Sherbrooke est, Montréal, QC, Canada
| | - S Dorion
- Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Rue Sherbrooke est, Montréal, QC, Canada
| | - R Sánchez
- Instituto de la Grasa (CSIC), Edificio 46, Campus Universitario Pablo de Olavide, Carretera de Utrera Km 1, 41013, Sevilla, Spain
| | - M Venegas-Calerón
- Instituto de la Grasa (CSIC), Edificio 46, Campus Universitario Pablo de Olavide, Carretera de Utrera Km 1, 41013, Sevilla, Spain
| | - A J Moreno-Pérez
- Instituto de la Grasa (CSIC), Edificio 46, Campus Universitario Pablo de Olavide, Carretera de Utrera Km 1, 41013, Sevilla, Spain
| | - S Baud
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France
| | - R Garcés
- Instituto de la Grasa (CSIC), Edificio 46, Campus Universitario Pablo de Olavide, Carretera de Utrera Km 1, 41013, Sevilla, Spain
| | - E Martínez-Force
- Instituto de la Grasa (CSIC), Edificio 46, Campus Universitario Pablo de Olavide, Carretera de Utrera Km 1, 41013, Sevilla, Spain
| |
Collapse
|
13
|
Yan L, Zhao C, Zhang J, Qiu L, Chen Z. Transcriptomic analyses of gastrointestinal function in the "dwarf" and "medium" forms of Sthenoteuthis oualaniensis during sexual maturation. PLoS One 2018; 13:e0199053. [PMID: 29897993 PMCID: PMC5999225 DOI: 10.1371/journal.pone.0199053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 05/30/2018] [Indexed: 11/21/2022] Open
Abstract
Sthenoteuthis oualaniensis (SA) is an important squid species in the South China Sea. Based on SA samples collected in 2016, SA was divided into the “dwarf” form (DF) and “medium” form (MF). To understand the changes in gastrointestinal function in SA during sexual maturation, we undertook transcriptomic analyses of the stomach and intestine tissues of the mature and immature DF and MF of SA using the deep-sequencing platform Illumina HiSeq™. We exploited a high-throughput method to delineate differentially expressed genes (DEGs) in the DF and MF of SA. A total of 135464 unigenes (68627 unigenes of the DG and 66837 unigenes of the MF) were generated. We identified 7965 and 4051 relative DEGs in the intestine and stomach tissues of the mature DF of SA compared with those of the immature DF of SA; and 22138 and 18460 DEGs in the intestine and stomach of the mature MF of SA compared with those of the immature MF of SA. Gastrointestinal function related to the metabolism of lipids, amino acids, glucose, and energy were changed in SA during sexual maturation. This work is the first to identify a set of genes associated with gastrointestinal function during sexual maturation in SA.
Collapse
Affiliation(s)
- Lulu Yan
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, P. R. China
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, Guangzhou, P. R. China
| | - Chao Zhao
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, P. R. China
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, Guangzhou, P. R. China
| | - Jun Zhang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, P. R. China
- Key Laboratory of Open-Sea Fishery Development, Ministry of Agriculture, Guangzhou, P. R. China
| | - Lihua Qiu
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, P. R. China
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture, Beijing, P. R. China
| | - Zuozhi Chen
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, P. R. China
- Key Laboratory of Open-Sea Fishery Development, Ministry of Agriculture, Guangzhou, P. R. China
- * E-mail:
| |
Collapse
|
14
|
Ma Y, Yang M, Lin X, Liu X, Huang H, Ge F. Malonylome Analysis Reveals the Involvement of Lysine Malonylation in Metabolism and Photosynthesis in Cyanobacteria. J Proteome Res 2017; 16:2030-2043. [DOI: 10.1021/acs.jproteome.7b00017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Yanyan Ma
- Key
Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingkun Yang
- Key
Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xiaohuang Lin
- Key
Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Liu
- Key
Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Huang
- Key
Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feng Ge
- Key
Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
15
|
Staley JT, Fuerst JA. Ancient, highly conserved proteins from a LUCA with complex cell biology provide evidence in support of the nuclear compartment commonality (NuCom) hypothesis. Res Microbiol 2017; 168:395-412. [PMID: 28111289 DOI: 10.1016/j.resmic.2017.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 01/08/2017] [Accepted: 01/09/2017] [Indexed: 12/23/2022]
Abstract
The nuclear compartment commonality (NuCom) hypothesis posits a complex last common ancestor (LUCA) with membranous compartments including a nuclear membrane. Such a LUCA then evolved to produce two nucleated lineages of the tree of life: the Planctomycetes-Verrucomicrobia-Chlamydia superphylum (PVC) within the Bacteria, and the Eukarya. We propose that a group of ancient essential protokaryotic signature proteins (PSPs) originating in LUCA were incorporated into ancestors of PVC Bacteria and Eukarya. Tubulins, ubiquitin system enzymes and sterol-synthesizing enzymes are consistent with early origins of these features shared between the PVC superphylum and Eukarya.
Collapse
Affiliation(s)
- James T Staley
- Department of Microbiology and Astrobiology Program, University of Washington, Seattle 98195, USA
| | - John A Fuerst
- School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland 4072, Australia.
| |
Collapse
|
16
|
Weng Y, Chen F, Liu Y, Zhao Q, Chen R, Pan X, Liu C, Cheng Z, Jin S, Jin Y, Wu W. Pseudomonas aeruginosa Enolase Influences Bacterial Tolerance to Oxidative Stresses and Virulence. Front Microbiol 2016; 7:1999. [PMID: 28018326 PMCID: PMC5156722 DOI: 10.3389/fmicb.2016.01999] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Accepted: 11/29/2016] [Indexed: 12/20/2022] Open
Abstract
Pseudomonas aeruginosa is a Gram negative opportunistic pathogenic bacterium, which causes acute and chronic infections. Upon entering the host, bacteria alter global gene expression to adapt to host environment and avoid clearance by the host. Enolase is a glycolytic enzyme involved in carbon metabolism. It is also a component of RNA degradosome, which is involved in RNA processing and gene regulation. Here, we report that enolase is required for the virulence of P. aeruginosa in a murine acute pneumonia model. Mutation of enolase coding gene (eno) increased bacterial susceptibility to neutrophil mediated killing, which is due to reduced tolerance to oxidative stress. Catalases and alkyl hydroperoxide reductases play a major role in protecting the cell from oxidative damages. In the eno mutant, the expression levels of catalases (KatA and KatB) were similar as those in the wild type strain in the presence of H2O2, however, the expression levels of alkyl hydroperoxide reductases (AhpB and AhpC) were significantly reduced. Overexpression of ahpB but not ahpC in the eno mutant fully restored the bacterial resistance to H2O2 as well as neutrophil mediated killing, and partially restored bacterial virulence in the murine acute pneumonia model. Therefore, we have identified a novel role of enolase in the virulence of P. aeruginosa.
Collapse
Affiliation(s)
- Yuding Weng
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University Tianjin, China
| | - Fei Chen
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University Tianjin, China
| | - Yiwei Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University Tianjin, China
| | - Qiang Zhao
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University Tianjin, China
| | - Ronghao Chen
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University Tianjin, China
| | - Xiaolei Pan
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University Tianjin, China
| | - Chang Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University Tianjin, China
| | - Zhihui Cheng
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University Tianjin, China
| | - Shouguang Jin
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai UniversityTianjin, China; Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, GainesvilleFL, USA
| | - Yongxin Jin
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University Tianjin, China
| | - Weihui Wu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University Tianjin, China
| |
Collapse
|
17
|
Bi R, Pan Y, Shang Q, Peng T, Yang S, Wang S, Xin X, Liu Y, Xi J. Comparative proteomic analysis in Aphis glycines Mutsumura under lambda-cyhalothrin insecticide stress. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2016; 19:90-96. [PMID: 27395796 DOI: 10.1016/j.cbd.2016.06.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 06/08/2016] [Accepted: 06/22/2016] [Indexed: 12/16/2022]
Abstract
Lambda-cyhalothrin is now widely used in China to control the soybean aphid Aphis glycines. To dissect the resistance mechanism, a laboratory-selected resistant soybean aphid strain (CRR) was established with a 43.42-fold resistance ratio to λ-cyhalothrin than the susceptible strain (CSS) in adult aphids. In this study, a comparative proteomic analysis between the CRR and CSS strains revealed important differences between the susceptible and resistant strains of soybean aphids for λ-cyhalothrin. Approximately 493 protein spots were detected in two-dimensional polyacrylamide gel electrophoresis (2-DE). Thirty-six protein spots displayed differential expression of >2-fold in the CRR strain compared to the CSS strain. Out of these 36 protein spots, 21 had elevated and 15 had decreased expression. Twenty-four differentially expressed proteins were identified by MALDI TOF MS/MS and categorized into the functional groups cytoskeleton-related protein, carbohydrate and energy metabolism, protein folding, antioxidant system, and nucleotide and amino acid metabolism. Function analysis showed that cytoskeleton-related proteins and energy metabolism proteins have been associated with the λ-cyhalothrin resistance of A. glycines. The differential expression of λ-cyhalothrin responsive proteins reflected the overall change in cellular structure and metabolism after insecticide treatment in aphids. In summary, our studies improve understanding of the molecular mechanism resistance of soybean aphid to lambda-cyhalothrin, which will facilitate the development of rational approaches to improve the management of this pest and to improve the yield of soybean.
Collapse
Affiliation(s)
- Rui Bi
- College of Plant Science, Jilin University, ChangChun 130062, PR China; College of Agronomy, Jilin Agricultural University, ChangChun 130118, PR China
| | - Yiou Pan
- College of Plant Science, Jilin University, ChangChun 130062, PR China
| | - Qingli Shang
- College of Plant Science, Jilin University, ChangChun 130062, PR China
| | - Tianfei Peng
- College of Plant Science, Jilin University, ChangChun 130062, PR China
| | - Shuang Yang
- College of Plant Science, Jilin University, ChangChun 130062, PR China
| | - Shang Wang
- College of Plant Science, Jilin University, ChangChun 130062, PR China
| | - Xuecheng Xin
- College of Plant Science, Jilin University, ChangChun 130062, PR China
| | - Yan Liu
- College of Plant Science, Jilin University, ChangChun 130062, PR China
| | - Jinghui Xi
- College of Plant Science, Jilin University, ChangChun 130062, PR China.
| |
Collapse
|
18
|
Saw JH, Spang A, Zaremba-Niedzwiedzka K, Juzokaite L, Dodsworth JA, Murugapiran SK, Colman DR, Takacs-Vesbach C, Hedlund BP, Guy L, Ettema TJG. Exploring microbial dark matter to resolve the deep archaeal ancestry of eukaryotes. Philos Trans R Soc Lond B Biol Sci 2016; 370:20140328. [PMID: 26323759 PMCID: PMC4571567 DOI: 10.1098/rstb.2014.0328] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The origin of eukaryotes represents an enigmatic puzzle, which is still lacking a number of essential pieces. Whereas it is currently accepted that the process of eukaryogenesis involved an interplay between a host cell and an alphaproteobacterial endosymbiont, we currently lack detailed information regarding the identity and nature of these players. A number of studies have provided increasing support for the emergence of the eukaryotic host cell from within the archaeal domain of life, displaying a specific affiliation with the archaeal TACK superphylum. Recent studies have shown that genomic exploration of yet-uncultivated archaea, the so-called archaeal ‘dark matter’, is able to provide unprecedented insights into the process of eukaryogenesis. Here, we provide an overview of state-of-the-art cultivation-independent approaches, and demonstrate how these methods were used to obtain draft genome sequences of several novel members of the TACK superphylum, including Lokiarchaeum, two representatives of the Miscellaneous Crenarchaeotal Group (Bathyarchaeota), and a Korarchaeum-related lineage. The maturation of cultivation-independent genomics approaches, as well as future developments in next-generation sequencing technologies, will revolutionize our current view of microbial evolution and diversity, and provide profound new insights into the early evolution of life, including the enigmatic origin of the eukaryotic cell.
Collapse
Affiliation(s)
- Jimmy H Saw
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Anja Spang
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | | | - Lina Juzokaite
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Jeremy A Dodsworth
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA
| | | | - Dan R Colman
- Department of Biology, University of New Mexico, Albuquerque, NM, USA
| | | | - Brian P Hedlund
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Lionel Guy
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Thijs J G Ettema
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
19
|
Fuentealba M, Muñoz R, Maturana P, Krapp A, Cabrera R. Determinants of Cofactor Specificity for the Glucose-6-Phosphate Dehydrogenase from Escherichia coli: Simulation, Kinetics and Evolutionary Studies. PLoS One 2016; 11:e0152403. [PMID: 27010804 PMCID: PMC4807051 DOI: 10.1371/journal.pone.0152403] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 03/14/2016] [Indexed: 11/25/2022] Open
Abstract
Glucose 6-Phosphate Dehydrogenases (G6PDHs) from different sources show varying specificities towards NAD+ and NADP+ as cofactors. However, it is not known to what extent structural determinants of cofactor preference are conserved in the G6PDH family. In this work, molecular simulations, kinetic characterization of site-directed mutants and phylogenetic analyses were used to study the structural basis for the strong preference towards NADP+ shown by the G6PDH from Escherichia coli. Molecular Dynamics trajectories of homology models showed a highly favorable binding energy for residues K18 and R50 when interacting with the 2'-phosphate of NADP+, but the same residues formed no observable interactions in the case of NAD+. Alanine mutants of both residues were kinetically characterized and analyzed with respect to the binding energy of the transition state, according to the kcat/KM value determined for each cofactor. Whereas both residues contribute to the binding energy of NADP+, only R50 makes a contribution (about -1 kcal/mol) to NAD+ binding. In the absence of both positive charges the enzyme was unable to discriminate NADP+ from NAD+. Although kinetic data is sparse, the observed distribution of cofactor preferences within the phylogenetic tree is sufficient to rule out the possibility that the known NADP+-specific G6PDHs form a monophyletic group. While the β1-α1 loop shows no strict conservation of K18, (rather, S and T seem to be more frequent), in the case of the β2-α2 loop, different degrees of conservation are observed for R50. Noteworthy is the fact that a K18T mutant is indistinguishable from K18A in terms of cofactor preference. We conclude that the structural determinants for the strict discrimination against NAD+ in the case of the NADP+-specific enzymes have evolved independently through different means during the evolution of the G6PDH family. We further suggest that other regions in the cofactor binding pocket, besides the β1-α1 and β2-α2 loops, play a role in determining cofactor preference.
Collapse
Affiliation(s)
- Matias Fuentealba
- Laboratorio de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Rodrigo Muñoz
- Laboratorio de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Pablo Maturana
- Laboratorio de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Adriana Krapp
- Instituto de Biología Molecular y Celular de Rosario, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Ricardo Cabrera
- Laboratorio de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| |
Collapse
|
20
|
Müller A, Reiter M, Mantlik K, Schötta AM, Stockinger H, Stanek G. Development of a serum-free liquid medium for Bartonella species. Folia Microbiol (Praha) 2016; 61:393-8. [PMID: 26842394 PMCID: PMC4978770 DOI: 10.1007/s12223-016-0448-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 01/14/2016] [Indexed: 12/05/2022]
Abstract
The genus Bartonella comprises numerous species with at least 13 species pathogenic for humans. They are fastidious, aerobic, Gram negative, and facultative intracellular bacteria which cause a variety of human and non-human diseases. This study focused on the development of a serum-free liquid medium for culture of Bartonella species. Some liquid media are available commercially but all of them use undefined supplements such as fetal calf serum or defibrinated sheep blood. Our intention was to create a reproducible liquid medium for Bartonella species that can simply be prepared. We tested several supplements that could potentially support the growth of Bartonella species. Slight growth improvement was achieved with glucose and sucrose. However, hemin in particular improved the growth rate. At a temperature of 37 °C, a CO2 concentration of 5 %, a humidified atmosphere, and the use of the supplements glucose, sucrose, and hemin, we developed a medium that does not need serum as an undefined supplement any more. In conclusion, the newly developed medium supports growth of Bartonella species equal to the commercially available media but with the advantage that it has a serum-free formulation. It can be prepared fast and easy and is a useful tool in studying these bacteria.
Collapse
Affiliation(s)
- Andreas Müller
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology Infectiology and Immunology, Medical University of Vienna, Kinderspitalgasse 15, 1090, Vienna, Austria.
| | - Michael Reiter
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology Infectiology and Immunology, Medical University of Vienna, Kinderspitalgasse 15, 1090, Vienna, Austria
| | - Katrin Mantlik
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology Infectiology and Immunology, Medical University of Vienna, Kinderspitalgasse 15, 1090, Vienna, Austria
| | - Anna-Margarita Schötta
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology Infectiology and Immunology, Medical University of Vienna, Kinderspitalgasse 15, 1090, Vienna, Austria
| | - Hannes Stockinger
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology Infectiology and Immunology, Medical University of Vienna, Kinderspitalgasse 15, 1090, Vienna, Austria
| | - Gerold Stanek
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology Infectiology and Immunology, Medical University of Vienna, Kinderspitalgasse 15, 1090, Vienna, Austria
| |
Collapse
|
21
|
Bao S, Chen D, Yu S, Chen H, Tan L, Hu M, Qiu X, Song C, Ding C. Characterization of triosephosphate isomerase from Mycoplasma gallisepticum. FEMS Microbiol Lett 2015; 362:fnv140. [PMID: 26319024 DOI: 10.1093/femsle/fnv140] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2015] [Indexed: 11/12/2022] Open
Abstract
Triosephosphate isomerase (Tpi) is a glycolytic enzyme that is essential for efficient energy production in many pathogens. However, its function in Mycoplasma gallisepticum has not been fully elucidated. In this study, the mga0357 gene of M. gallisepticum, which encodes TpiA (MGTpiA), was amplified and expressed in Escherichia coli by IPTG induction. The purified recombinant MGTpiA protein exhibited catalytic activity that was similar to TPI from rabbit muscle, reducing NAD(+) to NADH. The MGTpiA was also found to be a surface-exposed protein by western blotting and immunofluorescence assays. In addition, cytadherence inhibition assays confirmed that the cytadherence of M. gallisepticum to the DF-1 cells was significantly inhibited by the anti-MGTpiA serum. The results of the study suggested that MGTpiA plays an important role in the metabolism and closely related to the M. gallisepticum pathogenicity.
Collapse
Affiliation(s)
- Shijun Bao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, P.R. China College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, P.R. China
| | - Danqing Chen
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, P.R. China
| | - Shengqing Yu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, P.R. China
| | - Hongjun Chen
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, P.R. China
| | - Lei Tan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, P.R. China
| | - Meirong Hu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, P.R. China
| | - Xusheng Qiu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, P.R. China
| | - Cuiping Song
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, P.R. China
| | - Chan Ding
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, P.R. China Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, P.R. China
| |
Collapse
|
22
|
Eremina M, Rozhon W, Yang S, Poppenberger B. ENO2 activity is required for the development and reproductive success of plants, and is feedback-repressed by AtMBP-1. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 81:895-906. [PMID: 25620024 DOI: 10.1111/tpj.12775] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 01/13/2015] [Accepted: 01/13/2015] [Indexed: 06/04/2023]
Abstract
Enolases are key glycolytic enzymes that are highly conserved in prokaryotic and eukaryotic organisms, and are among the most abundant cytosolic proteins. In this study we provide evidence that activity of the enolase ENO2 is essential for the growth and development of plants. We show that Arabidopsis plants with compromised ENO2 function, which were generated by mutating the LOS2/ENO2 locus, have severe cellular defects, including reduced cell size and defective cell differentiation with restricted lignification. At the tissue and organ level LOS2/ENO2-deficient plants are characterized by the reduced growth of shoots and roots, altered vascular development and defective secondary growth of stems, impaired floral organogenesis and defective male gametophyte function, resulting in embryo lethality as well as delayed senescence. These phenotypes correlate with reduced lignin and increased salicylic acid contents as well as altered fatty acid and soluble sugar composition. In addition to an enolase the LOS2/ENO2 locus encodes the transcription factor AtMBP-1, and here we reveal that this bifunctionality serves to maintain the homeostasis of ENO2 activity. In summary, we show that in plants enolase function is required for the formation of chorismate-dependent secondary metabolites, and that this activity is feedback-inhibited by AtMBP-1 to enable the normal development and reproductive success of plants.
Collapse
Affiliation(s)
- Marina Eremina
- Biotechnology of Horticultural Crops, Center for Life and Food Sciences Weihenstephan, Technische Universität München, D-85354, Freising, Germany
| | | | | | | |
Collapse
|
23
|
Zhi XY, Yao JC, Tang SK, Huang Y, Li HW, Li WJ. The futalosine pathway played an important role in menaquinone biosynthesis during early prokaryote evolution. Genome Biol Evol 2014; 6:149-60. [PMID: 24398376 PMCID: PMC3914697 DOI: 10.1093/gbe/evu007] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Menaquinone (MK) is an important component of the electron-transfer system in prokaryotes. One of its precursors, 1,4-dihydroxy-2-naphthoate, can be synthesized from chorismate by the classical MK pathway. Interestingly, in some bacteria, chorismate can also be converted to 1,4-dihydroxy-6-naphthoate by four enzymes encoded by mqnABCD in an alternative futalosine pathway. In this study, six crucial enzymes belonging to these two independent nonhomologous pathways were identified in the predicted proteomes of prokaryotes representing a broad phylogenetic distribution. Although the classical MK pathway was found in 32.1% of the proteomes, more than twice the proportion containing the futalosine pathway, the latter was found in a broader taxonomic range of organisms (18 of 31 phyla). The prokaryotes equipped with the classical MK pathway were almost all aerobic or facultatively anaerobic, but those with the futalosine pathway were not only aerobic or facultatively anaerobic but also anaerobic. Phylogenies of enzymes of the classical MK pathway indicated that its genes in archaea were probably acquired by an ancient horizontal gene transfer from bacterial donors. Therefore, the organization of the futalosine pathway likely predated that of the classical MK pathway in the evolutionary history of prokaryotes.
Collapse
Affiliation(s)
- Xiao-Yang Zhi
- Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education and the Laboratory for Conservation and Utilization of Bio-Resources, Yunnan Institute of Microbiology, Yunnan University, Kunming, People's Republic of China
| | | | | | | | | | | |
Collapse
|
24
|
Perrotta I, Aquila S, Mazzulla S. Expression profile and subcellular localization of GAPDH in the smooth muscle cells of human atherosclerotic plaque: an immunohistochemical and ultrastructural study with biological therapeutic perspectives. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2014; 20:1145-1157. [PMID: 24851941 DOI: 10.1017/s1431927614001020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) has long been considered a classical glycolytic enzyme involved exclusively in cytosolic energy production. Several recent studies, however, have demonstrated that GAPDH is a multifunctional protein whose presence and activity can be regulated by disease states and/or experimental manipulation. Expression levels of GAPDH have been shown to be altered in certain tumors as well as in proliferating and differentiating cells. Since dedifferentiation and proliferation of smooth muscle cells (SMCs) are important features of human atherosclerosis, we have characterized the expression profile of GAPDH in the SMCs of atherosclerotic plaques and its putative interrelationship with the synthetic/proliferative status of these cells utilizing the proliferating cell nuclear antigen (PCNA) antibody, a valuable marker of cell proliferation. Western blot data revealed that GAPDH was significantly upregulated in atherosclerotic plaque specimens. Immunohistochemical stains demonstrated that GAPDH accumulated in the nucleus of dedifferentiated SMCs that also showed positive immunoreactivity for PCNA, but remained cytoplasmatic in the contractile SMCs (PCNA-negative), thus reflecting the proliferative, structural and synthetic differences between them. We suggest that, in human atherosclerotic plaque, GAPDH might exert additional functions that are independent of its well-documented glycolytic activity and might play key roles in development of the disease.
Collapse
Affiliation(s)
- Ida Perrotta
- 1Department of Biology,Ecology and Earth Science (Di.B.E.S.T.),University of Calabria - Arcavacata,Rende 87036,Cosenza,Italy
| | - Saveria Aquila
- 2Centro Sanitario - Department of Pharmacy and Sciences of Health and Nutrition,University of Calabria - Arcavacata,Rende 87036,Cosenza,Italy
| | - Sergio Mazzulla
- 1Department of Biology,Ecology and Earth Science (Di.B.E.S.T.),University of Calabria - Arcavacata,Rende 87036,Cosenza,Italy
| |
Collapse
|
25
|
Zhi XY, Yao JC, Li HW, Huang Y, Li WJ. Genome-wide identification, domain architectures and phylogenetic analysis provide new insights into the early evolution of shikimate pathway in prokaryotes. Mol Phylogenet Evol 2014; 75:154-64. [DOI: 10.1016/j.ympev.2014.02.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 02/14/2014] [Accepted: 02/17/2014] [Indexed: 11/30/2022]
|
26
|
Riva C, Binelli A. Analysis of the Dreissena polymorpha gill proteome following exposure to dioxin-like PCBs: mechanism of action and the role of gender. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2014; 9:23-30. [PMID: 24365568 DOI: 10.1016/j.cbd.2013.08.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 08/24/2013] [Accepted: 08/26/2013] [Indexed: 06/03/2023]
Abstract
PCBs are a persistent environmental problem due to their high stability and lipophilicity. The non-ortho- and the mono-ortho-substituted PCBs (dioxin-like-PCBs) share a common and well-described toxicity mechanism in vertebrates, initially involving binding to cytosolic AhRs. Invertebrate AhRs, however, show a lack of dioxin binding, and little information is available regarding the mechanism of toxicity of dl-PCBs in invertebrates. In this study, a proteomic approach was applied to analyse the variations in the pattern of the gill proteome of the freshwater mussel Dreissena polymorpha. Mussels were exposed to a mixture of dl-PCBs, and to perform a more in-depth evaluation, we chose to investigate the role of gender in the proteome response by analysing male and female mussels separately. The results revealed significant modulation of the gill tissue proteome: glycolysis and Ca(2+) homeostasis appear to be the main pathways targeted by dl-PCBs. In light of the differences between the male and female gill proteome profiles following exposure to dl-PCBs, further in-depth investigations of the role of gender in the protein expression profiles of a selected biological model are required.
Collapse
Affiliation(s)
- C Riva
- University of Milan, Department of Bioscience, Via Celoria 26, 20133 Milan, Italy.
| | - A Binelli
- University of Milan, Department of Bioscience, Via Celoria 26, 20133 Milan, Italy
| |
Collapse
|
27
|
Rochette NC, Brochier-Armanet C, Gouy M. Phylogenomic test of the hypotheses for the evolutionary origin of eukaryotes. Mol Biol Evol 2014; 31:832-45. [PMID: 24398320 PMCID: PMC3969559 DOI: 10.1093/molbev/mst272] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The evolutionary origin of eukaryotes is a question of great interest for which many different hypotheses have been proposed. These hypotheses predict distinct patterns of evolutionary relationships for individual genes of the ancestral eukaryotic genome. The availability of numerous completely sequenced genomes covering the three domains of life makes it possible to contrast these predictions with empirical data. We performed a systematic analysis of the phylogenetic relationships of ancestral eukaryotic genes with archaeal and bacterial genes. In contrast with previous studies, we emphasize the critical importance of methods accounting for statistical support, horizontal gene transfer, and gene loss, and we disentangle the processes underlying the phylogenomic pattern we observe. We first recover a clear signal indicating that a fraction of the bacteria-like eukaryotic genes are of alphaproteobacterial origin. Then, we show that the majority of bacteria-related eukaryotic genes actually do not point to a relationship with a specific bacterial taxonomic group. We also provide evidence that eukaryotes branch close to the last archaeal common ancestor. Our results demonstrate that there is no phylogenetic support for hypotheses involving a fusion with a bacterium other than the ancestor of mitochondria. Overall, they leave only two possible interpretations, respectively, based on the early-mitochondria hypotheses, which suppose an early endosymbiosis of an alphaproteobacterium in an archaeal host and on the slow-drip autogenous hypothesis, in which early eukaryotic ancestors were particularly prone to horizontal gene transfers.
Collapse
Affiliation(s)
- Nicolas C Rochette
- Laboratoire de Biométrie et Biologie Évolutive, CNRS UMR5558, Université de Lyon, Universite Claude Bernard Lyon 1, Villeurbanne, France
| | | | | |
Collapse
|
28
|
Panda G, Basak T, Tanwer P, Sengupta S, dos Santos VAPM, Bhatnagar R. Delineating the effect of host environmental signals on a fully virulent strain of Bacillus anthracis using an integrated transcriptomics and proteomics approach. J Proteomics 2014; 105:242-65. [PMID: 24406299 DOI: 10.1016/j.jprot.2013.12.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 12/18/2013] [Accepted: 12/22/2013] [Indexed: 12/30/2022]
Abstract
UNLABELLED Pathogenic bacteria sense the host environment and regulate expression of virulence-related genes. Environmental signals like temperature, bicarbonate/CO2 and glucose induce toxin production in Bacillus anthracis, but the mechanisms by which these signals contribute to virulence and overall physiological adaptation remains elusive. An integrated, systems level investigation using transcriptomics and iTRAQ-based proteomics was done to assess the effect of temperature, bicarbonate/CO2 and glucose on B. anthracis. Significant changes observed in amino acid, carbohydrate, energy and nucleotide metabolism indicates events of metabolic readjustments by environmental factors. Directed induction of genes involved in polyamine biosynthesis and iron metabolism revealed the redirection of cellular metabolite pool towards iron uptake. Protein levels of glycolytic enzymes, ptsH and Ldh along with transcripts involved in immune evasion (mprF, bNOS, Phospholipases and asnA), cell surface remodeling (rfbABCD, antABCD, and cls) and utilization of lactate (lutABC) and inositol showed constant repression under environmental perturbations. Discrepancies observed in mRNA/protein level of genes involved in glycolysis, protein synthesis, stress response and nucleotide metabolism hinted at the existence of additional regulatory layers and illustrated the utility of an integrated approach. The above findings might assist in the identification of novel adaptive strategies of B. anthracis during host associated survival and pathogenesis. BIOLOGICAL SIGNIFICANCE In this study, the changes observed at both transcript and protein level were quantified and integrated to understand the effect of host environmental factors (host temperature, bicarbonate and glucose) in shaping the physiology and adaptive strategies of a fully virulent strain of B. anthracis for efficient survival and virulence in its host. Perturbations affecting toxin production were found to concordantly affect vital metabolic pathways and several known as well as novel virulence factors. These changes act as a valuable asset for generating testable hypotheses that can be further verified by detailed molecular and mutant studies to identify novel adaptive strategies of B. anthracis during infection. Adaptation of an integrated transcriptomics and proteomics approach also led to the identification of discrepancies between mRNA/protein levels among genes across major functional categories. Few of these discrepancies have been previously reported in literature for model organisms. However their existence in B. anthracis and that too as a result of growth perturbations have not been reported till date. These findings demonstrate a substantial role of regulatory processes post mRNA synthesis via post transcriptional, translational or protein degradation mechanisms. This article is part of a Special Issue entitled: Proteomics of non-model organisms.
Collapse
Affiliation(s)
- Gurudutta Panda
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Trayambak Basak
- Genomics and Molecular Medicine Unit, CSIR-Institute of Genomics and Integrative Biology, New Delhi, 110020, India; Academy of Scientific & Innovative Research, Delhi, India
| | - Pooja Tanwer
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Shantanu Sengupta
- Genomics and Molecular Medicine Unit, CSIR-Institute of Genomics and Integrative Biology, New Delhi, 110020, India; Academy of Scientific & Innovative Research, Delhi, India
| | - Vítor A P Martins dos Santos
- Systems and Synthetic Biology, Wageningen University, Dreijenplein 10, 6703 HB Wageningen, The Netherlands; LifeGlimmer GmbH, Markelstrasse 38, Berlin 12163, Germany
| | - Rakesh Bhatnagar
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
29
|
Pollack JD, Gerard D, Pearl DK. Uniquely localized intra-molecular amino acid concentrations at the glycolytic enzyme catalytic/active centers of Archaea, Bacteria and Eukaryota are associated with their proposed temporal appearances on earth. ORIGINS LIFE EVOL B 2013; 43:161-87. [PMID: 23715690 DOI: 10.1007/s11084-013-9331-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 04/04/2013] [Indexed: 11/27/2022]
Abstract
The distributions of amino acids at most-conserved sites nearest catalytic/active centers (C/AC) in 4,645 sequences of ten enzymes of the glycolytic Embden-Meyerhof-Parnas pathway in Archaea, Bacteria and Eukaryota are similar to the proposed temporal order of their appearance on Earth. Glycine, isoleucine, leucine, valine, glutamic acid and possibly lysine often described as prebiotic, i.e., existing or occurring before the emergence of life, were localized in positional and conservational defined aggregations in all enzymes of all Domains. The distributions of all 20 biologic amino acids in most-conserved sites nearest their C/ACs were quite different either from distributions in sites less-conserved and further from their C/ACs or from all amino acids regardless of their position or conservation. The major concentrations of glycine, e.g., perhaps the earliest prebiotic amino acid, occupies ≈ 16 % of all the most-conserved sites within a volume of ≈ 7-8 Å radius from their C/ACs and decreases linearly towards the molecule's peripheries. Spatially localized major concentrations of isoleucine, leucine and valine are in the mid-conserved and mid-distant sites from their C/ACs in protein interiors. Lysine and glutamic acid comprise ≈ 25-30 % of all amino acids within an irregular volume bounded by ≈ 24-28 Å radii from their C/ACs at the most-distant least-conserved sites. The unreported characteristics of these amino acids: their spatially and conservationally identified concentrations in Archaea, Bacteria and Eukaryota, suggest some common structural organization of glycolytic enzymes that may be relevant to their evolution and that of other proteins. We discuss our data in relation to enzyme evolution, their reported prebiotic putative temporal appearances on Earth, abundances, biological "cost", neighbor-sequence preferences or "ordering" and some thermodynamic parameters.
Collapse
Affiliation(s)
- J Dennis Pollack
- Department of Molecular Virology, Immunology and Medical Genetics, The College of Medicine, The Ohio State University, Columbus, OH 43210, USA.
| | | | | |
Collapse
|
30
|
Abstract
The evolutionary origin of the eukaryotic cell represents an enigmatic, yet largely incomplete, puzzle. Several mutually incompatible scenarios have been proposed to explain how the eukaryotic domain of life could have emerged. To date, convincing evidence for these scenarios in the form of intermediate stages of the proposed eukaryogenesis trajectories is lacking, presenting the emergence of the complex features of the eukaryotic cell as an evolutionary deus ex machina. However, recent advances in the field of phylogenomics have started to lend support for a model that places a cellular fusion event at the basis of the origin of eukaryotes (symbiogenesis), involving the merger of an as yet unknown archaeal lineage that most probably belongs to the recently proposed ‘TACK superphylum’ (comprising Thaumarchaeota, Aigarchaeota, Crenarchaeota and Korarchaeota) with an alphaproteobacterium (the protomitochondrion). Interestingly, an increasing number of so-called ESPs (eukaryotic signature proteins) is being discovered in recently sequenced archaeal genomes, indicating that the archaeal ancestor of the eukaryotic cell might have been more eukaryotic in nature than presumed previously, and might, for example, have comprised primitive phagocytotic capabilities. In the present paper, we review the evolutionary transition from archaeon to eukaryote, and propose a new model for the emergence of the eukaryotic cell, the ‘PhAT (phagocytosing archaeon theory)’, which explains the emergence of the cellular and genomic features of eukaryotes in the light of a transiently complex phagocytosing archaeon.
Collapse
|
31
|
Nakayama T, Ishida KI, Archibald JM. Broad distribution of TPI-GAPDH fusion proteins among eukaryotes: evidence for glycolytic reactions in the mitochondrion? PLoS One 2012; 7:e52340. [PMID: 23284996 PMCID: PMC3527533 DOI: 10.1371/journal.pone.0052340] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2012] [Accepted: 11/14/2012] [Indexed: 12/25/2022] Open
Abstract
Glycolysis is a central metabolic pathway in eukaryotic and prokaryotic cells. In eukaryotes, the textbook view is that glycolysis occurs in the cytosol. However, fusion proteins comprised of two glycolytic enzymes, triosephosphate isomerase (TPI) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH), were found in members of the stramenopiles (diatoms and oomycetes) and shown to possess amino-terminal mitochondrial targeting signals. Here we show that mitochondrial TPI-GAPDH fusion protein genes are widely spread across the known diversity of stramenopiles, including non-photosynthetic species (Bicosoeca sp. and Blastocystis hominis). We also show that TPI-GAPDH fusion genes exist in three cercozoan taxa (Paulinella chromatophora, Thaumatomastix sp. and Mataza hastifera) and an apusozoan protist, Thecamonas trahens. Interestingly, subcellular localization predictions for other glycolytic enzymes in stramenopiles and a cercozoan show that a significant fraction of the glycolytic enzymes in these species have mitochondrial-targeted isoforms. These results suggest that part of the glycolytic pathway occurs inside mitochondria in these organisms, broadening our knowledge of the diversity of mitochondrial metabolism of protists.
Collapse
Affiliation(s)
- Takuro Nakayama
- Department of Biochemistry & Molecular Biology, Canadian Institute for Advanced Research, Program in Integrated Microbial Biodiversity, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Ken-ichiro Ishida
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - John M. Archibald
- Department of Biochemistry & Molecular Biology, Canadian Institute for Advanced Research, Program in Integrated Microbial Biodiversity, Dalhousie University, Halifax, Nova Scotia, Canada
- * E-mail:
| |
Collapse
|
32
|
Lorenzatto KR, Monteiro KM, Paredes R, Paludo GP, da Fonsêca MM, Galanti N, Zaha A, Ferreira HB. Fructose-bisphosphate aldolase and enolase from Echinococcus granulosus: genes, expression patterns and protein interactions of two potential moonlighting proteins. Gene 2012; 506:76-84. [PMID: 22750316 DOI: 10.1016/j.gene.2012.06.046] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 04/26/2012] [Accepted: 06/17/2012] [Indexed: 01/16/2023]
Abstract
Glycolytic enzymes, such as fructose-bisphosphate aldolase (FBA) and enolase, have been described as complex multifunctional proteins that may perform non-glycolytic moonlighting functions, but little is known about such functions, especially in parasites. We have carried out in silico genomic searches in order to identify FBA and enolase coding sequences in Echinococcus granulosus, the causative agent of cystic hydatid disease. Four FBA genes and 3 enolase genes were found, and their sequences and exon-intron structures were characterized and compared to those of their orthologs in Echinococcus multilocularis, the causative agent of alveolar hydatid disease. To gather evidence of possible non-glycolytic functions, the expression profile of FBA and enolase isoforms detected in the E. granulosus pathogenic larval form (hydatid cyst) (EgFBA1 and EgEno1) was assessed. Using specific antibodies, EgFBA1 and EgEno1 were detected in protoscolex and germinal layer cells, as expected, but they were also found in the hydatid fluid, which contains parasite's excretory-secretory (ES) products. Besides, both proteins were found in protoscolex tegument and in vitro ES products, further suggesting possible non-glycolytic functions in the host-parasite interface. EgFBA1 modeled 3D structure predicted a F-actin binding site, and the ability of EgFBA1 to bind actin was confirmed experimentally, which was taken as an additional evidence of FBA multifunctionality in E. granulosus. Overall, our results represent the first experimental evidences of alternative functions performed by glycolytic enzymes in E. granulosus and provide relevant information for the understanding of their roles in host-parasite interplay.
Collapse
Affiliation(s)
- Karina Rodrigues Lorenzatto
- Laboratório de Genômica Estrutural e Funcional and Laboratório de Biologia Molecular de Cestódeos, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Liu H, Zeng H, Yao Q, Yuan J, Zhang Y, Qiu D, Yang X, Yang H, Liu Z. Steinernema glaseri surface enolase: molecular cloning, biological characterization, and role in host immune suppression. Mol Biochem Parasitol 2012; 185:89-98. [PMID: 22750626 DOI: 10.1016/j.molbiopara.2012.06.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 06/17/2012] [Accepted: 06/18/2012] [Indexed: 10/28/2022]
Abstract
Entomopathogenic nematodes are widely used as biological control agents that can suppress or evade the host immune defense upon entry into insects. The surface coat of Steinernema glaseri has been shown to play important roles in defeating the host immune system. In this work, a protein fraction with antiphagocytic activity was separated by electro-elution and further analyzed by two-dimensional electrophoresis (2-DE). LC-MS/MS analysis of one protein spot from a 2-DE gel gave five peptides that were highly similar to enolases of many organisms. A 1311 bp cDNA was cloned that encodes a 47 kDa protein with high sequence identity to enolases from different species of nematodes. The deduced protein, Sg-ENOL, was expressed in Escherichia coli, and its glycolytic activity was demonstrated by the conversion of 2-phospho-d-glycerate to phosphoenolpyruvate. Recombinant Sg-ENOL significantly reduced the LT(50)s of Xenorhabdus poinarii and Metarhizium anisopliae when co-injected into Galleria mellonella and Locusta migratoria manilensis Meyen, respectively. Using immuno-gold transmission electron microscopy, native Sg-ENOL was confirmed to be localized to both the nematode cuticle and the surface coat. In vitro, secretion of Sg-ENOL was inducible rather than constitutive. In vivo, Sg-ENOL was detected in the host hemolymph after infection of G. mellonella with S. glaseri, indicating that Sg-ENOL was secreted into the insect hemocoel and was involved in infection. This is the first report of the cloning and characterization of a surface coat protein in an entomopathogenic nematode. Our findings provide clear evidence for an important role for a cell surface enolase in S. glaseri infection and host immune suppression.
Collapse
Affiliation(s)
- Hua Liu
- Key Laboratory of Integrated Pest Management in Crops, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Li Z, Lu M, Chu J, Qiao X, Meng X, Sun B, Zhang W, Xue D. Early proteome analysis of rat pancreatic acinar AR42J cells treated with taurolithocholic acid 3-sulfate. Pancreatology 2012; 12:248-56. [PMID: 22687381 DOI: 10.1016/j.pan.2012.02.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2011] [Revised: 12/29/2011] [Accepted: 02/10/2012] [Indexed: 12/11/2022]
Abstract
BACKGROUND Bile acids are the initiating factors of biliary acute pancreatitis. Bile acids can induce the activation of intracellular zymogen, thus leading injury in pancreatic acinar cells. Pathological zymogen activation in pancreatic acinar cells is a common feature of all types of acute pancreatitis. The proteins expressed in pancreatic acinar cells during the activation of zymogen may determine the severity of acute pancreatitis. The present study aims to determine the differentially expressed proteins in taurolithocholic acid 3-sulfate-stimulated pancreatic acinar cells as an in vitro model for acute pancreatitis. METHODS Rat pancreatic acinar AR42J cells were treated with taurolithocholic acid 3-sulfate for 20 min. Laser confocal scanning microscopy and flow cytometry were used to detect activated trypsinogen in pancreatic acinar AR42J cells. After the determination of trypsinogen activation, proteome analysis was performed to identify the proteins differentially expressed in taurolithocholic acid 3-sulfate-treated cells and non-treated cells. RESULTS After treatment with taurolithocholic acid 3-sulfate for 20 min, the activation of trypsinogen in AR42J cells was concurrent with changes in the protein expression profile. Thirty-nine differentially expressed proteins were detected; among these, 23 proteins were up-regulated and 16 proteins were down-regulated. KEGG analysis indicated that these proteins are involved in cellular metabolic pathways, cellular defensive mechanisms, intracellular calcium regulation and cytoskeletal changes. CONCLUSION The expression of proteins in the pancreatic acinar cell changes at the early stage of biliary acute pancreatitis. These differentially expressed proteins will provide valuable information to understand the pathophysiologic mechanism biliary acute pancreatitis and may be useful for prognostic indices of acute pancreatitis.
Collapse
Affiliation(s)
- Zhituo Li
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, 23 You Zheng Street, Harbin 150001, China
| | | | | | | | | | | | | | | |
Collapse
|
35
|
The falsifiability of the models for the origin of eukaryotes. Curr Genet 2011; 57:367-90. [DOI: 10.1007/s00294-011-0357-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 09/29/2011] [Accepted: 09/30/2011] [Indexed: 01/13/2023]
|
36
|
Ge LQ, Cheng Y, Wu JC, Jahn GC. Proteomic analysis of insecticide triazophos-induced mating-responsive proteins of Nilaparvata lugens Stål (Hemiptera: Delphacidae). J Proteome Res 2011; 10:4597-612. [PMID: 21800909 DOI: 10.1021/pr200414g] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The brown planthopper, Nilaparvata lugens (Stål) (Hemiptera: Delphacidae), is a classic example of a resurgent pest induced by insecticides. It has been demonstrated that triazophos treatment causes an increase in the content of male accessory gland proteins (Acps) that can be transferred to females via mating, influencing female reproduction. However, the mechanism of this type of insecticide-induced Acps in males and the subsequent stimulation of reproduction in females are not well understood. To identify changes in the types of Acps and reproductive proteins in mated females, we conducted a comparative proteomic analysis. Six samples were categorized into four different groups: (1) untreated unmated males compared to treated unmated males (UUM vs TUM); (2) treated unmated males compared to treated mated males (TUM vs TMM); (3) untreated unmated females compared to treated unmated females (UUF vs TUF); (4) treated unmated females compared to treated mated females (TUF vs TMF). Protein expression changes among the four different groups were examined by two-dimensional gel electrophoresis (2-DE) and liquid chromatography tandem mass spectrometry (LC-MS/MS). Of the 500-600 reproducibly detected protein spots on each gel, 107 protein spots were differentially expressed between the four different groups. Of the 63 proteins identified by LC-MS/MS analysis, 38 were up-regulated and 25 were down-regulated in the four different groups. Some novel proteins related to fecundity were observed including spermatogenesis-associated protein 5, testis development protein NYD-SP6, arginine kinase, actin-5C, vitellogenin, and ovarian serine protease nudel. The elevated expression of novel fecundity proteins in six samples of N. lugens females and males due to exposure to triazophos was confirmed by quantitative real-time PCR (qRT-PCR). The results suggest that these proteins may participate in the reproductive process of N. lugens adult females and males. Our findings fill a gap in understanding the relationship between insecticide-treated males and the stimulated reproduction of N. lugens females.
Collapse
Affiliation(s)
- Lin-Quan Ge
- School of Plant Protection, Yangzhou University , Yangzhou 225009, PR China
| | | | | | | |
Collapse
|
37
|
Molecular fractionation and characterization of a Candida albicans fraction that increases tumor cell adhesion to hepatic endothelium. Appl Microbiol Biotechnol 2011; 92:133-45. [PMID: 21858674 DOI: 10.1007/s00253-011-3540-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 07/27/2011] [Accepted: 08/05/2011] [Indexed: 12/24/2022]
Abstract
Systemic candidiasis remains a major complication among patients suffering from hematological malignancies and favors the development of hepatic metastasis. To contribute to the understanding of the underlying mechanisms, the aim of this study was to identify molecules that may increase tumor cell adhesion to hepatic endothelial cells. To this end, a well-established in vitro model was used to determine the enhancement of tumor cell adhesion induced by Candida albicans and its fractions. Different fractions were obtained according to their molecular weight (M(r)) (five) or to their isoelectric point (pI) (four), using preparative electrophoresis and preparative isoelectric focusing, respectively, followed by affinity chromatography. The fraction that most enhanced melanoma cell adhesion to endothelium had an M(r) range from 45 to 66 kDa. It was characterized using two-dimensional electrophoresis, and 14 proteins were identified by peptide mass fingerprinting: Dor14p, Fba1p, Pdi1p, Pgk1p, Idh2p, Mpg1p, Sfa1p, Ape3p, Ilv5p, Tuf1p, Act1p, Eno1p, Qcr2p, and Adh1p. Of these, several are related to the immunogenic response, and the latter seven belonged to the most reactive fraction according to their pI range, from 5 to 5.6. These findings could represent a step forward in the search for new targets, to suppress the pro-metastatic effect of C. albicans.
Collapse
|
38
|
Kuravsky ML, Aleshin VV, Frishman D, Muronetz VI. Testis-specific glyceraldehyde-3-phosphate dehydrogenase: origin and evolution. BMC Evol Biol 2011; 11:160. [PMID: 21663662 PMCID: PMC3224139 DOI: 10.1186/1471-2148-11-160] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Accepted: 06/10/2011] [Indexed: 11/25/2022] Open
Abstract
Background Glyceraldehyde-3-phosphate dehydrogenase (GAPD) catalyses one of the glycolytic reactions and is also involved in a number of non-glycolytic processes, such as endocytosis, DNA excision repair, and induction of apoptosis. Mammals are known to possess two homologous GAPD isoenzymes: GAPD-1, a well-studied protein found in all somatic cells, and GAPD-2, which is expressed solely in testis. GAPD-2 supplies energy required for the movement of spermatozoa and is tightly bound to the sperm tail cytoskeleton by the additional N-terminal proline-rich domain absent in GAPD-1. In this study we investigate the evolutionary history of GAPD and gain some insights into specialization of GAPD-2 as a testis-specific protein. Results A dataset of GAPD sequences was assembled from public databases and used for phylogeny reconstruction by means of the Bayesian method. Since resolution in some clades of the obtained tree was too low, syntenic analysis was carried out to define the evolutionary history of GAPD more precisely. The performed selection tests showed that selective pressure varies across lineages and isoenzymes, as well as across different regions of the same sequences. Conclusions The obtained results suggest that GAPD-1 and GAPD-2 emerged after duplication during the early evolution of chordates. GAPD-2 was subsequently lost by most lineages except lizards, mammals, as well as cartilaginous and bony fishes. In reptilians and mammals, GAPD-2 specialized to a testis-specific protein and acquired the novel N-terminal proline-rich domain anchoring the protein in the sperm tail cytoskeleton. This domain is likely to have originated by exonization of a microsatellite genomic region. Recognition of the proline-rich domain by cytoskeletal proteins seems to be unspecific. Besides testis, GAPD-2 of lizards was also found in some regenerating tissues, but it lacks the proline-rich domain due to tissue-specific alternative splicing.
Collapse
Affiliation(s)
- Mikhail L Kuravsky
- Faculty of Bioengineering and Bioinformatics, MV Lomonosov Moscow State University, Moscow, Russian Federation
| | | | | | | |
Collapse
|
39
|
Miyamae Y, Han J, Sasaki K, Terakawa M, Isoda H, Shigemori H. 3,4,5-tri-O-caffeoylquinic acid inhibits amyloid β-mediated cellular toxicity on SH-SY5Y cells through the upregulation of PGAM1 and G3PDH. Cytotechnology 2011; 63:191-200. [PMID: 21424281 DOI: 10.1007/s10616-011-9341-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Accepted: 02/02/2011] [Indexed: 11/28/2022] Open
Abstract
Caffeoylquinic acid (CQA) is one of the phenylpropanoids found in a variety of natural resources and foods, such as sweet potatoes, propolis, and coffee. Previously, we reported that 3,5-di-O-caffeoylquinic acid (3,5-di-CQA) has a neuroprotective effect against amyloid-β (Aβ)-induced cell death through the overexpression of glycolytic enzyme. Additionally, 3,5-di-CQA administration induced the improvement of spatial learning and memory on senescence accelerated-prone mice (SAMP8). The aim of this study was to investigate whether 3,4,5-tri-O-caffeoylquinic acid (3,4,5-tri-CQA), isolated from propolis, shows a neuroprotective effect against Aβ-induced cell death on human neuroblastoma SH-SY5Y cells. To clarify the possible mechanism, we performed proteomics and real-time RT-PCR as well as a measurement of the intracellular adenosine triphosphate (ATP) level. These results showed that 3,4,5-tri-CQA attenuated the cytotoxicity and prevented Aβ-mediated apoptosis. Glycolytic enzymes, phosphoglycerate mutase 1 (PGAM1) and glyceraldehyde-3-phosphate dehydrogenase (G3PDH) were overexpressed in co-treated cells with both 3,4,5-tri-CQA and Aβ. The mRNA expression of PGAM1, G3PDH, and phosphoglycerate kinase 1 (PGK1), and intracellular ATP level were also increased in 3,4,5-tri-CQA treated cells. Taken together the findings in our study suggests that 3,4,5-tri-CQA shows a neuroprotective effect against Aβ-induced cell death through the upregulation of glycolytic enzyme mRNA as well as ATP production activation.
Collapse
Affiliation(s)
- Yusaku Miyamae
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
| | | | | | | | | | | |
Collapse
|
40
|
Proposal of protocols using D-glutamine to optimize the 2,3-bis(2-methoxy-4-nitro-5-sulfophenly)-5-[(phenylamino) carbonyl]-2H-tetrazolium hydroxide (XTT) assay for indirect estimation of microbial loads in biofilms of medical importance. J Microbiol Methods 2011; 84:299-306. [DOI: 10.1016/j.mimet.2010.12.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 12/02/2010] [Accepted: 12/14/2010] [Indexed: 11/22/2022]
|
41
|
Baibai T, Oukhattar L, Mountassif D, Assobhei O, Serrano A, Soukri A. Comparative molecular analysis of evolutionarily distant glyceraldehyde-3-phosphate dehydrogenase from Sardina pilchardus and Octopus vulgaris. Acta Biochim Biophys Sin (Shanghai) 2010; 42:863-72. [PMID: 21106768 DOI: 10.1093/abbs/gmq103] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The NAD(+)-dependent cytosolic glyceraldehyde-3-phosphate dehydrogenase (GAPDH, EC 1.2.1.12), which is recognized as a key to central carbon metabolism in glycolysis and gluconeogenesis and as an important allozymic polymorphic biomarker, was purified from muscles of two marine species: the skeletal muscle of Sardina pilchardus Walbaum (Teleost, Clupeida) and the incompressible arm muscle of Octopus vulgaris (Mollusca, Cephalopoda). Comparative biochemical studies have revealed that they differ in their subunit molecular masses and in pI values. Partial cDNA sequences corresponding to an internal region of the GapC genes from Sardina and Octopus were obtained by polymerase chain reaction using degenerate primers designed from highly conserved protein motifs. Alignments of the deduced amino acid sequences were used to establish the 3D structures of the active site of two enzymes as well as the phylogenetic relationships of the sardine and octopus enzymes. These two enzymes are the first two GAPDHs characterized so far from teleost fish and cephalopod, respectively. Interestingly, phylogenetic analyses indicated that the sardina GAPDH is in a cluster with the archetypical enzymes from other vertebrates, while the octopus GAPDH comes together with other molluscan sequences in a distant basal assembly closer to bacterial and fungal orthologs, thus suggesting their different evolutionary scenarios.
Collapse
Affiliation(s)
- Tarik Baibai
- Université Hassan II, Casablanca B.P., Morrocco.
| | | | | | | | | | | |
Collapse
|
42
|
Ohlendieck K. Proteomics of skeletal muscle glycolysis. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1804:2089-101. [DOI: 10.1016/j.bbapap.2010.08.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Revised: 08/01/2010] [Accepted: 08/05/2010] [Indexed: 10/19/2022]
|
43
|
Han J, Miyamae Y, Shigemori H, Isoda H. Neuroprotective effect of 3,5-di-O-caffeoylquinic acid on SH-SY5Y cells and senescence-accelerated-prone mice 8 through the up-regulation of phosphoglycerate kinase-1. Neuroscience 2010; 169:1039-45. [PMID: 20570715 DOI: 10.1016/j.neuroscience.2010.05.049] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Revised: 05/19/2010] [Accepted: 05/21/2010] [Indexed: 02/06/2023]
Abstract
As aged population dramatically increases in these decades, efforts should be made on the intervention for curing age-associated neurologic degenerative diseases such as Alzheimer's disease (AD). Caffeoylquinic acid (CQA), an antioxidant component and its derivatives are natural functional compounds isolated from a variety of plants. In this study, we determined the neuroprotective effect of 3,5-di-O-CQA on Abeta(1-42) treated SH-SY5Y cells using MTT assay. To investigate the possible neuroprotective mechanism of 3,5-di-O-CQA, we performed proteomics analysis, real-time PCR analysis and measurement of the intracellular ATP level. In addition, we carried out the measurement of escape latency time to find the hidden platform in Morris water maze (MWM), real-time PCR using senescence-accelerated-prone mice (SAMP) 8 and senescence-accelerated-resistant mice (SAMR) 1 mice. Results showed that 3,5-di-O-CQA had neuroprotective effect on Abeta (1-42) treated cells. The mRNA expression of glycolytic enzyme (phosphoglycerate kinase-1; PGK1) and intracellular ATP level were increased in 3,5-di-O-CQA treated SH-SY5Y cells. We also found that 3,5-di-O-CQA administration induced the improvement of spatial learning and memory on SAMP8 mice, and the overexpression of PGK1 mRNA. These findings suggest that 3,5-di-O-CQA has a neuroprotective effect on neuron through the upregulation of PGK1 expression and ATP production activation.
Collapse
Affiliation(s)
- J Han
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | | | | | | |
Collapse
|
44
|
Falabella P, Riviello L, De Stradis ML, Stigliano C, Varricchio P, Grimaldi A, de Eguileor M, Graziani F, Gigliotti S, Pennacchio F. Aphidius ervi teratocytes release an extracellular enolase. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2009; 39:801-813. [PMID: 19786101 DOI: 10.1016/j.ibmb.2009.09.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Revised: 09/18/2009] [Accepted: 09/21/2009] [Indexed: 05/28/2023]
Abstract
We report the cloning of a gene and the characterization of the encoded protein, which is released by the teratocytes of the parasitoid Aphidius ervi in the haemocoel of the host aphid Acyrthosiphon pisum. The studied protein was identified by LC-MS/MS, and the gathered information used for isolating the full length cDNA. The corresponding gene was made of 3 exons and 2 introns, and was highly expressed in the adult wasps and in parasitized hosts. The translation product, which was named Ae-ENO, showed a very high level of sequence identity with insect enolases. In vivo immunodetection experiments evidenced Ae-ENO localization in round spots, present in the teratocytes and released in the host haemocoel. Moreover, strong immunoreactivity was detected on the surface of A. ervi larvae and of host embryos. Ae-ENO expressed in insect cells was not secreted in the medium, indicating the occurrence in the teratocytes of an unknown pathway for Ae-ENO release. The recombinant protein produced in bacteria under native conditions was a dimer, with evident enolase activity (K(m) = 0.086 +/- 0.017 mM). Enolase is a well known enzyme in cell metabolism, which, however, is associated with a multifunctional role in disease, when present in the extracellular environment, on the surface of prokaryotic and eukaryotic cells. In these cases, the enolase mediates the activation of enzymes involved in the invasion of tissues by pathogens and tumour cells, and in the evasion of host immune response. The possible role played by Ae-ENO in the host regulation process is discussed in the light of this information.
Collapse
Affiliation(s)
- Patrizia Falabella
- Dipartimento di Biologia, Difesa e Biotecnologie Agro-Forestali, Università della Basilicata, Potenza, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Stein M, Gabdoulline RR, Wade RC. Cross-species analysis of the glycolytic pathway by comparison of molecular interaction fields. MOLECULAR BIOSYSTEMS 2009; 6:152-64. [PMID: 20024078 DOI: 10.1039/b912398a] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The electrostatic potential of an enzyme is a key determinant of its substrate interactions and catalytic turnover. Here we invoke comparative analysis of protein electrostatic potentials, along with sequence and structural analysis, to classify and characterize all the enzymes in an entire pathway across a set of different organisms. The electrostatic potentials of the enzymes from the glycolytic pathway of 11 eukaryotes were analyzed by qPIPSA (quantitative protein interaction property similarity analysis). The comparison allows the functional assignment of neuron-specific isoforms of triosephosphate isomerase from zebrafish, the identification of unusual protein surface interaction properties of the mosquito glucose-6-phosphate isomerase and the functional annotation of ATP-dependent phosphofructokinases and cofactor-dependent phosphoglycerate mutases from plants. We here show that plants possess two parallel pathways to convert glucose. One is similar to glycolysis in humans, the other is specialized to let plants adapt to their environmental conditions. We use differences in electrostatic potentials to estimate kinetic parameters for the triosephosphate isomerases from nine species for which published parameters are not available. Along the core glycolytic pathway, phosphoglycerate mutase displays the most conserved electrostatic potential. The largest cross-species variations are found for glucose-6-phosphate isomerase, enolase and fructose-1,6-bisphosphate aldolase. The extent of conservation of electrostatic potentials along the pathway is consistent with the absence of a single rate-limiting step in glycolysis.
Collapse
Affiliation(s)
- Matthias Stein
- EML Research gGmbH, Molecular and Cellular Modelling, Schloss-Wolfsbrunnenweg 33, 69118 Heidelberg, Germany.
| | | | | |
Collapse
|
46
|
Glycolytic flux signals to mTOR through glyceraldehyde-3-phosphate dehydrogenase-mediated regulation of Rheb. Mol Cell Biol 2009; 29:3991-4001. [PMID: 19451232 DOI: 10.1128/mcb.00165-09] [Citation(s) in RCA: 135] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The mammalian target of rapamycin (mTOR) interacts with raptor to form the protein complex mTORC1 (mTOR complex 1), which plays a central role in the regulation of cell growth in response to environmental cues. Given that glucose is a primary fuel source and a biosynthetic precursor, how mTORC1 signaling is coordinated with glucose metabolism has been an important question. Here, we found that the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) binds Rheb and inhibits mTORC1 signaling. Under low-glucose conditions, GAPDH prevents Rheb from binding to mTOR and thereby inhibits mTORC1 signaling. High glycolytic flux suppresses the interaction between GAPDH and Rheb and thus allows Rheb to activate mTORC1. Silencing of GAPDH or blocking of the Rheb-GAPDH interaction desensitizes mTORC1 signaling to changes in the level of glucose. The GAPDH-dependent regulation of mTORC1 in response to glucose availability occurred even in TSC1-deficient cells and AMPK-silenced cells, supporting the idea that the GAPDH-Rheb pathway functions independently of the AMPK axis. Furthermore, we show that glyceraldehyde-3-phosphate, a glycolytic intermediate that binds GAPDH, destabilizes the Rheb-GAPDH interaction even under low-glucose conditions, explaining how high-glucose flux suppresses the interaction and activates mTORC1 signaling. Taken together, our results suggest that the glycolytic flux regulates mTOR's access to Rheb by regulating the Rheb-GAPDH interaction, thereby allowing mTORC1 to coordinate cell growth with glucose availability.
Collapse
|
47
|
|
48
|
Prabhakar V, Löttgert T, Gigolashvili T, Bell K, Flügge UI, Häusler RE. Molecular and functional characterization of the plastid-localized Phosphoenolpyruvate enolase (ENO1) from Arabidopsis thaliana. FEBS Lett 2009; 583:983-91. [PMID: 19223001 DOI: 10.1016/j.febslet.2009.02.017] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Revised: 02/09/2009] [Accepted: 02/09/2009] [Indexed: 10/21/2022]
Abstract
The Arabidopsis thaliana gene At1g74030 codes for a putative plastid phosphoenolpyruvate (PEP) enolase (ENO1). The recombinant ENO1 protein exhibited enolase activity and its kinetic properties were determined. ENO1 is localized to plastids and expressed in most heterotrophic tissues including trichomes and non-root-hair cells, but not in the mesophyll of leaves. Two T-DNA insertion eno1 mutants exhibited distorted trichomes and reduced numbers of root hairs as the only visible phenotype. The essential role of ENO1 in PEP provision for anabolic processes within plastids, such as the shikimate pathway, is discussed with respect to plastid transporters, such as the PEP/phosphate translocator.
Collapse
Affiliation(s)
- Veena Prabhakar
- Universität zu Köln, Botanisches Institut, Köln (Cologne), Germany
| | | | | | | | | | | |
Collapse
|
49
|
Commichau FM, Rothe FM, Herzberg C, Wagner E, Hellwig D, Lehnik-Habrink M, Hammer E, Völker U, Stülke J. Novel activities of glycolytic enzymes in Bacillus subtilis: interactions with essential proteins involved in mRNA processing. Mol Cell Proteomics 2009; 8:1350-60. [PMID: 19193632 DOI: 10.1074/mcp.m800546-mcp200] [Citation(s) in RCA: 196] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glycolysis is one of the most important metabolic pathways in heterotrophic organisms. Several genes encoding glycolytic enzymes are essential in many bacteria even under conditions when neither glycolytic nor gluconeogenic activities are required. In this study, a screening for in vivo interaction partners of glycolytic enzymes of the soil bacterium Bacillus subtilis was used to provide a rationale for essentiality of glycolytic enzymes. Glycolytic enzymes proved to be in close contact with several other proteins, among them a high proportion of essential proteins. Among these essential interaction partners, other glycolytic enzymes were most prominent. Two-hybrid studies confirmed interactions of phosphofructokinase with phosphoglyceromutase and enolase. Such a complex of glycolytic enzymes might allow direct substrate channeling of glycolytic intermediates. Moreover we found associations of glycolytic enzymes with several proteins known or suspected to be involved in RNA processing and degradation. One of these proteins, Rny (YmdA), which has so far not been functionally characterized, is required for the processing of the mRNA of the glycolytic gapA operon. Two-hybrid analyses confirmed the interactions between the glycolytic enzymes phosphofructokinase and enolase and the enzymes involved in RNA processing, RNase J1, Rny, and polynucleotide phosphorylase. Moreover RNase J1 interacts with its homologue RNase J2. We suggest that this complex of mRNA processing and glycolytic enzymes is the B. subtilis equivalent of the RNA degradosome. Our findings suggest that the functional interaction of glycolytic enzymes with essential proteins may be the reason why they are indispensable.
Collapse
Affiliation(s)
- Fabian M Commichau
- Department of General Microbiology, Georg-August-University Göttingen, Grisebachstrasse 8, D-37077 Göttingen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
Comparative genomics have identified two loosely defined classes of genes: widely distributed core genes that encode proteins for central functions in the cell and accessory genes that are patchily distributed across lineages and encode taxa-specific functions. Studies of microbial eukaryotes show that both categories undergo horizontal gene transfer (HGT) from prokaryotes, but also between eukaryotic organisms. Intra-domain gene transfers of most core genes seem to be relatively infrequent and therefore comparatively easy to detect using phylogenetic methods. In contrast, phylogenies of accessory genes often have complex topologies with little or no resemblance of organismal relationships typically with eukaryotes and prokaryotes intermingled, making detailed evolutionary histories difficult to interpret. Nevertheless, this suggests significant rates of gene transfer between and among the three domains of life for many of these genes, affecting a considerably diversity of eukaryotic microbes, although the current depth of taxonomic sampling usually is insufficient to pin down individual transfer events. The occurrence of intra-domain transfer among microbial eukaryotes has important implications for studies of organismal phylogeny as well as eukaryote genome evolution in general.
Collapse
Affiliation(s)
- Jan O Andersson
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|