1
|
Tomoshige S, Komatsu F, Kikuchi T, Sugiyama M, Kawasaki Y, Ohgane K, Furuyama Y, Sato S, Ishikawa M, Kuramochi K. A small-molecule degron with a phenylpropionic acid scaffold. Bioorg Med Chem 2024; 109:117789. [PMID: 38870716 DOI: 10.1016/j.bmc.2024.117789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/01/2024] [Accepted: 06/04/2024] [Indexed: 06/15/2024]
Abstract
Targeted protein degradation (TPD), employing proteolysis-targeting chimeras (PROTACs) composed of ligands for both a target protein and ubiquitin ligase (E3) to redirect the ubiquitin-proteasome system (UPS) to the target protein, has emerged as a promising strategy in drug discovery. However, despite the vast number of E3 ligases, the repertoire of E3 ligands utilized in PROTACs remains limited. Here, we report the discovery of a small-molecule degron with a phenylpropionic acid skeleton, derived from a known ligand of S-phase kinase-interacting protein 2 (Skp2), an E3 ligase. We used this degron to design PROTACs inducing proteasomal degradation of HaloTag-fused proteins, and identified key structural relationships. Surprisingly, our mechanistic studies excluded the involvement of Skp2, suggesting that this degron recruits other protein(s) within the UPS.
Collapse
Affiliation(s)
- Shusuke Tomoshige
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan; Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan.
| | - Fumiko Komatsu
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Tomoko Kikuchi
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Miku Sugiyama
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Yushi Kawasaki
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Kenji Ohgane
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan; Department of Chemistry, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan
| | - Yuuki Furuyama
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Shinichi Sato
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan; Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Aramaki aza Aoba 6-3, Aoba-ku, Sendai 980-8578, Japan
| | - Minoru Ishikawa
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Kouji Kuramochi
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| |
Collapse
|
2
|
Zhao H. Structural Basis of Conformational Dynamics in the PROTAC-Induced Protein Degradation. ChemMedChem 2024; 19:e202400171. [PMID: 38655701 DOI: 10.1002/cmdc.202400171] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 04/26/2024]
Abstract
Pronounced conformational dynamics is unveiled upon analyzing multiple crystal structures of the same proteins recruited to the same E3 ligases by PROTACs, and yet, is largely permissive for targeted protein degradation due to the intrinsic mobility of E3 assemblies creating a large ubiquitylation zone. Mathematical modelling of ternary dynamics on ubiquitylation probability confirms the experimental finding that ternary complex rigidification need not correlate with enhanced protein degradation. Salt bridges are found to prevail in the PROTAC-induced ternary complexes, and may contribute to a positive cooperativity and prolonged half-life. The analysis highlights the importance of presenting lysines close to the active site of the E2 enzyme while constraining ternary dynamics in PROTAC design to achieve high degradation efficiency.
Collapse
Affiliation(s)
- Hongtao Zhao
- Medicinal Chemistry, Research and Early Development, Respiratory and Immunology (R&I), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| |
Collapse
|
3
|
Cornelius RJ, Maeoka Y, McCormick JA. Renal effects of cullin 3 mutations causing familial hyperkalemic hypertension. Curr Opin Nephrol Hypertens 2023; 32:335-343. [PMID: 37070483 PMCID: PMC10330058 DOI: 10.1097/mnh.0000000000000891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2023]
Abstract
PURPOSE OF REVIEW Mutations in the E3 ubiquitin ligase scaffold cullin 3 (CUL3) cause the disease familial hyperkalemic hypertension (FHHt) by hyperactivating the NaCl cotransporter (NCC). The effects of these mutations are complex and still being unraveled. This review discusses recent findings revealing the molecular mechanisms underlying the effects of CUL3 mutations in the kidney. RECENT FINDINGS The naturally occurring mutations that cause deletion of exon 9 (CUL3-Δ9) from CUL3 generate an abnormal CUL3 protein. CUL3-Δ9 displays increased interaction with multiple ubiquitin ligase substrate adaptors. However, in-vivo data show that the major mechanism for disease pathogenesis is that CUL3-Δ9 promotes degradation of itself and KLHL3, the specific substrate adaptor for an NCC-activating kinase. CUL3-Δ9 displays dysregulation via impaired binding to the CSN and CAND1, which cause hyperneddylation and compromised adaptor exchange, respectively. A recently discovered CUL3 mutant (CUL3-Δ474-477) displays many similarities to CUL3-Δ9 mutations but some key differences that likely account for the milder FHHt phenotype it elicits. Furthermore, recent work suggests that CUL3 mutations could have unidentified complications in patients and/or a predisposition to renal injury. SUMMARY This review summarizes recent studies highlighting advances in our understanding of the renal mechanisms by which CUL3 mutations modulate blood pressure in FHHt.
Collapse
Affiliation(s)
- Ryan J Cornelius
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon, USA
| | | | | |
Collapse
|
4
|
Zhou X, Richardson DL, Dowlati A, Goel S, Sahebjam S, Strauss J, Chawla S, Wang D, Mould DR, Samnotra V, Faller DV, Venkatakrishnan K, Gupta N. Effect of Pevonedistat, an Investigational NEDD8-Activating Enzyme Inhibitor, on the QTc Interval in Patients With Advanced Solid Tumors. Clin Pharmacol Drug Dev 2023; 12:257-266. [PMID: 36382849 DOI: 10.1002/cpdd.1194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 10/02/2022] [Indexed: 11/17/2022]
Abstract
The purpose of this study was to assess the effect of pevonedistat, a neural precursor cell expressed, developmentally down-regulated protein 8 (NEDD8)-activating enzyme inhibitor, on the heart rate-corrected QT (QTc) interval in cancer patients. Patients were randomized 1:1 to receive pevonedistat 25 or 50 mg/m2 on day 1 and the alternate dose on day 8. Triplicate electrocardiograms were collected at intervals over 0-11 hours and at 24 hours via Holter recorders on days -1 (baseline), 1, and 8. Changes from time-matched baseline values were calculated for QTc by Fridericia (QTcF), PR, and QRS intervals. Serial time-matched blood samples for analysis of pevonedistat plasma pharmacokinetics were collected and a concentration-QTc analysis conducted. Safety was assessed by monitoring vital signs, physical examinations, and clinical laboratory tests. Forty-four patients were included in the QTc analysis. Maximum least square (LS) mean increase from time-matched baseline in QTcF was 3.2 milliseconds at 1 hour postdose for pevonedistat at 25 mg/m2 , while the LSs mean change from baseline in QTcF was -1.7 milliseconds 1 hour postdose at 50 mg/m2 . The maximum 2-sided 90% upper confidence bound was 6.7 and 2.9 milliseconds for pevonedistat at 25 and 50 mg/m2 , respectively. Pevonedistat did not result in clinically relevant effects on heart rate, nor on PR or QRS intervals. Results from pevonedistat concentration-QTc analysis were consistent with these findings. Administration of pevonedistat to cancer patients at a dose of up to 50 mg/m2 showed no evidence of QT prolongation, indicative of the lack of clinically meaningful effects on cardiac repolarization. ClinicalTrials.gov identifier: NCT03330106 (first registered on November 6, 2017).
Collapse
Affiliation(s)
- Xiaofei Zhou
- Takeda Development Center Americas, Inc. (TDCA), Lexington, Massachusetts, USA
| | - Debra L Richardson
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center and Sarah Cannon Research Institute, Oklahoma City, Oklahoma, USA
| | | | - Sanjay Goel
- Montefiore Medical Center, Bronx, New York, USA
| | - Solmaz Sahebjam
- University of South Florida H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | | | - Sant Chawla
- Sarcoma Oncology Center, Santa Monica, California, USA
| | - Ding Wang
- Henry Ford Hospital, Detroit, Michigan, USA
| | - Diane R Mould
- Projections Research Inc., Phoenixville, Pennsylvania, USA
| | - Vivek Samnotra
- Takeda Development Center Americas, Inc. (TDCA), Lexington, Massachusetts, USA
| | - Douglas V Faller
- Takeda Development Center Americas, Inc. (TDCA), Lexington, Massachusetts, USA
| | | | - Neeraj Gupta
- Takeda Development Center Americas, Inc. (TDCA), Lexington, Massachusetts, USA
| |
Collapse
|
5
|
Lu C, Lu P, Gong L, Zhu LJ, An Y, Wang Y. Rational design and development of novel NAE inhibitors for the treatment of pancreatic cancer. Med Chem Res 2023. [DOI: 10.1007/s00044-022-02979-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
6
|
Ishii H, Yano S. New Therapeutic Strategies for Adult Acute Myeloid Leukemia. Cancers (Basel) 2022; 14:2806. [PMID: 35681786 PMCID: PMC9179253 DOI: 10.3390/cancers14112806] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 05/27/2022] [Accepted: 05/29/2022] [Indexed: 12/19/2022] Open
Abstract
Acute myeloid leukemia (AML) is a genetically heterogeneous hematological malignancy. Chromosomal and genetic analyses are important for the diagnosis and prognosis of AML. Some patients experience relapse or have refractory disease, despite conventional cytotoxic chemotherapies and allogeneic transplantation, and a variety of new agents and treatment strategies have emerged. After over 20 years during which no new drugs became available for the treatment of AML, the CD33-targeting antibody-drug conjugate gemtuzumab ozogamicin was developed. This is currently used in combination with standard chemotherapy or as a single agent. CPX-351, a liposomal formulation containing daunorubicin and cytarabine, has become one of the standard treatments for secondary AML in the elderly. FMS-like tyrosine kinase 3 (FLT3) inhibitors and isocitrate dehydrogenase 1/2 (IDH 1/2) inhibitors are mainly used for AML patients with actionable mutations. In addition to hypomethylating agents and venetoclax, a B-cell lymphoma-2 inhibitor is used in frail patients with newly diagnosed AML. Recently, tumor protein p53 inhibitors, cyclin-dependent kinase inhibitors, and NEDD8 E1-activating enzyme inhibitors have been gaining attention, and a suitable strategy for the use of these drugs is required. Antibody drugs targeting cell-surface markers and immunotherapies, such as antibody-drug conjugates and chimeric antigen receptor T-cell therapy, have also been developed for AML.
Collapse
Affiliation(s)
| | - Shingo Yano
- Division of Clinical Oncology & Hematology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo 1058461, Japan;
| |
Collapse
|
7
|
Altundag EM, Yilmaz AM, Sahin A, Yilmaz BK. Combination of second-generation proteasome inhibitor Carfilzomib with Bortezomib in four different breast cancer cell lines. Anticancer Agents Med Chem 2022; 22:2909-2918. [PMID: 35352669 DOI: 10.2174/1871520622666220329175501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/17/2022] [Accepted: 02/16/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Proteasome inhibitors target different pathways in cells and therefore are promising drugs in cancer therapy. The use of these inhibitors is approved mainly in hematological cancers, and recently many clinical trials and preclinical studies are running for efficacy in solid tumors. Carfilzomib is a second generation inhibitor and developed to decrease the side effects of bortezomib. Although there are many valid therapies in breast cancer, resistance and recurrence are inevitable in many cases and the proteasomal system plays an important roles in related pathways. OBJECTIVE This study is a preliminary work to evaluate the combination effects of bortezomib and carfilzomib in four different breast cancer cells. METHODS MDA-MB-231, MCF-7, UACC-2087, and SKBR-3 cell lines were used. Cell viability was determined by using bortezomib and carfilzomib alone and in combination. Combination effect values were determined using the Chou-Talalay method. Apoptosis, proteasome activity, cleaved PARP, and HSP70 expressions were analyzed in the determined doses. RESULTS The response to the combination of the two inhibitors was different in four cell lines. Apoptosis was significantly higher in combination groups compared to carfilzomib in three cell lines except SKBR-3, and higher in combination group compared to bortezomib only in UACC-2087. Combination decreased cleaved PARP levels in MDA-MB-231 and MCF-7 and increased in SKBR-3 compared to bortezomib. HSP70 levels decreased in combination with UACC-2087 and SKBR-3 compared to carfilzomib. CONCLUSION Taken together, the combination of the two inhibitors was more apoptotic compared to carfilzomib and apoptosis was higher only in UACC-2087 compared to bortezomib. This apoptosis data can not be directly correlated to degree of proteaasome inhibiton, PARP cleavage and HSP70 response.
Collapse
Affiliation(s)
- Ergul Mutlu Altundag
- Department of Biochemistry, Faculty of Medicine, Eastern Mediterranean University, via Mersin 10, 99628, Turkey
| | - Ayse Mine Yilmaz
- Genetic and Metabolic Diseases Research and Investigation Center, Marmara University, Istanbul, Turkey
| | - Ali Sahin
- Department of Biochemistry, School of Medicine, Marmara University, Istanbul, Turkey
| | - Betul Karademir Yilmaz
- Department of Biochemistry, School of Medicine, Marmara University, 34854, Istanbul, Turkey
| |
Collapse
|
8
|
Aguirre LE, Komrokji R, Padron E. It is time to shift the treatment paradigm in myelodysplastic syndromes: A focus on novel developments and current investigational approaches exploring combinatorial therapy in high-risk MDS. Best Pract Res Clin Haematol 2021; 34:101325. [PMID: 34865697 DOI: 10.1016/j.beha.2021.101325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Higher risk myelodysplastic syndromes are defined as a subset of disease with higher risk of AML transformation and poor overall survival. For decades, therapeutic options for high-risk MDS have been limited to allogeneic stem cell transplant (the only option for cure but limited to only a handful of patients) or hypomethylating agents, with the goal to alter the natural history of disease, delay progression and improve survival, while addressing cytopenias, transfusion requirements and improving quality of life. Recent developments in DNA sequencing and other technologies have shed significant light into the pathogenesis of MDS and led to rational and targeted drug development across a variety of therapeutic vulnerabilities, including disruption of protein ubiquitination through NAE inhibition, selective modulation of macrophage activity and immune checkpoint inhibition through blockade of TIM-3. This review highlights some of the most promising agents in recent drug development and their therapeutic efficacy in the management of high-risk MDS, and further explores the rationale behind potential combinatorial approaches using an HMA backbone to synergistically improve treatment outcomes.
Collapse
Affiliation(s)
- Luis E Aguirre
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Rami Komrokji
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Eric Padron
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.
| |
Collapse
|
9
|
Wang K, Reichermeier KM, Liu X. Quantitative analyses for effects of neddylation on CRL2 VHL substrate ubiquitination and degradation. Protein Sci 2021; 30:2338-2345. [PMID: 34459035 PMCID: PMC8521307 DOI: 10.1002/pro.4176] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/16/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022]
Abstract
Through catalyzing the ubiquitination of key regulatory proteins, cullin-RING ubiquitin ligases (CRLs) play essential biological roles and their activities are controlled by multiple mechanisms including neddylation, the conjugation of NEDD8 to cullins. Upon neddylation, a CRL, such as the CUL1-based CRL1, undergoes conformational changes that accelerate substrate ubiquitination. Given the structural diversity across subfamilies of CRLs and their substrates, to what extent neddylation modulates the activity of individual CRLs remains to be evaluated. Here, through reconstituting the CRL2 ubiquitination reaction in vitro, we showed that neddylation promotes CRL2VHL -dependent degradation of both full-length HIF1α and the degron peptide of HIF1α, resulting in more than 10-fold increase in the rate of substrate ubiquitination. Consistently, pevonedistat (also known as MLN4924), an inhibitor of neddylation, inhibits the degradation of HIF1α in RCC4 cells stably expressing VHL in cycloheximide chase assays. However, such inhibitory effect of pevonedistat on HIF1α degradation was not observed in HEK293 cells, which was further found to be due to CRL2VHL -independent degradation that was active in HEK293 but not RCC4 cells. After truncating HIF1α to its Carboxy-terminal Oxygen-Dependent Degradation (CODD) domain, we showed that pevonedistat inhibited the degradation of CODD and increased its half-life by six-fold in HEK293 cells. Our results demonstrate that neddylation plays a significant role in activating CRL2, and the cellular activity of CRL2VHL is better reflected by the degradation of CODD than that of HIF1α, especially under conditions where CRL2-independent degradation of HIF1α is active.
Collapse
Affiliation(s)
- Kankan Wang
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, USA
| | - Kurt M Reichermeier
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA.,University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Xing Liu
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, USA.,Center for Plant Biology, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
10
|
Arshad M, Abdul Hamid N, Chan MC, Ismail F, Tan GC, Pezzella F, Tan KL. NUB1 and FAT10 Proteins as Potential Novel Biomarkers in Cancer: A Translational Perspective. Cells 2021; 10:2176. [PMID: 34571823 PMCID: PMC8468723 DOI: 10.3390/cells10092176] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/16/2021] [Accepted: 08/20/2021] [Indexed: 12/30/2022] Open
Abstract
Cancer increases the global disease burden substantially, but it remains a challenge to manage it. The search for novel biomarkers is essential for risk assessment, diagnosis, prognosis, prediction of treatment response, and cancer monitoring. This paper examined NEDD8 ultimate buster-1 (NUB1) and F-adjacent transcript 10 (FAT10) proteins as novel biomarkers in cancer. This literature review is based on the search of the electronic database, PubMed. NUB1 is an interferon-inducible protein that mediates apoptotic and anti-proliferative actions in cancer, while FAT10 is a ubiquitin-like modifier that promotes cancer. The upregulated expression of both NUB1 and FAT10 has been observed in various cancers. NUB1 protein binds to FAT10 non-covalently to promote FAT10 degradation. An overexpressed FAT10 stimulates nuclear factor-kappa β, activates the inflammatory pathways, and induces the proliferation of cancer. The FAT10 protein interacts with the mitotic arrest deficient 2 protein, causing chromosomal instability and breast tumourigenesis. FAT10 binds to the proliferating cell nuclear antigen protein and inhibits the DNA damage repair response. In addition, FAT10 involves epithelial-mesenchymal transition, invasion, apoptosis, and multiplication in hepatocellular carcinoma. Our knowledge about them is still limited. There is a need to further develop NUB1 and FAT10 as novel biomarkers.
Collapse
Affiliation(s)
- Maria Arshad
- Faculty of Medicine & Health Sciences, Universiti Sains Islam Malaysia (USIM), Persiaran Ilmu, Putra Nilai, Nilai 71800, Malaysia; (M.A.); (N.A.H.)
| | - Nazefah Abdul Hamid
- Faculty of Medicine & Health Sciences, Universiti Sains Islam Malaysia (USIM), Persiaran Ilmu, Putra Nilai, Nilai 71800, Malaysia; (M.A.); (N.A.H.)
| | - Mun Chiang Chan
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Fuad Ismail
- Department of Radiotherapy & Oncology, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia;
| | - Geok Chin Tan
- Department of Pathology, Faculty of Medicine, Hospital Canselor Tuanku Muhriz, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia;
| | - Francesco Pezzella
- Tumour Pathology Laboratory, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, John Radcliffe Hospital, Headington, Oxford OX3 9DU, UK;
| | - Ka-Liong Tan
- Faculty of Medicine & Health Sciences, Universiti Sains Islam Malaysia (USIM), Persiaran Ilmu, Putra Nilai, Nilai 71800, Malaysia; (M.A.); (N.A.H.)
| |
Collapse
|
11
|
Jones TM, Carew JS, Bauman JE, Nawrocki ST. Targeting NEDDylation as a Novel Approach to Improve the Treatment of Head and Neck Cancer. Cancers (Basel) 2021; 13:3250. [PMID: 34209641 PMCID: PMC8268527 DOI: 10.3390/cancers13133250] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 12/24/2022] Open
Abstract
Head and neck cancer is diagnosed in nearly 900,000 new patients worldwide each year. Despite this alarming number, patient outcomes, particularly for those diagnosed with late-stage and human papillomavirus (HPV)-negative disease, have only marginally improved in the last three decades. New therapeutics that target novel pathways are desperately needed. NEDDylation is a key cellular process by which NEDD8 proteins are conjugated to substrate proteins in order to modulate their function. NEDDylation is closely tied to appropriate protein degradation, particularly proteins involved in cell cycle regulation, DNA damage repair, and cellular stress response. Components of the NEDDylation pathway are frequently overexpressed or hyperactivated in many cancer types including head and neck cancer, which contribute to disease progression and drug resistance. Therefore, targeting NEDDylation could have a major impact for malignancies with alterations in the pathway, and this has already been demonstrated in preclinical studies and clinical trials. Here, we will survey the mechanisms by which aberrant NEDDylation contributes to disease pathogenesis and discuss the potential clinical implications of inhibiting NEDDylation as a novel approach for the treatment of head and neck cancer.
Collapse
Affiliation(s)
| | | | | | - Steffan T. Nawrocki
- Department of Medicine, The University of Arizona Cancer Center, Tucson, AZ 85724, USA; (T.M.J.); (J.S.C.); (J.E.B.)
| |
Collapse
|
12
|
Zhu L, Lu P, Gong L, Lu C, Li M, Wang Y. Design, Synthesis, and Biological Evaluation of 4-amino Substituted 2Hchromen- 2-one Derivatives as an NEDD8 Activating Enzyme Inhibitor in Pancreatic Cancer Cells. Med Chem 2021; 16:969-983. [PMID: 31880252 DOI: 10.2174/1573406416666191227121520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 12/10/2019] [Accepted: 12/10/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND NEDD8 activating enzyme (NAE) plays a critical role in various cellular functions in carcinomas. The selective inhibition of NAE could mediate the rate of ubiquitination and the subsequent degradation of proteins associated with cancer so as to achieve the purpose of treatment. OBJECTIVE In this article, we decided to study the synthesis and screening of 4-amino substituted 2H-chromen-2-one derivatives against cancer cell lines, specifically the human pancreatic cancer cell line BxPC-3. METHODS After synthesis of twenty targeted compounds, we evaluated their anti-proliferative activity against six cancer cell lines, cytotoxicity against three normal cell lines through MTT assay, and hemolysis to screen out the candidate compound, which was further conducted drug-like physical property measurement, target confirmation by enzyme-based experiment, cell apoptosis, and synergistic effect research. RESULTS Starting from intermediates 4 and 5, several new 4-amino substituted 2H-chromen-2-one derivatives (9-28) were synthesized and evaluated for their cell activities using six cancer cell lines. We performed tests of cytotoxicity, hemolysis, ATP-dependent NAE inhibition in the enzyme- based system, apoptosis, and synergistic effect in BxPC-3 cells against the best candidate compound 21. CONCLUSION Based on these results, we found that compound 21 inhibited NAE activity in an ATP-dependent manner in the enzyme-based system, induced apoptosis in BxPC-3 cells, and synergized with bortezomib on BxPC-3 cell growth inhibition. Additionally, it had low toxicity with reasonable Log P-value and water solubility.
Collapse
Affiliation(s)
- Lijuan Zhu
- School of Pharmaceutical Sciences, Nanjing Tech University, No. 5 Xinmofan Road, Nanjing 210009, China
| | - Peng Lu
- School of Pharmaceutical Sciences, Nanjing Tech University, No. 5 Xinmofan Road, Nanjing 210009, China
| | - Lei Gong
- School of Pharmaceutical Sciences, Nanjing Tech University, No. 5 Xinmofan Road, Nanjing 210009, China
| | - Cheng Lu
- School of Pharmaceutical Sciences, Nanjing Tech University, No. 5 Xinmofan Road, Nanjing 210009, China
| | - Mengli Li
- School of Pharmaceutical Sciences, Nanjing Tech University, No. 5 Xinmofan Road, Nanjing 210009, China
| | - Yubin Wang
- School of Pharmaceutical Sciences, Nanjing Tech University, No. 5 Xinmofan Road, Nanjing 210009, China
| |
Collapse
|
13
|
Xiong C, Zhou L, Tan J, Song S, Bao X, Zhang N, Ding H, Zhao J, He JX, Miao ZH, Zhang A. Development of Potent NEDD8-Activating Enzyme Inhibitors Bearing a Pyrimidotriazole Scaffold. J Med Chem 2021; 64:6161-6178. [PMID: 33857374 DOI: 10.1021/acs.jmedchem.1c00242] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The ubiquitin-like protein NEDD8 is a critical signaling molecule implicated in the functional maintenance and homeostasis of cells. Dysregulation of this process is involved in a variety of human diseases, including cancer. Therefore, NEDD8-activating enzyme E1 (NAE), the only activation enzyme of the neddylation pathway, has been an emergent anticancer target. In view of the single-agent modest response of the clinical NAE inhibitor, pevonedistat (compound 1, MLN4924), efforts on development of new inhibitors with both high potency and better safety profiles are urgently needed. Here, we report a structural hopping strategy by optimizing the central deazapurine framework and the solvent interaction region of compound 1, leading to compound 26 bearing a pyrimidotriazole scaffold. Compound 26 not only has compatible potency in the biochemical and cell assays but also possesses improved pharmacokinetic (PK) properties than compound 1. In vivo, compound 26 showed significant antitumor efficacy and good safety in xenograft models.
Collapse
Affiliation(s)
- Chaodong Xiong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, China.,Pharm-X Center, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lina Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Tan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, China.,Pharm-X Center, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shanshan Song
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xubin Bao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ning Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huaqian Ding
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiannan Zhao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, China.,Pharm-X Center, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jin-Xue He
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ze-Hong Miao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ao Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, China.,Pharm-X Center, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.,State Key Laboratory of Esophageal Cancer Prevention and Treatment, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
14
|
Chen X, Yang X, Mao F, Wei J, Xu Y, Li B, Zhu J, Ni S, Jia L, Li J. Development of novel benzimidazole-derived neddylation inhibitors for suppressing tumor growth invitro and invivo. Eur J Med Chem 2021; 210:112964. [PMID: 33129593 DOI: 10.1016/j.ejmech.2020.112964] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/21/2020] [Accepted: 10/19/2020] [Indexed: 01/22/2023]
Abstract
Ubiquitin-like protein neddylation is overactivated in various human cancers and correlates with disease progression, and targeting this pathway represents a valuable therapeutic strategy. Our previous work disclosed an antihypertensive agent, candesartan cilexetic (CDC), serves as a novel neddylation inhibitor for suppressing tumor growth by targeting Nedd8-activating enzyme (NAE). In this study, 42 benzimidazole derivatives were designed and synthesized based on lead compound CDC to improve the neddylation inhibition and anticancer efficacy. Optimal benzimidazole-derived 35 displayed superior neddylation inhibition in enzyme assay compared to CDC (IC50 = 5.51 μM vs 16.43 μM), along with promising target inhibitory activity and killing selectivity in cancer cell. The results of cellular mechanism research combined with tumor growth suppression in human lung cancer cell A549 in vivo, accompanied with docking model, revealed that 35 has the potential to be developed as a promising neddylation inhibitor for anticancer therapy.
Collapse
Affiliation(s)
- Xin Chen
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
| | - Xi Yang
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Fei Mao
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
| | - Jinlian Wei
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
| | - Yixiang Xu
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
| | - Baoli Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
| | - Jin Zhu
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
| | - Shuaishuai Ni
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| | - Lijun Jia
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| | - Jian Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China; College of Pharmacy and Chemistry, Dali University, 5 Xue Ren Road, Dali, Yunnan, 671000, China; Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China.
| |
Collapse
|
15
|
Lin CM, Jiang Z, Gao Z, Arancillo M, Burgess K. Small molecules targeting the NEDD8·NAE protein-protein interaction. Chem Sci 2020; 12:1535-1543. [PMID: 34163916 PMCID: PMC8179036 DOI: 10.1039/d0sc00958j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Ubiquitination is a major controller of protein homeostasis in cells. Some ubiquitination pathways are modulated by a NEDDylation cascade, that also features E1 - 3 enzymes. The E1 enzyme in the NEDDylation cascade involves a protein-protein interaction (PPI) between NEDD8 (similar to ubiquitin) and NAE (NEDD8 Activating Enzyme). A small molecule inhibitor of the ATP binding site in NAE is in clinical trials. We hypothesized a similar effect could be induced by disrupting the NEDD8·NAE PPI, though, to the best of our knowledge, no small molecules have been reported to disrupt this to date. In the research described here, Exploring Key Orientations (EKO) was used to evaluate several chemotype designs for their potential to disrupt NEDD8·NAE; specifically, for their biases towards orientation of side-chains in similar ways to protein segments at the interface. One chemotype design was selected, and a targeted library of 24 compounds was made around this theme via solid phase synthesis. An entry level hit for disrupting NEDD8·NAE was identified from this library on the basis of its ability to bind NAE (K i of 6.4 ± 0.3 μM from fluorescence polarization), inhibit NEDDylation, suppress formation of the corresponding E1 - 3 complexes as monitored by cell-based immunoblotting, and cytotoxicity to K562 leukemia cells via early stage apoptosis. The cell-based immunoblot assay also showed the compound caused NEDD8 to accumulate in cells, presumably due to inhibition of the downstream pathways involving the E1 enzyme. The affinity and cellular activities of the hit compound are modest, but is interesting as first in class for this mode of inhibition of NEDDylation, and as another illustration of the way EKO can be used to evaluate user-defined chemotypes as potential inhibitors of PPIs.
Collapse
Affiliation(s)
- Chen-Ming Lin
- Department of Chemistry, Texas A & M University Box 30012 College Station TX 77842 USA
| | - Zhengyang Jiang
- Department of Chemistry, Texas A & M University Box 30012 College Station TX 77842 USA
| | - Zhe Gao
- Department of Chemistry, Texas A & M University Box 30012 College Station TX 77842 USA
| | - Maritess Arancillo
- Department of Chemistry, Texas A & M University Box 30012 College Station TX 77842 USA
| | - Kevin Burgess
- Department of Chemistry, Texas A & M University Box 30012 College Station TX 77842 USA
| |
Collapse
|
16
|
Xue L, Chen F, Yue F, Camacho L, Kothapalli S, Wei G, Huang S, Mo Q, Ma F, Li Y, Jiralerspong S. Metformin and an insulin/IGF-1 receptor inhibitor are synergistic in blocking growth of triple-negative breast cancer. Breast Cancer Res Treat 2020; 185:73-84. [PMID: 32940848 DOI: 10.1007/s10549-020-05927-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 09/02/2020] [Indexed: 12/13/2022]
Abstract
PURPOSE Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer with poor survival outcomes. Metformin has been shown to have antitumor effects by lowering serum levels of the mitogen insulin and having pleiotropic effects on cancer cell signaling pathways. BMS-754807 is a potent and reversible inhibitor of both insulin-like growth factor 1 receptor (IGF-1R) and insulin receptor (IR). Both drugs have been reported to have some efficacy in TNBC. However, it is unclear whether the combination of the two drugs is more effective than single drug treatment in TNBC. METHODS We treated a panel of TNBC cell lines with metformin and BMS-754807 alone and in combination and tested cell viability using MTS assays. We used the CompuSyn software to analyze for additivity, synergism, or antagonism. We also examined the molecular mechanism by performing reverse phase protein assay (RPPA) to detect the candidate pathways altered by single drugs and the drug combination and used Western blotting to verify and expand the findings. RESULTS The combination of metformin and BMS-754807 showed synergy in 11 out of 13 TNBC cell lines tested (85%). RPPA analysis detected significant alterations by the drug combination of multiple proteins known to regulate cell cycle and tumor growth. In particular, the drug combination significantly increased levels of total and phosphorylated forms of the cell cycle inhibitor p27Kip1 and decreased the level of the p27Kip1 E3 ligase SCFSkp2. CONCLUSIONS We conclude that the combination of metformin and BMS-754807 is more effective than either drug alone in inhibiting cell proliferation in the majority of TNBC cell lines, and that one important mechanism may be suppression of SCFSkp2 and subsequent stabilization of the cell cycle inhibitor p27Kip1. This combination treatment may represent an effective targeted therapy for a significant subset of TNBC cases and should be further evaluated.
Collapse
Affiliation(s)
- Lei Xue
- Laboratory for Comparative Genomics and Bioinformatics, College of Life Science, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210046, Jiangsu, China.,Lester & Sue Smith Breast Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Fengju Chen
- Dan L Duncan Cancer Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Fei Yue
- Lester & Sue Smith Breast Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Laura Camacho
- Lester & Sue Smith Breast Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Sushma Kothapalli
- Lester & Sue Smith Breast Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Guanyun Wei
- Laboratory for Comparative Genomics and Bioinformatics, College of Life Science, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210046, Jiangsu, China
| | - Shixia Huang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA.,Dan L Duncan Cancer Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Qianxing Mo
- Dan L Duncan Cancer Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Fei Ma
- Laboratory for Comparative Genomics and Bioinformatics, College of Life Science, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210046, Jiangsu, China
| | - Yi Li
- Lester & Sue Smith Breast Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA.
| | - Sao Jiralerspong
- Lester & Sue Smith Breast Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA. .,Section of Breast Medical Oncology, Division of Hematology and Oncology, University of Arizona Cancer Center, 1515 N. Campbell Ave, Tucson, AZ, 85724, USA.
| |
Collapse
|
17
|
Abstract
The KEAP1-NRF2 pathway is the principal protective response to oxidative and electrophilic stresses. Under homeostatic conditions, KEAP1 forms part of an E3 ubiquitin ligase, which tightly regulates the activity of the transcription factor NRF2 by targeting it for ubiquitination and proteasome-dependent degradation. In response to stress, an intricate molecular mechanism facilitated by sensor cysteines within KEAP1 allows NRF2 to escape ubiquitination, accumulate within the cell, and translocate to the nucleus, where it can promote its antioxidant transcription program. Recent advances have revealed that KEAP1 contains multiple stress sensors and inactivation modalities, which together allow diverse cellular inputs, from oxidative stress and cellular metabolites to dysregulated autophagy, to regulate NRF2 activity. This integration of the KEAP1-NRF2 system into multiple cellular signaling and metabolic pathways places NRF2 activation as a critical regulatory node in many disease phenotypes and suggests that the pharmaceutical modulation of NRF2's cytoprotective activity will be beneficial for human health in a broad range of noncommunicable diseases.
Collapse
|
18
|
Zhang D, Wu P, Zhang Z, An W, Zhang C, Pan S, Tan Y, Xu H. Overexpression of negative regulator of ubiquitin-like proteins 1 (NUB1) inhibits proliferation and invasion of gastric cancer cells through upregulation of p27Kip1 and inhibition of epithelial-mesenchymal transition. Pathol Res Pract 2020; 216:153002. [PMID: 32703484 DOI: 10.1016/j.prp.2020.153002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/06/2020] [Accepted: 05/07/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Gastric cancer (GC), one of the most common causes of malignant tumors, is characterized by a high degree of heterogeneity, which represents a bottleneck in gaining comprehensive insights into its pathogenesis. Negative regulator of ubiquitin-like proteins 1 (NUB1) is a transcription factor that negatively regulates ubiquitylation system. Although the abnormal expression of NUB1 has been reported in many types of cancer, its expression pattern and functions in GC are poorly understood. MATERIALS AND METHODS The link between NUB1 expression and clinicopathological characteristics was analyzed by immunohistochemical staining, and the suitability of NUB1 as a prognostic marker was explored using a public database on mRNA expression levels. NUB1 overexpression was performed by lentiviral transfection. Cell proliferation was estimated using the cell counting kit-8 (CCK-8) assay. The effect on NUB1 on cell cycle was analyzed by fluorescence-activated cell sorting (FACS). Real-time PCR (RT-PCR) and western blotting experiments were used to explore the mechanism of p27Kip1 regulation by NUB1. Cell migration and invasion were determined by wound healing and transwell assays, respectively. Expression levels of epithelial-mesenchymal transition (EMT) indicator proteins were determined by western blotting. RESULTS In this study, based on a comparative analysis of cancer tissues from 116 post-operative GC patients with the respective paracancerous healthy tissues, we found that NUB1 was downregulated in GC tissues. At the same time, a low expression level of NUB1 was closely related to poor prognosis. Results from In vitro cancer cell experiments verified that overexpressed NUB1 inhibited GC proliferation, migration, and invasion. In addition, NUB1 upregulated the expression of p27Kip1 and blocked the G1/S phase transition in cell cycle. Finally, NUB1 inhibited the process of EMT by upregulating E-cadherin and downregulating N-cadherin, vimentin, and matrix metalloproteinase-2 (MMP-2). CONCLUSION Reduced NUB1 levels were positively associated to poor prognosis of GC, whereas NUB1 overexpression inhibited the proliferation and blocked the G1/S phase transition in GC cells. This may be strongly coupled to the post-translational modification mechanism (PTM), which could, in turn, reduce the level of ubiquitinylated p27Kip1 and upregulate its expression. In addition, NUB1 overexpression inhibited GC migration and invasion by regulating EMT. In view of the positive tumor-suppressive effect of NUB1 on GC occurrence and progression reported here, this study enhances our understanding of the molecular mechanism of NUB1-mediated GC regulation, and may provide insights into novel drug targets or anti-tumor strategies with better accuracy and efficacy.
Collapse
Affiliation(s)
- Dongdong Zhang
- Department of Surgical Oncology, The First Affiliated Hospital of China Medical University, 155 North Nanjing Street, Heping District, Shenyang City 110001, China
| | - Pei Wu
- Department of Surgical Oncology, The First Affiliated Hospital of China Medical University, 155 North Nanjing Street, Heping District, Shenyang City 110001, China
| | - Zhe Zhang
- Department of Surgical Oncology, The First Affiliated Hospital of China Medical University, 155 North Nanjing Street, Heping District, Shenyang City 110001, China
| | - Wen An
- Department of Surgical Oncology, The First Affiliated Hospital of China Medical University, 155 North Nanjing Street, Heping District, Shenyang City 110001, China
| | - Chao Zhang
- Department of Surgical Oncology, The First Affiliated Hospital of China Medical University, 155 North Nanjing Street, Heping District, Shenyang City 110001, China
| | - Siwei Pan
- Department of Surgical Oncology, The First Affiliated Hospital of China Medical University, 155 North Nanjing Street, Heping District, Shenyang City 110001, China
| | - Yuen Tan
- Department of Surgical Oncology, The First Affiliated Hospital of China Medical University, 155 North Nanjing Street, Heping District, Shenyang City 110001, China
| | - Huimian Xu
- Department of Surgical Oncology, The First Affiliated Hospital of China Medical University, 155 North Nanjing Street, Heping District, Shenyang City 110001, China; Key Laboratory of Gastric Cancer Molecular Pathology of Liaoning Province, 155 North Street, Heping District, Shenyang City 110001, China.
| |
Collapse
|
19
|
|
20
|
Shi CS, Kuo KL, Lin WC, Chen MS, Liu SH, Liao SM, Hsu CH, Chang YW, Chang HC, Huang KH. Neddylation inhibitor, MLN4924 suppresses angiogenesis in huvecs and solid cancers: in vitro and in vivo study. Am J Cancer Res 2020; 10:953-964. [PMID: 32266102 PMCID: PMC7136913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 01/10/2020] [Indexed: 06/11/2023] Open
Abstract
Cullin-RING E3 ligases are involved in the ubiquitination of substrates that regulate important biological processes and are a potential therapeutic target in many types of cancer. MLN4924, a small molecule of NEDD8-activating enzyme inhibitor, inactivates CRL by blocking cullin neddylation and has been reported to elicit anti-tumor effect. In this study, In this study, we aimed to investigate the effects of MLN4924 on angiogenesis in human umbilical vascular endothelial cells (HUVECs) and four types of cancer cells. Our results showed that MLN4924 inhibits cell viability and induced apoptosis in HUVECs in a dose-dependent manner. MLN4924 inhibits proliferation and interferes with the cell cycle checkpoint regulators, p21, p27, and phospho-histone H3. Vascular endothelial growth factor (VEGF) treatment increased the level of UBC12 in HUVECs, indicating that neddylation pathway is involved in VEGF-activated angiogenesis. MLN4924 decreased VEGF-activated cell proliferation via neddylation inhibition. MLN4924 inhibited VEGF-activated cell migration, capillary tube formation and VEGF-mediated Erk1/2 activation in HUVECs. We also examined antitumor effect of MLN4924 using xenograft SCID mouse models of four different types of cancer cells. The in vivo results showed MLN4924 inhibited tumor growth in all four types of cancers with decreasing CD31 expression in xenograft tumor. In conclusion, MLN4924 inhibited viability, migration, and VEGF-promoted angiogenic activity in HUVECs; consistently, MLN4924 inhibited tumor growth in four types of cancers with suppression of angiogenesis. These findings provide evidence to develop therapeutic strategy for cancer treatment through anti-angiogenesis through neddylation inhibition.
Collapse
Affiliation(s)
- Chung-Sheng Shi
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung UniversityTaoyuan 333, Taiwan
- Division of Colon and Rectal Surgery, Department of Surgery, Chang Gung Memorial HospitalChiayi County 613, Taiwan
| | - Kuan-Lin Kuo
- Department of Urology, National Taiwan University Hospital, College of Medicine, National Taiwan UniversityTaipei 100, Taiwan
- Graduate Institute of Toxicology, College of Medicine, National Taiwan UniversityTaipei, Taiwan
| | - Wei-Chou Lin
- Department of Pathology, National Taiwan University Hospital, College of Medicine, National Taiwan UniversityTaipei 100, Taiwan
| | - Mei-Sin Chen
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung UniversityTaoyuan 333, Taiwan
| | - Shing-Hwa Liu
- Graduate Institute of Toxicology, College of Medicine, National Taiwan UniversityTaipei, Taiwan
| | - Shih-Ming Liao
- Department of Urology, National Taiwan University Hospital, College of Medicine, National Taiwan UniversityTaipei 100, Taiwan
| | - Chen-Hsun Hsu
- Department of Urology, National Taiwan University Hospital, College of Medicine, National Taiwan UniversityTaipei 100, Taiwan
| | - Yu-Wei Chang
- Department of Urology, National Taiwan University Hospital, College of Medicine, National Taiwan UniversityTaipei 100, Taiwan
| | - Hong-Chiang Chang
- Department of Urology, National Taiwan University Hospital, College of Medicine, National Taiwan UniversityTaipei 100, Taiwan
| | - Kuo-How Huang
- Department of Urology, National Taiwan University Hospital, College of Medicine, National Taiwan UniversityTaipei 100, Taiwan
| |
Collapse
|
21
|
Kathawala RJ, Espitia CM, Jones TM, Islam S, Gupta P, Zhang YK, Chen ZS, Carew JS, Nawrocki ST. ABCG2 Overexpression Contributes to Pevonedistat Resistance. Cancers (Basel) 2020; 12:E429. [PMID: 32059437 PMCID: PMC7072604 DOI: 10.3390/cancers12020429] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 01/24/2020] [Accepted: 01/29/2020] [Indexed: 12/25/2022] Open
Abstract
MLN4924 (pevonedistat) is a first-in-class NEDD8-activating enzyme (NAE) inhibitor in clinical trials for the treatment of solid tumors and hematologic malignancies. Despite the promising activity of MLN4924 observed in early trials, drug resistance has been noted in some patients. Identifying the underlying cause of treatment failure may help to better stratify patients that are most likely to benefit from this novel agent. Early preclinical studies revealed that the development of NAE mutations promotes resistance to MLN4924. However, these mutations have not been detected in patients that are relapsed/refractory to MLN4924, suggesting that other mechanisms are driving clinical resistance. To better understand the potential mechanisms of MLN4924 resistance, we generated MLN4924-resistant ovarian cancer cells. Interestingly, these cells did not develop mutations in NAE. Transcriptome analyses revealed that one of the most upregulated genes in resistant cells was ABCG2. This result was validated by quantitative real-time PCR and immunoblotting. Importantly, the sensitivity of MLN4924-resistant cells was restored by lentiviral short hairpin RNA (shRNA) targeting ABCG2. Further investigation using ABCG2-overexpressing NCI-H460/MX20 cells determined that these cells are resistant to the anticancer effects of MLN4924 and can be sensitized by co-treatment with the ABCG2 inhibitors YHO-13351 and fumitremorgin C. Finally, HEK293 models with overexpression of wild-type ABCG2 (R482) and variants (R482G and R482T) all demonstrated significant resistance to MLN4924 compared to wild-type cells. Overall, these findings define an important molecular resistance mechanism to MLN4924 and demonstrate that ABCG2 may be a useful clinical biomarker that predicts resistance to MLN4924 treatment.
Collapse
Affiliation(s)
- Rishil J. Kathawala
- Division of Translational and Regenerative Medicine, Department of Medicine, The University of Arizona Cancer Center, Tucson, AZ 85724, USA; (R.J.K.); (C.M.E.); (T.M.J.); (S.I.); (J.S.C.)
| | - Claudia M. Espitia
- Division of Translational and Regenerative Medicine, Department of Medicine, The University of Arizona Cancer Center, Tucson, AZ 85724, USA; (R.J.K.); (C.M.E.); (T.M.J.); (S.I.); (J.S.C.)
| | - Trace M. Jones
- Division of Translational and Regenerative Medicine, Department of Medicine, The University of Arizona Cancer Center, Tucson, AZ 85724, USA; (R.J.K.); (C.M.E.); (T.M.J.); (S.I.); (J.S.C.)
| | - Shariful Islam
- Division of Translational and Regenerative Medicine, Department of Medicine, The University of Arizona Cancer Center, Tucson, AZ 85724, USA; (R.J.K.); (C.M.E.); (T.M.J.); (S.I.); (J.S.C.)
| | - Pranav Gupta
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY 11439, USA; (P.G.); (Y.-K.Z.); (Z.-S.C.)
| | - Yun-Kai Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY 11439, USA; (P.G.); (Y.-K.Z.); (Z.-S.C.)
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY 11439, USA; (P.G.); (Y.-K.Z.); (Z.-S.C.)
| | - Jennifer S. Carew
- Division of Translational and Regenerative Medicine, Department of Medicine, The University of Arizona Cancer Center, Tucson, AZ 85724, USA; (R.J.K.); (C.M.E.); (T.M.J.); (S.I.); (J.S.C.)
| | - Steffan T. Nawrocki
- Division of Translational and Regenerative Medicine, Department of Medicine, The University of Arizona Cancer Center, Tucson, AZ 85724, USA; (R.J.K.); (C.M.E.); (T.M.J.); (S.I.); (J.S.C.)
| |
Collapse
|
22
|
Wei LY, Wu ZX, Yang Y, Zhao M, Ma XY, Li JS, Yang DH, Chen ZS, Fan YF. Overexpression of ABCG2 confers resistance to pevonedistat, an NAE inhibitor. Exp Cell Res 2020; 388:111858. [PMID: 31972220 DOI: 10.1016/j.yexcr.2020.111858] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/16/2020] [Accepted: 01/19/2020] [Indexed: 12/30/2022]
Abstract
Pevonedistat is a potent, selective, first-in-class NEDD8 activating enzyme inhibitor. It is now under multiple clinical trials that investigate its anticancer effect against solid tumors and leukemia. ATP-binding cassette (ABC) transporters are membrane proteins that are involved in mediating multidrug resistance (MDR). In this article, we reveal that pevonedistat is a substrate of ABCG2 which decreases the therapeutic effect of pevonedistat. The cytotoxicity of pevonedistat was significantly weakened in ABCG2-overexpressing cells, and the drug resistance can be reversed by ABCG2 inhibitors. The ATPase assay suggested that pevonedistat can stimulate ABCG2 ATPase activity in a concentration-dependent manner. Pevonedistat showed little effect on the expression level or subcellular localization of ABCG2 after 72 h treatment. Furthermore, a pevonedistat resistance cell line S1-PR was established and overexpressed ABCG2. Generally, our study provides evidence that ABCG2 can be a prominent factor leading to pevonedistat-resistance. Furthermore, ABCG2 may also be utilized as a biomarker to monitor the development of pevonedistat resistance during cancer treatment.
Collapse
Affiliation(s)
- Liu-Ya Wei
- School of Pharmacy, Weifang Medical University, Weifang, 261053, China; Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Zhuo-Xun Wu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Yang Yang
- School of Pharmacy, Weifang Medical University, Weifang, 261053, China
| | - Min Zhao
- School of Pharmacy, Weifang Medical University, Weifang, 261053, China
| | - Xiang-Yu Ma
- School of Pharmacy, Weifang Medical University, Weifang, 261053, China
| | - Jin-Sui Li
- Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Dong-Hua Yang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA.
| | - Ying-Fang Fan
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA; Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China.
| |
Collapse
|
23
|
Wang K, Deshaies RJ, Liu X. Assembly and Regulation of CRL Ubiquitin Ligases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1217:33-46. [DOI: 10.1007/978-981-15-1025-0_3] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
24
|
Ni S, Chen X, Yu Q, Xu Y, Hu Z, Zhang J, Zhang W, Li B, Yang X, Mao F, Huang J, Sun Y, Li J, Jia L. Discovery of candesartan cilexetic as a novel neddylation inhibitor for suppressing tumor growth. Eur J Med Chem 2019; 185:111848. [PMID: 31732254 DOI: 10.1016/j.ejmech.2019.111848] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 10/28/2019] [Accepted: 11/03/2019] [Indexed: 12/11/2022]
Abstract
Protein neddylation is a posttranslational modification of conjugating the neuronal precursor cell-expressed developmentally down-regulated protein 8 (Nedd8) to substrates. Our previous work revealed that neddylation pathway is overactivated in various human lung cancers and correlates with the disease progression, whereas pharmacologically targeting this pathway has emerged as an attractive therapeutic strategy. As a follow-up research, 1331 approved drugs were investigated the inhibitory activities of cullin1 neddylation for screening the hit compounds via an improved enzyme-based assay. An antihypertensive agent, candesartan cilexetic (CDC), was identified as a novel neddylation inhibitor that ATP-competitively suppressing Nedd8-activating enzyme (NAE, E1) in mechanism, which inhibited the cullins neddylation superior than two representative non-covalent NAE inhibitors, M22 and mitoxantrone. Following with the findings such as apoptotic induction and tumor growth suppression in human lung cancer A549 in vitro and in vivo, CDC represents a potential anticancer lead compound with promising neddylation inhibitory activity.
Collapse
Affiliation(s)
- Shuaishuai Ni
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Xin Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Qing Yu
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 30029, China
| | - Yixiang Xu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Zhiguo Hu
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Junqian Zhang
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Wenjuan Zhang
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Baoli Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xi Yang
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Fei Mao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jing Huang
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yi Sun
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 30029, China
| | - Jian Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Lijun Jia
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| |
Collapse
|
25
|
Bahjat M, de Wilde G, van Dam T, Maas C, Bloedjes T, Bende RJ, van Noesel CJM, Luijks DM, Eldering E, Kersten MJ, Guikema JEJ. The NEDD8-activating enzyme inhibitor MLN4924 induces DNA damage in Ph+ leukemia and sensitizes for ABL kinase inhibitors. Cell Cycle 2019; 18:2307-2322. [PMID: 31349760 PMCID: PMC6738521 DOI: 10.1080/15384101.2019.1646068] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The BCR-ABL1 fusion gene is the driver oncogene in chronic myeloid leukemia (CML) and Philadelphia-chromosome positive (Ph+) acute lymphoblastic leukemia (ALL). The introduction of tyrosine kinase inhibitors (TKIs) targeting the ABL kinase (such as imatinib) has dramatically improved survival of CML and Ph+ ALL patients. However, primary and acquired resistance to TKIs remains a clinical challenge. Ph+ leukemia patients who achieve a complete cytogenetic (CCR) or deep molecular response (MR) (≥4.5log reduction in BCR-ABL1 transcripts) represent long-term survivors. Thus, the fast and early eradication of leukemic cells predicts MR and is the prime clinical goal for these patients. We show here that the first-in-class inhibitor of the Nedd8-activating enzyme (NAE1) MLN4924 effectively induced caspase-dependent apoptosis in Ph+ leukemia cells, and sensitized leukemic cells for ABL tyrosine kinase inhibitors (TKI) and hydroxyurea (HU). We demonstrate that MLN4924 induced DNA damage in Ph+ leukemia cells by provoking the activation of an intra S-phase checkpoint, which was enhanced by imatinib co-treatment. The combination of MLN4924 and imatinib furthermore triggered a dramatic shift in the expression of MCL1 and NOXA. Our data offers a clear rationale to explore the clinical activity of MLN4924 (alone and in combination with ABL TKI) in Ph+ leukemia patients
Collapse
Affiliation(s)
- Mahnoush Bahjat
- Department of Pathology, Amsterdam University Medical Centers, location AMC, University of Amsterdam , Amsterdam , The Netherlands.,Lymphoma and Myeloma Center Amsterdam (LYMMCARE) , Amsterdam , The Netherlands
| | - Guus de Wilde
- Department of Pathology, Amsterdam University Medical Centers, location AMC, University of Amsterdam , Amsterdam , The Netherlands.,Lymphoma and Myeloma Center Amsterdam (LYMMCARE) , Amsterdam , The Netherlands
| | - Tijmen van Dam
- Department of Pathology, Amsterdam University Medical Centers, location AMC, University of Amsterdam , Amsterdam , The Netherlands.,Lymphoma and Myeloma Center Amsterdam (LYMMCARE) , Amsterdam , The Netherlands
| | - Chiel Maas
- Department of Pathology, Amsterdam University Medical Centers, location AMC, University of Amsterdam , Amsterdam , The Netherlands.,Lymphoma and Myeloma Center Amsterdam (LYMMCARE) , Amsterdam , The Netherlands
| | - Timon Bloedjes
- Department of Pathology, Amsterdam University Medical Centers, location AMC, University of Amsterdam , Amsterdam , The Netherlands.,Lymphoma and Myeloma Center Amsterdam (LYMMCARE) , Amsterdam , The Netherlands
| | - Richard J Bende
- Department of Pathology, Amsterdam University Medical Centers, location AMC, University of Amsterdam , Amsterdam , The Netherlands.,Lymphoma and Myeloma Center Amsterdam (LYMMCARE) , Amsterdam , The Netherlands
| | - Carel J M van Noesel
- Department of Pathology, Amsterdam University Medical Centers, location AMC, University of Amsterdam , Amsterdam , The Netherlands.,Lymphoma and Myeloma Center Amsterdam (LYMMCARE) , Amsterdam , The Netherlands
| | - Dieuwertje M Luijks
- Lymphoma and Myeloma Center Amsterdam (LYMMCARE) , Amsterdam , The Netherlands.,Department of Experimental Immunology, Amsterdam University Medical Centers, location AMC, University of Amsterdam , Amsterdam , The Netherlands
| | - Eric Eldering
- Lymphoma and Myeloma Center Amsterdam (LYMMCARE) , Amsterdam , The Netherlands.,Department of Experimental Immunology, Amsterdam University Medical Centers, location AMC, University of Amsterdam , Amsterdam , The Netherlands
| | - Marie José Kersten
- Lymphoma and Myeloma Center Amsterdam (LYMMCARE) , Amsterdam , The Netherlands.,Department of Hematology, Amsterdam University Centers, location AMC, University of Amsterdam , Amsterdam , The Netherlands
| | - Jeroen E J Guikema
- Department of Pathology, Amsterdam University Medical Centers, location AMC, University of Amsterdam , Amsterdam , The Netherlands.,Lymphoma and Myeloma Center Amsterdam (LYMMCARE) , Amsterdam , The Netherlands
| |
Collapse
|
26
|
Yoshimura C, Muraoka H, Ochiiwa H, Tsuji S, Hashimoto A, Kazuno H, Nakagawa F, Komiya Y, Suzuki S, Takenaka T, Kumazaki M, Fujita N, Mizutani T, Ohkubo S. TAS4464, A Highly Potent and Selective Inhibitor of NEDD8-Activating Enzyme, Suppresses Neddylation and Shows Antitumor Activity in Diverse Cancer Models. Mol Cancer Ther 2019; 18:1205-1216. [PMID: 31092565 DOI: 10.1158/1535-7163.mct-18-0644] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 10/23/2018] [Accepted: 05/08/2019] [Indexed: 11/16/2022]
Abstract
NEDD8-activating enzyme (NAE) is an essential E1 enzyme of the NEDD8 conjugation (neddylation) pathway, which controls cancer cell growth and survival through activation of cullin-RING ubiquitin ligase complexes (CRL). In this study, we describe the preclinical profile of a novel, highly potent, and selective NAE inhibitor, TAS4464. TAS4464 selectively inhibited NAE relative to the other E1s UAE and SAE. TAS4464 treatment inhibited cullin neddylation and subsequently induced the accumulation of CRL substrates such as CDT1, p27, and phosphorylated IκBα in human cancer cell lines. TAS4464 showed greater inhibitory effects than those of the known NAE inhibitor MLN4924 both in enzyme assay and in cells. Cytotoxicity profiling revealed that TAS4464 is highly potent with widespread antiproliferative activity not only for cancer cell lines, but also patient-derived tumor cells. TAS4464 showed prolonged target inhibition in human tumor xenograft mouse models; weekly or twice a week TAS4464 administration led to prominent antitumor activity in multiple human tumor xenograft mouse models including both hematologic and solid tumors without marked weight loss. As a conclusion, TAS4464 is the most potent and highly selective NAE inhibitor reported to date, showing superior antitumor activity with prolonged target inhibition. It is, therefore, a promising agent for the treatment of a variety of tumors including both hematologic and solid tumors. These results support the clinical evaluation of TAS4464 in hematologic and solid tumors.
Collapse
Affiliation(s)
- Chihoko Yoshimura
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co., Ltd, Tsukuba, Japan.
| | - Hiromi Muraoka
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co., Ltd, Tsukuba, Japan
| | - Hiroaki Ochiiwa
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co., Ltd, Tsukuba, Japan
| | - Shingo Tsuji
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co., Ltd, Tsukuba, Japan
| | - Akihiro Hashimoto
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co., Ltd, Tsukuba, Japan
| | - Hiromi Kazuno
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co., Ltd, Tsukuba, Japan
| | - Fumio Nakagawa
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co., Ltd, Tsukuba, Japan
| | - Yu Komiya
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co., Ltd, Tsukuba, Japan
| | - Satoshi Suzuki
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co., Ltd, Tsukuba, Japan
| | - Toru Takenaka
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co., Ltd, Tsukuba, Japan
| | - Masafumi Kumazaki
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co., Ltd, Tsukuba, Japan
| | - Naoya Fujita
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co., Ltd, Tsukuba, Japan
| | - Takashi Mizutani
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co., Ltd, Tsukuba, Japan
| | - Shuichi Ohkubo
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co., Ltd, Tsukuba, Japan
| |
Collapse
|
27
|
Fahmi M, Ito M. Evolutionary Approach of Intrinsically Disordered CIP/KIP Proteins. Sci Rep 2019; 9:1575. [PMID: 30733475 PMCID: PMC6367352 DOI: 10.1038/s41598-018-37917-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 12/12/2018] [Indexed: 12/18/2022] Open
Abstract
The mammalian CIP/KIP family proteins are intrinsically disordered proteins (IDPs) that can regulate various cellular processes. However, many reports have shown that IDPs generally evolve more rapidly than ordered proteins. Here, to elucidate the functional adaptability of CIP/KIP proteins in vertebrate, we analysed the rates of evolution in relation to their structural and sequence properties and predicted the post-translational modification based on the sequence data. The results showed that CIP/KIP proteins generally could maintain their function through evolution in the vertebrate. Basically, the disordered region that acts as a flexible linker or spacer has a conserved propensity for structural disorder and a persistent, fast rate of amino acid substitution, which could result in a significantly faster rate of evolution compared to the ordered proteins. Describing the pattern of structural order-disorder evolution, this study may give an insight into the well-known characteristics of IDPs in the evolution of CIP/KIP proteins.
Collapse
Affiliation(s)
- Muhamad Fahmi
- Advanced Life Sciences Program, Graduate School of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
| | - Masahiro Ito
- Advanced Life Sciences Program, Graduate School of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan. .,Department of Bioinformatics, College of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan.
| |
Collapse
|
28
|
Ng MY, Gan YH, Hagen T. Characterisation of cellular effects of Burkholderia pseudomallei cycle inhibiting factor (Cif). Biol Open 2018; 7:bio.028225. [PMID: 29848489 PMCID: PMC6078346 DOI: 10.1242/bio.028225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cycle inhibiting factors (Cifs) are type III secretion system effectors produced by some Gram-negative pathogenic bacteria including Burkholderia pseudomallei. Through their deamidase activity, Cifs inhibit the activity of Cullin RING E3 ubiquitin ligases (CRL). CRL inhibition induces the accumulation of cell cycle inhibitors p21 and p27, thereby leading to host cell cycle arrest. However, whether Cif exerts additional effects on host cells that are important in bacterial pathogenesis is currently poorly understood. In this study, we found that Cif exerts a bimodal effect on NF-κB signalling. Cif increases basal NF-κB activity. This effect is dependent on Cif-mediated activation of ERK MAPK. On the other hand, Cif inhibits NF-κB activation by TNFα and Burkholderia thailandensis infection. This inhibitory effect on NF-κB activity is partially mediated by Cif-dependent inhibition of CRLs. We also found that Cif only has a modest effect in stimulating the intracellular replication of the B. pseudomallei surrogate, B. thailandensis. The observed Cif-dependent stimulation of B. thailandensis intracellular replication was not, or was only partially, due to CRL inhibition. Furthermore, the increased B. thailandensis replication induced by Cif was independent of ERK MAPK activation. Our findings suggest that Cif likely exerts additional cellular effects through novel targets. Summary: Cycle inhibiting factor (Cif) is a Burkholderia pseudomallei virulence factor and is shown to exert both Cullin RING E3 ligase dependent and independent effects on host cells.
Collapse
Affiliation(s)
- Mei Ying Ng
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Yunn-Hwen Gan
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Thilo Hagen
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| |
Collapse
|
29
|
Zhang S, Huang J, Shi T, Hu F, Zhang L, Zhou PK, Ma D, Ma T, Qiu X. DCUN1D3 activates SCFSKP2 ubiquitin E3 ligase activity and cell cycle progression under UV damage. Oncotarget 2018; 7:58483-58491. [PMID: 27542266 PMCID: PMC5295445 DOI: 10.18632/oncotarget.11302] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Accepted: 07/26/2016] [Indexed: 12/20/2022] Open
Abstract
Our previous study showed that knockdown the endogenous expression of DCUN1D3 (also called SCCRO3 or DCNL3) blocked the S phase progression after UV irradiation. Here, we show that the silence of DCUN1D3 can increase the cyclin-dependent kinase inhibitor p27 protein levels after UV irradiation. Through Co-immunoprecipitation experiments, we found that DCUN1D3 bound to CAND1. And DCUN1D3 knockdown synergized with CAND1 over-expression in arresting the S phase. Given the CAND1's established role in Cullin-1 neddylation, we found Cullin-1 was less neddylated in DCUN1D3 deficient cells. So the silence of DCUN1D3 can inhibit the formation of SCFSKP2 complex by reducing Cullin-1 neddylation. Given that p27 is the primary target of SCFSKP2 complex, the cells lost DCUN1D3 showed a remarkable accumulation of p27 to cause S phase block.
Collapse
Affiliation(s)
- Shuai Zhang
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Jing Huang
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Taiping Shi
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, China.,Chinese National Human Genome Center, Beijing, China
| | - Fanlei Hu
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Li Zhang
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Ping-Kun Zhou
- Department of Radiation Toxicology and Oncology, Beijing Key Laboratory for Radiobiology (BKLRB), Beijing Institute of Radiation Medicine, Beijing, P. R. China
| | - Dalong Ma
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Teng Ma
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, China.,Department of Radiation Toxicology and Oncology, Beijing Key Laboratory for Radiobiology (BKLRB), Beijing Institute of Radiation Medicine, Beijing, P. R. China
| | - Xiaoyan Qiu
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, China
| |
Collapse
|
30
|
Brożyna AA, Aplin A, Cohen C, Carlson G, Page AJ, Murphy M, Slominski AT, Carlson JA. CKS1 expression in melanocytic nevi and melanoma. Oncotarget 2018; 9:4173-4187. [PMID: 29423113 PMCID: PMC5790530 DOI: 10.18632/oncotarget.23648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 12/16/2017] [Indexed: 12/22/2022] Open
Abstract
Cyclin-dependent kinase subunit 1 (Cks1) regulates the degradation of p27, an important G1-S inhibitor, which is up regulated by MAPK pathway activation. In this study, we sought to determine whether Cks1 expression is increased in melanocytic tumors and correlates with outcome and/or other clinicopathologic prognostic markers. Cks1 expression was assessed by immunohistochemistry in 298 melanocytic lesions. The frequency and intensity of cytoplasmic and nuclear expression was scored as a labeling index and correlated with clinico-pathological data. Nuclear Cks1 protein was found in 63% of melanocytic nevi, 89% primary and 90% metastatic melanomas with mean labeling index of 7 ± 16, 19 ± 20, and 30 ± 29, respectively. While cytoplasmic Cks1 was found in 41% of melanocytic nevi, 84% primary and 95% metastatic melanomas with mean labeling index of 18 ± 34, 35 ± 34, and 52 ± 34, accordingly. Histologic stepwise model of tumor progression, defined as progression from benign nevi to primary melanomas, to melanoma metastases, revealed a significant increase in nuclear and cytoplasmic Cks1 expression with tumor progression. Nuclear and cytoplasmic Cks1 expression correlated with the presence of ulceration, increased mitotic rate, Breslow depth, Clark level, tumor infiltrating lymphocytes and gender. However, other well-known prognostic factors (age, anatomic site, and regression) did not correlate with any type of Cks1 expression. Similarly, increasing nuclear expression of Cks1 significantly correlated with worse overall survival. Thus, Cks1 expression appears to play a role in the progression of melanoma, where high levels of expression are associated with poor outcome. Cytoplasmic expression of Cks1 might represent high turnover of protein via the ubiquination/proteosome pathway.
Collapse
Affiliation(s)
- Anna A Brożyna
- Department of Tumor Pathology and Pathomorphology, Faculty of Health Sciences, Nicolaus Copernicus University Collegium Medicum in Bydgoszcz, Oncology Centre - Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz 85-796, Poland
| | - Andrew Aplin
- Department of Cancer Biology, BLSB 524, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Cynthia Cohen
- Winship Cancer Institute, Emory University Hospital, Atlanta, GA 30322, USA
| | - Grant Carlson
- Winship Cancer Institute, Emory University Hospital, Atlanta, GA 30322, USA
| | - Andrew Joseph Page
- Pancreas, Liver, and Cancer Surgery, Piedmont Healthcare, Atlanta, GA 30309, USA
| | - Michael Murphy
- Department of Dermatology, UConn Health, Farmington, CT 06030, USA
| | - Andrzej T Slominski
- Department of Dermatology, Comprehensive Cancer Center, Cancer Chemoprevention Program, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - J Andrew Carlson
- Department of Pathology and Laboratory Medicine, Albany Medical College MC-81, Albany, NY 12208, USA
| |
Collapse
|
31
|
Asare Y, Shagdarsuren E, Schmid J, Tilstam P, Grommes J, El Bounkari O, Schütz A, Weber C, de Winther M, Noels H, Bernhagen J. Endothelial CSN5 impairs NF-κB activation and monocyte adhesion to endothelial cells and is highly expressed in human atherosclerotic lesions. Thromb Haemost 2017; 110:141-52. [DOI: 10.1160/th13-02-0155] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 04/05/2013] [Indexed: 01/07/2023]
Abstract
SummaryThe COP9 signalosome (CSN), a multifunctional protein complex involved in the regulation of cullin-RING-E3 ubiquitin ligases (CRLs), has emerged as a regulator of NF-κB signalling. As NF-κB drives the expression of pro-inflammatory and pro-atherosclerotic genes, we probed the yet unknown role of the CSN, in particular CSN5, on NF-KB-mediated atherogenic responses in endothelial cells. Co-immunoprecipitation in human umbilical vein endothelial cells (HUVECs) revealed the presence of a super-complex between IKK and CSN, which dissociates upon TNF-α stimulation. Furthermore, CSN5 silencing enhanced TNF-α-induced IKB-α degradation and NF-κB activity in luci-ferase reporter assays. This was paralleled by an increased NF-KB-driven upregulation of atherogenic chemokines and adhesion molecules, as measured by qPCR and flow cytometry, and translated into an enhanced arrest of THP-1 monocytes on TNF-α-stimulated, CSN5-depleted HUVECs. Reverse effects on NF-κB activity and THP-1 arrest were seen upon CSN5 overexpression. Finally, double-immunostaining confirmed the expression of CSN subunits in the endothelium of human atherosclerotic lesions, and revealed an increased expression of CSN5 which correlated with atheroprogression. In conclusion, endothelial CSN5 attenuates NF-KB-dependent pro-inflammatory gene expression and monocyte arrest on stimulated endothelial cells in vitro, suggesting that CSN5 might serve as a negative regulator of atherogenesis.Note: The review process for this manuscript was fully handled by G. Y. H. Lip, Editor in Chief.
Collapse
|
32
|
Inhibition of atherogenesis by the COP9 signalosome subunit 5 in vivo. Proc Natl Acad Sci U S A 2017; 114:E2766-E2775. [PMID: 28292897 DOI: 10.1073/pnas.1618411114] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Constitutive photomorphogenesis 9 (COP9) signalosome 5 (CSN5), an isopeptidase that removes neural precursor cell-expressed, developmentally down-regulated 8 (NEDD8) moieties from cullins (thus termed "deNEDDylase") and a subunit of the cullin-RING E3 ligase-regulating COP9 signalosome complex, attenuates proinflammatory NF-κB signaling. We previously showed that CSN5 is up-regulated in human atherosclerotic arteries. Here, we investigated the role of CSN5 in atherogenesis in vivo by using mice with myeloid-specific Csn5 deletion. Genetic deletion of Csn5 in Apoe-/- mice markedly exacerbated atherosclerotic lesion formation. This was broadly observed in aortic root, arch, and total aorta of male mice, whereas the effect was less pronounced and site-specific in females. Mechanistically, Csn5 KO potentiated NF-κB signaling and proinflammatory cytokine expression in macrophages, whereas HIF-1α levels were reduced. Inversely, inhibition of NEDDylation by MLN4924 blocked proinflammatory gene expression and NF-κB activation while enhancing HIF-1α levels and the expression of M2 marker Arginase 1 in inflammatory-elicited macrophages. MLN4924 further attenuated the expression of chemokines and adhesion molecules in endothelial cells and reduced NF-κB activation and monocyte arrest on activated endothelium in vitro. In vivo, MLN4924 reduced LPS-induced inflammation, favored an antiinflammatory macrophage phenotype, and decreased the progression of early atherosclerotic lesions in mice. On the contrary, MLN4924 treatment increased neutrophil and monocyte counts in blood and had no net effect on the progression of more advanced lesions. Our data show that CSN5 is atheroprotective. We conclude that MLN4924 may be useful in preventing early atherogenesis, whereas selectively promoting CSN5-mediated deNEDDylation may be beneficial in all stages of atherosclerosis.
Collapse
|
33
|
Liao S, Hu H, Wang T, Tu X, Li Z. The Protein Neddylation Pathway in Trypanosoma brucei: FUNCTIONAL CHARACTERIZATION AND SUBSTRATE IDENTIFICATION. J Biol Chem 2016; 292:1081-1091. [PMID: 27956554 DOI: 10.1074/jbc.m116.766741] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 11/28/2016] [Indexed: 11/06/2022] Open
Abstract
Protein posttranslational modifications such as neddylation play crucial roles in regulating protein function. Only a few neddylated substrates have been validated to date, and the role of neddylation remains poorly understood. Here, using Trypanosoma brucei as the model organism, we investigated the function and substrates of TbNedd8. TbNedd8 is distributed throughout the cytosol but enriched in the nucleus and the flagellum. Depletion of TbNedd8 by RNAi abolished global protein ubiquitination, caused DNA re-replication in postmitotic cells, impaired spindle assembly, and compromised the flagellum attachment zone filament, leading to flagellum detachment. Through affinity purification and mass spectrometry, we identified 70 TbNedd8-conjugated and -associated proteins, including known Nedd8-conjugated and -associated proteins, putative TbNedd8 conjugation system enzymes, proteins of diverse biological functions, and proteins of unknown function. Finally, we validated six Cullins as bona fide TbNedd8 substrates and identified the TbNedd8 conjugation site in three Cullins. This work lays the foundation for understanding the roles of protein neddylation in this early divergent parasitic protozoan.
Collapse
Affiliation(s)
- Shanhui Liao
- From the Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China and.,the Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center, Houston, Texas 77030
| | - Huiqing Hu
- the Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center, Houston, Texas 77030
| | - Tao Wang
- the Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center, Houston, Texas 77030
| | - Xiaoming Tu
- From the Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China and
| | - Ziyin Li
- the Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center, Houston, Texas 77030
| |
Collapse
|
34
|
Targeting the protein ubiquitination machinery in melanoma by the NEDD8-activating enzyme inhibitor pevonedistat (MLN4924). Invest New Drugs 2016; 35:11-25. [PMID: 27783255 DOI: 10.1007/s10637-016-0398-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 10/09/2016] [Indexed: 01/08/2023]
Abstract
Background The neddylation pathway conjugates NEDD8 to cullin-RING ligases and controls the proteasomal degradation of specific proteins involved in essential cell processes. Pevonedistat (MLN4924) is a selective small molecule targeting the NEDD8-activating enzyme (NAE) and inhibits an early step in neddylation, resulting in DNA re-replication, cell cycle arrest and death. We investigated the anti-tumor potential of pevonedistat in preclinical models of melanoma. Methods Melanoma cell lines and patient-derived tumor xenografts (PDTX) treated with pevonedistat were assessed for viability/apoptosis and tumor growth, respectively, to identify sensitive/resistant models. Gene expression microarray and gene set enrichment analyses were performed in cell lines to determine the expression profiles and pathways of sensitivity/resistance. Pharmacodynamic changes in treated-PDTX were also characterized. Results Pevonedistat effectively inhibited cell viability (IC50 < 0.3 μM) and induced apoptosis in a subset of melanoma cell lines. Sensitive and resistant cell lines exhibited distinct gene expression profiles; sensitive models were enriched for genes involved in DNA repair, replication and cell cycle regulation, while immune response and cell adhesion pathways were upregulated in resistant models. Pevonedistat also reduced tumor growth in melanoma cell line xenografts and PDTX with variable responses. An accumulation of pevonedistat-NEDD8 adduct and CDT1 was observed in sensitive tumors consistent with its mechanism of action. Conclusions This study provided preclinical evidence that NAE inhibition by pevonedistat has anti-tumor activity in melanoma and supports the clinical benefits observed in recent Phase 1 trials of this drug in melanoma patients. Further investigations are warranted to develop rational combinations and determine predictive biomarkers of pevonedistat.
Collapse
|
35
|
Tan KL, Pezzella F. Inhibition of NEDD8 and FAT10 ligase activities through the degrading enzyme NEDD8 ultimate buster 1: A potential anticancer approach. Oncol Lett 2016; 12:4287-4296. [PMID: 28101194 PMCID: PMC5228310 DOI: 10.3892/ol.2016.5232] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 08/09/2016] [Indexed: 01/31/2023] Open
Abstract
The capabilities of tumour cells to survive through deregulated cell cycles and evade apoptosis are hallmarks of cancer. The ubiquitin-like proteins (UBL) proteasome system is important in regulating cell cycles via signaling proteins. Deregulation of the proteasomal system can lead to uncontrolled cell proliferation. The Skp, Cullin, F-box containing complex (SCF complex) is the predominant E3 ubiquitin ligase, and has diverse substrates. The ubiquitin ligase activity of the SCF complexes requires the conjugation of neural precursor cell expressed, developmentally down-regulated 8 (NEDD8) to cullin proteins. A tumour suppressor and degrading enzyme named NEDD8 ultimate buster 1 (NUB1) is able to recruit HLA-F-adjacent transcript 10 (FAT10)- and NEDD8-conjugated proteins for proteasomal degradation. Ubiquitination is associated with neddylation and FAT10ylation. Although validating the targets of UBLs, including ubiquitin, NEDD8 and FAT10, is challenging, understanding the biological significance of such substrates is an exciting research prospect. This present review discusses the interplay of these UBLs, as well as highlighting their inhibition through NUB1. Knowledge of the mechanisms by which NUB1 is able to downregulate the ubiquitin cascade via NEDD8 conjugation and the FAT10 pathway is essential. This will provide insights into potential cancer therapy that could be used to selectively suppress cancer growth.
Collapse
Affiliation(s)
- Ka-Liong Tan
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, John Radcliffe Hospital, Headington, Oxford OX3 9DU, United Kingdom; Faculty of Medicine & Health Sciences, Universiti Sains Islam Malaysia, Kuala Lumpur 55100, Malaysia
| | - Francesco Pezzella
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, John Radcliffe Hospital, Headington, Oxford OX3 9DU, United Kingdom
| |
Collapse
|
36
|
Lu P, Liu X, Yuan X, He M, Wang Y, Zhang Q, Ouyang PK. Discovery of a novel NEDD8 Activating Enzyme Inhibitor with Piperidin-4-amine Scaffold by Structure-Based Virtual Screening. ACS Chem Biol 2016; 11:1901-7. [PMID: 27135934 DOI: 10.1021/acschembio.6b00159] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
NEDD8 activating enzyme (NAE) plays an important role in regulating intracellular proteins with key parts in a broad array of cellular functions. Here, we report a structure-based virtual screening of a compound library containing 50 000 small molecular entities against the active site of NAE. Computational docking and scoring followed by biochemical screening and target validation lead to the identification of 1-benzyl-N-(2,4-dichlorophenethyl) piperidin-4-amine (M22) as a selective NAE inhibitor. M22 is reversible for NAE, inhibits multiple cancer cell lines with GI50 values in the low micromolar range, and induces apoptosis in A549 cells. Furthermore, it produces tumor inhibition in AGS xenografts in nude mice and low acute toxicity in a zebrafish model. M22, a novel NAE inhibitor, represents a promising lead structure for the development of new antitumor agents.
Collapse
Affiliation(s)
- Peng Lu
- School
of Pharmaceutical Sciences, Nanjing Tech University, No. 5 Xinmofan
Road, Nanjing 210009, People’s Republic of China
| | - Xiaoxin Liu
- School
of Pharmaceutical Sciences, Nanjing Tech University, No. 5 Xinmofan
Road, Nanjing 210009, People’s Republic of China
| | - Xinrui Yuan
- School
of Pharmaceutical Sciences, Nanjing Tech University, No. 5 Xinmofan
Road, Nanjing 210009, People’s Republic of China
| | - Minfang He
- College
of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 5 Xinmofan Road, Nanjing 210009, People’s Republic of China
| | - Yubin Wang
- School
of Pharmaceutical Sciences, Nanjing Tech University, No. 5 Xinmofan
Road, Nanjing 210009, People’s Republic of China
| | - Qi Zhang
- School
of Pharmaceutical Sciences, Nanjing Tech University, No. 5 Xinmofan
Road, Nanjing 210009, People’s Republic of China
| | - Ping-kai Ouyang
- College
of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 5 Xinmofan Road, Nanjing 210009, People’s Republic of China
| |
Collapse
|
37
|
Neddylation requires glycyl-tRNA synthetase to protect activated E2. Nat Struct Mol Biol 2016; 23:730-7. [PMID: 27348078 PMCID: PMC4972647 DOI: 10.1038/nsmb.3250] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 06/01/2016] [Indexed: 12/31/2022]
Abstract
Neddylation is a post-translational modification that controls cell cycle and proliferation by conjugating the ubiquitin-like protein NEDD8 to specific targets. Here we report that glycyl-tRNA synthetase (GlyRS), an essential enzyme for protein synthesis, also plays a critical role in neddylation. In human cells, knockdown of GlyRS, but not a different tRNA synthetase, decreases the global level of neddylation and causes cell cycle abnormality. This function of GlyRS is achieved through direct interactions with multiple components of the neddylation pathway, including NEDD8, E1, and E2 (Ubc12). Using various structural and functional approaches, we show that GlyRS binds to the APPBP1 subunit of E1 to capture and protect the activated E2 (NEDD8-conjugated Ubc12) before it reaches a downstream target. Therefore, GlyRS functions as a chaperone to critically support neddylation. This function is likely to be conserved in all eukaryotic GlyRS, and may contribute to the strong association of GlyRS with cancer progression.
Collapse
|
38
|
Gln40 deamidation blocks structural reconfiguration and activation of SCF ubiquitin ligase complex by Nedd8. Nat Commun 2015; 6:10053. [PMID: 26632597 PMCID: PMC4686759 DOI: 10.1038/ncomms10053] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 10/29/2015] [Indexed: 12/31/2022] Open
Abstract
The full enzymatic activity of the cullin-RING ubiquitin ligases (CRLs) requires a ubiquitin-like protein (that is, Nedd8) modification. By deamidating Gln40 of Nedd8 to glutamate (Q40E), the bacterial cycle-inhibiting factor (Cif) family is able to inhibit CRL E3 activities, thereby interfering with cellular functions. Despite extensive structural studies on CRLs, the molecular mechanism by which Nedd8 Gln40 deamidation affects CRL functions remains unclear. We apply a new quantitative cross-linking mass spectrometry approach to characterize three different types of full-length human Cul1–Rbx1 complexes and uncover major Nedd8-induced structural rearrangements of the CRL1 catalytic core. More importantly, we find that those changes are not induced by Nedd8(Q40E) conjugation, indicating that the subtle change of a single Nedd8 amino acid is sufficient to revert the structure of the CRL catalytic core back to its unmodified form. Our results provide new insights into how neddylation regulates the conformation and activity of CRLs. Cullin-RING ubiquitin ligases (CRLs) require neddylation of their cullin scaffolds for full activity. Here the authors use a quantitative cross-linking mass spectrometry approach to characterize three different full-length human Cul1-Rbx1 complexes to shed light on how neddylation regulates the activity of CRLs.
Collapse
|
39
|
Shah JJ, Jakubowiak AJ, O'Connor OA, Orlowski RZ, Harvey RD, Smith MR, Lebovic D, Diefenbach C, Kelly K, Hua Z, Berger AJ, Mulligan G, Faessel HM, Tirrell S, Dezube BJ, Lonial S. Phase I Study of the Novel Investigational NEDD8-Activating Enzyme Inhibitor Pevonedistat (MLN4924) in Patients with Relapsed/Refractory Multiple Myeloma or Lymphoma. Clin Cancer Res 2015; 22:34-43. [PMID: 26561559 DOI: 10.1158/1078-0432.ccr-15-1237] [Citation(s) in RCA: 161] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 08/11/2015] [Indexed: 11/16/2022]
Abstract
PURPOSE Evaluate the safety, pharmacokinetic profile, pharmacodynamic effects, and antitumor activity of the first-in-class investigational NEDD8-activating enzyme (NAE) inhibitor pevonedistat (TAK-924/MLN4924) in patients with relapsed/refractory lymphoma or multiple myeloma. EXPERIMENTAL DESIGN Patients with relapsed/refractory myeloma (n = 17) or lymphoma (n = 27) received intravenous pevonedistat 25 to 147 mg/m(2) on days 1, 2, 8, 9 (schedule A; n = 27) or 100 to 261 mg/m(2) on days 1, 4, 8, 11 (schedule B; n = 17) of 21-day cycles. RESULTS Maximum tolerated doses were 110 mg/m(2) (schedule A) and 196 mg/m(2) (schedule B). Dose-limiting toxicities included febrile neutropenia, transaminase elevations, muscle cramps (schedule A), and thrombocytopenia (schedule B). Common adverse events included fatigue and nausea. Common grade ≥3 events were anemia (19%; schedule A), and neutropenia and pneumonia (12%; schedule B). Clinically significant myelosuppression was uncommon. There were no treatment-related deaths. Pevonedistat pharmacokinetics exhibited a biphasic disposition phase and approximate dose-proportional increases in systemic exposure. Consistent with the short mean elimination half-life of approximately 8.5 hours, little-to-no drug accumulation in plasma was seen after multiple dosing. Pharmacodynamic evidence of NAE inhibition included increased skin levels of CDT-1 and NRF-2 (substrates of NAE-dependent ubiquitin ligases), and increased NRF-2-regulated gene transcript levels in whole blood. Pevonedistat-NEDD8 adduct was detected in bone marrow aspirates, indicating pevonedistat target engagement in the bone marrow compartment. Three lymphoma patients had partial responses; 30 patients achieved stable disease. CONCLUSIONS Pevonedistat demonstrated anticipated pharmacodynamic effects in the clinical setting, a tolerable safety profile, and some preliminary evidence that may be suggestive of the potential for activity in relapsed/refractory lymphoma.
Collapse
Affiliation(s)
- Jatin J Shah
- Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | | | - Owen A O'Connor
- Center for Lymphoid Malignancies, Columbia University Medical Center, New York, New York
| | - Robert Z Orlowski
- Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - R Donald Harvey
- Winship Cancer Institute, Emory University, Atlanta, Georgia
| | | | - Daniel Lebovic
- Hematology/Oncology, University of Michigan Comprehensive Cancer Center, Ann Arbor, Michigan
| | - Catherine Diefenbach
- New York University School of Medicine, NYU Perlmutter Cancer Center, New York, New York
| | - Kevin Kelly
- Department of Medicine, University of Southern California, Los Angeles, California
| | - Zhaowei Hua
- Millennium Pharmaceuticals, Inc., Cambridge, MA, a wholly owned subsidiary of Takeda Pharmaceutical Company Ltd., Cambridge, Massachusetts
| | - Allison J Berger
- Millennium Pharmaceuticals, Inc., Cambridge, MA, a wholly owned subsidiary of Takeda Pharmaceutical Company Ltd., Cambridge, Massachusetts
| | - George Mulligan
- Millennium Pharmaceuticals, Inc., Cambridge, MA, a wholly owned subsidiary of Takeda Pharmaceutical Company Ltd., Cambridge, Massachusetts
| | - Hélène M Faessel
- Millennium Pharmaceuticals, Inc., Cambridge, MA, a wholly owned subsidiary of Takeda Pharmaceutical Company Ltd., Cambridge, Massachusetts
| | - Stephen Tirrell
- Millennium Pharmaceuticals, Inc., Cambridge, MA, a wholly owned subsidiary of Takeda Pharmaceutical Company Ltd., Cambridge, Massachusetts
| | - Bruce J Dezube
- Millennium Pharmaceuticals, Inc., Cambridge, MA, a wholly owned subsidiary of Takeda Pharmaceutical Company Ltd., Cambridge, Massachusetts
| | - Sagar Lonial
- Winship Cancer Institute, Emory University, Atlanta, Georgia
| |
Collapse
|
40
|
Lin WC, Kuo KL, Shi CS, Wu JT, Hsieh JT, Chang HC, Liao SM, Chou CT, Chiang CK, Chiu WS, Chiu TY, Pu YS, Ho IL, Wang ZH, Chang SC, Liu SH, Jeng YM, Huang KH. MLN4924, a Novel NEDD8-activating enzyme inhibitor, exhibits antitumor activity and enhances cisplatin-induced cytotoxicity in human cervical carcinoma: in vitro and in vivo study. Am J Cancer Res 2015; 5:3350-3362. [PMID: 26807316 PMCID: PMC4697682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 09/23/2015] [Indexed: 06/05/2023] Open
Abstract
MLN4924, an inhibitor of NEDD8 activating enzyme (NAE), has been reported to have activity against various malignancies. Here, we investigated the antitumor properties of MLN4924 and MLN4924 in combination with cisplatin on human cervical carcinoma (CC) in vitro and in vivo. Two human CC cell lines, ME-180 and HeLa, were used in this study. The cytotoxic effects of MLN4924 and/or cisplatin were measured by cell viability (MTT), proliferation (BrdU incorporation), apoptosis (flow cytometry with annexin V-FITC labeling), and the expression of cell apoptosis-related proteins (Western blotting). In vivo efficacy was determined in Nu/Nu nude mice with ME-180 and HeLa xenografts. The results showed that MLN4924 elicited viability inhibition, anti-proliferation and apoptosis in human CC cells, accompanied by activations of apoptosis-related molecules and Bid, Bcl-2 phosphorylation interruption, and interference with cell cycle regulators. Moreover, MLN4924 caused an endoplasmic reticulum stress response (caspase-4, ATF-4 and CHOP activations) and expression of other cellular stress molecules (JNK and c-Jun activations). Additionally, MLN4924 suppressed growth of CC xenografts in nude mice. Furthermore, we demonstrated that MLN4924 potentiated cisplatin-induced cytotoxicity in CC cells with activation of caspases. Consistently with this, MLN4924 significantly enhanced cisplatin-induced growth inhibition of CC xenografts. Together, these findings suggest that MLN4924 alone or in combination with cisplatin is of value in treating human CCs.
Collapse
Affiliation(s)
- Wei-Chou Lin
- Graduate Institute of Pathology, National Taiwan University College of MedicineTaipei, Taiwan
- Department of Pathology, National Taiwan University College of Medicine and HospitalTaipei, Taiwan
| | - Kuan-Lin Kuo
- Department of Urology, National Taiwan University College of Medicine and HospitalTaipei, Taiwan
- Graduate Institute of Toxicology, National Taiwan University College of MedicineTaipei, Taiwan
| | - Chung-Sheng Shi
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung UniversityTaoyuan, Taiwan
| | - June-Tai Wu
- Graduate Institute of Molecular Medicine, National Taiwan University College of MedicineTaipei, Taiwan
| | - Ju-Ton Hsieh
- Department of Urology, National Taiwan University College of Medicine and HospitalTaipei, Taiwan
| | - Hong-Chiang Chang
- Department of Urology, National Taiwan University College of Medicine and HospitalTaipei, Taiwan
| | - Shih-Ming Liao
- Department of Urology, National Taiwan University College of Medicine and HospitalTaipei, Taiwan
| | - Chien-Tso Chou
- Department of Urology, National Taiwan University College of Medicine and HospitalTaipei, Taiwan
| | - Chih-Kang Chiang
- Graduate Institute of Toxicology, National Taiwan University College of MedicineTaipei, Taiwan
| | - Wei-Shuo Chiu
- Graduate Institute of Oral Biology, National Yang-Ming University School of DentistryTaipei, Taiwan
| | - Tzu-Yuan Chiu
- Graduate Institute of Molecular Medicine, National Taiwan University College of MedicineTaipei, Taiwan
| | - Yeong-Shiau Pu
- Department of Urology, National Taiwan University College of Medicine and HospitalTaipei, Taiwan
| | - I-Lin Ho
- Department of Urology, National Taiwan University College of Medicine and HospitalTaipei, Taiwan
| | - Zuo-He Wang
- Department of Urology, National Taiwan University College of Medicine and HospitalTaipei, Taiwan
| | - Shih-Chen Chang
- Department of Urology, National Taiwan University College of Medicine and HospitalTaipei, Taiwan
| | - Shing-Hwa Liu
- Graduate Institute of Toxicology, National Taiwan University College of MedicineTaipei, Taiwan
| | - Yung-Ming Jeng
- Graduate Institute of Pathology, National Taiwan University College of MedicineTaipei, Taiwan
- Department of Pathology, National Taiwan University College of Medicine and HospitalTaipei, Taiwan
| | - Kuo-How Huang
- Department of Urology, National Taiwan University College of Medicine and HospitalTaipei, Taiwan
| |
Collapse
|
41
|
Sarantopoulos J, Shapiro GI, Cohen RB, Clark JW, Kauh JS, Weiss GJ, Cleary JM, Mahalingam D, Pickard MD, Faessel HM, Berger AJ, Burke K, Mulligan G, Dezube BJ, Harvey RD. Phase I Study of the Investigational NEDD8-Activating Enzyme Inhibitor Pevonedistat (TAK-924/MLN4924) in Patients with Advanced Solid Tumors. Clin Cancer Res 2015; 22:847-57. [DOI: 10.1158/1078-0432.ccr-15-1338] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Accepted: 09/08/2015] [Indexed: 11/16/2022]
|
42
|
Visconte V, Nawrocki ST, Espitia CM, Kelly KR, Possemato A, Beausoleil SA, Han Y, Carraway HE, Nazha A, Advani AS, Maciejewski JP, Sekeres MA, Carew JS. Comprehensive quantitative proteomic profiling of the pharmacodynamic changes induced by MLN4924 in acute myeloid leukemia cells establishes rationale for its combination with azacitidine. Leukemia 2015; 30:1190-4. [PMID: 26369982 PMCID: PMC4792796 DOI: 10.1038/leu.2015.250] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- V Visconte
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - S T Nawrocki
- Division of Hematology/Oncology, Cancer Therapy and Research Center at The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - C M Espitia
- Division of Hematology/Oncology, Cancer Therapy and Research Center at The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - K R Kelly
- USC Norris Comprehensive Cancer Center, Los Angeles, CA, USA
| | | | | | - Y Han
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - H E Carraway
- Leukemia Program, Department of Hematology/Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - A Nazha
- Leukemia Program, Department of Hematology/Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - A S Advani
- Leukemia Program, Department of Hematology/Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - J P Maciejewski
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - M A Sekeres
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA.,Leukemia Program, Department of Hematology/Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - J S Carew
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
43
|
Targeting Cullin-RING E3 ubiquitin ligases for drug discovery: structure, assembly and small-molecule modulation. Biochem J 2015; 467:365-86. [PMID: 25886174 PMCID: PMC4403949 DOI: 10.1042/bj20141450] [Citation(s) in RCA: 178] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In the last decade, the ubiquitin–proteasome system has emerged as a valid target for the development of novel therapeutics. E3 ubiquitin ligases are particularly attractive targets because they confer substrate specificity on the ubiquitin system. CRLs [Cullin–RING (really interesting new gene) E3 ubiquitin ligases] draw particular attention, being the largest family of E3s. The CRLs assemble into functional multisubunit complexes using a repertoire of substrate receptors, adaptors, Cullin scaffolds and RING-box proteins. Drug discovery targeting CRLs is growing in importance due to mounting evidence pointing to significant roles of these enzymes in diverse biological processes and human diseases, including cancer, where CRLs and their substrates often function as tumour suppressors or oncogenes. In the present review, we provide an account of the assembly and structure of CRL complexes, and outline the current state of the field in terms of available knowledge of small-molecule inhibitors and modulators of CRL activity. A comprehensive overview of the reported crystal structures of CRL subunits, components and full-size complexes, alone or with bound small molecules and substrate peptides, is included. This information is providing increasing opportunities to aid the rational structure-based design of chemical probes and potential small-molecule therapeutics targeting CRLs.
Collapse
|
44
|
Khalife J, Radomska HS, Santhanam R, Huang X, Neviani P, Saultz J, Wang H, Wu YZ, Alachkar H, Anghelina M, Dorrance A, Curfman J, Bloomfield CD, Medeiros BC, Perrotti D, Lee LJ, Lee RJ, Caligiuri MA, Pichiorri F, Croce CM, Garzon R, Guzman ML, Mendler JH, Marcucci G. Pharmacological targeting of miR-155 via the NEDD8-activating enzyme inhibitor MLN4924 (Pevonedistat) in FLT3-ITD acute myeloid leukemia. Leukemia 2015; 29:1981-92. [PMID: 25971362 DOI: 10.1038/leu.2015.106] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 02/17/2015] [Accepted: 04/09/2015] [Indexed: 12/20/2022]
Abstract
High levels of microRNA-155 (miR-155) are associated with poor outcome in acute myeloid leukemia (AML). In AML, miR-155 is regulated by NF-κB, the activity of which is, in part, controlled by the NEDD8-dependent ubiquitin ligases. We demonstrate that MLN4924, an inhibitor of NEDD8-activating enzyme presently being evaluated in clinical trials, decreases binding of NF-κB to the miR-155 promoter and downregulates miR-155 in AML cells. This results in the upregulation of the miR-155 targets SHIP1, an inhibitor of the PI3K/Akt pathway, and PU.1, a transcription factor important for myeloid differentiation, leading to monocytic differentiation and apoptosis. Consistent with these results, overexpression of miR-155 diminishes MLN4924-induced antileukemic effects. In vivo, MLN4924 reduces miR-155 expression and prolongs the survival of mice engrafted with leukemic cells. Our study demonstrates the potential of miR-155 as a novel therapeutic target in AML via pharmacologic interference with NF-κB-dependent regulatory mechanisms. We show the targeting of this oncogenic microRNA with MLN4924, a compound presently being evaluated in clinical trials in AML. As high miR-155 levels have been consistently associated with aggressive clinical phenotypes, our work opens new avenues for microRNA-targeting therapeutic approaches to leukemia and cancer patients.
Collapse
Affiliation(s)
- J Khalife
- Program of Molecular, Cellular, and Developmental Biology, The Ohio State University, Columbus, OH, USA
| | - H S Radomska
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - R Santhanam
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - X Huang
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - P Neviani
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - J Saultz
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - H Wang
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Y-Z Wu
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - H Alachkar
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - M Anghelina
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - A Dorrance
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - J Curfman
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - C D Bloomfield
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - B C Medeiros
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - D Perrotti
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - L J Lee
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, USA.,Nanoscale Science and Engineering Center for Affordable Nanoengineering of Polymeric Biomedical Devices, The Ohio State University, Columbus, OH, USA
| | - R J Lee
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA.,Division of Pharmaceutics, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - M A Caligiuri
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - F Pichiorri
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - C M Croce
- Department of Molecular Virology, Immunology and Cancer Genetics, The Ohio State University and The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - R Garzon
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - M L Guzman
- Division of Hematology & Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - J H Mendler
- James P. Wilmot Cancer Center and Department of Medicine, University of Rochester, Rochester, NY, USA
| | - G Marcucci
- Division of Hematopoietic Stem Cell & Leukemia Research, Department of Hematology & HCT, Gehr Family Center for Leukemia, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| |
Collapse
|
45
|
Swords RT, Erba HP, DeAngelo DJ, Bixby DL, Altman JK, Maris M, Hua Z, Blakemore SJ, Faessel H, Sedarati F, Dezube BJ, Giles FJ, Medeiros BC. Pevonedistat (MLN4924), a First-in-Class NEDD8-activating enzyme inhibitor, in patients with acute myeloid leukaemia and myelodysplastic syndromes: a phase 1 study. Br J Haematol 2015; 169:534-43. [DOI: 10.1111/bjh.13323] [Citation(s) in RCA: 198] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 12/23/2014] [Indexed: 01/22/2023]
Affiliation(s)
- Ronan T. Swords
- Leukemia Program; Sylvester Comprehensive Cancer Center; Miami FL USA
| | - Harry P. Erba
- Division of Hematology/Oncology; University of Michigan; Ann Arbor MI USA
| | - Daniel J. DeAngelo
- Department of Medical Oncology; Dana-Farber Cancer Institute; Boston MA USA
| | - Dale L. Bixby
- Division of Hematology/Oncology; University of Michigan; Ann Arbor MI USA
| | - Jessica K. Altman
- Northwestern Medicine Developmental Therapeutics Institute; Northwestern University; Chicago IL USA
| | | | - Zhaowei Hua
- Takeda Pharmaceuticals International Co.; Cambridge MA USA
| | | | - Hélène Faessel
- Takeda Pharmaceuticals International Co.; Cambridge MA USA
| | | | | | - Francis J. Giles
- Northwestern Medicine Developmental Therapeutics Institute; Northwestern University; Chicago IL USA
| | - Bruno C. Medeiros
- Division of Hematology; Stanford University School of Medicine; Stanford CA USA
| |
Collapse
|
46
|
Scudder SL, Patrick GN. Synaptic structure and function are altered by the neddylation inhibitor MLN4924. Mol Cell Neurosci 2015; 65:52-7. [PMID: 25701678 DOI: 10.1016/j.mcn.2015.02.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 01/26/2015] [Accepted: 02/17/2015] [Indexed: 01/01/2023] Open
Abstract
The posttranslational modification of proteins by the ubiquitin-like small molecule NEDD8 has previously been shown to be vital in a number of cell signaling pathways. In particular, conjugation of NEDD8 (neddylation) serves to regulate protein ubiquitination through modifications to E3 ubiquitin ligases. Despite the prevalence of NEDD8 in neurons, very little work has been done to characterize the role of this modifier in these cells. Here, we use the recently developed NEDD8 Activating Enzyme (NAE) inhibitor MLN4924 and report evidence of a role for NEDD8 in regulating mammalian excitatory synapses. Application of this drug to dissociated rat hippocampal neurons caused reductions in synaptic strength, surface glutamate receptor levels, dendritic spine width, and spine density, suggesting that neddylation is involved in the maintenance of synapses.
Collapse
Affiliation(s)
- Samantha L Scudder
- Section of Neurobiology, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, United States.
| | - Gentry N Patrick
- Section of Neurobiology, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, United States.
| |
Collapse
|
47
|
Kuo KL, Ho IL, Shi CS, Wu JT, Lin WC, Tsai YC, Chang HC, Chou CT, Hsu CH, Hsieh JT, Chang SC, Pu YS, Huang KH. MLN4924, a novel protein neddylation inhibitor, suppresses proliferation and migration of human urothelial carcinoma: In vitro and in vivo studies. Cancer Lett 2015; 363:127-36. [PMID: 25615422 DOI: 10.1016/j.canlet.2015.01.015] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 01/09/2015] [Accepted: 01/13/2015] [Indexed: 01/08/2023]
Abstract
MLN4924, a small molecule inhibitor of NEDD8 activating enzyme (NAE), has been reported to elicit an anti-tumor effect on various malignancies. In this study, we investigated the anti-tumor effect of MLN4924 in human urothelial carcinoma (UC) in vitro and in vivo by using three human UC cell lines of various grading (T24, NTUB1 and RT4). The impact of MLN4924 on UC cells was determined by measuring viability (MTT), proliferation (BrdU incorporation), cell cycle progression (flow cytometry with propidium iodide staining) and apoptosis (flow cytometry with annexin V-FITC labeling). The cell cycle regulatory molecules, apoptosis-related molecules, and cell stress-related proteins were examined by Western blotting. The influence of tumor cell migration and invasion was analyzed by Transwell and wound healing assays. We also evaluated the effects of MLN4924 on tumor growth by a SCID xenograft mouse model. The data show that MLN4924 induced dose-dependent cytotoxicity, anti-proliferation, anti-migration, anti-invasion and apoptosis in human UC cells, accompanied by activations of Bad, phospho-histone H2A.X, caspase-3, 7 and PARP, decreased level of phospho-Bcl2, and caused cell cycle retardation at the G2M phase. Moreover, MLN4924 activated endoplasmic reticulum stress-related molecules (caspase-4, phospho-eIF2α, ATF-4 and CHOP) and other stress responses (JNK and c-Jun activations). Finally, we confirmed MLN4924 inhibited tumor growth in a UC xenograft mouse model with minimal general toxicity. We concluded that MLN4924 induces apoptosis and cell cycle arrest, as well as activation of cell stress responses in human UC. These findings imply MLN4924 provides a novel strategy for the treatment of UC.
Collapse
Affiliation(s)
- Kuan Lin Kuo
- Department of Urology, College of Medicine, National Taiwan University and National Taiwan University Hospital, Taipei, Taiwan
| | - I Lin Ho
- Department of Urology, College of Medicine, National Taiwan University and National Taiwan University Hospital, Taipei, Taiwan
| | - Chung Sheng Shi
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - June Tai Wu
- Graduate Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wei Chou Lin
- Department of Pathology, College of Medicine, National Taiwan University and National Taiwan University Hospital, Taipei, Taiwan
| | - Yu Chieh Tsai
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
| | - Hong Chiang Chang
- Department of Urology, College of Medicine, National Taiwan University and National Taiwan University Hospital, Taipei, Taiwan
| | - Chien Tso Chou
- Department of Urology, College of Medicine, National Taiwan University and National Taiwan University Hospital, Taipei, Taiwan
| | - Chen Hsun Hsu
- Department of Urology, College of Medicine, National Taiwan University and National Taiwan University Hospital, Taipei, Taiwan
| | - Ju Ton Hsieh
- Department of Urology, College of Medicine, National Taiwan University and National Taiwan University Hospital, Taipei, Taiwan
| | - Shih Chen Chang
- Department of Urology, College of Medicine, National Taiwan University and National Taiwan University Hospital, Taipei, Taiwan
| | - Yeong Shiau Pu
- Department of Urology, College of Medicine, National Taiwan University and National Taiwan University Hospital, Taipei, Taiwan
| | - Kuo How Huang
- Department of Urology, College of Medicine, National Taiwan University and National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
48
|
Nawrocki ST, Kelly KR, Smith PG, Keaton M, Carraway H, Sekeres MA, Maciejewski JP, Carew JS. The NEDD8-activating enzyme inhibitor MLN4924 disrupts nucleotide metabolism and augments the efficacy of cytarabine. Clin Cancer Res 2015; 21:439-47. [PMID: 25388161 PMCID: PMC4297545 DOI: 10.1158/1078-0432.ccr-14-1960] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE New therapies are urgently needed for patients with acute myelogenous leukemia (AML). The novel NEDDylation inhibitor MLN4924 (pevonedistat) has demonstrated significant preclinical antileukemic activity and preliminary efficacy in patients with AML in a phase I trial. On the basis of its antimyeloid and DNA-damaging properties, we investigated the ability of MLN4924 to augment conventional cytarabine (ara-C) therapy. EXPERIMENTAL DESIGN The effects of MLN4924/ara-C on viability, clonogenic survival, apoptosis, DNA damage, and relevant pharmacodynamic targets were determined. The efficacy and pharmacodynamics of MLN4924/ara-C were assessed in an AML xenograft model. RESULTS Cotreatment of AML cell lines and primary patient specimens with MLN4924 and ara-C led to diminished clonogenic survival, increased apoptosis, and synergistic levels of DNA damage. RNAi demonstrated that stabilization of CDT-1, an event previously shown to mediate the DNA-damaging effects of MLN4924, was not a key regulator of sensitivity to the MLN4924/ara-C combination. Global metabolic profiling revealed that MLN4924 disrupts nucleotide metabolism and depletes intracellular nucleotide pools in AML cells. Subsequent experiments showed that MLN4924 promoted increased incorporation of ara-C into the DNA of AML cells. This effect as well as the therapeutic benefit of the MLN4924/ara-C combination was antagonized by supplementation with the nucleotide building block ribose. Coadministration of MLN4924 and ara-C to mice bearing FLT3-ITD(+) AML xenografts stably inhibited disease progression and increased DNA damage in vivo. CONCLUSIONS Our findings provide strong rationale for clinical investigation of the MLN4924/ara-C combination and establish a new link between therapeutic inhibition of NEDDylation and alterations in nucleotide metabolism. Clin Cancer Res; 21(2); 439-47. ©2014 AACR.
Collapse
Affiliation(s)
- Steffan T Nawrocki
- Division of Hematology/Oncology, CTRC, The University of Texas Health Science Center, San Antonio, Texas
| | - Kevin R Kelly
- USC Norris Comprehensive Cancer Center, Pasadena, California
| | - Peter G Smith
- Millennium Pharmaceuticals, Cambridge, Massachusetts. H3 Biomedicine, Cambridge, Massachusetts
| | - Mignon Keaton
- Metabolon, Inc., Durham, North Carolina. Duke University, Durham, North Carolina
| | - Hetty Carraway
- Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio
| | | | | | | |
Collapse
|
49
|
Crystal structure of the human COP9 signalosome. Nature 2014; 512:161-5. [PMID: 25043011 DOI: 10.1038/nature13566] [Citation(s) in RCA: 178] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 06/06/2014] [Indexed: 12/26/2022]
Abstract
Ubiquitination is a crucial cellular signalling process, and is controlled on multiple levels. Cullin-RING E3 ubiquitin ligases (CRLs) are regulated by the eight-subunit COP9 signalosome (CSN). CSN inactivates CRLs by removing their covalently attached activator, NEDD8. NEDD8 cleavage by CSN is catalysed by CSN5, a Zn(2+)-dependent isopeptidase that is inactive in isolation. Here we present the crystal structure of the entire ∼350-kDa human CSN holoenzyme at 3.8 Å resolution, detailing the molecular architecture of the complex. CSN has two organizational centres: a horseshoe-shaped ring created by its six proteasome lid-CSN-initiation factor 3 (PCI) domain proteins, and a large bundle formed by the carboxy-terminal α-helices of every subunit. CSN5 and its dimerization partner, CSN6, are intricately embedded at the core of the helical bundle. In the substrate-free holoenzyme, CSN5 is autoinhibited, which precludes access to the active site. We find that neddylated CRL binding to CSN is sensed by CSN4, and communicated to CSN5 with the assistance of CSN6, resulting in activation of the deneddylase.
Collapse
|
50
|
Xu GW, Toth JI, da Silva SR, Paiva SL, Lukkarila JL, Hurren R, Maclean N, Sukhai MA, Bhattacharjee RN, Goard CA, Gunning PT, Dhe-Paganon S, Petroski MD, Schimmer AD. Mutations in UBA3 confer resistance to the NEDD8-activating enzyme inhibitor MLN4924 in human leukemic cells. PLoS One 2014; 9:e93530. [PMID: 24691136 PMCID: PMC3972249 DOI: 10.1371/journal.pone.0093530] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 03/04/2014] [Indexed: 11/19/2022] Open
Abstract
The NEDD8-activating enzyme (NAE) initiates neddylation, the cascade of post-translational NEDD8 conjugation onto target proteins. MLN4924, a selective NAE inhibitor, has displayed preclinical anti-tumor activity in vitro and in vivo, and promising clinical activity has been reported in patients with refractory hematologic malignancies. Here, we sought to understand the mechanisms of resistance to MLN4924. K562 and U937 leukemia cells were exposed over a 6 month period to MLN4924 and populations of resistant cells (R-K562MLN, R-U937MLN) were selected. R-K562MLN and R-U937MLN cells contain I310N and Y352H mutations in the NAE catalytic subunit UBA3, respectively. Biochemical analyses indicate that these mutations increase the enzyme’s affinity for ATP while decreasing its affinity for NEDD8. These mutations effectively contribute to decreased MLN4924 potency in vitro while providing for sufficient NAE function for leukemia cell survival. Finally, R-K562MLN cells showed cross-resistance to other NAE-selective inhibitors, but remained sensitive to a pan-E1 (activating enzyme) inhibitor. Thus, our work provides insight into mechanisms of MLN4924 resistance to facilitate the development of more effective second-generation NAE inhibitors.
Collapse
Affiliation(s)
- G. Wei Xu
- Ontario Cancer Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Julia I. Toth
- NCI-designated Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Sara R. da Silva
- Department of Chemistry, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Stacey-Lynn Paiva
- Department of Chemistry, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Julie L. Lukkarila
- Department of Chemistry, University of Toronto Mississauga, Mississauga, Ontario, Canada
- HalTech Regional Innovation Centre, Sheridan Institute of Technology and Advanced Learning, Oakville, Ontario, Canada
| | - Rose Hurren
- Ontario Cancer Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Neil Maclean
- Ontario Cancer Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Mahadeo A. Sukhai
- Ontario Cancer Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Rabindra N. Bhattacharjee
- Ontario Cancer Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Carolyn A. Goard
- Ontario Cancer Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Patrick T. Gunning
- Department of Chemistry, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Sirano Dhe-Paganon
- Division of Nephrology, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Matthew D. Petroski
- NCI-designated Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
- * E-mail: (ADS); (MDP)
| | - Aaron D. Schimmer
- Ontario Cancer Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- * E-mail: (ADS); (MDP)
| |
Collapse
|