1
|
Bakht MK, Beltran H. Biological determinants of PSMA expression, regulation and heterogeneity in prostate cancer. Nat Rev Urol 2025; 22:26-45. [PMID: 38977769 PMCID: PMC11841200 DOI: 10.1038/s41585-024-00900-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2024] [Indexed: 07/10/2024]
Abstract
Prostate-specific membrane antigen (PSMA) is an important cell-surface imaging biomarker and therapeutic target in prostate cancer. The PSMA-targeted theranostic 177Lu-PSMA-617 was approved in 2022 for men with PSMA-PET-positive metastatic castration-resistant prostate cancer. However, not all patients respond to PSMA-radioligand therapy, in part owing to the heterogeneity of PSMA expression in the tumour. The PSMA regulatory network is composed of a PSMA transcription complex, an upstream enhancer that loops to the FOLH1 (PSMA) gene promoter, intergenic enhancers and differentially methylated regions. Our understanding of the PSMA regulatory network and the mechanisms underlying PSMA suppression is evolving. Clinically, molecular imaging provides a unique window into PSMA dynamics that occur on therapy and with disease progression, although challenges arise owing to the limited resolution of PET. PSMA regulation and heterogeneity - including intertumoural and inter-patient heterogeneity, temporal changes, lineage dynamics and the tumour microenvironment - affect PSMA theranostics. PSMA response and resistance to radioligand therapy are mediated by a number of potential mechanisms, and complementary biomarkers beyond PSMA are under development. Understanding the biological determinants of cell surface target regulation and heterogeneity can inform precision medicine approaches to PSMA theranostics as well as other emerging therapies.
Collapse
Affiliation(s)
- Martin K Bakht
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Himisha Beltran
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Manzar N, Ganguly P, Khan UK, Ateeq B. Transcription networks rewire gene repertoire to coordinate cellular reprograming in prostate cancer. Semin Cancer Biol 2023; 89:76-91. [PMID: 36702449 DOI: 10.1016/j.semcancer.2023.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/04/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023]
Abstract
Transcription factors (TFs) represent the most commonly deregulated DNA-binding class of proteins associated with multiple human cancers. They can act as transcriptional activators or repressors that rewire the cistrome, resulting in cellular reprogramming during cancer progression. Deregulation of TFs is associated with the onset and maintenance of various cancer types including prostate cancer. An emerging subset of TFs has been implicated in the regulation of multiple cancer hallmarks during tumorigenesis. Here, we discuss the role of key TFs which modulate transcriptional cicuitries involved in the development and progression of prostate cancer. We further highlight the role of TFs associated with key cancer hallmarks, including, chromatin remodeling, genome instability, DNA repair, invasion, and metastasis. We also discuss the pluripotent function of TFs in conferring lineage plasticity, that aids in disease progression to neuroendocrine prostate cancer. At the end, we summarize the current understanding and approaches employed for the therapeutic targeting of TFs and their cofactors in the clinical setups to prevent disease progression.
Collapse
Affiliation(s)
- Nishat Manzar
- Molecular Oncology Laboratory, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
| | - Promit Ganguly
- Molecular Oncology Laboratory, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
| | - Umar Khalid Khan
- Molecular Oncology Laboratory, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
| | - Bushra Ateeq
- Molecular Oncology Laboratory, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India; Mehta Family Center for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur 208016, India.
| |
Collapse
|
3
|
Liu M, Shen A, Zheng Y, Chen X, Wang L, Li T, Ouyang X, Yu X, Sun H, Wu X. Long non-coding RNA lncHUPC1 induced by FOXA1 promotes tumor progression by inhibiting apoptosis via miR-133b/SDCCAG3 in prostate cancer. Am J Cancer Res 2022; 12:2465-2491. [PMID: 35812058 PMCID: PMC9251679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) were confirmed to be involved in regulating various malignant behaviors of tumor cells in prostate cancer (PCa). Using The Cancer Genome Atlas (TCGA) prostate adenocarcinoma datasets, several endogenous competing RNA (ceRNA) networks of lncRNA/miRNA/mRNA associated with the progression-free survival (PFS) and Gleason score (GS) were identified using bioinformatics analysis. lncRNA AC004447.2 (lncHUPC1, ENSG00000269131)/miR-133b/serologically defined colon cancer antigen-3 (SDCCAG3) was a newly identified ceRNA network that affected cell growth and apoptosis in PCa. Using q-PCR, lncHUPC1 and SDCCAG3 were found to be up-regulated in PCa cells, while miR-133b was down-regulated. The same results were found in tissue samples from 70 PCa cases. It was confirmed that the knockdown of lncHUPC1 increased the expression of miR-133b and decreased that of SDCCAG3, which further increased apoptosis and inhibited cell growth, while the miR-133b inhibitor partially reversed these effects. After transfection with miR-133b mimic after lncHUPC1-knockdown, the expression of miR-133b increased while that of SDCCAG3 reduced, and the apoptosis of the cells was more obvious and the growth of the cells was slower. Therefore, lncHUPC1 was confirmed to regulate SDCCAG3 by binding to miR-133b. Additionally, we found that the transcription factor Forkhead Box A1 (FOXA1) directly bound to the promoter of lncHUPC1 to activate it. In conclusion, the ceRNA network of lncHUPC1/miR-133b/SDCCAG3 affected the growth and apoptosis of PCa cells, and FOXA1 may be involved in the process as a transcription factor of lncHUPC1.
Collapse
Affiliation(s)
- Miao Liu
- Department of Urology, The First Affiliated Hospital of Chongqing Medical UniversityChongqing, China
- Gastrointestinal Cancer Center, Chongqing University Cancer HospitalChongqing, China
| | - Ai Shen
- Hepatobiliary and Pancreatic Tumor Center, Affiliated Cancer Hospital of Chongqing UniversityChongqing, China
| | - Yongbo Zheng
- Department of Urology, The First Affiliated Hospital of Chongqing Medical UniversityChongqing, China
| | - Xiong Chen
- Department of Urology, The First Affiliated Hospital of Chongqing Medical UniversityChongqing, China
| | - Leilei Wang
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Chongqing Medical UniversityChongqing, China
| | - Ting Li
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Chongqing Medical UniversityChongqing, China
| | - Xin Ouyang
- Department of Urology, The First Affiliated Hospital of Chongqing Medical UniversityChongqing, China
| | - Xian Yu
- Gastrointestinal Cancer Center, Chongqing University Cancer HospitalChongqing, China
| | - Hao Sun
- Gastrointestinal Cancer Center, Chongqing University Cancer HospitalChongqing, China
| | - Xiaohou Wu
- Department of Urology, The First Affiliated Hospital of Chongqing Medical UniversityChongqing, China
| |
Collapse
|
4
|
Repurposing Multiple-Molecule Drugs for COVID-19-Associated Acute Respiratory Distress Syndrome and Non-Viral Acute Respiratory Distress Syndrome via a Systems Biology Approach and a DNN-DTI Model Based on Five Drug Design Specifications. Int J Mol Sci 2022; 23:ijms23073649. [PMID: 35409008 PMCID: PMC8998971 DOI: 10.3390/ijms23073649] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 02/04/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) epidemic is currently raging around the world at a rapid speed. Among COVID-19 patients, SARS-CoV-2-associated acute respiratory distress syndrome (ARDS) is the main contribution to the high ratio of morbidity and mortality. However, clinical manifestations between SARS-CoV-2-associated ARDS and non-SARS-CoV-2-associated ARDS are quite common, and their therapeutic treatments are limited because the intricated pathophysiology having been not fully understood. In this study, to investigate the pathogenic mechanism of SARS-CoV-2-associated ARDS and non-SARS-CoV-2-associated ARDS, first, we constructed a candidate host-pathogen interspecies genome-wide genetic and epigenetic network (HPI-GWGEN) via database mining. With the help of host-pathogen RNA sequencing (RNA-Seq) data, real HPI-GWGEN of COVID-19-associated ARDS and non-viral ARDS were obtained by system modeling, system identification, and Akaike information criterion (AIC) model order selection method to delete the false positives in candidate HPI-GWGEN. For the convenience of mitigation, the principal network projection (PNP) approach is utilized to extract core HPI-GWGEN, and then the corresponding core signaling pathways of COVID-19-associated ARDS and non-viral ARDS are annotated via their core HPI-GWGEN by KEGG pathways. In order to design multiple-molecule drugs of COVID-19-associated ARDS and non-viral ARDS, we identified essential biomarkers as drug targets of pathogenesis by comparing the core signal pathways between COVID-19-associated ARDS and non-viral ARDS. The deep neural network of the drug–target interaction (DNN-DTI) model could be trained by drug–target interaction databases in advance to predict candidate drugs for the identified biomarkers. We further narrowed down these predicted drug candidates to repurpose potential multiple-molecule drugs by the filters of drug design specifications, including regulation ability, sensitivity, excretion, toxicity, and drug-likeness. Taken together, we not only enlighten the etiologic mechanisms under COVID-19-associated ARDS and non-viral ARDS but also provide novel therapeutic options for COVID-19-associated ARDS and non-viral ARDS.
Collapse
|
5
|
Buskin A, Singh P, Lorenz O, Robson C, Strand DW, Heer R. A Review of Prostate Organogenesis and a Role for iPSC-Derived Prostate Organoids to Study Prostate Development and Disease. Int J Mol Sci 2021; 22:ijms222313097. [PMID: 34884905 PMCID: PMC8658468 DOI: 10.3390/ijms222313097] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/23/2021] [Accepted: 11/29/2021] [Indexed: 01/09/2023] Open
Abstract
The prostate is vulnerable to two major age-associated diseases, cancer and benign enlargement, which account for significant morbidity and mortality for men across the globe. Prostate cancer is the most common cancer reported in men, with over 1.2 million new cases diagnosed and 350,000 deaths recorded annually worldwide. Benign prostatic hyperplasia (BPH), characterised by the continuous enlargement of the adult prostate, symptomatically afflicts around 50% of men worldwide. A better understanding of the biological processes underpinning these diseases is needed to generate new treatment approaches. Developmental studies of the prostate have shed some light on the processes essential for prostate organogenesis, with many of these up- or downregulated genes expressions also observed in prostate cancer and/or BPH progression. These insights into human disease have been inferred through comparative biological studies relying primarily on rodent models. However, directly observing mechanisms of human prostate development has been more challenging due to limitations in accessing human foetal material. Induced pluripotent stem cells (iPSCs) could provide a suitable alternative as they can mimic embryonic cells, and iPSC-derived prostate organoids present a significant opportunity to study early human prostate developmental processes. In this review, we discuss the current understanding of prostate development and its relevance to prostate-associated diseases. Additionally, we detail the potential of iPSC-derived prostate organoids for studying human prostate development and disease.
Collapse
Affiliation(s)
- Adriana Buskin
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Paul O’Gorman Building, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (P.S.); (C.R.)
- Correspondence: (A.B.); (R.H.)
| | - Parmveer Singh
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Paul O’Gorman Building, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (P.S.); (C.R.)
| | - Oliver Lorenz
- Newcastle University School of Computing, Digital Institute, Urban Sciences Building, Newcastle University, Newcastle upon Tyne NE4 5TG, UK;
| | - Craig Robson
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Paul O’Gorman Building, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (P.S.); (C.R.)
| | - Douglas W. Strand
- Department of Urology, UT Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Rakesh Heer
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Paul O’Gorman Building, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (P.S.); (C.R.)
- Department of Urology, Freeman Hospital, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE7 7DN, UK
- Correspondence: (A.B.); (R.H.)
| |
Collapse
|
6
|
Brennen WN, Zhu Y, Coleman IM, Dalrymple SL, Antony L, Patel RA, Hanratty B, Chikarmane R, Meeker AK, Zheng SL, Hooper JE, Luo J, De Marzo AM, Corey E, Xu J, Yegnasubramanian S, Haffner MC, Nelson PS, Nelson WG, Isaacs WB, Isaacs JT. Resistance to androgen receptor signaling inhibition does not necessitate development of neuroendocrine prostate cancer. JCI Insight 2021; 6:146827. [PMID: 33724955 PMCID: PMC8119192 DOI: 10.1172/jci.insight.146827] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/10/2021] [Indexed: 01/02/2023] Open
Abstract
Resistance to AR signaling inhibitors (ARSis) in a subset of metastatic castration-resistant prostate cancers (mCRPCs) occurs with the emergence of AR– neuroendocrine prostate cancer (NEPC) coupled with mutations/deletions in PTEN, TP53, and RB1 and the overexpression of DNMTs, EZH2, and/or SOX2. To resolve whether the lack of AR is the driving factor for the emergence of the NE phenotype, molecular, cell, and tumor biology analyses were performed on 23 xenografts derived from patients with PC, recapitulating the full spectrum of genetic alterations proposed to drive NE differentiation. Additionally, phenotypic response to CRISPR/Cas9-mediated AR KO in AR+ CRPC cells was evaluated. These analyses document that (a) ARSi-resistant NEPC developed without androgen deprivation treatment; (b) ARS in ARSi-resistant AR+/NE+ double-positive “amphicrine” mCRPCs did not suppress NE differentiation; (c) the lack of AR expression did not necessitate acquiring a NE phenotype, despite concomitant mutations/deletions in PTEN and TP53, and the loss of RB1 but occurred via emergence of an AR–/NE– double-negative PC (DNPC); (d) despite DNPC cells having homogeneous genetic driver mutations, they were phenotypically heterogeneous, expressing basal lineage markers alone or in combination with luminal lineage markers; and (e) AR loss was associated with AR promoter hypermethylation in NEPCs but not in DNPCs.
Collapse
Affiliation(s)
- W Nathaniel Brennen
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center (SKCCC), Johns Hopkins University, Baltimore, Maryland, USA.,Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yezi Zhu
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ilsa M Coleman
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Susan L Dalrymple
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center (SKCCC), Johns Hopkins University, Baltimore, Maryland, USA
| | - Lizamma Antony
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center (SKCCC), Johns Hopkins University, Baltimore, Maryland, USA
| | - Radhika A Patel
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Brian Hanratty
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Roshan Chikarmane
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center (SKCCC), Johns Hopkins University, Baltimore, Maryland, USA
| | - Alan K Meeker
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center (SKCCC), Johns Hopkins University, Baltimore, Maryland, USA.,Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Pathology, SKCCC, Johns Hopkins University, Baltimore, Maryland, USA
| | - S Lilly Zheng
- Program for Personalized Cancer Care, North Shore University Health System, Evanston, Illinois, USA
| | - Jody E Hooper
- Department of Pathology, SKCCC, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jun Luo
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Angelo M De Marzo
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center (SKCCC), Johns Hopkins University, Baltimore, Maryland, USA.,Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Pathology, SKCCC, Johns Hopkins University, Baltimore, Maryland, USA
| | | | - Jianfeng Xu
- Program for Personalized Cancer Care, North Shore University Health System, Evanston, Illinois, USA
| | - Srinivasan Yegnasubramanian
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center (SKCCC), Johns Hopkins University, Baltimore, Maryland, USA.,Department of Pathology, SKCCC, Johns Hopkins University, Baltimore, Maryland, USA
| | - Michael C Haffner
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,Department of Pathology, University of Washington, Seattle, Washington, USA
| | - Peter S Nelson
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,Department of Urology and
| | - William G Nelson
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center (SKCCC), Johns Hopkins University, Baltimore, Maryland, USA.,Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Pathology, SKCCC, Johns Hopkins University, Baltimore, Maryland, USA
| | - William B Isaacs
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - John T Isaacs
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center (SKCCC), Johns Hopkins University, Baltimore, Maryland, USA.,Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Pathology, SKCCC, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
7
|
Yuan Z, Ye M, Qie J, Ye T. FOXA1 Promotes Cell Proliferation and Suppresses Apoptosis in HCC by Directly Regulating miR-212-3p/FOXA1/AGR2 Signaling Pathway. Onco Targets Ther 2020; 13:5231-5240. [PMID: 32606743 PMCID: PMC7293390 DOI: 10.2147/ott.s252890] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 05/06/2020] [Indexed: 12/22/2022] Open
Abstract
Background Forkhead box protein A1 (FOXA1), acting as a transcriptional activator for liver-specific transcripts, plays a vital part in proliferation, apoptosis and cell cycle. Methods The mRNA expression of FOXA1 in 90 HCC tissues and matched adjacent non-tumor tissues was determined by qRT-PCR. The downstream and upstream regulators of FOXA1 were identified by bioinformatics analysis and experimental confirmation. Results We found out that the expression of FOXA1 was obviously higher in hepatocellular carcinoma (HCC) tissues than that in matched non-tumor tissues. Similarly, FOXA1 is also highly expressed in HCC cell lines as compared with normal human hepatic cell line L02. Clinical association analysis indicated that high expression of FOXA1 was prominently correlated with high HBV level, large tumor size, high venous infiltration, high Edmondson-Steiner grading, and advanced tumor-node-metastasis tumor stage. Furthermore, the in vitro tests showed that ectopic expression of FOXA1 promoted HepG2 cell proliferation and suppressed apoptosis. In contrast, the downregulation of FOXA1 inhibited cell proliferation, and induced apoptosis in Hep3B cells. To investigate the functional mechanism of FOXA1, anterior gradient 2 (AGR2), an executor in proliferation and apoptosis, was identified as the direct target gene of FOXA1. Meanwhile, we also found the expression of FOXA1 could be inhibited by miR-212-3p, which working as a tumor suppressor downregulated in HCC. Conclusion We revealed that FOXA1 exerted its biological function by regulating AGR2 expression, and its ectopic expression may be blamed for low expression of miR-212-3p.
Collapse
Affiliation(s)
- Zhen Yuan
- Department of Oncology, Minhang Hospital, Fudan University, Shanghai, People's Republic of China.,Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Mu Ye
- Department of General Surgery, Jinshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Jingbo Qie
- Department of Oncology, Minhang Hospital, Fudan University, Shanghai, People's Republic of China.,Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Tao Ye
- Department of Oncology, Minhang Hospital, Fudan University, Shanghai, People's Republic of China.,Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
8
|
Nerlakanti N, Yao J, Nguyen DT, Patel AK, Eroshkin AM, Lawrence HR, Ayaz M, Kuenzi BM, Agarwal N, Chen Y, Gunawan S, Karim RM, Berndt N, Puskas J, Magliocco AM, Coppola D, Dhillon J, Zhang J, Shymalagovindarajan S, Rix U, Kim Y, Perera R, Lawrence NJ, Schonbrunn E, Mahajan K. Targeting the BRD4-HOXB13 Coregulated Transcriptional Networks with Bromodomain-Kinase Inhibitors to Suppress Metastatic Castration-Resistant Prostate Cancer. Mol Cancer Ther 2018; 17:2796-2810. [PMID: 30242092 DOI: 10.1158/1535-7163.mct-18-0602] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/12/2018] [Accepted: 09/14/2018] [Indexed: 01/28/2023]
Abstract
Resistance to androgen receptor (AR) antagonists is a significant problem in the treatment of castration-resistant prostate cancers (CRPC). Identification of the mechanisms by which CRPCs evade androgen deprivation therapies (ADT) is critical to develop novel therapeutics. We uncovered that CRPCs rely on BRD4-HOXB13 epigenetic reprogramming for androgen-independent cell proliferation. Mechanistically, BRD4, a member of the BET bromodomain family, epigenetically promotes HOXB13 expression. Consistently, genetic disruption of HOXB13 or pharmacological suppression of its mRNA and protein expression by the novel dual-activity BET bromodomain-kinase inhibitors directly correlates with rapid induction of apoptosis, potent inhibition of tumor cell proliferation and cell migration, and suppression of CRPC growth. Integrative analysis revealed that the BRD4-HOXB13 transcriptome comprises a proliferative gene network implicated in cell-cycle progression, nucleotide metabolism, and chromatin assembly. Notably, although the core HOXB13 target genes responsive to BET inhibitors (HOTBIN10) are overexpressed in metastatic cases, in ADT-treated CRPC cell lines and patient-derived circulating tumor cells (CTC) they are insensitive to AR depletion or blockade. Among the HOTBIN10 genes, AURKB and MELK expression correlates with HOXB13 expression in CTCs of mCRPC patients who did not respond to abiraterone (ABR), suggesting that AURKB inhibitors could be used additionally against high-risk HOXB13-positive metastatic prostate cancers. Combined, our study demonstrates that BRD4-HOXB13-HOTBIN10 regulatory circuit maintains the malignant state of CRPCs and identifies a core proproliferative network driving ADT resistance that is targetable with potent dual-activity bromodomain-kinase inhibitors.
Collapse
Affiliation(s)
- Niveditha Nerlakanti
- Tumor Biology Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.,Cancer Biology Ph.D. Program, University of South Florida, Tampa, Florida
| | - Jiqiang Yao
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Duy T Nguyen
- Tumor Biology Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.,Department of Surgery, Washington University in St. Louis, St. Louis, Missouri
| | - Ami K Patel
- Tumor Biology Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Alexey M Eroshkin
- Bioinformatics Core, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Harshani R Lawrence
- Chemical Biology Core, H. Lee Moffitt Cancer Center, Tampa, Florida.,Department of Drug Discovery, H. Lee Moffitt Cancer Center, Tampa, Florida
| | - Muhammad Ayaz
- Chemical Biology Core, H. Lee Moffitt Cancer Center, Tampa, Florida
| | - Brent M Kuenzi
- Cancer Biology Ph.D. Program, University of South Florida, Tampa, Florida.,Department of Drug Discovery, H. Lee Moffitt Cancer Center, Tampa, Florida
| | - Neha Agarwal
- Tumor Biology Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Yunyun Chen
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Steven Gunawan
- Department of Drug Discovery, H. Lee Moffitt Cancer Center, Tampa, Florida
| | - Rezaul M Karim
- Department of Drug Discovery, H. Lee Moffitt Cancer Center, Tampa, Florida
| | - Norbert Berndt
- Department of Drug Discovery, H. Lee Moffitt Cancer Center, Tampa, Florida
| | - John Puskas
- Department of Pathology, H. Lee Moffitt Cancer Center, Tampa, Florida
| | | | - Domenico Coppola
- Tumor Biology Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.,Department of Anatomic Pathology, H. Lee Moffitt Cancer Center, Tampa, Florida
| | - Jasreman Dhillon
- Department of Anatomic Pathology, H. Lee Moffitt Cancer Center, Tampa, Florida
| | - Jingsong Zhang
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center, Tampa, Florida
| | | | - Uwe Rix
- Department of Drug Discovery, H. Lee Moffitt Cancer Center, Tampa, Florida.,Department of Oncological Sciences, University of South Florida, Tampa, Florida
| | - Youngchul Kim
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Ranjan Perera
- Analytical Genomics and Bioinformatics, Sanford Burnham Prebys Discovery Institute, Orlando, Florida
| | - Nicholas J Lawrence
- Department of Drug Discovery, H. Lee Moffitt Cancer Center, Tampa, Florida.,Department of Oncological Sciences, University of South Florida, Tampa, Florida
| | - Ernst Schonbrunn
- Department of Drug Discovery, H. Lee Moffitt Cancer Center, Tampa, Florida.,Department of Oncological Sciences, University of South Florida, Tampa, Florida
| | - Kiran Mahajan
- Tumor Biology Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida. .,Department of Surgery, Washington University in St. Louis, St. Louis, Missouri.,Department of Oncological Sciences, University of South Florida, Tampa, Florida
| |
Collapse
|
9
|
Toivanen R, Shen MM. Prostate organogenesis: tissue induction, hormonal regulation and cell type specification. Development 2017; 144:1382-1398. [PMID: 28400434 DOI: 10.1242/dev.148270] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Prostate organogenesis is a complex process that is primarily mediated by the presence of androgens and subsequent mesenchyme-epithelial interactions. The investigation of prostate development is partly driven by its potential relevance to prostate cancer, in particular the apparent re-awakening of key developmental programs that occur during tumorigenesis. However, our current knowledge of the mechanisms that drive prostate organogenesis is far from complete. Here, we provide a comprehensive overview of prostate development, focusing on recent findings regarding sexual dimorphism, bud induction, branching morphogenesis and cellular differentiation.
Collapse
Affiliation(s)
- Roxanne Toivanen
- Departments of Medicine, Genetics and Development, Urology, and Systems Biology, Herbert Irving Comprehensive Cancer Center, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Michael M Shen
- Departments of Medicine, Genetics and Development, Urology, and Systems Biology, Herbert Irving Comprehensive Cancer Center, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| |
Collapse
|
10
|
Abstract
The androgen-signaling axis plays a pivotal role in the pathogenesis of prostate cancer. Since the landmark discovery by Huggins and Hodges, gonadal depletion of androgens has remained a mainstay of therapy for advanced disease. However, progression to castration-resistant prostate cancer (CRPC) typically follows and is largely the result of restored androgen signaling. Efforts to understand the mechanisms behind CRPC have revealed new insights into dysregulated androgen signaling and intratumoral androgen synthesis, which has ultimately led to the development of several novel androgen receptor (AR)-directed therapies for CRPC. However, emergence of resistance to these newer agents has also galvanized new directions in investigations of prereceptor and postreceptor AR regulation. Here, we review our current understanding of AR signaling as it pertains to the biology and natural history of prostate cancer.
Collapse
Affiliation(s)
- Charles Dai
- Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio 44195
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Hannelore Heemers
- Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio 44195
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
- Hematology & Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio 44195
- Glickman Urological & Kidney Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Nima Sharifi
- Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio 44195
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
- Hematology & Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio 44195
- Glickman Urological & Kidney Institute, Cleveland Clinic, Cleveland, Ohio 44195
| |
Collapse
|
11
|
Mohamed AA, Tan SH, Xavier CP, Katta S, Huang W, Ravindranath L, Jamal M, Li H, Srivastava M, Srivatsan ES, Sreenath TL, McLeod DG, Srinivasan A, Petrovics G, Dobi A, Srivastava S. Synergistic Activity with NOTCH Inhibition and Androgen Ablation in ERG-Positive Prostate Cancer Cells. Mol Cancer Res 2017; 15:1308-1317. [PMID: 28607007 DOI: 10.1158/1541-7786.mcr-17-0058] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 05/04/2017] [Accepted: 06/06/2017] [Indexed: 12/12/2022]
Abstract
The oncogenic activation of the ETS-related gene (ERG) due to gene fusions is present in over half of prostate cancers in Western countries. Because of its high incidence and oncogenic role, ERG and components of ERG network have emerged as potential drug targets for prostate cancer. Utilizing gene expression datasets, from matched normal and prostate tumor epithelial cells, an association of NOTCH transcription factors with ERG expression status was identified, confirming that NOTCH factors are direct transcriptional targets of ERG. Inhibition of ERG in TMPRSS2-ERG-positive VCaP cells led to decreased levels of NOTCH1 and 2 proteins and downstream transcriptional targets and partially recapitulated the phenotypes associated with ERG inhibition. Regulation of NOTCH1 and 2 genes by ERG were also noted with ectopic ERG expression in LNCaP (ERG-negative prostate cancer) and RWPE-1 (benign prostate-derived immortalized) cells. Furthermore, inhibition of NOTCH by the small-molecule γ-secretase inhibitor 1, GSI-1, conferred an increased sensitivity to androgen receptor (AR) inhibitors (bicalutamide and enzalutamide) or the androgen biosynthesis inhibitor (abiraterone) in VCaP cells. Combined treatment with bicalutamide and GSI-1 showed strongest inhibition of AR, ERG, NOTCH1, NOTCH2, and PSA protein levels along with decreased cell growth, cell survival, and enhanced apoptosis. Intriguingly, this effect was not observed in ERG-negative prostate cancer cells or immortalized benign/normal prostate epithelial cells. These data underscore the synergy of AR and NOTCH inhibitors in reducing the growth of ERG-positive prostate cancer cells.Implications: Combinational targeting of NOTCH and AR signaling has therapeutic potential in advanced ERG-driven prostate cancers. Mol Cancer Res; 15(10); 1308-17. ©2017 AACR.
Collapse
Affiliation(s)
- Ahmed A Mohamed
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Shyh-Han Tan
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Charles P Xavier
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Shilpa Katta
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Wei Huang
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Lakshmi Ravindranath
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Muhammad Jamal
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Hua Li
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Meera Srivastava
- Department of Anatomy, Physiology and Genetics, Uniformed University of Health Sciences, Bethesda, Maryland
| | - Eri S Srivatsan
- Division of General Surgery, Department of Surgery, VAGLAHS/David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, California.,Jonsson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, California
| | - Taduru L Sreenath
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, Maryland
| | - David G McLeod
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Alagarsamy Srinivasan
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Gyorgy Petrovics
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Albert Dobi
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, Maryland.
| | - Shiv Srivastava
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, Maryland.
| |
Collapse
|
12
|
Peterson LE, Kovyrshina T. Progression inference for somatic mutations in cancer. Heliyon 2017; 3:e00277. [PMID: 28492066 PMCID: PMC5415494 DOI: 10.1016/j.heliyon.2017.e00277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 03/08/2017] [Accepted: 03/23/2017] [Indexed: 01/05/2023] Open
Abstract
Computational methods were employed to determine progression inference of genomic alterations in commonly occurring cancers. Using cross-sectional TCGA data, we computed evolutionary trajectories involving selectivity relationships among pairs of gene-specific genomic alterations such as somatic mutations, deletions, amplifications, downregulation, and upregulation among the top 20 driver genes associated with each cancer. Results indicate that the majority of hierarchies involved TP53, PIK3CA, ERBB2, APC, KRAS, EGFR, IDH1, VHL, etc. Research into the order and accumulation of genomic alterations among cancer driver genes will ever-increase as the costs of nextgen sequencing subside, and personalized/precision medicine incorporates whole-genome scans into the diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Leif E. Peterson
- Center for Biostatistics, Houston Methodist Research Institute, Houston, TX 77030, USA
- Dept. of Healthcare Policy and Research, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
- Dept. of Biostatistics, School of Public Health, University of Texas – Health Science Center, Houston, TX 77030, USA
- Dept. of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Dept. of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, College Station, TX 77843, USA
| | - Tatiana Kovyrshina
- Center for Biostatistics, Houston Methodist Research Institute, Houston, TX 77030, USA
- Dept. of Mathematics and Statistics, University of Houston – Downtown, Houston, TX 77002, USA
| |
Collapse
|
13
|
Chandrasekaran G, Hwang EC, Kang TW, Kwon DD, Park K, Lee JJ, Lakshmanan VK. Computational Modeling of complete HOXB13 protein for predicting the functional effect of SNPs and the associated role in hereditary prostate cancer. Sci Rep 2017; 7:43830. [PMID: 28272408 PMCID: PMC5363706 DOI: 10.1038/srep43830] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 01/27/2017] [Indexed: 12/11/2022] Open
Abstract
The human HOXB13 gene encodes a 284 amino acid transcription factor belonging to the homeobox gene family containing a homeobox and a HoxA13 N-terminal domain. It is highly linked to hereditary prostate cancer, the majority of which is manifested as a result of a Single Nucleotide Polymorphism (SNP). In silico analysis of 95 missense SNP's corresponding to the non-homeobox region of HOXB13 predicted 21 nsSNP's to be potentially deleterious. Among 123 UTR SNPs analysed by UTRScan, rs543028086, rs550968159, rs563065128 were found to affect the UNR_BS, GY-BOX and MBE UTR signals, respectively. Subsequent analysis by PolymiRTS revealed 23 UTR SNPs altering the miRNA binding site. The complete HOXB13_M26 protein structure was modelled using MODELLER v9.17. Computational analysis of the 21 nsSNP's mapped into the HOXB13_M26 protein revealed seven nsSNP's (rs761914407, rs8556, rs138213197, rs772962401, rs778843798, rs770620686 and rs587780165) seriously resulting in a damaging and deleterious effect on the protein. G84E, G135E, and A128V resulted in increased, while, R215C, C66R, Y80C and S122R resulted in decreased protein stability, ultimately predicted to result in the altered binding patterns of HOXB13. While the genotype-phenotype based effects of nsSNP's were assessed, the exact biological and biochemical mechanism driven by the above predicted SNPs still needs to be extensively evaluated by in vivo and GWAS studies.
Collapse
Affiliation(s)
| | - Eu Chang Hwang
- Department of Urology, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Taek Won Kang
- Department of Urology, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Dong Deuk Kwon
- Department of Urology, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Kwangsung Park
- Department of Urology, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Je-Jung Lee
- Research Center for Cancer Immunotherapy, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Vinoth-Kumar Lakshmanan
- Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju, Republic of Korea
| |
Collapse
|
14
|
Wu Y, Xie R, Liu X, Wang J, Peng Y, Tang W, Wu M, Zhang P, Ba Y, Zhao J, Li A, Nan Q, Chen Y, Liu S, Wang J. Knockdown of FOXK1 alone or in combination with apoptosis-inducing 5-FU inhibits cell growth in colorectal cancer. Oncol Rep 2016; 36:2151-9. [PMID: 27571921 DOI: 10.3892/or.2016.5041] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 05/07/2016] [Indexed: 11/06/2022] Open
Abstract
Forkhead box K1 (FOXK1) is a member of the FOX transcription factor family, which plays an important role in oncogenesis. However, the exact function and mechanism of FOXK1 in human colorectal cancers (CRCs) remain unclear. In the present study, we first screened for potential FOXK1 target genes by ectopically expressing FOXK1 in SW480 cells and examined the subsequent changes in the expression levels of major oncogenes using RT-PCR. We also evaluated the effects of FOXK1 regulation on growth and apoptosis. In addition, we investigated the biological impact of FOXK1 knockdown on CRC cells in vitro and in vivo. We found that FOXK1 overexpression increased the expression of multiple oncogenes in vitro. FOXK1 promoted serum-dependent and anchorage-dependent and -independent cell growth. Knockdown of FOXK1 induced G0/G1 cell cycle arrest in CRC cells. Moreover, FOXK1 suppression induced apoptosis and increased cell susceptibility to 5-fluorouracil (5-FU)-induced apoptosis. Furthermore, a xenograft model was established to explore FOXK1 shRNA-mediated tumorigenesis in vivo. A strong antitumorigenic effect of FOXK1-shRNA was enhanced when combined with 5-FU treatment. These findings implicate FOXK1 as a cell cycle and growth modulator that inhibits apoptosis in colon cancer cells. FOXK1-shRNA may serve as a novel and potent therapeutic agent, alone or with 5-FU, against colon cancer.
Collapse
Affiliation(s)
- Yao Wu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Ruyi Xie
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Xuehua Liu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Jing Wang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Ying Peng
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Weimei Tang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Meiyan Wu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Pei Zhang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yang Ba
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Jinjun Zhao
- Department of Rheumatism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Aimin Li
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Qingzhen Nan
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Ye Chen
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Side Liu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Jide Wang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
15
|
Foley C, Mitsiades N. Moving Beyond the Androgen Receptor (AR): Targeting AR-Interacting Proteins to Treat Prostate Cancer. HORMONES & CANCER 2016; 7:84-103. [PMID: 26728473 PMCID: PMC5380740 DOI: 10.1007/s12672-015-0239-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 11/23/2015] [Indexed: 02/07/2023]
Abstract
Medical or surgical castration serves as the backbone of systemic therapy for advanced and metastatic prostate cancer, taking advantage of the importance of androgen signaling in this disease. Unfortunately, resistance to castration emerges almost universally. Despite the development and approval of new and more potent androgen synthesis inhibitors and androgen receptor (AR) antagonists, prostate cancers continue to develop resistance to these therapeutics, while often maintaining their dependence on the AR signaling axis. This highlights the need for innovative therapeutic approaches that aim to continue disrupting AR downstream signaling but are orthogonal to directly targeting the AR itself. In this review, we discuss the preclinical research that has been done, as well as clinical trials for prostate cancer, on inhibiting several important families of AR-interacting proteins, including chaperones (such as heat shock protein 90 (HSP90) and FKBP52), pioneer factors (including forkhead box protein A1 (FOXA1) and GATA-2), and AR transcriptional coregulators such as the p160 steroid receptor coactivators (SRCs) SRC-1, SRC-2, SRC-3, as well as lysine deacetylases (KDACs) and lysine acetyltransferases (KATs). Researching the effect of-and developing new therapeutic agents that target-the AR signaling axis is critical to advancing our understanding of prostate cancer biology, to continue to improve treatments for prostate cancer and for overcoming castration resistance.
Collapse
Affiliation(s)
- Christopher Foley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Suite R407, MS: BCM187, Houston, TX, 77030, USA
- Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Suite R407, MS: BCM187, Houston, TX, 77030, USA
| | - Nicholas Mitsiades
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Suite R407, MS: BCM187, Houston, TX, 77030, USA.
- Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Suite R407, MS: BCM187, Houston, TX, 77030, USA.
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA.
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
16
|
Decker B, Ostrander EA. Dysregulation of the homeobox transcription factor gene HOXB13: role in prostate cancer. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2014; 7:193-201. [PMID: 25206306 PMCID: PMC4157396 DOI: 10.2147/pgpm.s38117] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Prostate cancer (PC) is the most common noncutaneous cancer in men, and epidemiological studies suggest that about 40% of PC risk is heritable. Linkage analyses in hereditary PC families have identified multiple putative loci. However, until recently, identification of specific risk alleles has proven elusive. Cooney et al used linkage mapping and segregation analysis to identify a putative risk locus on chromosome 17q21-22. In search of causative variant(s) in genes from the candidate region, a novel, potentially deleterious G84E substitution in homeobox transcription factor gene HOXB13 was observed in multiple hereditary PC families. In follow-up testing, the G84E allele was enriched in cases, especially those with an early diagnosis or positive family history of disease. This finding was replicated by others, confirming HOXB13 as a PC risk gene. The HOXB13 protein plays diverse biological roles in embryonic development and terminally differentiated tissue. In tumor cell lines, HOXB13 participates in a number of biological functions, including coactivation and localization of the androgen receptor and FOXA1. However, no consensus role has emerged and many questions remain. All HOXB13 variants with a proposed role in PC risk are predicted to damage the protein and lie in domains that are highly conserved across species. The G84E variant has the strongest epidemiological support and lies in a highly conserved MEIS protein-binding domain, which binds cofactors required for activation. On the basis of epidemiological and biological data, the G84E variant likely modulates the interaction between the HOXB13 protein and the androgen receptor, as well as affecting FOXA1-mediated transcriptional programming. However, further studies of the mutated protein are required to clarify the mechanisms by which this translates into PC risk.
Collapse
Affiliation(s)
- Brennan Decker
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA ; Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Elaine A Ostrander
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
17
|
Thangapazham R, Saenz F, Katta S, Mohamed AA, Tan SH, Petrovics G, Srivastava S, Dobi A. Loss of the NKX3.1 tumorsuppressor promotes the TMPRSS2-ERG fusion gene expression in prostate cancer. BMC Cancer 2014; 14:16. [PMID: 24418414 PMCID: PMC3897978 DOI: 10.1186/1471-2407-14-16] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 01/08/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In normal prostate epithelium the TMPRSS2 gene encoding a type II serine protease is directly regulated by male hormones through the androgen receptor. In prostate cancer ERG protooncogene frequently gains hormonal control by seizing gene regulatory elements of TMPRSS2 through genomic fusion events. Although, the androgenic activation of TMPRSS2 gene has been established, little is known about other elements that may interact with TMPRSS2 promoter sequences to modulate ERG expression in TMPRSS2-ERG gene fusion context. METHODS Comparative genomic analyses of the TMPRSS2 promoter upstream sequences and pathway analyses were performed by the Genomatix Software. NKX3.1 and ERG genes expressions were evaluated by immunoblot or by quantitative Real-Time PCR (qRT-PCR) assays in response to siRNA knockdown or heterologous expression. QRT-PCR assay was used for monitoring the gene expression levels of NKX3.1-regulated genes. Transcriptional regulatory function of NKX3.1 was assessed by luciferase assay. Recruitment of NKX3.1 to its cognate elements was monitored by Chromatin Immunoprecipitation assay. RESULTS Comparative analysis of the TMPRSS2 promoter upstream sequences among different species revealed the conservation of binding sites for the androgen inducible NKX3.1 tumor suppressor. Defects of NKX3.1, such as, allelic loss, haploinsufficiency, attenuated expression or decreased protein stability represent established pathways in prostate tumorigenesis. We found that NKX3.1 directly binds to TMPRSS2 upstream sequences and negatively regulates the expression of the ERG protooncogene through the TMPRSS2-ERG gene fusion. CONCLUSIONS These observations imply that the frequently noted loss-of-function of NKX3.1 cooperates with the activation of TMPRSS2-ERG fusions in prostate tumorigenesis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Albert Dobi
- Center for Prostate Disease Research, Uniform Services University of the Health Sciences, 1530 East Jefferson Street, Rockville, Maryland 20852, USA.
| |
Collapse
|
18
|
Breyer JP, Avritt TG, McReynolds KM, Dupont WD, Smith JR. Confirmation of the HOXB13 G84E germline mutation in familial prostate cancer. Cancer Epidemiol Biomarkers Prev 2012; 21:1348-53. [PMID: 22714738 DOI: 10.1158/1055-9965.epi-12-0495] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND A recent study of familial and early onset prostate cancer reported a recurrent rare germline mutation of HOXB13 among men of European descent. The gene resides within the 17q21 hereditary prostate cancer linkage interval. METHODS We evaluated the G84E germline mutation (rs138213197) of HOXB13 in a case-control study of familial prostate cancer at Vanderbilt University (Nashville, TN) to independently evaluate the association of the mutation with familial prostate cancer. We genotyped 928 familial prostate cancer probands and 930 control probands without a personal or family history of prostate cancer. RESULTS Our study confirmed the association between the G84E mutation of HOXB13 and risk of prostate cancer among subjects of European descent. We observed the mutation in 16 familial cases and in two controls, each as heterozygotes. The odds ratio (OR) for prostate cancer was 7.9 [95% confidence interval, (CI) 1.8-34.5, P = 0.0062] among carriers of the mutation. The carrier rate was 1.9% among all familial case probands and 2.7% among probands of pedigrees with ≥3 affected. In a separate case series of 268 probands of European descent with no additional family history of prostate cancer, the carrier rate was 1.5%. CONCLUSIONS The germline mutation G84E of HOXB13 is a rare but recurrent mutation associated with elevated risk of prostate cancer in men of European descent, with an effect size that is greater than observed for previously validated risk variants of genome wide association studies. IMPACT This study independently confirms the association of a germline HOXB13 mutation with familial prostate cancer.
Collapse
Affiliation(s)
- Joan P Breyer
- Department of Medicine, Vanderbilt- Ingram Cancer Center, Vanderbilt University School of Medicine Nashville, TN 37232, USA
| | | | | | | | | |
Collapse
|
19
|
FOXA1: a transcription factor with parallel functions in development and cancer. Biosci Rep 2012; 32:113-30. [PMID: 22115363 DOI: 10.1042/bsr20110046] [Citation(s) in RCA: 167] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
When aberrant, factors critical for organ morphogenesis are also commonly involved in disease progression. FOXA1 (forkhead box A1), also known as HNF3α (hepatocyte nuclear factor 3α), is required for postnatal survival due to its essential role in controlling pancreatic and renal function. In addition to regulating a variety of tissues during embryogenesis and early life, rescue experiments have revealed a specific role for FOXA1 in the postnatal development of the mammary gland and prostate. Activity of the nuclear hormone receptors ERα (oestrogen receptor α) and AR (androgen receptor) is also required for proper development of the mammary gland and prostate respectively. FOXA1 modulates ER and AR function in breast and prostate cancer cells, supporting the postulate that FOXA1 is involved in ER and AR signalling under normal conditions, and that some carcinogenic processes in these tissues stem from hormonally regulated developmental pathways gone awry. In addition to broadly reviewing the function of FOXA1 in various aspects of development and cancer, this review focuses on the interplay of FOXA1/ER and FOXA1/AR, in normal and cancerous mammary and prostate epithelial cells. Given the hormone dependency of both breast and prostate cancer, a thorough understanding of FOXA1's role in both cancer types is critical for battling hormone receptor-positive disease and acquired anti-hormone resistance.
Collapse
|
20
|
Barolo S. Shadow enhancers: frequently asked questions about distributed cis-regulatory information and enhancer redundancy. Bioessays 2012; 34:135-41. [PMID: 22083793 PMCID: PMC3517143 DOI: 10.1002/bies.201100121] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This paper, in the form of a frequently asked questions page (FAQ), addresses outstanding questions about "shadow enhancers", quasi-redundant cis-regulatory elements, and their proposed roles in transcriptional control. Questions include: What exactly are shadow enhancers? How many genes have shadow/redundant/distributed enhancers? How redundant are these elements? What is the function of distributed enhancers? How modular are enhancers? Is it useful to study a single enhancer in isolation? In addition, a revised definition of "shadow enhancers" is proposed, and possible mechanisms of shadow enhancer function and evolution are discussed.
Collapse
Affiliation(s)
- Scott Barolo
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
21
|
Xu B, Hariharan A, Rakshit S, Dressler GR, Wellik DM. The role of Pax2 in mouse prostate development. Prostate 2012; 72:217-24. [PMID: 21594883 PMCID: PMC3178747 DOI: 10.1002/pros.21424] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Accepted: 04/28/2011] [Indexed: 11/11/2022]
Abstract
BACKGROUND Loss-of-function of Pax2 results in severe defects of the male reproductive system, and Pax2 expression is detected in mouse prostate lobes and human prostatic cancers. However, the role for Pax2 in prostate development remains poorly understood. METHODS The expression of Pax2 was examined by in situ hybridization at various developmental stages. Urogenital sinuses were dissected out at E18.5 from mouse Pax2 mutants and controls, cultured in vitro or grafted under the renal capsule of CD1 nude mice. The expression of prostate developmental regulatory factors was analyzed by semi-quantitative real-time PCR or immuohistochemistry. RESULTS Pax2 is expressed in the epithelial cells of prostate buds. Loss-of-function of Pax2 does not affect the initiation of prostatic buds, but in vitro culture assays show that the prostates of Pax2 mutants are hypomorphic and branching is severely disrupted compared to controls. RT-PCR data from Pax2 mutant prostates demonstrate increased expression levels of dorsolateral prostate marker MSMB and ventral prostate marker SBP and dramatically reduced expression levels of anterior prostate marker TGM4. CONCLUSIONS Pax2 is essential for mouse prostate development and regulates prostatic ductal growth, branching, and lobe-specific identity. These findings are important for understanding the molecular regulatory mechanisms in prostate development.
Collapse
Affiliation(s)
- Ben Xu
- Department of Internal Medicine, Division of Molecular Medicine and Genetics
| | - Arun Hariharan
- Department of Internal Medicine, Division of Molecular Medicine and Genetics
| | - Sabita Rakshit
- Department of Internal Medicine, Division of Molecular Medicine and Genetics
| | - Gregory R. Dressler
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | - Deneen M. Wellik
- Department of Internal Medicine, Division of Molecular Medicine and Genetics
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-2200, USA
| |
Collapse
|