1
|
Michalickova D, Kramarikova I, Ozturk HK, Kucera T, Vacik T, Hrncir T, Kutinova Canova N, Sima M, Slanar O. Detection of galanin receptors in the spinal cord in experimental autoimmune encephalomyelitis. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2023; 167:36-42. [PMID: 35147137 DOI: 10.5507/bp.2022.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 01/28/2022] [Indexed: 11/23/2022] Open
Abstract
AIMS The neuropeptide galanin is a widely distributed neurotransmitter/neuromodulator that regulates a variety of physiological processes and also participates in the regulation of stress responses. The aims of the present study were to investigate the expression of galanin receptors (GalR1, GalR2, GalR3) in the spinal cords in a murine model of multiple sclerosis, experimental autoimmune encephalomyelitis (EAE) using qPCR analysis and to determine GalR1 cellular localization (oligodendrocytes, microglia, astrocytes, ependymal cells, and endothelial cells in the capillaries) by immunohistochemistry. METHODS Twelve samples from the EAE group and 14 samples from the control group were analyzed. Spinal cords samples were obtained at the peak of the EAE disease. RESULTS The GalR1 mRNA level was significantly decreased in the EAE mice compared with the controls (P=0.016), whereas the mRNA levels of GalR2 and GalR3 were not significantly different for the EAE and the control mice. No significant correlations were found between the severity of the EAE disease and the mRNA levels of GalR1, GalR2 and GalR3. Immunochemical detection of the GalR1 revealed its expression in the ependymal and endothelial cells. Additionally, a weak GalR1 immunoreactivity was occasionally detected in the oligodendrocytes. CONCLUSION This study provides additional evidence of galanin involvement in EAE pathophysiology, but this has to be further investigated.
Collapse
Affiliation(s)
- Danica Michalickova
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| | - Ivana Kramarikova
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| | - Hatice Kubra Ozturk
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| | - Tomas Kucera
- Institute of Histology and Embryology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| | - Tomas Vacik
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| | - Tomas Hrncir
- Institute of Microbiology, Czech Academy of Sciences, Novy Hradek, Czech Republic
| | - Nikolina Kutinova Canova
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| | - Martin Sima
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| | - Ondrej Slanar
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| |
Collapse
|
2
|
Kuipers A, Balaskó M, Pétervári E, Koller A, Brunner SM, Moll GN, Kofler B. Intranasal Delivery of a Methyllanthionine-Stabilized Galanin Receptor-2-Selective Agonist Reduces Acute Food Intake. Neurotherapeutics 2021; 18:2737-2752. [PMID: 34859381 PMCID: PMC8804135 DOI: 10.1007/s13311-021-01155-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2021] [Indexed: 11/27/2022] Open
Abstract
The regulatory (neuro)peptide galanin is widely distributed in the central and peripheral nervous systems, where it mediates its effects via three G protein-coupled receptors (GAL1-3R). Galanin has a vast diversity of biological functions, including modulation of feeding behavior. However, the clinical application of natural galanin is not practicable due to its rapid in vivo breakdown by peptidases and lack of receptor subtype specificity. Much effort has been put into the development of receptor-selective agonists and antagonists, and while receptor selectivity has been attained to some degree, most ligands show overlapping affinity. Therefore, we aimed to develop a novel ligand with specificity to a single galanin receptor subtype and increased stability. To achieve this, a lanthionine amino acid was enzymatically introduced into a galanin-related peptide. The residue's subsequent cyclization created a conformational constraint which increased the peptide's receptor specificity and proteolytic resistance. Further exchange of certain other amino acids resulted in a novel methyllanthionine-stabilized galanin receptor agonist, a G1pE-T3N-S6A-G12A-methyllanthionine[13-16]-galanin-(1-17) variant, termed M89b. M89b has exclusive specificity for GAL2R and a prolonged half-life in serum. Intranasal application of M89b to unfasted rats significantly reduced acute 24 h food intake inducing a drop in body weight. Combined administration of M89b and M871, a selective GAL2R antagonist, abolished the anorexigenic effect of M89b, indicating that the effect of M89b on food intake is indeed mediated by GAL2R. This is the first demonstration of in vivo activity of an intranasally administered lanthipeptide. Consequently, M89b is a promising candidate for clinical application as a galanin-related peptide-based therapeutic.
Collapse
Affiliation(s)
- Anneke Kuipers
- Lanthio Health B.V., Rozenburglaan 13B, 9727 DL, Groningen, Netherlands
| | - Márta Balaskó
- Institute for Translational Medicine, Medical School, University of Pécs, 12 Szigeti út, H-7624, Pécs, Hungary
| | - Erika Pétervári
- Institute for Translational Medicine, Medical School, University of Pécs, 12 Szigeti út, H-7624, Pécs, Hungary
| | - Andreas Koller
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Muellner Hauptstr. 48, 5020, Salzburg, Austria
- Research Program for Experimental Ophthalmology, Department of Ophthalmology and Optometry, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Susanne M Brunner
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Muellner Hauptstr. 48, 5020, Salzburg, Austria
- Research Program for Experimental Ophthalmology, Department of Ophthalmology and Optometry, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Gert N Moll
- Lanthio Health B.V., Rozenburglaan 13B, 9727 DL, Groningen, Netherlands
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, Netherlands
| | - Barbara Kofler
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Muellner Hauptstr. 48, 5020, Salzburg, Austria.
| |
Collapse
|
3
|
Aggarwal S, Ranjha R, Paul J. Neuroimmunomodulation by gut bacteria: Focus on inflammatory bowel diseases. World J Gastrointest Pathophysiol 2021; 12:25-39. [PMID: 34084590 PMCID: PMC8160600 DOI: 10.4291/wjgp.v12.i3.25] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/01/2021] [Accepted: 04/21/2021] [Indexed: 02/06/2023] Open
Abstract
Microbes colonize the gastrointestinal tract are considered as highest complex ecosystem because of having diverse bacterial species and 150 times more genes as compared to the human genome. Imbalance or dysbiosis in gut bacteria can cause dysregulation in gut homeostasis that subsequently activates the immune system, which leads to the development of inflammatory bowel disease (IBD). Neuromediators, including both neurotransmitters and neuropeptides, may contribute to the development of aberrant immune response. They are emerging as a regulator of inflammatory processes and play a key role in various autoimmune and inflammatory diseases. Neuromediators may influence immune cell’s function via the receptors present on these cells. The cytokines secreted by the immune cells, in turn, regulate the neuronal functions by binding with their receptors present on sensory neurons. This bidirectional communication of the enteric nervous system and the enteric immune system is involved in regulating the magnitude of inflammatory pathways. Alterations in gut bacteria influence the level of neuromediators in the colon, which may affect the gastrointestinal inflammation in a disease condition. Changed neuromediators concentration via dysbiosis in gut microbiota is one of the novel approaches to understand the pathogenesis of IBD. In this article, we reviewed the existing knowledge on the role of neuromediators governing the pathogenesis of IBD, focusing on the reciprocal relationship among the gut microbiota, neuromediators, and host immunity. Understanding the neuromediators and host-microbiota interactions would give a better insight in to the disease pathophysiology and help in developing the new therapeutic approaches for the disease.
Collapse
Affiliation(s)
- Surbhi Aggarwal
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi 110016, India
- School of Life Sciences, Jawaharlal Nehru University, Delhi 110067, India
| | - Raju Ranjha
- School of Life Sciences, Jawaharlal Nehru University, Delhi 110067, India
- Field Unit Raipur, ICMR-National Institute of Malaria Research, Raipur 492015, Chhattisgarh, India
| | - Jaishree Paul
- School of Life Sciences, Jawaharlal Nehru University, Delhi 110067, India
| |
Collapse
|
4
|
Protective Role of Galanin during Chemically Induced Inflammation in Zebrafish Larvae. BIOLOGY 2021; 10:biology10020099. [PMID: 33573348 PMCID: PMC7911020 DOI: 10.3390/biology10020099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/23/2021] [Accepted: 01/25/2021] [Indexed: 11/16/2022]
Abstract
During a pathological condition, many different systems are involved in the response of an affected organism. Galanin is considered to be a neuropeptide that plays an important role in the central nervous system; however, it is involved in many other biological processes, including the immune response. During our studies, we showed that galanin became upregulated in zebrafish larvae when exposed to copper sulfate. Moreover, the presence of normal levels of galanin, administration of a galanin analog NAX 5055 or galanin overexpression led to lowered lateral line damage and enhanced expression of inflammatory markers compared to the knockout larvae. The results showed that the neuroendocrine system acts multifunctionally and should be considered as a part of the complex neuro-immune-endocrine axis.
Collapse
|
5
|
Insights into Potential Targets for Therapeutic Intervention in Epilepsy. Int J Mol Sci 2020; 21:ijms21228573. [PMID: 33202963 PMCID: PMC7697405 DOI: 10.3390/ijms21228573] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/04/2020] [Accepted: 11/11/2020] [Indexed: 02/06/2023] Open
Abstract
Epilepsy is a chronic brain disease that affects approximately 65 million people worldwide. However, despite the continuous development of antiepileptic drugs, over 30% patients with epilepsy progress to drug-resistant epilepsy. For this reason, it is a high priority objective in preclinical research to find novel therapeutic targets and to develop effective drugs that prevent or reverse the molecular mechanisms underlying epilepsy progression. Among these potential therapeutic targets, we highlight currently available information involving signaling pathways (Wnt/β-catenin, Mammalian Target of Rapamycin (mTOR) signaling and zinc signaling), enzymes (carbonic anhydrase), proteins (erythropoietin, copine 6 and complement system), channels (Transient Receptor Potential Vanilloid Type 1 (TRPV1) channel) and receptors (galanin and melatonin receptors). All of them have demonstrated a certain degree of efficacy not only in controlling seizures but also in displaying neuroprotective activity and in modifying the progression of epilepsy. Although some research with these specific targets has been done in relation with epilepsy, they have not been fully explored as potential therapeutic targets that could help address the unsolved issue of drug-resistant epilepsy and develop new antiseizure therapies for the treatment of epilepsy.
Collapse
|
6
|
Fernández‐Zapata C, Leman JKH, Priller J, Böttcher C. The use and limitations of single-cell mass cytometry for studying human microglia function. Brain Pathol 2020; 30:1178-1191. [PMID: 33058349 PMCID: PMC8018011 DOI: 10.1111/bpa.12909] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 08/23/2020] [Accepted: 10/12/2020] [Indexed: 12/12/2022] Open
Abstract
Microglia, the resident innate immune cells of the central nervous system (CNS), play an important role in brain development and homoeostasis, as well as in neuroinflammatory, neurodegenerative and psychiatric diseases. Studies in animal models have been used to determine the origin and development of microglia, and how these cells alter their transcriptional and phenotypic signatures during CNS pathology. However, little is known about their human counterparts. Recent studies in human brain samples have harnessed the power of multiplexed single-cell technologies such as single-cell RNA sequencing (scRNA-seq) and mass cytometry (cytometry by time-of-flight [CyTOF]) to provide a comprehensive molecular view of human microglia in healthy and diseased brains. CyTOF is a powerful tool to study high-dimensional protein expression of human microglia (huMG) at the single-cell level. This technology widens the possibilities of high-throughput quantification (of over 60 targeted molecules) at a single-cell resolution. CyTOF can be combined with scRNA-seq for comprehensive analysis, as it allows single-cell analysis of post-translational modifications of proteins, which provides insights into cell signalling dynamics in targeted cells. In addition, imaging mass cytometry (IMC) has recently become commercially available, and will be useful for analysing multiple cell types in human brain sections. IMC leverages mass spectrometry to acquire spatial data of cell-cell interactions on tissue sections, using (theoretically) over 40 markers at the same time. In this review, we summarise recent studies of huMG using CyTOF and IMC analyses. The uses and limitations as well as future directions of these technologies are discussed.
Collapse
Affiliation(s)
- Camila Fernández‐Zapata
- Department of Neuropsychiatry and Laboratory of Molecular PsychiatryCharité – Universitätsmedizin BerlinBerlinGermany
| | - Julia K. H. Leman
- Department of Neuropsychiatry and Laboratory of Molecular PsychiatryCharité – Universitätsmedizin BerlinBerlinGermany
| | - Josef Priller
- Department of Neuropsychiatry and Laboratory of Molecular PsychiatryCharité – Universitätsmedizin BerlinBerlinGermany
- German Center for Neurodegenerative Diseases (DZNE)BerlinGermany
- UK Dementia Research Institute (DRI)University of EdinburghEdinburghUK
| | - Chotima Böttcher
- Department of Neuropsychiatry and Laboratory of Molecular PsychiatryCharité – Universitätsmedizin BerlinBerlinGermany
| |
Collapse
|
7
|
Böttcher C, van der Poel M, Fernández-Zapata C, Schlickeiser S, Leman JKH, Hsiao CC, Mizee MR, Adelia, Vincenten MCJ, Kunkel D, Huitinga I, Hamann J, Priller J. Single-cell mass cytometry reveals complex myeloid cell composition in active lesions of progressive multiple sclerosis. Acta Neuropathol Commun 2020; 8:136. [PMID: 32811567 PMCID: PMC7437178 DOI: 10.1186/s40478-020-01010-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/01/2020] [Indexed: 01/15/2023] Open
Abstract
Myeloid cells contribute to inflammation and demyelination in the early stages of multiple sclerosis (MS), but it is still unclear to what extent these cells are involved in active lesion formation in progressive MS (PMS). Here, we have harnessed the power of single-cell mass cytometry (CyTOF) to compare myeloid cell phenotypes in active lesions of PMS donors with those in normal-appearing white matter from the same donors and control white matter from non-MS donors. CyTOF measurements of a total of 74 targeted proteins revealed a decreased abundance of homeostatic and TNFhi microglia, and an increase in highly phagocytic and activated microglia states in active lesions of PMS donors. Interestingly, in contrast to results obtained from studies of the inflammatory early disease stages of MS, infiltrating monocyte-derived macrophages were scarce in active lesions of PMS, suggesting fundamental differences of myeloid cell composition in advanced stages of PMS.
Collapse
Affiliation(s)
- Chotima Böttcher
- Department of Neuropsychiatry and Laboratory of Molecular Psychiatry, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| | - Marlijn van der Poel
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Camila Fernández-Zapata
- Department of Neuropsychiatry and Laboratory of Molecular Psychiatry, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Stephan Schlickeiser
- BIH Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Julia K H Leman
- Department of Neuropsychiatry and Laboratory of Molecular Psychiatry, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Cheng-Chih Hsiao
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
- Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Mark R Mizee
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Adelia
- Netherlands Brain Bank, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Maria C J Vincenten
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Desiree Kunkel
- Flow & Mass Cytometry Core Facility, Charité - Universitätsmedizin Berlin and Berlin Institute of Health (BIH), Berlin, Germany
| | - Inge Huitinga
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, The Netherlands
| | - Jörg Hamann
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
- Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Josef Priller
- Department of Neuropsychiatry and Laboratory of Molecular Psychiatry, Charité - Universitätsmedizin Berlin, Berlin, Germany.
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany.
- University of Edinburgh and UK Dementia Research Institute (DRI), Edinburgh, UK.
| |
Collapse
|
8
|
Inhibition of the NLRP3-inflammasome prevents cognitive deficits in experimental autoimmune encephalomyelitis mice via the alteration of astrocyte phenotype. Cell Death Dis 2020; 11:377. [PMID: 32415059 PMCID: PMC7229224 DOI: 10.1038/s41419-020-2565-2] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 01/15/2023]
Abstract
Multiple sclerosis (MS) is a chronic disease that is characterized by demyelination and axonal damage in the central nervous system. Cognitive deficits are recognized as one of the features of MS, and these deficits affect the patients’ quality of life. Increasing evidence from experimental autoimmune encephalomyelitis (EAE), the animal model of MS, has suggested that EAE mice exhibit hippocampal impairment and cognitive deficits. However, the underlying mechanisms are still unclear. The NLRP3 inflammasome is a key contributor to neuroinflammation and is involved in the development of MS and EAE. Activation of the NLRP3 inflammasome in microglia is fundamental for subsequent inflammatory events. Activated microglia can convert astrocytes to the neurotoxic A1 phenotype in a variety of neurological diseases. However, it remains unknown whether the NLRP3 inflammasome contributes to cognitive deficits and astrocyte phenotype alteration in EAE. In this study, we demonstrated that severe memory deficits occurred in the late phase of EAE, and cognitive deficits were ameliorated by treatment with MCC950, an inhibitor of the NLRP3 inflammasome. In addition, MCC950 alleviated hippocampal pathology and synapse loss. Astrocytes from EAE mice were converted to the neurotoxic A1 phenotype, and this conversion was prevented by MCC950 treatment. IL-18, which is the downstream of NLRP3 inflammasome, was sufficient to induce the conversion of astrocytes to the A1 phenotype through the NF-κB pathway. IL-18 induced A1 type reactive astrocytes impaired hippocampal neurons through the release of complement component 3 (C3). Altogether, our present data suggest that the NLRP3 inflammasome plays an important role in cognitive deficits in EAE, possibly via the alteration of astrocyte phenotypes. Our study provides a novel therapeutic strategy for hippocampal impairment in EAE and MS.
Collapse
|
9
|
The effect of galanin gene polymorphism rs948854 on the severity of multiple sclerosis: A significant association with the age of onset. Mult Scler Relat Disord 2020; 37:101439. [DOI: 10.1016/j.msard.2019.101439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 09/04/2019] [Accepted: 10/08/2019] [Indexed: 01/15/2023]
|
10
|
Ramspacher A, Neudert M, Koller A, Schlager S, Kofler B, Brunner SM. Influence of the regulatory peptide galanin on cytokine expression in human monocytes. Ann N Y Acad Sci 2019; 1455:185-195. [PMID: 31074091 PMCID: PMC6899851 DOI: 10.1111/nyas.14111] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/27/2019] [Accepted: 04/05/2019] [Indexed: 01/08/2023]
Abstract
Current research into neuropeptides is bringing to light many remarkable functions of these endocrine/neurocrine/paracrine factors, such as their roles in modulating immune responses. Galanin is a neuropeptide expressed in both neural and non‐neural tissues and exerts its effects through three G protein–coupled receptors, GAL1,2,3‐R. It has been demonstrated that galanin has modulatory effects on immune cells, including neutrophils and natural killer cells. Because monocytes express GAL2‐R, and therefore are expected to be a target of galanin, we analyzed the effect of galanin on the expression of cytokines and chemokines by monocytes. Galanin increased the expression of IL‐1β up to 1.5‐fold, TNF‐α, IL‐10, IL‐18, and CCL3 up to twofold, and CXCL8 up to fourfold in nonactivated monocytes, but had no major effect on activated monocytes. A cross‐correlation analysis of cytokine expression profiles, irrespective of the activation status of the monocytes, revealed that galanin changed the cross‐correlation of the expression of certain cytokines. Galanin abolished several significant correlations in IFN‐γ–stimulated monocytes. For example, treatment with 10 nM galanin changed the Spearman's rank coefficient of IL‐18 and CXCL8 from 0.622 (P ≤ 0.01) to 0.126. These results further emphasize the importance of neuroregulatory peptides, such as galanin and their therapeutic potential to treat inflammatory diseases.
Collapse
Affiliation(s)
- Andrea Ramspacher
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Magdalena Neudert
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Andreas Koller
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria.,University Clinic of Ophthalmology and Optometry, Research Program for Ophthalmology and Glaucoma Research, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Sandra Schlager
- Department of Blood Group Serology and Transfusion Medicine, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Barbara Kofler
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Susanne Maria Brunner
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
11
|
Subclinical lipopolysaccharide from Salmonella Enteritidis induces neuropeptide dysregulation in the spinal cord and the dorsal root ganglia. BMC Neurosci 2019; 20:18. [PMID: 31023212 PMCID: PMC6485123 DOI: 10.1186/s12868-019-0502-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 04/18/2019] [Indexed: 12/13/2022] Open
Abstract
Background Despite increasing evidence that lipopolysaccharide (LPS) affects the biological active substances of dorsal root ganglia (DRG) we have limited knowledge of the influence of a single low dose of LPS, which does not result in any clinical symptoms of disease (subclinical LPS) on neuropeptides connected with the sensory pathway. Accordingly, in this work, we investigated the influence of subclinical LPS from Salmonella Enteritidis on selected neuropeptides: substance P (SP), galanin (GAL), neuropeptide Y (NPY), vasoactive intestinal peptide (VIP) and somatostatin (SOM) in the cervical, thoracic, lumbar and sacral regions of the DRG and spinal cord. Methods This study was performed on immature female pigs of the Pietrain × Duroc breed. Seven days after the intravenous injection of saline solution for control animals (n = 5) and 5 μg/kg b.w. LPS from S. Enteritidis for the experimental group (n = 5), the DRG and the spinal cord were collected to extract the neuropeptides using solid-phase extraction technology. Results Our results demonstrated that subclinical LPS in DRG was able to change the levels of all studied neuropeptides except SOM, whereas in the spinal cord it down-regulated all studied neuropeptides in the sacral spinal cord, maintaining the concentration of all studied neuropeptides in other regions similar to that observed in the control animals. The significant differences in the intensity and character of observed changes between particular regions of the DRG suggest that the exact functions of the studied neuropeptides and mechanisms of responses to subclinical LPS action depend on specific characteristics and functions of each examination region of DRG. Conclusions The mechanisms of observed changes are not fully understood and require further study of the molecular interactions between subclinical LPS from S. Enteritidis and neuronal and non-neuronal cells of DRG and spinal cord. The peripheral and central pain pathways must be analysed with the aspect of unknown long-term consequences of the influence of subclinical LPS from S. Enteritidis on neuropeptides in the spinal cord and the dorsal root ganglia.
Collapse
|
12
|
A non-functional galanin receptor-2 in a multiple sclerosis patient. THE PHARMACOGENOMICS JOURNAL 2018; 19:72-82. [PMID: 30131588 DOI: 10.1038/s41397-018-0032-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 04/26/2018] [Accepted: 05/14/2018] [Indexed: 12/30/2022]
Abstract
Multiple Sclerosis (MS) is an inflammatory neurodegenerative disease that affects approximately 2.5 million people globally. Even though the etiology of MS remains unknown, it is accepted that it involves a combination of genetic alterations and environmental factors. Here, after performing whole exome sequencing, we found a MS patient harboring a rare and homozygous single nucleotide variant (SNV; rs61745847) of the G-protein coupled receptor (GPCR) galanin-receptor 2 (GALR2) that alters an important amino acid in the TM6 molecular toggle switch region (W249L). Nuclear magnetic resonance imaging showed that the hypothalamus (an area rich in GALR2) of this patient exhibited an important volumetric reduction leading to an enlarged third ventricle. Ex vivo experiments with patient-derived blood cells (AKT phosphorylation), as well as studies in recombinant cell lines expressing the human GALR2 (calcium mobilization and NFAT mediated gene transcription), showed that galanin (GAL) was unable to stimulate cell signaling in cells expressing the variant GALR2 allele. Live cell confocal microscopy showed that the GALR2 mutant receptor was primarily localized to intracellular endosomes. We conclude that the W249L SNV is likely to abrogate GAL-mediated signaling through GALR2 due to the spontaneous internalization of this receptor in this patient. Although this homozygous SNV was rare in our MS cohort (1:262 cases), our findings raise the potential importance of impaired neuroregenerative pathways in the pathogenesis of MS, warrant future studies into the relevance of the GAL/GALR2 axis in MS and further suggest the activation of GALR2 as a potential therapeutic route for this disease.
Collapse
|
13
|
Zalecki M, Pidsudko Z, Franke-Radowiecka A, Wojtkiewicz J, Kaleczyc J. Galaninergic intramural nerve and tissue reaction to antral ulcerations. Neurogastroenterol Motil 2018; 30:e13360. [PMID: 29717796 DOI: 10.1111/nmo.13360] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 03/25/2018] [Indexed: 12/29/2022]
Abstract
BACKGROUND Well-developed galaninergic gastric intramural nerve system is known to regulate multiple stomach functions in physiological and pathological conditions. Stomach ulcer, a disorder commonly occurring in humans and animals, is accompanied by inflammatory reaction. Inflammation can cause intramural neurons to change their neurochemical profile. Galanin and its receptors are involved in inflammation of many organs, however, their direct participation in stomach reaction to ulcer is not known. Therefore, the aim of the study was to investigate adaptive changes in the chemical coding of galaninergic intramural neurons and mRNA expression encoding Gal, GalR1, GalR2, GalR3 receptors in the region of the porcine stomach directly adjacent to the ulcer location. METHODS The experiment was performed on 24 pigs, divided into control and experimental groups. In 12 experimental animals, stomach antrum ulcers were experimentally induced by submucosal injection of acetic acid solution. Stomach wall directly adjacent to the ulcer was examined by: (1) double immunohistochemistry-to verify the changes in the number of galaninergic neurons (submucosal, myenteric) and fibers; (2) real-time PCR to verify changes in mRNA expression encoding galanin, GalR1, GalR2, GalR3 receptors. KEY RESULTS In the experimental animals, the number of Gal-immunoreactive submucosal perikarya was increased, while the number of galaninergic myenteric neurons and fibers (in all the stomach wall layers) remained unchanged. The expression of mRNA encoding all galanin receptors was increased. CONCLUSIONS & INTERFERENCES The results obtained unveiled the participation of galanin and galanin receptors in the stomach tissue response to antral ulcerations.
Collapse
Affiliation(s)
- M Zalecki
- Department of Animal Anatomy, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Z Pidsudko
- Department of Animal Anatomy, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - A Franke-Radowiecka
- Department of Animal Anatomy, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - J Wojtkiewicz
- Department of Pathophysiology, Laboratory for Regenerative Medicine, Faculty of Medicine, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - J Kaleczyc
- Department of Animal Anatomy, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| |
Collapse
|
14
|
Yuan XL, Zhao YP, Huang J, Liu JC, Mao WQ, Yin J, Peng BW, Liu WH, Han S, He XH. A Kv1.3 channel-specific blocker alleviates neurological impairment through inhibiting T-cell activation in experimental autoimmune encephalomyelitis. CNS Neurosci Ther 2018; 24:967-977. [PMID: 29577640 DOI: 10.1111/cns.12848] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/21/2018] [Accepted: 02/23/2018] [Indexed: 12/18/2022] Open
Abstract
AIM Multiple sclerosis (MS) is a neurological autoimmune disorder characterized by mistaken attacks of inflammatory cells against the central nervous system (CNS), resulting in demyelination and axonal damage. Kv1.3 channel blockers can inhibit T-cell activation and have been designed for MS therapy. However, little is known about the effects of Kv1.3 blockers on protecting myelin sheaths/axons in MS. This study aimed at investigating the neuroprotection efficacy of a selective Kv1.3 channel blocker ImKTx88 (ImK) in MS animal model. METHODS Experimental autoimmune encephalomyelitis (EAE) rat model was established. The neuroprotective effect of ImK was assessed by immunohistochemistry and transmission electron microscopy (TEM). In addition, the antiinflammatory effect of ImK by suppressing T-cell activation was assessed by flow cytometry and ELISA in vitro. RESULTS Our results demonstrated that ImK administration ameliorated EAE clinical severity. Moreover, ImK increased oligodendrocytes survival, preserved axons, and myelin integrity and reduced the infiltration of activated T cells into the CNS. This protective effect of the peptide may be related to its suppression of autoantigen-specific T-cell activation via calcium influx inhibition. CONCLUSION ImK prevents neurological damage by suppressing T-cell activation, suggesting the applicability of this peptide in MS therapy.
Collapse
Affiliation(s)
- Xiao-Lu Yuan
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Yi-Peng Zhao
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Jie Huang
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Jun-Chen Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Wen-Qian Mao
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Jun Yin
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Bi-Wen Peng
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Wan-Hong Liu
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Song Han
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Xiao-Hua He
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
15
|
Temporal-Spatial Profiling of Pedunculopontine Galanin-Cholinergic Neurons in the Lactacystin Rat Model of Parkinson's Disease. Neurotox Res 2017; 34:16-31. [PMID: 29218504 DOI: 10.1007/s12640-017-9846-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 11/22/2017] [Accepted: 11/22/2017] [Indexed: 12/17/2022]
Abstract
Parkinson's disease (PD) is conventionally seen as resulting from single-system neurodegeneration affecting nigrostriatal dopaminergic neurons. However, accumulating evidence indicates multi-system degeneration and neurotransmitter deficiencies, including cholinergic neurons which degenerate in a brainstem nucleus, the pedunculopontine nucleus (PPN), resulting in motor and cognitive impairments. The neuropeptide galanin can inhibit cholinergic transmission, while being upregulated in degenerating brain regions associated with cognitive decline. Here we determined the temporal-spatial profile of progressive expression of endogenous galanin within degenerating cholinergic neurons, across the rostro-caudal axis of the PPN, by utilizing the lactacystin-induced rat model of PD. First, we show progressive neuronal death affecting nigral dopaminergic and PPN cholinergic neurons, reflecting that seen in PD patients, to facilitate use of this model for assessing the therapeutic potential of bioactive peptides. Next, stereological analyses of the lesioned brain hemisphere found that the number of PPN cholinergic neurons expressing galanin increased by 11%, compared to sham-lesioned controls, and increasing by a further 5% as the neurodegenerative process evolved. Galanin upregulation within cholinergic PPN neurons was most prevalent closest to the intra-nigral lesion site, suggesting that galanin upregulation in such neurons adapt intrinsically to neurodegeneration, to possibly neuroprotect. This is the first report on the extent and pattern of galanin expression in cholinergic neurons across distinct PPN subregions in both the intact rat CNS and lactacystin-lesioned rats. The findings pave the way for future work to target galanin signaling in the PPN, to determine the extent to which upregulated galanin expression could offer a viable treatment strategy for ameliorating PD symptoms associated with cholinergic degeneration.
Collapse
|
16
|
Lioudyno V, Abdurasulova I, Bisaga G, Skulyabin D, Klimenko V. Single-nucleotide polymorphism rs948854 in human galanin gene and multiple sclerosis: a gender-specific risk factor. J Neurosci Res 2017; 95:644-651. [PMID: 27870457 DOI: 10.1002/jnr.23887] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 07/14/2016] [Accepted: 07/25/2016] [Indexed: 01/15/2023]
Abstract
We performed comparative analyses of the genotype distribution and allelic frequencies of the rs948854 polymorphism (G/A) in the galanin gene's promoter in patients with multiple sclerosis (MS) and in healthy matched controls. In total 111 patients and 115 control subjects were included. The analyses revealed that the presence of the minor allele (G) increased susceptibility to MS in men (OR = 2.49, P = 0.008) but not in women. The presence of the G allele in men was also significantly associated with the late onset of MS. Furthermore, rs948854 polymorphism affected the rate of MS progression depending on the sex of the patients. In woman (typically slowly progressing), the percentage of patients with the slow (<0.5 EDSS score per year) progression rate was significantly reduced (χ2 = 5.7, P = 0.017) in the minor allele carriers group (52.6%), in comparison with the wild-type carriers (83.9%). In men (typically quickly progressing), the number of patients with fast progression rate (≥0.75 EDSS score per year) tended to increase in the minor allele carriers group (50%) compared with number of patients with the wild-type carriers (31.3%). These data demonstrate for the first time an association between rs948854 polymorphism and multiple sclerosis and, further, that this association is sex specific. They also point to diagnostic and prognostic benefits of genetic screening of patients with multiple sclerosis. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Victoria Lioudyno
- Pavlov Department of Physiology, Federal State Budgetary Scientific Institution "Institute of Experimental Medicine,", St. Petersburg, Russia
| | - Irina Abdurasulova
- Pavlov Department of Physiology, Federal State Budgetary Scientific Institution "Institute of Experimental Medicine,", St. Petersburg, Russia
| | - Gennady Bisaga
- Department of Neurology, S.M. Kirov Military Medical Academy, St. Petersburg, Russia
| | - Dmitry Skulyabin
- Department of Neurology, S.M. Kirov Military Medical Academy, St. Petersburg, Russia
| | - Victor Klimenko
- Pavlov Department of Physiology, Federal State Budgetary Scientific Institution "Institute of Experimental Medicine,", St. Petersburg, Russia
| |
Collapse
|
17
|
Fang P, Yu M, Wan D, Zhang L, Han L, Shen Z, Shi M, Zhu Y, Zhang Z, Bo P. Regulatory effects of galanin system on development of several age-related chronic diseases. Exp Gerontol 2017; 95:88-97. [PMID: 28450241 DOI: 10.1016/j.exger.2017.04.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 04/21/2017] [Accepted: 04/24/2017] [Indexed: 02/07/2023]
Abstract
Age is a major risk factor for developing chronic diseases, including type 2 diabetes, depression and Alzheimer's disease. The rapidly increase in the morbidity of these age-related chronic diseases is becoming a global problem. Although our understanding of these age-related diseases has tremendously been improved in recent years, certain aspects of their etiology and relative regulatory factors still remain elusive to clinicians and researchers. Emerging evidences suggest that neuropeptide galanin is involved in the pathogenesis of type 2 diabetes, depression and Alzheimer's disease. This article summarized relevant results of our and others studies to highlight the relationship between the galanin system and these age-related chronic diseases. On the one hand, a high galanin expression was found in subjects with type 2 diabetes, depression and Alzheimer's disease. On the other hand, current data suggest that galanin and its agonists (M617, M1145 and M1153) manifest the characters of anti-insulin resistance, anti-Alzheimer's disease and ameliorate or reinforce depression-like behavior. Specially, activation of GAL2 can alleviate those disease features in human and rodent models. These are helpful for us to understand the roles of galanin system in the pathogenesis of these age-related chronic diseases and to provide useful hints for the development of novel approaches to treat these complex diseases.
Collapse
Affiliation(s)
- Penghua Fang
- Laboratory of Gerontology, Nanjing University of Chinese Medicine Hanlin College, Taizhou, 225300, China,; Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou, 225001, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Age-related Diseases, Medical College, Yangzhou University, Yangzhou, 225001, China
| | - Mei Yu
- Laboratory of Gerontology, Nanjing University of Chinese Medicine Hanlin College, Taizhou, 225300, China
| | - Dang Wan
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Age-related Diseases, Medical College, Yangzhou University, Yangzhou, 225001, China
| | - Lei Zhang
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Age-related Diseases, Medical College, Yangzhou University, Yangzhou, 225001, China
| | - Long Han
- Laboratory of Gerontology, Nanjing University of Chinese Medicine Hanlin College, Taizhou, 225300, China
| | - Zhongqi Shen
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou, 225001, China
| | - Mingyi Shi
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou, 225001, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Age-related Diseases, Medical College, Yangzhou University, Yangzhou, 225001, China
| | - Yan Zhu
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou, 225001, China
| | - Zhenwen Zhang
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou, 225001, China.
| | - Ping Bo
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou, 225001, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Age-related Diseases, Medical College, Yangzhou University, Yangzhou, 225001, China
| |
Collapse
|
18
|
Madsen PM, Sloley SS, Vitores AA, Carballosa-Gautam MM, Brambilla R, Hentall ID. Prolonged stimulation of a brainstem raphe region attenuates experimental autoimmune encephalomyelitis. Neuroscience 2017; 346:395-402. [PMID: 28147248 PMCID: PMC5337132 DOI: 10.1016/j.neuroscience.2017.01.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 01/17/2017] [Accepted: 01/23/2017] [Indexed: 12/22/2022]
Abstract
Multiple sclerosis (MS), a neuroinflammatory disease, has few treatment options, none entirely adequate. We studied whether prolonged electrical microstimulation of a hindbrain region (the nucleus raphe magnus) can attenuate experimental autoimmune encephalomyelitis, a murine model of MS induced by MOG35-55 injection. Eight days after symptoms emerged, a wireless electrical stimulator with an attached microelectrode was implanted cranially, and daily intermittent stimulation was begun in awake, unrestrained mice. The thoracic spinal cord was analyzed for changes in histology (on day 29) and gene expression (on day 37), with a focus on myelination and cytokine production. Controls, with inactive implants, showed a phase of disease exacerbation on days 19-25 that stimulation for >16days eliminated. Prolonged stimulation also reduced numbers of infiltrating immune cells and increased numbers of myelinated axons. It additionally lowered genetic expression of some pro-inflammatory cytokines (interferon gamma and tumor necrosis factor) and platelet-derived growth factor receptor alpha, a marker of oligodendrocyte precursors, while raising expression of myelin basic protein. Studies of restorative treatments for MS might profitably consider ways to stimulate the raphe magnus, directly or via its inputs, or to emulate its serotonergic and peptidergic output.
Collapse
Affiliation(s)
- Pernille M Madsen
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, USA; Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Stephanie S Sloley
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, USA
| | - Alberto A Vitores
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, USA
| | | | - Roberta Brambilla
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, USA.
| | - Ian D Hentall
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, USA.
| |
Collapse
|
19
|
Milovanovic J, Popovic B, Milovanovic M, Kvestak D, Arsenijevic A, Stojanovic B, Tanaskovic I, Krmpotic A, Arsenijevic N, Jonjic S, Lukic ML. Murine Cytomegalovirus Infection Induces Susceptibility to EAE in Resistant BALB/c Mice. Front Immunol 2017; 8:192. [PMID: 28289417 PMCID: PMC5326788 DOI: 10.3389/fimmu.2017.00192] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Accepted: 02/09/2017] [Indexed: 12/24/2022] Open
Abstract
In contrast to C57BL/6 mice, BALB/c mice are relatively resistant to the induction of experimental autoimmune encephalomyelitis (EAE) after challenge with MOG35–55 peptide. Here, we provide the first evidence that infection with murine cytomegalovirus (MCMV) in adulthood abrogates this resistance. Infected BALB/c mice developed clinical and histological signs similar to those seen in susceptible C57BL/6 mice. In addition to CD4+ cells, large proportion of cells in the infiltrate of diseased BALB/c mice was CD8+, similar with findings in multiple sclerosis. CD8+ cells that responded to ex vivo restimulation with MOG35–55 were not specific for viral epitopes pp89 and m164. MCMV infection favors proinflammatory type of dendritic cells (CD86+CD40+CD11c+) in the peripheral lymph organs, M1 type of microglia in central nervous system, and increases development of Th1/Th17 encephalitogenic cells. This study indicates that MCMV may enhance autoimmune neuropathology and abrogate inherent resistance to EAE in mouse strain by enhancing proinflammatory phenotype of antigen-presenting cells, Th1/Th17, and CD8 response to MOG35–55.
Collapse
Affiliation(s)
- Jelena Milovanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia; Faculty of Medical Sciences, Institute of Histology, University of Kragujevac, Kragujevac, Serbia
| | - Branka Popovic
- Center for Proteomics, Faculty of Medicine, Department for Histology and Embryology, University of Rijeka , Rijeka , Croatia
| | - Marija Milovanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac , Kragujevac , Serbia
| | - Daria Kvestak
- Center for Proteomics, Faculty of Medicine, Department for Histology and Embryology, University of Rijeka , Rijeka , Croatia
| | - Aleksandar Arsenijevic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac , Kragujevac , Serbia
| | - Bojana Stojanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia; Faculty of Medical Sciences, Institute of Pathophysiology, University of Kragujevac, Kragujevac, Serbia
| | - Irena Tanaskovic
- Faculty of Medical Sciences, Institute of Histology, University of Kragujevac , Kragujevac , Serbia
| | - Astrid Krmpotic
- Center for Proteomics, Faculty of Medicine, Department for Histology and Embryology, University of Rijeka , Rijeka , Croatia
| | - Nebojsa Arsenijevic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac , Kragujevac , Serbia
| | - Stipan Jonjic
- Center for Proteomics, Faculty of Medicine, Department for Histology and Embryology, University of Rijeka , Rijeka , Croatia
| | - Miodrag L Lukic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac , Kragujevac , Serbia
| |
Collapse
|
20
|
Shenhar-Tsarfaty S, Toker S, Shapira I, Rogowski O, Berliner S, Ritov Y, Soreq H. Weakened Cholinergic Blockade of Inflammation Associates with Diabetes-Related Depression. Mol Med 2016; 22:156-161. [PMID: 27257683 DOI: 10.2119/molmed.2016.00067] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 03/28/2016] [Indexed: 12/25/2022] Open
Abstract
Emerging evidence demonstrates association of depression with both immune malfunctioning and worsened course of diverse aging-related diseases, but there is no explanation for the pathway(s) controlling this dual association. Here, we report that in post-reproductive and evolutionarily -blind" years, depression may weaken pathogen-host defense, compatible with the antagonistic pleiotropy hypothesis. In 15,532 healthy volunteers, depression scores associated with both inflammatory parameters and with increased circulation cholinesterase activities, implicating debilitated cholinergic blockade of inflammation as an underlying mechanism; furthermore, depression, inflammation and cholinesterase activities all increased with aging. In the entire cohort, combined increases in inflammation and the diabetic biomarker hemoglobin A1c associated with elevated depression. Moreover, metabolic syndrome patients with higher risk of diabetes showed increased cholinesterase levels and pulse values, and diabetic patients presented simultaneous increases in depression, inflammation and circulation cholinesterase activities, suggesting that cholinergic impairment precedes depression. Our findings indicate that dysfunctioning cholinergic regulation weakens the otherwise protective link between depression and pathogen-host defense, with global implications for aging-related diseases.
Collapse
Affiliation(s)
- Shani Shenhar-Tsarfaty
- The Edmond and Lily Safra Center for Brain Sciences and The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Israel
| | - Sharon Toker
- Faculty of Management, Tel Aviv University, Israel
| | - Itzhak Shapira
- Department of Internal Medicine, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Ori Rogowski
- Faculty of Management, Tel Aviv University, Israel
| | | | - Yaacov Ritov
- Department of Statistics and the Center for Rationality, The Hebrew University of Jerusalem
| | - Hermona Soreq
- The Edmond and Lily Safra Center for Brain Sciences and The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Israel
| |
Collapse
|
21
|
Zhang Z, Fang P, Shi M, Zhu Y, Bo P. Elevated galanin may predict the risk of type 2 diabetes mellitus for development of Alzheimer's disease. Mech Ageing Dev 2015; 150:20-26. [PMID: 26253934 DOI: 10.1016/j.mad.2015.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Revised: 07/23/2015] [Accepted: 08/02/2015] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease is the most common form of dementia among the elderly and is characterized by progressive loss of memory and cognition. Epidemiological and clinical studies demonstrated that type 2 diabetes mellitus is an important risk factor for the development of Alzheimer's disease, i.e., the patients with type 2 diabetes mellitus are frequently companied with Alzheimer's disease symptoms. Despite many studies recently probed into the comorbid state of both diseases, so far the precise mechanism for this association is poorly understood. Emerging evidences suggest that defects in galanin play a central role on type 2 diabetes mellitus and is considered to be a risk factor for Alzheimer's disease development. This review provides a new insight into the multivariate relationship among galanin, type 2 diabetes mellitus and Alzheimer's disease, highlighting the effect of galanin system on the cross-talk between both diseases in human and rodent models. The current data support that activating central GalR2 attenuates insulin resistance and Alzheimer's disease feature in animal models. These may help us better understanding the pathogenesis of both diseases and provide useful hints for the development of novel therapeutic approaches to treat type 2 diabetes mellitus and Alzheimer's disease.
Collapse
Affiliation(s)
- Zhenwen Zhang
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou 225001, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225001, China
| | - Penghua Fang
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225001, China; Department of Physiology, Nanjing University of Chinese Medicine Hanlin College, Taizhou 225300, China
| | - Mingyi Shi
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou 225001, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225001, China
| | - Yan Zhu
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou 225001, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225001, China
| | - Ping Bo
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou 225001, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225001, China.
| |
Collapse
|
22
|
Freimann K, Kurrikoff K, Langel Ü. Galanin receptors as a potential target for neurological disease. Expert Opin Ther Targets 2015. [PMID: 26220265 DOI: 10.1517/14728222.2015.1072513] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Galanin is a 29/30 amino acid long neuropeptide that is widely expressed in the brains of many mammals. Galanin exerts its biological activities through three different G protein-coupled receptors, GalR1, GalR2 and GalR3. The widespread distribution of galanin and its receptors in the CNS and the various physiological and pharmacological effects of galanin make the galanin receptors attractive drug targets. AREAS COVERED This review provides an overview of the role of galanin and its receptors in the CNS, the involvement of the galaninergic system in various neurological diseases and the development of new galanin receptor-specific ligands. EXPERT OPINION Recent advances and novel approaches in migrating the directions of subtype-selective ligand development and chemical modifications of the peptide backbone highlight the importance of the galanin neurochemical system as a potential target for drug development.
Collapse
Affiliation(s)
- Krista Freimann
- a 1 University of Tartu, Institute of Technology , Tartu, Estonia +372 737 4871 ;
| | - Kaido Kurrikoff
- b 2 University of Tartu, Institute of Technology , Tartu, Estonia
| | - Ülo Langel
- c 3 University of Tartu, Institute of Technology , Tartu, Estonia.,d 4 Stockholm University, Arrhenius Laboratories for Natural Science, Department of Neurochemistry , Stockholm, Sweden
| |
Collapse
|
23
|
Gresle MM, Butzkueven H, Perreau VM, Jonas A, Xiao J, Thiem S, Holmes FE, Doherty W, Soo PY, Binder MD, Akkermann R, Jokubaitis VG, Cate HS, Marriott MP, Gundlach AL, Wynick D, Kilpatrick TJ. Galanin is an autocrine myelin and oligodendrocyte trophic signal induced by leukemia inhibitory factor. Glia 2015; 63:1005-20. [PMID: 25639936 DOI: 10.1002/glia.22798] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 01/08/2015] [Indexed: 12/12/2022]
Abstract
In order to further investigate the molecular mechanisms that regulate oligodendrocyte (OC) survival, we utilized microarrays to characterize changes in OC gene expression after exposure to the cytokines neurotrophin3, insulin, or leukemia inhibitory factor (LIF) in vitro. We identified and validated the induction and secretion of the neuropeptide galanin in OCs, specifically in response to LIF. We next established that galanin is an OC survival factor and showed that autocrine or paracrine galanin secretion mediates LIF-induced OC survival in vitro. We also revealed that galanin is up-regulated in OCs in the cuprizone model of central demyelination, and that oligodendroglial galanin expression is significantly regulated by endogenous LIF in this context. We also showed that knock-out of galanin reduces OC survival and exacerbates callosal demyelination in the cuprizone model. These findings suggest a potential role for the use of galanin agonists in the treatment of human demyelinating diseases.
Collapse
Affiliation(s)
- Melissa M Gresle
- Melbourne Brain Centre at the Royal Melbourne Hospital, University of Melbourne, Australia; Department of Medicine, University of Melbourne, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Lang R, Gundlach AL, Holmes FE, Hobson SA, Wynick D, Hökfelt T, Kofler B. Physiology, signaling, and pharmacology of galanin peptides and receptors: three decades of emerging diversity. Pharmacol Rev 2015; 67:118-75. [PMID: 25428932 DOI: 10.1124/pr.112.006536] [Citation(s) in RCA: 234] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Galanin was first identified 30 years ago as a "classic neuropeptide," with actions primarily as a modulator of neurotransmission in the brain and peripheral nervous system. Other structurally-related peptides-galanin-like peptide and alarin-with diverse biologic actions in brain and other tissues have since been identified, although, unlike galanin, their cognate receptors are currently unknown. Over the last two decades, in addition to many neuronal actions, a number of nonneuronal actions of galanin and other galanin family peptides have been described. These include actions associated with neural stem cells, nonneuronal cells in the brain such as glia, endocrine functions, effects on metabolism, energy homeostasis, and paracrine effects in bone. Substantial new data also indicate an emerging role for galanin in innate immunity, inflammation, and cancer. Galanin has been shown to regulate its numerous physiologic and pathophysiological processes through interactions with three G protein-coupled receptors, GAL1, GAL2, and GAL3, and signaling via multiple transduction pathways, including inhibition of cAMP/PKA (GAL1, GAL3) and stimulation of phospholipase C (GAL2). In this review, we emphasize the importance of novel galanin receptor-specific agonists and antagonists. Also, other approaches, including new transgenic mouse lines (such as a recently characterized GAL3 knockout mouse) represent, in combination with viral-based techniques, critical tools required to better evaluate galanin system physiology. These in turn will help identify potential targets of the galanin/galanin-receptor systems in a diverse range of human diseases, including pain, mood disorders, epilepsy, neurodegenerative conditions, diabetes, and cancer.
Collapse
Affiliation(s)
- Roland Lang
- Department of Dermatology (R.L.) and Laura Bassi Centre of Expertise, Department of Pediatrics (B.K.), Paracelsus Private Medical University, Salzburg, Austria; The Florey Institute of Neuroscience and Mental Health, and Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia (A.L.G.); Schools of Physiology and Pharmacology and Clinical Sciences, Bristol University, Bristol, United Kingdom (F.E.H., S.A.H., D.W.); and Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (T.H.)
| | - Andrew L Gundlach
- Department of Dermatology (R.L.) and Laura Bassi Centre of Expertise, Department of Pediatrics (B.K.), Paracelsus Private Medical University, Salzburg, Austria; The Florey Institute of Neuroscience and Mental Health, and Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia (A.L.G.); Schools of Physiology and Pharmacology and Clinical Sciences, Bristol University, Bristol, United Kingdom (F.E.H., S.A.H., D.W.); and Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (T.H.)
| | - Fiona E Holmes
- Department of Dermatology (R.L.) and Laura Bassi Centre of Expertise, Department of Pediatrics (B.K.), Paracelsus Private Medical University, Salzburg, Austria; The Florey Institute of Neuroscience and Mental Health, and Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia (A.L.G.); Schools of Physiology and Pharmacology and Clinical Sciences, Bristol University, Bristol, United Kingdom (F.E.H., S.A.H., D.W.); and Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (T.H.)
| | - Sally A Hobson
- Department of Dermatology (R.L.) and Laura Bassi Centre of Expertise, Department of Pediatrics (B.K.), Paracelsus Private Medical University, Salzburg, Austria; The Florey Institute of Neuroscience and Mental Health, and Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia (A.L.G.); Schools of Physiology and Pharmacology and Clinical Sciences, Bristol University, Bristol, United Kingdom (F.E.H., S.A.H., D.W.); and Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (T.H.)
| | - David Wynick
- Department of Dermatology (R.L.) and Laura Bassi Centre of Expertise, Department of Pediatrics (B.K.), Paracelsus Private Medical University, Salzburg, Austria; The Florey Institute of Neuroscience and Mental Health, and Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia (A.L.G.); Schools of Physiology and Pharmacology and Clinical Sciences, Bristol University, Bristol, United Kingdom (F.E.H., S.A.H., D.W.); and Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (T.H.)
| | - Tomas Hökfelt
- Department of Dermatology (R.L.) and Laura Bassi Centre of Expertise, Department of Pediatrics (B.K.), Paracelsus Private Medical University, Salzburg, Austria; The Florey Institute of Neuroscience and Mental Health, and Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia (A.L.G.); Schools of Physiology and Pharmacology and Clinical Sciences, Bristol University, Bristol, United Kingdom (F.E.H., S.A.H., D.W.); and Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (T.H.)
| | - Barbara Kofler
- Department of Dermatology (R.L.) and Laura Bassi Centre of Expertise, Department of Pediatrics (B.K.), Paracelsus Private Medical University, Salzburg, Austria; The Florey Institute of Neuroscience and Mental Health, and Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia (A.L.G.); Schools of Physiology and Pharmacology and Clinical Sciences, Bristol University, Bristol, United Kingdom (F.E.H., S.A.H., D.W.); and Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (T.H.)
| |
Collapse
|
25
|
Age-associated changes in rat immune system: Lessons learned from experimental autoimmune encephalomyelitis. Exp Gerontol 2014; 58:179-97. [DOI: 10.1016/j.exger.2014.08.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 07/24/2014] [Accepted: 08/12/2014] [Indexed: 01/15/2023]
|
26
|
Cordero-Llana O, Rinaldi F, Brennan PA, Wynick D, Caldwell MA. Galanin promotes neuronal differentiation from neural progenitor cells in vitro and contributes to the generation of new olfactory neurons in the adult mouse brain. Exp Neurol 2014; 256:93-104. [PMID: 24726665 DOI: 10.1016/j.expneurol.2014.04.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 03/28/2014] [Accepted: 04/01/2014] [Indexed: 12/12/2022]
Abstract
Galanin is a pleiotropic neuropeptide widely expressed in the nervous system. It plays a role in many diverse physiological functions - including nociception, cognition and metabolism regulation - and acts as neurotrophic/neuroprotective factor for several neuronal populations. In this article we sought to determine the role of galanin on neural stem cell function and its contribution to the plasticity of the nervous system. Here we show that galanin and its receptors are expressed in neural progenitor cells (NPCs) isolated from the developing striatum. Stimulation with galanin results in upregulation of Bcl-Xl, Bcl-2, Mash-1 and Olig-2 that are part of well known pro-survival/pro-neuronal signalling pathways. Accordingly, treatment with galanin increases the number of neurons upon differentiation from these progenitors. We then show that these effects are recapitulated in NPCs isolated from the adult subventricular zone (SVZ), where galanin increases the total number of neurons and the number of newly-generated neurons upon differentiation in vitro. The significance of these findings is highlighted in the adult brain where loss of galanin leads to a marked decrease in the rate of adult SVZ neurogenesis and a reduction in the number of newly generated cells in the olfactory bulb. Interestingly, Gal-KO mice display normal performances in simple tasks of olfactory detection and discrimination, which points to the existence of a certain degree of redundancy in SVZ neurogenesis. Our findings establish the role of galanin as a modulator of neural stem cell function and support the importance of galanin for brain plasticity and repair.
Collapse
Affiliation(s)
- Oscar Cordero-Llana
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, Dorothy Hodgkin Building, School of Clinical Sciences, University of Bristol, BS1 3NY, UK
| | - Federica Rinaldi
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, Dorothy Hodgkin Building, School of Clinical Sciences, University of Bristol, BS1 3NY, UK
| | - Peter A Brennan
- School of Physiology and Pharmacology, University of Bristol, Medical Sciences Building, University Walk, BS8 1TD, UK
| | - David Wynick
- School of Physiology and Pharmacology, University of Bristol, Medical Sciences Building, University Walk, BS8 1TD, UK; School of Clinical Sciences, University of Bristol, Medical Sciences Building, University Walk, BS8 1TD, UK.
| | - Maeve A Caldwell
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, Dorothy Hodgkin Building, School of Clinical Sciences, University of Bristol, BS1 3NY, UK; School of Clinical Sciences, University of Bristol, Medical Sciences Building, University Walk, BS8 1TD, UK.
| |
Collapse
|
27
|
Sardi C, Zambusi L, Finardi A, Ruffini F, Tolun AA, Dickerson IM, Righi M, Zacchetti D, Grohovaz F, Provini L, Furlan R, Morara S. Involvement of calcitonin gene-related peptide and receptor component protein in experimental autoimmune encephalomyelitis. J Neuroimmunol 2014; 271:18-29. [PMID: 24746422 DOI: 10.1016/j.jneuroim.2014.03.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 03/02/2014] [Accepted: 03/07/2014] [Indexed: 01/15/2023]
Abstract
Calcitonin Gene-Related Peptide (CGRP) inhibits microglia inflammatory activation in vitro. We here analyzed the involvement of CGRP and Receptor Component Protein (RCP) in experimental autoimmune encephalomyelitis (EAE). Alpha-CGRP deficiency increased EAE scores which followed the scale alpha-CGRP null>heterozygote>wild type. In wild type mice, CGRP delivery into the cerebrospinal fluid (CSF) 1) reduced chronic EAE (C-EAE) signs, 2) inhibited microglia activation (revealed by quantitative shape analysis), and 3) did not alter GFAP expression, cell density, lymphocyte infiltration, and peripheral lymphocyte production of IFN-gamma, TNF-alpha, IL-17, IL-2, and IL-4. RCP (probe for receptor involvement) was expressed in white matter microglia, astrocytes, oligodendrocytes, and vascular-endothelial cells: in EAE, also in infiltrating lymphocytes. In relapsing-remitting EAE (R-EAE) RCP increased during relapse, without correlation with lymphocyte density. RCP nuclear localization (stimulated by CGRP in vitro) was I) increased in microglia and decreased in astrocytes (R-EAE), and II) increased in microglia by CGRP CSF delivery (C-EAE). Calcitonin like receptor was rarely localized in nuclei of control and relapse mice. CGRP increased in motoneurons. In conclusion, CGRP can inhibit microglia activation in vivo in EAE. CGRP and its receptor may represent novel protective factors in EAE, apparently acting through the differential cell-specific intracellular translocation of RCP.
Collapse
Affiliation(s)
- Claudia Sardi
- Neuroscience Institute, C.N.R., Via Vanvitelli 32, 20129 Milano, Italy
| | - Laura Zambusi
- Neuroscience Institute, C.N.R., Via Vanvitelli 32, 20129 Milano, Italy; Dept. of Medical Biotechnol. Translational Medicine, University of Milano, Via Vanvitelli 32, 20129 Milano, Italy
| | - Annamaria Finardi
- Division of Neuroscience, San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milano, Italy
| | - Francesca Ruffini
- Division of Neuroscience, San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milano, Italy
| | - Adviye A Tolun
- Dept. of Biochem. Mol. Biol., University of Miami, Miami, FL 33101, USA
| | - Ian M Dickerson
- Dept. of Neurobiol. Anatomy, University of Rochester, 601 Elmwood Avenue, Box 603, Rochester, NY 14642, USA
| | - Marco Righi
- Neuroscience Institute, C.N.R., Via Vanvitelli 32, 20129 Milano, Italy; Dept. of Medical Biotechnol. Translational Medicine, University of Milano, Via Vanvitelli 32, 20129 Milano, Italy
| | - Daniele Zacchetti
- Division of Neuroscience, San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milano, Italy
| | - Fabio Grohovaz
- Division of Neuroscience, San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milano, Italy; Vita-Salute San Raffaele University, Via Olgettina 58, 20132 Milano, Italy
| | - Luciano Provini
- Dept. of Pharmacol. Biomol. Sci., University of Milano, Via Trentacoste 2, 20133 Milano, Italy
| | - Roberto Furlan
- Division of Neuroscience, San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milano, Italy
| | - Stefano Morara
- Neuroscience Institute, C.N.R., Via Vanvitelli 32, 20129 Milano, Italy; Dept. of Medical Biotechnol. Translational Medicine, University of Milano, Via Vanvitelli 32, 20129 Milano, Italy.
| |
Collapse
|
28
|
Lioudyno VI, Aksenova TS, Abdurasulova IN, Klimenko VM. Allelic variants of the galanin gene in Wistar rats. NEUROCHEM J+ 2014. [DOI: 10.1134/s1819712414010103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
29
|
Milovanovic M, Volarevic V, Ljujic B, Radosavljevic G, Jovanovic I, Arsenijevic N, Lukic ML. Deletion of IL-33R (ST2) abrogates resistance to EAE in BALB/C mice by enhancing polarization of APC to inflammatory phenotype. PLoS One 2012; 7:e45225. [PMID: 23028861 PMCID: PMC3445483 DOI: 10.1371/journal.pone.0045225] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 08/20/2012] [Indexed: 12/14/2022] Open
Abstract
The administration of interleukin 33 and deletion of IL-33 receptor, ST2 molecule, affects the induction of autoimmunity in different experimental models of human autoimmune diseases. The aim of this study was to analyze the effect of ST2 deletion on the induction of experimental autoimmune encephalomyelitis (EAE) in resistant BALB/c mice. Mice were immunized with MOG(35-55) peptide or disease was induced by passive transfer of encephalitogenic singenic cells and EAE was clinically and histologically evaluated. Expression of intracellular inflammatory cytokines, markers of activation and chemokine receptors on lymphoid tissue and CNS infiltrating mononuclear cells was analyzed by flow cytometry. We report here that deletion of ST2(-/-) molecule abrogates resistance of BALB/c mice to EAE induction based on clinical and histopathological findings. Brain and spinal cord infiltrates of ST2(-/-) mice had significantly higher number of CD4(+) T lymphocytes containing inflammatory cytokines compared to BALB/c WT mice. Adoptive transfer of ST2(-/-) primed lymphocytes induced clinical signs of the disease in ST2(-/-) as well as in WT mice. MOG(35-55) restimulated ST2(-/-) CD4(+) cells as well as ex vivo analyzed lymph node cells had higher expression of T-bet and IL-17, IFN-γ, TNF-α and GM-CSF in comparison with WT CD4(+) cells. ST2(-/-) mice had higher percentages of CD4(+) cells expressing chemokine receptors important for migration to CNS in comparison with WT CD4(+) cells. Draining lymph nodes of ST2(-/-) mice contained higher percentage of CD11c(+)CD11b(+)CD8(-) cells containing inflammatory cytokines IL-6 and IL-12 with higher expression of activation markers. Transfer of ST2(-/-) but not WT dendritic cells induced EAE in MOG(35-55) immunized WT mice. Our results indicate that ST2 deficiency attenuates inherent resistance of BALB/c mice to EAE induction by enhancing differentiation of proinflammatory antigen presenting cells and consecutive differentiation of encephalitogenic T cells in the draining lymph node rather than affecting their action in the target tissue.
Collapse
MESH Headings
- Animals
- Antigens, CD/genetics
- Antigens, CD/immunology
- Brain/immunology
- Brain/pathology
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/pathology
- Cytokines/biosynthesis
- Cytokines/immunology
- Dendritic Cells/immunology
- Dendritic Cells/pathology
- Disease Susceptibility/immunology
- Encephalomyelitis, Autoimmune, Experimental/complications
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Female
- Gene Deletion
- Gene Expression
- Humans
- Immunophenotyping
- Inflammation/complications
- Inflammation/genetics
- Inflammation/immunology
- Inflammation/pathology
- Interleukin-1 Receptor-Like 1 Protein
- Interleukin-33
- Interleukins/genetics
- Interleukins/immunology
- Lymph Nodes/immunology
- Lymph Nodes/pathology
- Mice
- Mice, Inbred BALB C
- Mice, Knockout
- Phenotype
- Receptors, Interleukin/deficiency
- Receptors, Interleukin/genetics
- Receptors, Interleukin/immunology
- Spinal Cord/immunology
- Spinal Cord/pathology
Collapse
Affiliation(s)
- Marija Milovanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Vladislav Volarevic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Biljana Ljujic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Gordana Radosavljevic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Ivan Jovanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Nebojsa Arsenijevic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Miodrag L. Lukic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
- * E-mail:
| |
Collapse
|
30
|
Du C, Xie X. G protein-coupled receptors as therapeutic targets for multiple sclerosis. Cell Res 2012; 22:1108-28. [PMID: 22664908 DOI: 10.1038/cr.2012.87] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
G protein-coupled receptors (GPCRs) mediate most of our physiological responses to hormones, neurotransmitters and environmental stimulants. They are considered as the most successful therapeutic targets for a broad spectrum of diseases. Multiple sclerosis (MS) is an inflammatory disease that is characterized by immune-mediated demyelination and degeneration of the central nervous system (CNS). It is the leading cause of non-traumatic disability in young adults. Great progress has been made over the past few decades in understanding the pathogenesis of MS. Numerous data from animal and clinical studies indicate that many GPCRs are critically involved in various aspects of MS pathogenesis, including antigen presentation, cytokine production, T-cell differentiation, T-cell proliferation, T-cell invasion, etc. In this review, we summarize the recent findings regarding the expression or functional changes of GPCRs in MS patients or animal models, and the influences of GPCRs on disease severity upon genetic or pharmacological manipulations. Hopefully some of these findings will lead to the development of novel therapies for MS in the near future.
Collapse
Affiliation(s)
- Changsheng Du
- Laboratory of Receptor-Based BioMedicine, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | | |
Collapse
|
31
|
Galanin transgenic mice with elevated circulating galanin levels alleviate demyelination in a cuprizone-induced MS mouse model. PLoS One 2012; 7:e33901. [PMID: 22442732 PMCID: PMC3307774 DOI: 10.1371/journal.pone.0033901] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 02/19/2012] [Indexed: 01/15/2023] Open
Abstract
Multiple Sclerosis (MS) is a demyelinating autoimmune disease of the central nervous system (CNS) with a presumed autoimmune etiology. Approved treatments for MS are immunoregulatory and are able to reduce the inflammatory components of the disease. However, these treatments do not suppress progressive clinical disability. Approaches that directly protect myelin-producing oligodendrocytes and enhance remyelination are likely to improve long-term outcomes and reduce the rate of axonal damage. Galanin (GAL) is a bioactive neuropeptide that is widely distributed throughout the nervous system and has diverse neuromodulatory effects. In this study, using the cuprizone (CPZ) demyelination model of MS, we demonstrate that GAL has pronounced neuroprotective effects with respect to demyelination and remyelination. Using our GAL transgenic mouse (GAL-Tg), we identified a novel attenuation of OLs against CPZ induced demyelination, which was exerted independently of progenitor cells. Alleviation of myelin breakdown in the GAL-Tg mice was observed to be significant. Furthermore, we observed changes in the expression of the GAL receptor GalR1 during the demyelination and remyelination processes. Our data strongly indicate that GAL has the capacity to influence the outcome of primary insults that directly target OLs, as opposed to cases where immune activation is the primary pathogenic event. Taken together, these results suggest that GAL is a promising next-generation target for the treatment of MS.
Collapse
|
32
|
Robertson CR, Pruess TH, Grussendorf E, White HS, Bulaj G. Generating orally active galanin analogues with analgesic activities. ChemMedChem 2012; 7:903-9. [PMID: 22374865 DOI: 10.1002/cmdc.201100574] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 01/25/2012] [Indexed: 12/13/2022]
Abstract
The endogenous neuropeptide galanin has anticonvulsant and analgesic properties mediated by galanin receptors expressed in the central and peripheral nervous systems. Our previous work showed that by combining truncation of the galanin peptide with N- and C-terminal modifications afforded analogues that suppress seizures or pain upon intraperitoneal (i.p.) administration. To generate orally active galanin analogues, the previously reported lead compound Gal-B2 (NAX 5055) was redesigned by 1) central truncation, (2) introduction of D-amino acids, and 3) addition of backbone spacers. Analogue D-Gal(7-Ahp)-B2, containing 7-aminoheptanoic acid as a backbone spacer and an oligo-D-lysine motif at the C terminus, exhibits anticonvulsant and analgesic activity post-i.p. administration. Oral administration of D-Gal(7-Ahp)-B2 demonstrates analgesic activity with decreases in both acute and inflammatory pain in the mouse formalin model of pain at doses as low as 8 mg kg(-1) .
Collapse
Affiliation(s)
- Charles R Robertson
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT 84108, USA.
| | | | | | | | | |
Collapse
|
33
|
Shen PJ, Gundlach AL. Galanin systems and ischemia: peptide and receptor plasticity in neurons and oligodendroglial precursors. EXPERIENTIA SUPPLEMENTUM (2012) 2011; 102:209-21. [PMID: 21299071 DOI: 10.1007/978-3-0346-0228-0_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Cerebral cortex contains few if any galanin neurons, but receives galanin-ergic inputs from subcortical areas. Apart from our earlier study on the response to cortical spreading depression, little is known about the presence and function of galanin in normal or injured cortex and to gain more insight into its possible roles, we investigated the temporal effects of focal ischemia on the expression of galanin and galanin receptors (GalRs). Focal ischemia induced in the rat by unilateral middle cerebral artery occlusion increased galanin and GalR1 mRNAs in penumbral/undamaged areas on the first and second day post-ischemia, while increased GalR2 mRNA was observed in the same regions only on the second day. Immunohistochemical studies revealed galanin immunoreactive neurons in the frontal/ cingulate cortex and abundant galanin-immunoreactivity in nerve axons/fibres within the penumbral areas, between the third and the seventh day after ischemia. Galanin mRNA and immunoreactivity was also increased in a population of small cells thought to be NG2-positive oligodendrocyte precursors. Up-regulation of galanin and GalRs in various cell populations following severe ischemic injury further demonstrates the marked plasticity of galanin and GalR1/2 expression after brain injury, and together with data reported elsewhere in this volume, suggests a functional role for galanin signalling in such pathophysiological conditions.
Collapse
Affiliation(s)
- Pei-Juan Shen
- Florey Neuroscience Institutes, The University of Melbourne, Melbourne, VIC 3010, Australia
| | | |
Collapse
|
34
|
Banerjee R, Henson BS, Russo N, Tsodikov A, D'Silva NJ. Rap1 mediates galanin receptor 2-induced proliferation and survival in squamous cell carcinoma. Cell Signal 2011; 23:1110-8. [PMID: 21345369 DOI: 10.1016/j.cellsig.2011.02.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2010] [Revised: 02/10/2011] [Accepted: 02/11/2011] [Indexed: 02/06/2023]
Abstract
Previously we showed that galanin, a neuropeptide, is secreted by human squamous cell carcinoma of the head and neck (SCCHN) in which it exhibits an autocrine mitogenic effect. We also showed that rap1, a ras-like signaling protein, is a critical mediator of SCCHN progression. Given the emerging importance of the galanin cascade in regulating proliferation and survival, we investigated the effect of GAL on SCCHN progression via induction of galanin receptor 2 (GALR2)-mediated rap1 activation. Studies were performed in multiple SCCHN cell lines by inducing endogenous GALR2, by stably overexpressing GALR2 and by downregulating endogenous GALR2 with siGALR2. Cell proliferation and survival, mediated by the ERK and AKT signaling cascades, respectively, were evaluated by functional and immunoblot analysis. The role of rap1 in GALR2-mediated proliferation and survival was evaluated by modulating expression. Finally, the effect of GALR2 on tumor growth was determined. GALR2 stimulated proliferation and survival via ERK and AKT activation, respectively. Knockdown or inactivation of rap1 inhibited GALR2-induced, AKT and ERK-mediated survival and proliferation. Overexpression of GALR2 promoted tumor growth in vivo. GALR2 promotes proliferation and survival in vitro, and promotes tumor growth in vivo, consistent with an oncogenic role for GALR2 in SCCHN.
Collapse
Affiliation(s)
- Rajat Banerjee
- Department of Periodontics and Oral Medicine, School of Dentistry, The University of Michigan, 1011 N. University Avenue, Ann Arbor, MI 48109, USA
| | | | | | | | | |
Collapse
|
35
|
Ifuku M, Okuno Y, Yamakawa Y, Izumi K, Seifert S, Kettenmann H, Noda M. Functional importance of inositol-1,4,5-triphosphate-induced intracellular Ca2+ mobilization in galanin-induced microglial migration. J Neurochem 2011; 117:61-70. [DOI: 10.1111/j.1471-4159.2011.07176.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
36
|
Abstract
The immune system defends the organism against invading pathogens. In recent decades it became evident that elimination of such pathogens, termination of inflammation, and restoration of host homeostasis all depend on bidirectional crosstalk between the immune system and the neuroendocrine system. This crosstalk is mediated by a complex network of interacting molecules that modulates inflammation and cell growth. Among these mediators are neuropeptides released from neuronal and non-neuronal components of the central and peripheral nervous systems, endocrine tissues, and cells of the immune system. Neuropeptide circuitry controls tissue inflammation and maintenance, and an imbalance of pro- and anti-inflammatory neuropeptides results in loss of host homeostasis and triggers inflammatory diseases. The galanin peptide family is undoubtedly involved in the regulation of inflammatory processes, and the aim of this review is to provide up-to-date knowledge from the literature concerning the regulation of galanin and its receptors in the nervous system and peripheral tissues in experimental models of inflammation. We also highlight the effects of galanin and other members of the galanin peptide family on experimentally induced inflammation and discuss these data in light of an anti-inflammatory role for this family of peptides.
Collapse
Affiliation(s)
- Roland Lang
- Department of Dermatology, Paracelsus Medical University Salzburg, Muellner-Hauptstrasse 48, A-5020 Salzburg, Austria
| | | |
Collapse
|
37
|
Downer EJ, Clifford E, Gran B, Nel HJ, Fallon PG, Moynagh PN. Identification of the synthetic cannabinoid R(+)WIN55,212-2 as a novel regulator of IFN regulatory factor 3 activation and IFN-beta expression: relevance to therapeutic effects in models of multiple sclerosis. J Biol Chem 2011; 286:10316-28. [PMID: 21245146 DOI: 10.1074/jbc.m110.188599] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
β-Interferons (IFN-βs) represent one of the first line treatments for relapsing-remitting multiple sclerosis, slowing disease progression while reducing the frequency of relapses. Despite this, more effective, well tolerated therapeutic strategies are needed. Cannabinoids palliate experimental autoimmune encephalomyelitis (EAE) symptoms and have therapeutic potential in MS patients although the precise molecular mechanism for these effects is not understood. Toll-like receptor (TLR) signaling controls innate immune responses and TLRs are implicated in MS. Here we demonstrate that the synthetic cannabinoid R(+)WIN55,212-2 is a novel regulator of TLR3 and TLR4 signaling by inhibiting the pro-inflammatory signaling axis triggered by TLR3 and TLR4, whereas selectively augmenting TLR3-induced activation of IFN regulatory factor 3 (IRF3) and expression of IFN-β. We present evidence that R(+)WIN55,212-2 strongly promotes the nuclear localization of IRF3. The potentiation of IFN-β expression by R(+)WIN55,212-2 is critical for manifesting its protective effects in the murine MS model EAE as evidenced by its reduced therapeutic efficacy in the presence of an anti-IFN-β antibody. R(+)WIN55,212-2 also induces IFN-β expression in MS patient peripheral blood mononuclear cells, whereas down-regulating inflammatory signaling in these cells. These findings identify R(+)WIN55,212-2 as a novel regulator of TLR3 signaling to IRF3 activation and IFN-β expression and highlights a new mechanism that may be open to exploitation in the development of new therapeutics for the treatment of MS.
Collapse
Affiliation(s)
- Eric J Downer
- Institute of Immunology, National University of Ireland Maynooth, Co. Kildare, Ireland
| | | | | | | | | | | |
Collapse
|
38
|
Pope RJP, Holmes FE, Kerr NC, Wynick D. Characterisation of the nociceptive phenotype of suppressible galanin overexpressing transgenic mice. Mol Pain 2010; 6:67. [PMID: 20964829 PMCID: PMC2978139 DOI: 10.1186/1744-8069-6-67] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Accepted: 10/21/2010] [Indexed: 12/16/2022] Open
Abstract
The neuropeptide galanin is widely expressed in both the central and peripheral nervous systems and is involved in many diverse biological functions. There is a substantial data set that demonstrates galanin is upregulated after injury in the DRG, spinal cord and in many brain regions where it plays a predominantly antinociceptive role in addition to being neuroprotective and pro-regenerative. To further characterise the role of galanin following nerve injury, a novel transgenic line was created using the binary transgenic tet-off system, to overexpress galanin in galaninergic tissue in a suppressible manner. The double transgenic mice express significantly more galanin in the DRG one week after sciatic nerve section (axotomy) compared to WT mice and this overexpression is suppressible upon administration of doxycycline. Phenotypic analysis revealed markedly attenuated allodynia when galanin is overexpressed and an increase in allodynia following galanin suppression. This novel transgenic line demonstrates that whether galanin expression is increased at the time of nerve injury or only after allodynia is established, the neuropeptide is able to reduce neuropathic pain behaviour. These new findings imply that administration of a galanin agonist to patients with established allodynia would be an effective treatment for neuropathic pain.
Collapse
Affiliation(s)
- Robert J P Pope
- Department of Physiology and Pharmacology and Clinical Sciences at South Bristol, School of Medical Sciences, University Walk, University of Bristol, Clifton, Bristol, BS8 1TD, UK
| | | | | | | |
Collapse
|
39
|
Butzkueven H, Gundlach AL. Galanin in Glia: Expression and Potential Roles in the CNS. ACTA ACUST UNITED AC 2010; 102:61-9. [DOI: 10.1007/978-3-0346-0228-0_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
40
|
Hobson SA, Bacon A, Elliot-Hunt CR, Holmes FE, Kerr NCH, Pope R, Vanderplank P, Wynick D. Galanin acts as a trophic factor to the central and peripheral nervous systems. EXPERIENTIA SUPPLEMENTUM (2012) 2010; 102:25-38. [PMID: 21299059 DOI: 10.1007/978-3-0346-0228-0_3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
The neuropeptide galanin is widely, but not ubiquitously, expressed in the adult nervous system. Its expression is markedly up-regulated in many neuronal tissues after nerve injury or disease. Over the last 10 years, we have demonstrated that the peptide plays a developmental survival role to subsets of neurons in the peripheral and central nervous systems with resulting phenotypic changes in neuropathic pain and cognition. Galanin also appears to play a trophic role to adult sensory neurons following injury, via activation of GalR2, by stimulating neurite outgrowth. Furthermore, galanin also plays a neuroprotective role to the hippocampus following excitotoxic injury, again mediated by activation of GalR2. Most recently, we have shown that galanin expression is markedly up-regulated in multiple sclerosis (MS) lesions and in the experimental autoimmune encephalomyelitis (EAE) model of MS. Over-expression of galanin in transgenic mice abolishes disease in the EAE model, whilst loss-of-function mutations in galanin or GalR2 increase disease severity. In summary, these studies demonstrate that a GalR2 agonist might have clinical utility in a variety of human diseases that affect the nervous system.
Collapse
Affiliation(s)
- S A Hobson
- Department of Physiology, South Bristol, School of Medical Sciences, University Walk, Bristol University, Bristol BS8 1TD, UK
| | | | | | | | | | | | | | | |
Collapse
|