1
|
Susek K, Vincenzi L, Tomaszewska M, Kroc M, Franco E, Cosentino E, Limongi AR, Tanwar UK, Jamil H, Nelson MN, Bayer PE, Edwards D, Papa R, Delledonne M, Jackson SA. The unexplored diversity of rough-seeded lupins provides rich genomic resources and insights into lupin evolution. Nat Commun 2025; 16:4358. [PMID: 40348738 PMCID: PMC12065815 DOI: 10.1038/s41467-025-58531-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 03/20/2025] [Indexed: 05/14/2025] Open
Abstract
Lupin crops provide nutritious seeds as an excellent source of dietary protein. However, extensive genomic resources are needed for crop improvement, focusing on key traits such as nutritional value and climate resiliency, to ensure global food security based on sustainable and healthy diets for all. Such resources can be derived either from related lupin species or crop wild relatives, which represent a large and untapped source of genetic variation for crop improvement. Here, we report genome assemblies of the cross-compatible species Lupinus cosentinii (Mediterranean) and its pan-Saharan wild relative L. digitatus, which are well adapted to drought-prone environments and partially domesticated. We show that both species are tetraploids, and their repetitive DNA content differs considerably from that of the main lupin crops L. angustifolius and L. albus. We present the complex evolutionary process within the rough-seeded lupins as a species-based model involving polyploidization and rediploidization. Our data also provide the foundation for a systematic analysis of genomic diversity among lupin species to promote their exploitation for crop improvement and sustainable agriculture.
Collapse
Affiliation(s)
- Karolina Susek
- Legume Genomics Team, Institute of Plant Genetics, Polish Academy of Sciences, Poznan, Poland.
| | - Leonardo Vincenzi
- Functional Genomics Lab, Department of Biotechnology, University of Verona, Verona, Italy
| | - Magdalena Tomaszewska
- Legume Genomics Team, Institute of Plant Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Magdalena Kroc
- Legume Genomics Team, Institute of Plant Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Edoardo Franco
- Functional Genomics Lab, Department of Biotechnology, University of Verona, Verona, Italy
| | | | - Antonina Rita Limongi
- Functional Genomics Lab, Department of Biotechnology, University of Verona, Verona, Italy
| | - Umesh Kumar Tanwar
- Legume Genomics Team, Institute of Plant Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Humaira Jamil
- Legume Genomics Team, Institute of Plant Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Matthew Nicholas Nelson
- Floreat Laboratories, The Commonwealth Scientific and Industrial Research Organisation, Floreat, WA, Australia
| | - Philipp E Bayer
- OceanOmics, The Minderoo Foundation, Perth, WA, Australia
- The UWA Oceans Institute, The University of Western Australia, Crawley, WA, Australia
| | - David Edwards
- Centre for Applied Bioinformatics and School of Biological Sciences, University of Western Australia, Perth, WA, Australia
| | - Roberto Papa
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università Politecnica delle Marche, Ancona, Italy
| | - Massimo Delledonne
- Functional Genomics Lab, Department of Biotechnology, University of Verona, Verona, Italy
- Genartis srl, Via Albere 17, 37138, Verona, Italy
| | - Scott A Jackson
- Institute for Plant Breeding and Genetics, University of Georgia, Athens, GA, USA
| |
Collapse
|
2
|
Adaskaveg JA, Lee C, Wei Y, Wang F, Grilo FS, Mesquida‐Pesci SD, Davis M, Wang SC, Marino G, Ferguson L, Brown PJ, Drakakaki G, Morales AM, Marchese A, Giovino A, Burgos EM, Marra FP, Cuevas LM, Cattivelli L, Bagnaresi P, Carbonell‐Bejerano P, Monroe JG, Blanco‐Ulate B. In a nutshell: pistachio genome and kernel development. THE NEW PHYTOLOGIST 2025; 246:1032-1048. [PMID: 40107319 PMCID: PMC11982797 DOI: 10.1111/nph.70060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 02/19/2025] [Indexed: 03/22/2025]
Abstract
Pistachio is a sustainable nut crop with exceptional climate resilience and nutritional value. However, the molecular processes underlying pistachio nut development and nutritional traits are largely unknown, compounded by limited genomic and molecular resources. To advance pistachios as a future food source and a model system for hard-shelled fruits, we generated a chromosome-scale reference genome of the most widely grown pistachio cultivar (Pistacia vera 'Kerman') and a spatiotemporal study of nut development. We integrated tissue-level physiological data from thousands of nuts over three growing seasons with transcriptomic data encompassing 14 developmental time points of the hull, shell, and kernel to assemble gene modules associated with physiological changes. Our study defined four distinct stages of pistachio nut growth and maturation. We then focused on the kernel to identify transcriptional and metabolic changes in molecular pathways governing nutritional quality, such as the accumulation of unsaturated fatty acids, which are vital for shelf life and dietary value. These findings revealed key candidate conserved regulatory genes, such as PvAP2-WRI1 and PvNFYB-LEC1, likely involved in oil accumulation in kernels. This work yields new knowledge and resources that will inform other woody crops and facilitate further improvement of pistachio as a globally significant, sustainable, and nutritious crop.
Collapse
Affiliation(s)
| | - Chaehee Lee
- Department of Plant SciencesUniversity of CaliforniaDavisCA95616USA
| | - Yiduo Wei
- Department of Plant SciencesUniversity of CaliforniaDavisCA95616USA
| | - Fangyi Wang
- Department of Plant SciencesUniversity of CaliforniaDavisCA95616USA
| | - Filipa S. Grilo
- Corto OliveLodiCA95212USA
- Department of Food Science and TechnologyUniversity of California DavisDavisCA95616USA
| | | | - Matthew Davis
- Department of Plant SciencesUniversity of CaliforniaDavisCA95616USA
| | - Selina C. Wang
- Department of Food Science and TechnologyUniversity of California DavisDavisCA95616USA
| | - Giulia Marino
- Department of Plant SciencesUniversity of CaliforniaDavisCA95616USA
| | - Louise Ferguson
- Department of Plant SciencesUniversity of CaliforniaDavisCA95616USA
| | - Patrick J. Brown
- Department of Plant SciencesUniversity of CaliforniaDavisCA95616USA
| | | | - Adela Mena Morales
- Regional Institute of Agri‐Food and Forestry Research and Development of Castilla‐La Mancha (IRIAF), IVICAM, CTRAToledo‐Albacete s/n, 13700Tomelloso (Ciudad Real)13700Spain
| | - Annalisa Marchese
- Department of Agricultural, Food and Forest SciencesUniversity of PalermoViale delle Scienze – Ed. 4Palermo90128Italy
| | - Antonio Giovino
- CREA for Agricultural Research and Economics (CREA), Research Centre for Plant Protection and Certification (CREA‐DC)Viale delle ScienzePalermo90128Italy
| | - Esaú Martínez Burgos
- Regional Institute of Agri‐Food and Forestry Research and Development of Castilla‐La Mancha (IRIAF), IVICAM, CTRAToledo‐Albacete s/n, 13700Tomelloso (Ciudad Real)13700Spain
| | - Francesco Paolo Marra
- Department of Agricultural, Food and Forest SciencesUniversity of PalermoViale delle Scienze – Ed. 4Palermo90128Italy
| | - Lourdes Marchante Cuevas
- Regional Institute of Agri‐Food and Forestry Research and Development of Castilla‐La Mancha (IRIAF), IVICAM, CTRAToledo‐Albacete s/n, 13700Tomelloso (Ciudad Real)13700Spain
| | - Luigi Cattivelli
- CREA Research Centre for Genomics and BioinformaticsFiorenzuola d'Arda29017Italy
| | - Paolo Bagnaresi
- CREA Research Centre for Genomics and BioinformaticsFiorenzuola d'Arda29017Italy
| | - Pablo Carbonell‐Bejerano
- Instituto de Ciencias de la Vid y del Vino, ICVV, for Grape and Wine Sciences ICVV, CSIC – Universidad de La Rioja – Gobierno de La RiojaLogroño26007Spain
| | - J. Grey Monroe
- Department of Plant SciencesUniversity of CaliforniaDavisCA95616USA
| | | |
Collapse
|
3
|
Tian X, Wang R, Liu Z, Lu S, Chen X, Zhang Z, Liu F, Li H, Zhang X, Wang M. Widespread impact of transposable elements on the evolution of post-transcriptional regulation in the cotton genus Gossypium. Genome Biol 2025; 26:60. [PMID: 40098207 PMCID: PMC11912738 DOI: 10.1186/s13059-025-03534-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 03/07/2025] [Indexed: 03/19/2025] Open
Abstract
BACKGROUND Transposable element (TE) expansion has long been known to mediate genome evolution and phenotypic diversity in organisms, but its impact on the evolution of post-transcriptional regulation following species divergence remains unclear. RESULTS To address this issue, we perform long-read direct RNA sequencing, polysome profiling sequencing, and small RNA sequencing in the cotton genus Gossypium, the species of which range more than three folds in genome size. We find that TE expansion contributes to the turnover of transcription splicing sites and regulatory sequences, leading to changes in alternative splicing patterns and the expression levels of orthologous genes. We also find that TE-derived upstream open reading frames and microRNAs serve as regulatory elements mediating differences in the translation levels of orthologous genes. We further identify genes that exhibit lineage-specific divergence at the transcriptional, splicing, and translational levels, and showcase the high flexibility of gene expression regulation in the evolutionary process. CONCLUSIONS Our work highlights the significant role of TE in driving post-transcriptional regulation divergence in the cotton genus. It offers insights for deciphering the evolutionary mechanisms of cotton species and the formation of biological diversity.
Collapse
Affiliation(s)
- Xuehan Tian
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ruipeng Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhenping Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Sifan Lu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xinyuan Chen
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zeyu Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
- College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Fang Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
| | - Hongbin Li
- College of Life Science, Shihezi University, Shihezi, 832003, China
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Maojun Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
- College of Life Science, Shihezi University, Shihezi, 832003, China.
| |
Collapse
|
4
|
Ezoe A, Seki M. Exploring the complexity of genome size reduction in angiosperms. PLANT MOLECULAR BIOLOGY 2024; 114:121. [PMID: 39485504 PMCID: PMC11530473 DOI: 10.1007/s11103-024-01518-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 10/09/2024] [Indexed: 11/03/2024]
Abstract
The genome sizes of angiosperms decreased significantly more than the genome sizes of their ancestors (pteridophytes and gymnosperms). Decreases in genome size involve a highly complex process, with remnants of the genome size reduction scattered across the genome and not directly linked to specific genomic structures. This is because the associated mechanisms operate on a much smaller scale than the mechanisms mediating increases in genome size. This review thoroughly summarizes the available literature regarding the molecular mechanisms underlying genome size reductions and introduces Utricularia gibba and Arabidopsis thaliana as model species for the examination of the effects of these molecular mechanisms. Additionally, we propose that phosphorus deficiency and drought stress are the major external factors contributing to decreases in genome size. Considering these factors affect almost all land plants, angiosperms likely gained the mechanisms for genome size reductions. These environmental factors may affect the retention rates of deletions, while also influencing the mutation rates of deletions via the functional diversification of the proteins facilitating double-strand break repair. The biased retention and mutation rates of deletions may have synergistic effects that enhance deletions in intergenic regions, introns, transposable elements, duplicates, and repeats, leading to a rapid decrease in genome size. We suggest that these selection pressures and associated molecular mechanisms may drive key changes in angiosperms during recurrent cycles of genome size decreases and increases.
Collapse
Affiliation(s)
- Akihiro Ezoe
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan.
| | - Motoaki Seki
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan.
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Totsuka-ku, Yokohama, Kanagawa, 244-0813, Japan.
- Graduate School of Science and Engineering, Saitama University, Saitama, 338-8570, Japan.
| |
Collapse
|
5
|
Kobrlová L, Čížková J, Zoulová V, Vejvodová K, Hřibová E. First insight into the genomes of the Pulmonaria officinalis group (Boraginaceae) provided by repeatome analysis and comparative karyotyping. BMC PLANT BIOLOGY 2024; 24:859. [PMID: 39266954 PMCID: PMC11395855 DOI: 10.1186/s12870-024-05497-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 08/07/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUND The genus Pulmonaria (Boraginaceae) represents a taxonomically complex group of species in which morphological similarity contrasts with striking karyological variation. The presence of different numbers of chromosomes in the diploid state suggests multiple hybridization/polyploidization events followed by chromosome rearrangements (dysploidy). Unfortunately, the phylogenetic relationships and evolution of the genome, have not yet been elucidated. Our study focused on the P. officinalis group, the most widespread species complex, which includes two morphologically similar species that differ in chromosome number, i.e. P. obscura (2n = 14) and P. officinalis (2n = 16). Ornamental cultivars, morphologically similar to P. officinalis (garden escapes), whose origin is unclear, were also studied. Here, we present a pilot study on genome size and repeatome dynamics of these closely related species in order to gain new information on their genome and chromosome structure. RESULTS Flow cytometry confirmed a significant difference in genome size between P. obscura and P. officinalis, corresponding to the number of chromosomes. Genome-wide repeatome analysis performed on genome skimming data showed that retrotransposons were the most abundant repeat type, with a higher proportion of Ty3/Gypsy elements, mainly represented by the Tekay lineage. Comparative analysis revealed no species-specific retrotransposons or striking differences in their copy number between the species. A new set of chromosome-specific cytogenetic markers, represented by satellite DNAs, showed that the chromosome structure in P. officinalis was more variable compared to that of P. obscura. Comparative karyotyping supported the hybrid origin of putative hybrids with 2n = 15 collected from a mixed population of both species and outlined the origin of ornamental garden escapes, presumably derived from the P. officinalis complex. CONCLUSIONS Large-scale genome size analysis and repeatome characterization of the two morphologically similar species of the P. officinalis group improved our knowledge of the genome dynamics and differences in the karyotype structure. A new set of chromosome-specific cytogenetic landmarks was identified and used to reveal the origin of putative hybrids and ornamental cultivars morphologically similar to P. officinalis.
Collapse
Affiliation(s)
- Lucie Kobrlová
- Department of Botany, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Jana Čížková
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Olomouc, Czech Republic
| | - Veronika Zoulová
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Olomouc, Czech Republic
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Kateřina Vejvodová
- Department of Botany, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Eva Hřibová
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Olomouc, Czech Republic.
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Olomouc, Czech Republic.
| |
Collapse
|
6
|
Decena MÁ, Sancho R, Inda LA, Pérez-Collazos E, Catalán P. Expansions and contractions of repetitive DNA elements reveal contrasting evolutionary responses to the polyploid genome shock hypothesis in Brachypodium model grasses. FRONTIERS IN PLANT SCIENCE 2024; 15:1419255. [PMID: 39049853 PMCID: PMC11266827 DOI: 10.3389/fpls.2024.1419255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/19/2024] [Indexed: 07/27/2024]
Abstract
Brachypodium grass species have been selected as model plants for functional genomics of grass crops, and to elucidate the origins of allopolyploidy and perenniality in monocots, due to their small genome sizes and feasibility of cultivation. However, genome sizes differ greatly between diploid or polyploid Brachypodium lineages. We have used genome skimming sequencing data to uncover the composition, abundance, and phylogenetic value of repetitive elements in 44 representatives of the major Brachypodium lineages and cytotypes. We also aimed to test the possible mechanisms and consequences of the "polyploid genome shock hypothesis" (PGSH) under three different evolutionary scenarios of variation in repeats and genome sizes of Brachypodium allopolyploids. Our data indicated that the proportion of the genome covered by the repeatome in the Brachypodium species showed a 3.3-fold difference between the highest content of B. mexicanum-4x (67.97%) and the lowest of B. stacei-2x (20.77%), and that changes in the sizes of their genomes were a consequence of gains or losses in their repeat elements. LTR-Retand and Tekay retrotransposons were the most frequent repeat elements in the Brachypodium genomes, while Ogre retrotransposons were found exclusively in B. mexicanum. The repeatome phylogenetic network showed a high topological congruence with plastome and nuclear rDNA and transcriptome trees, differentiating the ancestral outcore lineages from the recently evolved core-perennial lineages. The 5S rDNA graph topologies had a strong match with the ploidy levels and nature of the subgenomes of the Brachypodium polyploids. The core-perennial B. sylvaticum presents a large repeatome and characteristics of a potential post-polyploid diploidized origin. Our study evidenced that expansions and contractions in the repeatome were responsible for the three contrasting responses to the PGSH. The exacerbated genome expansion of the ancestral allotetraploid B. mexicanum was a consequence of chromosome-wide proliferation of TEs and not of WGD, the additive repeatome pattern of young allotetraploid B. hybridum of stabilized post-WGD genome evolution, and the genomecontraction of recent core-perennials polyploids (B. pinnatum, B. phoenicoides) of repeat losses through recombination of these highly hybridizing lineages. Our analyses have contributed to unraveling the evolution of the repeatome and the genome size variation in model Brachypodium grasses.
Collapse
Affiliation(s)
- María Ángeles Decena
- Escuela Politécnica Superior de Huesca, Universidad de Zaragoza, Huesca, Spain
- Grupo de Bioquímica, Biofísica y Biología Computacional (Instituto de Biocomputación y Física de Sistemas Complejos (BIFI) Universidad de Zaragoza), Unidad Asociada al Consejo Superior de Investigaciones Científicas (CSIC), Zaragoza, Spain
| | - Rubén Sancho
- Escuela Politécnica Superior de Huesca, Universidad de Zaragoza, Huesca, Spain
- Grupo de Bioquímica, Biofísica y Biología Computacional (Instituto de Biocomputación y Física de Sistemas Complejos (BIFI) Universidad de Zaragoza), Unidad Asociada al Consejo Superior de Investigaciones Científicas (CSIC), Zaragoza, Spain
| | - Luis A. Inda
- Escuela Politécnica Superior de Huesca, Universidad de Zaragoza, Huesca, Spain
- Centro de Investigaciones Tecnológicas y Agroalimentarias de Aragón (CITA), Zaragoza, Spain
| | - Ernesto Pérez-Collazos
- Escuela Politécnica Superior de Huesca, Universidad de Zaragoza, Huesca, Spain
- Grupo de Bioquímica, Biofísica y Biología Computacional (Instituto de Biocomputación y Física de Sistemas Complejos (BIFI) Universidad de Zaragoza), Unidad Asociada al Consejo Superior de Investigaciones Científicas (CSIC), Zaragoza, Spain
| | - Pilar Catalán
- Escuela Politécnica Superior de Huesca, Universidad de Zaragoza, Huesca, Spain
- Grupo de Bioquímica, Biofísica y Biología Computacional (Instituto de Biocomputación y Física de Sistemas Complejos (BIFI) Universidad de Zaragoza), Unidad Asociada al Consejo Superior de Investigaciones Científicas (CSIC), Zaragoza, Spain
| |
Collapse
|
7
|
Yu Z, Li J, Wang H, Ping B, Li X, Liu Z, Guo B, Yu Q, Zou Y, Sun Y, Ma F, Zhao T. Transposable elements in Rosaceae: insights into genome evolution, expression dynamics, and syntenic gene regulation. HORTICULTURE RESEARCH 2024; 11:uhae118. [PMID: 38919560 PMCID: PMC11197308 DOI: 10.1093/hr/uhae118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/17/2024] [Indexed: 06/27/2024]
Abstract
Transposable elements (TEs) exert significant influence on plant genomic structure and gene expression. Here, we explored TE-related aspects across 14 Rosaceae genomes, investigating genomic distribution, transposition activity, expression patterns, and nearby differentially expressed genes (DEGs). Analyses unveiled distinct long terminal repeat retrotransposon (LTR-RT) evolutionary patterns, reflecting varied genome size changes among nine species over the past million years. In the past 2.5 million years, Rubus idaeus showed a transposition rate twice as fast as Fragaria vesca, while Pyrus bretschneideri displayed significantly faster transposition compared with Crataegus pinnatifida. Genes adjacent to recent TE insertions were linked to adversity resistance, while those near previous insertions were functionally enriched in morphogenesis, enzyme activity, and metabolic processes. Expression analysis revealed diverse responses of LTR-RTs to internal or external conditions. Furthermore, we identified 3695 pairs of syntenic DEGs proximal to TEs in Malus domestica cv. 'Gala' and M. domestica (GDDH13), suggesting TE insertions may contribute to varietal trait differences in these apple varieties. Our study across representative Rosaceae species underscores the pivotal role of TEs in plant genome evolution within this diverse family. It elucidates how these elements regulate syntenic DEGs on a genome-wide scale, offering insights into Rosaceae-specific genomic evolution.
Collapse
Affiliation(s)
- Ze Yu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jiale Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hanyu Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Boya Ping
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xinchu Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhiguang Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Bocheng Guo
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qiaoming Yu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yangjun Zou
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yaqiang Sun
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fengwang Ma
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tao Zhao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
8
|
Mabry ME, Abrahams RS, Al-Shehbaz IA, Baker WJ, Barak S, Barker MS, Barrett RL, Beric A, Bhattacharya S, Carey SB, Conant GC, Conran JG, Dassanayake M, Edger PP, Hall JC, Hao Y, Hendriks KP, Hibberd JM, King GJ, Kliebenstein DJ, Koch MA, Leitch IJ, Lens F, Lysak MA, McAlvay AC, McKibben MTW, Mercati F, Moore RC, Mummenhoff K, Murphy DJ, Nikolov LA, Pisias M, Roalson EH, Schranz ME, Thomas SK, Yu Q, Yocca A, Pires JC, Harkess AE. Complementing model species with model clades. THE PLANT CELL 2024; 36:1205-1226. [PMID: 37824826 PMCID: PMC11062466 DOI: 10.1093/plcell/koad260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/07/2023] [Accepted: 09/22/2023] [Indexed: 10/14/2023]
Abstract
Model species continue to underpin groundbreaking plant science research. At the same time, the phylogenetic resolution of the land plant tree of life continues to improve. The intersection of these 2 research paths creates a unique opportunity to further extend the usefulness of model species across larger taxonomic groups. Here we promote the utility of the Arabidopsis thaliana model species, especially the ability to connect its genetic and functional resources, to species across the entire Brassicales order. We focus on the utility of using genomics and phylogenomics to bridge the evolution and diversification of several traits across the Brassicales to the resources in Arabidopsis, thereby extending scope from a model species by establishing a "model clade." These Brassicales-wide traits are discussed in the context of both the model species Arabidopsis and the family Brassicaceae. We promote the utility of such a "model clade" and make suggestions for building global networks to support future studies in the model order Brassicales.
Collapse
Affiliation(s)
- Makenzie E Mabry
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| | - R Shawn Abrahams
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA
- Department of Biochemistry, Purdue University, West Lafayette, IN 47906, USA
| | | | | | - Simon Barak
- Ben-Gurion University of the Negev, French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Midreshet Ben-Gurion, 8499000, Israel
| | - Michael S Barker
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Russell L Barrett
- National Herbarium of New South Wales, Australian Botanic Garden, Locked Bag 6002, Mount Annan, NSW 2567, Australia
| | - Aleksandra Beric
- Department of Psychiatry, Washington University in Saint Louis School of Medicine, St. Louis, MO 63110, USA
- NeuroGenomics and Informatics Center, Washington University in Saint Louis School of Medicine, St. Louis, MO 63108, USA
| | - Samik Bhattacharya
- Department of Biology, Botany, University of Osnabrück, D-49076 Osnabrück, Germany
| | - Sarah B Carey
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Gavin C Conant
- Department of Biological Sciences, Bioinformatics Research Center, Program in Genetics, North Carolina State University, Raleigh, NC 27695, USA
| | - John G Conran
- ACEBB and SGC, School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Maheshi Dassanayake
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Patrick P Edger
- Department of Horticulture, Michigan State University, East Lansing, MI 48864, USA
| | - Jocelyn C Hall
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Yue Hao
- Cancer and Cell Biology Division, Translational Genomics Research Institute, Phoenix, AZ 85004, USA
| | - Kasper P Hendriks
- Department of Biology, Botany, University of Osnabrück, D-49076 Osnabrück, Germany
- Functional Traits, Naturalis Biodiversity Center, PO Box 9517, Leiden 2300 RA, the Netherlands
| | - Julian M Hibberd
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 1TN, UK
| | - Graham J King
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW 2480, Australia
| | | | - Marcus A Koch
- Centre for Organismal Studies (COS), Heidelberg University, 69120 Heidelberg, Germany
| | - Ilia J Leitch
- Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AE, UK
| | - Frederic Lens
- Functional Traits, Naturalis Biodiversity Center, PO Box 9517, Leiden 2300 RA, the Netherlands
- Institute of Biology Leiden, Plant Sciences, Leiden University, 2333 BE Leiden, the Netherlands
| | - Martin A Lysak
- CEITEC, and NCBR, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Alex C McAlvay
- Institute of Economic Botany, New York Botanical Garden, The Bronx, NY 10458, USA
| | - Michael T W McKibben
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Francesco Mercati
- National Research Council (CNR), Institute of Biosciences and Bioresource (IBBR), Palermo 90129, Italy
| | | | - Klaus Mummenhoff
- Department of Biology, Botany, University of Osnabrück, D-49076 Osnabrück, Germany
| | - Daniel J Murphy
- Royal Botanic Gardens Victoria, Melbourne, VIC 3004, Australia
| | | | - Michael Pisias
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Eric H Roalson
- School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| | - M Eric Schranz
- Biosystematics Group, Wageningen University, 6708 PB Wageningen, the Netherlands
| | - Shawn K Thomas
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
- Bioinformatics and Analytics Core, University of Missouri, Columbia, MO 65211, USA
| | - Qingyi Yu
- Daniel K. Inouye U.S. Pacific Basin Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Hilo, HI 96720, USA
| | - Alan Yocca
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - J Chris Pires
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80523-1170, USA
| | - Alex E Harkess
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| |
Collapse
|
9
|
Hlavatá K, Záveská E, Leong-Škorničková J, Pouch M, Poulsen AD, Šída O, Khadka B, Mandáková T, Fér T. Ancient hybridization and repetitive element proliferation in the evolutionary history of the monocot genus Amomum (Zingiberaceae). FRONTIERS IN PLANT SCIENCE 2024; 15:1324358. [PMID: 38708400 PMCID: PMC11066291 DOI: 10.3389/fpls.2024.1324358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 03/12/2024] [Indexed: 05/07/2024]
Abstract
Genome size variation is a crucial aspect of plant evolution, influenced by a complex interplay of factors. Repetitive elements, which are fundamental components of genomic architecture, often play a role in genome expansion by selectively amplifying specific repeat motifs. This study focuses on Amomum, a genus in the ginger family (Zingiberaceae), known for its 4.4-fold variation in genome size. Using a robust methodology involving PhyloNet reconstruction, RepeatExplorer clustering, and repeat similarity-based phylogenetic network construction, we investigated the repeatome composition, analyzed repeat dynamics, and identified potential hybridization events within the genus. Our analysis confirmed the presence of four major infrageneric clades (A-D) within Amomum, with clades A-C exclusively comprising diploid species (2n = 48) and clade D encompassing both diploid and tetraploid species (2n = 48 and 96). We observed an increase in the repeat content within the genus, ranging from 84% to 89%, compared to outgroup species with 75% of the repeatome. The SIRE lineage of the Ty1-Copia repeat superfamily was prevalent in most analyzed ingroup genomes. We identified significant difference in repeatome structure between the basal Amomum clades (A, B, C) and the most diverged clade D. Our investigation revealed evidence of ancient hybridization events within Amomum, coinciding with a substantial proliferation of multiple repeat groups. This finding supports the hypothesis that ancient hybridization is a driving force in the genomic evolution of Amomum. Furthermore, we contextualize our findings within the broader context of genome size variations and repeatome dynamics observed across major monocot lineages. This study enhances our understanding of evolutionary processes within monocots by highlighting the crucial roles of repetitive elements in shaping genome size and suggesting the mechanisms that drive these changes.
Collapse
Affiliation(s)
- Kristýna Hlavatá
- Department of Botany, Faculty of Science, Charles University, Prague, Czechia
| | - Eliška Záveská
- Department of Botany, Faculty of Science, Charles University, Prague, Czechia
- Institute of Botany, Czech Academy of Science, Průhonice, Czechia
| | - Jana Leong-Škorničková
- Herbarium, Singapore Botanic Gardens, National Parks Board, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Milan Pouch
- Central European Institute of Technology, Masaryk University, Brno, Czechia
- National Center for Biomolecular Research (NCBR), Masaryk University, Kamenice, Czechia
| | - Axel Dalberg Poulsen
- Tropical Diversity Section, Royal Botanic Garden Edinburgh, Edinburgh, United Kingdom
| | - Otakar Šída
- Department of Botany, National Museum in Prague, Prague, Czechia
| | - Bijay Khadka
- Department of Botany, Faculty of Science, Charles University, Prague, Czechia
| | - Terezie Mandáková
- Central European Institute of Technology, Masaryk University, Brno, Czechia
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Tomáš Fér
- Department of Botany, Faculty of Science, Charles University, Prague, Czechia
| |
Collapse
|
10
|
Wu W, Feng X, Wang N, Shao S, Liu M, Si F, Chen L, Jin C, Xu S, Guo Z, Zhong C, Shi S, He Z. Genomic analysis of Nypa fruticans elucidates its intertidal adaptations and early palm evolution. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:824-843. [PMID: 38372488 DOI: 10.1111/jipb.13625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 01/28/2024] [Indexed: 02/20/2024]
Abstract
Nypa fruticans (Wurmb), a mangrove palm species with origins dating back to the Late Cretaceous period, is a unique species for investigating long-term adaptation strategies to intertidal environments and the early evolution of palms. Here, we present a chromosome-level genome sequence and assembly for N. fruticans. We integrated the genomes of N. fruticans and other palm family members for a comparative genomic analysis, which confirmed that the common ancestor of all palms experienced a whole-genome duplication event around 89 million years ago, shaping the distinctive characteristics observed in this clade. We also inferred a low mutation rate for the N. fruticans genome, which underwent strong purifying selection and evolved slowly, thus contributing to its stability over a long evolutionary period. Moreover, ancient duplicates were preferentially retained, with critical genes having experienced positive selection, enhancing waterlogging tolerance in N. fruticans. Furthermore, we discovered that the pseudogenization of Early Methionine-labelled 1 (EM1) and EM6 in N. fruticans underly its crypto-vivipary characteristics, reflecting its intertidal adaptation. Our study provides valuable genomic insights into the evolutionary history, genome stability, and adaptive evolution of the mangrove palm. Our results also shed light on the long-term adaptation of this species and contribute to our understanding of the evolutionary dynamics in the palm family.
Collapse
Affiliation(s)
- Weihong Wu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Xiao Feng
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
- Greater Bay Area Institute of Precision Medicine, School of Life Sciences, Fudan University, Guangzhou, 511462, China
| | - Nan Wang
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Shao Shao
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Min Liu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Fa Si
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Linhao Chen
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Chuanfeng Jin
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Shaohua Xu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Zixiao Guo
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Cairong Zhong
- Hainan Academy of Forestry (Hainan Academy of Mangrove), Haikou, 571100, China
| | - Suhua Shi
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Ziwen He
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| |
Collapse
|
11
|
Zou Y, Wang J, Peng D, Zhang X, Tembrock LR, Yang J, Zhao J, Liao H, Wu Z. Multi-integrated genomic data for Passiflora foetida provides insights into genome size evolution and floral development in Passiflora. MOLECULAR HORTICULTURE 2023; 3:27. [PMID: 38105261 PMCID: PMC10726625 DOI: 10.1186/s43897-023-00076-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/03/2023] [Indexed: 12/19/2023]
Abstract
Passiflora is a plant genus known for its extremely distinctive and colorful flowers and a wide range of genome size variation. However, how genome characteristics are related to flower traits among Passiflora species remains poorly understood. Here, we assembled a chromosome-scale genome of P. foetida, which belongs to the same subgenus as the commercial passionfruit P. edulis. The genome of P. foetida is smaller (424.16 Mb) and contains fewer copies of long terminal repeat retrotransposons (LTR-RTs). The disparity in LTR-RTs is one of the main contributors to the differences in genome sizes between these two species and possibly in floral traits. Additionally, we observed variation in insertion times and copy numbers of LTR-RTs across different transposable element (TE) lineages. Then, by integrating transcriptomic data from 33 samples (eight floral organs and flower buds at three developmental stages) with phylogenomic and metabolomic data, we conducted an in-depth analysis of the expression, phylogeny, and copy number of MIKC-type MADS-box genes and identified essential biosynthetic genes responsible for flower color and scent from glandular bracts and other floral organs. Our study pinpoints LRT-RTs as an important player in genome size variation in Passiflora species and provides insights into future genetic improvement.
Collapse
Affiliation(s)
- Yi Zou
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, 650504, China
| | - Jie Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Dan Peng
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- College of Agriculture, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiaoni Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Kunpeng Institute of Modern Agriculture at Foshan, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| | - Luke R Tembrock
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Jinliang Yang
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Jianli Zhao
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, 650504, China.
| | - Hong Liao
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, 650504, China.
| | - Zhiqiang Wu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
- Kunpeng Institute of Modern Agriculture at Foshan, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China.
| |
Collapse
|
12
|
Wöhner TW, Emeriewen OF, Wittenberg AHJ, Nijbroek K, Wang RP, Blom EJ, Schneiders H, Keilwagen J, Berner T, Hoff KJ, Gabriel L, Thierfeldt H, Almolla O, Barchi L, Schuster M, Lempe J, Peil A, Flachowsky H. The structure of the tetraploid sour cherry 'Schattenmorelle' ( Prunus cerasus L.) genome reveals insights into its segmental allopolyploid nature. FRONTIERS IN PLANT SCIENCE 2023; 14:1284478. [PMID: 38107002 PMCID: PMC10722297 DOI: 10.3389/fpls.2023.1284478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/31/2023] [Indexed: 12/19/2023]
Abstract
Sour cherry (Prunus cerasus L.) is an important allotetraploid cherry species that evolved in the Caspian Sea and Black Sea regions from a hybridization of the tetraploid ground cherry (Prunus fruticosa Pall.) and an unreduced pollen of the diploid sweet cherry (P. avium L.) ancestor. Details of when and where the evolution of this species occurred are unclear, as well as the effect of hybridization on the genome structure. To gain insight, the genome of the sour cherry cultivar 'Schattenmorelle' was sequenced using Illumina NovaSeqTM and Oxford Nanopore long-read technologies, resulting in a ~629-Mbp pseudomolecule reference genome. The genome could be separated into two subgenomes, with subgenome PceS_a originating from P. avium and subgenome PceS_f originating from P. fruticosa. The genome also showed size reduction compared to ancestral species and traces of homoeologous sequence exchanges throughout. Comparative analysis confirmed that the genome of sour cherry is segmental allotetraploid and evolved very recently in the past.
Collapse
Affiliation(s)
- Thomas W. Wöhner
- Institute for Breeding Research on Fruit Crops, Julius Kühn Institute (JKI) – Federal Research Centre for Cultivated Plants, Dresden, Saxony, Germany
| | - Ofere F. Emeriewen
- Institute for Breeding Research on Fruit Crops, Julius Kühn Institute (JKI) – Federal Research Centre for Cultivated Plants, Dresden, Saxony, Germany
| | | | | | | | | | | | - Jens Keilwagen
- Institute for Biosafety in Plant Biotechnology, Julius Kühn Institute (JKI) – Federal Research Centre for Cultivated Plants, Quedlinburg, Saxony-Anhalt, Germany
| | - Thomas Berner
- Institute for Biosafety in Plant Biotechnology, Julius Kühn Institute (JKI) – Federal Research Centre for Cultivated Plants, Quedlinburg, Saxony-Anhalt, Germany
| | - Katharina J. Hoff
- Institute of Mathematics and Computer Science, University of Greifswald, Greifswald, Mecklenburg-Western Pomerania, Germany
| | - Lars Gabriel
- Institute of Mathematics and Computer Science, University of Greifswald, Greifswald, Mecklenburg-Western Pomerania, Germany
| | - Hannah Thierfeldt
- Institute of Mathematics and Computer Science, University of Greifswald, Greifswald, Mecklenburg-Western Pomerania, Germany
| | - Omar Almolla
- Dipartimento di Scienze Agrarie, Forestali e Alimentari (DISAFA) – Plant Genetics, University of Turin, Grugliasco, Italy
| | - Lorenzo Barchi
- Dipartimento di Scienze Agrarie, Forestali e Alimentari (DISAFA) – Plant Genetics, University of Turin, Grugliasco, Italy
| | - Mirko Schuster
- Institute for Breeding Research on Fruit Crops, Julius Kühn Institute (JKI) – Federal Research Centre for Cultivated Plants, Dresden, Saxony, Germany
| | - Janne Lempe
- Institute for Breeding Research on Fruit Crops, Julius Kühn Institute (JKI) – Federal Research Centre for Cultivated Plants, Dresden, Saxony, Germany
| | - Andreas Peil
- Institute for Breeding Research on Fruit Crops, Julius Kühn Institute (JKI) – Federal Research Centre for Cultivated Plants, Dresden, Saxony, Germany
| | - Henryk Flachowsky
- Institute for Breeding Research on Fruit Crops, Julius Kühn Institute (JKI) – Federal Research Centre for Cultivated Plants, Dresden, Saxony, Germany
| |
Collapse
|
13
|
Wen X, Chen Z, Yang Z, Wang M, Jin S, Wang G, Zhang L, Wang L, Li J, Saeed S, He S, Wang Z, Wang K, Kong Z, Li F, Zhang X, Chen X, Zhu Y. A comprehensive overview of cotton genomics, biotechnology and molecular biological studies. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2214-2256. [PMID: 36899210 DOI: 10.1007/s11427-022-2278-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/09/2023] [Indexed: 03/12/2023]
Abstract
Cotton is an irreplaceable economic crop currently domesticated in the human world for its extremely elongated fiber cells specialized in seed epidermis, which makes it of high research and application value. To date, numerous research on cotton has navigated various aspects, from multi-genome assembly, genome editing, mechanism of fiber development, metabolite biosynthesis, and analysis to genetic breeding. Genomic and 3D genomic studies reveal the origin of cotton species and the spatiotemporal asymmetric chromatin structure in fibers. Mature multiple genome editing systems, such as CRISPR/Cas9, Cas12 (Cpf1) and cytidine base editing (CBE), have been widely used in the study of candidate genes affecting fiber development. Based on this, the cotton fiber cell development network has been preliminarily drawn. Among them, the MYB-bHLH-WDR (MBW) transcription factor complex and IAA and BR signaling pathway regulate the initiation; various plant hormones, including ethylene, mediated regulatory network and membrane protein overlap fine-regulate elongation. Multistage transcription factors targeting CesA 4, 7, and 8 specifically dominate the whole process of secondary cell wall thickening. And fluorescently labeled cytoskeletal proteins can observe real-time dynamic changes in fiber development. Furthermore, research on the synthesis of cotton secondary metabolite gossypol, resistance to diseases and insect pests, plant architecture regulation, and seed oil utilization are all conducive to finding more high-quality breeding-related genes and subsequently facilitating the cultivation of better cotton varieties. This review summarizes the paramount research achievements in cotton molecular biology over the last few decades from the above aspects, thereby enabling us to conduct a status review on the current studies of cotton and provide strong theoretical support for the future direction.
Collapse
Affiliation(s)
- Xingpeng Wen
- Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
- College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Zhiwen Chen
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, University of CAS, Chinese Academy of Sciences, Shanghai, 200032, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China
| | - Zuoren Yang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Maojun Wang
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shuangxia Jin
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Guangda Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Li Zhang
- Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| | - Lingjian Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, University of CAS, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Jianying Li
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Sumbul Saeed
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shoupu He
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Zhi Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Kun Wang
- College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Zhaosheng Kong
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
- Shanxi Agricultural University, Jinzhong, 030801, China.
| | - Fuguang Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
| | - Xianlong Zhang
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Xiaoya Chen
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, University of CAS, Chinese Academy of Sciences, Shanghai, 200032, China.
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China.
| | - Yuxian Zhu
- Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China.
- College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
14
|
Session AM, Rokhsar DS. Transposon signatures of allopolyploid genome evolution. Nat Commun 2023; 14:3180. [PMID: 37263993 DOI: 10.1038/s41467-023-38560-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 05/08/2023] [Indexed: 06/03/2023] Open
Abstract
Hybridization brings together chromosome sets from two or more distinct progenitor species. Genome duplication associated with hybridization, or allopolyploidy, allows these chromosome sets to persist as distinct subgenomes during subsequent meioses. Here, we present a general method for identifying the subgenomes of a polyploid based on shared ancestry as revealed by the genomic distribution of repetitive elements that were active in the progenitors. This subgenome-enriched transposable element signal is intrinsic to the polyploid, allowing broader applicability than other approaches that depend on the availability of sequenced diploid relatives. We develop the statistical basis of the method, demonstrate its applicability in the well-studied cases of tobacco, cotton, and Brassica napus, and apply it to several cases: allotetraploid cyprinids, allohexaploid false flax, and allooctoploid strawberry. These analyses provide insight into the origins of these polyploids, revise the subgenome identities of strawberry, and provide perspective on subgenome dominance in higher polyploids.
Collapse
Affiliation(s)
- Adam M Session
- Department of Molecular and Cell, University of California, Berkeley, CA, 94720, USA.
- US Department of Energy Joint Genome Institute, 1 Cyclotron Road, Berkeley, CA, 94720, USA.
- Department of Biological Sciences, Binghamton University, Binghamton, NY, 13902, USA.
| | - Daniel S Rokhsar
- Department of Molecular and Cell, University of California, Berkeley, CA, 94720, USA
- US Department of Energy Joint Genome Institute, 1 Cyclotron Road, Berkeley, CA, 94720, USA
- Molecular Genetics Unit, Okinawa Institute for Science and Technology Graduate University, Okinawa, Japan
- Chan Zuckerberg BioHub, San Francisco, CA, USA
| |
Collapse
|
15
|
Liao Y, Zhao S, Zhang W, Zhao P, Lu B, Moody ML, Tan N, Chen L. Chromosome-level genome and high nitrogen stress response of the widespread and ecologically important wetland plant Typha angustifolia. FRONTIERS IN PLANT SCIENCE 2023; 14:1138498. [PMID: 37265642 PMCID: PMC10230045 DOI: 10.3389/fpls.2023.1138498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 04/11/2023] [Indexed: 06/03/2023]
Abstract
Typha angustifolia L., known as narrowleaf cattail, is widely distributed in Eurasia but has been introduced to North America. Typha angustifolia is a semi-aquatic, wetland obligate plant that is widely distributed in Eurasia and North America. It is ecologically important for nutrient cycling in wetlands where it occurs and is used in phytoremediation and traditional medicine. In order to construct a high-quality genome for Typha angustifolia and investigate genes in response to high nitrogen stress, we carried out complete genome sequencing and high-nitrogen-stress experiments. We generated a chromosomal-level genome of T. angustifolia, which had 15 pseudochromosomes, a size of 207 Mb, and a contig N50 length of 13.57 Mb. Genome duplication analyses detected no recent whole-genome duplication (WGD) event for T. angustifolia. An analysis of gene family expansion and contraction showed that T. angustifolia gained 1,310 genes and lost 1,426 genes. High-nitrogen-stress experiments showed that a high nitrogen level had a significant inhibitory effect on root growth and differential gene expression analyses using 24 samples found 128 differentially expressed genes (DEGs) between the nitrogen-treated and control groups. DEGs in the roots and leaves were enriched in alanines, aspartate, and glutamate metabolism, nitrogen metabolism, photosynthesis, phenylpropanoid biosynthesis, plant-pathogen interaction, and mitogen-activated protein kinase pathways, among others. This study provides genomic data for a medicinal and ecologically important herb and lays a theoretical foundation for plant-assisted water pollution remediation.
Collapse
Affiliation(s)
- Yang Liao
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Shuying Zhao
- School of Environment and Ecology, Jiangsu Open University, Nanjing, China
| | - Wenda Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Puguang Zhao
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Bei Lu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Michael L. Moody
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, United States
| | - Ninghua Tan
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Lingyun Chen
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
16
|
Ding W, Zhu Y, Han J, Zhang H, Xu Z, Khurshid H, Liu F, Hasterok R, Shen X, Wang K. Characterization of centromeric DNA of Gossypium anomalum reveals sequence-independent enrichment dynamics of centromeric repeats. Chromosome Res 2023; 31:12. [PMID: 36971835 DOI: 10.1007/s10577-023-09721-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/20/2023] [Accepted: 03/04/2023] [Indexed: 03/29/2023]
Abstract
Centromeres in eukaryotes are composed of highly repetitive DNAs, which evolve rapidly and are thought to achieve a favorable structure in mature centromeres. However, how the centromeric repeat evolves into an adaptive structure is largely unknown. We characterized the centromeric sequences of Gossypium anomalum through chromatin immunoprecipitation against CENH3 antibodies. We revealed that the G. anomalum centromeres contained only retrotransposon-like repeats but were depleted in long arrays of satellites. These retrotransposon-like centromeric repeats were present in the African-Asian and Australian lineage species, suggesting that they might have arisen in the common ancestor of these diploid species. Intriguingly, we observed a substantial increase and decrease in copy numbers among African-Asian and Australian lineages, respectively, for the retrotransposon-derived centromeric repeats without apparent structure or sequence variation in cotton. This result indicates that the sequence content is not a decisive aspect of the adaptive evolution of centromeric repeats or at least retrotransposon-like centromeric repeats. In addition, two active genes with potential roles in gametogenesis or flowering were identified in CENH3 nucleosome-binding regions. Our results provide new insights into the constitution of centromeric repetitive DNA and the adaptive evolution of centromeric repeats in plants.
Collapse
Affiliation(s)
- Wenjie Ding
- School of Life Sciences, Nantong University, Nantong, 226019, China
| | - Yuanbin Zhu
- School of Life Sciences, Nantong University, Nantong, 226019, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jinlei Han
- School of Life Sciences, Nantong University, Nantong, 226019, China
| | - Hui Zhang
- School of Life Sciences, Nantong University, Nantong, 226019, China
| | - Zhenzhen Xu
- Key Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture and Rural Affairs, the Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Haris Khurshid
- Oilseeds Research Program, National Agricultural Research Centre, Islamabad, 44500, Pakistan
| | - Fang Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Robert Hasterok
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, 40-032, Poland.
| | - Xinlian Shen
- Key Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture and Rural Affairs, the Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
| | - Kai Wang
- School of Life Sciences, Nantong University, Nantong, 226019, China.
| |
Collapse
|
17
|
Chase MW, Samuel R, Leitch AR, Guignard MS, Conran JG, Nollet F, Fletcher P, Jakob A, Cauz-Santos LA, Vignolle G, Dodsworth S, Christenhusz MJM, Buril MT, Paun O. Down, then up: non-parallel genome size changes and a descending chromosome series in a recent radiation of the Australian allotetraploid plant species, Nicotiana section Suaveolentes (Solanaceae). ANNALS OF BOTANY 2023; 131:123-142. [PMID: 35029647 PMCID: PMC9904355 DOI: 10.1093/aob/mcac006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 01/11/2022] [Indexed: 05/25/2023]
Abstract
BACKGROUND AND AIMS The extent to which genome size and chromosome numbers evolve in concert is little understood, particularly after polyploidy (whole-genome duplication), when a genome returns to a diploid-like condition (diploidization). We study this phenomenon in 46 species of allotetraploid Nicotiana section Suaveolentes (Solanaceae), which formed <6 million years ago and radiated in the arid centre of Australia. METHODS We analysed newly assessed genome sizes and chromosome numbers within the context of a restriction site-associated nuclear DNA (RADseq) phylogenetic framework. KEY RESULTS RADseq generated a well-supported phylogenetic tree, in which multiple accessions from each species formed unique genetic clusters. Chromosome numbers and genome sizes vary from n = 2x = 15 to 24 and 2.7 to 5.8 pg/1C nucleus, respectively. Decreases in both genome size and chromosome number occur, although neither consistently nor in parallel. Species with the lowest chromosome numbers (n = 15-18) do not possess the smallest genome sizes and, although N. heterantha has retained the ancestral chromosome complement, n = 2x = 24, it nonetheless has the smallest genome size, even smaller than that of the modern representatives of ancestral diploids. CONCLUSIONS The results indicate that decreases in genome size and chromosome number occur in parallel down to a chromosome number threshold, n = 20, below which genome size increases, a phenomenon potentially explained by decreasing rates of recombination over fewer chromosomes. We hypothesize that, more generally in plants, major decreases in genome size post-polyploidization take place while chromosome numbers are still high because in these stages elimination of retrotransposons and other repetitive elements is more efficient. Once such major genome size change has been accomplished, then dysploid chromosome reductions take place to reorganize these smaller genomes, producing species with small genomes and low chromosome numbers such as those observed in many annual angiosperms, including Arabidopsis.
Collapse
Affiliation(s)
- Mark W Chase
- Royal Botanic Gardens, Kew, Richmond TW9 3DS, UK
- Department of Environment and Agriculture, Curtin University, Perth, Western Australia, Australia
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
| | - Rosabelle Samuel
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
| | - Andrew R Leitch
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | | | - John G Conran
- ACEBB & SGC, School of Biological Sciences, The University of Adelaide, SA 5005Australia
| | - Felipe Nollet
- Universidade Federal Rural de Pernambuco, Centro de Ciências Biológicas, Departamento de Botânica, Rua Manuel de Medeiros, S/N, Dois Irmãos, 52171-900 Recife, Pernambuco, Brazil
| | - Paul Fletcher
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Aljaž Jakob
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
| | - Luiz A Cauz-Santos
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
| | - Gabriel Vignolle
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
| | - Steven Dodsworth
- School of Biological Sciences, University of Portsmouth, Portsmouth PO1 2DY, UK
| | - Maarten J M Christenhusz
- Department of Environment and Agriculture, Curtin University, Perth, Western Australia, Australia
| | - Maria Teresa Buril
- ACEBB & SGC, School of Biological Sciences, The University of Adelaide, SA 5005Australia
| | - Ovidiu Paun
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
| |
Collapse
|
18
|
Wang G, Zhou N, Chen Q, Yang Y, Yang Y, Duan Y. Gradual genome size evolution and polyploidy in Allium from the Qinghai-Tibetan Plateau. ANNALS OF BOTANY 2023; 131:109-122. [PMID: 34932785 PMCID: PMC9904346 DOI: 10.1093/aob/mcab155] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/20/2021] [Indexed: 05/25/2023]
Abstract
BACKGROUND AND AIMS Genome size is an important plant trait, with substantial interspecies variation. The mechanisms and selective pressures underlying genome size evolution are important topics in evolutionary biology. There is considerable diversity in Allium from the Qinghai-Tibetan Plateau, where genome size variation and related evolutionary mechanisms are poorly understood. METHODS We reconstructed the Allium phylogeny using DNA sequences from 71 species. We also estimated genome sizes of 62 species, and determined chromosome numbers in 65 species. We examined the phylogenetic signal associated with genome size variation, and tested how well the data fit different evolutionary models. Correlations between genome size variations and seed mass, altitude and 19 bioclimatic factors were determined. KEY RESULTS Allium genome sizes differed substantially between species and within diploids, triploids, tetraploids, hexaploids and octaploids. Size per monoploid genome (1Cx) tended to decrease with increasing ploidy levels. Allium polyploids tended to grow at a higher altitude than diploids. The phylogenetic tree was divided into three evolutionary branches. The genomes in Clade I were mostly close to the ancestral genome (18.781 pg) while those in Clades II and III tended to expand and contract, respectively. A weak phylogenetic signal was detected for Allium genome size. Furthermore, significant positive correlations were detected between genome size and seed mass, as well as between genome size and altitude. However, genome size was not correlated with 19 bioclimatic variables. CONCLUSIONS Allium genome size shows gradual evolution, followed by subsequent adaptive radiation. The three well-supported Allium clades are consistent with previous studies. The evolutionary patterns in different Allium clades revealed genome contraction, expansion and relative stasis. The Allium species in Clade II may follow adaptive radiation. The genome contraction in Clade III may be due to DNA loss after polyploidization. Allium genome size might be influenced by selective pressure due to the conditions on the Qinghai-Tibetan Plateau (low temperature, high UV irradiation and abundant phosphate in the soil).
Collapse
Affiliation(s)
| | | | - Qian Chen
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- Institute of Tibetan Plateau Research at Kunming, Chinese Academy of Sciences, Kunming 650201, China
| | - Ya Yang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- Institute of Tibetan Plateau Research at Kunming, Chinese Academy of Sciences, Kunming 650201, China
| | - Yongping Yang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- Institute of Tibetan Plateau Research at Kunming, Chinese Academy of Sciences, Kunming 650201, China
| | - Yuanwen Duan
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- Institute of Tibetan Plateau Research at Kunming, Chinese Academy of Sciences, Kunming 650201, China
| |
Collapse
|
19
|
Wang M, Li J, Qi Z, Long Y, Pei L, Huang X, Grover CE, Du X, Xia C, Wang P, Liu Z, You J, Tian X, Ma Y, Wang R, Chen X, He X, Fang DD, Sun Y, Tu L, Jin S, Zhu L, Wendel JF, Zhang X. Genomic innovation and regulatory rewiring during evolution of the cotton genus Gossypium. Nat Genet 2022; 54:1959-1971. [PMID: 36474047 DOI: 10.1038/s41588-022-01237-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 10/20/2022] [Indexed: 12/13/2022]
Abstract
Phenotypic diversity and evolutionary innovation ultimately trace to variation in genomic sequence and rewiring of regulatory networks. Here, we constructed a pan-genome of the Gossypium genus using ten representative diploid genomes. We document the genomic evolutionary history and the impact of lineage-specific transposon amplification on differential genome composition. The pan-3D genome reveals evolutionary connections between transposon-driven genome size variation and both higher-order chromatin structure reorganization and the rewiring of chromatin interactome. We linked changes in chromatin structures to phenotypic differences in cotton fiber and identified regulatory variations that decode the genetic basis of fiber length, the latter enabled by sequencing 1,005 transcriptomes during fiber development. We showcase how pan-genomic, pan-3D genomic and genetic regulatory data serve as a resource for delineating the evolutionary basis of spinnable cotton fiber. Our work provides insights into the evolution of genome organization and regulation and will inform cotton improvement by enabling regulome-based approaches.
Collapse
Affiliation(s)
- Maojun Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Jianying Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Zhengyang Qi
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Yuexuan Long
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Liuling Pei
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Xianhui Huang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Corrinne E Grover
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Xiongming Du
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Chunjiao Xia
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Pengcheng Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Zhenping Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Jiaqi You
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Xuehan Tian
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Yizan Ma
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Ruipeng Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Xinyuan Chen
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Xin He
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - David D Fang
- Cotton Fiber Bioscience Research Unit, USDA-ARS, Southern Regional Research Center, New Orleans, LA, USA
| | - Yuqiang Sun
- Zhejiang Sci-Tech University College of Life Sciences, Zhejiang, Hangzhou, China
| | - Lili Tu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Shuangxia Jin
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Longfu Zhu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Jonathan F Wendel
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA.
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
20
|
Marchant DB, Chen G, Cai S, Chen F, Schafran P, Jenkins J, Shu S, Plott C, Webber J, Lovell JT, He G, Sandor L, Williams M, Rajasekar S, Healey A, Barry K, Zhang Y, Sessa E, Dhakal RR, Wolf PG, Harkess A, Li FW, Rössner C, Becker A, Gramzow L, Xue D, Wu Y, Tong T, Wang Y, Dai F, Hua S, Wang H, Xu S, Xu F, Duan H, Theißen G, McKain MR, Li Z, McKibben MTW, Barker MS, Schmitz RJ, Stevenson DW, Zumajo-Cardona C, Ambrose BA, Leebens-Mack JH, Grimwood J, Schmutz J, Soltis PS, Soltis DE, Chen ZH. Dynamic genome evolution in a model fern. NATURE PLANTS 2022; 8:1038-1051. [PMID: 36050461 PMCID: PMC9477723 DOI: 10.1038/s41477-022-01226-7] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 07/15/2022] [Indexed: 05/31/2023]
Abstract
The large size and complexity of most fern genomes have hampered efforts to elucidate fundamental aspects of fern biology and land plant evolution through genome-enabled research. Here we present a chromosomal genome assembly and associated methylome, transcriptome and metabolome analyses for the model fern species Ceratopteris richardii. The assembly reveals a history of remarkably dynamic genome evolution including rapid changes in genome content and structure following the most recent whole-genome duplication approximately 60 million years ago. These changes include massive gene loss, rampant tandem duplications and multiple horizontal gene transfers from bacteria, contributing to the diversification of defence-related gene families. The insertion of transposable elements into introns has led to the large size of the Ceratopteris genome and to exceptionally long genes relative to other plants. Gene family analyses indicate that genes directing seed development were co-opted from those controlling the development of fern sporangia, providing insights into seed plant evolution. Our findings and annotated genome assembly extend the utility of Ceratopteris as a model for investigating and teaching plant biology.
Collapse
Affiliation(s)
| | - Guang Chen
- Central Laboratory, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- College of Agriculture, Yangtze University, Jingzhou, China
| | - Shengguan Cai
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- School of Science, Western Sydney University, Penrith, New South Wales, Australia
| | - Fei Chen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | | | - Jerry Jenkins
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Shengqiang Shu
- United States Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Chris Plott
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Jenell Webber
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - John T Lovell
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
- United States Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Guifen He
- United States Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Laura Sandor
- United States Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Melissa Williams
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Shanmugam Rajasekar
- Arizona Genomics Institute, School of Plant Sciences, University of Arizona, Tucson, AZ, USA
| | - Adam Healey
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Kerrie Barry
- United States Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Yinwen Zhang
- Institute of Bioinformatics, University of Georgia, Athens, GA, USA
| | - Emily Sessa
- Department of Biology, University of Florida, Gainesville, FL, USA
| | - Rijan R Dhakal
- Department of Biological Sciences, University of Alabama in Huntsville, Huntsville, AL, USA
| | - Paul G Wolf
- Department of Biological Sciences, University of Alabama in Huntsville, Huntsville, AL, USA
| | - Alex Harkess
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
- Department of Crop, Soil, and Environmental Sciences, Auburn University, Auburn, AL, USA
| | - Fay-Wei Li
- Boyce Thompson Institute, Ithaca, NY, USA
- Plant Biology Section, Cornell University, Ithaca, NY, USA
| | - Clemens Rössner
- Justus-Liebig-University, Department of Biology and Chemistry, Institute of Botany, Gießen, Germany
| | - Annette Becker
- Justus-Liebig-University, Department of Biology and Chemistry, Institute of Botany, Gießen, Germany
| | - Lydia Gramzow
- Matthias Schleiden Institute/Genetics, Friedrich Schiller University Jena, Jena, Germany
| | - Dawei Xue
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Yuhuan Wu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Tao Tong
- College of Agriculture, Yangtze University, Jingzhou, China
| | - Yuanyuan Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Fei Dai
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Shuijin Hua
- Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Hua Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Shengchun Xu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Fei Xu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Honglang Duan
- Institute for Forest Resources & Environment of Guizhou, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, Guiyang, China
| | - Günter Theißen
- Matthias Schleiden Institute/Genetics, Friedrich Schiller University Jena, Jena, Germany
| | - Michael R McKain
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, USA
| | - Zheng Li
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Michael T W McKibben
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| | - Michael S Barker
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| | | | | | | | | | | | - Jane Grimwood
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Jeremy Schmutz
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
- United States Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Pamela S Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL, USA.
| | - Douglas E Soltis
- Department of Biology, University of Florida, Gainesville, FL, USA.
- Florida Museum of Natural History, University of Florida, Gainesville, FL, USA.
| | - Zhong-Hua Chen
- School of Science, Western Sydney University, Penrith, New South Wales, Australia.
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia.
| |
Collapse
|
21
|
Catlin NS, Josephs EB. The important contribution of transposable elements to phenotypic variation and evolution. CURRENT OPINION IN PLANT BIOLOGY 2022; 65:102140. [PMID: 34883307 DOI: 10.1016/j.pbi.2021.102140] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/04/2021] [Accepted: 10/13/2021] [Indexed: 06/13/2023]
Abstract
Transposable elements (TEs) are responsible for significant genomic variation in plants. Our understanding of the evolutionary forces shaping TE polymorphism has lagged behind other mutations because of the difficulty of accurately identifying TE polymorphism in short-read population genomic data. However, new approaches allow us to quantify TE polymorphisms in population datasets and address fundamental questions about the evolution of these polymorphisms. Here, we discuss how insertional biases shape where, when, and how often TEs insert throughout the genome. Next, we examine mechanisms by which TEs can affect phenotype. Finally, we evaluate current evidence for selection on TE polymorphisms. All together, it is clear that TEs are important, but underappreciated, contributors to intraspecific phenotypic variation, and that understanding the dynamics governing TE polymorphism is crucial for evolutionary biologists interested in the maintenance of variation.
Collapse
Affiliation(s)
- Nathan S Catlin
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA; Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI, 48824, USA.
| | - Emily B Josephs
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA; Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
22
|
Pellicer J, Fernández P, Fay MF, Michálková E, Leitch IJ. Genome Size Doubling Arises From the Differential Repetitive DNA Dynamics in the Genus Heloniopsis (Melanthiaceae). Front Genet 2021; 12:726211. [PMID: 34552621 PMCID: PMC8450539 DOI: 10.3389/fgene.2021.726211] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/19/2021] [Indexed: 12/23/2022] Open
Abstract
Plant genomes are highly diverse in size and repetitive DNA composition. In the absence of polyploidy, the dynamics of repetitive elements, which make up the bulk of the genome in many species, are the main drivers underpinning changes in genome size and the overall evolution of the genomic landscape. The advent of high-throughput sequencing technologies has enabled investigation of genome evolutionary dynamics beyond model plants to provide exciting new insights in species across the biodiversity of life. Here we analyze the evolution of repetitive DNA in two closely related species of Heloniopsis (Melanthiaceae), which despite having the same chromosome number differ nearly twofold in genome size [i.e., H. umbellata (1C = 4,680 Mb), and H. koreana (1C = 2,480 Mb)]. Low-coverage genome skimming and the RepeatExplorer2 pipeline were used to identify the main repeat families responsible for the significant differences in genome sizes. Patterns of repeat evolution were found to correlate with genome size with the main classes of transposable elements identified being twice as abundant in the larger genome of H. umbellata compared with H. koreana. In addition, among the satellite DNA families recovered, a single shared satellite (HeloSAT) was shown to have contributed significantly to the genome expansion of H. umbellata. Evolutionary changes in repetitive DNA composition and genome size indicate that the differences in genome size between these species have been underpinned by the activity of several distinct repeat lineages.
Collapse
Affiliation(s)
- Jaume Pellicer
- Institut Botànic de Barcelona (IBB, CSIC-Ajuntament de Barcelona), Barcelona, Spain.,Royal Botanic Gardens, Kew, Richmond, United Kingdom
| | - Pol Fernández
- Institut Botànic de Barcelona (IBB, CSIC-Ajuntament de Barcelona), Barcelona, Spain
| | - Michael F Fay
- Royal Botanic Gardens, Kew, Richmond, United Kingdom.,School of Plant Biology, University of Western Australia, Crawley, WA, Australia
| | | | - Ilia J Leitch
- Royal Botanic Gardens, Kew, Richmond, United Kingdom
| |
Collapse
|
23
|
Wang M, Li J, Wang P, Liu F, Liu Z, Zhao G, Xu Z, Pei L, Grover CE, Wendel JF, Wang K, Zhang X. Comparative Genome Analyses Highlight Transposon-Mediated Genome Expansion and the Evolutionary Architecture of 3D Genomic Folding in Cotton. Mol Biol Evol 2021. [PMID: 33973633 DOI: 10.21203/rs.3.rs-93594/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2023] Open
Abstract
Transposable element (TE) amplification has been recognized as a driving force mediating genome size expansion and evolution, but the consequences for shaping 3D genomic architecture remains largely unknown in plants. Here, we report reference-grade genome assemblies for three species of cotton ranging 3-fold in genome size, namely Gossypium rotundifolium (K2), G. arboreum (A2), and G. raimondii (D5), using Oxford Nanopore Technologies. Comparative genome analyses document the details of lineage-specific TE amplification contributing to the large genome size differences (K2, 2.44 Gb; A2, 1.62 Gb; D5, 750.19 Mb) and indicate relatively conserved gene content and synteny relationships among genomes. We found that approximately 17% of syntenic genes exhibit chromatin status change between active ("A") and inactive ("B") compartments, and TE amplification was associated with the increase of the proportion of A compartment in gene regions (∼7,000 genes) in K2 and A2 relative to D5. Only 42% of topologically associating domain (TAD) boundaries were conserved among the three genomes. Our data implicate recent amplification of TEs following the formation of lineage-specific TAD boundaries. This study sheds light on the role of transposon-mediated genome expansion in the evolution of higher-order chromatin structure in plants.
Collapse
Affiliation(s)
- Maojun Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jianying Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Pengcheng Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Fang Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Zhenping Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Guannan Zhao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Zhongping Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Liuling Pei
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Corrinne E Grover
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, USA
| | - Jonathan F Wendel
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, USA
| | - Kunbo Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
24
|
Wang X, Morton JA, Pellicer J, Leitch IJ, Leitch AR. Genome downsizing after polyploidy: mechanisms, rates and selection pressures. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:1003-1015. [PMID: 34077584 DOI: 10.1111/tpj.15363] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/07/2021] [Accepted: 05/13/2021] [Indexed: 05/20/2023]
Abstract
An analysis of over 10 000 plant genome sizes (GSs) indicates that most species have smaller genomes than expected given the incidence of polyploidy in their ancestries, suggesting selection for genome downsizing. However, comparing ancestral GS with the incidence of ancestral polyploidy suggests that the rate of DNA loss following polyploidy is likely to have been very low (4-70 Mb/million years, 4-482 bp/generation). This poses a problem. How might such small DNA losses be visible to selection, overcome the power of genetic drift and drive genome downsizing? Here we explore that problem, focussing on the role that double-strand break (DSB) repair pathways (non-homologous end joining and homologous recombination) may have played. We also explore two hypotheses that could explain how selection might favour genome downsizing following polyploidy: to reduce (i) nitrogen (N) and phosphate (P) costs associated with nucleic acid synthesis in the nucleus and the transcriptome and (ii) the impact of scaling effects of GS on cell size, which influences CO2 uptake and water loss. We explore the hypothesis that losses of DNA must be fastest in early polyploid generations. Alternatively, if DNA loss is a more continuous process over evolutionary time, then we propose it is a byproduct of selection elsewhere, such as limiting the damaging activity of repetitive DNA. If so, then the impact of GS on photosynthesis, water use efficiency and/or nutrient costs at the nucleus level may be emergent properties, which have advantages, but not ones that could have been selected for over generational timescales.
Collapse
Affiliation(s)
- Xiaotong Wang
- Royal Botanic Gardens, Kew, Surrey, TW9 3AB, UK
- Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Joseph A Morton
- Royal Botanic Gardens, Kew, Surrey, TW9 3AB, UK
- Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Jaume Pellicer
- Royal Botanic Gardens, Kew, Surrey, TW9 3AB, UK
- Institut Botànic de Barcelona (IBB, CSIC-Ajuntament de Barcelona), Passeig del Migdia sn, Barcelona, 08038, Spain
| | | | - Andrew R Leitch
- Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| |
Collapse
|
25
|
Beric A, Mabry ME, Harkess AE, Brose J, Schranz ME, Conant GC, Edger PP, Meyers BC, Pires JC. Comparative phylogenetics of repetitive elements in a diverse order of flowering plants (Brassicales). G3 (BETHESDA, MD.) 2021; 11:jkab140. [PMID: 33993297 PMCID: PMC8495927 DOI: 10.1093/g3journal/jkab140] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 04/10/2021] [Indexed: 11/14/2022]
Abstract
Genome sizes of plants have long piqued the interest of researchers due to the vast differences among organisms. However, the mechanisms that drive size differences have yet to be fully understood. Two important contributing factors to genome size are expansions of repetitive elements, such as transposable elements (TEs), and whole-genome duplications (WGD). Although studies have found correlations between genome size and both TE abundance and polyploidy, these studies typically test for these patterns within a genus or species. The plant order Brassicales provides an excellent system to further test if genome size evolution patterns are consistent across larger time scales, as there are numerous WGDs. This order is also home to one of the smallest plant genomes, Arabidopsis thaliana-chosen as the model plant system for this reason-as well as to species with very large genomes. With new methods that allow for TE characterization from low-coverage genome shotgun data and 71 taxa across the Brassicales, we confirm the correlation between genome size and TE content, however, we are unable to reconstruct phylogenetic relationships and do not detect any shift in TE abundance associated with WGD.
Collapse
Affiliation(s)
- Aleksandra Beric
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Makenzie E Mabry
- Division of Biological Sciences and Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Alex E Harkess
- Department of Crop, Soil, and Environmental Sciences, Auburn University, Auburn, AL 36849, USA
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Julia Brose
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| | - M Eric Schranz
- Biosystematics Group, Wageningen University, Wageningen 6700 AA, The Netherlands
| | - Gavin C Conant
- Bioinformatics Research Center, Program in Genetics and Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Patrick P Edger
- Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
- Department of Ecology, Evolutionary Biology and Behavior, Michigan State University, East Lansing, MI 48824, USA
| | - Blake C Meyers
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA
| | - J Chris Pires
- Division of Biological Sciences and Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
26
|
Li Z, McKibben MTW, Finch GS, Blischak PD, Sutherland BL, Barker MS. Patterns and Processes of Diploidization in Land Plants. ANNUAL REVIEW OF PLANT BIOLOGY 2021; 72:387-410. [PMID: 33684297 DOI: 10.1146/annurev-arplant-050718-100344] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Most land plants are now known to be ancient polyploids that have rediploidized. Diploidization involves many changes in genome organization that ultimately restore bivalent chromosome pairing and disomic inheritance, and resolve dosage and other issues caused by genome duplication. In this review, we discuss the nature of polyploidy and its impact on chromosome pairing behavior. We also provide an overview of two major and largely independent processes of diploidization: cytological diploidization and genic diploidization/fractionation. Finally, we compare variation in gene fractionation across land plants and highlight the differences in diploidization between plants and animals. Altogether, we demonstrate recent advancements in our understanding of variation in the patterns and processes of diploidization in land plants and provide a road map for future research to unlock the mysteries of diploidization and eukaryotic genome evolution.
Collapse
Affiliation(s)
- Zheng Li
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, USA; , , , , ,
| | - Michael T W McKibben
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, USA; , , , , ,
| | - Geoffrey S Finch
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, USA; , , , , ,
| | - Paul D Blischak
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, USA; , , , , ,
| | - Brittany L Sutherland
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, USA; , , , , ,
| | - Michael S Barker
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, USA; , , , , ,
| |
Collapse
|
27
|
Wang M, Li J, Wang P, Liu F, Liu Z, Zhao G, Xu Z, Pei L, Grover CE, Wendel JF, Wang K, Zhang X. Comparative genome analyses highlight transposon-mediated genome expansion and the evolutionary architecture of 3D genomic folding in cotton. Mol Biol Evol 2021; 38:3621-3636. [PMID: 33973633 PMCID: PMC8382922 DOI: 10.1093/molbev/msab128] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 04/19/2021] [Accepted: 04/28/2021] [Indexed: 12/12/2022] Open
Abstract
Transposable element (TE) amplification has been recognized as a driving force mediating genome size expansion and evolution, but the consequences for shaping 3D genomic architecture remains largely unknown in plants. Here, we report reference-grade genome assemblies for three species of cotton ranging 3-fold in genome size, namely Gossypium rotundifolium (K2), G. arboreum (A2), and G. raimondii (D5), using Oxford Nanopore Technologies. Comparative genome analyses document the details of lineage-specific TE amplification contributing to the large genome size differences (K2, 2.44 Gb; A2, 1.62 Gb; D5, 750.19 Mb) and indicate relatively conserved gene content and synteny relationships among genomes. We found that approximately 17% of syntenic genes exhibit chromatin status change between active (“A”) and inactive (“B”) compartments, and TE amplification was associated with the increase of the proportion of A compartment in gene regions (∼7,000 genes) in K2 and A2 relative to D5. Only 42% of topologically associating domain (TAD) boundaries were conserved among the three genomes. Our data implicate recent amplification of TEs following the formation of lineage-specific TAD boundaries. This study sheds light on the role of transposon-mediated genome expansion in the evolution of higher-order chromatin structure in plants.
Collapse
Affiliation(s)
- Maojun Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Jianying Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Pengcheng Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Fang Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Zhenping Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Guannan Zhao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Zhongping Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Liuling Pei
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Corrinne E Grover
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Jonathan F Wendel
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Kunbo Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| |
Collapse
|
28
|
Filip E, Skuza L. Horizontal Gene Transfer Involving Chloroplasts. Int J Mol Sci 2021; 22:ijms22094484. [PMID: 33923118 PMCID: PMC8123421 DOI: 10.3390/ijms22094484] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 02/04/2023] Open
Abstract
Horizontal gene transfer (HGT)- is defined as the acquisition of genetic material from another organism. However, recent findings indicate a possible role of HGT in the acquisition of traits with adaptive significance, suggesting that HGT is an important driving force in the evolution of eukaryotes as well as prokaryotes. It has been noted that, in eukaryotes, HGT is more prevalent than originally thought. Mitochondria and chloroplasts lost a large number of genes after their respective endosymbiotic events occurred. Even after this major content loss, organelle genomes still continue to lose their own genes. Many of these are subsequently acquired by intracellular gene transfer from the original plastid. The aim of our review was to elucidate the role of chloroplasts in the transfer of genes. This review also explores gene transfer involving mitochondrial and nuclear genomes, though recent studies indicate that chloroplast genomes are far more active in HGT as compared to these other two DNA-containing cellular compartments.
Collapse
Affiliation(s)
- Ewa Filip
- Institute of Biology, University of Szczecin, 13 Wąska, 71-415 Szczecin, Poland;
- The Centre for Molecular Biology and Biotechnology, University of Szczecin, 13 Wąska, 71-415 Szczecin, Poland
- Correspondence:
| | - Lidia Skuza
- Institute of Biology, University of Szczecin, 13 Wąska, 71-415 Szczecin, Poland;
- The Centre for Molecular Biology and Biotechnology, University of Szczecin, 13 Wąska, 71-415 Szczecin, Poland
| |
Collapse
|
29
|
Sader M, Vaio M, Cauz-Santos LA, Dornelas MC, Vieira MLC, Melo N, Pedrosa-Harand A. Large vs small genomes in Passiflora: the influence of the mobilome and the satellitome. PLANTA 2021; 253:86. [PMID: 33792791 DOI: 10.1007/s00425-021-03598-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 03/18/2021] [Indexed: 05/22/2023]
Abstract
While two lineages of retrotransposons were more abundant in larger Passiflora genomes, the satellitome was more diverse and abundant in the smallest genome analysed. Repetitive sequences are ubiquitous and fast-evolving elements responsible for size variation and large-scale organization of plant genomes. Within Passiflora genus, a tenfold variation in genome size, not attributed to polyploidy, is known. Here, we applied a combined in silico and cytological approach to study the organization and diversification of repetitive elements in three species of this genus representing its known range in genome size variation. Sequences were classified in terms of type and repetitiveness and the most abundant were mapped to chromosomes. We identified long terminal repeat (LTR) retrotransposons as the most abundant elements in the three genomes, showing a considerable variation among species. Satellite DNAs (satDNAs) were less representative, but highly diverse between subgenera. Our results clearly confirm that the largest genome species (Passiflora quadrangularis) presents a higher accumulation of repetitive DNA sequences, specially Angela and Tekay elements, making up most of its genome. Passiflora cincinnata, with intermediate genome and from the same subgenus, showed similarity with P. quadrangularis regarding the families of repetitive DNA sequences, but in different proportions. On the other hand, Passiflora organensis, the smallest genome, from a different subgenus, presented greater diversity and the highest proportion of satDNA. Altogether, our data indicates that while large genomes evolved by an accumulation of retrotransposons, the smallest genome known for the genus has evolved by diversification of different repeat types, particularly satDNAs.
Collapse
Affiliation(s)
- Mariela Sader
- Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Federal University of Pernambuco, Recife, Pernambuco, Brazil.
| | - Magdalena Vaio
- Laboratory of Plant Genome Evolution and Domestication, Department of Plant Biology, Faculty of Agronomy, University of the Republic, Montevideo, Uruguay
| | - Luiz Augusto Cauz-Santos
- Genetics Department, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | | | - Maria Lucia Carneiro Vieira
- Genetics Department, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Natoniel Melo
- Laboratory of Biotechnology, Embrapa Semiarid, Petrolina, Pernambuco, Brazil
| | - Andrea Pedrosa-Harand
- Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| |
Collapse
|
30
|
Wei G, Li X, Fang Y. Sympatric genome size variation and hybridization of four oak species as determined by flow cytometry genome size variation and hybridization. Ecol Evol 2021; 11:1729-1740. [PMID: 33614000 PMCID: PMC7882991 DOI: 10.1002/ece3.7163] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 12/02/2020] [Accepted: 12/09/2020] [Indexed: 01/31/2023] Open
Abstract
The Quercus species serve as a powerful model for studying introgression in relation to species boundaries and adaptive processes. Coexistence of distant relatives, or lack of coexistence of closely relative oak species, introgression may play a role. In the current study, four closely related oak species were found in Zijinshan, China. We generated a comprehensive genome size (GS) database for 120 individuals of four species using flow cytometry-based approaches. We examined GS variability within and among the species and hybridization events among the four species. The mean GSs of Q. acutissima, Q. variabilis, Q. fabri, and Q. serrata var. brevipetiolata were estimated to be 1.87, 1.92, 1.97, and 1.97 pg, respectively. The intraspecific and interspecific variations of GS observed among the four oak species indicated adaptation to the environment. Hybridization occurred both within and between the sections. A hybrid offspring was produced from Q. fabri and Q. variabilis, which belonged to different sections. The GS evolutionary pattern for hybrid species was expansion. Hybridization between the sections may be affected by habitat disturbance. This study increases our understanding of the evolution of GS in Quercus and will help establish guidelines for the ecological protection of oak trees.
Collapse
Affiliation(s)
- GaoMing Wei
- Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity ConservationCo‐Innovation Center for Sustainable Forestry in Southern ChinaCollege of Biology and the EnvironmentNanjing Forestry UniversityNanjingChina
- School of Physics, and Electronics Henan UniversityKaifengChina
| | - Xuan Li
- Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity ConservationCo‐Innovation Center for Sustainable Forestry in Southern ChinaCollege of Biology and the EnvironmentNanjing Forestry UniversityNanjingChina
| | - YanMing Fang
- Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity ConservationCo‐Innovation Center for Sustainable Forestry in Southern ChinaCollege of Biology and the EnvironmentNanjing Forestry UniversityNanjingChina
| |
Collapse
|
31
|
Retrotransposons and the Evolution of Genome Size in Pisum. BIOTECH 2020; 9:biotech9040024. [PMID: 35822827 PMCID: PMC9258317 DOI: 10.3390/biotech9040024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/16/2020] [Accepted: 11/16/2020] [Indexed: 11/16/2022] Open
Abstract
Here we investigate the plant population genetics of retrotransposon insertion sites in pea to find out whether genetic drift and the neutral theory of molecular evolution can account for their abundance in the pea genome. (1) We asked whether two contrasting types of pea LTR-containing retrotransposons have the frequency and age distributions consistent with the behavior of neutral alleles and whether these parameters can explain the rate of change of genome size in legumes. (2) We used the recently assembled v1a pea genome sequence to obtain data on LTR-LTR divergence from which their age can be estimated. We coupled these data to prior information on the distribution of insertion site alleles. (3) We found that the age and frequency distribution data are consistent with the neutral theory. (4) We concluded that demographic processes are the underlying cause of genome size variation in legumes.
Collapse
|
32
|
Hsu CC, Chen SY, Lai PH, Hsiao YY, Tsai WC, Liu ZJ, Chung MC, Panaud O, Chen HH. Identification of high-copy number long terminal repeat retrotransposons and their expansion in Phalaenopsis orchids. BMC Genomics 2020; 21:807. [PMID: 33213366 PMCID: PMC7678294 DOI: 10.1186/s12864-020-07221-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 11/09/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Transposable elements (TEs) are fragments of DNA that can insert into new chromosomal locations. They represent a great proportion of eukaryotic genomes. The identification and characterization of TEs facilitates understanding the transpositional activity of TEs with their effects on the orchid genome structure. RESULTS We combined the draft whole-genome sequences of Phalaenopsis equestris with BAC end sequences, Roche 454, and Illumina/Solexa, and identified long terminal repeat (LTR) retrotransposons in these genome sequences by using LTRfinder and classified by using Gepard software. Among the 10 families Gypsy-like retrotransposons, three families Gypsy1, Gypsy2, and Gypsy3, contained the most copies among these predicted elements. In addition, six high-copy retrotransposons were identified according to their reads in the sequenced raw data. The 12-kb Orchid-rt1 contains 18,000 copies representing 220 Mbp of the P. equestris genome. Southern blot and slot blot assays showed that these four retrotransposons Gypsy1, Gypsy2, Gypsy3, and Orchid-rt1 contained high copies in the large-genome-size/large-chromosome species P. violacea and P. bellina. Both Orchid-rt1 and Gypsy1 displayed various ratios of copy number for the LTR sequences versus coding sequences among four Phalaenopsis species, including P. violacea and P. bellina and small-genome-size/small-chromosome P. equestris and P. ahprodite subsp. formosana, which suggests that Orchid-rt1 and Gypsy1 have been through various mutations and homologous recombination events. FISH results showed amplification of Orchid-rt1 in the euchromatin regions among the four Phalaenopsis species. The expression levels of Peq018599 encoding copper transporter 1 is highly upregulated with the insertion of Orchid-rt1, while it is down regulated for Peq009948 and Peq014239 encoding for a 26S proteasome non-ATP regulatory subunit 4 homolog and auxin-responsive factor AUX/IAA-related. In addition, insertion of Orchid-rt1 in these three genes are all in their intron regions. CONCLUSION Orchid-rt1 and Gypsy1-3 have amplified within Phalaenopsis orchids concomitant with the expanded genome sizes, and Orchid-rt1 and Gypsy1 may have gone through various mutations and homologous recombination events. Insertion of Orchid-rt1 is in the introns and affects gene expression levels.
Collapse
Affiliation(s)
- Chia-Chi Hsu
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Shu-Yun Chen
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Pei-Han Lai
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Yun Hsiao
- Orchid Research and Development Center, National Cheng Kung University, Tainan, Taiwan
| | - Wen-Chieh Tsai
- Institute of Tropical Plant Sciences and Microbiology, National Cheng Kung University, Tainan, Taiwan
| | - Zhong-Jian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mei-Chu Chung
- Institute of Plant and Microbial Biology, Academia Sinica, Nankang, Taipei, Taiwan
| | - Olivier Panaud
- Institute of Plant Genome and Development, University of Perpignan, Perpignan, France
| | - Hong-Hwa Chen
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan. .,Orchid Research and Development Center, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
33
|
Zhang SJ, Liu L, Yang R, Wang X. Genome Size Evolution Mediated by Gypsy Retrotransposons in Brassicaceae. GENOMICS PROTEOMICS & BIOINFORMATICS 2020; 18:321-332. [PMID: 33137519 PMCID: PMC7801240 DOI: 10.1016/j.gpb.2018.07.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 05/31/2018] [Accepted: 07/16/2018] [Indexed: 12/29/2022]
Abstract
The dynamic activity of transposable elements (TEs) contributes to the vast diversity of genome size and architecture among plants. Here, we examined the genomic distribution and transposition activity of long terminal repeat retrotransposons (LTR-RTs) in Arabidopsis thaliana (Ath) and three of its relatives, Arabidopsis lyrata (Aly), Eutrema salsugineum (Esa), and Schrenkiella parvula (Spa), in Brassicaceae. Our analyses revealed the distinct evolutionary dynamics of Gypsyretrotransposons, which reflects the different patterns of genome size changes of the four species over the past million years. The rate of Gypsy transposition in Aly is approximately five times more rapid than that of Ath and Esa, suggesting an expanding Aly genome. Gypsy insertions in Esa are strictly confined to pericentromeric heterochromatin and associated with dramatic centromere expansion. In contrast, Gypsy insertions in Spa have been largely suppressed over the last million years, likely as a result of a combination of an inherent molecular mechanism of preferential DNA removal and purifying selection at Gypsy elements. Additionally, species-specific clades of Gypsy elements shaped the distinct genome architectures of Aly and Esa.
Collapse
Affiliation(s)
- Shi-Jian Zhang
- Department of Crop Genomics and Bioinformatics, College of Agronomy and Biotechnology, National Maize Improvement Center of China, China Agricultural University, Beijing 100094, China
| | - Lei Liu
- Beijing Key Laboratory of Plant Resources Research and Development, School of Sciences, Beijing Technology and Business University, Beijing 100048, China
| | - Ruolin Yang
- College of Life Sciences, Northwest A&F University, Yangling 712100, China.
| | - Xiangfeng Wang
- Department of Crop Genomics and Bioinformatics, College of Agronomy and Biotechnology, National Maize Improvement Center of China, China Agricultural University, Beijing 100094, China.
| |
Collapse
|
34
|
Bayer PE, Golicz AA, Scheben A, Batley J, Edwards D. Plant pan-genomes are the new reference. NATURE PLANTS 2020; 6:914-920. [PMID: 32690893 DOI: 10.1038/s41477-020-0733-0] [Citation(s) in RCA: 254] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 06/29/2020] [Indexed: 05/18/2023]
Abstract
Recent years have seen a surge in plant genome sequencing projects and the comparison of multiple related individuals. The high degree of genomic variation observed led to the realization that single reference genomes do not represent the diversity within a species, and led to the expansion of the pan-genome concept. Pan-genomes represent the genomic diversity of a species and includes core genes, found in all individuals, as well as variable genes, which are absent in some individuals. Variable gene annotations often show similarities across plant species, with genes for biotic and abiotic stress commonly enriched within variable gene groups. Here we review the growth of pan-genomics in plants, explore the origins of gene presence and absence variation, and show how pan-genomes can support plant breeding and evolution studies.
Collapse
Affiliation(s)
- Philipp E Bayer
- School of Biological Sciences and Institute of Agriculture, University of Western Australia, Perth, Western Australia, Australia
| | - Agnieszka A Golicz
- Plant Molecular Biology and Biotechnology Laboratory, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Melbourne, Victoria, Australia
| | - Armin Scheben
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Jacqueline Batley
- School of Biological Sciences and Institute of Agriculture, University of Western Australia, Perth, Western Australia, Australia
| | - David Edwards
- School of Biological Sciences and Institute of Agriculture, University of Western Australia, Perth, Western Australia, Australia.
| |
Collapse
|
35
|
Nieto Feliner G, Casacuberta J, Wendel JF. Genomics of Evolutionary Novelty in Hybrids and Polyploids. Front Genet 2020; 11:792. [PMID: 32849797 PMCID: PMC7399645 DOI: 10.3389/fgene.2020.00792] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/03/2020] [Indexed: 12/15/2022] Open
Abstract
It has long been recognized that hybridization and polyploidy are prominent processes in plant evolution. Although classically recognized as significant in speciation and adaptation, recognition of the importance of interspecific gene flow has dramatically increased during the genomics era, concomitant with an unending flood of empirical examples, with or without genome doubling. Interspecific gene flow is thus increasingly thought to lead to evolutionary innovation and diversification, via adaptive introgression, homoploid hybrid speciation and allopolyploid speciation. Less well understood, however, are the suite of genetic and genomic mechanisms set in motion by the merger of differentiated genomes, and the temporal scale over which recombinational complexity mediated by gene flow might be expressed and exposed to natural selection. We focus on these issues here, considering the types of molecular genetic and genomic processes that might be set in motion by the saltational event of genome merger between two diverged species, either with or without genome doubling, and how these various processes can contribute to novel phenotypes. Genetic mechanisms include the infusion of new alleles and the genesis of novel structural variation including translocations and inversions, homoeologous exchanges, transposable element mobilization and novel insertional effects, presence-absence variation and copy number variation. Polyploidy generates massive transcriptomic and regulatory alteration, presumably set in motion by disrupted stoichiometries of regulatory factors, small RNAs and other genome interactions that cascade from single-gene expression change up through entire networks of transformed regulatory modules. We highlight both these novel combinatorial possibilities and the range of temporal scales over which such complexity might be generated, and thus exposed to natural selection and drift.
Collapse
Affiliation(s)
- Gonzalo Nieto Feliner
- Department of Biodiversity and Conservation, Real Jardín Botánico, CSIC, Madrid, Spain
| | - Josep Casacuberta
- Center for Research in Agricultural Genomics, CRAG (CSIC-IRTA-UAB-UB), Barcelona, Spain
| | - Jonathan F. Wendel
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, United States
| |
Collapse
|
36
|
Improved reconstruction and comparative analysis of chromosome 12 to rectify Mis-assemblies in Gossypium arboreum. BMC Genomics 2020; 21:470. [PMID: 32640982 PMCID: PMC7346634 DOI: 10.1186/s12864-020-06814-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 06/09/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Genome sequencing technologies have been improved at an exponential pace but precise chromosome-scale genome assembly still remains a great challenge. The draft genome of cultivated G. arboreum was sequenced and assembled with shotgun sequencing approach, however, it contains several misassemblies. To address this issue, we generated an improved reassembly of G. arboreum chromosome 12 using genetic mapping and reference-assisted approaches and evaluated this reconstruction by comparing with homologous chromosomes of G. raimondii and G. hirsutum. RESULTS In this study, we generated a high quality assembly of the 94.64 Mb length of G. arboreum chromosome 12 (A_A12) which comprised of 144 scaffolds and contained 3361 protein coding genes. Evaluation of results using syntenic and collinear analysis of reconstructed G. arboreum chromosome A_A12 with its homologous chromosomes of G. raimondii (D_D08) and G. hirsutum (AD_A12 and AD_D12) confirmed the significant improved quality of current reassembly as compared to previous one. We found major misassemblies in previously assembled chromosome 12 (A_Ca9) of G. arboreum particularly in anchoring and orienting of scaffolds into a pseudo-chromosome. Further, homologous chromosomes 12 of G. raimondii (D_D08) and G. arboreum (A_A12) contained almost equal number of transcription factor (TF) related genes, and showed good collinear relationship with each other. As well, a higher rate of gene loss was found in corresponding homologous chromosomes of tetraploid (AD_A12 and AD_D12) than diploid (A_A12 and D_D08) cotton, signifying that gene loss is likely a continuing process in chromosomal evolution of tetraploid cotton. CONCLUSION This study offers a more accurate strategy to correct misassemblies in sequenced draft genomes of cotton which will provide further insights towards its genome organization.
Collapse
|
37
|
Impact of transposable elements on genome size variation between two closely related crustacean species. Anal Biochem 2020; 600:113770. [DOI: 10.1016/j.ab.2020.113770] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 04/13/2020] [Accepted: 05/05/2020] [Indexed: 12/19/2022]
|
38
|
Lanciano S, Cristofari G. Measuring and interpreting transposable element expression. Nat Rev Genet 2020; 21:721-736. [PMID: 32576954 DOI: 10.1038/s41576-020-0251-y] [Citation(s) in RCA: 205] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2020] [Indexed: 12/21/2022]
Abstract
Transposable elements (TEs) are insertional mutagens that contribute greatly to the plasticity of eukaryotic genomes, influencing the evolution and adaptation of species as well as physiology or disease in individuals. Measuring TE expression helps to understand not only when and where TE mobilization can occur but also how this process alters gene expression, chromatin accessibility or cellular signalling pathways. Although genome-wide gene expression assays such as RNA sequencing include transposon-derived transcripts, most computational analytical tools discard or misinterpret TE-derived reads. Emerging approaches are improving the identification of expressed TE loci and helping to discriminate TE transcripts that permit TE mobilization from chimeric gene-TE transcripts or pervasive transcription. Here we review the main challenges associated with the detection of TE expression, including mappability, insertional and internal sequence polymorphisms, and the diversity of the TE transcriptional landscape, as well as the different experimental and computational strategies to solve them.
Collapse
|
39
|
Choi IY, Kwon EC, Kim NS. The C- and G-value paradox with polyploidy, repeatomes, introns, phenomes and cell economy. Genes Genomics 2020; 42:699-714. [DOI: 10.1007/s13258-020-00941-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 05/12/2020] [Indexed: 12/14/2022]
|
40
|
Hu MJ, Sun WH, Tsai WC, Xiang S, Lai XK, Chen DQ, Liu XD, Wang YF, Le YX, Chen SM, Zhang DY, Yu X, Hu WQ, Zhou Z, Chen YQ, Zou SQ, Liu ZJ. Chromosome-scale assembly of the Kandelia obovata genome. HORTICULTURE RESEARCH 2020; 7:75. [PMID: 32377365 PMCID: PMC7195387 DOI: 10.1038/s41438-020-0300-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 03/11/2020] [Accepted: 03/16/2020] [Indexed: 05/19/2023]
Abstract
The mangrove Kandelia obovata (Rhizophoraceae) is an important coastal shelterbelt and landscape tree distributed in tropical and subtropical areas across East Asia and Southeast Asia. Herein, a chromosome-level reference genome of K. obovata based on PacBio, Illumina, and Hi-C data is reported. The high-quality assembled genome size is 177.99 Mb, with a contig N50 value of 5.74 Mb. A large number of contracted gene families and a small number of expanded gene families, as well as a small number of repeated sequences, may account for the small K. obovata genome. We found that K. obovata experienced two whole-genome polyploidization events: one whole-genome duplication shared with other Rhizophoreae and one shared with most eudicots (γ event). We confidently annotated 19,138 protein-coding genes in K. obovata and identified the MADS-box gene class and the RPW8 gene class, which might be related to flowering and resistance to powdery mildew in K. obovata and Rhizophora apiculata, respectively. The reference K. obovata genome described here will be very useful for further molecular elucidation of various traits, the breeding of this coastal shelterbelt species, and evolutionary studies with related taxa.
Collapse
Affiliation(s)
- Min-Jie Hu
- Key Laboratory of Humid Sub-tropical Eco-Geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou, 350007 China
| | - Wei-Hong Sun
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at the College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Wen-Chieh Tsai
- Institute of Tropical Plant Sciences and Microbiology, National Cheng Kung University, Tainan, 701 China
| | - Shuang Xiang
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at the College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Xing-Kai Lai
- Administration of the Quanzhou Bay Estuary Wetland Nature Reserve, Quanzhou, 362000 China
| | - De-Qiang Chen
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at the College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Xue-Die Liu
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Yi-Fan Wang
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Yi-Xun Le
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Si-Ming Chen
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- Ocean College, Minjiang University, Fuzhou, 350002 China
| | - Di-Yang Zhang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at the College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Xia Yu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at the College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Wen-Qi Hu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at the College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Zhuang Zhou
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at the College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Yan-Qiong Chen
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at the College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Shuang-Quan Zou
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at the College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Zhong-Jian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at the College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- Henry Fok College of Biology and Agriculture, Shaoguan University, Shaoguan, 512005 China
| |
Collapse
|
41
|
Ourari M, Coriton O, Martin G, Huteau V, Keller J, Ainouche ML, Amirouche R, Ainouche A. Screening diversity and distribution of Copia retrotransposons reveals a specific amplification of BARE1 elements in genomes of the polyploid Hordeum murinum complex. Genetica 2020; 148:109-123. [PMID: 32361835 DOI: 10.1007/s10709-020-00094-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 04/24/2020] [Indexed: 10/24/2022]
Abstract
We explored diversity, distribution and evolutionary dynamics of Ty1-Copia retrotransposons in the genomes of the Hordeum murinum polyploid complex and related taxa. Phylogenetic and fluorescent in situ hybridization (FISH) analyses of reverse transcriptase sequences identified four Copia families in these genomes: the predominant BARE1 (including three groups or subfamilies, A, B and C), and the less represented RIRE1, IKYA and TAR-1. Within the BARE1 family, BARE1-A elements and a subgroup of BARE1-B elements (named B1) have proliferated in the allopolyploid members of the H. murinum complex (H. murinum and H. leporinum), and in their extant diploid progenitor, subsp. glaucum. Moreover, we found a specific amplification of BARE1-B elements within each Hordeum species surveyed. The low occurrence of RIRE1, IKYA and TAR-1 elements in the allopolyploid cytotypes suggests that they are either weakly represented or highly degenerated in their diploid progenitors. The results demonstrate that BARE1-A and BARE1-B1 Copia elements are particularly well represented in the genomes of the H. murinum complex and constitute its genomic hallmark. No BARE1-A and -B1 homologs were detected in the reference barley genome. The similar distribution of RT-Copia probes across chromosomes of diploid, tetraploid and hexaploid taxa of the murinum complex shows no evidence of proliferation following polyploidization.
Collapse
Affiliation(s)
- Malika Ourari
- Laboratory of Ecology and Environment, Department of Environment Biological Sciences, Faculty of Nature and Life Sciences, Université de Bejaia, Targa Ouzemmour, 06000, Bejaia, Algeria
| | - Olivier Coriton
- Institut National de Recherche en Agriculture, Alimentation et Environnement, UMR1349 INRAE-AgroCampus Ouest-Université de Rennes 1, Bât 301, INRA Centre de Bretagne-Normandie, BP 35327, 35653, Le Rheu Cedex, France
| | - Guillaume Martin
- CIRAD, UMR AGAP, 34398, Montpellier, France.,Université de Montpellier, AGAP, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Virginie Huteau
- Institut National de Recherche en Agriculture, Alimentation et Environnement, UMR1349 INRAE-AgroCampus Ouest-Université de Rennes 1, Bât 301, INRA Centre de Bretagne-Normandie, BP 35327, 35653, Le Rheu Cedex, France
| | - Jean Keller
- Université de Toulouse, LRSV, CNRS, UPS, 24 chemin de Borde Rouge, Auzeville, 31320, Auzeville-Tolosane, France
| | - Malika-Lily Ainouche
- Université de Rennes 1, UMR-CNRS 6553, EcoBio, Campus Scientifique de Beaulieu, Bât. 14A, 35042, Rennes Cedex, France
| | - Rachid Amirouche
- Université des Sciences et de la Technologie Houari Boumediene, Faculté des Sciences Biologiques, Lab. LBPO, USTHB, BP 32 El-Alia, Bab-Ezzouar, 16111, Alger, Algerie.
| | - Abdelkader Ainouche
- Université de Rennes 1, UMR-CNRS 6553, EcoBio, Campus Scientifique de Beaulieu, Bât. 14A, 35042, Rennes Cedex, France
| |
Collapse
|
42
|
Wang B, Liang X, Gleason ML, Hsiang T, Zhang R, Sun G. A chromosome-scale assembly of the smallest Dothideomycete genome reveals a unique genome compaction mechanism in filamentous fungi. BMC Genomics 2020; 21:321. [PMID: 32326892 PMCID: PMC7181583 DOI: 10.1186/s12864-020-6732-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 04/14/2020] [Indexed: 11/19/2022] Open
Abstract
Background The wide variation in the size of fungal genomes is well known, but the reasons for this size variation are less certain. Here, we present a chromosome-scale assembly of ectophytic Peltaster fructicola, a surface-dwelling extremophile, based on long-read DNA sequencing technology, to assess possible mechanisms associated with genome compaction. Results At 18.99 million bases (Mb), P. fructicola possesses one of the smallest known genomes sequence among filamentous fungi. The genome is highly compact relative to other fungi, with substantial reductions in repeat content, ribosomal DNA copies, tRNA gene quantity, and intron sizes, as well as intergenic lengths and the size of gene families. Transposons take up just 0.05% of the entire genome, and no full-length transposon was found. We concluded that reduced genome sizes in filamentous fungi such as P. fructicola, Taphrina deformans and Pneumocystis jirovecii occurred through reduction in ribosomal DNA copy number and reduced intron sizes. These dual mechanisms contrast with genome reduction in the yeast fungus Saccharomyces cerevisiae, whose small and compact genome is associated solely with intron loss. Conclusions Our results reveal a unique genomic compaction architecture of filamentous fungi inhabiting plant surfaces, and broaden the understanding of the mechanisms associated with compaction of fungal genomes.
Collapse
Affiliation(s)
- Bo Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi Province, China.,MOE Key Laboratory for Intelligent Networks & Network Security, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xiaofei Liang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi Province, China.
| | - Mark L Gleason
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, 50011, USA
| | - Tom Hsiang
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Rong Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi Province, China
| | - Guangyu Sun
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi Province, China.
| |
Collapse
|
43
|
Borredá C, Pérez-Román E, Ibanez V, Terol J, Talon M. Reprogramming of Retrotransposon Activity during Speciation of the Genus Citrus. Genome Biol Evol 2020; 11:3478-3495. [PMID: 31710678 PMCID: PMC7145672 DOI: 10.1093/gbe/evz246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2019] [Indexed: 12/13/2022] Open
Abstract
Speciation of the genus Citrus from a common ancestor has recently been established to begin ∼8 Ma during the late Miocene, a period of major climatic alterations. Here, we report the changes in activity of Citrus LTR retrotransposons during the process of diversification that gave rise to the current Citrus species. To reach this goal, we analyzed four pure species that diverged early during Citrus speciation, three recent admixtures derived from those species and an outgroup of the Citrus clade. More than 30,000 retrotransposons were grouped in ten linages. Estimations of LTR insertion times revealed that retrotransposon activity followed a species-specific pattern of change that could be ascribed to one of three different models. In some genomes, the expected pattern of gradual transposon accumulation was suddenly arrested during the radiation of the ancestor that gave birth to the current Citrus species. The individualized analyses of retrotransposon lineages showed that in each and every species studied, not all lineages follow the general pattern of the species itself. For instance, in most of the genomes, the retrotransposon activity of elements from the SIRE lineage reached its highest level just before Citrus speciation, while for Retrofit elements, it has been steadily growing. Based on these observations, we propose that Citrus retrotransposons may respond to stressful conditions driving speciation as a part of the genetic response involved in adaptation. This proposal implies that the evolving conditions of each species interact with the internal regulatory mechanisms of the genome controlling the proliferation of mobile elements.
Collapse
Affiliation(s)
- Carles Borredá
- Centro de Genómica, Instituto Valenciano de Investigaciones Agrarias (IVIA), Valencia, Spain
| | - Estela Pérez-Román
- Centro de Genómica, Instituto Valenciano de Investigaciones Agrarias (IVIA), Valencia, Spain
| | - Victoria Ibanez
- Centro de Genómica, Instituto Valenciano de Investigaciones Agrarias (IVIA), Valencia, Spain
| | - Javier Terol
- Centro de Genómica, Instituto Valenciano de Investigaciones Agrarias (IVIA), Valencia, Spain
| | - Manuel Talon
- Centro de Genómica, Instituto Valenciano de Investigaciones Agrarias (IVIA), Valencia, Spain
| |
Collapse
|
44
|
Abstract
The laurel family within the Magnoliids has attracted attentions owing to its scents, variable inflorescences, and controversial phylogenetic position. Here, we present a chromosome-level assembly of the Litsea cubeba genome, together with low-coverage genomic and transcriptomic data for many other Lauraceae. Phylogenomic analyses show phylogenetic discordance at the position of Magnoliids, suggesting incomplete lineage sorting during the divergence of monocots, eudicots, and Magnoliids. An ancient whole-genome duplication (WGD) event occurred just before the divergence of Laurales and Magnoliales; subsequently, independent WGDs occurred almost simultaneously in the three Lauralean lineages. The phylogenetic relationships within Lauraceae correspond to the divergence of inflorescences, as evidenced by the phylogeny of FUWA, a conserved gene involved in determining panicle architecture in Lauraceae. Monoterpene synthases responsible for production of specific volatile compounds in Lauraceae are functionally verified. Our work sheds light on the evolution of the Lauraceae, the genetic basis for floral evolution and specific scents. Litsea cubeba belongs to the Lauraceae family within the Magnoliids clade. Here, the authors assemble its genome and reveal divergence of inflorescence and sexual differentiation, the phylogenetic relationships across the Lauraceae and related species, and biosynthetic genes related to essential oil synthesis.
Collapse
|
45
|
McCann J, Macas J, Novák P, Stuessy TF, Villaseñor JL, Weiss-Schneeweiss H. Differential Genome Size and Repetitive DNA Evolution in Diploid Species of Melampodium sect. Melampodium (Asteraceae). FRONTIERS IN PLANT SCIENCE 2020; 11:362. [PMID: 32296454 PMCID: PMC7136903 DOI: 10.3389/fpls.2020.00362] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 03/12/2020] [Indexed: 05/18/2023]
Abstract
Plant genomes vary greatly in composition and size mainly due to the diversity of repetitive DNAs and the inherent propensity for their amplification and removal from the host genome. Most studies addressing repeatome dynamics focus on model organisms, whereas few provide comprehensive investigations across the genomes of related taxa. Herein, we analyze the evolution of repeats of the 13 species in Melampodium sect. Melampodium, representing all but two of its diploid taxa, in a phylogenetic context. The investigated genomes range in size from 0.49 to 2.27 pg/1C (ca. 4.5-fold variation), despite having the same base chromosome number (x = 10) and very strong phylogenetic affinities. Phylogenetic analysis performed in BEAST and ancestral genome size reconstruction revealed mixed patterns of genome size increases and decreases across the group. High-throughput genome skimming and the RepeatExplorer pipeline were utilized to determine the repeat families responsible for the differences in observed genome sizes. Patterns of repeat evolution were found to be highly correlated with phylogenetic position, namely taxonomic series circumscription. Major differences found were in the abundances of the SIRE (Ty1-copia), Athila (Ty3-gypsy), and CACTA (DNA transposon) lineages. Additionally, several satellite DNA families were found to be highly group-specific, although their overall contribution to genome size variation was relatively small. Evolutionary changes in repetitive DNA composition and genome size were complex, with independent patterns of genome up- and downsizing throughout the evolution of the analyzed diploids. A model-based analysis of genome size and repetitive DNA composition revealed evidence for strong phylogenetic signal and differential evolutionary rates of major lineages of repeats in the diploid genomes.
Collapse
Affiliation(s)
- Jamie McCann
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Jiří Macas
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, České Budějovice, Czechia
| | - Petr Novák
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, České Budějovice, Czechia
| | - Tod F. Stuessy
- Herbarium and Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH, United States
| | - Jose L. Villaseñor
- Department of Botany, National Autonomous University of Mexico, Mexico City, Mexico
| | | |
Collapse
|
46
|
Vitales D, Álvarez I, Garcia S, Hidalgo O, Nieto Feliner G, Pellicer J, Vallès J, Garnatje T. Genome size variation at constant chromosome number is not correlated with repetitive DNA dynamism in Anacyclus (Asteraceae). ANNALS OF BOTANY 2020; 125:611-623. [PMID: 31697800 PMCID: PMC7103019 DOI: 10.1093/aob/mcz183] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/06/2019] [Indexed: 05/02/2023]
Abstract
BACKGROUND AND AIMS Changes in the amount of repetitive DNA (dispersed and tandem repeats) are considered the main contributors to genome size variation across plant species in the absence of polyploidy. However, the study of repeatome dynamism in groups showing contrasting genomic features and complex evolutionary histories is needed to determine whether other processes underlying genome size variation may have been overlooked. The main aim here was to elucidate which mechanism best explains genome size evolution in Anacyclus (Asteraceae). METHODS Using data from Illumina sequencing, we analysed the repetitive DNA in all species of Anacyclus, a genus with a reticulate evolutionary history, which displays significant genome size and karyotype diversity albeit presenting a stable chromosome number. KEY RESULTS By reconstructing ancestral genome size values, we inferred independent episodes of genome size expansions and contractions during the evolution of the genus. However, analysis of the repeatome revealed a similar DNA repeat composition across species, both qualitative and quantitative. Using comparative methods to study repeatome dynamics in the genus, we found no evidence for repeat activity causing genome size variation among species. CONCLUSIONS Our results, combined with previous cytogenetic data, suggest that genome size differences in Anacyclus are probably related to chromosome rearrangements involving losses or gains of chromosome fragments, possibly associated with homoploid hybridization. These could represent balanced rearrangements that do not disrupt gene dosage in merged genomes, for example via chromosome segment exchanges.
Collapse
Affiliation(s)
- Daniel Vitales
- Institut Botànic de Barcelona (IBB, CSIC-ICUB), Passeig del Migdia sn, 08038 Barcelona, Catalonia, Spain
- For correspondence. Email
| | - Inés Álvarez
- Department of Biodiversity and Conservation, Real Jardín Botánico (CSIC), Plaza de Murillo 2, 28014 Madrid, Spain
| | - Sònia Garcia
- Institut Botànic de Barcelona (IBB, CSIC-ICUB), Passeig del Migdia sn, 08038 Barcelona, Catalonia, Spain
| | - Oriane Hidalgo
- Laboratori de Botànica – Unitat associada CSIC, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Av. Joan XXIII 27–31, 08028 Barcelona, Catalonia, Spain
- Comparative Plant and Fungal Biology Department, Royal Botanic Gardens, Kew, Richmond, UK
| | - Gonzalo Nieto Feliner
- Department of Biodiversity and Conservation, Real Jardín Botánico (CSIC), Plaza de Murillo 2, 28014 Madrid, Spain
| | - Jaume Pellicer
- Comparative Plant and Fungal Biology Department, Royal Botanic Gardens, Kew, Richmond, UK
| | - Joan Vallès
- Laboratori de Botànica – Unitat associada CSIC, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Av. Joan XXIII 27–31, 08028 Barcelona, Catalonia, Spain
| | - Teresa Garnatje
- Institut Botànic de Barcelona (IBB, CSIC-ICUB), Passeig del Migdia sn, 08038 Barcelona, Catalonia, Spain
| |
Collapse
|
47
|
Cerbin S, Wai CM, VanBuren R, Jiang N. GingerRoot: A Novel DNA Transposon Encoding Integrase-Related Transposase in Plants and Animals. Genome Biol Evol 2020; 11:3181-3193. [PMID: 31633753 PMCID: PMC6839031 DOI: 10.1093/gbe/evz230] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2019] [Indexed: 02/06/2023] Open
Abstract
Transposable elements represent the largest components of many eukaryotic genomes and different genomes harbor different combinations of elements. Here, we discovered a novel DNA transposon in the genome of the clubmoss Selaginella lepidophylla. Further searching for related sequences to the conserved DDE region uncovered the presence of this superfamily of elements in fish, coral, sea anemone, and other animal species. However, this element appears restricted to Bryophytes and Lycophytes in plants. This transposon, named GingerRoot, is associated with a 6 bp (base pair) target site duplication, and 100-150 bp terminal inverted repeats. Analysis of transposase sequences identified the DDE motif, a catalytic domain, which shows similarity to the integrase of Gypsy-like long terminal repeat retrotransposons, the most abundant component in plant genomes. A total of 77 intact and several hundred truncated copies of GingerRoot elements were identified in S. lepidophylla. Like Gypsy retrotransposons, GingerRoots show a lack of insertion preference near genes, which contrasts to the compact genome size of about 100 Mb. Nevertheless, a considerable portion of GingerRoot elements was found to carry gene fragments, suggesting the capacity of duplicating gene sequences is unlikely attributed to the proximity to genes. Elements carrying gene fragments appear to be less methylated, more diverged, and more distal to genes than those without gene fragments, indicating they are preferentially retained in gene-poor regions. This study has identified a broadly dispersed, novel DNA transposon, and the first plant DNA transposon with an integrase-related transposase, suggesting the possibility of de novo formation of Gypsy-like elements in plants.
Collapse
Affiliation(s)
- Stefan Cerbin
- Department of Horticulture, Michigan State University, East Lansing, MI 48824
| | - Ching Man Wai
- Department of Horticulture, Michigan State University, East Lansing, MI 48824
| | - Robert VanBuren
- Department of Horticulture, Michigan State University, East Lansing, MI 48824
| | - Ning Jiang
- Department of Horticulture, Michigan State University, East Lansing, MI 48824
| |
Collapse
|
48
|
de Assis R, Baba VY, Cintra LA, Gonçalves LSA, Rodrigues R, Vanzela ALL. Genome relationships and LTR-retrotransposon diversity in three cultivated Capsicum L. (Solanaceae) species. BMC Genomics 2020; 21:237. [PMID: 32183698 PMCID: PMC7076952 DOI: 10.1186/s12864-020-6618-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 02/24/2020] [Indexed: 01/08/2023] Open
Abstract
Background Plant genomes are rich in repetitive sequences, and transposable elements (TEs) are the most accumulated of them. This mobile fraction can be distinguished as Class I (retrotransposons) and Class II (transposons). Retrotransposons that are transposed using an intermediate RNA and that accumulate in a “copy-and-paste” manner were screened in three genomes of peppers (Solanaceae). The present study aimed to understand the genome relationships among Capsicum annuum, C. chinense, and C. baccatum, based on a comparative analysis of the function, diversity and chromosome distribution of TE lineages in the Capsicum karyotypes. Due to the great commercial importance of pepper in natura, as a spice or as an ornamental plant, these genomes have been widely sequenced, and all of the assemblies are available in the SolGenomics group. These sequences were used to compare all repetitive fractions from a cytogenomic point of view. Results The qualification and quantification of LTR-retrotransposons (LTR-RT) families were contrasted with molecular cytogenetic data, and the results showed a strong genome similarity between C. annuum and C. chinense as compared to C. baccatum. The Gypsy superfamily is more abundant than Copia, especially for Tekay/Del lineage members, including a high representation in C. annuum and C. chinense. On the other hand, C. baccatum accumulates more Athila/Tat sequences. The FISH results showed retrotransposons differentially scattered along chromosomes, except for CRM lineage sequences, which mainly have a proximal accumulation associated with heterochromatin bands. Conclusions The results confirm a close genomic relationship between C. annuum and C. chinense in comparison to C. baccatum. Centromeric GC-rich bands may be associated with the accumulation regions of CRM elements, whereas terminal and subterminal AT- and GC-rich bands do not correspond to the accumulation of the retrotransposons in the three Capsicum species tested.
Collapse
Affiliation(s)
- Rafael de Assis
- Laboratório de Citogenética e Diversidade Vegetal, Universidade Estadual de Londrina, 86057-970, Londrina, Paraná, Brazil
| | - Viviane Yumi Baba
- Departamento de Agronomia, Universidade Estadual de Londrina, 86057-970, Londrina, Paraná, Brazil
| | - Leonardo Adabo Cintra
- Laboratório de Citogenética e Diversidade Vegetal, Universidade Estadual de Londrina, 86057-970, Londrina, Paraná, Brazil
| | | | - Rosana Rodrigues
- Laboratório de Melhoramento Genético Vegetal, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Rio de Janeiro, 28013-602, Brazil
| | - André Luís Laforga Vanzela
- Laboratório de Citogenética e Diversidade Vegetal, Universidade Estadual de Londrina, 86057-970, Londrina, Paraná, Brazil.
| |
Collapse
|
49
|
Meng H, Feng J, Bai T, Jian Z, Chen Y, Wu G. Genome-wide analysis of short interspersed nuclear elements provides insight into gene and genome evolution in citrus. DNA Res 2020; 27:5818487. [PMID: 32271875 PMCID: PMC7315354 DOI: 10.1093/dnares/dsaa004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 04/03/2020] [Indexed: 12/03/2022] Open
Abstract
Short interspersed nuclear elements (SINEs) are non-autonomous retrotransposons that are highly abundant, but not well annotated, in plant genomes. In this study, we identified 41,573 copies of SINEs in seven citrus genomes, including 11,275 full-length copies. The citrus SINEs were distributed among 12 families, with an average full-length rate of 0.27, and were dispersed throughout the chromosomes, preferentially in AT-rich areas. Approximately 18.4% of citrus SINEs were found in close proximity (≤1 kb upstream) to genes, indicating a significant enrichment of SINEs in promoter regions. Citrus SINEs promote gene and genome evolution by offering exons as well as splice sites and start and stop codons, creating novel genes and forming tandem and dispersed repeat structures. Comparative analysis of unique homologous SINE-containing loci (HSCLs) revealed chromosome rearrangements in sweet orange, pummelo, and mandarin, suggesting that unique HSCLs might be valuable for understanding chromosomal abnormalities. This study of SINEs provides us with new perspectives and new avenues by which to understand the evolution of citrus genes and genomes.
Collapse
Affiliation(s)
- Haijun Meng
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China
| | - Jiancan Feng
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China
| | - Tuanhui Bai
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China
| | - Zaihai Jian
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China
| | - Yanhui Chen
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China
| | - Guoliang Wu
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
50
|
|