1
|
Nome RA, Oliveira AH. From femtoseconds to minutes: Spectroscopic study of optically induced thermal diffusion in aqueous solution of rhodamine B. Photochem Photobiol 2024. [PMID: 39737738 DOI: 10.1111/php.14042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/18/2024] [Accepted: 09/07/2024] [Indexed: 01/01/2025]
Abstract
Given that non-equilibrium molecular motion in thermal gradients is influenced by both solute and solvent, the application of spectroscopic methods that probe each component in a binary mixture can provide insights into the molecular mechanisms of thermal diffusion for a large class of systems. In the present work, we use an all-optical setup whereby near-infrared excitation of the solvent leads to a steady-state thermal gradient in solution, followed by characterization of the non-equilibrium system with electronic spectroscopy, imaging, and intensity. Using rhodamine B in water as a case study, we perform measurements as a function of solute concentration, temperature, wavelength, time, near-infrared laser power, visible excitation wavelength, and isotope effect. We find that spectroscopic excitation of solute and solvent as a function of temperature can be used to understand the thermal diffusion signal. Non-equilibrium molecular dynamics simulations and analysis of infrared spectra and heat diffusion, and stochastic dynamics simulations of the coupled Brownian/spectroscopic non-equilibrium dynamics. The stochastic/spectroscopic model shows how near-infrared excitation of the solvent influences lifetime dynamics on the picosecond timescale as well as Brownian dynamics in real time. Overall, the results presented here exemplify how spectroscopic probing of solute and solvent can be useful for understanding molecular mechanisms of optically induced thermal diffusion in aqueous solution of rhodamine B.
Collapse
Affiliation(s)
- René A Nome
- Institute of Chemistry, State University of Campinas, Campinas, São Paulo, Brazil
| | - Alexandre H Oliveira
- Institute of Chemistry, State University of Campinas, Campinas, São Paulo, Brazil
| |
Collapse
|
2
|
Mix LT, Hara M, Fuzell J, Kumauchi M, Kaledhonkar S, Xie A, Hoff WD, Larsen DS. Not All Photoactive Yellow Proteins Are Built Alike: Surprises and Insights into Chromophore Photoisomerization, Protonation, and Thermal Reisomerization of the Photoactive Yellow Protein Isolated from Salinibacter ruber. J Am Chem Soc 2021; 143:19614-19628. [PMID: 34780163 DOI: 10.1021/jacs.1c08910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
We demonstrate that the Halorhodospira halophila (Hhal) photoactive yellow protein (PYP) is not representative of the greater PYP family. The photodynamics of the PYP isolated from Salinibacter ruber (Srub) is characterized with a comprehensive range of spectroscopic techniques including ultrafast transient absorption, photostationary light titrations, Fourier transform infrared, and cryokinetics spectroscopies. We demonstrate that the dark-adapted pG state consists of two subpopulations differing in the protonation state of the chromophore and that both are photoactive, with the protonated species undergoing excited-state proton transfer. However, the primary I0 photoproduct observed in the Hhal PYP photocycle is absent in the Srub PYP photodynamics, which indicates that this intermediate, while important in Hhal photodynamics, is not a critical intermediate in initiating all PYP photocycles. The excited-state lifetime of Srub PYP is the longest of any PYP resolved to date (∼30 ps), which we ascribe to the more constrained chromophore binding pocket of Srub PYP and the absence of the critical Arg52 residue found in Hhal PYP. The final stage of the Srub PYP photocycle involves the slowest known thermal dark reversion of a PYP (∼40 min vs 350 ms in Hhal PYP). This property allowed the characterization of a pH-dependent equilibrium between the light-adapted pB state with a protonated cis chromophore and a newly resolved pG' intermediate with a deprotonated cis chromophore and pG-like protein conformation. This result demonstates that protein conformational changes and chromophore deprotonation precede chromophore reisomerization during the thermal recovery of the PYP photocycle.
Collapse
Affiliation(s)
- L Tyler Mix
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Miwa Hara
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Jack Fuzell
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Masato Kumauchi
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Sandip Kaledhonkar
- Department of Physics, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Aihua Xie
- Department of Physics, Oklahoma State University, Stillwater, Oklahoma 74078, United States.,Center for Advanced Infrared Biology College of Arts and Sciences, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Wouter D Hoff
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma 74078, United States.,Center for Advanced Infrared Biology College of Arts and Sciences, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Delmar S Larsen
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
3
|
Tebo AG, Moeyaert B, Thauvin M, Carlon-Andres I, Böken D, Volovitch M, Padilla-Parra S, Dedecker P, Vriz S, Gautier A. Orthogonal fluorescent chemogenetic reporters for multicolor imaging. Nat Chem Biol 2020; 17:30-38. [PMID: 32778846 PMCID: PMC7610487 DOI: 10.1038/s41589-020-0611-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 07/02/2020] [Indexed: 12/24/2022]
Abstract
Spectrally separated fluorophores allow the observation of multiple targets simultaneously inside living cells, leading to a deeper understanding of the molecular interplay that regulates cell function and fate. Chemogenetic systems combining a tag and a synthetic fluorophore provide certain advantages over fluorescent proteins since there is no requirement for chromophore maturation. Here, we present the engineering of a set of spectrally orthogonal fluorogen activating tags based on the Fluorescence Activating and absorption Shifting Tag (FAST), that are compatible with two-color, live cell imaging. The resulting tags, greenFAST and redFAST, demonstrate orthogonality not only in their fluorogen recognition capabilities, but also in their one- and two-photon absorption profiles. This pair of orthogonal tags allowed the creation of a two-color cell cycle sensor capable of detecting very short, early cell cycles in zebrafish development, and the development of split complementation systems capable of detecting multiple protein-protein interactions by live cell fluorescence microscopy.
Collapse
Affiliation(s)
- Alison G Tebo
- Sorbonne University, École Normale Supérieure, PSL University, CNRS, Laboratoire des biomolécules (LBM), Paris, France.,PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne University, CNRS, Paris, France.,Janelia Farms Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Benjamien Moeyaert
- Laboratory for Nanobiology, Department of Chemistry, KU Leuven, Heverlee, Belgium
| | - Marion Thauvin
- Center for Interdisciplinary Research, Collège de France, CNRS, INSERM, PSL University, Paris, France.,Sorbonne University, Paris, France
| | - Irene Carlon-Andres
- Division of Structural Biology, University of Oxford, Wellcome Centre for Human Genetics, Oxford, UK
| | - Dorothea Böken
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne University, CNRS, Paris, France
| | - Michel Volovitch
- Center for Interdisciplinary Research, Collège de France, CNRS, INSERM, PSL University, Paris, France.,Department of Biology, École Normale Supérieure, PSL University, Paris, France
| | - Sergi Padilla-Parra
- Division of Structural Biology, University of Oxford, Wellcome Centre for Human Genetics, Oxford, UK.,Department of Infectious Diseases, Faculty of Life Sciences & Medicine, King's College London, London, UK.,Randall Centre for Cell and Molecular Biology, King's College London, London, UK
| | - Peter Dedecker
- Laboratory for Nanobiology, Department of Chemistry, KU Leuven, Heverlee, Belgium
| | - Sophie Vriz
- Center for Interdisciplinary Research, Collège de France, CNRS, INSERM, PSL University, Paris, France.,Faculty of Sciences, Université de Paris, Paris, France
| | - Arnaud Gautier
- Sorbonne University, École Normale Supérieure, PSL University, CNRS, Laboratoire des biomolécules (LBM), Paris, France. .,PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne University, CNRS, Paris, France. .,Institut Universitaire de France, Paris, France.
| |
Collapse
|
4
|
Wang D, Qin Y, Zhang M, Li X, Wang L, Yang X, Zhong D. The Origin of Ultrafast Multiphasic Dynamics in Photoisomerization of Bacteriophytochrome. J Phys Chem Lett 2020; 11:5913-5919. [PMID: 32614188 PMCID: PMC8172095 DOI: 10.1021/acs.jpclett.0c01394] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Red-light bacteriophytochromes regulate many physiological functions through photoisomerization of a linear tetrapyrrole chromophore. In this work, we mapped out femtosecond-resolved fluorescence spectra of the excited Pr state and observed unique active-site relaxations on the picosecond time scale with unusual spectral tuning of rises on the blue side and decays on the red side of the emission. We also observed initial wavepacket dynamics in femtoseconds with two low-frequency modes of 38 and 181 cm-1 as well as the intermediate product formation after isomerization in hundreds of picoseconds. With critical mutations at the active site, we observed similar dynamic patterns with different times for both relaxation and isomerization, consistent with the structural and chemical changes induced by the mutations. The observed multiphasic dynamics clearly represents the active-site relaxation, not different intermediate reactions or excitation of heterogeneous ground states. The active-site relaxation must be considered in understanding overall isomerization reactions in phytochromes, and such a molecular mechanism should be general.
Collapse
Affiliation(s)
- Dihao Wang
- Program of Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Yangzhong Qin
- Department of Physics, The Ohio State University, Columbus, Ohio 43210, United States
| | - Meng Zhang
- Program of Biophysics, The Ohio State University, Columbus, Ohio 43210, United States
| | - Xiankun Li
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Lijuan Wang
- Department of Physics, The Ohio State University, Columbus, Ohio 43210, United States
| | - Xiaojing Yang
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | | |
Collapse
|
5
|
Romei MG, Lin CY, Mathews II, Boxer SG. Electrostatic control of photoisomerization pathways in proteins. Science 2020; 367:76-79. [PMID: 31896714 DOI: 10.1126/science.aax1898] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 06/04/2019] [Accepted: 10/31/2019] [Indexed: 12/23/2022]
Abstract
Rotation around a specific bond after photoexcitation is central to vision and emerging opportunities in optogenetics, super-resolution microscopy, and photoactive molecular devices. Competing roles for steric and electrostatic effects that govern bond-specific photoisomerization have been widely discussed, the latter originating from chromophore charge transfer upon excitation. We systematically altered the electrostatic properties of the green fluorescent protein chromophore in a photoswitchable variant, Dronpa2, using amber suppression to introduce electron-donating and electron-withdrawing groups to the phenolate ring. Through analysis of the absorption (color), fluorescence quantum yield, and energy barriers to ground- and excited-state isomerization, we evaluate the contributions of sterics and electrostatics quantitatively and demonstrate how electrostatic effects bias the pathway of chromophore photoisomerization, leading to a generalized framework to guide protein design.
Collapse
Affiliation(s)
- Matthew G Romei
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA.
| | - Chi-Yun Lin
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA.
| | - Irimpan I Mathews
- Stanford Synchrotron Radiation Lightsource, Menlo Park, CA 94025, USA
| | - Steven G Boxer
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
6
|
Zhang TS, Fang YG, Song XF, Fang WH, Cui G. Hydrogen-Bonding Interaction Regulates Photoisomerization of a Single-Bond-Rotation Locked Photoactive Yellow Protein Chromophore in Protein. J Phys Chem Lett 2020; 11:2470-2476. [PMID: 32150415 DOI: 10.1021/acs.jpclett.0c00294] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We have employed the QM(CASPT2//CASSCF)/MM method to explore the excited-state isomerization and decay mechanism of a single-bond-rotation locked photoactive yellow protein (PYP) chromophore in wild-type and mutant proteins. The S1 state is a spectroscopically bright state in the Franck-Condon region. In this state, there exist two excited-state isomerization pathways separately related to the clockwise and anticlockwise rotations of the C=C bond. The clockwise path is favorable because of a small barrier of 2 kcal/mol and uses a novel bicycle-pedal unidirectional photoisomerization mechanism in which the involved two dihedral angles rotate asynchronously because of the reinforced hydrogen-bonding interaction between the chromophore and Cys69. Near the twisted S1 minimum, the chromophore hops to the S0 state via the S1/S0 conical intersection. Finally, the R52A mutation has small effects on the excited-state properties and photoisomerization of the locked PYP chromophore. The present work provides new insights for understanding the photochemistry of PYP chromophores in protein surroundings.
Collapse
Affiliation(s)
- Teng-Shuo Zhang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, Chemistry College, Beijing Normal University, Beijing 100875, P.R. China
| | - Ye-Guang Fang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, Chemistry College, Beijing Normal University, Beijing 100875, P.R. China
| | - Xiu-Fang Song
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, Chemistry College, Beijing Normal University, Beijing 100875, P.R. China
| | - Wei-Hai Fang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, Chemistry College, Beijing Normal University, Beijing 100875, P.R. China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, Chemistry College, Beijing Normal University, Beijing 100875, P.R. China
| |
Collapse
|
7
|
Gromov EV, Domratcheva T. Four resonance structures elucidate double-bond isomerisation of a biological chromophore. Phys Chem Chem Phys 2020; 22:8535-8544. [DOI: 10.1039/d0cp00814a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Four resonance structures determining the electronic structure of the chromophore’s ground and first excited states. Changing the relative energies of the structures by hydrogen-bonding interactions tunes all chromophore’s photochemical properties.
Collapse
Affiliation(s)
- Evgeniy V. Gromov
- Max-Planck Institute for Medical Research
- Jahnstraße 29
- 69120 Heidelberg
- Germany
| | - Tatiana Domratcheva
- Max-Planck Institute for Medical Research
- Jahnstraße 29
- 69120 Heidelberg
- Germany
| |
Collapse
|
8
|
Integrating ultrafast and stochastic dynamics studies of Brownian motion in molecular systems and colloidal particles. Curr Opin Colloid Interface Sci 2019. [DOI: 10.1016/j.cocis.2019.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Lin CY, Romei MG, Oltrogge LM, Mathews II, Boxer SG. Unified Model for Photophysical and Electro-Optical Properties of Green Fluorescent Proteins. J Am Chem Soc 2019; 141:15250-15265. [PMID: 31450887 DOI: 10.1021/jacs.9b07152] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Green fluorescent proteins (GFPs) have become indispensable imaging and optogenetic tools. Their absorption and emission properties can be optimized for specific applications. Currently, no unified framework exists to comprehensively describe these photophysical properties, namely the absorption maxima, emission maxima, Stokes shifts, vibronic progressions, extinction coefficients, Stark tuning rates, and spontaneous emission rates, especially one that includes the effects of the protein environment. In this work, we study the correlations among these properties from systematically tuned GFP environmental mutants and chromophore variants. Correlation plots reveal monotonic trends, suggesting that all these properties are governed by one underlying factor dependent on the chromophore's environment. By treating the anionic GFP chromophore as a mixed-valence compound existing as a superposition of two resonance forms, we argue that this underlying factor is defined as the difference in energy between the two forms, or the driving force, which is tuned by the environment. We then introduce a Marcus-Hush model with the bond length alternation vibrational mode, treating the GFP absorption band as an intervalence charge transfer band. This model explains all of the observed strong correlations among photophysical properties; related subtopics are extensively discussed in the Supporting Information. Finally, we demonstrate the model's predictive power by utilizing the additivity of the driving force. The model described here elucidates the role of the protein environment in modulating the photophysical properties of the chromophore, providing insights and limitations for designing new GFPs with desired phenotypes. We argue that this model should also be generally applicable to both biological and nonbiological polymethine dyes.
Collapse
Affiliation(s)
- Chi-Yun Lin
- Department of Chemistry , Stanford University , Stanford , California 94305 , United States
| | - Matthew G Romei
- Department of Chemistry , Stanford University , Stanford , California 94305 , United States
| | - Luke M Oltrogge
- Department of Chemistry , Stanford University , Stanford , California 94305 , United States
| | - Irimpan I Mathews
- Stanford Synchrotron Radiation Lightsource , 2575 Sand Hill Road , Menlo Park , California 94025 , United States
| | - Steven G Boxer
- Department of Chemistry , Stanford University , Stanford , California 94305 , United States
| |
Collapse
|
10
|
Orozco-Gonzalez Y, Kabir MP, Gozem S. Electrostatic Spectral Tuning Maps for Biological Chromophores. J Phys Chem B 2019; 123:4813-4824. [DOI: 10.1021/acs.jpcb.9b00489] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
| | - Mohammad Pabel Kabir
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| | - Samer Gozem
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| |
Collapse
|
11
|
Loco D, Buda F, Lugtenburg J, Mennucci B. The Dynamic Origin of Color Tuning in Proteins Revealed by a Carotenoid Pigment. J Phys Chem Lett 2018; 9:2404-2410. [PMID: 29683674 DOI: 10.1021/acs.jpclett.8b00763] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Understanding the microscopic origin of the color tuning in pigment-protein complexes is a challenging yet fundamental issue in photoactive biological systems. Here, we propose a possible interpretation by using a state-of-the-art multiscale strategy based on the integration of quantum chemistry and polarizable atomistic embeddings into a dynamic description. By means of such a strategy we are able to resolve the long-standing dispute over the coloration mechanism in the crustacyanin protein. It is shown that the combination of the dynamical flexibility of the carotenoid pigments (astaxanthin) with the responsive protein environment is essential to obtain quantitative predictions of the spectral tuning. The strong linear correlation between the excitation energies and the bond length alternation in the long-chain carotenoids modulated by the dynamical protein environment is a novel finding explaining the high color tunability in crustacyanin.
Collapse
Affiliation(s)
- Daniele Loco
- Dipartimento di Chimica e Chimica Industriale , University of Pisa , via G. Moruzzi 13 , 56124 , Pisa , Italy
| | - Francesco Buda
- Leiden Institute of Chemistry , Leiden University , Einsteinweg 55 , 2300 RA Leiden , The Netherlands
| | - Johan Lugtenburg
- Leiden Institute of Chemistry , Leiden University , Einsteinweg 55 , 2300 RA Leiden , The Netherlands
| | - Benedetta Mennucci
- Dipartimento di Chimica e Chimica Industriale , University of Pisa , via G. Moruzzi 13 , 56124 , Pisa , Italy
| |
Collapse
|
12
|
Lin CY, Both J, Do K, Boxer SG. Mechanism and bottlenecks in strand photodissociation of split green fluorescent proteins (GFPs). Proc Natl Acad Sci U S A 2017; 114:E2146-E2155. [PMID: 28242710 PMCID: PMC5358378 DOI: 10.1073/pnas.1618087114] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Split GFPs have been widely applied for monitoring protein-protein interactions by expressing GFPs as two or more constituent parts linked to separate proteins that only fluoresce on complementing with one another. Although this complementation is typically irreversible, it has been shown previously that light accelerates dissociation of a noncovalently attached β-strand from a circularly permuted split GFP, allowing the interaction to be reversible. Reversible complementation is desirable, but photodissociation has too low of an efficiency (quantum yield <1%) to be useful as an optogenetic tool. Understanding the physical origins of this low efficiency can provide strategies to improve it. We elucidated the mechanism of strand photodissociation by measuring the dependence of its rate on light intensity and point mutations. The results show that strand photodissociation is a two-step process involving light-activated cis-trans isomerization of the chromophore followed by light-independent strand dissociation. The dependence of the rate on temperature was then used to establish a potential energy surface (PES) diagram along the photodissociation reaction coordinate. The resulting energetics-function model reveals the rate-limiting process to be the transition from the electronic excited-state to the ground-state PES accompanying cis-trans isomerization. Comparisons between split GFPs and other photosensory proteins, like photoactive yellow protein and rhodopsin, provide potential strategies for improving the photodissociation quantum yield.
Collapse
Affiliation(s)
- Chi-Yun Lin
- Department of Chemistry, Stanford University, Stanford, CA 94305-5012
| | - Johan Both
- Department of Chemistry, Stanford University, Stanford, CA 94305-5012
| | - Keunbong Do
- Department of Chemistry, Stanford University, Stanford, CA 94305-5012
| | - Steven G Boxer
- Department of Chemistry, Stanford University, Stanford, CA 94305-5012
| |
Collapse
|
13
|
García-Prieto FF, Muñoz-Losa A, Fdez Galván I, Sánchez ML, Aguilar MA, Martín ME. QM/MM Study of Substituent and Solvent Effects on the Excited State Dynamics of the Photoactive Yellow Protein Chromophore. J Chem Theory Comput 2017; 13:737-748. [PMID: 28072537 DOI: 10.1021/acs.jctc.6b01069] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Substituent and solvent effects on the excited state dynamics of the Photoactive Yellow Protein chromophore are studied using the average solvent electrostatic potential from molecular dynamics (ASEP/MD) method. Four molecular models were considered: the ester and thioester derivatives of the p-coumaric acid anion and their methylated derivatives. We found that the solvent produces dramatic modifications on the free energy profile of the S1 state: 1) Two twisted structures that are minima in the gas phase could not be located in aqueous solution. 2) Conical intersections (CIs) associated with the rotation of the single bond adjacent to the phenyl group are found for the four derivatives in water solution but only for thio derivatives in the gas phase. 3) The relative stability of minima and CIs is reverted with respect to the gas phase values, affecting the prevalent de-excitation paths. As a consequence of these changes, three competitive de-excitation channels are open in aqueous solution: the fluorescence emission from a planar minimum on S1, the trans-cis photoisomerization through a CI that involves the rotation of the vinyl double bond, and the nonradiative, nonreactive, de-excitation through the CI associated with the rotation of the single bond adjacent to the phenyl group. In the gas phase, the minima are the structures with the lower energy, while in solution these are the conical intersections. In solution, the de-excitation prevalent path seems to be the photoisomerization for oxo compounds, while thio compounds return to the initial trans ground state without emission.
Collapse
Affiliation(s)
- Francisco F García-Prieto
- Área de Química Física, University of Extremadura , Avda. Elvas s/n, Edif. José Ma Viguera Lobo 3a planta, Badajoz, 06006 Spain
| | - Aurora Muñoz-Losa
- Área de Química Física, University of Extremadura , Avda. Elvas s/n, Edif. José Ma Viguera Lobo 3a planta, Badajoz, 06006 Spain
| | - Ignacio Fdez Galván
- Department of Chemistry-Ångström, The Theoretical Chemistry Programme, Uppsala University , Box 518, 751 20 Uppsala, Sweden
| | - M Luz Sánchez
- Área de Química Física, University of Extremadura , Avda. Elvas s/n, Edif. José Ma Viguera Lobo 3a planta, Badajoz, 06006 Spain
| | - Manuel A Aguilar
- Área de Química Física, University of Extremadura , Avda. Elvas s/n, Edif. José Ma Viguera Lobo 3a planta, Badajoz, 06006 Spain
| | - M Elena Martín
- Área de Química Física, University of Extremadura , Avda. Elvas s/n, Edif. José Ma Viguera Lobo 3a planta, Badajoz, 06006 Spain
| |
Collapse
|
14
|
Andersen LH, Bochenkova AV, Houmøller J, Kiefer HV, Lattouf E, Stockett MH. A PYP chromophore acts as a 'photoacid' in an isolated hydrogen bonded complex. Phys Chem Chem Phys 2016; 18:9909-13. [PMID: 27009407 DOI: 10.1039/c6cp00433d] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The light-induced response of a neutral Photoactive Yellow Protein chromophore in a hydrogen-bonded complex with a proton acceptor has been studied by dual-detection action absorption spectroscopy and density functional theory. We show that the chromophore is a 'photoacid' and that ultrafast excited-state proton transfer might be operative in an isolated complex.
Collapse
Affiliation(s)
- Lars H Andersen
- Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C, Denmark.
| | | | | | | | | | | |
Collapse
|
15
|
García-Prieto FF, Muñoz-Losa A, Luz Sánchez M, Elena Martín M, Aguilar MA. Solvent effects on de-excitation channels in the p-coumaric acid methyl ester anion, an analogue of the photoactive yellow protein (PYP) chromophore. Phys Chem Chem Phys 2016; 18:27476-27485. [DOI: 10.1039/c6cp03541h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Environmental effects on the deactivation channels of the PYP chromophore in the gas phase and water solution are compared at the CASPT2//CASSCF/cc-pVDZ level.
Collapse
Affiliation(s)
| | - Aurora Muñoz-Losa
- Institute of Theoretical Chemistry
- Faculty of Chemistry
- University of Vienna
- A-1090 Vienna
- Austria
| | - M. Luz Sánchez
- Área de Química Física
- University of Extremadura
- 06006 Badajoz
- Spain
| | - M. Elena Martín
- Área de Química Física
- University of Extremadura
- 06006 Badajoz
- Spain
| | | |
Collapse
|
16
|
Abstract
Photolyases, a class of flavoproteins, use blue light to repair two types of ultraviolet-induced DNA damage, a cyclobutane pyrimidine dimer (CPD) and a pyrimidine-pyrimidone (6-4) photoproduct (6-4PP). In this perspective, we review the recent progress in the repair dynamics and mechanisms of both types of DNA restoration by photolyases. We first report the spectroscopic characterization of flavin in various redox states and the active-site solvation dynamics in photolyases. We then systematically summarize the detailed repair dynamics of damaged DNA by photolyases and a biomimetic system through resolving all elementary steps on ultrafast timescales, including multiple intermolecular electron- and proton-transfer reactions and bond-breaking and -making processes. We determined the unique electron tunneling pathways, identified the key functional residues and revealed the molecular origin of high repair efficiency, and thus elucidate the molecular mechanisms and repair photocycles at the most fundamental level. We finally conclude that the active sites of photolyases, unlike the aqueous solution for the biomimetic system, provide a unique electrostatic environment and local flexibility and thus a dedicated synergy for all elementary dynamics to maximize the repair efficiency. This repair photomachine is the first enzyme that the entire functional evolution is completely mapped out in real time.
Collapse
Affiliation(s)
- Zheyun Liu
- Department of Physics, Department of Chemistry and Biochemistry, and Programs of Biophysics, Chemical Physics, and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA.
| | | | | |
Collapse
|
17
|
Kaledhonkar S, Hara M, Stalcup TP, Xie A, Hoff WD. Strong ionic hydrogen bonding causes a spectral isotope effect in photoactive yellow protein. Biophys J 2014; 105:2577-85. [PMID: 24314088 DOI: 10.1016/j.bpj.2013.10.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 10/07/2013] [Accepted: 10/16/2013] [Indexed: 10/25/2022] Open
Abstract
Standard hydrogen bonds are of great importance for protein structure and function. Ionic hydrogen bonds often are significantly stronger than standard hydrogen bonds and exhibit unique properties, but their role in proteins is not well understood. We report that hydrogen/deuterium exchange causes a redshift in the visible absorbance spectrum of photoactive yellow protein (PYP). We expand the range of interpretable isotope effects by assigning this spectral isotope effect (SIE) to a functionally important hydrogen bond at the active site of PYP. The inverted sign and extent of this SIE is explained by the ionic nature and strength of this hydrogen bond. These results show the relevance of ionic hydrogen bonding for protein active sites, and reveal that the inverted SIE is a novel, to our knowledge, tool to probe ionic hydrogen bonds. Our results support a classification of hydrogen bonds that distinguishes the properties of ionic hydrogen bonds from those of both standard and low barrier hydrogen bonds, and show how this classification helps resolve a recent debate regarding active site hydrogen bonding in PYP.
Collapse
|
18
|
Franco JC, Gonçalves G, Souza MS, Rosa SBC, Thiegue LM, Atvars TDZ, Rosa PTV, Nome RA. Towards in situ fluorescence spectroscopy and microscopy investigations of asphaltene precipitation kinetics. OPTICS EXPRESS 2013; 21:30874-30885. [PMID: 24514660 DOI: 10.1364/oe.21.030874] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We perform a spectroscopic analysis of asphaltene in solution and in crude oil with the goal of designing an optical probe of asphaltene precipitation inside high-pressure cells. Quantitative analysis of steady-state spectroscopic data is employed to identify fluorescence and Raman contributions to the observed signals. Time-resolved fluorescence spectroscopy indicates that fluorescence lifetime can be used as a spectroscopic probe of asphaltene in crude oil. Quantitative confocal laser-scanning microscopy studies of asphaltene in n-heptane are used to calculate particle-size distributions as a function of time, both at the sample surface and asphaltene interior. The resulting precipitation kinetics is well described by stochastic numerical simulations of diffusion-limited aggregation. Based on these results, we present the design and construction of an apparatus to optically probe the in situ precipitation of asphaltene suitable for studies inside high pressure cells. Design considerations include the use of a spatial light modulator for aberration correction in microscopy measurements, together with the design of epi-fluorescence spectrometer, both fiber-based and for remote sensing fluorescence spectroscopy.
Collapse
|
19
|
Loiola PTC, Dias WD, Souza MS, Ferbonink GF, Zaniolo MG, Cerini MF, Atvars TDZ, Nome RA. Ethyl stearate: ethanol binary mixtures investigated by ultrafast OKE spectroscopy, optical microscopy, dynamic light scattering, and rheology. J PHYS ORG CHEM 2013. [DOI: 10.1002/poc.3248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
| | | | | | | | | | - Maria F. Cerini
- Institute of Chemistry; State University of Campinas; Brazil
| | | | - Rene A. Nome
- Institute of Chemistry; State University of Campinas; Brazil
| |
Collapse
|
20
|
Fidler AF, Engel GS. Nonlinear spectroscopic theory of displaced harmonic oscillators with differing curvatures: a correlation function approach. J Phys Chem A 2013; 117:9444-53. [PMID: 23421704 DOI: 10.1021/jp311713x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We present a theory for a bath model in which we approximate the adiabatic nuclear potential surfaces on the ground and excited electronic states by displaced harmonic oscillators that differ in curvature. Calculations of the linear and third-order optical response functions employ an effective short-time approximation coupled with the cumulant expansion. In general, all orders of correlation contribute to the optical response, indicating that the solvation process cannot be described as Gaussian within the model. Calculations of the linear absorption and fluorescence spectra resulting from the theory reveal a stronger temperature dependence of the Stokes shift along with a general asymmetry between absorption and fluorescence line shapes, resulting purely from the difference in the phonon side band. We discuss strategies for controlling spectral tuning and energy-transfer dynamics through the manipulation of the excited-state and ground-state curvature. Calculations of the nonlinear response also provide insights into the dynamics of the system-bath interactions and reveal that multidimensional spectroscopies are sensitive to a difference in curvature between the ground- and excited-state adiabatic surfaces. This extension allows for the elucidation of short-time dynamics of dephasing that are accessible in nonlinear spectroscopic methods.
Collapse
Affiliation(s)
- Andrew F Fidler
- Department of Chemistry and The James Franck Institute, The University of Chicago , Chicago, Illinois 60637, United States
| | | |
Collapse
|
21
|
Nakamura R, Hamada N, Abe K, Yoshizawa M. Ultrafast hydrogen-bonding dynamics in the electronic excited state of photoactive yellow protein revealed by femtosecond stimulated Raman spectroscopy. J Phys Chem B 2012; 116:14768-75. [PMID: 23210980 DOI: 10.1021/jp308433a] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The ultrafast structural dynamics in the electronic excited state of photoactive yellow protein (PYP) is studied by femtosecond stimulated Raman spectroscopy. Stimulated Raman spectra in the electronic excited state, S(1), can be obtained by using a Raman pump pulse in resonance with the S(1)-S(0) transition. This is confirmed by comparing the experimental results with numerical calculations based on the density matrix treatment. We also investigate the hydrogen-bonding network surrounding the wild-type (WT)-PYP chromophore in the ground and excited states by comparing its stimulated Raman spectra with those of the E46Q-PYP mutant. We focus on the relative intensity of the Raman band at 1555 cm(-1), which includes both vinyl bond C═C stretching and ring vibrations and is sensitive to the hydrogen-bonding network around the phenolic oxygen of the chromophore. The relative intensity for the WT-PYP decreases after actinic excitation within the 150 fs time resolution and reaches a similar intensity to that for E46Q-PYP. These observations indicate that the WT-PYP hydrogen-bonding network is immediately rearranged in the electronic excited state to form a structure similar to that of E46Q-PYP.
Collapse
Affiliation(s)
- Ryosuke Nakamura
- Science and Technology Entrepreneurship Laboratory, Osaka University, Suita, Osaka, Japan.
| | | | | | | |
Collapse
|
22
|
Isborn CM, Götz AW, Clark MA, Walker RC, Martínez TJ. Electronic Absorption Spectra from MM and ab initio QM/MM Molecular Dynamics: Environmental Effects on the Absorption Spectrum of Photoactive Yellow Protein. J Chem Theory Comput 2012; 8:5092-5106. [PMID: 23476156 PMCID: PMC3590007 DOI: 10.1021/ct3006826] [Citation(s) in RCA: 151] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We describe a new interface of the GPU parallelized TeraChem electronic structure package and the Amber molecular dynamics package for quantum mechanical (QM) and mixed QM and molecular mechanical (MM) molecular dynamics simulations. This QM/MM interface is used for computation of the absorption spectra of the photoactive yellow protein (PYP) chromophore in vacuum, aqueous solution, and protein environments. The computed excitation energies of PYP require a very large QM region (hundreds of atoms) covalently bonded to the chromophore in order to achieve agreement with calculations that treat the entire protein quantum mechanically. We also show that 40 or more surrounding water molecules must be included in the QM region in order to obtain converged excitation energies of the solvated PYP chromophore. These results indicate that large QM regions (with hundreds of atoms) are a necessity in QM/MM calculations.
Collapse
Affiliation(s)
- Christine M. Isborn
- PULSE Institute and Department of Chemistry, Stanford University, Stanford, CA 94305
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025
| | - Andreas W. Götz
- San Diego Supercomputer Center, University of California San Diego, La Jolla, CA 92093
| | - Matthew A. Clark
- San Diego Supercomputer Center, University of California San Diego, La Jolla, CA 92093
| | - Ross C. Walker
- San Diego Supercomputer Center, University of California San Diego, La Jolla, CA 92093
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093
| | - Todd J. Martínez
- PULSE Institute and Department of Chemistry, Stanford University, Stanford, CA 94305
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025
| |
Collapse
|
23
|
On the involvement of single-bond rotation in the primary photochemistry of photoactive yellow protein. Biophys J 2011; 101:1184-92. [PMID: 21889456 DOI: 10.1016/j.bpj.2011.06.065] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 06/09/2011] [Accepted: 06/17/2011] [Indexed: 11/21/2022] Open
Abstract
Prior experimental observations, as well as theoretical considerations, have led to the proposal that C(4)-C(7) single-bond rotation may play an important role in the primary photochemistry of photoactive yellow protein (PYP). We therefore synthesized an analog of this protein's 4-hydroxy-cinnamic acid chromophore, (5-hydroxy indan-(1E)-ylidene)acetic acid, in which rotation across the C(4)-C(7) single bond has been locked with an ethane bridge, and we reconstituted the apo form of the wild-type protein and its R52A derivative with this chromophore analog. In PYP reconstituted with the rotation-locked chromophore, 1), absorption spectra of ground and intermediate states are slightly blue-shifted; 2), the quantum yield of photochemistry is ∼60% reduced; 3), the excited-state dynamics of the chromophore are accelerated; and 4), dynamics of the thermal recovery reaction of the protein are accelerated. A significant finding was that the yield of the transient ground-state intermediate in the early phase of the photocycle was considerably higher in the rotation-locked samples than in the corresponding samples reconstituted with p-coumaric acid. In contrast to theoretical predictions, the initial photocycle dynamics of PYP were observed to be not affected by the charge of the amino acid residue at position 52, which was varied by 1), varying the pH of the sample between 5 and 10; and 2), site-directed mutagenesis to construct R52A. These results imply that C(4)-C(7) single-bond rotation in PYP is not an alternative to C(7)=C(8) double-bond rotation, in case the nearby positive charge of R52 is absent, but rather facilitates, presumably with a compensatory movement, the physiological Z/E isomerization of the blue-light-absorbing chromophore.
Collapse
|
24
|
Raffelberg S, Mansurova M, Gärtner W, Losi A. Modulation of the photocycle of a LOV domain photoreceptor by the hydrogen-bonding network. J Am Chem Soc 2011; 133:5346-56. [PMID: 21410163 DOI: 10.1021/ja1097379] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An extended hydrogen-bonding (HB) network stabilizes the isoalloxazine ring of the flavin mononucleotide (FMN) chromophore within the photosensing LOV domain of blue-light protein receptors, via interactions between the C(2)═O, N(3)H, C(4)═O, and N(5) groups and conserved glutamine and asparagine residues. In this work we studied the influence of the HB network on the efficiency, kinetics, and energetics of a LOV protein photocycle, involving the reversible formation of a FMN-cysteine covalent adduct. The following results were found for mutations of the conserved amino acids N94, N104, and Q123 in the Bacillus subtilis LOV protein YtvA: (i) Increased (N104D, N94D) or strongly reduced (N94A) rate of adduct formation; this latter mutation extends the lifetime of the flavin triplet state, i.e., adduct formation, more than 60-fold, from 2 μs for the wild-type (WT) protein to 129 μs. (ii) Acceleration of the overall photocycle for N94S, N94A, and Q123N, with recovery lifetimes 20, 45, and 85 times faster than for YtvA-WT, respectively. (iii) Slight modifications of FMN spectral features, correlated with the polarization of low-energy transitions. (iv) Strongly reduced (N94S) or suppressed (Q123N) structural volume changes accompanying adduct formation, as determined by optoacoustic spectroscopy. (v) Minor effects on the quantum yield, with the exception of a considerable reduction for Q123N, i.e., 0.22 vs 0.49 for YtvA-WT. The data stress the importance of the HB network in modulating the photocycle of LOV domains, while at the same time establishing a link with functional responses.
Collapse
Affiliation(s)
- Sarah Raffelberg
- Max-Planck-Institute for Bioinorganic Chemistry, Stiftstrasse 34-36, 45470 Mülheim, Germany
| | | | | | | |
Collapse
|
25
|
Kumauchi M, Kaledhonkar S, Philip AF, Wycoff J, Hara M, Li Y, Xie A, Hoff WD. A conserved helical capping hydrogen bond in PAS domains controls signaling kinetics in the superfamily prototype photoactive yellow protein. J Am Chem Soc 2010; 132:15820-30. [PMID: 20954744 PMCID: PMC2999845 DOI: 10.1021/ja107716r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
PAS domains form a divergent protein superfamily with more than 20 000 members that perform a wide array of sensing and regulatory functions in all three domains of life. Only nine residues are well-conserved in PAS domains, with an Asn residue at the start of α-helix 3 showing the strongest conservation. The molecular functions of these nine conserved residues are unknown. We use static and time-resolved visible and FTIR spectroscopy to investigate receptor activation in the photosensor photoactive yellow protein (PYP), a PAS domain prototype. The N43A and N43S mutants allow an investigation of the role of side-chain hydrogen bonding at this conserved position. The mutants exhibit a blue-shifted visible absorbance maximum and up-shifted chromophore pK(a). Disruption of the hydrogen bonds in N43A PYP causes both a reduction in protein stability and a 3400-fold increase in the lifetime of the signaling state of this photoreceptor. A significant part of this increase in lifetime can be attributed to the helical capping interaction of Asn43. This extends the known importance of helical capping for protein structure to regulating functional protein kinetics. A model for PYP activation has been proposed in which side-chain hydrogen bonding of Asn43 is critical for relaying light-induced conformational changes. However, FTIR spectroscopy shows that both Asn43 mutants retain full allosteric transmission of structural changes. Analysis of 30 available high-resolution structures of PAS domains reveals that the side-chain hydrogen bonding of residue 43 but not residue identity is highly conserved and suggests that its helical cap affects signaling kinetics in other PAS domains.
Collapse
Affiliation(s)
- Masato Kumauchi
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, 74078, USA
| | - Sandip Kaledhonkar
- Department of Physics, Oklahoma State University, Stillwater, Oklahoma, 74078, USA
| | - Andrew F. Philip
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois, 60637, USA
| | - James Wycoff
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, 74078, USA
| | - Miwa Hara
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, 74078, USA
| | - Yunxing Li
- Department of Physics, Oklahoma State University, Stillwater, Oklahoma, 74078, USA
| | - Aihua Xie
- Department of Physics, Oklahoma State University, Stillwater, Oklahoma, 74078, USA
| | - Wouter D. Hoff
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, 74078, USA
| |
Collapse
|
26
|
Talbot FO, Rullo A, Yao H, Jockusch RA. Fluorescence Resonance Energy Transfer in Gaseous, Mass-Selected Polyproline Peptides. J Am Chem Soc 2010; 132:16156-64. [DOI: 10.1021/ja1067405] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Francis O. Talbot
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Anthony Rullo
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Huihui Yao
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | | |
Collapse
|
27
|
Chang CW, He TF, Guo L, Stevens JA, Li T, Wang L, Zhong D. Mapping solvation dynamics at the function site of flavodoxin in three redox states. J Am Chem Soc 2010; 132:12741-7. [PMID: 20731381 PMCID: PMC2943414 DOI: 10.1021/ja1050154] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Flavoproteins are unique redox coenzymes, and the dynamic solvation at their function sites is critical to the understanding of their electron-transfer properties. Here, we report our complete characterization of the function-site solvation of holoflavodoxin in three redox states and of the binding-site solvation of apoflavodoxin. Using intrinsic flavin cofactor and tryptophan residue as the local optical probes with two site-specific mutations, we observed distinct ultrafast solvation dynamics at the function site in the three states and at the related recognition site of the cofactor, ranging from a few to hundreds of picoseconds. The initial ultrafast motion in 1-2.6 ps reflects the local water-network relaxation around the shallow, solvent-exposed function site. The second relaxation in 20-40 ps results from the coupled local water-protein fluctuation. The third dynamics in hundreds of picoseconds is from the intrinsic fluctuation of the loose loops flanking the cofactor at the function site. These solvation dynamics with different amplitudes well correlate with the redox states from the oxidized form, to the more rigid semiquinone and to the much looser hydroquinone. This observation of the redox control of local protein conformation plasticity and water network flexibility is significant, and such an intimate relationship is essential to the biological function of interprotein electron transfer.
Collapse
Affiliation(s)
| | | | - Lijun Guo
- Departments of Physics, Chemistry, and Biochemistry, Programs of Biophysics, Chemical Physics, and Biochemistry, 191 West Woodruff Avenue, The Ohio State University, Columbus, OH 43210
| | - Jeffrey A. Stevens
- Departments of Physics, Chemistry, and Biochemistry, Programs of Biophysics, Chemical Physics, and Biochemistry, 191 West Woodruff Avenue, The Ohio State University, Columbus, OH 43210
| | - Tanping Li
- Departments of Physics, Chemistry, and Biochemistry, Programs of Biophysics, Chemical Physics, and Biochemistry, 191 West Woodruff Avenue, The Ohio State University, Columbus, OH 43210
| | - Lijuan Wang
- Departments of Physics, Chemistry, and Biochemistry, Programs of Biophysics, Chemical Physics, and Biochemistry, 191 West Woodruff Avenue, The Ohio State University, Columbus, OH 43210
| | - Dongping Zhong
- Departments of Physics, Chemistry, and Biochemistry, Programs of Biophysics, Chemical Physics, and Biochemistry, 191 West Woodruff Avenue, The Ohio State University, Columbus, OH 43210
| |
Collapse
|