1
|
Dahm K, Vijayarangakannan P, Wollscheid H, Schild H, Rajalingam K. Atypical MAPKs in cancer. FEBS J 2025; 292:2173-2188. [PMID: 39348153 PMCID: PMC12062777 DOI: 10.1111/febs.17283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/28/2024] [Accepted: 09/10/2024] [Indexed: 10/01/2024]
Abstract
Impaired kinase signalling leads to various diseases, including cancer. At the same time, kinases make up the majority of the druggable genome and targeting kinase activity has proven to be a successful first-line therapy for many cancers. Among the best-studied kinases are the mitogen-activated protein kinases (MAPKs), which regulate cell proliferation, differentiation, motility, and survival. However, the MAPK family also contains the atypical members ERK3 (MAPK6), ERK4 (MAPK4), ERK7/ERK8 (MAPK15), and NLK that are functionally and structurally different from their conventional family members and have long been neglected. Nevertheless, in recent years, important roles in carcinogenesis, actin cytoskeleton regulation and the immune system have been discovered, underlining the physiological importance of atypical MAPKs and the need to better understand their functions. This review highlights the distinctive features of the atypical MAPKs and summarizes the evidence on their regulation, physiological roles, and potential targeting strategies for cancer therapies.
Collapse
Affiliation(s)
- Katrin Dahm
- Cell Biology UnitUniversity Medical Center Mainz, JGU‐MainzGermany
| | | | | | - Hansjörg Schild
- Institute of ImmunologyUniversity Medical Center Mainz, JGU‐MainzGermany
| | | |
Collapse
|
2
|
Sahadevan P, Dingar D, Nawaito SA, Nair RS, Trépanier J, Sahmi F, Shi Y, Gillis M, Sirois MG, Meloche S, Tardif J, Allen BG. ERK3 is involved in regulating cardiac fibroblast function. Physiol Rep 2024; 12:e16108. [PMID: 38872461 PMCID: PMC11176743 DOI: 10.14814/phy2.16108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/29/2024] [Accepted: 05/29/2024] [Indexed: 06/15/2024] Open
Abstract
ERK3/MAPK6 activates MAP kinase-activated protein kinase (MK)-5 in selected cell types. Male MK5 haplodeficient mice show reduced hypertrophy and attenuated increase in Col1a1 mRNA in response to increased cardiac afterload. In addition, MK5 deficiency impairs cardiac fibroblast function. This study determined the effect of reduced ERK3 on cardiac hypertrophy following transverse aortic constriction (TAC) and fibroblast biology in male mice. Three weeks post-surgery, ERK3, but not ERK4 or p38α, co-immunoprecipitated with MK5 from both sham and TAC heart lysates. The increase in left ventricular mass and myocyte diameter was lower in TAC-ERK3+/- than TAC-ERK3+/+ hearts, whereas ERK3 haploinsufficiency did not alter systolic or diastolic function. Furthermore, the TAC-induced increase in Col1a1 mRNA abundance was diminished in ERK3+/- hearts. ERK3 immunoreactivity was detected in atrial and ventricular fibroblasts but not myocytes. In both quiescent fibroblasts and "activated" myofibroblasts isolated from adult mouse heart, siRNA-mediated knockdown of ERK3 reduced the TGF-β-induced increase in Col1a1 mRNA. In addition, intracellular type 1 collagen immunoreactivity was reduced following ERK3 depletion in quiescent fibroblasts but not myofibroblasts. Finally, knocking down ERK3 impaired motility in both atrial and ventricular myofibroblasts. These results suggest that ERK3 plays an important role in multiple aspects of cardiac fibroblast biology.
Collapse
Affiliation(s)
- Pramod Sahadevan
- Montreal Heart InstituteMontréalQuébecCanada
- Department of Biochemistry and Molecular MedicineUniversité de MontréalMontréalQuébecCanada
| | - Dharmendra Dingar
- Montreal Heart InstituteMontréalQuébecCanada
- Department of Biochemistry and Molecular MedicineUniversité de MontréalMontréalQuébecCanada
| | - Sherin A. Nawaito
- Montreal Heart InstituteMontréalQuébecCanada
- Department of Pharmacology and PhysiologyUniversité de MontréalMontréalQuébecCanada
- Department of Physiology, Faculty of MedicineSuez Canal UniversityIsmailiaEgypt
| | - Reshma S. Nair
- Montreal Heart InstituteMontréalQuébecCanada
- Department of Biochemistry and Molecular MedicineUniversité de MontréalMontréalQuébecCanada
| | - Joëlle Trépanier
- Montreal Heart InstituteMontréalQuébecCanada
- Department of Biochemistry and Molecular MedicineUniversité de MontréalMontréalQuébecCanada
| | | | - Yanfen Shi
- Montreal Heart InstituteMontréalQuébecCanada
| | | | - Martin G. Sirois
- Montreal Heart InstituteMontréalQuébecCanada
- Department of Pharmacology and PhysiologyUniversité de MontréalMontréalQuébecCanada
| | - Sylvain Meloche
- Department of Pharmacology and PhysiologyUniversité de MontréalMontréalQuébecCanada
- Institute for Research in Immunology and CancerUniversité de MontréalMontréalQuébecCanada
| | - Jean‐Claude Tardif
- Montreal Heart InstituteMontréalQuébecCanada
- Department of MedicineUniversité de MontréalMontréalQuébecCanada
| | - Bruce G. Allen
- Montreal Heart InstituteMontréalQuébecCanada
- Department of Biochemistry and Molecular MedicineUniversité de MontréalMontréalQuébecCanada
- Department of Pharmacology and PhysiologyUniversité de MontréalMontréalQuébecCanada
- Department of MedicineUniversité de MontréalMontréalQuébecCanada
| |
Collapse
|
3
|
Elkhadragy L, Myers A, Long W. Role of the Atypical MAPK ERK3 in Cancer Growth and Progression. Cancers (Basel) 2024; 16:1381. [PMID: 38611058 PMCID: PMC11011113 DOI: 10.3390/cancers16071381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 03/23/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Extracellular signal-regulated kinase 3 (ERK3) is an atypical mitogen-activated protein kinase (MAPK) whose structural and regulatory features are distinct from those of conventional MAPKs, such as ERK1/2. Since its identification in 1991, the regulation, substrates and functions of ERK3 have remained largely unknown. However, recent years have witnessed a wealth of new findings about ERK3 signaling. Several important biological functions for ERK3 have been revealed, including its role in neuronal morphogenesis, inflammation, metabolism, endothelial cell tube formation and epithelial architecture. In addition, ERK3 has been recently shown to play important roles in cancer cell proliferation, migration, invasion and chemoresistance in multiple types of cancers. Furthermore, accumulating studies have uncovered various molecular mechanisms by which the expression level, protein stability and activity of ERK3 are regulated. In particular, several post-translational modifications (PTMs), including ubiquitination, hydroxylation and phosphorylation, have been shown to regulate the stability and activity of ERK3 protein. In this review, we discuss recent findings regarding biochemical and cellular functions of ERK3, with a main focus on its roles in cancers, as well as the molecular mechanisms of regulating its expression and activity.
Collapse
Affiliation(s)
- Lobna Elkhadragy
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA; (L.E.); (A.M.)
- Department of Radiology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Amanda Myers
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA; (L.E.); (A.M.)
| | - Weiwen Long
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA; (L.E.); (A.M.)
| |
Collapse
|
4
|
Dai XJ, Xue LP, Ji SK, Zhou Y, Gao Y, Zheng YC, Liu HM, Liu HM. Triazole-fused pyrimidines in target-based anticancer drug discovery. Eur J Med Chem 2023; 249:115101. [PMID: 36724635 DOI: 10.1016/j.ejmech.2023.115101] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/31/2022] [Accepted: 01/06/2023] [Indexed: 01/12/2023]
Abstract
In recent decades, the development of targeted drugs has featured prominently in the treatment of cancer, which is among the major causes of mortality globally. Triazole-fused pyrimidines, a widely-used class of heterocycles in medicinal chemistry, have attracted considerable interest as potential anticancer agents that target various cancer-associated targets in recent years, demonstrating them as valuable templates for discovering novel anticancer candidates. The current review concentrates on the latest advancements of triazole-pyrimidines as target-based anticancer agents, including works published between 2007 and the present (2007-2022). The structure-activity relationships (SARs) and multiple pathways are also reviewed to shed light on the development of more effective and biotargeted anticancer candidates.
Collapse
Affiliation(s)
- Xing-Jie Dai
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan Province, China
| | - Lei-Peng Xue
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan Province, China
| | - Shi-Kun Ji
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan Province, China
| | - Ying Zhou
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan Province, China
| | - Ya Gao
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan Province, China
| | - Yi-Chao Zheng
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan Province, China
| | - Hui-Min Liu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan Province, China.
| | - Hong-Min Liu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan Province, China
| |
Collapse
|
5
|
Loza-Valdes A, El-Merahbi R, Kassouf T, Demczuk A, Reuter S, Viera JT, Karwen T, Noh M, Löffler MC, Romero-Becerra R, Torres JL, Marcos M, Sabio G, Wojda U, Sumara G. Targeting ERK3/MK5 complex for treatment of obesity and diabetes. Biochem Biophys Res Commun 2022; 612:119-125. [PMID: 35523049 DOI: 10.1016/j.bbrc.2022.04.070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 04/15/2022] [Indexed: 11/28/2022]
Abstract
Kinases represent one of the largest druggable families of proteins. Importantly, many kinases are aberrantly activated/de-activated in multiple organs during obesity, which contributes to the development of diabetes and associated diseases. Previous results indicate that the complex between Extracellular-regulated kinase 3 (ERK3) and Mitogen-Activated Protein Kinase (MAPK)-activated protein kinase 5 (MK5) suppresses energy dissipation and promotes fatty acids (FAs) output in adipose tissue and, therefore promotes obesity and diabetes. However, the therapeutic potential of targeting this complex at the systemic level has not been fully explored. Here we applied a translational approach to target the ERK3/MK5 complex in mice. Importantly, deletion of ERK3 in the whole body or administration of MK5-specific inhibitor protects against obesity and promotes insulin sensitivity. Finally, we show that the expression of ERK3 and MK5 correlates with the degree of obesity and that ERK3/MK5 complex regulates energy dissipation in human adipocytes. Altogether, we demonstrate that ERK3/MK5 complex can be targeted in vivo to preserve metabolic health and combat obesity and diabetes.
Collapse
Affiliation(s)
- Angel Loza-Valdes
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warszawa, Poland
| | - Rabih El-Merahbi
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, 97080, Würzburg, Germany
| | - Toufic Kassouf
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warszawa, Poland
| | - Agnieszka Demczuk
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warszawa, Poland
| | - Saskia Reuter
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, 97080, Würzburg, Germany
| | - Jonathan Trujillo Viera
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, 97080, Würzburg, Germany
| | - Till Karwen
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, 97080, Würzburg, Germany
| | - Minhe Noh
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, 97080, Würzburg, Germany
| | - Mona C Löffler
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, 97080, Würzburg, Germany
| | - Rafael Romero-Becerra
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Jorge L Torres
- Department of Internal Medicine, University Hospital of Salamanca-IBSAL, Salamanca, Spain
| | - Miguel Marcos
- Department of Internal Medicine, University Hospital of Salamanca-IBSAL, Salamanca, Spain; Department of Medicine, University of Salamanca, Salamanca, Spain
| | - Guadalupe Sabio
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Urszula Wojda
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warszawa, Poland
| | - Grzegorz Sumara
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warszawa, Poland; Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, 97080, Würzburg, Germany.
| |
Collapse
|
6
|
Abstract
Mitogen-activated protein kinase (MAPK)-activated protein kinases (MAPKAPKs) are defined by their exclusive activation by MAPKs. They can be activated by classical and atypical MAPKs that have been stimulated by mitogens and various stresses. Genetic deletions of MAPKAPKs and availability of highly specific small-molecule inhibitors have continuously increased our functional understanding of these kinases. MAPKAPKs cooperate in the regulation of gene expression at the level of transcription; RNA processing, export, and stability; and protein synthesis. The diversity of stimuli for MAPK activation, the cross talk between the different MAPKs and MAPKAPKs, and the specific substrate pattern of MAPKAPKs orchestrate immediate-early and inflammatory responses in space and time and ensure proper control of cell growth, differentiation, and cell behavior. Hence, MAPKAPKs are promising targets for cancer therapy and treatments for conditions of acute and chronic inflammation, such as cytokine storms and rheumatoid arthritis. Expected final online publication date for the Annual Review of Biochemistry, Volume 91 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Natalia Ronkina
- Institute of Cell Biochemistry, Hannover Medical School, Hannover, Germany;
| | - Matthias Gaestel
- Institute of Cell Biochemistry, Hannover Medical School, Hannover, Germany;
| |
Collapse
|
7
|
An HJ, Lee CJ, Lee GE, Choi Y, Jeung D, Chen W, Lee HS, Kang HC, Lee JY, Kim DJ, Choi JS, Cho ES, Choi JS, Cho YY. FBXW7-mediated ERK3 degradation regulates the proliferation of lung cancer cells. Exp Mol Med 2022; 54:35-46. [PMID: 35022544 PMCID: PMC8813941 DOI: 10.1038/s12276-021-00721-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 11/01/2021] [Accepted: 11/08/2021] [Indexed: 11/22/2022] Open
Abstract
Extracellular signal-regulated kinase 3 (ERK3) is an atypical member of the mitogen-activated protein kinase (MAPK) family, members of which play essential roles in diverse cellular processes during carcinogenesis, including cell proliferation, differentiation, migration, and invasion. Unlike other MAPKs, ERK3 is an unstable protein with a short half-life. Although deubiquitination of ERK3 has been suggested to regulate the activity, its ubiquitination has not been described in the literature. Here, we report that FBXW7 (F-box and WD repeat domain-containing 7) acts as a ubiquitination E3 ligase for ERK3. Mammalian two-hybrid assay and immunoprecipitation results demonstrated that ERK3 is a novel binding partner of FBXW7. Furthermore, complex formation between ERK3 and the S-phase kinase-associated protein 1 (SKP1)-cullin 1-F-box protein (SCF) E3 ligase resulted in the destabilization of ERK3 via a ubiquitination-mediated proteasomal degradation pathway, and FBXW7 depletion restored ERK3 protein levels by inhibiting this ubiquitination. The interaction between ERK3 and FBXW7 was driven by binding between the C34D of ERK3, especially at Thr417 and Thr421, and the WD40 domain of FBXW7. A double mutant of ERK3 (Thr417 and Thr421 to alanine) abrogated FBXW7-mediated ubiquitination. Importantly, ERK3 knockdown inhibited the proliferation of lung cancer cells by regulating the G1/S-phase transition of the cell cycle. These results show that FBXW7-mediated ERK3 destabilization suppresses lung cancer cell proliferation in vitro.
Collapse
Affiliation(s)
- Hyun-Jung An
- grid.411947.e0000 0004 0470 4224College of Pharmacy, The Catholic University of Korea, 43, Jibong-Ro, Wonmi-Gu, Bucheon-si, Gyeonggi-Do 14662 Republic of Korea ,grid.411947.e0000 0004 0470 4224BK21-4th, and BRL, College of Pharmacy, The Catholic University of Korea, 43, Jibong-Ro, Wonmi-Gu, Bucheon-Si, Gyeonggi-Do 14662 Republic of Korea
| | - Cheol-Jung Lee
- grid.411947.e0000 0004 0470 4224College of Pharmacy, The Catholic University of Korea, 43, Jibong-Ro, Wonmi-Gu, Bucheon-si, Gyeonggi-Do 14662 Republic of Korea ,grid.410885.00000 0000 9149 5707Research Center for Materials Analysis, Korea Basic Science Institute, 169-148, Gwahak-Ro, Yuseong-Gu, Daejeon, 34133 Republic of Korea
| | - Ga-Eun Lee
- grid.411947.e0000 0004 0470 4224College of Pharmacy, The Catholic University of Korea, 43, Jibong-Ro, Wonmi-Gu, Bucheon-si, Gyeonggi-Do 14662 Republic of Korea ,grid.411947.e0000 0004 0470 4224BK21-4th, and BRL, College of Pharmacy, The Catholic University of Korea, 43, Jibong-Ro, Wonmi-Gu, Bucheon-Si, Gyeonggi-Do 14662 Republic of Korea
| | - Youngwon Choi
- grid.411947.e0000 0004 0470 4224College of Pharmacy, The Catholic University of Korea, 43, Jibong-Ro, Wonmi-Gu, Bucheon-si, Gyeonggi-Do 14662 Republic of Korea ,grid.411947.e0000 0004 0470 4224BK21-4th, and BRL, College of Pharmacy, The Catholic University of Korea, 43, Jibong-Ro, Wonmi-Gu, Bucheon-Si, Gyeonggi-Do 14662 Republic of Korea
| | - Dohyun Jeung
- grid.411947.e0000 0004 0470 4224College of Pharmacy, The Catholic University of Korea, 43, Jibong-Ro, Wonmi-Gu, Bucheon-si, Gyeonggi-Do 14662 Republic of Korea ,grid.411947.e0000 0004 0470 4224BK21-4th, and BRL, College of Pharmacy, The Catholic University of Korea, 43, Jibong-Ro, Wonmi-Gu, Bucheon-Si, Gyeonggi-Do 14662 Republic of Korea
| | - Weidong Chen
- grid.411947.e0000 0004 0470 4224College of Pharmacy, The Catholic University of Korea, 43, Jibong-Ro, Wonmi-Gu, Bucheon-si, Gyeonggi-Do 14662 Republic of Korea ,grid.411947.e0000 0004 0470 4224BK21-4th, and BRL, College of Pharmacy, The Catholic University of Korea, 43, Jibong-Ro, Wonmi-Gu, Bucheon-Si, Gyeonggi-Do 14662 Republic of Korea
| | - Hye Suk Lee
- grid.411947.e0000 0004 0470 4224BK21-4th, and BRL, College of Pharmacy, The Catholic University of Korea, 43, Jibong-Ro, Wonmi-Gu, Bucheon-Si, Gyeonggi-Do 14662 Republic of Korea
| | - Han Chang Kang
- grid.411947.e0000 0004 0470 4224BK21-4th, and BRL, College of Pharmacy, The Catholic University of Korea, 43, Jibong-Ro, Wonmi-Gu, Bucheon-Si, Gyeonggi-Do 14662 Republic of Korea
| | - Joo Young Lee
- grid.411947.e0000 0004 0470 4224BK21-4th, and BRL, College of Pharmacy, The Catholic University of Korea, 43, Jibong-Ro, Wonmi-Gu, Bucheon-Si, Gyeonggi-Do 14662 Republic of Korea
| | - Dae Joon Kim
- grid.449717.80000 0004 5374 269XDepartment of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, MBMRF, 1.410, 5300, North L St., McAleen, TX 78504 USA
| | - Jin-Sung Choi
- grid.411947.e0000 0004 0470 4224College of Pharmacy, The Catholic University of Korea, 43, Jibong-Ro, Wonmi-Gu, Bucheon-si, Gyeonggi-Do 14662 Republic of Korea
| | - Eun Suh Cho
- grid.17635.360000000419368657College of Biological Science, University of Minnesota, 3-104 MCB, 420 Washington Ave SE, Minneapolis, MN 55455 USA
| | - Jong-Soon Choi
- grid.410885.00000 0000 9149 5707Research Center for Materials Analysis, Korea Basic Science Institute, 169-148, Gwahak-Ro, Yuseong-Gu, Daejeon, 34133 Republic of Korea ,grid.254230.20000 0001 0722 6377Graduate School of Analytical Science and Technology, Chungnam National University, 99, Daehak-Ro, Yuseong-Gu, Daejeon, 34134 Republic of Korea
| | - Yong-Yeon Cho
- College of Pharmacy, The Catholic University of Korea, 43, Jibong-Ro, Wonmi-Gu, Bucheon-si, Gyeonggi-Do, 14662, Republic of Korea. .,BK21-4th, and BRL, College of Pharmacy, The Catholic University of Korea, 43, Jibong-Ro, Wonmi-Gu, Bucheon-Si, Gyeonggi-Do, 14662, Republic of Korea.
| |
Collapse
|
8
|
Bhattacharjee S, Rehman I, Nandy S, Das BB. Post-translational regulation of Tyrosyl-DNA phosphodiesterase (TDP1 and TDP2) for the repair of the trapped topoisomerase-DNA covalent complex. DNA Repair (Amst) 2022; 111:103277. [DOI: 10.1016/j.dnarep.2022.103277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 12/24/2021] [Accepted: 01/20/2022] [Indexed: 12/23/2022]
|
9
|
Early life and adult stress promote sex dependent changes in hypothalamic miRNAs and environmental enrichment prevents stress-induced miRNA and gene expression changes in rats. BMC Genomics 2021; 22:701. [PMID: 34583641 PMCID: PMC8480023 DOI: 10.1186/s12864-021-08003-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 09/13/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The hypothalamus plays a key role in the stress response. While early life stress (ELS) increases susceptibility to psychiatric disorders including major depressive disorder (MDD), acute stress during adulthood can also precipitate MDD after ELS. AIM Here, we tested the expression of miRNAs following ELS and susceptibility to depression-like behavior and whether sex or acute stress exacerbates this response. We also tested whether environmental enrichment (Enr) promotes early life and adult behavioral stress resilience and its effect on hypothalamic miRNA and gene expression. Following rat maternal separation (MS) as an ELS model, Enr from weaning through adulthood, and restraint (RS) as acute adult stress, we tested both animal behavior and miRNA expression in the hypothalamus. Target genes and their enrichment and ontology were analyzed using bioinformatic tools. Target gene expression changes were tested using qPCR, and miRNA promoter methylation was studied using methylated-DNA immunoprecipitation qPCR. RESULTS MS, Enr, RS, and sex altered hypothalamic miRNAs, including several previously reported in MS literature: miRs-29, - 124, - 132, - 144, - 504. Sex had a significant effect on the greatest number of miRNAs. Also, Enr reversed downregulation of miR-29b-1-5p and -301b-3p in MS. qPCR showed that MAPK6 and MMP19, targets of miR-301b-3p, were upregulated in MS and reversed by Enr. Additionally, miR-219a was hypermethylated in MS coinciding with decreased miR-219a expression. CONCLUSIONS This study found that sex plays a critical role in the hypothalamic miRNA response to both ELS and acute stress, with males expressing greater changes following postnatal stress. Moreover, enrichment significantly altered behavior as well as hypothalamic miRNA expression and their gene targets. Because of its role as the initiator of the autonomic stress response and connection to hedonic and motivational behavior, the hypothalamic miRNA landscape may significantly alter both the short and long-term behavioral response to stress.
Collapse
|
10
|
Welch CL, Austin ED, Chung WK. Genes that drive the pathobiology of pediatric pulmonary arterial hypertension. Pediatr Pulmonol 2021; 56:614-620. [PMID: 31917901 PMCID: PMC7343584 DOI: 10.1002/ppul.24637] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 12/27/2019] [Indexed: 12/15/2022]
Abstract
Emerging data from studies of pediatric-onset pulmonary arterial hypertension (PAH) indicate that the genomics of pediatric PAH is different than that of adults. There is a greater genetic burden in children, with rare genetic factors contributing to at least 35% of pediatric-onset idiopathic PAH (IPAH) compared with ~11% of adult-onset IPAH. De novo variants are the most frequent genetic cause of PAH in children, likely contributing to ~15% of all cases. Rare deleterious variants in bone morphogenetic protein receptor 2 (BMPR2) contribute to pediatric-onset familial PAH and IPAH with similar frequency as adult-onset. While likely gene-disrupting (LGD) variants in BMPR2 contribute across the lifespan, damaging missense variants are more frequent in early-onset PAH. Rare deleterious variants in T-box 4-containing protein (TBX4) are more common in pediatric-compared with adult-onset PAH, explaining ~8% of pediatric IPAH. PAH associated with congenital heart disease (APAH-CHD) and other developmental disorders account for a large proportion of pediatric PAH. SRY-related HMG box transcription factor (SOX17) was recently identified as an APAH-CHD risk gene, contributing less frequently to IPAH, with a greater prevalence of rare deleterious variants in children compared with adults. The differences in genetic burden and genes underlying pediatric- vs adult-onset PAH indicate that genetic information relevant to pediatric PAH cannot be extrapolated from adult studies. Large cohorts of pediatric-onset PAH are necessary to identify the unique etiological differences of PAH in children, as well as the natural history and response to therapy.
Collapse
Affiliation(s)
- Carrie L Welch
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York
| | - Eric D Austin
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Wendy K Chung
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York.,Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York.,Department of Medicine, Columbia University Medical Center, New York, New York
| |
Collapse
|
11
|
Alshammari ES, Aljagthmi AA, Stacy AJ, Bottomley M, Shamma HN, Kadakia MP, Long W. ERK3 is transcriptionally upregulated by ∆Np63α and mediates the role of ∆Np63α in suppressing cell migration in non-melanoma skin cancers. BMC Cancer 2021; 21:155. [PMID: 33579235 PMCID: PMC7881562 DOI: 10.1186/s12885-021-07866-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 02/02/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND p63, a member of the p53 gene family, is an important regulator for epithelial tissue growth and development. ∆Np63α is the main isoform of p63 and highly expressed in Non-melanoma skin cancer (NMSC). Extracellular signal-regulated kinase 3 (ERK3) is an atypical mitogen-activated protein kinase (MAPK) whose biochemical features and cellular regulation are distinct from those of conventional MAPKs such as ERK1/2. While ERK3 has been shown to be upregulated in lung cancers and head and neck cancers, in which it promotes cancer cell migration and invasion, little is known about the implication of ERK3 in NMSCs. METHODS Fluorescent immunohistochemistry was performed to evaluate the expression levels of ΔNp63α and ERK3 in normal and NMSC specimens. Dunnett's test was performed to compare mean fluorescence intensity (MFI, indicator of expression levels) of p63 or ERK3 between normal cutaneous samples and NMSC samples. A mixed effects (ANOVA) test was used to determine the correlation between ΔNp63α and ERK3 expression levels (MFI). The regulation of ERK3 by ΔNp63α was studied by qRT-PCR, Western blot and luciferase assay. The effect of ERK3 regulation by ΔNp63α on cell migration was measured by performing trans-well migration assay. RESULTS The expression level of ∆Np63α is upregulated in NMSCs compared to normal tissue. ERK3 level is significantly upregulated in AK and SCC in comparison to normal tissue and there is a strong positive correlation between ∆Np63α and ERK3 expression in normal skin and skin specimens of patients with AK, SCC or BCC. Further, we found that ∆Np63α positively regulates ERK3 transcript and protein levels in A431 and HaCaT skin cells, underlying the upregulation of ERK3 expression and its positive correlation with ∆Np63α in NMSCs. Moreover, similar to the effect of ∆Np63α depletion, silencing ERK3 greatly enhanced A431 cell migration. Restoration of ERK3 expression under the condition of silencing ∆Np63α counteracted the increase in cell migration induced by the depletion of ∆Np63α. Mechanistically, ERK3 inhibits the phosphorylation of Rac1 G-protein and the formation of filopodia of A431 skin SCC cells. CONCLUSIONS ERK3 is positively regulated by ∆Np63α and mediates the role of ∆Np63α in suppressing cell migration in NMSC.
Collapse
Affiliation(s)
- Eid S Alshammari
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, 112 Diggs Laboratory, 3640 Colonel Glenn Highway, Dayton, OH, 45435, USA.,Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakakah, 72388, Saudi Arabia
| | - Amjad A Aljagthmi
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, 112 Diggs Laboratory, 3640 Colonel Glenn Highway, Dayton, OH, 45435, USA
| | - Andrew J Stacy
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, 112 Diggs Laboratory, 3640 Colonel Glenn Highway, Dayton, OH, 45435, USA
| | - Mike Bottomley
- Department of Math and Microbiology, College of Science and Mathematics, Wright State University, Dayton, OH, 45435, USA
| | - H Nicholas Shamma
- Department of Dermatology, Boonshoft School of Medicine, Wright State University, 3640 Colonel Glenn Highway, Dayton, OH, 45435, USA
| | - Madhavi P Kadakia
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, 112 Diggs Laboratory, 3640 Colonel Glenn Highway, Dayton, OH, 45435, USA.
| | - Weiwen Long
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, 112 Diggs Laboratory, 3640 Colonel Glenn Highway, Dayton, OH, 45435, USA.
| |
Collapse
|
12
|
Lee YJ, Choi S, Kwon SY, Lee Y, Lee JK, Heo EY, Chung HS, Kim DK. A Genome-Wide Association Study in Early COPD: Identification of One Major Susceptibility Loci. Int J Chron Obstruct Pulmon Dis 2020; 15:2967-2975. [PMID: 33235445 PMCID: PMC7680157 DOI: 10.2147/copd.s269263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/23/2020] [Indexed: 12/20/2022] Open
Abstract
Background Identifying the genetic basis of airflow limitation is one of the most interesting issues for understanding chronic obstructive pulmonary disease (COPD) pathophysiology. Several studies have shown that some genetic variants associated with COPD have been identified in genome-wide association study (GWAS), especially in patients with moderate to severe COPD; genetic susceptibility for airflow limitation in the early COPD phase has not been widely studied. Objective We investigated the genetic variants in early COPD. Methods The present study analyzed Gene-environment interaction and phenotype (GENIE) cohort that included participants who received health screening examination. The association between single nucleotide polymorphism (SNP) and susceptibility to early COPD (FEV1 predicted ≥50% and FEV1/FVC <0.7) was tested. Results A total of 130 patients with early COPD and 3478 controls (1700 ever smokers and 1778 never smokers) were recruited. When compared with the total controls, certain SNPs (rs2818103, rs875033, rs9354627, rs34552148) on chromosome 6 were included at the top of our list (p= 5.6 × 10–7 ~9.6 × 10–6) although they did not reach genome-wide significance. When compared with the never smoker controls, two SNPs (rs2857210, rs2621419) of the HLA-DQB2 gene class were persistently associated with susceptibility to early COPD. Conclusion Certain SNPs located on chromosome 6 or the HLA-DQB2 gene were the top-scoring SNPs for the association with susceptibility to early COPD in the Korean GENIE cohort.
Collapse
Affiliation(s)
- Ye-Jin Lee
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Hallym University Kangdong Sacred Heart Hospital, Seoul, Korea
| | - SeungHo Choi
- Department of Internal Medicine, Healthcare Research Institute, Healthcare System Gangnam Center, Seoul National University Hospital, Seoul 135-984 Korea
| | - Sung-Youn Kwon
- Department of Internal Medicine, Healthcare Research Institute, Healthcare System Gangnam Center, Seoul National University Hospital, Seoul 135-984 Korea
| | - Yunhwan Lee
- Department of Internal Medicine, Healthcare Research Institute, Healthcare System Gangnam Center, Seoul National University Hospital, Seoul 135-984 Korea
| | - Jung Kyu Lee
- Division of Pulmonary and Critical Care Medicine, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul, Korea
| | - Eun Young Heo
- Division of Pulmonary and Critical Care Medicine, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul, Korea
| | - Hee Soon Chung
- Division of Pulmonary and Critical Care Medicine, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul, Korea.,Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Deog Kyeom Kim
- Division of Pulmonary and Critical Care Medicine, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul, Korea.,Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
13
|
Schröder M, Filippakopoulos P, Schwalm MP, Ferrer CA, Drewry DH, Knapp S, Chaikuad A. Crystal Structure and Inhibitor Identifications Reveal Targeting Opportunity for the Atypical MAPK Kinase ERK3. Int J Mol Sci 2020; 21:E7953. [PMID: 33114754 PMCID: PMC7663056 DOI: 10.3390/ijms21217953] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/23/2020] [Accepted: 10/23/2020] [Indexed: 12/30/2022] Open
Abstract
Extracellular signal-regulated kinase 3 (ERK3), known also as mitogen-activated protein kinase 6 (MAPK6), is an atypical member of MAPK kinase family, which has been poorly studied. Little is known regarding its function in biological processes, yet this atypical kinase has been suggested to play important roles in the migration and invasiveness of certain cancers. The lack of tools, such as a selective inhibitor, hampers the study of ERK3 biology. Here, we report the crystal structure of the kinase domain of this atypical MAPK kinase, providing molecular insights into its distinct ATP binding pocket compared to the classical MAPK ERK2, explaining differences in their inhibitor binding properties. Medium-scale small molecule screening identified a number of inhibitors, several of which unexpectedly exhibited remarkably high inhibitory potencies. The crystal structure of CLK1 in complex with CAF052, one of the most potent inhibitors identified for ERK3, revealed typical type-I binding mode of the inhibitor, which by structural comparison could likely be maintained in ERK3. Together with the presented structural insights, these diverse chemical scaffolds displaying both reversible and irreversible modes of action, will serve as a starting point for the development of selective inhibitors for ERK3, which will be beneficial for elucidating the important functions of this understudied kinase.
Collapse
Affiliation(s)
- Martin Schröder
- Structural Genomics Consortium, Goethe University Frankfurt, Buchmann Institute for Molecular Life Sciences, Max-von-Laue-Straße 15, 60438 Frankfurt am Main, Germany;
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Straße 9, 60438 Frankfurt am Main, Germany;
| | - Panagis Filippakopoulos
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK;
| | - Martin P. Schwalm
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Straße 9, 60438 Frankfurt am Main, Germany;
| | - Carla A. Ferrer
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA; (C.A.F.); (D.H.D.)
| | - David H. Drewry
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA; (C.A.F.); (D.H.D.)
| | - Stefan Knapp
- Structural Genomics Consortium, Goethe University Frankfurt, Buchmann Institute for Molecular Life Sciences, Max-von-Laue-Straße 15, 60438 Frankfurt am Main, Germany;
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Straße 9, 60438 Frankfurt am Main, Germany;
- German Cancer network DKTK and Frankfurt Cancer Institute (FCI), Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Apirat Chaikuad
- Structural Genomics Consortium, Goethe University Frankfurt, Buchmann Institute for Molecular Life Sciences, Max-von-Laue-Straße 15, 60438 Frankfurt am Main, Germany;
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Straße 9, 60438 Frankfurt am Main, Germany;
| |
Collapse
|
14
|
Bogucka K, Marini F, Rosigkeit S, Schloeder J, Jonuleit H, David K, Schlackow M, Rajalingam K. ERK3/MAPK6 is required for KRAS-mediated NSCLC tumorigenesis. Cancer Gene Ther 2020; 28:359-374. [PMID: 33070159 DOI: 10.1038/s41417-020-00245-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/18/2020] [Accepted: 10/02/2020] [Indexed: 12/26/2022]
Abstract
KRAS is one of the most frequently mutated oncogenes, especially in lung cancers. Targeting of KRAS directly or the downstream effector signaling machinery is of prime interest in treating lung cancers. Here, we uncover that ERK3, a ubiquitously expressed atypical MAPK, is required for KRAS-mediated NSCLC tumors. ERK3 is highly expressed in lung cancers, and oncogenic KRAS led to the activation and stabilization of the ERK3 protein. In particular, phosphorylation of serine 189 in the activation motif of ERK3 is significantly increased in lung adenocarcinomas in comparison to adjacent normal controls in patients. Loss of ERK3 prevents the anchorage-independent growth of KRAS G12C-transformed human bronchial epithelial cells. We further find that loss of ERK3 reduces the oncogenic growth of KRAS G12C-driven NSCLC tumors in vivo and that the kinase activity of ERK3 is required for KRAS-driven oncogenesis in vitro. Our results demonstrate an obligatory role for ERK3 in NSCLC tumor progression and suggest that ERK3 kinase inhibitors can be pursued for treating KRAS G12C-driven tumors.
Collapse
Affiliation(s)
- Katarzyna Bogucka
- Cell Biology Unit, University Medical Center of the Johannes Gutenberg University Mainz, 55131, Mainz, Germany
| | - Federico Marini
- Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Center of the Johannes Gutenberg University Mainz, 55131, Mainz, Germany.,Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University Mainz, 55131, Mainz, Germany
| | - Sebastian Rosigkeit
- Cell Biology Unit, University Medical Center of the Johannes Gutenberg University Mainz, 55131, Mainz, Germany
| | - Janine Schloeder
- Department of Dermatology of the University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Helmut Jonuleit
- Department of Dermatology of the University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | | | | | - Krishnaraj Rajalingam
- Cell Biology Unit, University Medical Center of the Johannes Gutenberg University Mainz, 55131, Mainz, Germany. .,University Cancer Center Mainz, University Medical Center Mainz, Mainz, Germany.
| |
Collapse
|
15
|
Thomas K, Ayse C, Natalia K, Peter B, Bedriye SH, Praveen G, Hakan A, Markus S, Wolfgang S, Yeong-Hoon C, Miroslav B, Manfred R. The MEK/ERK Module Is Reprogrammed in Remodeling Adult Cardiomyocytes. Int J Mol Sci 2020; 21:ijms21176348. [PMID: 32882982 PMCID: PMC7503571 DOI: 10.3390/ijms21176348] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/26/2020] [Accepted: 08/30/2020] [Indexed: 12/18/2022] Open
Abstract
Fetal and hypertrophic remodeling are hallmarks of cardiac restructuring leading chronically to heart failure. Since the Ras/Raf/MEK/ERK cascade (MAPK) is involved in the development of heart failure, we hypothesized, first, that fetal remodeling is different from hypertrophy and, second, that remodeling of the MAPK occurs. To test our hypothesis, we analyzed models of cultured adult rat cardiomyocytes as well as investigated myocytes in the failing human myocardium by western blot and confocal microscopy. Fetal remodeling was induced through endothelial morphogens and monitored by the reexpression of Acta2, Actn1, and Actb. Serum-induced hypertrophy was determined by increased surface size and protein content of cardiomyocytes. Serum and morphogens caused reprogramming of Ras/Raf/MEK/ERK. In both models H-Ras, N-Ras, Rap2, B- and C-Raf, MEK1/2 as well as ERK1/2 increased while K-Ras was downregulated. Atrophy, MAPK-dependent ischemic resistance, loss of A-Raf, and reexpression of Rap1 and Erk3 highlighted fetal remodeling, while A-Raf accumulation marked hypertrophy. The knock-down of B-Raf by siRNA reduced MAPK activation and fetal reprogramming. In conclusion, we demonstrate that fetal and hypertrophic remodeling are independent processes and involve reprogramming of the MAPK.
Collapse
Affiliation(s)
- Kubin Thomas
- Department of Cardiac Surgery, Kerckhoff Heart Center, Benekestrasse 2-8, 61231 Bad Nauheim, Germany; (C.A.); (K.N.); (G.P.); (S.M.); (C.Y.-H.)
- Campus Kerckhoff, Justus-Liebig-University Giessen, 61231 Bad Nauheim, Germany
- Correspondence: (K.T.); (B.M.); (R.M.)
| | - Cetinkaya Ayse
- Department of Cardiac Surgery, Kerckhoff Heart Center, Benekestrasse 2-8, 61231 Bad Nauheim, Germany; (C.A.); (K.N.); (G.P.); (S.M.); (C.Y.-H.)
- Campus Kerckhoff, Justus-Liebig-University Giessen, 61231 Bad Nauheim, Germany
| | - Kubin Natalia
- Department of Cardiac Surgery, Kerckhoff Heart Center, Benekestrasse 2-8, 61231 Bad Nauheim, Germany; (C.A.); (K.N.); (G.P.); (S.M.); (C.Y.-H.)
- Campus Kerckhoff, Justus-Liebig-University Giessen, 61231 Bad Nauheim, Germany
| | - Bramlage Peter
- Institute for Pharmacology and Preventive Medicine, Bahnhofstraße 20, 49661 Cloppenburg, Germany;
| | - Sen-Hild Bedriye
- Pediatric Heart Center, Justus Liebig University, Feulgenstrasse 10-12, 35392 Giessen, Germany; (S.-H.B.); (A.H.)
| | - Gajawada Praveen
- Department of Cardiac Surgery, Kerckhoff Heart Center, Benekestrasse 2-8, 61231 Bad Nauheim, Germany; (C.A.); (K.N.); (G.P.); (S.M.); (C.Y.-H.)
- Campus Kerckhoff, Justus-Liebig-University Giessen, 61231 Bad Nauheim, Germany
| | - Akintürk Hakan
- Pediatric Heart Center, Justus Liebig University, Feulgenstrasse 10-12, 35392 Giessen, Germany; (S.-H.B.); (A.H.)
| | - Schönburg Markus
- Department of Cardiac Surgery, Kerckhoff Heart Center, Benekestrasse 2-8, 61231 Bad Nauheim, Germany; (C.A.); (K.N.); (G.P.); (S.M.); (C.Y.-H.)
- Campus Kerckhoff, Justus-Liebig-University Giessen, 61231 Bad Nauheim, Germany
| | - Schaper Wolfgang
- Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany;
| | - Choi Yeong-Hoon
- Department of Cardiac Surgery, Kerckhoff Heart Center, Benekestrasse 2-8, 61231 Bad Nauheim, Germany; (C.A.); (K.N.); (G.P.); (S.M.); (C.Y.-H.)
- Campus Kerckhoff, Justus-Liebig-University Giessen, 61231 Bad Nauheim, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site RhineMain, 60590 Frankfurt/Main, Germany
| | - Barancik Miroslav
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, 84104 Bratislava, Slovakia
- Correspondence: (K.T.); (B.M.); (R.M.)
| | - Richter Manfred
- Department of Cardiac Surgery, Kerckhoff Heart Center, Benekestrasse 2-8, 61231 Bad Nauheim, Germany; (C.A.); (K.N.); (G.P.); (S.M.); (C.Y.-H.)
- Campus Kerckhoff, Justus-Liebig-University Giessen, 61231 Bad Nauheim, Germany
- Correspondence: (K.T.); (B.M.); (R.M.)
| |
Collapse
|
16
|
Bogucka K, Pompaiah M, Marini F, Binder H, Harms G, Kaulich M, Klein M, Michel C, Radsak MP, Rosigkeit S, Grimminger P, Schild H, Rajalingam K. ERK3/MAPK6 controls IL-8 production and chemotaxis. eLife 2020; 9:52511. [PMID: 32314963 PMCID: PMC7192585 DOI: 10.7554/elife.52511] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 04/17/2020] [Indexed: 12/11/2022] Open
Abstract
ERK3 is a ubiquitously expressed member of the atypical mitogen activated protein kinases (MAPKs) and the physiological significance of its short half-life remains unclear. By employing gastrointestinal 3D organoids, we detect that ERK3 protein levels steadily decrease during epithelial differentiation. ERK3 is not required for 3D growth of human gastric epithelium. However, ERK3 is stabilized and activated in tumorigenic cells, but deteriorates over time in primary cells in response to lipopolysaccharide (LPS). ERK3 is necessary for production of several cellular factors including interleukin-8 (IL-8), in both, normal and tumorigenic cells. Particularly, ERK3 is critical for AP-1 signaling through its interaction and regulation of c-Jun protein. The secretome of ERK3-deficient cells is defective in chemotaxis of neutrophils and monocytes both in vitro and in vivo. Further, knockdown of ERK3 reduces metastatic potential of invasive breast cancer cells. We unveil an ERK3-mediated regulation of IL-8 and epithelial secretome for chemotaxis.
Collapse
Affiliation(s)
- Katarzyna Bogucka
- Cell Biology Unit, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Malvika Pompaiah
- Cell Biology Unit, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Federico Marini
- Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.,Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Harald Binder
- Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.,Institute of Medical Biometry and Statistics, Faculty of Medicine and Medical Center - University of Freiburg, Freiburg, Germany
| | - Gregory Harms
- Cell Biology Unit, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.,Departments of Biology and Physics, Wilkes University, Wilkes Barre, United States
| | - Manuel Kaulich
- Gene Editing Group, Institute of Biochemistry II, Goethe University, Frankfurt, Germany.,Frankfurt Cancer Institute, Frankfurt, Germany
| | - Matthias Klein
- Institute of Immunology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Christian Michel
- Department of Hematology, Medical Oncology, & Pneumology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Markus P Radsak
- Department of Hematology, Medical Oncology, & Pneumology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Sebastian Rosigkeit
- Cell Biology Unit, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Peter Grimminger
- Department of General, Visceral- and Transplant Surgery, University Medical Center, Mainz, Germany
| | - Hansjörg Schild
- Institute of Immunology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Krishnaraj Rajalingam
- Cell Biology Unit, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.,University Cancer Center Mainz, University Medical Center Mainz, Mainz, Germany
| |
Collapse
|
17
|
Wang P, Tan ZX, Fu L, Fan YJ, Luo B, Zhang ZH, Xu S, Chen YH, Zhao H, Xu DX. Gestational vitamin D deficiency impairs fetal lung development through suppressing type II pneumocyte differentiation. Reprod Toxicol 2020; 94:40-47. [PMID: 32330513 DOI: 10.1016/j.reprotox.2020.03.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 03/19/2020] [Accepted: 03/23/2020] [Indexed: 02/07/2023]
Abstract
Gestational vitamin D deficiency is associated with pulmonary diseases. This study aimed to investigate the effect of gestational vitamin D deficiency on fetal lung development in mice. Absolute and relative weights of fetal lungs were reduced in vitamin D deficient (VDD) group. Incrassate mesenchyme, measured by septal wall thickness, accompanied by lessened saccular space, was shown in VDD group. Numerous immature type II pneumocytes, as determined by PAS staining, were observed in VDD group. Moreover, increased Ki67-positive cells, a marker of cell proliferation, was detected in VDD group. The additional experiments showed that Sftpa, Sftpb, Sftpc and Sftpd, four surfactant genes, were downregulated and pro-surfactant protein B was reduced in VDD group. FoxA1, FoxA2 and TTF-1, three transcription factors that regulate surfactant genes, and VEGF, a key regulator for pulmonary maturation, were downregulated in VDD group. These results suggest that gestational vitamin D deficiency impairs fetal lung development partially through suppressing type II pneumocyte differentiation.
Collapse
Affiliation(s)
- Peng Wang
- Department of Toxicology, Anhui Medical University, Hefei, 230032, China; Laboratory of Environmental Toxicology, Anhui Medical University, Hefei, 230032, China
| | - Zhu-Xia Tan
- Second Affiliated Hospital, Anhui Medical University, Hefei, 230032, China
| | - Lin Fu
- Department of Toxicology, Anhui Medical University, Hefei, 230032, China; Laboratory of Environmental Toxicology, Anhui Medical University, Hefei, 230032, China
| | - Yi-Jun Fan
- Second Affiliated Hospital, Anhui Medical University, Hefei, 230032, China
| | - Biao Luo
- Department of Toxicology, Anhui Medical University, Hefei, 230032, China; Laboratory of Environmental Toxicology, Anhui Medical University, Hefei, 230032, China
| | - Zhi-Hui Zhang
- Second Affiliated Hospital, Anhui Medical University, Hefei, 230032, China
| | - Shen Xu
- First Affiliated Hospital, Anhui Medical University, Hefei, 230032, China
| | - Yuan-Hua Chen
- Laboratory of Environmental Toxicology, Anhui Medical University, Hefei, 230032, China
| | - Hui Zhao
- Second Affiliated Hospital, Anhui Medical University, Hefei, 230032, China.
| | - De-Xiang Xu
- Department of Toxicology, Anhui Medical University, Hefei, 230032, China; Laboratory of Environmental Toxicology, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
18
|
The adrenergic-induced ERK3 pathway drives lipolysis and suppresses energy dissipation. Genes Dev 2020; 34:495-510. [PMID: 32139423 PMCID: PMC7111262 DOI: 10.1101/gad.333617.119] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 02/11/2020] [Indexed: 02/07/2023]
Abstract
In this study, El-Merahbi et al. investigated new regulators of lipolysis, and using a high-throughput screen identified the extracellular-regulated kinase 3 (ERK3) in lipolysis regulation. They identified a downstream target of the ERK3/MK5 pathway, the transcription factor FOXO1, which promotes expression of the major lipolytic enzyme ATGL, and provide evidence that targeted deletion of ERK3 in mouse adipocytes inhibits lipolysis. Obesity-induced diabetes affects >400 million people worldwide. Uncontrolled lipolysis (free fatty acid release from adipocytes) can contribute to diabetes and obesity. To identify future therapeutic avenues targeting this pathway, we performed a high-throughput screen and identified the extracellular-regulated kinase 3 (ERK3) as a hit. We demonstrated that β-adrenergic stimulation stabilizes ERK3, leading to the formation of a complex with the cofactor MAP kinase-activated protein kinase 5 (MK5), thereby driving lipolysis. Mechanistically, we identified a downstream target of the ERK3/MK5 pathway, the transcription factor FOXO1, which promotes the expression of the major lipolytic enzyme ATGL. Finally, we provide evidence that targeted deletion of ERK3 in mouse adipocytes inhibits lipolysis, but elevates energy dissipation, promoting lean phenotype and ameliorating diabetes. Thus, ERK3/MK5 represents a previously unrecognized signaling axis in adipose tissue and an attractive target for future therapies aiming to combat obesity-induced diabetes.
Collapse
|
19
|
Genetics and Other Omics in Pediatric Pulmonary Arterial Hypertension. Chest 2020; 157:1287-1295. [PMID: 32006592 DOI: 10.1016/j.chest.2020.01.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/09/2019] [Accepted: 01/07/2020] [Indexed: 12/15/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a rare disease with high mortality despite therapeutic advances. Clinical management of children with PAH is particularly challenging because of increased complexity of disease etiology and clinical presentation, and the lack of data from pediatric-specific clinical trials. In children, PAH often develops in association with congenital heart disease and other developmental disorders. Emerging data from genetic studies of pediatric-onset PAH indicate that the genetic basis is different than that of adults. There is a greater genetic burden in children, with rare genetic factors contributing to at least 35% of pediatric-onset idiopathic PAH (IPAH) compared with approximately 11% of adult-onset IPAH. De novo variants are the most frequent monogenetic cause of PAH in children, likely contributing to approximately 15% of all cases. Rare deleterious variants in BMPR2 contribute to pediatric-onset IPAH and familial PAH with similar frequency as adult-onset disease but rarely explain cases of PAH associated with other diseases. Rare deleterious variants in developmental genes-including TBX4, SOX17, and other genes requiring confirmation in larger cohorts-are emerging as important contributors to pediatric-onset disease. Because each causal gene contributes to only a small number of cases, large cohorts of pediatric-onset PAH are needed to further identify the unique etiologic differences of PAH in children. We propose a genetics-first approach followed by focused phenotyping of pediatric patients grouped by genetic diagnosis to define endophenotypes that can be used to improve risk stratification and treatment.
Collapse
|
20
|
Fuentes-Mateos R, Jimeno D, Gómez C, Calzada N, Fernández-Medarde A, Santos E. Concomitant deletion of HRAS and NRAS leads to pulmonary immaturity, respiratory failure and neonatal death in mice. Cell Death Dis 2019; 10:838. [PMID: 31685810 PMCID: PMC6828777 DOI: 10.1038/s41419-019-2075-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/07/2019] [Accepted: 10/21/2019] [Indexed: 12/19/2022]
Abstract
We reported previously that adult (HRAS-/-; NRAS-/-) double knockout (DKO) mice showed no obvious external phenotype although lower-than-expected numbers of weaned DKO animals were consistently tallied after crossing NRAS-KO and HRAS-KO mice kept on mixed genetic backgrounds. Using mouse strains kept on pure C57Bl/6 background, here we performed an extensive analysis of the offspring from crosses between HRAS-KO and NRAS-KO mice and uncovered the occurrence of very high rates of perinatal mortality of the resulting DKO littermates due to respiratory failure during the first postnatal 24-48 h. The lungs of newborn DKO mice showed normal organ structure and branching but displayed marked defects of maturation including much-reduced alveolar space with thick separating septa and significant alterations of differentiation of alveolar (AT1, AT2 pneumocytes) and bronchiolar (ciliated, Clara cells) cell lineages. We also observed the retention of significantly increased numbers of undifferentiated progenitor precursor cells in distal lung epithelia and the presence of substantial accumulations of periodic acid-Schiff-positive (PAS+) material and ceramide in the lung airways of newborn DKO mice. Interestingly, antenatal dexamethasone treatment partially mitigated the defective lung maturation phenotypes and extended the lifespan of the DKO animals up to 6 days, but was not sufficient to abrogate lethality in these mice. RNA microarray hybridization analyses of the lungs of dexamethasone-treated and untreated mice uncovered transcriptional changes pointing to functional and metabolic alterations that may be mechanistically relevant for the defective lung phenotypes observed in DKO mice. Our data suggest that delayed alveolar differentiation, altered sphingolipid metabolism and ceramide accumulation are primary contributors to the respiratory stress and neonatal lethality shown by DKO mice and uncover specific, critical roles of HRAS and NRAS for correct lung differentiation that are essential for neonatal survival and cannot be substituted by the remaining KRAS function in this organ.
Collapse
Affiliation(s)
- Rocío Fuentes-Mateos
- Centro de Investigación del Cáncer-Instituto de Biología Molecular y Celular del Cáncer (CSIC- Universidad de Salamanca) and CIBERONC, 37007, Salamanca, Spain
| | - David Jimeno
- Centro de Investigación del Cáncer-Instituto de Biología Molecular y Celular del Cáncer (CSIC- Universidad de Salamanca) and CIBERONC, 37007, Salamanca, Spain
| | - Carmela Gómez
- Centro de Investigación del Cáncer-Instituto de Biología Molecular y Celular del Cáncer (CSIC- Universidad de Salamanca) and CIBERONC, 37007, Salamanca, Spain
| | - Nuria Calzada
- Centro de Investigación del Cáncer-Instituto de Biología Molecular y Celular del Cáncer (CSIC- Universidad de Salamanca) and CIBERONC, 37007, Salamanca, Spain
| | - Alberto Fernández-Medarde
- Centro de Investigación del Cáncer-Instituto de Biología Molecular y Celular del Cáncer (CSIC- Universidad de Salamanca) and CIBERONC, 37007, Salamanca, Spain.
| | - Eugenio Santos
- Centro de Investigación del Cáncer-Instituto de Biología Molecular y Celular del Cáncer (CSIC- Universidad de Salamanca) and CIBERONC, 37007, Salamanca, Spain.
| |
Collapse
|
21
|
Fetal growth restriction is associated with an altered cardiopulmonary and cerebral hemodynamic response to surfactant therapy in preterm lambs. Pediatr Res 2019; 86:47-54. [PMID: 30982059 DOI: 10.1038/s41390-019-0398-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/03/2019] [Accepted: 04/07/2019] [Indexed: 11/08/2022]
Abstract
BACKGROUND Efficacy of surfactant therapy in fetal growth restricted (FGR) preterm neonates is unknown. METHODS Twin-bearing ewes underwent surgery at 105 days gestation to induce FGR in one twin by single umbilical artery ligation. At 123-127 days, catheters and flow probes were implanted in pulmonary and carotid arteries to measure flow and pressure. Lambs were delivered, intubated and mechanically ventilated. At 10 min, surfactant (100 mg kg-1) was administered. Ventilation, oxygenation, and hemodynamic responses were recorded for 1 h before euthanasia at 120 min. Lung tissue and bronchoalveolar lavage fluid was collected for analysis of surfactant protein mRNA and phosphatidylcholines (PCs). RESULTS FGR preterm lambs were 26% lighter than appropriate for gestational age (AGA) lambs and had baseline differences in lung mechanics and pulmonary blood flows. Surfactant therapy reduced ventilator and oxygen requirements and improved lung mechanics in both groups, although a more rapid improvement in compliance and tidal volume was observed in AGA lambs. Surfactant administration was associated with decreased mean pulmonary and carotid blood flow in FGR but not AGA lambs. No major differences in surfactant protein mRNA or PC levels were noted. CONCLUSIONS Surfactant therapy was associated with an altered pulmonary and cerebral hemodynamic response in preterm FGR lambs.
Collapse
|
22
|
Olea-Flores M, Zuñiga-Eulogio MD, Mendoza-Catalán MA, Rodríguez-Ruiz HA, Castañeda-Saucedo E, Ortuño-Pineda C, Padilla-Benavides T, Navarro-Tito N. Extracellular-Signal Regulated Kinase: A Central Molecule Driving Epithelial-Mesenchymal Transition in Cancer. Int J Mol Sci 2019; 20:E2885. [PMID: 31200510 PMCID: PMC6627365 DOI: 10.3390/ijms20122885] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/09/2019] [Accepted: 06/11/2019] [Indexed: 12/18/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a reversible cellular process, characterized by changes in gene expression and activation of proteins, favoring the trans-differentiation of the epithelial phenotype to a mesenchymal phenotype. This process increases cell migration and invasion of tumor cells, progression of the cell cycle, and resistance to apoptosis and chemotherapy, all of which support tumor progression. One of the signaling pathways involved in tumor progression is the MAPK pathway. Within this family, the ERK subfamily of proteins is known for its contributions to EMT. The ERK subfamily is divided into typical (ERK 1/2/5), and atypical (ERK 3/4/7/8) members. These kinases are overexpressed and hyperactive in various types of cancer. They regulate diverse cellular processes such as proliferation, migration, metastasis, resistance to chemotherapy, and EMT. In this context, in vitro and in vivo assays, as well as studies in human patients, have shown that ERK favors the expression, function, and subcellular relocalization of various proteins that regulate EMT, thus promoting tumor progression. In this review, we discuss the mechanistic roles of the ERK subfamily members in EMT and tumor progression in diverse biological systems.
Collapse
Affiliation(s)
- Monserrat Olea-Flores
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n Chilpancingo, Gro. 39090, Mexico.
| | - Miriam Daniela Zuñiga-Eulogio
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n Chilpancingo, Gro. 39090, Mexico.
| | - Miguel Angel Mendoza-Catalán
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n Chilpancingo, Gro. 39090, Mexico.
| | - Hugo Alberto Rodríguez-Ruiz
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n Chilpancingo, Gro. 39090, Mexico.
| | - Eduardo Castañeda-Saucedo
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n Chilpancingo, Gro. 39090, Mexico.
| | - Carlos Ortuño-Pineda
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n Chilpancingo, Gro. 39090, Mexico.
| | - Teresita Padilla-Benavides
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA.
| | - Napoleón Navarro-Tito
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n Chilpancingo, Gro. 39090, Mexico.
| |
Collapse
|
23
|
Germ Line Deletion Reveals a Nonessential Role of Atypical Mitogen-Activated Protein Kinase 6/Extracellular Signal-Regulated Kinase 3. Mol Cell Biol 2019; 39:MCB.00516-18. [PMID: 30642948 DOI: 10.1128/mcb.00516-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 12/09/2018] [Indexed: 01/02/2023] Open
Abstract
Mitogen-activated protein kinase 6/extracellular signal-regulated kinase 3 (MAPK6/ERK3) is an atypical member of the MAPKs. An essential role has been suggested by the perinatal lethal phenotype of ERK3 knockout mice carrying a lacZ insertion in exon 2 due to pulmonary dysfunction and by defects in function, activation, and positive selection of T cells. To study the role of ERK3 in vivo, we generated mice carrying a conditional Erk3 allele with exon 3 flanked by loxP sites. Loss of ERK3 protein was validated after deletion of Erk3 in the female germ line using zona pellucida 3 (Zp3)-cre and a clear reduction of the protein kinase MK5 is detected, providing the first evidence for the existence of the ERK3/MK5 signaling complex in vivo In contrast to the previously reported Erk3 knockout phenotype, these mice are viable and fertile and do not display pulmonary hypoplasia, acute respiratory failure, abnormal T-cell development, reduction of thymocyte numbers, or altered T-cell selection. Hence, ERK3 is dispensable for pulmonary and T-cell functions. The perinatal lethality and lung and T-cell defects of the previous ERK3 knockout mice are likely due to ERK3-unrelated effects of the inserted lacZ-neomycin resistance cassette. The knockout mouse of the closely related atypical MAPK ERK4/MAPK4 is also normal, suggesting redundant functions of both protein kinases.
Collapse
|
24
|
Reevaluation of the Role of Extracellular Signal-Regulated Kinase 3 in Perinatal Survival and Postnatal Growth Using New Genetically Engineered Mouse Models. Mol Cell Biol 2019; 39:MCB.00527-18. [PMID: 30642949 DOI: 10.1128/mcb.00527-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 01/06/2019] [Indexed: 11/20/2022] Open
Abstract
The physiological functions of the atypical mitogen-activated protein kinase extracellular signal-regulated kinase 3 (ERK3) remain poorly characterized. Previous analysis of mice with a targeted insertion of the lacZ reporter in the Mapk6 locus (Mapk6lacZ ) showed that inactivation of ERK3 in Mapk6lacZ mice leads to perinatal lethality associated with intrauterine growth restriction, defective lung maturation, and neuromuscular anomalies. To further explore the role of ERK3 in physiology and disease, we generated novel mouse models expressing a catalytically inactive (Mapk6KD ) or conditional (Mapk6Δ ) allele of ERK3. Surprisingly, we found that mice devoid of ERK3 kinase activity or expression survive the perinatal period without any observable lung or neuromuscular phenotype. ERK3 mutant mice reached adulthood, were fertile, and showed no apparent health problem. However, analysis of growth curves revealed that ERK3 kinase activity is necessary for optimal postnatal growth. To gain insight into the genetic basis underlying the discrepancy in phenotypes of different Mapk6 mutant mouse models, we analyzed the regulation of genes flanking the Mapk6 locus by quantitative PCR. We found that the expression of several Mapk6 neighboring genes is deregulated in Mapk6lacZ mice but not in Mapk6KD or Mapk6Δ mutant mice. Our genetic analysis suggests that off-target effects of the targeting construct on local gene expression are responsible for the perinatal lethality phenotype of Mapk6lacZ mutant mice.
Collapse
|
25
|
Elkhadragy L, Alsaran H, Morel M, Long W. Activation loop phosphorylation of ERK3 is important for its kinase activity and ability to promote lung cancer cell invasiveness. J Biol Chem 2018; 293:16193-16205. [PMID: 30166347 DOI: 10.1074/jbc.ra118.003699] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 08/13/2018] [Indexed: 12/23/2022] Open
Abstract
ERK3 is an atypical mitogen-activated protein kinase (MAPK) that has recently gained interest for its role in promoting cancer cell migration and invasion. However, the molecular regulation of ERK3 functions in cancer cells is largely unknown. ERK3 has a single phospho-acceptor site (Ser189) in its activation motif rather than the TXY conserved in conventional MAPKs such as ERK1/2. Although dual phosphorylation of the TXY motif is known to be critical for the activation of conventional MAPKs, the role of Ser189 phosphorylation in ERK3 activity and its function in cancer cells remain elusive. In this study, we revealed that activation loop phosphorylation is important for ERK3 in promoting cancer cell invasiveness, as the S189A mutation greatly decreased the ability of ERK3 to promote migration and invasion of lung cancer cells. Interestingly, a catalytically inactive ERK3 mutant was still capable of increasing migration and invasion, although to a lesser extent compared with WT ERK3, suggesting that ERK3 promotes cancer cell invasiveness by both kinase-dependent and kinase-independent mechanisms. To elucidate how the S189A mutation reduces the invasiveness-promoting ability of ERK3, we tested its effect on the kinase activity of ERK3 toward steroid receptor coactivator 3 (SRC3), a recently identified substrate of ERK3 critical for cancer cell invasiveness. Compared with ERK3, ERK3-S189A exhibited a dramatic decrease in kinase activity toward SRC3 and a concomitantly reduced ability to stimulate matrix metalloproteinase expression. Taken together, our study unravels the importance of Ser189 phosphorylation for intramolecular regulation of ERK3 kinase activity and invasiveness-promoting ability in lung cancer cells.
Collapse
Affiliation(s)
- Lobna Elkhadragy
- From the Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio 45435
| | - Hadel Alsaran
- From the Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio 45435
| | - Marion Morel
- From the Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio 45435
| | - Weiwen Long
- From the Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio 45435
| |
Collapse
|
26
|
Takahashi C, Miyatake K, Kusakabe M, Nishida E. The atypical mitogen-activated protein kinase ERK3 is essential for establishment of epithelial architecture. J Biol Chem 2018; 293:8342-8361. [PMID: 29674317 PMCID: PMC5986203 DOI: 10.1074/jbc.ra117.000992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 04/19/2018] [Indexed: 12/14/2022] Open
Abstract
Epithelia contribute to physical barriers that protect internal tissues from the external environment and also support organ structure. Accordingly, establishment and maintenance of epithelial architecture are essential for both embryonic development and adult physiology. Here, using gene knockout and knockdown techniques along with gene profiling, we show that extracellular signal-regulated kinase 3 (ERK3), a poorly characterized atypical mitogen-activated protein kinase (MAPK), regulates the epithelial architecture in vertebrates. We found that in Xenopus embryonic epidermal epithelia, ERK3 knockdown impairs adherens and tight-junction protein distribution, as well as tight-junction barrier function, resulting in epidermal breakdown. Moreover, in human epithelial breast cancer cells, inhibition of ERK3 expression induced thickened epithelia with aberrant adherens and tight junctions. Results from microarray analyses suggested that transcription factor AP-2α (TFAP2A), a transcriptional regulator important for epithelial gene expression, is involved in ERK3-dependent changes in gene expression. Of note, TFAP2A knockdown phenocopied ERK3 knockdown in both Xenopus embryos and human cells, and ERK3 was required for full activation of TFAP2A-dependent transcription. Our findings reveal that ERK3 regulates epithelial architecture, possibly together with TFAP2A.
Collapse
Affiliation(s)
- Chika Takahashi
- From the Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan and
| | - Koichi Miyatake
- From the Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan and
| | - Morioh Kusakabe
- From the Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan and
| | - Eisuke Nishida
- From the Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan and
- AMED-CREST, Japan Agency for Medical Research and Development, 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| |
Collapse
|
27
|
Zhu N, Gonzaga-Jauregui C, Welch C, Ma L, Qi H, King AK, Krishnan U, Rosenzweig EB, Ivy DD, Austin ED, Hamid R, Nichols WC, Pauciulo MW, Lutz KA, Sawle A, Reid JG, Overton JD, Baras A, Dewey F, Shen Y, Chung WK. Exome Sequencing in Children With Pulmonary Arterial Hypertension Demonstrates Differences Compared With Adults. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2018; 11:e001887. [PMID: 29631995 PMCID: PMC5896781 DOI: 10.1161/circgen.117.001887] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 01/31/2018] [Indexed: 12/30/2022]
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH) is a rare disease characterized by pulmonary arteriole remodeling, elevated arterial pressure and resistance, and subsequent heart failure. Compared with adult-onset disease, pediatric-onset PAH is more heterogeneous and often associated with worse prognosis. Although BMPR2 mutations underlie ≈70% of adult familial PAH (FPAH) cases, the genetic basis of PAH in children is less understood. METHODS We performed genetic analysis of 155 pediatric- and 257 adult-onset PAH patients, including both FPAH and sporadic, idiopathic PAH (IPAH). After screening for 2 common PAH risk genes, mutation-negative FPAH and all IPAH cases were evaluated by exome sequencing. RESULTS We observed similar frequencies of rare, deleterious BMPR2 mutations in pediatric- and adult-onset patients: ≈55% in FPAH and 10% in IPAH patients in both age groups. However, there was significant enrichment of TBX4 mutations in pediatric- compared with adult-onset patients (IPAH: 10/130 pediatric versus 0/178 adult-onset), and TBX4 carriers had younger mean age-of-onset compared with BMPR2 carriers. Mutations in other known PAH risk genes were infrequent in both age groups. Notably, among pediatric IPAH patients without mutations in known risk genes, exome sequencing revealed a 2-fold enrichment of de novo likely gene-damaging and predicted deleterious missense variants. CONCLUSIONS Mutations in known PAH risk genes accounted for ≈70% to 80% of FPAH in both age groups, 21% of pediatric-onset IPAH, and 11% of adult-onset IPAH. Rare, predicted deleterious variants in TBX4 are enriched in pediatric patients and de novo variants in novel genes may explain ≈19% of pediatric-onset IPAH cases.
Collapse
Affiliation(s)
- Na Zhu
- Department of Pediatrics, Columbia University Medical Center, New York
- Department of Systems Biology, Columbia University, New York, NY
| | | | - Carrie Welch
- Department of Pediatrics, Columbia University Medical Center, New York
| | - Lijiang Ma
- Department of Pediatrics, Columbia University Medical Center, New York
| | - Hongjian Qi
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY
- Department of Systems Biology, Columbia University, New York, NY
| | | | - Usha Krishnan
- Department of Pediatrics, Columbia University Medical Center, New York
| | - Erika B. Rosenzweig
- Department of Pediatrics, Columbia University Medical Center, New York
- Department of Medicine, Columbia University Medical Center, New York
| | - D. Dunbar Ivy
- Children’s Hospital Colorado, Department of Pediatric Cardiology, Denver, CO
| | - Eric D. Austin
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN
| | - Rizwan Hamid
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN
| | - William C. Nichols
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center & Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Michael W. Pauciulo
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center & Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Katie A. Lutz
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center & Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Ashley Sawle
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York
| | - Jeffrey G. Reid
- Regeneron Genetics Center, Regeneron Pharmaceuticals, Tarrytown
| | - John D. Overton
- Regeneron Genetics Center, Regeneron Pharmaceuticals, Tarrytown
| | - Aris Baras
- Regeneron Genetics Center, Regeneron Pharmaceuticals, Tarrytown
| | - Frederick Dewey
- Regeneron Genetics Center, Regeneron Pharmaceuticals, Tarrytown
| | - Yufeng Shen
- Department of Systems Biology, Columbia University, New York, NY
- Department of Biomedical Informatics, Columbia University, New York, NY
| | - Wendy K. Chung
- Department of Pediatrics, Columbia University Medical Center, New York
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York
- Department of Medicine, Columbia University Medical Center, New York
| |
Collapse
|
28
|
Tan J, Yang L, Liu C, Yan Z. MicroRNA-26a targets MAPK6 to inhibit smooth muscle cell proliferation and vein graft neointimal hyperplasia. Sci Rep 2017; 7:46602. [PMID: 28429763 PMCID: PMC5399463 DOI: 10.1038/srep46602] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 03/21/2017] [Indexed: 12/21/2022] Open
Abstract
Neointima formation is the major reason for vein graft failure. However, the underlying mechanism is unclear. The aim of this study was to determine the role of miR-26a in the development of neointimal hyperplasia of autogenous vein grafts. Using autologous jugular vein grafts in the rat carotid artery as a model, we found that miR-26a was significantly downregulated in grafted veins as well as proliferating vascular smooth muscle cells (VSMCs) stimulated with platelet-derived growth factor-BB (PDGF-BB). Overexpression of miR-26a reduced the proliferation and migration of VSMCs. Further analysis revealed that the effects of miR-26a in VSMCs were mediated by targeting MAPK6 at the mRNA and protein levels. Luciferase assays showed that miR-26a repressed wild type (WT) MAPK6-3′-UTR-luciferase activity but not mutant MAPK6-3′-UTR-luciferease reporter. MAPK6 deficiency reduced proliferation and migration; in contrast, overexpression of MAPK6 enhanced the proliferation and migration of VSMCs. This study confirmed that neointimal hyperplasia in vein grafts was reduced in vivo by up-regulated miR-26a expression. In conclusion, our results showed that miR-26a is an important regulator of VSMC functions and neointimal hyperplasia, suggesting that miR-26a may be a potential therapeutic target for autologous vein graft diseases.
Collapse
Affiliation(s)
- Juanjuan Tan
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Liguo Yang
- Department of Cardiology, Shanghai Jiao Tong University afliated Sixth People's Hospital South Campus, Shanghai, 201400, P. R. China
| | - Cuicui Liu
- Central laboratory, Shanghai Jiao Tong University afliated Sixth People's Hospital South Campus, Shanghai, 201400, P. R. China
| | - Zhiqiang Yan
- Central laboratory, Shanghai Jiao Tong University afliated Sixth People's Hospital South Campus, Shanghai, 201400, P. R. China
| |
Collapse
|
29
|
Deubiquitinating Enzyme USP20 Regulates Extracellular Signal-Regulated Kinase 3 Stability and Biological Activity. Mol Cell Biol 2017; 37:MCB.00432-16. [PMID: 28167606 DOI: 10.1128/mcb.00432-16] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 02/01/2017] [Indexed: 01/17/2023] Open
Abstract
Extracellular signal-regulated kinase 3 (ERK3) is an atypical mitogen-activated protein kinase (MAPK) whose regulatory mechanisms and biological functions remain superficially understood. Contrary to most protein kinases, ERK3 is a highly unstable protein that is subject to dynamic regulation by the ubiquitin-proteasome system. However, the effectors that control ERK3 ubiquitination and degradation are unknown. In this study, we carried out an unbiased functional loss-of-function screen of the human deubiquitinating enzyme (DUB) family and identified ubiquitin-specific protease 20 (USP20) as a novel ERK3 regulator. USP20 interacts with and deubiquitinates ERK3 both in vitro and in intact cells. The overexpression of USP20 results in the stabilization and accumulation of the ERK3 protein, whereas USP20 depletion reduces the levels of ERK3. We found that the expression levels of ERK3 correlate with those of USP20 in various cellular contexts. Importantly, we show that USP20 regulates actin cytoskeleton organization and cell migration in a manner dependent on ERK3 expression. Our results identify USP20 as a bona fide regulator of ERK3 stability and physiological functions.
Collapse
|
30
|
Bian K, Muppani NR, Elkhadragy L, Wang W, Zhang C, Chen T, Jung S, Seternes OM, Long W. ERK3 regulates TDP2-mediated DNA damage response and chemoresistance in lung cancer cells. Oncotarget 2017; 7:6665-75. [PMID: 26701725 PMCID: PMC4872741 DOI: 10.18632/oncotarget.6682] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 12/12/2015] [Indexed: 11/30/2022] Open
Abstract
Posttranslational modifications (PTMs), such as phosphorylation and ubiquitination, play critical regulatory roles in the assembly of DNA damage response proteins on the DNA damage site and their activities in DNA damage repair. Tyrosyl DNA phosphodiesterase 2 (TDP2) repairs Topoisomerase 2 (Top2)-linked DNA damage, thereby protecting cancer cells against Top2 inhibitors-induced growth inhibition and cell death. The regulation of TDP2 activity by post-translational modifications in DNA repair, however, remains unclear. In the current study, we have found that ERK3, an atypical MAPK, phosphorylates TDP2 at S60 and regulates TDP2's phosphodiesterase activity, thereby cooperatively protecting lung cancer cells against Top2 inhibitors-induced DNA damage and growth inhibition. As such, our study revealed a post-translational regulation of TDP2 activity and discovered a new role of ERK3 in increasing cancer cells’ DNA damage response and chemoresistance to Top2 inhibitors.
Collapse
Affiliation(s)
- Ka Bian
- Department of Otorhinolaryngology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Naveen Reddy Muppani
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, OH, USA
| | - Lobna Elkhadragy
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, OH, USA
| | - Wei Wang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Cheng Zhang
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, OH, USA
| | - Tenghui Chen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sungyun Jung
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | | | - Weiwen Long
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, OH, USA.,Department of Otorhinolaryngology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
31
|
Elkhadragy L, Chen M, Miller K, Yang MH, Long W. A regulatory BMI1/let-7i/ERK3 pathway controls the motility of head and neck cancer cells. Mol Oncol 2017; 11:194-207. [PMID: 28079973 PMCID: PMC5288292 DOI: 10.1002/1878-0261.12021] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 10/16/2016] [Accepted: 10/31/2016] [Indexed: 12/16/2022] Open
Abstract
Extracellular signal‐regulated kinase 3 (ERK3) is an atypical mitogen‐activated protein kinase (MAPK), whose biological activity is tightly regulated by its cellular abundance. Recent studies have revealed that ERK3 is upregulated in multiple cancers and promotes cancer cell migration/invasion and drug resistance. Little is known, however, about how ERK3 expression level is upregulated in cancers. Here, we have identified the oncogenic polycomb group protein BMI1 as a positive regulator of ERK3 level in head and neck cancer cells. Mechanistically, BMI1 upregulates ERK3 expression by suppressing the tumor suppressive microRNA (miRNA) let‐7i, which directly targets ERK3 mRNA. ERK3 then acts as an important downstream mediator of BMI1 in promoting cancer cell migration. Importantly, ERK3 protein level is positively correlated with BMI1 level in head and neck tumor specimens of human patients. Taken together, our study revealed a molecular pathway consisting of BMI1, miRNA let‐7i, and ERK3, which controls the migration of head and neck cancer cells, and suggests that ERK3 kinase is a potential new therapeutic target in head and neck cancers, particularly those with BMI1 overexpression.
Collapse
Affiliation(s)
- Lobna Elkhadragy
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| | - Minyi Chen
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| | - Kennon Miller
- Department of Pathology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| | - Muh-Hwa Yang
- Institute of Clinic Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Weiwen Long
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| |
Collapse
|
32
|
Al-Mahdi R, Babteen N, Thillai K, Holt M, Johansen B, Wetting HL, Seternes OM, Wells CM. A novel role for atypical MAPK kinase ERK3 in regulating breast cancer cell morphology and migration. Cell Adh Migr 2016; 9:483-94. [PMID: 26588708 PMCID: PMC4955959 DOI: 10.1080/19336918.2015.1112485] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
ERK3 is an atypical Mitogen-activated protein kinase (MAPK6). Despite the fact that the Erk3 gene was originally identified in 1991, its function is still unknown. MK5 (MAP kinase- activated protein kinase 5) also called PRAK is the only known substrate for ERK3. Recently, it was found that group I p21 protein activated kinases (PAKs) are critical effectors of ERK3. PAKs link Rho family of GTPases to actin cytoskeletal dynamics and are known to be involved in the regulation of cell adhesion and migration. In this study we demonstrate that ERK3 protein levels are elevated as MDA-MB-231 breast cancer cells adhere to collagen I which is concomitant with changes in cellular morphology where cells become less well spread following nascent adhesion formation. During this early cellular adhesion event we observe that the cells retain protrusive activity while reducing overall cellular area. Interestingly exogenous expression of ERK3 delivers a comparable reduction in cell spread area, while depletion of ERK3 expression increases cell spread area. Importantly, we have detected a novel specific endogenous ERK3 localization at the cell periphery. Furthermore we find that ERK3 overexpressing cells exhibit a rounded morphology and increased cell migration speed. Surprisingly, exogenous expression of a kinase inactive mutant of ERK3 phenocopies ERK3 overexpression, suggesting a novel kinase independent function for ERK3. Taken together our data suggest that as cells initiate adhesion to matrix increasing levels of ERK3 at the cell periphery are required to orchestrate cell morphology changes which can then drive migratory behavior.
Collapse
Affiliation(s)
- Rania Al-Mahdi
- a Department of Pharmacy ; UiT The Arctic University of Norway ; Tromsø , Norway
| | - Nouf Babteen
- b Division of Cancer Studies; New Hunts House ; Guy's Campus; King's College London ; London , UK
| | - Kiruthikah Thillai
- b Division of Cancer Studies; New Hunts House ; Guy's Campus; King's College London ; London , UK
| | - Mark Holt
- c Randall Division for Cell and Molecular Biophysics and Cardiovascular Division; King's College London ; London , UK
| | - Bjarne Johansen
- a Department of Pharmacy ; UiT The Arctic University of Norway ; Tromsø , Norway
| | - Hilde Ljones Wetting
- a Department of Pharmacy ; UiT The Arctic University of Norway ; Tromsø , Norway
| | - Ole-Morten Seternes
- a Department of Pharmacy ; UiT The Arctic University of Norway ; Tromsø , Norway
| | - Claire M Wells
- b Division of Cancer Studies; New Hunts House ; Guy's Campus; King's College London ; London , UK
| |
Collapse
|
33
|
Pew BK, Harris RA, Sbrana E, Guaman MC, Shope C, Chen R, Meloche S, Aagaard K. Structural and transcriptomic response to antenatal corticosteroids in an Erk3-null mouse model of respiratory distress. Am J Obstet Gynecol 2016; 215:384.e1-384.e89. [PMID: 27143398 PMCID: PMC5003661 DOI: 10.1016/j.ajog.2016.04.043] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 04/22/2016] [Indexed: 01/05/2023]
Abstract
BACKGROUND Neonatal respiratory distress syndrome in preterm infants is a leading cause of neonatal death. Pulmonary insufficiency-related infant mortality rates have improved with antenatal glucocorticoid treatment and neonatal surfactant replacement. However, the mechanism of glucocorticoid-promoted fetal lung maturation is not understood fully, despite decades of clinical use. We previously have shown that genetic deletion of Erk3 in mice results in growth restriction, cyanosis, and early neonatal lethality because of pulmonary immaturity and respiratory distress. Recently, we demonstrated that the addition of postnatal surfactant administration to antenatal dexamethasone treatment resulted in enhanced survival of neonatal Erk3-null mice. OBJECTIVE To better understand the molecular underpinnings of corticosteroid-mediated lung maturation, we used high-throughput transcriptomic and high-resolution morphologic analysis of the murine fetal lung. We sought to examine the alterations in fetal lung structure and function that are associated with neonatal respiratory distress and antenatal glucocorticoid treatment. STUDY DESIGN Dexamethasone (0.4 mg/kg) or saline solution was administered to pregnant dams on embryonic days 16.5 and 17.5. Fetal lungs were collected and analyzed by microCT and RNA-seq for differential gene expression and pathway interactions with genotype and treatment. Results from transcriptomic analysis guided further investigation of candidate genes with the use of immunostaining in murine and human fetal lung tissue. RESULTS Erk3(-/-) mice exhibited atelectasis with decreased overall porosity and saccular space relative to wild type, which was ameliorated by glucocorticoid treatment. Of 596 differentially expressed genes (q < 0.05) that were detected by RNA-seq, pathway analysis revealed 36 genes (q < 0.05) interacting with dexamethasone, several with roles in lung development, which included corticotropin-releasing hormone and surfactant protein B. Corticotropin-releasing hormone protein was detected in wild-type and Erk3(-/-) lungs at E14.5, with significantly temporally altered expression through embryonic day 18.5. Antenatal dexamethasone attenuated corticotropin-releasing hormone at embryonic day 18.5 in both wild-type and Erk3(-/-) lungs (0.56-fold and 0.67-fold; P < .001). Wild type mice responded to glucocorticoid administration with increased pulmonary surfactant protein B (P = .003). In contrast, dexamethasone treatment in Erk3(-/-) mice resulted in decreased surfactant protein B (P = .012). In human validation studies, we confirmed that corticotropin-releasing hormone protein is present in the fetal lung at 18 weeks of gestation and increases in expression with progression towards viability (22 weeks of gestation; P < .01). CONCLUSION Characterization of whole transcriptome gene expression revealed glucocorticoid-mediated regulation of corticotropin-releasing hormone and surfactant protein B via Erk3-independent and -dependent mechanisms, respectively. We demonstrated for the first time the expression and temporal regulation of corticotropin-releasing hormone protein in midtrimester human fetal lung. This unique model allows the effects of corticosteroids on fetal pulmonary morphologic condition to be distinguished from functional gene pathway regulation. These findings implicate Erk3 as a potentially important molecular mediator of antenatal glucocorticoid action in promoting surfactant protein production in the preterm neonatal lung and expanding our understanding of key mechanisms of clinical therapy to improve neonatal survival.
Collapse
Affiliation(s)
- Braden K Pew
- Department of Molecular and Cell Biology, Baylor College of Medicine, Houston, TX
| | - R Alan Harris
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Elena Sbrana
- Department of Pathology, University of Texas Medical Branch-Galveston, Galveston, TX
| | - Milenka Cuevas Guaman
- Department of Pediatrics, Division of Neonatology, Baylor College of Medicine, Houston, TX
| | - Cynthia Shope
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine, Houston, TX
| | - Rui Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | - Sylvain Meloche
- Institute de Recherche en Immunologie et Cancérologie, Universite de Montreal, Quebec, Canada
| | - Kjersti Aagaard
- Department of Molecular and Cell Biology, Baylor College of Medicine, Houston, TX; Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine, Houston, TX.
| |
Collapse
|
34
|
Li A, Ma S, Smith SM, Lee MK, Fischer A, Borok Z, Bellusci S, Li C, Minoo P. Mesodermal ALK5 controls lung myofibroblast versus lipofibroblast cell fate. BMC Biol 2016; 14:19. [PMID: 26984772 PMCID: PMC4793501 DOI: 10.1186/s12915-016-0242-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 02/26/2016] [Indexed: 12/18/2022] Open
Abstract
Background Epithelial-mesenchymal cross talk is centerpiece in the development of many branched organs, including the lungs. The embryonic lung mesoderm provides instructional information not only for lung architectural development, but also for patterning, commitment and differentiation of its many highly specialized cell types. The mesoderm also serves as a reservoir of progenitors for generation of differentiated mesenchymal cell types that include αSMA-expressing fibroblasts, lipofibroblasts, endothelial cells and others. Transforming Growth Factor β (TGFβ) is a key signaling pathway in epithelial-mesenchymal cross talk. Using a cre-loxP approach we have elucidated the role of the TGFβ type I receptor tyrosine kinase, ALK5, in epithelial-mesenchymal cross talk during lung morphogenesis. Results Targeted early inactivation of Alk5 in mesodermal progenitors caused abnormal development and maturation of the lung that included reduced physical size of the sub-mesothelial mesoderm, an established source of specific mesodermal progenitors. Abrogation of mesodermal ALK5-mediated signaling also inhibited differentiation of cell populations in the epithelial and endothelial lineages. Importantly, Alk5 mutant lungs contained a reduced number of αSMApos cells and correspondingly increased lipofibroblasts. Elucidation of the underlying mechanisms revealed that through direct and indirect modulation of target signaling pathways and transcription factors, including PDGFRα, PPARγ, PRRX1, and ZFP423, ALK5-mediated TGFβ controls a process that regulates the commitment and differentiation of αSMApos versus lipofibroblast cell populations during lung development. Conclusion ALK5-mediated TGFβ signaling controls an early pathway that regulates the commitment and differentiation of αSMApos versus LIF cell lineages during lung development. Electronic supplementary material The online version of this article (doi:10.1186/s12915-016-0242-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Aimin Li
- Division of Newborn Medicine, Department of Pediatrics, LAC+USC Medical Center and Childrens Hospital Los Angeles, Keck School of Medicine of USC, Los Angeles, CA, 90033, USA
| | - Shudong Ma
- Division of Newborn Medicine, Department of Pediatrics, LAC+USC Medical Center and Childrens Hospital Los Angeles, Keck School of Medicine of USC, Los Angeles, CA, 90033, USA
| | - Susan M Smith
- Division of Newborn Medicine, Department of Pediatrics, LAC+USC Medical Center and Childrens Hospital Los Angeles, Keck School of Medicine of USC, Los Angeles, CA, 90033, USA
| | - Matt K Lee
- Division of Newborn Medicine, Department of Pediatrics, LAC+USC Medical Center and Childrens Hospital Los Angeles, Keck School of Medicine of USC, Los Angeles, CA, 90033, USA
| | - Ashley Fischer
- Division of Newborn Medicine, Department of Pediatrics, LAC+USC Medical Center and Childrens Hospital Los Angeles, Keck School of Medicine of USC, Los Angeles, CA, 90033, USA
| | - Zea Borok
- Will Rogers Institute Pulmonary Research Center, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine of USC, Los Angeles, CA, 90033, USA.,Hastings Center for Pulmonary Research, Keck School of Medicine of USC, Los Angeles, CA, 90033, USA
| | - Saverio Bellusci
- Division of Newborn Medicine, Department of Pediatrics, LAC+USC Medical Center and Childrens Hospital Los Angeles, Keck School of Medicine of USC, Los Angeles, CA, 90033, USA.,Excellence Cluster Cardio Pulmonary System, University Justus Liebig Giessen, Giessen, 39352, Germany.,Institute of Fundamental Medicine and Biology, Kazan Federal University, Kremlevskaya St 18, Kazan, 420008, Russia
| | - Changgong Li
- Division of Newborn Medicine, Department of Pediatrics, LAC+USC Medical Center and Childrens Hospital Los Angeles, Keck School of Medicine of USC, Los Angeles, CA, 90033, USA
| | - Parviz Minoo
- Division of Newborn Medicine, Department of Pediatrics, LAC+USC Medical Center and Childrens Hospital Los Angeles, Keck School of Medicine of USC, Los Angeles, CA, 90033, USA. .,Hastings Center for Pulmonary Research, Keck School of Medicine of USC, Los Angeles, CA, 90033, USA.
| |
Collapse
|
35
|
Hijazi A, Guan H, Cernea M, Yang K. Prenatal exposure to bisphenol A disrupts mouse fetal lung development. FASEB J 2015; 29:4968-77. [DOI: 10.1096/fj.15-270942] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 08/13/2015] [Indexed: 01/17/2023]
Affiliation(s)
- Ayten Hijazi
- Department of Obstetrics and Gynaecology and Department of Physiology and PharmacologyChildren's Health Research Institute and Lawson Health Research InstituteWestern UniversityLondonOntarioCanada
| | - Haiyan Guan
- Department of Obstetrics and Gynaecology and Department of Physiology and PharmacologyChildren's Health Research Institute and Lawson Health Research InstituteWestern UniversityLondonOntarioCanada
| | - Maria Cernea
- Department of Obstetrics and Gynaecology and Department of Physiology and PharmacologyChildren's Health Research Institute and Lawson Health Research InstituteWestern UniversityLondonOntarioCanada
| | - Kaiping Yang
- Department of Obstetrics and Gynaecology and Department of Physiology and PharmacologyChildren's Health Research Institute and Lawson Health Research InstituteWestern UniversityLondonOntarioCanada
| |
Collapse
|
36
|
Sirois J, Daudelin JF, Boulet S, Marquis M, Meloche S, Labrecque N. The atypical MAPK ERK3 controls positive selection of thymocytes. Immunology 2015; 145:161-9. [PMID: 25521218 DOI: 10.1111/imm.12433] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 12/09/2014] [Accepted: 12/15/2014] [Indexed: 12/30/2022] Open
Abstract
Extracellular signal-regulated kinase 3 (ERK3 )is an atypical member of the mitogen-activated protein kinase (MAPK) family. We have previously shown that ERK3 is expressed during thymocyte differentiation and that its expression is induced in mature peripheral T cells following activation of ERK1/2 by T-cell receptor (TCR) signalling. Herein, we have investigated whether ERK3 expression is required for proper T-cell selection. Using a knock-in mouse model in which the coding sequence of ERK3 is replaced by the gene encoding for the β-galactosidase reporter, we show that ERK3 is expressed by double-positive (DP) thymocytes undergoing positive selection. In ERK3-deficient mice with a polyclonal TCR repertoire, we observe a decrease in positive selection. This reduction in positive selection was also observed when ERK3-deficient mice were backcrossed to class I- and class II-restricted TCR transgenic mice. Furthermore, the response of DP thymocytes to in vitro TCR stimulation was strongly reduced in ERK3-deficient mice. Together, these results show that ERK3 expression following TCR signalling is critical for proper thymic positive selection.
Collapse
Affiliation(s)
- Julien Sirois
- Maisonneuve-Rosemont Hospital Research Centre, Montreal, QC, Canada; Department of Microbiology, Infection and Immunology, University of Montreal, Montreal, QC, Canada
| | | | | | | | | | | |
Collapse
|
37
|
Mayor RS, Finch KE, Zehr J, Morselli E, Neinast MD, Frank AP, Hahner LD, Wang J, Rakheja D, Palmer BF, Rosenfeld CR, Savani RC, Clegg DJ. Maternal high-fat diet is associated with impaired fetal lung development. Am J Physiol Lung Cell Mol Physiol 2015; 309:L360-8. [PMID: 26092997 DOI: 10.1152/ajplung.00105.2015] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 06/08/2015] [Indexed: 01/22/2023] Open
Abstract
Maternal nutrition has a profound long-term impact on infant health. Poor maternal nutrition influences placental development and fetal growth, resulting in low birth weight, which is strongly associated with the risk of developing chronic diseases, including heart disease, hypertension, asthma, and type 2 diabetes, later in life. Few studies have delineated the mechanisms by which maternal nutrition affects fetal lung development. Here, we report that maternal exposure to a diet high in fat (HFD) causes placental inflammation, resulting in placental insufficiency, fetal growth restriction (FGR), and inhibition of fetal lung development. Notably, pre- and postnatal exposure to maternal HFD also results in persistent alveolar simplification in the postnatal period. Our novel findings provide a strong association between maternal diet and fetal lung development.
Collapse
Affiliation(s)
- Reina S Mayor
- Center for Pulmonary and Vascular Biology and Division of Neonatal-Perinatal Medicine, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Katelyn E Finch
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas; and
| | - Jordan Zehr
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas; and
| | - Eugenia Morselli
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas; and
| | - Michael D Neinast
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas; and
| | - Aaron P Frank
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas; and
| | - Lisa D Hahner
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas; and
| | - Jason Wang
- Department of Pathology and Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Dinesh Rakheja
- Department of Pathology and Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Biff F Palmer
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas; and
| | - Charles R Rosenfeld
- Center for Pulmonary and Vascular Biology and Division of Neonatal-Perinatal Medicine, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Rashmin C Savani
- Center for Pulmonary and Vascular Biology and Division of Neonatal-Perinatal Medicine, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Deborah J Clegg
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas; and
| |
Collapse
|
38
|
Swanson A, David A. Animal models of fetal growth restriction: Considerations for translational medicine. Placenta 2015; 36:623-30. [DOI: 10.1016/j.placenta.2015.03.003] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 03/03/2015] [Accepted: 03/04/2015] [Indexed: 11/26/2022]
|
39
|
Ganguly K, Martin TM, Concel VJ, Upadhyay S, Bein K, Brant KA, George L, Mitra A, Thimraj TA, Fabisiak JP, Vuga LJ, Fattman C, Kaminski N, Schulz H, Leikauf GD. Secreted phosphoprotein 1 is a determinant of lung function development in mice. Am J Respir Cell Mol Biol 2015; 51:637-51. [PMID: 24816281 DOI: 10.1165/rcmb.2013-0471oc] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Secreted phosphoprotein 1 (Spp1) is located within quantitative trait loci associated with lung function that was previously identified by contrasting C3H/HeJ and JF1/Msf mouse strains that have extremely divergent lung function. JF1/Msf mice with diminished lung function had reduced lung SPP1 transcript and protein during the peak stage of alveologenesis (postnatal day [P]14-P28) as compared with C3H/HeJ mice. In addition to a previously identified genetic variant that altered runt-related transcription factor 2 (RUNX2) binding in the Spp1 promoter, we identified another promoter variant in a putative RUNX2 binding site that increased the DNA protein binding. SPP1 induced dose-dependent mouse lung epithelial-15 cell proliferation. Spp1((-/-)) mice have decreased specific total lung capacity/body weight, higher specific compliance, and increased mean airspace chord length (Lm) compared with Spp1((+/+)) mice. Microarray analysis revealed enriched gene ontogeny categories, with numerous genes associated with lung development and/or respiratory disease. Insulin-like growth factor 1, Hedgehog-interacting protein, wingless-related mouse mammary tumor virus integration site 5A, and NOTCH1 transcripts decreased in the lung of P14 Spp1((-/-)) mice as determined by quantitative RT-PCR analysis. SPP1 promotes pneumocyte growth, and mice lacking SPP1 have smaller, more compliant lungs with enlarged airspace (i.e., increased Lm). Microarray analysis suggests a dysregulation of key lung developmental transcripts in gene-targeted Spp1((-/-)) mice, particularly during the peak phase of alveologenesis. In addition to its known roles in lung disease, this study supports SPP1 as a determinant of lung development in mice.
Collapse
Affiliation(s)
- Koustav Ganguly
- 1 Department of Environmental and Occupational Health, Graduate School of Public Health
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
MAP Kinase Cascades in Antigen Receptor Signaling and Physiology. Curr Top Microbiol Immunol 2015; 393:211-231. [PMID: 26275875 DOI: 10.1007/82_2015_481] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Mitogen-activated protein kinases (MAPKs) play roles in a cell type and context-dependent manner to convert extracellular stimuli to a variety of cellular responses, thereby directing cells to proliferation, differentiation, survival, apoptosis, and migration. Studies of genetically engineered mice or chemical inhibitors specific to each MAPK signaling pathway revealed that MAPKs have various, but non-redundant physiologically important roles among different families. MAPK cascades are obviously integrated in the B cell receptor signaling pathways as critical components to drive B cell-mediated immunity.
Collapse
|
41
|
Wang W, Bian K, Vallabhaneni S, Zhang B, Wu RC, O'Malley BW, Long W. ERK3 promotes endothelial cell functions by upregulating SRC-3/SP1-mediated VEGFR2 expression. J Cell Physiol 2014; 229:1529-37. [PMID: 24585635 DOI: 10.1002/jcp.24596] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 02/24/2014] [Indexed: 01/08/2023]
Abstract
Despite a regain of interest recently in ERK3 kinase signaling, the molecular regulations of both ERK3 gene expression and protein kinase activity are still largely unknown. While it is shown that disruption of ERK3 gene causes neonatal lethality, cell type-specific functions of ERK3 signaling remain to be explored. In this study, we report that ERK3 gene expression is upregulated by cytokines through c-Jun in endothelial cells; c-Jun binds to the ERK3 gene and regulates its transcription. We further reveal a new role for ERK3 in regulating endothelial cell migration, proliferation and tube formation by upregulating SRC-3/SP-1-mediated VEGFR2 expression. The underlying molecular mechanism involves ERK3-stimulated formation of a transcriptional complex involving coactivator SRC-3, transcription factor SP-1 and the secondary coactivator CBP. Taken together, our study identified a molecular regulatory mechanism of ERK3 gene expression and revealed a previously unknown role of ERK3 in regulating endothelial cell functions.
Collapse
Affiliation(s)
- Wei Wang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas
| | | | | | | | | | | | | |
Collapse
|
42
|
The catalytic activity of the mitogen-activated protein kinase extracellular signal-regulated kinase 3 is required to sustain CD4+ CD8+ thymocyte survival. Mol Cell Biol 2014; 34:3374-87. [PMID: 25002529 DOI: 10.1128/mcb.01701-13] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Extracellular signal-regulated kinase 3 (ERK3) is an atypical member of the mitogen-activated protein kinase (MAPK) family whose function is largely unknown. Given the central role of MAPKs in T cell development, we hypothesized that ERK3 may regulate thymocyte development. Here we have shown that ERK3 deficiency leads to a 50% reduction in CD4(+) CD8(+) (DP) thymocyte number. Analysis of hematopoietic chimeras revealed that the reduction in DP thymocytes is intrinsic to hematopoietic cells. We found that early thymic progenitors seed the Erk3(-/-) thymus and can properly differentiate and proliferate to generate DP thymocytes. However, ERK3 deficiency results in a decrease in the DP thymocyte half-life, associated with a higher level of apoptosis. As a consequence, ERK3-deficient DP thymocytes are impaired in their ability to make successful secondary T cell receptor alpha (TCRα) gene rearrangement. Introduction of an already rearranged TCR transgene restores thymic cell number. We further show that knock-in of a catalytically inactive allele of Erk3 fails to rescue the loss of DP thymocytes. Our results uncover a unique role for ERK3, dependent on its kinase activity, during T cell development and show that this atypical MAPK is essential to sustain DP survival during RAG-mediated rearrangements.
Collapse
|
43
|
Administration of antenatal glucocorticoids and postnatal surfactant ameliorates respiratory distress syndrome-associated neonatal lethality in Erk3(-/-) mouse pups. Pediatr Res 2014; 76:24-32. [PMID: 24732107 PMCID: PMC4062596 DOI: 10.1038/pr.2014.54] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 01/03/2014] [Indexed: 11/18/2022]
Abstract
BACKGROUND Respiratory distress syndrome (RDS) persists as a prevalent cause of infant morbidity and mortality. We have previously demonstrated that deletion of Erk3 results in pulmonary immaturity and neonatal lethality. Using RNA sequencing, we identified corticotrophin releasing hormone (CRH) and surfactant protein B (SFTPB) as potential molecular mediators of Erk3-dependent lung maturation. In this study, we characterized the impact of antenatal glucocorticoids and postnatal surfactant on neonatal survival of Erk3 null mice. METHODS In a double crossover design, we administered dexamethasone (dex) or saline to pregnant dams during the saccular stage of lung development, followed by postnatal surfactant or saline via inhalation intubation. Survival was recorded, and detailed lung histological analysis and staining for CRH and SFTPB protein expression were performed. RESULTS Without treatment, Erk3 null pups die within 6 h of birth with reduced aerated space, impaired thinning of the alveolar septa, and abundant glycogen stores, as described in human RDS. The administration of dex and surfactant improved RDS-associated lethality of Erk3(-/-) pups and partially restored functional fetal lung maturation by accelerating the downregulation of pulmonary CRH and partially rescuing the production of SFTPB. CONCLUSION These findings emphasize that Erk3 is integral to terminal differentiation of type II cells, SFTPB production, and fetal pulmonary maturity.
Collapse
|
44
|
Marquis M, Boulet S, Mathien S, Rousseau J, Thébault P, Daudelin JF, Rooney J, Turgeon B, Beauchamp C, Meloche S, Labrecque N. The non-classical MAP kinase ERK3 controls T cell activation. PLoS One 2014; 9:e86681. [PMID: 24475167 PMCID: PMC3903551 DOI: 10.1371/journal.pone.0086681] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 12/13/2013] [Indexed: 11/19/2022] Open
Abstract
The classical mitogen-activated protein kinases (MAPKs) ERK1 and ERK2 are activated upon stimulation of cells with a broad range of extracellular signals (including antigens) allowing cellular responses to occur. ERK3 is an atypical member of the MAPK family with highest homology to ERK1/2. Therefore, we evaluated the role of ERK3 in mature T cell response. Mouse resting T cells do not transcribe ERK3 but its expression is induced in both CD4⁺ and CD8⁺ T cells following T cell receptor (TCR)-induced T cell activation. This induction of ERK3 expression in T lymphocytes requires activation of the classical MAPK ERK1 and ERK2. Moreover, ERK3 protein is phosphorylated and associates with MK5 in activated primary T cells. We show that ERK3-deficient T cells have a decreased proliferation rate and are impaired in cytokine secretion following in vitro stimulation with low dose of anti-CD3 antibodies. Our findings identify the atypical MAPK ERK3 as a new and important regulator of TCR-induced T cell activation.
Collapse
Affiliation(s)
- Miriam Marquis
- Maisonneuve-Rosemont Hospital Research Centre, Montreal, Quebec, Canada
- Department of Microbiology, Infectiology and Immunology, University of Montreal, Quebec, Canada
| | - Salix Boulet
- Maisonneuve-Rosemont Hospital Research Centre, Montreal, Quebec, Canada
| | - Simon Mathien
- Institute of Research in Immunology and Cancer, University of Montreal, Quebec, Canada
| | - Justine Rousseau
- Department of Pharmacology and Molecular Biology, University of Montreal, Quebec, Canada
- Institute of Research in Immunology and Cancer, University of Montreal, Quebec, Canada
| | - Paméla Thébault
- Maisonneuve-Rosemont Hospital Research Centre, Montreal, Quebec, Canada
| | | | - Julie Rooney
- Maisonneuve-Rosemont Hospital Research Centre, Montreal, Quebec, Canada
| | - Benjamin Turgeon
- Department of Pharmacology and Molecular Biology, University of Montreal, Quebec, Canada
- Institute of Research in Immunology and Cancer, University of Montreal, Quebec, Canada
| | | | - Sylvain Meloche
- Department of Pharmacology and Molecular Biology, University of Montreal, Quebec, Canada
- Institute of Research in Immunology and Cancer, University of Montreal, Quebec, Canada
| | - Nathalie Labrecque
- Maisonneuve-Rosemont Hospital Research Centre, Montreal, Quebec, Canada
- Department of Microbiology, Infectiology and Immunology, University of Montreal, Quebec, Canada
- Department of Medicine, University of Montreal, Quebec, Canada
| |
Collapse
|
45
|
Malhotra A, Sasi A, Miller SL, Jenkin G, Polglase GR. The Efficacy of Surfactant Replacement Therapy in the Growth-Restricted Preterm Infant: What is the Evidence? Front Pediatr 2014; 2:118. [PMID: 25401096 PMCID: PMC4212601 DOI: 10.3389/fped.2014.00118] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 10/16/2014] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Surfactant replacement therapy (SRT) is an integral part of management of preterm surfactant deficiency respiratory distress syndrome (RDS). Its role in the management of RDS has been extensively studied. However, its efficacy in the management of lung disease in preterm infants born with intrauterine growth restriction (IUGR) has not been systematically studied. OBJECTIVE To evaluate the efficacy of exogenous SRT in the management of preterm IUGR lung disease. METHODS A systematic search of all available randomized clinical trials (RCT) of SRT in preterm IUGR infants was done according to the standard Cochrane collaboration search strategy. Neonatal respiratory outcomes were compared between the preterm IUGR and appropriately grown for gestational age (AGA) preterm infant populations in eligible studies. RESULTS No study was identified which evaluated the efficacy or responsiveness of exogenous SRT in preterm IUGR infants as compared to preterm AGA-infants. The only study identified through the search strategy used small for gestational age (SGA; defined as less than tenth centile for birth weight) as a proxy for IUGR. The RCT evaluated the efficacy or responsiveness of SRT in preterm SGA group as compared to AGA-infants. The rate of intubation, severity of RDS, rate of surfactant administration, pulmonary air leaks, and days on the ventilator did not differ between both groups. However, the requirement for prolonged nasal continuous positive airway pressure (p < 0.001), supplemental oxygen therapy (p < 0.01), and the incidence of bronchopulmonary dysplasia at 28 days and 36 weeks (both p < 0.01) was greater in SGA-infants. DISCUSSION There is currently insufficient data available to evaluate the efficacy of SRT in preterm IUGR lung disease. A variety of research strategies will be needed to enhance our understanding of the role and rationale for use of SRT in preterm IUGR lung disease.
Collapse
Affiliation(s)
- Atul Malhotra
- Monash Newborn, Monash Children's Hospital , Melbourne, VIC , Australia ; The Ritchie Centre, Monash Institute of Medical Research , Melbourne, VIC , Australia ; Department of Paediatrics, Monash University , Melbourne, VIC , Australia
| | - Arun Sasi
- Monash Newborn, Monash Children's Hospital , Melbourne, VIC , Australia
| | - Suzanne L Miller
- The Ritchie Centre, Monash Institute of Medical Research , Melbourne, VIC , Australia ; Department of Obstetrics and Gynaecology, Monash University , Melbourne, VIC , Australia
| | - Graham Jenkin
- The Ritchie Centre, Monash Institute of Medical Research , Melbourne, VIC , Australia ; Department of Obstetrics and Gynaecology, Monash University , Melbourne, VIC , Australia
| | - Graeme R Polglase
- The Ritchie Centre, Monash Institute of Medical Research , Melbourne, VIC , Australia ; Department of Obstetrics and Gynaecology, Monash University , Melbourne, VIC , Australia
| |
Collapse
|
46
|
The histone demethylase Jarid1b ensures faithful mouse development by protecting developmental genes from aberrant H3K4me3. PLoS Genet 2013; 9:e1003461. [PMID: 23637629 PMCID: PMC3630093 DOI: 10.1371/journal.pgen.1003461] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 03/04/2013] [Indexed: 12/12/2022] Open
Abstract
Embryonic development is tightly regulated by transcription factors and chromatin-associated proteins. H3K4me3 is associated with active transcription and H3K27me3 with gene repression, while the combination of both keeps genes required for development in a plastic state. Here we show that deletion of the H3K4me2/3 histone demethylase Jarid1b (Kdm5b/Plu1) results in major neonatal lethality due to respiratory failure. Jarid1b knockout embryos have several neural defects including disorganized cranial nerves, defects in eye development, and increased incidences of exencephaly. Moreover, in line with an overlap of Jarid1b and Polycomb target genes, Jarid1b knockout embryos display homeotic skeletal transformations typical for Polycomb mutants, supporting a functional interplay between Polycomb proteins and Jarid1b. To understand how Jarid1b regulates mouse development, we performed a genome-wide analysis of histone modifications, which demonstrated that normally inactive genes encoding developmental regulators acquire aberrant H3K4me3 during early embryogenesis in Jarid1b knockout embryos. H3K4me3 accumulates as embryonic development proceeds, leading to increased expression of neural master regulators like Pax6 and Otx2 in Jarid1b knockout brains. Taken together, these results suggest that Jarid1b regulates mouse development by protecting developmental genes from inappropriate acquisition of active histone modifications.
Collapse
|
47
|
Im SK, Jeong H, Jeong HW, Kim KT, Hwang D, Ikegami M, Kong YY. Disruption of sorting nexin 5 causes respiratory failure associated with undifferentiated alveolar epithelial type I cells in mice. PLoS One 2013; 8:e58511. [PMID: 23526992 PMCID: PMC3602295 DOI: 10.1371/journal.pone.0058511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 02/05/2013] [Indexed: 01/16/2023] Open
Abstract
Sorting nexin 5 (Snx5) has been posited to regulate the degradation of epidermal growth factor receptor and the retrograde trafficking of cation-independent mannose 6-phosphate receptor/insulin-like growth factor II receptor. Snx5 has also been suggested to interact with Mind bomb-1, an E3 ubiquitin ligase that regulates the activation of Notch signaling. However, the in vivo functions of Snx5 are largely unknown. Here, we report that disruption of the Snx5 gene in mice (Snx5-/- mice) resulted in partial perinatal lethality; 40% of Snx5-/- mice died shortly after birth due to cyanosis, reduced air space in the lungs, and respiratory failure. Histological analysis revealed that Snx5-/- mice exhibited thickened alveolar walls associated with undifferentiated alveolar epithelial type I cells. In contrast, alveolar epithelial type II cells were intact, exhibiting normal surfactant synthesis and secretion. Although the expression levels of surfactant proteins and saturated phosphatidylcholine in the lungs of Snx5-/- mice were comparable to those of Snx5+/+ mice, the expression levels of T1α, Aqp5, and Rage, markers for distal alveolar epithelial type I cells, were significantly decreased in Snx5-/- mice. These results demonstrate that Snx5 is necessary for the differentiation of alveolar epithelial type I cells, which may underlie the adaptation to air breathing at birth.
Collapse
Affiliation(s)
- Sun-Kyoung Im
- School of Biological Science, College of Natural Sciences, Seoul National University, Seoul, South Korea
- Department of Life Science, Division of Molecular and Life Science, POSTECH, Pohang, South Korea
| | - HyoBin Jeong
- School of Interdisciplinary Biosciences and Bioengineering, POSTECH, Pohang, South Korea
| | - Hyun-Woo Jeong
- School of Biological Science, College of Natural Sciences, Seoul National University, Seoul, South Korea
| | - Kyong-Tai Kim
- Department of Life Science, Division of Molecular and Life Science, POSTECH, Pohang, South Korea
| | - Daehee Hwang
- School of Interdisciplinary Biosciences and Bioengineering, POSTECH, Pohang, South Korea
| | - Machiko Ikegami
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Young-Yun Kong
- School of Biological Science, College of Natural Sciences, Seoul National University, Seoul, South Korea
- * E-mail:
| |
Collapse
|
48
|
Pandey RC, Michel S, Schieck M, Binia A, Liang L, Klopp N, Franke A, von Berg A, Bufe A, Rietschel E, Heinzmann A, Laub O, Simma B, Frischer T, Genuneit J, Illig T, Kabesch M. Polymorphisms in extracellular signal-regulated kinase family influence genetic susceptibility to asthma. J Allergy Clin Immunol 2013; 131:1245-7. [PMID: 23384682 DOI: 10.1016/j.jaci.2012.12.675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 12/14/2012] [Accepted: 12/18/2012] [Indexed: 11/15/2022]
|
49
|
Kostenko S, Dumitriu G, Moens U. Tumour promoting and suppressing roles of the atypical MAP kinase signalling pathway ERK3/4-MK5. J Mol Signal 2012; 7:9. [PMID: 22800433 PMCID: PMC3419095 DOI: 10.1186/1750-2187-7-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 06/20/2012] [Indexed: 12/28/2022] Open
Abstract
Perturbed action of signal transduction pathways, including the mitogen-activated protein (MAP) kinase pathways, is one of the hallmarks of many cancers. While the implication of the typical MAP kinase pathways ERK1/2-MEK1/2, p38MAPK and JNK is well established, recent findings illustrate that the atypical MAP kinase ERK3/4-MK5 may also be involved in tumorigenic processes. Remarkably, the ERK3/4-MK5 pathway seems to possess anti-oncogenic as well as pro-oncogenic properties in cell culture and aninal models. This review summarizes the mutations in the genes encoding ERK3, ERK4 and MK5 that have been detected in different cancers, reports aberrant expression levels of these proteins in human tumours, and discusses the mechanisms by which this pathway can induce senescence, stimulate angiogenesis and invasiveness.
Collapse
Affiliation(s)
- Sergiy Kostenko
- Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, Tromsø, NO-9037, Norway
| | - Gianina Dumitriu
- Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, Tromsø, NO-9037, Norway
| | - Ugo Moens
- Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, Tromsø, NO-9037, Norway
| |
Collapse
|
50
|
The extracellular signal-regulated kinase 3 (mitogen-activated protein kinase 6 [MAPK6])-MAPK-activated protein kinase 5 signaling complex regulates septin function and dendrite morphology. Mol Cell Biol 2012; 32:2467-78. [PMID: 22508986 DOI: 10.1128/mcb.06633-11] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Mitogen-activated protein kinase-activated protein (MAPKAP) kinase 5 (MK5) deficiency is associated with reduced extracellular signal-regulated kinase 3 (ERK3) (mitogen-activated protein kinase 6) levels, hence we utilized the MK5 knockout mouse model to analyze the physiological functions of the ERK3/MK5 signaling module. MK5-deficient mice displayed impaired dendritic spine formation in mouse hippocampal neurons in vivo. We performed large-scale interaction screens to understand the neuronal functions of the ERK3/MK5 pathway and identified septin7 (Sept7) as a novel interacting partner of ERK3. ERK3/MK5/Sept7 form a ternary complex, which can phosphorylate the Sept7 regulators Binders of Rho GTPases (Borgs). In addition, the brain-specific nucleotide exchange factor kalirin-7 (Kal7) was identified as an MK5 interaction partner and substrate protein. In transfected primary neurons, Sept7-dependent dendrite development and spine formation are stimulated by the ERK3/MK5 module. Thus, the regulation of neuronal morphogenesis is proposed as the first physiological function of the ERK3/MK5 signaling module.
Collapse
|