1
|
Herold NK, Gutsfeld S, Leuthold D, Wray C, Spath J, Tal T. Multi-behavioral fingerprints can identify potential modes of action for neuroactive environmental chemicals. Neurotoxicology 2025; 108:377-399. [PMID: 40354900 DOI: 10.1016/j.neuro.2025.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 04/30/2025] [Accepted: 05/05/2025] [Indexed: 05/14/2025]
Abstract
There is a lack of confidence in the relevance of zebrafish-based behavior data for chemical risk assessment. We extended an automated Visual and Acoustic Motor Response (VAMR) new approach method (NAM) in 5-day post-fertilization (dpf) zebrafish to include 26, behavior-based endpoints that measure visual-motor responses, visual and acoustic startle responses, habituation learning, and memory retention. A correlation analysis from 5159 control larvae revealed that more complex endpoints for learning- and memory-related behavior yielded unique behavior patterns. To build confidence in the VAMR NAM, we established neuroactivity fingerprints using concentration-response profiles derived from 63 reference chemicals targeting neurotransmission, neurodevelopmental signaling, or toxicologically-relevant pathways. Hierarchical clustering revealed diverse toxicity fingerprints. Compounds that targeted the N-Methyl-D-aspartic acid (NMDA) or gamma-aminobutyric acid type A (GABAA) receptors reduced habituation learning. Pathway modulators targeting peroxisome proliferator-activated receptor delta (PPARδ) or gamma (PPARγ), GABAA, dopamine, ryanodine, aryl hydrocarbon (AhR), or G-protein-coupled receptors or the tyrosine kinase SRC inappropriately accelerated habituation learning. Reference chemicals targeting GABAA, NMDA, dopamine, PPARα, PPARδ, epidermal growth factor, bone morphogenetic protein, AhR, retinoid X, or α2-adreno receptors triggered inappropriate hyperactivity. Exposure to GABAA receptor antagonists elicited paradoxical excitation characterized by dark-phase sedation and increased startle responses while exposure to GABAA/B receptor agonists altered the same endpoints with opposite directionality. Relative to reference chemicals, environmental chemicals known to be GABA receptor antagonists (Lindane, Dieldrine) or agonists (Tetrabromobisphenol A (TBBPA)) elicited predicted behavior fingerprints. When paired with the phenotypically rich VAMR NAM, behavior fingerprints are a powerful approach to identify neuroactive chemicals.
Collapse
Affiliation(s)
- Nadia K Herold
- Department of Ecotoxicology, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Sebastian Gutsfeld
- Department of Ecotoxicology, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany
| | - David Leuthold
- Department of Ecotoxicology, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Chloe Wray
- Department of Ecotoxicology, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Julia Spath
- Department of Ecotoxicology, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Tamara Tal
- Department of Ecotoxicology, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany; Medical Faculty, University of Leipzig, Leipzig, Germany.
| |
Collapse
|
2
|
Krieger CC, Neumann S, Sui X, Templin JS, Kapri T, Demillo VG, Olsen RK, Intasiri A, Gershengorn MC, Bell TW. Inhibition of TSH Receptor Expression by a Cyclotriazadisulfonamide as a Potential Treatment of Graves Hyperthyroidism. Endocrinology 2025; 166:bqaf037. [PMID: 39964853 PMCID: PMC11879233 DOI: 10.1210/endocr/bqaf037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/11/2025] [Accepted: 02/15/2025] [Indexed: 02/20/2025]
Abstract
Graves hyperthyroidism (GH) is a condition in which autoantibodies chronically activate the thyrotropin (TSH) receptor (TSHR). TSHR is one of the few G protein-coupled receptors (GPCRs) predicted to have a signal peptide, making it a potential target for cyclotriazadisulfonamide (CADA) compounds. We sought to determine whether a small-molecule drug that selectively induces nascent protein degradation could decrease TSHR expression in vitro and in vivo at therapeutically relevant levels. We tested several CADA compounds for their ability to reduce TSHR surface expression in HEK 293 cells overexpressing human TSHR (HEK-TSHR cells) using flow cytometry. Inhibition of downstream cAMP production and thyroglobulin (Tg) secretion were measured in HEK-TSHR and human thyrocytes, respectively. Follow-up studies in VGD040-treated BALB/c mice assessed plasma levels of free T4 in response to TSH stimulation. Among a number of CADA analogues, VGD040 decreased TSHR at the surface of HEK-TSHR cells. VGD040 was found to be selective toward TSHR compared to similar glycoprotein hormone receptors. In human thyrocytes, reduction of TSHR surface expression by VGD040 decreased cyclic adenosine monophosphate production and Tg secretion. Most important, VGD040 decreased TH secretion in mice without apparent toxicity at the effective dose studied. VGD040 is an important new lead with potential for developing safe drug treatments for GH.
Collapse
Affiliation(s)
- Christine C Krieger
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Susanne Neumann
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xiangliang Sui
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jay Scott Templin
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Topprasad Kapri
- Department of Chemistry, University of Nevada, Reno, NV 89557-0216, USA
| | - Violeta G Demillo
- Department of Chemistry, University of Nevada, Reno, NV 89557-0216, USA
| | - Ryan K Olsen
- Department of Chemistry, University of Nevada, Reno, NV 89557-0216, USA
| | - Amarawan Intasiri
- Department of Chemistry, University of Nevada, Reno, NV 89557-0216, USA
| | - Marvin C Gershengorn
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Thomas W Bell
- Department of Chemistry, University of Nevada, Reno, NV 89557-0216, USA
| |
Collapse
|
3
|
Derkach KV, Pechalnova AS, Sorokoumov VN, Zorina II, Morina IY, Chernenko EE, Didenko EA, Romanova IV, Shpakov AO. Effect of a Low-Molecular-Weight Allosteric Agonist of the Thyroid-Stimulating Hormone Receptor on Basal and Thyroliberin-Stimulated Activity of Thyroid System in Diabetic Rats. Int J Mol Sci 2025; 26:703. [PMID: 39859419 PMCID: PMC11766125 DOI: 10.3390/ijms26020703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/11/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
The approaches to correct thyroid deficiency include replacement therapy with thyroid hormones (THs), but such therapy causes a number of side effects. A possible alternative is thyroid-stimulating hormone (TSH) receptor activators, including allosteric agonists. The aim of this work was to study the effect of ethyl-2-(4-(4-(5-amino-6-(tert-butylcarbamoyl)-2-(methylthio)thieno[2,3-d]pyrimidin-4-yl)phenyl)-1H-1,2,3-triazol-1-yl) acetate (TPY3m), a TSH receptor allosteric agonist developed by us, on basal and thyroliberin (TRH)-stimulated TH levels and the hypothalamic-pituitary-thyroid (HPT) axis in male rats with high-fat diet/low-dose streptozotocin-induced type 2 diabetes mellitus (T2DM). Single and three-day administration of TPY3m (i.p., 20 mg/kg) was studied, and the effect of TPY3m on the HPT axis was compared with that of levothyroxine. TPY3m increased TH levels when administered to both healthy and diabetic rats, normalizing thyroxine and triiodothyronine levels in T2DM and, unlike levothyroxine, without negatively affecting TSH levels or the expression of hypothalamic and pituitary genes responsible for TSH production. TPY3m pretreatment preserved the stimulatory effects of TRH on TH levels and thyroid gene expression. This indicates the absence of competition between TPY3m and endogenous TSH for TSH receptor activation and is supported by our in vitro results on TPY3m- and TSH-stimulated adenylate cyclase activity in rat thyroid membranes. Morphological analysis of thyroid glands in diabetic rats after three-day TPY3m administration shows an increase in its functional activity without destructive changes. To summarize, TPY3m, with the activity of a partial allosteric agonist of the TSH receptor, was created as a prototype of drugs to correct thyroid insufficiency in T2DM.
Collapse
Affiliation(s)
- Kira V. Derkach
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg 194223, Russia; (K.V.D.); (A.S.P.); (V.N.S.); (I.I.Z.); (I.Y.M.); (E.E.C.); (E.A.D.); (I.V.R.)
| | - Alena S. Pechalnova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg 194223, Russia; (K.V.D.); (A.S.P.); (V.N.S.); (I.I.Z.); (I.Y.M.); (E.E.C.); (E.A.D.); (I.V.R.)
| | - Viktor N. Sorokoumov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg 194223, Russia; (K.V.D.); (A.S.P.); (V.N.S.); (I.I.Z.); (I.Y.M.); (E.E.C.); (E.A.D.); (I.V.R.)
- Institute of Chemistry, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Inna I. Zorina
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg 194223, Russia; (K.V.D.); (A.S.P.); (V.N.S.); (I.I.Z.); (I.Y.M.); (E.E.C.); (E.A.D.); (I.V.R.)
| | - Irina Y. Morina
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg 194223, Russia; (K.V.D.); (A.S.P.); (V.N.S.); (I.I.Z.); (I.Y.M.); (E.E.C.); (E.A.D.); (I.V.R.)
| | - Elizaveta E. Chernenko
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg 194223, Russia; (K.V.D.); (A.S.P.); (V.N.S.); (I.I.Z.); (I.Y.M.); (E.E.C.); (E.A.D.); (I.V.R.)
| | - Egor A. Didenko
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg 194223, Russia; (K.V.D.); (A.S.P.); (V.N.S.); (I.I.Z.); (I.Y.M.); (E.E.C.); (E.A.D.); (I.V.R.)
- Institute of Chemistry, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Irina V. Romanova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg 194223, Russia; (K.V.D.); (A.S.P.); (V.N.S.); (I.I.Z.); (I.Y.M.); (E.E.C.); (E.A.D.); (I.V.R.)
| | - Alexander O. Shpakov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg 194223, Russia; (K.V.D.); (A.S.P.); (V.N.S.); (I.I.Z.); (I.Y.M.); (E.E.C.); (E.A.D.); (I.V.R.)
| |
Collapse
|
4
|
Zhang Y, Tan Y, Zhang Z, Cheng X, Duan J, Li Y. Targeting Thyroid-Stimulating Hormone Receptor: A Perspective on Small-Molecule Modulators and Their Therapeutic Potential. J Med Chem 2024; 67:16018-16034. [PMID: 39269788 DOI: 10.1021/acs.jmedchem.4c01525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
TSHR is a member of the glycoprotein hormone receptors, a subfamily of class A G-protein-coupled receptors and plays pivotal roles in various physiological and pathological processes, particularly in thyroid growth and hormone production. The aberrant TSHR function has been implicated in several human diseases including Graves' disease and orbitopathy, nonautoimmune hyperthyroidism, hypothyroidism, cancer, neurological disorders, and osteoporosis. Consequently, TSHR is recognized as an attractive therapeutic target, and targeting TSHR with small-molecule modulators including agonists, antagonists, and inverse agonists offers great potential for drug discovery. In this perspective, we summarize the structures and biological functions of TSHR as well as the recent advances in the development of small-molecule TSHR modulators, highlighting their chemotypes, mode of actions, structure-activity relationships, characterizations, in vitro/in vivo activities, and therapeutic potential. The challenges, new opportunities, and future directions in this area are also discussed.
Collapse
Affiliation(s)
- Yu Zhang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Ye Tan
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Zian Zhang
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xi Cheng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou 330106, China
| | - Jia Duan
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
- Center for Structure & Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yi Li
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Sarkar R, Bolel P, Kapoor A, Eliseeva E, Dulcey AE, Templin JS, Wang AQ, Xu X, Southall N, Klubo-Gwiezdzinska J, Neumann S, Marugan JJ, Gershengorn MC. An Orally Efficacious Thyrotropin Receptor Ligand Inhibits Growth and Metastatic Activity of Thyroid Cancers. J Clin Endocrinol Metab 2024; 109:2306-2316. [PMID: 38421044 PMCID: PMC11318999 DOI: 10.1210/clinem/dgae114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 02/06/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024]
Abstract
CONTEXT Thyroid-stimulating hormone (or thyrotropin) receptor (TSHR) could be a selective target for small molecule ligands to treat thyroid cancer (TC). OBJECTIVE We report a novel, orally efficacious ligand for TSHR that exhibits proliferation inhibitory activity against human TC in vitro and in vivo, and inhibition of metastasis in vivo. METHODS A35 (NCATS-SM4420; NCGC00241808) was selected from a sublibrary of >200 TSHR ligands. Cell proliferation assays including BrdU incorporation and WST-1, along with molecular docking studies were done. In vivo activity of A35 was assessed in TC cell-derived xenograft (CDX) models with immunocompromised (NSG) mice. Formalin-fixed, paraffin-embedded sections of tumor and lung tissues were observed for the extent of cell death and metastasis. RESULTS A35 was shown to stimulate cAMP production in some cell types by activating TSHR but not in TC cells, MDA-T32, and MDA-T85. A35 inhibited proliferation of MDA-T32 and MDA-T85 in vitro and in vivo, and pulmonary metastasis of MDA-T85F1 in mice. In vitro, A35 inhibition of proliferation was reduced by a selective TSHR antagonist. Inhibition of CDX tumor growth without decreases in mouse weights and liver function showed A35 to be efficacious without apparent toxicity. Lastly, A35 reduced levels of Ki67 in the tumors and metastatic markers in lung tissues. CONCLUSION We conclude that A35 is a TSHR-selective inhibitor of TC cell proliferation and metastasis, and suggest that A35 may be a promising lead drug candidate for the treatment of differentiated TC in humans.
Collapse
Affiliation(s)
- Rhitajit Sarkar
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Priyanka Bolel
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Abhijeet Kapoor
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Elena Eliseeva
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Andrés E Dulcey
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Jay S Templin
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Amy Q Wang
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Xin Xu
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Noel Southall
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Joanna Klubo-Gwiezdzinska
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Susanne Neumann
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Juan J Marugan
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Marvin C Gershengorn
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
6
|
Cheng X, Zhang H, Guan S, Zhao Q, Shan Y. Receptor modulators associated with the hypothalamus -pituitary-thyroid axis. Front Pharmacol 2023; 14:1291856. [PMID: 38111381 PMCID: PMC10725963 DOI: 10.3389/fphar.2023.1291856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/16/2023] [Indexed: 12/20/2023] Open
Abstract
The hypothalamus-pituitary-thyroid (HPT) axis maintains normal metabolic balance and homeostasis in the human body through positive and negative feedback regulation. Its main regulatory mode is the secretion of thyrotropin (TSH), thyroid hormones (TH), and thyrotropin-releasing hormone (TRH). By binding to their corresponding receptors, they are involved in the development and progression of several systemic diseases, including digestive, cardiovascular, and central nervous system diseases. The HPT axis-related receptors include thyrotropin receptor (TSHR), thyroid hormone receptor (TR), and thyrotropin-releasing hormone receptor (TRHR). Recently, research on regulators has become popular in the field of biology. Several HPT axis-related receptor modulators have been used for clinical treatment. This study reviews the developments and recent findings on HPT axis-related receptor modulators. This will provide a theoretical basis for the development and utilisation of new modulators of the HPT axis receptors.
Collapse
Affiliation(s)
- Xianbin Cheng
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
- Department of Thyroid Surgery, The Second Hospital of Jilin University, Changchun, China
- Postdoctoral Research Workstation, Changchun Gangheng Electronics Company Limited, Changchun, China
| | - Hong Zhang
- Department of Thyroid Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Shanshan Guan
- College of Biology and Food Engineering, Jilin Engineering Normal University, Changchun, China
| | - Qi Zhao
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, China
| | - Yaming Shan
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| |
Collapse
|
7
|
Liu W, Wang Z, Chen J, Tang W, Wang H. Machine Learning Model for Screening Thyroid Stimulating Hormone Receptor Agonists Based on Updated Datasets and Improved Applicability Domain Metrics. Chem Res Toxicol 2023. [PMID: 37209109 DOI: 10.1021/acs.chemrestox.3c00074] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Machine learning (ML) models for screening endocrine-disrupting chemicals (EDCs), such as thyroid stimulating hormone receptor (TSHR) agonists, are essential for sound management of chemicals. Previous models for screening TSHR agonists were built on imbalanced datasets and lacked applicability domain (AD) characterization essential for regulatory application. Herein, an updated TSHR agonist dataset was built, for which the ratio of active to inactive compounds greatly increased to 1:2.6, and chemical spaces of structure-activity landscapes (SALs) were enhanced. Resulting models based on 7 molecular representations and 4 ML algorithms were proven to outperform previous ones. Weighted similarity density (ρs) and weighted inconsistency of activities (IA) were proposed to characterize the SALs, and a state-of-the-art AD characterization methodology ADSAL{ρs, IA} was established. An optimal classifier developed with PubChem fingerprints and the random forest algorithm, coupled with ADSAL{ρs ≥ 0.15, IA ≤ 0.65}, exhibited good performance on the validation set with the area under the receiver operating characteristic curve being 0.984 and balanced accuracy being 0.941 and identified 90 TSHR agonist classes that could not be found previously. The classifier together with the ADSAL{ρs, IA} may serve as efficient tools for screening EDCs, and the AD characterization methodology may be applied to other ML models.
Collapse
Affiliation(s)
- Wenjia Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian Key Laboratory on Chemicals Risk Control and Pollution Prevention Technology, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Zhongyu Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian Key Laboratory on Chemicals Risk Control and Pollution Prevention Technology, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian Key Laboratory on Chemicals Risk Control and Pollution Prevention Technology, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Weihao Tang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian Key Laboratory on Chemicals Risk Control and Pollution Prevention Technology, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Haobo Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian Key Laboratory on Chemicals Risk Control and Pollution Prevention Technology, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
8
|
Wu J, Xiao Y, Lin M, Cai H, Zhao D, Li Y, Luo H, Tang C, Wang L. DeepCancerMap: A versatile deep learning platform for target- and cell-based anticancer drug discovery. Eur J Med Chem 2023; 255:115401. [PMID: 37116265 DOI: 10.1016/j.ejmech.2023.115401] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/29/2023] [Accepted: 04/18/2023] [Indexed: 04/30/2023]
Abstract
Discovering new anticancer drugs has been widely concerned and remains an open challenge. Target- and phenotypic-based experimental screening represent two mainstream anticancer drug discovery methods, which suffer from time-consuming, labor-intensive, and high experimental costs. In this study, we collected 485,900 compounds involving in 3,919,974 bioactivity records against 426 anticancer targets and 346 cancer cell lines from academic literature, as well as 60 tumor cell lines from NCI-60 panel. A total of 832 classification models (426 target- and 406 cell-based predictive models) were then constructed to predict the inhibitory activity of compounds against targets and tumor cell lines using FP-GNN deep learning method. Compared to the classical machine learning and deep learning methods, the FP-GNN models achieve considerable overall predictive performance, with the highest AUC values of 0.91, 0.88, 0.91 for the test sets of targets, academia-sourced and NCI-60 cancer cell lines, respectively. A user-friendly webserver called DeepCancerMap and its local version were developed based on these high-quality models, enabling users to perform anticancer drug discovery-related tasks including large-scale virtual screening, profiling prediction of anticancer agents, target fishing, and drug repositioning. We anticipate this platform to accelerate the discovery of anticancer drugs in the field. DeepCancerMap is freely available at https://deepcancermap.idruglab.cn.
Collapse
Affiliation(s)
- Jingxing Wu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Yi Xiao
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Mujie Lin
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Hanxuan Cai
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Duancheng Zhao
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Yirui Li
- School of Software Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Hailin Luo
- School of Software Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Chuanqi Tang
- School of Design, South China University of Technology, Guangzhou, 510006, China
| | - Ling Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
9
|
Shpakov AO. Allosteric Regulation of G-Protein-Coupled Receptors: From Diversity of Molecular Mechanisms to Multiple Allosteric Sites and Their Ligands. Int J Mol Sci 2023; 24:6187. [PMID: 37047169 PMCID: PMC10094638 DOI: 10.3390/ijms24076187] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Allosteric regulation is critical for the functioning of G protein-coupled receptors (GPCRs) and their signaling pathways. Endogenous allosteric regulators of GPCRs are simple ions, various biomolecules, and protein components of GPCR signaling (G proteins and β-arrestins). The stability and functional activity of GPCR complexes is also due to multicenter allosteric interactions between protomers. The complexity of allosteric effects caused by numerous regulators differing in structure, availability, and mechanisms of action predetermines the multiplicity and different topology of allosteric sites in GPCRs. These sites can be localized in extracellular loops; inside the transmembrane tunnel and in its upper and lower vestibules; in cytoplasmic loops; and on the outer, membrane-contacting surface of the transmembrane domain. They are involved in the regulation of basal and orthosteric agonist-stimulated receptor activity, biased agonism, GPCR-complex formation, and endocytosis. They are targets for a large number of synthetic allosteric regulators and modulators, including those constructed using molecular docking. The review is devoted to the principles and mechanisms of GPCRs allosteric regulation, the multiplicity of allosteric sites and their topology, and the endogenous and synthetic allosteric regulators, including autoantibodies and pepducins. The allosteric regulation of chemokine receptors, proteinase-activated receptors, thyroid-stimulating and luteinizing hormone receptors, and beta-adrenergic receptors are described in more detail.
Collapse
Affiliation(s)
- Alexander O Shpakov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 194223 St. Petersburg, Russia
| |
Collapse
|
10
|
Taglietti V, Kefi K, Rivera L, Bergiers O, Cardone N, Coulpier F, Gioftsidi S, Drayton-Libotte B, Hou C, Authier FJ, Pietri-Rouxel F, Robert M, Bremond-Gignac D, Bruno C, Fiorillo C, Malfatti E, Lafuste P, Tiret L, Relaix F. Thyroid-stimulating hormone receptor signaling restores skeletal muscle stem cell regeneration in rats with muscular dystrophy. Sci Transl Med 2023; 15:eadd5275. [PMID: 36857434 DOI: 10.1126/scitranslmed.add5275] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Duchenne muscular dystrophy (DMD) is a severe and progressive myopathy leading to motor and cardiorespiratory impairment. We analyzed samples from patients with DMD and a preclinical rat model of severe DMD and determined that compromised repair capacity of muscle stem cells in DMD is associated with early and progressive muscle stem cell senescence. We also found that extraocular muscles (EOMs), which are spared by the disease in patients, contain muscle stem cells with long-lasting regenerative potential. Using single-cell transcriptomics analysis of muscles from a rat model of DMD, we identified the gene encoding thyroid-stimulating hormone receptor (Tshr) as highly expressed in EOM stem cells. Further, TSHR activity was involved in preventing senescence. Forskolin, which activates signaling downstream of TSHR, was found to reduce senescence of skeletal muscle stem cells, increase stem cell regenerative potential, and promote myogenesis, thereby improving muscle function in DMD rats. These findings indicate that stimulation of adenylyl cyclase leads to muscle repair in DMD, potentially providing a therapeutic approach for patients with the disease.
Collapse
Affiliation(s)
| | - Kaouthar Kefi
- Univ Paris-Est Créteil, INSERM, U955 IMRB, F-94010 Créteil, France
| | - Lea Rivera
- Univ Paris-Est Créteil, INSERM, U955 IMRB, F-94010 Créteil, France
| | - Oriane Bergiers
- Univ Paris-Est Créteil, INSERM, U955 IMRB, F-94010 Créteil, France
| | - Nastasia Cardone
- Univ Paris-Est Créteil, INSERM, U955 IMRB, F-94010 Créteil, France
| | - Fanny Coulpier
- Univ Paris-Est Créteil, INSERM, U955 IMRB, F-94010 Créteil, France
| | | | | | - Cyrielle Hou
- Univ Paris-Est Créteil, INSERM, U955 IMRB, F-94010 Créteil, France
| | - François-Jérôme Authier
- Univ Paris-Est Créteil, INSERM, U955 IMRB, F-94010 Créteil, France.,AP-HP, Hôpital Mondor, FHU SENEC, Service d'histologie, F-94010 Créteil, France
| | - France Pietri-Rouxel
- Sorbonne Université, INSERM, UMRS974, Center for Research in Myology, F-75013, Paris, France
| | - Matthieu Robert
- Borelli centre, UMR 9010, CNRS - SSA - ENS Paris Saclay - Université Paris Cité, F-75016, Paris, France.,Ophthalmology Department, Necker Enfants Malades University Hospital, AP-HP, F-75015, Paris, France
| | - Dominique Bremond-Gignac
- Ophthalmology Department, Necker Enfants Malades University Hospital, AP-HP, F-75015, Paris, France.,INSERM, UMRS1138, Team 17, Sorbonne Paris Cité University, Centre de Recherche des Cordeliers, F-75006, Paris, France
| | - Claudio Bruno
- Center of Translational and Experimental Myology, IRCCS Gaslini Institute, DINOGMI, University of Genova, 16147, Genova, Italy
| | - Chiara Fiorillo
- Center of Translational and Experimental Myology, IRCCS Gaslini Institute, DINOGMI, University of Genova, 16147, Genova, Italy
| | - Edoardo Malfatti
- Univ Paris-Est Créteil, INSERM, U955 IMRB, F-94010 Créteil, France.,AP-HP, Hôpital Mondor, FHU SENEC, Service d'histologie, F-94010 Créteil, France
| | - Peggy Lafuste
- Univ Paris-Est Créteil, INSERM, U955 IMRB, F-94010 Créteil, France
| | - Laurent Tiret
- Univ Paris-Est Créteil, INSERM, U955 IMRB, F-94010 Créteil, France.,École nationale vétérinaire d'Alfort, IMRB, F-94700, Maisons-Alfort, France
| | - Frédéric Relaix
- Univ Paris-Est Créteil, INSERM, U955 IMRB, F-94010 Créteil, France.,AP-HP, Hôpital Mondor, FHU SENEC, Service d'histologie, F-94010 Créteil, France.,École nationale vétérinaire d'Alfort, IMRB, F-94700, Maisons-Alfort, France.,EFS, IMRB, F-94010, Creteil, France
| |
Collapse
|
11
|
Nagayama Y, Nishihara E. Thyrotropin receptor antagonists and inverse agonists, and their potential application to thyroid diseases. Endocr J 2022; 69:1285-1293. [PMID: 36171093 DOI: 10.1507/endocrj.ej22-0391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The thyrotropin receptor (TSHR) plays critical roles in thyroid growth and function and in the pathogenesis of several thyroid diseases including Graves' hyperthyroidism and ophthalmopathy, non-autoimmune hyperthyroidism and thyroid cancer. Several low-molecular weight compounds (LMWCs) and anti-TSHR monoclonal antibodies (mAbs) with receptor antagonistic and inverse agonistic activities have been reported. The former binds to the pocket formed by the receptor transmembrane bundle, and the latter to the extracellular TSH binding site. Both are effective inhibitors of TSH/thyroid stimulating antibody-stimulated cAMP and/or hyaluronic acid production in TSHR-expressing cells. Anti-insulin-like growth factor 1 inhibitors are also found to inhibit TSHR signaling. Each agent has advantages and disadvantages; for example, mAbs have a higher affinity and longer half-life but are more costly than LMWCs. At present, mAbs appear most promising, yet the development of more efficacious LMWCs is desirable. These agents are anticipated to be efficacious not only for the above-mentioned diseases but also for resistance to thyroid hormone and have utility for thyroid cancer radionuclide scintigraphy/therapy as a new theranostic.
Collapse
Affiliation(s)
- Yuji Nagayama
- Department of Molecular Medicine, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki 852-8523, Japan
| | - Eijun Nishihara
- Center for Excellence in Thyroid Care, Kuma Hospital, Kobe 650-0011, Japan
| |
Collapse
|
12
|
Mezei M, Latif R, Davies TF. Modeling TSH Receptor Dimerization at the Transmembrane Domain. Endocrinology 2022; 163:6759649. [PMID: 36223484 PMCID: PMC9761578 DOI: 10.1210/endocr/bqac168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Indexed: 01/26/2023]
Abstract
Biophysical studies have established that the thyrotropin (TSH) receptor (TSHR) undergoes posttranslational modifications including dimerization. Following our earlier simulation of a TSHR-transmembrane domain (TMD) monomer (called TSHR-TMD-TRIO) we have now proceeded with a molecular dynamics simulation (MD) of TSHR-TMD dimerization using this improved membrane-embedded model. The starting structure was the TMD protein with all extracellular and intracellular loops and internal waters, which was placed in the relative orientation of the model originally generated with Brownian dynamics. Furthermore, this model was embedded in a DPPC lipid bilayer further solvated with water and added salt. Data from the MD simulation studies showed that the dimeric subunits stayed in the same relative orientation and distance during the 1000 ns of study. Comparison of representative conformations of the individual monomers when dimerized with the conformations from the monomer simulation showed subtle differences as represented by the backbone root mean square deviations. Differences in the conformations of the ligand-binding sites, suggesting variable affinities for these "hot spots," were also revealed by comparing the docking scores of 46 small-molecule ligands that included known TSHR agonists and antagonists as well as their derivatives. These data add further insight into the tendency of the TSHR-TMD to form dimeric and oligomeric structures and show that the differing conformations influence small-molecule binding sites within the TMD.
Collapse
Affiliation(s)
- Mihaly Mezei
- Correspondence: Mihaly Mezei, PhD, Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Pl, New York, NY 10029, USA.
| | - Rauf Latif
- Thyroid Research Unit, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
- Department of Medicine, James J. Peters VA Medical Center, New York, New York 10468, USA
| | - Terry F Davies
- Thyroid Research Unit, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
- Department of Medicine, James J. Peters VA Medical Center, New York, New York 10468, USA
| |
Collapse
|
13
|
Fokina EF, Shpakov AO. Thyroid-Stimulating Hormone Receptor: the Role in the Development of Thyroid Pathology and Its Correction. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022050143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Abstract
One of the key elements responsible for the thyroid response
to thyroid-stimulating hormone (TSH) is the TSH receptor (TSHR),
which belongs to the G protein-coupled receptor superfamily. Binding
of TSH or stimulatory autoantibodies to the TSHR extracellular domain
triggers multiple signaling pathways in target cells that are mediated
through various types of G proteins and β-arrestins. Inhibitory
autoantibodies, in contrast, suppress TSHR activity, inducing hypothyroid states.
Activating mutations lead to constitutively active TSHR forms and
can trigger cancer. Therefore, the TSHR is one of the key targets
for the regulation of thyroid function and thyroid status, as well
as correction of diseases caused by changes in TSHR activity (autoimmune
hyper- and hypothyroidism, Graves’ ophthalmopathy, thyroid cancer).
TSH preparations are extremely rarely used in medicine due to their
immunogenicity and severe side effects. Most promising is the development
of low-molecular allosteric TSHR regulators with an activity of
full and inverse agonists and neutral antagonists, which are able
to penetrate into the allosteric site located in the TSHR transmembrane
domain and specifically bind to it, thus controlling the ability
of the receptor to interact with G proteins and β-arrestins. Allosteric
regulators do not affect the binding of TSH and autoantibodies to
the receptor, which enables mild and selective regulation of thyroid function,
while avoiding critical changes in TSH and thyroid hormone levels.
The present review addresses the current state of the problem of
regulating TSHR activity, including the possibility of using ligands
of its allosteric sites.
Collapse
|
14
|
Hormone- and antibody-mediated activation of the thyrotropin receptor. Nature 2022; 609:854-859. [PMID: 35940204 DOI: 10.1038/s41586-022-05173-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 08/02/2022] [Indexed: 11/08/2022]
Abstract
Thyroid stimulating hormone (TSH), through activation of its G protein-coupled thyrotropin receptor (TSHR), controls the synthesis of thyroid hormone (TH), an essential metabolic hormone1-3. Aberrant signaling of TSHR by autoantibodies causes Graves' disease and hypothyroidism that affect millions of patients worldwide4. Here we report the active structures of TSHR with TSH and an activating autoantibody M225, both bound to an allosteric agonist ML-1096, as well as an inactivated TSHR structure with inhibitory antibody K1-707. Both TSH and M22 push the extracellular domain (ECD) of TSHR into the upright active conformation. In contrast, K1-70 blocks TSH binding and is incapable of pushing the ECD to the upright conformation. Comparisons of the active and inactivated structures of TSHR with those of the luteinizing hormone-choriogonadotropin receptor (LHCGR) reveal a universal activation mechanism of glycoprotein hormone receptors, in which a conserved 10-residue fragment (P10) from the hinge C-terminal loop mediates ECD interactions with the TSHR transmembrane domain8. One surprisingly feature is that there are over 15 cholesterols surrounding TSHR, supporting its preferential location in lipid rafts9. These structures also highlight a similar ECD-push mechanism for TSH and autoantibody M22 to activate TSHR, thus providing the molecular basis for Graves' disease.
Collapse
|
15
|
Jang D, Eliseeva E, Klubo-Gwiezdzinska J, Neumann S, Gershengorn MC. TSH stimulation of human thyroglobulin and thyroid peroxidase gene transcription is partially dependent on internalization. Cell Signal 2022; 90:110212. [PMID: 34896620 PMCID: PMC8725617 DOI: 10.1016/j.cellsig.2021.110212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 11/29/2021] [Accepted: 12/05/2021] [Indexed: 02/03/2023]
Abstract
The TSH receptor (TSHR) is the major regulator of thyroid hormone biosynthesis in human thyrocytes by regulating the transcription of a number of genes including thyroglobulin (TG) and thyroperoxidase (TPO). Until recently, it was thought that TSHR initiated signal transduction pathways only at the cell-surface and that internalization was primarily involved in TSHR desensitization and downregulation. Studies primarily in mouse cells showed that TSHR internalization regulates gene transcription at an intracellular site also. However, this has not been shown for genes involved in thyroid hormone biosynthesis in human thyrocytes. We used human thyrocytes in primary culture. In these cells, the dose-response to TSH for gene expression is biphasic with low doses upregulating gene expression and higher doses decreasing gene expression. We used two approaches to inhibit internalization. In the first, we used inhibitors of dynamins, dynasore and dyngo-4a. Pretreatment with dynasore or dyngo-4a markedly inhibited TSH upregulation of TG and TPO mRNAs, as well as TG secretion. In the second, we used knockdown of dynamin 2, which is the most abundant dynamin in human thyrocytes. We showed that dynamin 2 knockdown inhibited TSHR internalization and decreased the TSH-stimulated levels of TG and TPO mRNAs and proteins. Lastly, we showed that the level of the activatory transcription factor phosphorylated cAMP response element binding protein (pCREB) in the cell nuclei was reduced by 68% when internalization was inhibited. We conclude that upregulation of genes involved in thyroid hormone synthesis in human thyrocytes is, in part, dependent on internalization leading to nuclear localization of an activated transcription factor(s).
Collapse
Affiliation(s)
- Daesong Jang
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Elena Eliseeva
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Joanna Klubo-Gwiezdzinska
- Metabolic Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Susanne Neumann
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Marvin C. Gershengorn
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
16
|
Deng T, Zhang W, Zhang Y, Zhang M, Huan Z, Yu C, Zhang X, Wang Y, Xu J. Thyroid-stimulating hormone decreases the risk of osteoporosis by regulating osteoblast proliferation and differentiation. BMC Endocr Disord 2021; 21:49. [PMID: 33726721 PMCID: PMC7968288 DOI: 10.1186/s12902-021-00715-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 03/03/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND As the incidence of secretory osteoporosis has increased, bone loss, osteoporosis and their relationships with thyroid-stimulating hormone (TSH) have received increased attention. In this study, the role of TSH in bone metabolism and its possible underlying mechanisms were investigated. METHODS We analyzed the serum levels of free triiodothyronine (FT3), free thyroxine (FT4), and TSH and the bone mineral density (BMD) levels of 114 men with normal thyroid function. In addition, osteoblasts from rat calvarial samples were treated with different doses of TSH for different lengths of time. The related gene and protein expression levels were investigated. RESULTS A comparison of the BMD between the high-level and low-level serum TSH groups showed that the TSH serum concentration was positively correlated with BMD. TSH at concentrations of 10 mU/mL and 100 mU/mL significantly increased the mRNA levels of ALP, COI1 and Runx2 compared with those of the control (P < 0.05, P < 0.01). Bone morphogenetic protein (BMP)2 activity was enhanced with both increased TSH concentration and increased time. The protein levels of Runx2 and osterix were increased in a dose-dependent manner. CONCLUSIONS The circulating concentrations of TSH and BMD were positively correlated with normal thyroid function in males. TSH promoted osteoblast proliferation and differentiation in rat primary osteoblasts.
Collapse
Affiliation(s)
- Tuo Deng
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, 250021, Shandong, China
- Shandong Institute of Endocrine and Metabolic Disease, Jinan, 250021, Shandong, China
| | - Wenwen Zhang
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, 250021, Shandong, China
- Shandong Institute of Endocrine and Metabolic Disease, Jinan, 250021, Shandong, China
| | - Yanling Zhang
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, 250021, Shandong, China
- Shandong Institute of Endocrine and Metabolic Disease, Jinan, 250021, Shandong, China
| | - Mengqi Zhang
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, 250021, Shandong, China
- Shandong Institute of Endocrine and Metabolic Disease, Jinan, 250021, Shandong, China
| | - Zhikun Huan
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, 250021, Shandong, China
- Shandong Institute of Endocrine and Metabolic Disease, Jinan, 250021, Shandong, China
| | - Chunxiao Yu
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, 250021, Shandong, China
- Shandong Institute of Endocrine and Metabolic Disease, Jinan, 250021, Shandong, China
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Xiujuan Zhang
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, 250021, Shandong, China
- Shandong Institute of Endocrine and Metabolic Disease, Jinan, 250021, Shandong, China
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Yan Wang
- Department of Anesthesiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China
| | - Jin Xu
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China.
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, 250021, Shandong, China.
- Shandong Institute of Endocrine and Metabolic Disease, Jinan, 250021, Shandong, China.
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
| |
Collapse
|
17
|
Riemekasten G, Petersen F, Heidecke H. What Makes Antibodies Against G Protein-Coupled Receptors so Special? A Novel Concept to Understand Chronic Diseases. Front Immunol 2020; 11:564526. [PMID: 33384684 PMCID: PMC7770155 DOI: 10.3389/fimmu.2020.564526] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 11/13/2020] [Indexed: 12/13/2022] Open
Abstract
Expressions of G protein-coupled receptors (GPCR) on immune and tissue resident cells are the consequence of the cellular environment, which is highly variable. As discussed here, antibodies directed to GPCR (GPCR abs), their levels and correlations to other abs, serve as biomarkers for various diseases. They also could reflect the individual interplay between the environment and the immune system. Thus, GPCR abs could display pathogenic chronic conditions and could help to identify disease-related pathways. Moreover, by acting as ligands to their corresponding receptors, GPCR abs modulate autoimmune as well as non-autoimmune diseases. This article introduces GPCR abs as drivers for diseases by their capability to induce a specific signaling and by determining immune cell homeostasis. The identification of the individual GPCR ab function is challenging but might be pivotal in the comprehension of the aetiology of diseases. This, hopefully, will lead to the identification of novel therapeutic strategies. This article provides an overview about concepts and recent developments in research. Accordingly, GPCR abs could represent ideal candidates for precision medicine. Here, we introduce the term antibodiom to cover the network of abs with GPCR abs as prominent players.
Collapse
Affiliation(s)
- Gabriela Riemekasten
- Clinic of Rheumatology and Clinical Immunology, University Hospital Schleswig-Holstein, University of Lübeck, Lübeck, Germany
- Research Center Borstel, Division of Pulmonary Immune Diseases, Member of the German Center for Lung Research (DZL), Borstel, Germany
- Research Center Borstel, Member of the German Center for Lung Research (DZL), Borstel, Germany
- Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Borstel, Germany
| | - Frank Petersen
- Research Center Borstel, Division of Pulmonary Immune Diseases, Member of the German Center for Lung Research (DZL), Borstel, Germany
- Research Center Borstel, Member of the German Center for Lung Research (DZL), Borstel, Germany
- Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Borstel, Germany
| | | |
Collapse
|
18
|
Jang D, Marcus-Samuels B, Morgan SJ, Klubo-Gwiezdzinska J, Neumann S, Gershengorn MC. Thyrotropin regulation of differentiated gene transcription in adult human thyrocytes in primary culture. Mol Cell Endocrinol 2020; 518:111032. [PMID: 32941925 PMCID: PMC7606794 DOI: 10.1016/j.mce.2020.111032] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/09/2020] [Accepted: 09/09/2020] [Indexed: 01/05/2023]
Abstract
Thyroid transcription factors (TTFs) - NKX2-1, FOXE1, PAX8 and HHEX - regulate multiple genes involved in thyroid development in mice but little is known about TTF regulation of thyroid-specific genes - thyroglobulin (TG), thyroid peroxidase (TPO), deiodinase type 2 (DIO2), sodium/iodide symporter (NIS) and TSH receptor (TSHR) - in adult, human thyrocytes. Thyrotropin (thyroid-stimulating hormone, TSH) regulation of thyroid-specific gene expression in primary cultures of human thyrocytes is biphasic yielding an inverted U-shaped dose-response curve (IUDRC) with upregulation at low doses and decreases at high doses. Herein we show that NKX2-1, FOXE1 and PAX8 are required for TSH-induced upregulation of the mRNA levels of TG, TPO, DIO2, NIS, and TSHR whereas HHEX has little effect on the levels of these thyroid-specific gene mRNAs. We show that TSH-induced upregulation is mediated by changes in their transcription and not by changes in the degradation of their mRNAs. In contrast to the IUDRC of thyroid-specific genes, TSH effects on the levels of the mRNAs for NKX2-1, FOXE1 and PAX8 exhibit monophasic decreases at high doses of TSH whereas TSH regulation of HHEX mRNA levels exhibits an IUDRC that overlaps the IUDRC of thyroid-specific genes. In contrast to findings during mouse development, TTFs do not have major effects on the levels of other TTF mRNAs in adult, human thyrocytes. Thus, we found similarities and important differences in the regulation of thyroid-specific genes in mouse development and TSH regulation of these genes in adult, human thyrocytes.
Collapse
Affiliation(s)
- Daesong Jang
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institute of Health, Bethesda, MD, USA
| | - Bernice Marcus-Samuels
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institute of Health, Bethesda, MD, USA
| | - Sarah J Morgan
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institute of Health, Bethesda, MD, USA
| | - Joanna Klubo-Gwiezdzinska
- Metabolic Disease Branch, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institute of Health, Bethesda, MD, USA
| | - Susanne Neumann
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institute of Health, Bethesda, MD, USA
| | - Marvin C Gershengorn
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institute of Health, Bethesda, MD, USA.
| |
Collapse
|
19
|
Krause G, Eckstein A, Schülein R. Modulating TSH Receptor Signaling for Therapeutic Benefit. Eur Thyroid J 2020; 9:66-77. [PMID: 33511087 PMCID: PMC7802447 DOI: 10.1159/000511871] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/01/2020] [Indexed: 12/14/2022] Open
Abstract
Autoimmune thyroid-stimulating antibodies are activating the thyrotropin receptor (TSHR) in both the thyroid and the eye, but different molecular mechanisms are induced in both organs, leading to Graves' disease (GD) and Graves' orbitopathy (GO), respectively. Therapy with anti-thyroid drugs to reduce hyperthyroidism (GD) by suppressing the biosynthesis of thyroid hormones has only an indirect effect on GO, since it does not causally address pathogenic TSHR activation itself. GO is thus very difficult to treat. The activated TSHR but also the cross-interacting insulin-like growth factor 1 receptor (IGF-1R) contribute to this issue. The TSHR is a heptahelical G-protein-coupled receptor, whereas the IGF-1R is a receptor tyrosine kinase. Despite these fundamental structural differences, both receptors are phosphorylated by G-protein receptor kinases, which enables β-arrestin binding. Arrestins mediate receptor internalization and also activate the mitogen-activated protein kinase pathway. Moreover, emerging results suggest that arrestin plays a critical role in the cross-interaction of the TSHR and the IGF-1R either in their common signaling pathway and/or during an indirect or potential TSHR/IGF-1R interaction. In this review, novel pharmacological strategies with allosteric small-molecule modulators to treat GO and GD on the level of the TSHR and/or the TSHR/IGF-1R cross-interaction will be discussed. Moreover, monoclonal antibody approaches targeting the TSHR or the IGF-1R and thereby preventing activation of either receptor will be presented. Another chapter addresses the immunomodulation to treat GO using TSHR-derived peptides targeting the human leukocyte antigen DR isotope (HLA-DR), which is a feasible approach to tackle GO, since HLA-DR and TSHR are overexpressed in orbital tissues of GO patients.
Collapse
Affiliation(s)
- Gerd Krause
- Structural Biology, Leibniz-Forschungsinstitut für molekulare Pharmakologie (FMP), Berlin, Germany
| | - Anja Eckstein
- Department of Ophthalmology, University Hospital Essen, Essen, Germany
| | - Ralf Schülein
- Protein Trafficking, Leibniz-Forschungsinstitut für molekulare Pharmakologie (FMP), Berlin, Germany
| |
Collapse
|
20
|
Schulze A, Kleinau G, Neumann S, Scheerer P, Schöneberg T, Brüser A. The intramolecular agonist is obligate for activation of glycoprotein hormone receptors. FASEB J 2020; 34:11243-11256. [PMID: 32648604 DOI: 10.1096/fj.202000100r] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 01/15/2023]
Abstract
In contrast to most rhodopsin-like G protein-coupled receptors, the glycoprotein hormone receptors (GPHR) have a large extracellular N-terminus for hormone binding. The hormones do not directly activate the transmembrane domain but mediate their action via a, thus, far only partially known Tethered Agonistic LIgand (TALI). The existence of such an intramolecular agonist was initially indicated by site-directed mutation studies and activating peptides derived from the extracellular hinge region. It is still unknown precisely how TALI is involved in intramolecular signal transmission. We combined systematic mutagenesis studies at the luteinizing hormone receptor and the thyroid-stimulating hormone receptor (TSHR), stimulation with a drug-like agonist (E2) of the TSHR, and structural homology modeling to unravel the functional and structural properties defining the TALI region. Here, we report that TALI (a) is predisposed to constitutively activate GPHR, (b) can by itself rearrange GPHR into a fully active conformation, (c) stabilizes active GPHR conformation, and (d) is not involved in activation of the TSHR by E2. In the active state conformation, TALI forms specific interactions between the N-terminus and the transmembrane domain. We show that stabilization of an active state is dependent on TALI, including activation by hormones and constitutively activating mutations.
Collapse
Affiliation(s)
- Annelie Schulze
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Gunnar Kleinau
- Group Protein X-ray Crystallography and Signal Transduction, Institute of Medical Physics and Biophysics, Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Susanne Neumann
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Patrick Scheerer
- Group Protein X-ray Crystallography and Signal Transduction, Institute of Medical Physics and Biophysics, Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Torsten Schöneberg
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Antje Brüser
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, University of Leipzig, Leipzig, Germany
| |
Collapse
|
21
|
Jang D, Morgan SJ, Klubo-Gwiezdzinska J, Banga JP, Neumann S, Gershengorn MC. Thyrotropin, but Not Thyroid-Stimulating Antibodies, Induces Biphasic Regulation of Gene Expression in Human Thyrocytes. Thyroid 2020; 30:270-276. [PMID: 31805824 PMCID: PMC7047096 DOI: 10.1089/thy.2019.0418] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Background: Thyrotropin (TSH) and thyroid-stimulating antibodies (TSAbs) activate TSH receptor (TSHR) signaling by binding to its extracellular domain. TSHR signaling has been studied extensively in animal thyrocytes and in engineered cell lines, and differences in signaling have been observed in different cell systems. We, therefore, decided to characterize and compare TSHR signaling mediated by TSH and monoclonal TSAbs in human thyrocytes in primary culture. Methods: We used quantitative reverse transcription-polymerase chain reaction to measure mRNA levels of thyroid-specific genes thyroglobulin (TG), thyroperoxidase (TPO), iodothyronine deiodinase type 2 (DIO2), sodium-iodide symporter (NIS), and TSHR after stimulation by TSH or two monoclonal TSAbs, KSAb1 and M22. We also compared secreted TG protein after TSHR activation by TSH and TSAbs using an enzyme-linked immunosorbent assay. TSHR cell surface expression was determined using fluorescence activated cell sorting (FACS). Results: We found that TSH at low doses increases and at high doses (>1 mU/mL) decreases levels of gene expression for TSHR, TG, TPO, NIS, and DIO2. The biphasic effect of TSH on signaling was not caused by downregulation of cell surface TSHRs. This bell-shaped biphasic dose-response curve has been termed an inverted U-shaped dose-response curve (IUDRC). An IUDRC was also found for TSH-induced regulation of TG secretion. In contrast, KSAb1- and M22-induced regulation of TSHR, TG, TPO, NIS, and DIO2 gene expression, and secreted TG followed a monotonic dose-response curve that plateaus at high doses of activating antibody. Conclusions: Our data demonstrate that the physiological activation of TSHRs by TSH in primary cultures of human thyrocytes is characterized by a regulatory mechanism that may inhibit thyrocyte overstimulation. In contrast, TSAbs do not exhibit biphasic regulation. Although KSAb1 and M22 may not be representative of all TSAbs found in patients with Graves' disease, we suggest that persistent robust stimulation of TSHRs by TSAbs, unrelieved by a decrease at high TSAb levels, fosters chronic stimulation of thyrocytes in Graves' hyperthyroidism.
Collapse
Affiliation(s)
- Daesong Jang
- Laboratory of Endocrinology and Receptor Biology, National Institutes of Health, Bethesda, Maryland
| | - Sarah J. Morgan
- Laboratory of Endocrinology and Receptor Biology, National Institutes of Health, Bethesda, Maryland
| | - Joanna Klubo-Gwiezdzinska
- Metabolic Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - J. Paul Banga
- Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Susanne Neumann
- Laboratory of Endocrinology and Receptor Biology, National Institutes of Health, Bethesda, Maryland
| | - Marvin C. Gershengorn
- Laboratory of Endocrinology and Receptor Biology, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
22
|
Latif R, Morshed SA, Ma R, Tokat B, Mezei M, Davies TF. A Gq Biased Small Molecule Active at the TSH Receptor. Front Endocrinol (Lausanne) 2020; 11:372. [PMID: 32676053 PMCID: PMC7333667 DOI: 10.3389/fendo.2020.00372] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 05/11/2020] [Indexed: 11/13/2022] Open
Abstract
G protein coupled receptors (GPCRs) can lead to G protein and non-G protein initiated signals. By virtue of its structural property, the TSH receptor (TSHR) has a unique ability to engage different G proteins making it highly amenable to selective signaling. In this study, we describe the identification and characterization of a novel small molecule agonist to the TSHR which induces primary engagement with Gαq/11. To identify allosteric modulators inducing selective signaling of the TSHR we used a transcriptional-based luciferase assay system with CHO-TSHR cells stably expressing response elements (CRE, NFAT, SRF, or SRE) that were capable of measuring signals emanating from the coupling of Gαs , Gαq/11, Gβγ, and Gα12/13, respectively. Using this system, TSH activated Gαs , Gαq/11, and Gα12/13 but not Gβγ. On screening a library of 50K molecules at 0.1,1.0 and 10 μM, we identified a novel Gq/11 agonist (named MSq1) which activated Gq/11 mediated NFAT-luciferase >4 fold above baseline and had an EC50= 8.3 × 10-9 M with only minor induction of Gαs and cAMP. Furthermore, MSq1 is chemically and structurally distinct from any of the previously reported TSHR agonist molecules. Docking studies using a TSHR transmembrane domain (TMD) model indicated that MSq1 had contact points on helices H1, H2, H3, and H7 in the hydrophobic pocket of the TMD and also with the extracellular loops. On co-treatment with TSH, MSq1 suppressed TSH-induced proliferation of thyrocytes in a dose-dependent manner but lacked the intrinsic ability to influence basal thyrocyte proliferation. This unexpected inhibitory property of MSq1 could be blocked in the presence of a PKC inhibitor resulting in derepressing TSH induced protein kinase A (PKA) signals and resulting in the induction of proliferation. Thus, the inhibitory effect of MSq1 on proliferation resided in its capacity to overtly activate protein kinase C (PKC) which in turn suppressed the proliferative signal induced by activation of the predomiant cAMP-PKA pathway of the TSHR. Treatment of rat thyroid cells (FRTL5) with MSq1 did not show any upregulation of gene expression of the key thyroid specific markers such as thyroglobulin(Tg), thyroid peroxidase (Tpo), sodium iodide symporter (Nis), and the TSH receptor (Tshr) further suggesting lack of involvement of MSq1 and Gαq/11 activation with cellular differentation. In summary, we identified and characterized a novel Gαq/11 agonist molecule acting at the TSHR and which showed a marked anti-proliferative ability. Hence, Gq biased activation of the TSHR is capable of ameliorating the proliferative signals from its orthosteric ligand and may offer a therapeutic option for thyroid growth modulation.
Collapse
Affiliation(s)
- Rauf Latif
- Thyroid Research Unit, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- James J. Peters VA Medical Center, New York, NY, United States
- *Correspondence: Rauf Latif
| | - Syed A. Morshed
- Thyroid Research Unit, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- James J. Peters VA Medical Center, New York, NY, United States
| | - Risheng Ma
- Thyroid Research Unit, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- James J. Peters VA Medical Center, New York, NY, United States
| | - Bengu Tokat
- Thyroid Research Unit, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Mihaly Mezei
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Terry F. Davies
- Thyroid Research Unit, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- James J. Peters VA Medical Center, New York, NY, United States
| |
Collapse
|
23
|
Boutin A, Gershengorn MC, Neumann S. β-Arrestin 1 in Thyrotropin Receptor Signaling in Bone: Studies in Osteoblast-Like Cells. Front Endocrinol (Lausanne) 2020; 11:312. [PMID: 32508750 PMCID: PMC7251030 DOI: 10.3389/fendo.2020.00312] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/24/2020] [Indexed: 12/20/2022] Open
Abstract
A direct action of thyrotropin (TSH, thyroid-stimulating hormone) on bone precursors in humans is controversial. Studies in rodent models have provided conflicting findings. We used cells derived from a moderately differentiated osteosarcoma stably overexpressing human TSH receptors (TSHRs) as a model of osteoblast precursors (U2OS-TSHR cells) to investigate TSHR-mediated effects in bone differentiation in human cells. We review our findings that (1) TSHR couples to several different G proteins to induce upregulation of genes associated with osteoblast activity-interleukin 11 (IL-11), osteopontin (OPN), and alkaline phosphatase (ALPL) and that the kinetics of the induction and the G protein-mediated signaling pathways involved were different for these genes; (2) TSH can stimulate β-arrestin-mediated signal transduction and that β-arrestin 1 in part mediates TSH-induced pre-osteoblast differentiation; and (3) TSHR/insulin-like growth factor 1 (IGF1) receptor (IGF1R) synergistically increased OPN secretion by TSH and IGF1 and that this crosstalk was mediated by physical association of these receptors in a signaling complex that uses β-arrestin 1 as a scaffold. These findings were complemented using a novel β-arrestin 1-biased agonist of TSHR. We conclude that TSHR can signal via several transduction pathways leading to differentiation of this model system of human pre-osteoblast cells and, therefore, that TSH can directly regulate these bone cells.
Collapse
|
24
|
Smith TJ. Thyroid-associated ophthalmopathy: Emergence of teprotumumab as a promising medical therapy. Best Pract Res Clin Endocrinol Metab 2020; 34:101383. [PMID: 32088116 PMCID: PMC7344338 DOI: 10.1016/j.beem.2020.101383] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Thyroid-associated ophthalmopathy (TAO) remains a vexing autoimmune component of Graves' disease that can diminish the quality of life as a consequence of its impact on visual function, physical appearance and emotional well-being. Because of its relative rarity and variable presentation, the development of highly effective and well-tolerated medical therapies for TAO has been slow relative to other autoimmune diseases. Contributing to the barriers of greater insight into TAO has been the historical absence of high-fidelity preclinical animal models. Despite these challenges, several agents, most developed for treatment of other diseases, have found their way into consideration for use in active TAO through repurposing. Among these, teprotumumab is a fully human inhibitory monoclonal antibody against the insulin-like growth factor I receptor. It has shown remarkable effectiveness in moderate to severe, active TAO in two completed multicenter, double masked, and placebo controlled clinical trials. The drug exhibits a favorable safety profile. Teprotumumab has recently been approved by the U.S. F.D.A, and may rapidly become the first line therapy for this disfiguring and potentially blinding condition.
Collapse
Affiliation(s)
- Terry J Smith
- Department of Ophthalmology and Visual Sciences, Room 7112, Brehm Tower, University of Michigan Medical School, 1000 Wall Street, Ann Arbor, MI, 48105, USA.
| |
Collapse
|
25
|
Marcinkowski P, Kreuchwig A, Mendieta S, Hoyer I, Witte F, Furkert J, Rutz C, Lentz D, Krause G, Schülein R. Thyrotropin Receptor: Allosteric Modulators Illuminate Intramolecular Signaling Mechanisms at the Interface of Ecto- and Transmembrane Domain. Mol Pharmacol 2019; 96:452-462. [PMID: 31399504 DOI: 10.1124/mol.119.116947] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/23/2019] [Indexed: 02/14/2025] Open
Abstract
The large TSH-bound ectodomain of the thyrotropin receptor (TSHR) activates the transmembrane domain (TMD) indirectly via an internal agonist (IA). The ectodomain/TMD interface consists of a converging helix, a Cys-Cys-bridge-linked IA, and extracellular loops (ECL). To investigate the intramolecular course of molecular activation, especially details of the indirect activation, we narrowed down allosteric inhibition sites of negative allosteric modulator (NAM) by mutagenesis, homology modeling, and competition studies with positive allosteric modulator (PAM). From the inhibitory effects of NAM S37a on: 1) chimeras with swapped ectodomain, 2) stepwise N-terminal truncations, 3) distinct constitutively active mutations distributed across the hinge region and ECL, but not across the TMD, we conclude that S37a binds at the ectodomain/TMD interface, between the converging helix, ECL1, and the IA. This is also supported by the noncompetitive inhibition of PAM-C2-activation by S37a in the TSHR-TMD construct lacking the ectodomain. Mutagenesis studies on the IA and ECL were guided by our refined model of the ectodomain/TMD interface and indicate an interaction with the TSHR-specific residues E404 (preceding IA) and H478 (ECL1). At this new allosteric interaction site, NAM S37a blocks both TSH- and PAM-induced activation of the TSHR. Our refined models, mutations, and new allosteric binding pocket helped us to gain more detailed insights into the intramolecular course of TSHR activation at the ectodomain/TMD interface, including the delocalization of the converging helix and rearrangement of the conformation of IA. These changes are embedded between the ECL and cooperatively trigger active conformations of TMD. SIGNIFICANCE STATEMENT: The intramolecular activation mechanisms of the TSHR appear to be distinct from those of other G protein-coupled receptors, as the TSHR has a uniquely large N-terminal ectodomain that includes the hormone binding site and an internal agonist sequence. We present new molecular and structural insights into the interface between ectodomain and transmembrane domain in the TSHR, as well as the transfer of activation to the transmembrane domain. This knowledge is critical for understanding activation or inhibition of the receptor by allosteric ligands. We have identified a new allosteric antagonist binding pocket that is located exactly at this interface and possesses specific features that may allow the generation of potent highly TSHR-selective drugs, of potential value for the treatment of Graves' orbitopathy.
Collapse
Affiliation(s)
- Patrick Marcinkowski
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany (P.M., A.K., S.M., I.H., F.W., J.F., C.R., G.K., R.S.) and Institut für Chemie und Biochemie - Anorganische Chemie, Freie Universität Berlin, Berlin, Germany (D.L.)
| | - Annika Kreuchwig
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany (P.M., A.K., S.M., I.H., F.W., J.F., C.R., G.K., R.S.) and Institut für Chemie und Biochemie - Anorganische Chemie, Freie Universität Berlin, Berlin, Germany (D.L.)
| | - Sandro Mendieta
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany (P.M., A.K., S.M., I.H., F.W., J.F., C.R., G.K., R.S.) and Institut für Chemie und Biochemie - Anorganische Chemie, Freie Universität Berlin, Berlin, Germany (D.L.)
| | - Inna Hoyer
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany (P.M., A.K., S.M., I.H., F.W., J.F., C.R., G.K., R.S.) and Institut für Chemie und Biochemie - Anorganische Chemie, Freie Universität Berlin, Berlin, Germany (D.L.)
| | - Franziska Witte
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany (P.M., A.K., S.M., I.H., F.W., J.F., C.R., G.K., R.S.) and Institut für Chemie und Biochemie - Anorganische Chemie, Freie Universität Berlin, Berlin, Germany (D.L.)
| | - Jens Furkert
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany (P.M., A.K., S.M., I.H., F.W., J.F., C.R., G.K., R.S.) and Institut für Chemie und Biochemie - Anorganische Chemie, Freie Universität Berlin, Berlin, Germany (D.L.)
| | - Claudia Rutz
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany (P.M., A.K., S.M., I.H., F.W., J.F., C.R., G.K., R.S.) and Institut für Chemie und Biochemie - Anorganische Chemie, Freie Universität Berlin, Berlin, Germany (D.L.)
| | - Dieter Lentz
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany (P.M., A.K., S.M., I.H., F.W., J.F., C.R., G.K., R.S.) and Institut für Chemie und Biochemie - Anorganische Chemie, Freie Universität Berlin, Berlin, Germany (D.L.)
| | - Gerd Krause
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany (P.M., A.K., S.M., I.H., F.W., J.F., C.R., G.K., R.S.) and Institut für Chemie und Biochemie - Anorganische Chemie, Freie Universität Berlin, Berlin, Germany (D.L.)
| | - Ralf Schülein
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany (P.M., A.K., S.M., I.H., F.W., J.F., C.R., G.K., R.S.) and Institut für Chemie und Biochemie - Anorganische Chemie, Freie Universität Berlin, Berlin, Germany (D.L.)
| |
Collapse
|
26
|
Noyes PD, Friedman KP, Browne P, Haselman JT, Gilbert ME, Hornung MW, Barone S, Crofton KM, Laws SC, Stoker TE, Simmons SO, Tietge JE, Degitz SJ. Evaluating Chemicals for Thyroid Disruption: Opportunities and Challenges with in Vitro Testing and Adverse Outcome Pathway Approaches. ENVIRONMENTAL HEALTH PERSPECTIVES 2019; 127:95001. [PMID: 31487205 PMCID: PMC6791490 DOI: 10.1289/ehp5297] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 07/01/2019] [Accepted: 08/13/2019] [Indexed: 05/19/2023]
Abstract
BACKGROUND Extensive clinical and experimental research documents the potential for chemical disruption of thyroid hormone (TH) signaling through multiple molecular targets. Perturbation of TH signaling can lead to abnormal brain development, cognitive impairments, and other adverse outcomes in humans and wildlife. To increase chemical safety screening efficiency and reduce vertebrate animal testing, in vitro assays that identify chemical interactions with molecular targets of the thyroid system have been developed and implemented. OBJECTIVES We present an adverse outcome pathway (AOP) network to link data derived from in vitro assays that measure chemical interactions with thyroid molecular targets to downstream events and adverse outcomes traditionally derived from in vivo testing. We examine the role of new in vitro technologies, in the context of the AOP network, in facilitating consideration of several important regulatory and biological challenges in characterizing chemicals that exert effects through a thyroid mechanism. DISCUSSION There is a substantial body of knowledge describing chemical effects on molecular and physiological regulation of TH signaling and associated adverse outcomes. Until recently, few alternative nonanimal assays were available to interrogate chemical effects on TH signaling. With the development of these new tools, screening large libraries of chemicals for interactions with molecular targets of the thyroid is now possible. Measuring early chemical interactions with targets in the thyroid pathway provides a means of linking adverse outcomes, which may be influenced by many biological processes, to a thyroid mechanism. However, the use of in vitro assays beyond chemical screening is complicated by continuing limits in our knowledge of TH signaling in important life stages and tissues, such as during fetal brain development. Nonetheless, the thyroid AOP network provides an ideal tool for defining causal linkages of a chemical exerting thyroid-dependent effects and identifying research needs to quantify these effects in support of regulatory decision making. https://doi.org/10.1289/EHP5297.
Collapse
Affiliation(s)
- Pamela D Noyes
- National Center for Environmental Assessment, Office of Research and Development (ORD), U.S. Environmental Protection Agency (EPA), Washington, DC, USA
| | - Katie Paul Friedman
- National Center for Computational Toxicology, ORD, U.S. EPA, Research Triangle Park, North Carolina, USA
| | - Patience Browne
- Environment Health and Safety Division, Environment Directorate, Organisation for Economic Co-operation and Development (OECD), Paris, France
| | - Jonathan T Haselman
- Mid-Continent Ecology Division, National Health and Environmental Effects Research Laboratory (NHEERL), ORD, U.S. EPA, Duluth, Minnesota, USA
| | - Mary E Gilbert
- Toxicity Assessment Division, NHEERL, ORD, U.S. EPA, Research Triangle Park, North Carolina, USA
| | - Michael W Hornung
- Mid-Continent Ecology Division, National Health and Environmental Effects Research Laboratory (NHEERL), ORD, U.S. EPA, Duluth, Minnesota, USA
| | - Stan Barone
- Office of Pollution Prevention and Toxics, Office of Chemical Safety and Pollution Prevention, U.S. EPA, Washington, DC, USA
| | - Kevin M Crofton
- National Center for Computational Toxicology, ORD, U.S. EPA, Research Triangle Park, North Carolina, USA
| | - Susan C Laws
- Toxicity Assessment Division, NHEERL, ORD, U.S. EPA, Research Triangle Park, North Carolina, USA
| | - Tammy E Stoker
- Toxicity Assessment Division, NHEERL, ORD, U.S. EPA, Research Triangle Park, North Carolina, USA
| | - Steven O Simmons
- National Center for Computational Toxicology, ORD, U.S. EPA, Research Triangle Park, North Carolina, USA
| | - Joseph E Tietge
- Mid-Continent Ecology Division, National Health and Environmental Effects Research Laboratory (NHEERL), ORD, U.S. EPA, Duluth, Minnesota, USA
| | - Sigmund J Degitz
- Mid-Continent Ecology Division, National Health and Environmental Effects Research Laboratory (NHEERL), ORD, U.S. EPA, Duluth, Minnesota, USA
| |
Collapse
|
27
|
Sahu B, Shah S, Prabhudesai K, Contini A, Idicula-Thomas S. Discovery of small molecule binders of human FSHR(TMD) with novel structural scaffolds by integrating structural bioinformatics and machine learning algorithms. J Mol Graph Model 2019; 89:156-166. [DOI: 10.1016/j.jmgm.2019.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 01/30/2019] [Accepted: 02/01/2019] [Indexed: 02/08/2023]
|
28
|
Marcinkowski P, Hoyer I, Specker E, Furkert J, Rutz C, Neuenschwander M, Sobottka S, Sun H, Nazare M, Berchner-Pfannschmidt U, von Kries JP, Eckstein A, Schülein R, Krause G. A New Highly Thyrotropin Receptor-Selective Small-Molecule Antagonist with Potential for the Treatment of Graves' Orbitopathy. Thyroid 2019; 29:111-123. [PMID: 30351237 DOI: 10.1089/thy.2018.0349] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND The thyrotropin receptor (TSHR) is the target for autoimmune thyroid stimulating antibodies (TSAb) triggering hyperthyroidism. Whereas elevated thyroid hormone synthesis by the thyroid in Graves' disease can be treated by antithyroid agents, for the pathogenic activation of TSHR in retro-orbital fibroblasts of the eye, leading to Graves' orbitopathy (GO), no causal TSHR directed therapy is available. METHODS Due to the therapeutic gap for severe GO, TSHR inhibitors were identified by high-throughput screening in Chinese hamster ovary cells expressing the TSHR. Stereo-selective synthesis of the screening hits led to the molecule S37, which contains seven chiral centers. Enantiomeric separation of the molecule S37 resulted in the enantiopure molecule S37a-a micro-molar antagonist of thyrotropin-induced cyclic adenosine monophosphate accumulation in HEK 293 cells expressing the TSHR. RESULTS The unique rigid bent shape of molecule S37a may mediate the observed high TSHR selectivity. Most importantly, the closely related follitropin and lutropin receptors were not affected by this compound. S37a not only inhibits the TSHR activation by thyrotropin itself but also activation by monoclonal TSAb M22 (human), KSAb1 (murine), and the allosteric small-molecule agonist C2. Disease-related ex vivo studies in HEK 293 cells expressing the TSHR showed that S37a also inhibits cyclic adenosine monophosphate formation by oligoclonal TSAb, which are highly enriched in GO patients' sera. Initial in vivo pharmacokinetic studies revealed no toxicity of S37a and a remarkable 53% oral bioavailability in mice. CONCLUSION In summary, a novel highly selective inhibitor for the TSHR is presented, which has promising potential for further development for the treatment of GO.
Collapse
Affiliation(s)
| | - Inna Hoyer
- 1 Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Edgar Specker
- 1 Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Jens Furkert
- 1 Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Claudia Rutz
- 1 Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | | | - Sebastian Sobottka
- 1 Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Han Sun
- 1 Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Marc Nazare
- 1 Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | | | | | - Anja Eckstein
- 2 Department of Ophthalmology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Ralf Schülein
- 1 Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Gerd Krause
- 1 Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| |
Collapse
|
29
|
Mazziotti G, Frara S, Giustina A. Pituitary Diseases and Bone. Endocr Rev 2018; 39:440-488. [PMID: 29684108 DOI: 10.1210/er.2018-00005] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 04/16/2018] [Indexed: 12/12/2022]
Abstract
Neuroendocrinology of bone is a new area of research based on the evidence that pituitary hormones may directly modulate bone remodeling and metabolism. Skeletal fragility associated with high risk of fractures is a common complication of several pituitary diseases such as hypopituitarism, Cushing disease, acromegaly, and hyperprolactinemia. As in other forms of secondary osteoporosis, pituitary diseases generally affect bone quality more than bone quantity, and fractures may occur even in the presence of normal or low-normal bone mineral density as measured by dual-energy X-ray absorptiometry, making difficult the prediction of fractures in these clinical settings. Treatment of pituitary hormone excess and deficiency generally improves skeletal health, although some patients remain at high risk of fractures, and treatment with bone-active drugs may become mandatory. The aim of this review is to discuss the physiological, pathophysiological, and clinical insights of bone involvement in pituitary diseases.
Collapse
Affiliation(s)
| | - Stefano Frara
- Institute of Endocrinology, Università Vita-Salute San Raffaele, Milan, Italy
| | - Andrea Giustina
- Institute of Endocrinology, Università Vita-Salute San Raffaele, Milan, Italy
| |
Collapse
|
30
|
Briet C, Suteau-Courant V, Munier M, Rodien P. Thyrotropin receptor, still much to be learned from the patients. Best Pract Res Clin Endocrinol Metab 2018; 32:155-164. [PMID: 29678283 DOI: 10.1016/j.beem.2018.03.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In the absence of crystal available for the full-length thyrotropin receptor, knowledge of its structure and functioning has benefitted from the identification and characterization of mutations in patients with various thyroid dysfunctions. The characterization of activating mutations has contributed to the elaboration of a model involving the extracellular domain of the receptor as an inverse tethered agonist which, upon binding of the ligand, relieves the transmembrane domain from an inhibiting interaction and activates it. The models derived from comparisons with other receptors, enriched with the information provided by the study of mutations, have proven useful for the design of small-molecule agonists and antagonists that may be used in the future to treat thyroid dysfunctions. In this review, extrathyroidal expression of the thyrotropin receptor is described, the role of which is still poorly defined.
Collapse
Affiliation(s)
- Claire Briet
- Centre de Référence des Maladies Rares de la Thyroïde et des Récepteurs Hormonaux, Centre Hospitalo-Universitaire d'Angers, 4 Rue Larrey, Angers, France; Institut MITOVASC, UMR CNRS 6015, INSERM 1083, Université d'Angers, France.
| | - Valentine Suteau-Courant
- Centre de Référence des Maladies Rares de la Thyroïde et des Récepteurs Hormonaux, Centre Hospitalo-Universitaire d'Angers, 4 Rue Larrey, Angers, France; Institut MITOVASC, UMR CNRS 6015, INSERM 1083, Université d'Angers, France.
| | - Mathilde Munier
- Centre de Référence des Maladies Rares de la Thyroïde et des Récepteurs Hormonaux, Centre Hospitalo-Universitaire d'Angers, 4 Rue Larrey, Angers, France; Institut MITOVASC, UMR CNRS 6015, INSERM 1083, Université d'Angers, France.
| | - Patrice Rodien
- Centre de Référence des Maladies Rares de la Thyroïde et des Récepteurs Hormonaux, Centre Hospitalo-Universitaire d'Angers, 4 Rue Larrey, Angers, France; Institut MITOVASC, UMR CNRS 6015, INSERM 1083, Université d'Angers, France.
| |
Collapse
|
31
|
Abstract
In order to study functions of normal human thyrocytes, we developed a protocol to obtain these cells in primary culture. Thyrocytes are obtained from normal tissue obtained at surgery for removal of thyroid neoplasms. Under sterile conditions, specimens are minced into small pieces, mono-dispersed cells are generated by digestion with collagenase type IV and the cells plated in tissue culture grade dishes in Dulbecco's modified Eagle's medium (DMEM) containing 10% fetal bovine serum (FBS). After 24 h of incubation at 37 °C in a humidified 5% CO2 incubator, the supernatant containing non-adherent cells is removed and the adherent cells are propagated in DMEM with 10% FBS, 100 IU/mL penicillin, and 10 μg/mL streptomycin. Cells proliferate with a doubling time of 72-94 h and retain functional characteristics for 9-12 doublings. We have used them successfully in studies to elucidate the signaling by thyrotropin (TSH) and insulin-like growth factor 1.
Collapse
|
32
|
Li S, Zhang D, Sheng S, Sun H. Targeting thyroid cancer with acid-triggered release of doxorubicin from silicon dioxide nanoparticles. Int J Nanomedicine 2017; 12:5993-6003. [PMID: 28860762 PMCID: PMC5573063 DOI: 10.2147/ijn.s137335] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Currently, therapy for thyroid cancer mainly involves surgery and radioiodine therapy. However, chemotherapy can be used in advanced and aggressive thyroid cancer that cannot be treated by other options. Nevertheless, a major obstacle to the successful treatment of thyroid cancer is the delivery of drugs to the thyroid gland. Here, we present an example of the construction of silicon dioxide nanoparticles with thyroid–stimulating-hormone receptor-targeting ligand that can specifically target the thyroid cancer. Doxorubicin nanoparticles can be triggered by acid to release the drug payload for cancer therapy. These nanoparticles shrink the tumor size in vivo with less toxic side effects. This research paves the way toward effective chemotherapy for thyroid cancer.
Collapse
Affiliation(s)
| | | | - Shihou Sheng
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Chang Chun, People's Republic of China
| | - Hui Sun
- Department of Thyroid Surgery
| |
Collapse
|
33
|
Shpakov AO. [Pharmacological approaches for correction of thyroid dysfunctions in diabetes mellitus]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2017; 63:219-231. [PMID: 28781255 DOI: 10.18097/pbmc20176303219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Thyroid diseases are closely associated with the development of types 1 and 2 diabetes mellitus (DM), and as a consequence, the development of effective approaches for their treatment is one of the urgent problems of endocrinology. Traditionally, thyroid hormones (TH) are used to correct functions of the thyroid system. However, they are characterized by many side effects, such as their negative effect on the cardiovascular system as well as the ability of TH to enhance insulin resistance and to disturb insulin-producing function of pancreas, exacerbating thereby diabetic pathology. Therefore, the analogues of TH, selective for certain types of TH receptors, that do not have these side effects, are being developed. The peptide and low-molecular weight regulators of thyroid-stimulating hormone receptor, which regulate the activity of the thyroid axis at the stage of TH synthesis and secretion in thyrocytes, are being created. Systemic and intranasal administration of insulin, metformin therapy and drugs with antioxidant activity are effective for the treatment of thyroid pathology in types 1 and 2 DM. In the review, the literature data and the results of own investigations on pharmacological approaches for the treatment and prevention of thyroid diseases in patients with types 1 and 2 DM are summarized and analyzed.
Collapse
Affiliation(s)
- A O Shpakov
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences
| |
Collapse
|
34
|
Abstract
INTRODUCTION Graves' disease (GD) and thyroid-associated ophthalmopathy (TAO) are thought to result from actions of pathogenic antibodies mediated through the thyrotropin receptor (TSHR). This leads to the unregulated consequences of the antibody-mediated receptor activity in the thyroid and connective tissues of the orbit. Recent studies reveal antibodies that appear to be directed against the insulin-like growth factor-I receptor (IGF-IR). Areas covered: In this brief article, I attempt to review the fundamental characteristics of the TSHR, its role in GD and TAO, and its relationship to IGF-IR. Strong evidence supports the concept that the two receptors form a physical and functional complex and that IGF-IR activity is required for some of the down-stream signaling initiated through TSHR. Recently developed small molecules and monoclonal antibodies that block TSHR and IGF-IR signaling are also reviewed in the narrow context of their potential utility as therapeutics in GD and TAO. The Pubmed database was searched from its inception for relevant publications. Expert opinion: Those agents that can interrupt the TSHR and IGF-IR pathways possess the potential for offering more specific and better tolerated treatments of both hyperthyroidism and TAO. This would spare patients exposure to toxic drugs, ionizing radiation and potentially hazardous surgeries.
Collapse
Affiliation(s)
- Terry Smith
- a Department of Ophthalmology and Visual Sciences , University of Michigan , Ann Arbor , MI , USA
| |
Collapse
|
35
|
Baliram R, Latif R, Zaidi M, Davies TF. Expanding the Role of Thyroid-Stimulating Hormone in Skeletal Physiology. Front Endocrinol (Lausanne) 2017; 8:252. [PMID: 29042858 PMCID: PMC5632520 DOI: 10.3389/fendo.2017.00252] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 09/13/2017] [Indexed: 12/11/2022] Open
Abstract
The dogma that thyroid-stimulating hormone (TSH) solely regulates the production of thyroid hormone from the thyroid gland has hampered research on its wider physiological roles. The action of pituitary TSH on the skeleton has now been well described; in particular, its action on osteoblasts and osteoclasts. It has also been recently discovered that the bone marrow microenvironment acts as an endocrine circuit with bone marrow-resident macrophages capable of producing a novel TSH-β subunit variant (TSH-βv), which may modulate skeletal physiology. Interestingly, the production of this TSH-βv is positively regulated by T3 accentuating such modulation in the presence of thyroid overactivity. Furthermore, a number of small molecule ligands acting as TSH agonists, which allosterically modulate the TSH receptor have been identified and may have similar modulatory influences on bone cells suggesting therapeutic potential. This review summarizes our current understanding of the role of TSH, TSH-β, TSH-βv, and small molecule agonists in bone physiology.
Collapse
Affiliation(s)
- Ramkumarie Baliram
- Thyroid Research Unit, Icahn School of Medicine at Mount Sinai and the James J. Peters VA Medical Center, New York, NY, United States
- *Correspondence: Ramkumarie Baliram,
| | - Rauf Latif
- Thyroid Research Unit, Icahn School of Medicine at Mount Sinai and the James J. Peters VA Medical Center, New York, NY, United States
| | - Mone Zaidi
- The Mount Sinai Bone Program, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Terry F. Davies
- Thyroid Research Unit, Icahn School of Medicine at Mount Sinai and the James J. Peters VA Medical Center, New York, NY, United States
- The Mount Sinai Bone Program, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
36
|
Kleinau G, Worth CL, Kreuchwig A, Biebermann H, Marcinkowski P, Scheerer P, Krause G. Structural-Functional Features of the Thyrotropin Receptor: A Class A G-Protein-Coupled Receptor at Work. Front Endocrinol (Lausanne) 2017; 8:86. [PMID: 28484426 PMCID: PMC5401882 DOI: 10.3389/fendo.2017.00086] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 04/03/2017] [Indexed: 12/21/2022] Open
Abstract
The thyroid-stimulating hormone receptor (TSHR) is a member of the glycoprotein hormone receptors, a sub-group of class A G-protein-coupled receptors (GPCRs). TSHR and its endogenous ligand thyrotropin (TSH) are of essential importance for growth and function of the thyroid gland and proper function of the TSH/TSHR system is pivotal for production and release of thyroid hormones. This receptor is also important with respect to pathophysiology, such as autoimmune (including ophthalmopathy) or non-autoimmune thyroid dysfunctions and cancer development. Pharmacological interventions directly targeting the TSHR should provide benefits to disease treatment compared to currently available therapies of dysfunctions associated with the TSHR or the thyroid gland. Upon TSHR activation, the molecular events conveying conformational changes from the extra- to the intracellular side of the cell across the membrane comprise reception, conversion, and amplification of the signal. These steps are highly dependent on structural features of this receptor and its intermolecular interaction partners, e.g., TSH, antibodies, small molecules, G-proteins, or arrestin. For better understanding of signal transduction, pathogenic mechanisms such as autoantibody action and mutational modifications or for developing new pharmacological strategies, it is essential to combine available structural data with functional information to generate homology models of the entire receptor. Although so far these insights are fragmental, in the past few decades essential contributions have been made to investigate in-depth the involved determinants, such as by structure determination via X-ray crystallography. This review summarizes available knowledge (as of December 2016) concerning the TSHR protein structure, associated functional aspects, and based on these insights we suggest several receptor complex models. Moreover, distinct TSHR properties will be highlighted in comparison to other class A GPCRs to understand the molecular activation mechanisms of this receptor comprehensively. Finally, limitations of current knowledge and lack of information are discussed highlighting the need for intensified efforts toward TSHR structure elucidation.
Collapse
Affiliation(s)
- Gunnar Kleinau
- Institute of Experimental Pediatric Endocrinology, Charité-Universitätsmedizin, Berlin, Germany
- Group Protein X-Ray Crystallography and Signal Transduction, Institute of Medical Physics and Biophysics, Charité-Universitätsmedizin, Berlin, Germany
| | | | - Annika Kreuchwig
- Leibniz-Institut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Heike Biebermann
- Institute of Experimental Pediatric Endocrinology, Charité-Universitätsmedizin, Berlin, Germany
| | | | - Patrick Scheerer
- Group Protein X-Ray Crystallography and Signal Transduction, Institute of Medical Physics and Biophysics, Charité-Universitätsmedizin, Berlin, Germany
| | - Gerd Krause
- Leibniz-Institut für Molekulare Pharmakologie (FMP), Berlin, Germany
- *Correspondence: Gerd Krause,
| |
Collapse
|
37
|
Morgan SJ, Neumann S, Marcus-Samuels B, Gershengorn MC. Thyrotropin and Insulin-Like Growth Factor 1 Receptor Crosstalk Upregulates Sodium-Iodide Symporter Expression in Primary Cultures of Human Thyrocytes. Thyroid 2016; 26:1794-1803. [PMID: 27638195 PMCID: PMC5175432 DOI: 10.1089/thy.2016.0323] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Major regulation of thyroid gland function is mediated by thyrotropin (TSH) activating the TSH receptor (TSHR) and inducing upregulation of genes involved in thyroid hormone synthesis. Evidence suggests that the insulin-like growth factor 1 (IGF-1) receptor (IGF-1R) may play a role in regulating TSHR functional effects. This study examined the potential role of TSHR/IGF-1R crosstalk in primary cultures of human thyrocytes. RESULTS TSH/IGF-1 co-treatment elicited additive effects on thyroglobulin (TG), thyroperoxidase (TPO), and deiodinase type 2 (DIO2) mRNA levels but synergistic effects on sodium-iodide symporter (NIS) mRNA. Similar cooperativity was seen on the level of TG protein secretion (additive) and NIS protein expression (synergistic). The IGF-1R tyrosine kinase inhibitor linsitinib inhibited TSH-stimulated upregulation of NIS but not TG, indicating that NIS regulation is in part IGF-1R dependent and occurs via receptor crosstalk. Cooperativity was not seen at the level of cAMP/protein kinase A (PKA) signaling, IGF-1R phosphorylation, or Akt activation. However, TSH and IGF-1 synergistically activated ERK1/2. Pharmacological inhibition of ERK1/2 by the MEK1/2 inhibitor U0126 and of Akt by MK-2206 virtually abolished NIS stimulation by TSH and the synergistic effect of IGF-1. CONCLUSION As linsitinib inhibited upregulation of NIS stimulated by TSH alone, it is concluded that crosstalk between TSHR and IGF-1R, without agonist activation of IGF-1R, plays a role in NIS regulation in human thyrocytes via a mechanism involving ERK1/2 and/or Akt. Fully understanding the nature of this crosstalk has clinical implications for the treatment of thyroid diseases, including thyroid cancer.
Collapse
Affiliation(s)
- Sarah J Morgan
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland
| | - Susanne Neumann
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland
| | - Bernice Marcus-Samuels
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland
| | - Marvin C Gershengorn
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland
| |
Collapse
|
38
|
Neumann S, Padia U, Cullen MJ, Eliseeva E, Nir EA, Place RF, Morgan SJ, Gershengorn MC. An Enantiomer of an Oral Small-Molecule TSH Receptor Agonist Exhibits Improved Pharmacologic Properties. Front Endocrinol (Lausanne) 2016; 7:105. [PMID: 27512388 PMCID: PMC4961696 DOI: 10.3389/fendo.2016.00105] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 07/18/2016] [Indexed: 11/13/2022] Open
Abstract
We are developing an orally available small-molecule, allosteric TSH receptor (TSHR) agonist for follow-up diagnostics of patients with thyroid cancer. The agonist C2 (NCGC00161870) that we have studied so far is a racemic mixture containing equal amounts of two enantiomers, E1 and E2. As enantiomers of many drugs exhibit different pharmacologic properties, we assessed the properties of E1 and E2. We separated the two enantiomers by chiral chromatography and determined E2 as the (S)-(+) isomer via crystal structure analysis. E1 and E2 were shown to bind differently to a homology model of the transmembrane domain of TSHR in which E2 was calculated to exhibit lower binding energy than E1 and was, therefore, predicted to be more potent than E1. In HEK293 cells expressing human TSHRs, C2, E1, and E2 were equally efficacious in stimulating cAMP production, but their potencies were different. E2 was more potent (EC50 = 18 nM) than C2 (EC50 = 46 nM), which was more potent than E1 (EC50 = 217 nM). In primary cultures of human thyrocytes, C2, E1, and E2 stimulated increases in thyroperoxidase mRNA of 92-, 55-, and 137-fold and in sodium-iodide symporter mRNA of 20-, 4-, and 121-fold above basal levels, respectively. In mice, C2 stimulated an increase in radioactive iodine uptake of 1.5-fold and E2 of 2.8-fold above basal level, whereas E1 did not have an effect. C2 stimulated an increase in serum T4 of 2.4-fold, E1 of 1.9-fold, and E2 of 5.6-fold above basal levels, and a 5-day oral dosing regimen of E2 increased serum T4 levels comparable to recombinant human TSH (rhTSH, Thyrogen(®)). Thus, E2 is more effective than either C2 or E1 in stimulating thyroid function and as efficacious as rhTSH in vivo. E2 represents the next step toward developing an oral drug for patients with thyroid cancer.
Collapse
Affiliation(s)
- Susanne Neumann
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
- *Correspondence: Susanne Neumann,
| | - Umesh Padia
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Mary Jane Cullen
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Elena Eliseeva
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Eshel A. Nir
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Robert F. Place
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sarah J. Morgan
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Marvin C. Gershengorn
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
39
|
Latif R, Realubit RB, Karan C, Mezei M, Davies TF. TSH Receptor Signaling Abrogation by a Novel Small Molecule. Front Endocrinol (Lausanne) 2016; 7:130. [PMID: 27729899 PMCID: PMC5037132 DOI: 10.3389/fendo.2016.00130] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 09/06/2016] [Indexed: 12/19/2022] Open
Abstract
Pathological activation of the thyroid-stimulating hormone receptor (TSHR) is caused by thyroid-stimulating antibodies in patients with Graves' disease (GD) or by somatic and rare genomic mutations that enhance constitutive activation of the receptor influencing both G protein and non-G protein signaling. Potential selective small molecule antagonists represent novel therapeutic compounds for abrogation of such abnormal TSHR signaling. In this study, we describe the identification and in vitro characterization of a novel small molecule antagonist by high-throughput screening (HTS). The identification of the TSHR antagonist was performed using a transcription-based TSH-inhibition bioassay. TSHR-expressing CHO cells, which also expressed a luciferase-tagged CRE response element, were optimized using bovine TSH as the activator, in a 384 well plate format, which had a Z score of 0.3-0.6. Using this HTS assay, we screened a diverse library of ~80,000 compounds at a final concentration of 16.7 μM. The selection criteria for a positive hit were based on a mean signal threshold of ≥50% inhibition of control TSH stimulation. The screening resulted in 450 positive hits giving a hit ratio of 0.56%. A secondary confirmation screen against TSH and forskolin - a post receptor activator of adenylyl cyclase - confirmed one TSHR-specific candidate antagonist molecule (named VA-K-14). This lead molecule had an IC50 of 12.3 μM and a unique chemical structure. A parallel analysis for cell viability indicated that the lead inhibitor was non-cytotoxic at its effective concentrations. In silico docking studies performed using a TSHR transmembrane model showed the hydrophobic contact locations and the possible mode of inhibition of TSHR signaling. Furthermore, this molecule was capable of inhibiting TSHR stimulation by GD patient sera and monoclonal-stimulating TSHR antibodies. In conclusion, we report the identification of a novel small molecule TSHR inhibitor, which has the potential to be developed as a therapeutic antagonist for abrogation of TSHR signaling by TSHR autoantibodies in GD.
Collapse
Affiliation(s)
- Rauf Latif
- Thyroid Research Unit, James J. Peters VA Medical Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- *Correspondence: Rauf Latif,
| | - Ronald B. Realubit
- Sulzberger Columbia Genome Center, Columbia University, New York, NY, USA
| | - Charles Karan
- Sulzberger Columbia Genome Center, Columbia University, New York, NY, USA
| | - Mihaly Mezei
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Terry F. Davies
- Thyroid Research Unit, James J. Peters VA Medical Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
40
|
Latif R, Lau Z, Cheung P, Felsenfeld DP, Davies TF. The "TSH Receptor Glo Assay" - A High-Throughput Detection System for Thyroid Stimulation. Front Endocrinol (Lausanne) 2016; 7:3. [PMID: 26858688 PMCID: PMC4729884 DOI: 10.3389/fendo.2016.00003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 01/12/2016] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND To identify novel small molecules against the TSH receptor, we developed a sensitive transcription-based luciferase high-throughput screening (HTS) system named the TSHR-Glo Assay (TSHR-Glo). METHODS This assay uses double-transfected Chinese hamster ovary cells stably expressing the human TSHR and a cAMP-response element (CRE) construct fused to an improved luciferase reporter gene. RESULTS The assay was highly responsive toward TSH in a dose-dependent manner with a TSH sensitivity of 10(-10)M (10 ± 1.12 μU/ml) and thyroid-stimulating antibodies, a hallmark of Graves' disease, could also be detected. The assay was validated against the standard indicator of HTS performance - the Z-factor (Z') - producing a score of 0.895. Using the TSHR-Glo assay, we screened 48,224 compounds from a diverse chemical library in duplicate plates at a fixed dose of 17 μM. Twenty molecules with the greatest activity out of 62 molecules that were identified by this technique were subsequently screened against the parent luciferase stable cell line in order to eliminate false positive stimulators. CONCLUSION Using this approach, we were able to identify specific agonists against the TSH receptor leading to the characterization of several TSH agonist molecules. Hence, the TSHR-Glo assay was a one-step cell-based HTS assay, which was successful in the discovery of novel small molecular agonists and for the detection of stimulating antibodies to the TSH receptor.
Collapse
Affiliation(s)
- Rauf Latif
- Thyroid Research Unit, Department of Medicine, Icahn School of Medicine at Mount Sinai and the James J. Peters VA Medical Center, New York, NY, USA
- *Correspondence: Rauf Latif,
| | - Zerlina Lau
- Integrated Screening Core, Experimental Therapeutics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Pamela Cheung
- Integrated Screening Core, Experimental Therapeutics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dan P. Felsenfeld
- Integrated Screening Core, Experimental Therapeutics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Terry F. Davies
- Thyroid Research Unit, Department of Medicine, Icahn School of Medicine at Mount Sinai and the James J. Peters VA Medical Center, New York, NY, USA
| |
Collapse
|
41
|
Abstract
Adhesion GPCRs harbor a tethered agonist sequence (reproduced from [24]) As the past years have seen a magnificent increase in knowledge on adhesion GPCR (aGPCR) signal transduction, the time had come to fill the gap on how these receptors can be activated. Based on experimental observations that deletion of the ectodomain can induce signaling, the idea arose that aGPCRs, just like other atypical GPCRs, may harbor a tethered agonist sequence. In this chapter, we describe the recent findings and characteristics of this agonist, called the Stachel sequence, and discuss potential mechanisms that cause liberation of this encrypted sequence. Further, we provide perspectives for application of Stachel-derived synthetic peptides in future studies of aGPCR function.
Collapse
Affiliation(s)
- Ines Liebscher
- Medical Faculty, Institute of Biochemistry, University Leipzig, Johannisallee 30, Leipzig, 04103, Germany.
| | - Torsten Schöneberg
- Medical Faculty, Institute of Biochemistry, University Leipzig, Johannisallee 30, Leipzig, 04103, Germany
| |
Collapse
|
42
|
Brüser A, Schulz A, Rothemund S, Ricken A, Calebiro D, Kleinau G, Schöneberg T. The Activation Mechanism of Glycoprotein Hormone Receptors with Implications in the Cause and Therapy of Endocrine Diseases. J Biol Chem 2015; 291:508-20. [PMID: 26582202 DOI: 10.1074/jbc.m115.701102] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Indexed: 11/06/2022] Open
Abstract
Glycoprotein hormones (GPHs) are the main regulators of the pituitary-thyroid and pituitary-gonadal axes. Selective interaction between GPHs and their cognate G protein-coupled receptors ensure specificity in GPH signaling. The mechanisms of how these hormones activate glycoprotein hormone receptors (GPHRs) or how mutations and autoantibodies can alter receptor function were unclear. Based on the hypothesis that GPHRs contain an internal agonist, we systematically screened peptide libraries derived from the ectodomain for agonistic activity on the receptors. We show that a peptide (p10) derived from a conserved sequence in the C-terminal part of the extracellular N terminus can activate all GPHRs in vitro and in GPHR-expressing tissues. Inactivating mutations in this conserved region or in p10 can inhibit activation of the thyroid-stimulating hormone receptor by autoantibodies. Our data suggest an activation mechanism where, upon extracellular ligand binding, this intramolecular agonist isomerizes and induces structural changes in the 7-transmembrane helix domain, triggering G protein activation. This mechanism can explain the pathophysiology of activating autoantibodies and several mutations causing endocrine dysfunctions such as Graves disease and hypo- and hyperthyroidism. Our findings highlight an evolutionarily conserved activation mechanism of GPHRs and will further promote the development of specific ligands useful to treat Graves disease and other dysfunctions of GPHRs.
Collapse
Affiliation(s)
| | | | | | - Albert Ricken
- Institute of Anatomy, Medical Faculty, University of Leipzig, 04103 Leipzig
| | - Davide Calebiro
- the Institute of Pharmacology and Toxicology & Bio-Imaging Center/Rudolf Virchow Center, University of Würzburg, 97078 Würzburg, and
| | - Gunnar Kleinau
- Institute of Experimental Pediatric Endocrinology, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
| | | |
Collapse
|
43
|
Abstract
The availability of human monoclonal antibodies (MAbs) to the TSHR has enabled major advances in our understanding of how TSHR autoantibodies interact with the receptor. These advances include determination of the crystal structures of the TSHR LRD in complex with a stimulating autoantibody (M22) and with a blocking type autoantibody (K1-70). The high affinity of MAbs for the TSHR makes them particularly suitable for use as ligands in assays for patient serum TSHR autoantibodies. Also, M22 and K1-70 are effective at low concentrations in vivo as TSHR agonists and antagonists respectively. K1-70 has important potential in the treatment of the hyperthyroidism of Graves' disease and Graves' ophthalmopathy. Small molecule TSHR antagonists described to date do not appear to have the potency and/or specificity shown by K1-70. New models of the TSHR ECD in complex with various ligands have been built. These models suggest that initial binding of TSH to the TSHR causes a conformational change in the hormone. This opens a positively charged pocket in receptor-bound TSH which attracts the negatively charged sulphated tyrosine 385 on the hinge region of the receptor. The ensuing movement of the receptor's hinge region may then cause activation. Similar activation mechanisms seem to take place in the case of FSH and the FSHR and LH and the LHR. However, stimulating TSHR autoantibodies do not appear to activate the TSHR in the same way as TSH.
Collapse
Affiliation(s)
- J Furmaniak
- FIRS Laboratories, RSR Ltd, Parc Ty Glas, Llanishen, Cardiff, UK
| | - J Sanders
- FIRS Laboratories, RSR Ltd, Parc Ty Glas, Llanishen, Cardiff, UK
| | - R Núñez Miguel
- FIRS Laboratories, RSR Ltd, Parc Ty Glas, Llanishen, Cardiff, UK
| | - B Rees Smith
- FIRS Laboratories, RSR Ltd, Parc Ty Glas, Llanishen, Cardiff, UK
| |
Collapse
|
44
|
Intranasal and Intramuscular Administration of Lysine-Palmitoylated Peptide 612–627 of Thyroid-Stimulating Hormone Receptor Increases the Level of Thyroid Hormones in Rats. Int J Pept Res Ther 2015. [DOI: 10.1007/s10989-014-9452-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
45
|
Davies TF, Latif R. Targeting the thyroid-stimulating hormone receptor with small molecule ligands and antibodies. Expert Opin Ther Targets 2015; 19:835-47. [PMID: 25768836 DOI: 10.1517/14728222.2015.1018181] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION The thyroid-stimulating hormone receptor (TSHR) is the essential molecule for thyroid growth and thyroid hormone production. Since it is also a key autoantigen in Graves' disease and is involved in thyroid cancer pathophysiology, the targeting of the TSHR offers a logical model for disease control. AREAS COVERED We review the structure and function of the TSHR and the progress in both small molecule ligands and TSHR antibodies for their therapeutic potential. EXPERT OPINION Stabilization of a preferential conformation for the TSHR by allosteric ligands and TSHR antibodies with selective modulation of the signaling pathways is now possible. These tools may be the next generation of therapeutics for controlling the pathophysiological consequences mediated by the effects of the TSHR in the thyroid and other extrathyroidal tissues.
Collapse
Affiliation(s)
- Terry F Davies
- Icahn School of Medicine at Mount Sinai and the James J. Peters VA Medical Center, Thyroid Research Unit , 1 Gustave L Levy Place, New York, NY 10029 , USA +1 212 241 7975 ; +1 212 428 6748 ;
| | | |
Collapse
|
46
|
Nataraja SG, Yu HN, Palmer SS. Discovery and Development of Small Molecule Allosteric Modulators of Glycoprotein Hormone Receptors. Front Endocrinol (Lausanne) 2015; 6:142. [PMID: 26441832 PMCID: PMC4568768 DOI: 10.3389/fendo.2015.00142] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 08/31/2015] [Indexed: 11/30/2022] Open
Abstract
Glycoprotein hormones, follicle-stimulating hormone (FSH), luteinizing hormone (LH), and thyroid-stimulating hormone (TSH) are heterodimeric proteins with a common α-subunit and hormone-specific β-subunit. These hormones are dominant regulators of reproduction and metabolic processes. Receptors for the glycoprotein hormones belong to the family of G protein-coupled receptors. FSH receptor (FSHR) and LH receptor are primarily expressed in somatic cells in ovary and testis to promote egg and sperm production in women and men, respectively. TSH receptor is expressed in thyroid cells and regulates the secretion of T3 and T4. Glycoprotein hormones bind to the large extracellular domain of the receptor and cause a conformational change in the receptor that leads to activation of more than one intracellular signaling pathway. Several small molecules have been described to activate/inhibit glycoprotein hormone receptors through allosteric sites of the receptor. Small molecule allosteric modulators have the potential to be administered orally to patients, thus improving the convenience of treatment. It has been a challenge to develop a small molecule allosteric agonist for glycoprotein hormones that can mimic the agonistic effects of the large natural ligand to activate similar signaling pathways. However, in the past few years, there have been several promising reports describing distinct chemical series with improved potency in preclinical models. In parallel, proposal of new structural model for FSHR and in silico docking studies of small molecule ligands to glycoprotein hormone receptors provide a giant leap on the understanding of the mechanism of action of the natural ligands and new chemical entities on the receptors. This review will focus on the current status of small molecule allosteric modulators of glycoprotein hormone receptors, their effects on common signaling pathways in cells, their utility for clinical application as demonstrated in preclinical models, and use of these molecules as novel tools to dissect the molecular signaling pathways of these receptors.
Collapse
Affiliation(s)
- Selvaraj G. Nataraja
- TocopheRx Inc., Burlington, MA, USA
- *Correspondence: Selvaraj G. Nataraja, TocopheRx Inc., 15 New England Executive Park, Suite 1087, Burlington, MA 01803, USA,
| | - Henry N. Yu
- TocopheRx Inc., Burlington, MA, USA
- EMD Serono Research and Development Institute Inc., Billerica, MA, USA
| | | |
Collapse
|
47
|
Latif R, Ali MR, Ma R, David M, Morshed SA, Ohlmeyer M, Felsenfeld DP, Lau Z, Mezei M, Davies TF. New small molecule agonists to the thyrotropin receptor. Thyroid 2015; 25:51-62. [PMID: 25333622 PMCID: PMC4291085 DOI: 10.1089/thy.2014.0119] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Novel small molecular ligands (SMLs) to the thyrotropin receptor (TSHR) have potential as improved molecular probes and as therapeutic agents for the treatment of thyroid dysfunction and thyroid cancer. METHODS To identify novel SMLs to the TSHR, we developed a transcription-based luciferase-cAMP high-throughput screening system and we screened 48,224 compounds from a 100K library in duplicate. RESULTS We obtained 62 hits using the cut-off criteria of the mean±three standard deviations above the baseline. Twenty molecules with the greatest activity were rescreened against the parent CHO-luciferase cell for nonspecific activation, and we selected two molecules (MS437 and MS438) with the highest potency for further study. These lead molecules demonstrated no detectible cross-reactivity with homologous receptors when tested against luteinizing hormone (LH)/human chorionic gonadotropin receptor and follicle stimulating hormone receptor-expressing cells. Molecule MS437 had a TSHR-stimulating potency with an EC50 of 13×10(-8) M, and molecule MS438 had an EC50 of 5.3×10(-8) M. The ability of these small molecule agonists to bind to the transmembrane domain of the receptor and initiate signal transduction was suggested by their activation of a chimeric receptor consisting of an LHR ectodomain and a TSHR transmembrane. Molecular modeling demonstrated that these molecules bound to residues S505 and E506 for MS438 and T501 for MS437 in the intrahelical region of transmembrane helix 3. We also examined the G protein activating ability of these molecules using CHO cells co-expressing TSHRs transfected with luciferase reporter vectors in order to measure Gsα, Gβγ, Gαq, and Gα12 activation quantitatively. The MS437 and MS438 molecules showed potent activation of Gsα, Gαq, and Gα12 similar to TSH, but neither the small molecule agonists nor TSH showed activation of the Gβγ pathway. The small molecules MS437 and MS438 also showed upregulation of thyroglobulin (Tg), sodium iodine symporter (NIS), and TSHR gene expression. CONCLUSIONS Pharmacokinetic analysis of MS437 and MS438 indicated their pharmacotherapeutic potential, and their intraperitoneal administration to normal female mice resulted in significantly increased serum thyroxine levels, which could be maintained by repeated treatments. These molecules can therefore serve as lead molecules for further development of powerful TSH agonists.
Collapse
Affiliation(s)
- Rauf Latif
- Thyroid Research Unit, Department of Medicine, Icahn School of Medicine at Mount Sinai and the James J. Peters VA Medical Center, New York, New York
| | - M. Rejwan Ali
- Thyroid Research Unit, Department of Medicine, Icahn School of Medicine at Mount Sinai and the James J. Peters VA Medical Center, New York, New York
| | - Risheng Ma
- Thyroid Research Unit, Department of Medicine, Icahn School of Medicine at Mount Sinai and the James J. Peters VA Medical Center, New York, New York
| | - Martine David
- Thyroid Research Unit, Department of Medicine, Icahn School of Medicine at Mount Sinai and the James J. Peters VA Medical Center, New York, New York
| | - Syed A. Morshed
- Thyroid Research Unit, Department of Medicine, Icahn School of Medicine at Mount Sinai and the James J. Peters VA Medical Center, New York, New York
| | - Michael Ohlmeyer
- Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Dan P. Felsenfeld
- Integrated Screening Core, Experimental Therapeutics Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Zerlina Lau
- Integrated Screening Core, Experimental Therapeutics Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Mihaly Mezei
- Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Terry F. Davies
- Thyroid Research Unit, Department of Medicine, Icahn School of Medicine at Mount Sinai and the James J. Peters VA Medical Center, New York, New York
| |
Collapse
|
48
|
Ali MR, Latif R, Davies TF, Mezei M. Monte Carlo loop refinement and virtual screening of the thyroid-stimulating hormone receptor transmembrane domain. J Biomol Struct Dyn 2014; 33:1140-52. [PMID: 25012978 DOI: 10.1080/07391102.2014.932310] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Metropolis Monte Carlo (MMC) loop refinement has been performed on the three extracellular loops (ECLs) of rhodopsin and opsin-based homology models of the thyroid-stimulating hormone receptor transmembrane domain, a class A type G protein-coupled receptor. The Monte Carlo sampling technique, employing torsion angles of amino acid side chains and local moves for the six consecutive backbone torsion angles, has previously reproduced the conformation of several loops with known crystal structures with accuracy consistently less than 2 Å. A grid-based potential map, which includes van der Waals, electrostatics, hydrophobic as well as hydrogen-bond potentials for bulk protein environment and the solvation effect, has been used to significantly reduce the computational cost of energy evaluation. A modified sigmoidal distance-dependent dielectric function has been implemented in conjunction with the desolvation and hydrogen-bonding terms. A long high-temperature simulation with 2 kcal/mol repulsion potential resulted in extensive sampling of the conformational space. The slow annealing leading to the low-energy structures predicted secondary structure by the MMC technique. Molecular docking with the reported agonist reproduced the binding site within 1.5 Å. Virtual screening performed on the three lowest structures showed that the ligand-binding mode in the inter-helical region is dependent on the ECL conformations.
Collapse
Affiliation(s)
- M Rejwan Ali
- a Thyroid Research Unit , Icahn School of Medicine at Mount Sinai , New York , NY , USA
| | | | | | | |
Collapse
|
49
|
Boutin A, Eliseeva E, Gershengorn MC, Neumann S. β-Arrestin-1 mediates thyrotropin-enhanced osteoblast differentiation. FASEB J 2014; 28:3446-55. [PMID: 24723693 DOI: 10.1096/fj.14-251124] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Thyrotropin (TSH) activation of the TSH receptor (TSHR), a 7-transmembrane-spanning receptor (7TMR), may have osteoprotective properties by direct effects on bone. TSHR activation by TSH phosphorylates protein kinases AKT1, p38α, and ERK1/2 in some cells. We found TSH-induced phosphorylation of these kinases in 2 cell lines engineered to express TSHRs, human embryonic kidney HEK-TSHR cells and human osteoblastic U2OS-TSHR cells. In U2OS-TSHR cells, TSH up-regulated pAKT1 (7.1±0.5-fold), p38α (2.9±0.4-fold), and pERK1/2 (3.1±0.2-fold), whereas small molecule TSHR agonist C2 had no or little effect on pAKT1 (1.8±0.08-fold), p38α (1.2±0.09-fold), and pERK1/2 (1.6±0.19-fold). Furthermore, TSH increased expression of osteoblast marker genes ALPL (8.2±4.6-fold), RANKL (21±5.9-fold), and osteopontin (OPN; 17±5.3-fold), whereas C2 had little effect (ALPL, 1.7±0.5-fold; RANKL, 1.3±0.6-fold; and OPN, 2.2±0.7-fold). β-Arrestin-1 and -2 can mediate activatory signals by 7TMRs. TSH stimulated translocation of β-arrestin-1 and -2 to TSHR, whereas C2 failed to translocate either β-arrestin. Down-regulation of β-arrestin-1 by siRNA inhibited TSH-stimulated phosphorylation of ERK1/2, p38α, and AKT1, whereas down-regulation of β-arrestin-2 increased phosphorylation of AKT1 in both cell types and of ERK1/2 in HEK-TSHR cells. Knockdown of β-arrestin-1 inhibited TSH-stimulated up-regulation of mRNAs for OPN by 87 ± 1.7% and RANKL by 73 ± 2.4%, and OPN secretion by 74 ± 10%. We conclude that TSH enhances osteoblast differentiation in U2OS cells that is, in part, caused by activatory signals mediated by β-arrestin-1.
Collapse
Affiliation(s)
- Alisa Boutin
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Elena Eliseeva
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Marvin C Gershengorn
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Susanne Neumann
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
50
|
McGivern JV, Ebert AD. Exploiting pluripotent stem cell technology for drug discovery, screening, safety, and toxicology assessments. Adv Drug Deliv Rev 2014; 69-70:170-8. [PMID: 24309014 DOI: 10.1016/j.addr.2013.11.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 11/11/2013] [Accepted: 11/24/2013] [Indexed: 02/06/2023]
Abstract
In order for the pharmaceutical industry to maintain a constant flow of novel drugs and therapeutics into the clinic, compounds must be thoroughly validated for safety and efficacy in multiple biological and biochemical systems. Pluripotent stem cells, because of their ability to develop into any cell type in the body and recapitulate human disease, may be an important cellular system to add to the drug development repertoire. This review will discuss some of the benefits of using pluripotent stem cells for drug discovery and safety studies as well as some of the recent applications of stem cells in drug screening studies. We will also address some of the hurdles that need to be overcome in order to make stem cell-based approaches an efficient and effective tool in the quest to produce clinically successful drug compounds.
Collapse
|