1
|
Di Mattía RA, Gallo D, Ciarrocchi S, Gonano LA, Blanco PG, Valverde CA, Portiansky EL, Sommese LM, Toischer K, Bleckwedel F, Zelarayán LC, Aiello EA, Orlowski A. Cardiac hypertrophy induced by overexpression of IP3-released inositol 1, 4, 5-trisphosphate receptor-binding protein (IRBIT). J Mol Cell Cardiol 2025; 201:1-15. [PMID: 39929439 DOI: 10.1016/j.yjmcc.2025.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 01/22/2025] [Accepted: 02/06/2025] [Indexed: 03/22/2025]
Abstract
INTRODUCTION IRBIT, also known as Ahcyl1, is an IP3 receptor (IP3R)-binding protein released with IP3 and was first described as a competitive inhibitor of the mentioned receptor. Studies have shown that overexpression of IP3Rs is associated with cardiac hypertrophy in both human and animal models. Given that IP3Rs play a role in cardiac hypertrophy, IRBIT may also be involved in this condition. AIM Although IRBIT heart expression has been reported, its function in cardiac tissues remains unclear. Thus, we aimed to study the cardiac outcomes of up-and downregulation of IRBIT to establish its pathophysiological role. METHODS AND RESULTS We found that IRBIT is expressed in mouse ventricles and atria, fibroblasts and cardiomyocytes isolated from neonatal mice, and in the myoblast cell line H9c2. Mice with transverse aortic constriction showed a significant increase in both the mRNA and protein expression of IRBIT. Furthermore, we described the differential expression of IRBIT in human myocardial samples of dilated and ischemic cardiomyopathy. IRBIT cardiac overexpression in mice using an adenoassociated virus (AAV9) at two different time points (neonatal mice, day 4 and adult mice, 3 months) resulted in the development of cardiac hypertrophy with impaired systolic function by four months of age. A decrease in the mRNA levels of the IP3 receptor was also observed in both models. Isolated myocytes from the IRBIT-overexpressing neonatal model showed a significantly decreased Ca2+ transient amplitude and slower rise of the global Ca2+ transient, without changes in sarcoplasmic reticulum (SR) Ca2+ content or spontaneous Ca2+ wave frequency. However, the velocity of Ca2+ wave propagation was reduced. Moreover, we found that the dyssynchrony index (DI) is significantly increased under IRBIT overexpression. Nuclear Ca2+ dynamics were assessed, showing no significant changes, but IRBIT overexpression reduced the number of nuclear envelope invaginations. In addition, reducing IRBIT expression using AAV9-shRNA did not result in any changes in the heart morphometric parameters. CONCLUSION Our study describes for the first time that IRBIT plays a critical role in the pathophysiology of the heart. Our findings demonstrate that IRBIT overexpression disrupts Ca2+ signaling, contributing to hypertrophic remodeling and impaired cardiac function. The altered wave propagation, the increase in DI and the decrease of the rate of the Ca2+ transient suggests that IRBIT influences Ca2+ - induced Ca2+ release. This study provides the first evidence linking IRBIT to pathological cardiac remodeling and Ca2+ handling dysregulation. Although significant progress has been made, further research is required to better understand the cardiovascular function of IRBIT and its mechanisms.
Collapse
Affiliation(s)
- R A Di Mattía
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E. Cingolani", Facultad de Ciencias Médicas, Universidad Nacional de La Plata, CONICET, La Plata, Argentina
| | - D Gallo
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E. Cingolani", Facultad de Ciencias Médicas, Universidad Nacional de La Plata, CONICET, La Plata, Argentina
| | - S Ciarrocchi
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E. Cingolani", Facultad de Ciencias Médicas, Universidad Nacional de La Plata, CONICET, La Plata, Argentina
| | - L A Gonano
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E. Cingolani", Facultad de Ciencias Médicas, Universidad Nacional de La Plata, CONICET, La Plata, Argentina
| | - P G Blanco
- Centro de Fisiología Reproductiva & Métodos Complementarios de Diagnóstico (CEFIRE & MECODIAG), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, CONICET, La Plata, Argentina
| | - C A Valverde
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E. Cingolani", Facultad de Ciencias Médicas, Universidad Nacional de La Plata, CONICET, La Plata, Argentina
| | - E L Portiansky
- Laboratorio de Análisis de Imágenes, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, CONICET, La Plata, Argentina
| | - L M Sommese
- Departamento de Ciencia y Tecnología, CONICET, Universidad Nacional de Quilmes, Bernal, Argentina
| | - K Toischer
- German Center for Cardiovascular Research (DZHK) Partner Site, 37075 Goettingen, Germany; Clinic for Cardiology and Pneumology, University Medical Center, Göttingen, Germany
| | - F Bleckwedel
- Institute of Pharmacology and Toxicology, University Medical Center Goettingen (UMG), 37075 Goettingen, Germany; German Center for Cardiovascular Research (DZHK) Partner Site, 37075 Goettingen, Germany
| | - L C Zelarayán
- Institute of Pharmacology and Toxicology, University Medical Center Goettingen (UMG), 37075 Goettingen, Germany; German Center for Cardiovascular Research (DZHK) Partner Site, 37075 Goettingen, Germany; Justus Liebig University, Medical Clinic I, Department of Cardiology and Angiology, Klinikstraße 33, 35392 Giessen, Germany
| | - E A Aiello
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E. Cingolani", Facultad de Ciencias Médicas, Universidad Nacional de La Plata, CONICET, La Plata, Argentina
| | - A Orlowski
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E. Cingolani", Facultad de Ciencias Médicas, Universidad Nacional de La Plata, CONICET, La Plata, Argentina.
| |
Collapse
|
2
|
Piamsiri C, Fefelova N, Pamarthi SH, Gwathmey JK, Chattipakorn SC, Chattipakorn N, Xie LH. Potential Roles of IP 3 Receptors and Calcium in Programmed Cell Death and Implications in Cardiovascular Diseases. Biomolecules 2024; 14:1334. [PMID: 39456267 PMCID: PMC11506173 DOI: 10.3390/biom14101334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
Inositol 1,4,5-trisphosphate receptors (IP3Rs) play a crucial role in maintaining intracellular/cytosolic calcium ion (Ca2+i) homeostasis. The release of Ca2+ from IP3Rs serves as a second messenger and a modulatory factor influencing various intracellular and interorganelle communications during both physiological and pathological processes. Accumulating evidence from in vitro, in vivo, and clinical studies supports the notion that the overactivation of IP3Rs is linked to the pathogenesis of various cardiac conditions. The overactivation of IP3Rs results in the dysregulation of Ca2+ concentration ([Ca2+]) within cytosolic, mitochondrial, and nucleoplasmic cellular compartments. In cardiovascular pathologies, two isoforms of IP3Rs, i.e., IP3R1 and IP3R2, have been identified. Notably, IP3R1 plays a pivotal role in cardiac ischemia and diabetes-induced arrhythmias, while IP3R2 is implicated in sepsis-induced cardiomyopathy and cardiac hypertrophy. Furthermore, IP3Rs have been reported to be involved in various programmed cell death (PCD) pathways, such as apoptosis, pyroptosis, and ferroptosis underscoring their multifaceted roles in cardiac pathophysiology. Based on these findings, it is evident that exploring potential therapeutic avenues becomes crucial. Both genetic ablation and pharmacological intervention using IP3R antagonists have emerged as promising strategies against IP3R-related pathologies suggesting their potential therapeutic potency. This review summarizes the roles of IP3Rs in cardiac physiology and pathology and establishes a foundational understanding with a particular focus on their involvement in the various PCD pathways within the context of cardiovascular diseases.
Collapse
Affiliation(s)
- Chanon Piamsiri
- Department of Cell Biology and Molecular Medicine, Rutgers University-New Jersey Medical School, Newark, NJ 07103, USA; (C.P.); (N.F.)
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nadezhda Fefelova
- Department of Cell Biology and Molecular Medicine, Rutgers University-New Jersey Medical School, Newark, NJ 07103, USA; (C.P.); (N.F.)
| | - Sri Harika Pamarthi
- Department of Cell Biology and Molecular Medicine, Rutgers University-New Jersey Medical School, Newark, NJ 07103, USA; (C.P.); (N.F.)
| | - Judith K. Gwathmey
- Department of Cell Biology and Molecular Medicine, Rutgers University-New Jersey Medical School, Newark, NJ 07103, USA; (C.P.); (N.F.)
| | - Siriporn C. Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Lai-Hua Xie
- Department of Cell Biology and Molecular Medicine, Rutgers University-New Jersey Medical School, Newark, NJ 07103, USA; (C.P.); (N.F.)
| |
Collapse
|
3
|
de Oliveira RM, Paiva MUB, Picossi CRC, Paiva DVN, Ricart CAO, Ruperez FJ, Barbas C, Atik FA, Martins AMA. Metabolomic insights in advanced cardiomyopathy of chronic chagasic and idiopathic patients that underwent heart transplant. Sci Rep 2024; 14:9810. [PMID: 38684702 PMCID: PMC11059181 DOI: 10.1038/s41598-024-53875-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 02/06/2024] [Indexed: 05/02/2024] Open
Abstract
Heart failure (HF) studies typically focus on ischemic and idiopathic heart diseases. Chronic chagasic cardiomyopathy (CCC) is a progressive degenerative inflammatory condition highly prevalent in Latin America that leads to a disturbance of cardiac conduction system. Despite its clinical and epidemiological importance, CCC molecular pathogenesis is poorly understood. Here we characterize and discriminate the plasma metabolomic profile of 15 patients with advanced HF referred for heart transplantation - 8 patients with CCC and 7 with idiopathic dilated cardiomyopathy (IDC) - using gas chromatography/quadrupole time-of-flight mass spectrometry. Compared to the 12 heart donor individuals, also included to represent the control (CTRL) scenario, patients with advanced HF exhibited a metabolic imbalance with 21 discriminating metabolites, mostly indicative of accumulation of fatty acids, amino acids and important components of the tricarboxylic acid (TCA) cycle. CCC vs. IDC analyses revealed a metabolic disparity between conditions, with 12 CCC distinctive metabolites vs. 11 IDC representative metabolites. Disturbances were mainly related to amino acid metabolism profile. Although mitochondrial dysfunction and loss of metabolic flexibility may be a central mechanistic event in advanced HF, metabolic imbalance differs between CCC and IDC populations, possibly explaining the dissimilar clinical course of Chagas' patients.
Collapse
Affiliation(s)
- Raphaela M de Oliveira
- School of Medicine, University of Brasilia, Brasilia, Brazil
- Laboratory of Protein Chemistry and Biochemistry, University of Brasilia, Brasilia, Brazil
| | | | - Carolina R C Picossi
- Center of Excellence in Metabolomics and Bioanalysis, University of San Pablo CEU, Madrid, Spain
| | - Diego V N Paiva
- School of Medicine, University of Brasilia, Brasilia, Brazil
| | - Carlos A O Ricart
- Laboratory of Protein Chemistry and Biochemistry, University of Brasilia, Brasilia, Brazil
| | - Francisco J Ruperez
- Center of Excellence in Metabolomics and Bioanalysis, University of San Pablo CEU, Madrid, Spain
| | - Coral Barbas
- Center of Excellence in Metabolomics and Bioanalysis, University of San Pablo CEU, Madrid, Spain
| | - Fernando A Atik
- School of Medicine, University of Brasilia, Brasilia, Brazil
- Institute of Cardiology and Transplantation of the Federal District, Brasilia, Brazil
| | - Aline M A Martins
- School of Medicine, University of Brasilia, Brasilia, Brazil.
- Center of Excellence in Metabolomics and Bioanalysis, University of San Pablo CEU, Madrid, Spain.
| |
Collapse
|
4
|
Egger C, Fernandez-Tenorio M, Blanch J, Janicek R, Egger M. Dual mode of action of IP 3-dependent SR-Ca 2+ release on local and global SR-Ca 2+ release in ventricular cardiomyocytes. J Mol Cell Cardiol 2024; 186:107-110. [PMID: 37993093 DOI: 10.1016/j.yjmcc.2023.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/23/2023] [Accepted: 11/17/2023] [Indexed: 11/24/2023]
Abstract
In heart muscle, the physiological function of IP3-induced Ca2+ release (IP3ICR) from the sarcoplasmic reticulum (SR) is still the subject of intense study. A role of IP3ICR may reside in modulating Ca2+-dependent cardiac arrhythmogenicity. Here we observe the propensity of spontaneous intracellular Ca2+ waves (SCaW) driven by Ca2+-induced Ca2+ release (CICR) in ventricular myocytes as a correlate of arrhythmogenicity on the organ level. We observe a dual mode of action of IP3ICR on SCaW generation in an IP3R overexpression model. This model shows a mild cardiac phenotype and mimics pathophysiological conditions of increased IP3R activity. In this model, IP3ICR was able to increase or decrease the occurrence of SCaW depending on global Ca2+ activity. This IP3ICR-based regulatory mechanism can operate in two "modes" depending on the intracellular CICR activity and efficiency (e.g. SCaW and/or local Ryanodine Receptor (RyR) Ca2+ release events, respectively): a) in a mode that augments the CICR mechanism at the cellular level, resulting in improved excitation-contraction coupling (ECC) and ultimately better contraction of the myocardium, and b) in a protective mode in which the CICR activity is curtailed to prevent the occurrence of Ca2+ waves at the cellular level and thus reduce the probability of arrhythmogenicity at the organ level.
Collapse
Affiliation(s)
- Caroline Egger
- Department of Physiology, University of Bern, Buehlplatz 5, CH 3012 Bern, Switzerland; Department of Emergency Medicine (Notfallzentrum) Inselspital - University of Bern, Freiburgstrasse 10, CH 3010 Bern, Switzerland
| | | | - Joaquim Blanch
- Department of Physiology, University of Bern, Buehlplatz 5, CH 3012 Bern, Switzerland
| | - Radoslav Janicek
- Department of Physiology, University of Bern, Buehlplatz 5, CH 3012 Bern, Switzerland
| | - Marcel Egger
- Department of Physiology, University of Bern, Buehlplatz 5, CH 3012 Bern, Switzerland.
| |
Collapse
|
5
|
Saad NS, Mashali MA, Repas SJ, Janssen PML. Altering Calcium Sensitivity in Heart Failure: A Crossroads of Disease Etiology and Therapeutic Innovation. Int J Mol Sci 2023; 24:17577. [PMID: 38139404 PMCID: PMC10744146 DOI: 10.3390/ijms242417577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023] Open
Abstract
Heart failure (HF) presents a significant clinical challenge, with current treatments mainly easing symptoms without stopping disease progression. The targeting of calcium (Ca2+) regulation is emerging as a key area for innovative HF treatments that could significantly alter disease outcomes and enhance cardiac function. In this review, we aim to explore the implications of altered Ca2+ sensitivity, a key determinant of cardiac muscle force, in HF, including its roles during systole and diastole and its association with different HF types-HF with preserved and reduced ejection fraction (HFpEF and HFrEF, respectively). We further highlight the role of the two rate constants kon (Ca2+ binding to Troponin C) and koff (its dissociation) to fully comprehend how changes in Ca2+ sensitivity impact heart function. Additionally, we examine how increased Ca2+ sensitivity, while boosting systolic function, also presents diastolic risks, potentially leading to arrhythmias and sudden cardiac death. This suggests that strategies aimed at moderating myofilament Ca2+ sensitivity could revolutionize anti-arrhythmic approaches, reshaping the HF treatment landscape. In conclusion, we emphasize the need for precision in therapeutic approaches targeting Ca2+ sensitivity and call for comprehensive research into the complex interactions between Ca2+ regulation, myofilament sensitivity, and their clinical manifestations in HF.
Collapse
Affiliation(s)
- Nancy S. Saad
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA;
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Helwan University, Cairo 11795, Egypt
| | - Mohammed A. Mashali
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA;
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
- Department of Surgery, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22514, Egypt
| | - Steven J. Repas
- Department of Emergency Medicine, Wright State University Boonshoft School of Medicine, Dayton, OH 45324, USA;
| | - Paul M. L. Janssen
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA;
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
6
|
Jin X, Meletiou A, Chung J, Tilunaite A, Demydenko K, Dries E, Puertas RD, Amoni M, Tomar A, Claus P, Soeller C, Rajagopal V, Sipido K, Roderick HL. InsP 3R-RyR channel crosstalk augments sarcoplasmic reticulum Ca 2+ release and arrhythmogenic activity in post-MI pig cardiomyocytes. J Mol Cell Cardiol 2023; 179:47-59. [PMID: 37003353 DOI: 10.1016/j.yjmcc.2023.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/08/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
Ca2+ transients (CaT) underlying cardiomyocyte (CM) contraction require efficient Ca2+ coupling between sarcolemmal Ca2+ channels and sarcoplasmic reticulum (SR) ryanodine receptor Ca2+ channels (RyR) for their generation; reduced coupling in disease contributes to diminished CaT and arrhythmogenic Ca2+ events. SR Ca2+ release also occurs via inositol 1,4,5-trisphosphate receptors (InsP3R) in CM. While this pathway contributes negligeably to Ca2+ handling in healthy CM, rodent studies support a role in altered Ca2+ dynamics and arrhythmogenic Ca2+ release involving InsP3R crosstalk with RyRs in disease. Whether this mechanism persists in larger mammals with lower T-tubular density and coupling of RyRs is not fully resolved. We have recently shown an arrhythmogenic action of InsP3-induced Ca2+ release (IICR) in end stage human heart failure, often associated with underlying ischemic heart disease (IHD). How IICR contributes to early stages of disease is however not determined but highly relevant. To access this stage, we chose a porcine model of IHD, which shows substantial remodelling of the area adjacent to the infarct. In cells from this region, IICR preferentially augmented Ca2+ release from non-coupled RyR clusters that otherwise showed delayed activation during the CaT. IICR in turn synchronised Ca2+ release during the CaT but also induced arrhythmogenic delayed afterdepolarizations and action potentials. Nanoscale imaging identified co-clustering of InsP3Rs and RyRs, thereby allowing Ca2+-mediated channel crosstalk. Mathematical modelling supported and further delineated this mechanism of enhanced InsP3R-RyRs coupling in MI. Our findings highlight the role of InsP3R-RyR channel crosstalk in Ca2+ release and arrhythmia during post-MI remodelling.
Collapse
Affiliation(s)
- Xin Jin
- KU Leuven, Department of Cardiovascular Sciences, Laboratory of Experimental Cardiology, B-3000 Leuven, Belgium
| | - Anna Meletiou
- Department of Physiology, University of Bern, Bern, Switzerland
| | - Joshua Chung
- KU Leuven, Department of Cardiovascular Sciences, Laboratory of Experimental Cardiology, B-3000 Leuven, Belgium; Cell Structure and Mechanobiology Group, Department of Biomedical Engineering, Melbourne School of Engineering, University of Melbourne, Australia
| | - Agne Tilunaite
- Cell Structure and Mechanobiology Group, Department of Biomedical Engineering, Melbourne School of Engineering, University of Melbourne, Australia; Systems Biology Laboratory, School of Mathematics and Statistics, and Department of Biomedical Engineering, University of Melbourne, Australia
| | - Kateryna Demydenko
- KU Leuven, Department of Cardiovascular Sciences, Laboratory of Experimental Cardiology, B-3000 Leuven, Belgium
| | - Eef Dries
- KU Leuven, Department of Cardiovascular Sciences, Laboratory of Experimental Cardiology, B-3000 Leuven, Belgium
| | - Rosa Doñate Puertas
- KU Leuven, Department of Cardiovascular Sciences, Laboratory of Experimental Cardiology, B-3000 Leuven, Belgium
| | - Matthew Amoni
- KU Leuven, Department of Cardiovascular Sciences, Laboratory of Experimental Cardiology, B-3000 Leuven, Belgium
| | - Ashutosh Tomar
- KU Leuven, Department of Cardiovascular Sciences, Laboratory of Experimental Cardiology, B-3000 Leuven, Belgium
| | - Piet Claus
- KU Leuven, Department of Cardiovascular Sciences, Laboratory of Experimental Cardiology, B-3000 Leuven, Belgium
| | | | - Vijay Rajagopal
- Cell Structure and Mechanobiology Group, Department of Biomedical Engineering, Melbourne School of Engineering, University of Melbourne, Australia
| | - Karin Sipido
- KU Leuven, Department of Cardiovascular Sciences, Laboratory of Experimental Cardiology, B-3000 Leuven, Belgium
| | - H Llewelyn Roderick
- KU Leuven, Department of Cardiovascular Sciences, Laboratory of Experimental Cardiology, B-3000 Leuven, Belgium.
| |
Collapse
|
7
|
Chung J, Tilūnaitė A, Ladd D, Hunt H, Soeller C, Crampin EJ, Johnston ST, Roderick HL, Rajagopal V. IP 3R activity increases propensity of RyR-mediated sparks by elevating dyadic [Ca 2+]. Math Biosci 2023; 355:108923. [PMID: 36395827 DOI: 10.1016/j.mbs.2022.108923] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/15/2022] [Accepted: 10/15/2022] [Indexed: 11/16/2022]
Abstract
Calcium (Ca2+) plays a critical role in the excitation contraction coupling (ECC) process that mediates the contraction of cardiomyocytes during each heartbeat. While ryanodine receptors (RyRs) are the primary Ca2+ channels responsible for generating the cell-wide Ca2+ transients during ECC, Ca2+ release, via inositol 1,4,5-trisphosphate (IP3) receptors (IP3Rs) are also reported in cardiomyocytes to elicit ECC-modulating effects. Recent studies suggest that the localization of IP3Rs at dyads grant their ability to modify the occurrence of Ca2+ sparks (elementary Ca2+ release events that constitute cell wide Ca2+ releases associated with ECC) which may underlie their modulatory influence on ECC. Here, we aim to uncover the mechanism by which dyad-localized IP3Rs influence Ca2+ spark dynamics. To this end, we developed a mathematical model of the dyad that incorporates the behaviour of IP3Rs, in addition to RyRs, to reveal the impact of their activity on local Ca2+ handling and consequent Ca2+ spark occurrence and its properties. Consistent with published experimental data, our model predicts that the propensity for Ca2+ spark formation increases in the presence of IP3R activity. Our simulations support the hypothesis that IP3Rs elevate Ca2+ in the dyad, sensitizing proximal RyRs towards activation and hence Ca2+ spark formation. The stochasticity of IP3R gating is an important aspect of this mechanism. However, dyadic IP3R activity lowers the Ca2+ available in the junctional sarcoplasmic reticulum (JSR) for release, thus resulting in Ca2+ sparks with similar durations but lower amplitudes.
Collapse
Affiliation(s)
- Joshua Chung
- Department of Biomedical Engineering, The University of Melbourne, Melbourne, VIC 3010, Australia; Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, 3000, Leuven, Belgium
| | - Agnė Tilūnaitė
- Department of Biomedical Engineering, The University of Melbourne, Melbourne, VIC 3010, Australia; School of Mathematics and Statistics, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - David Ladd
- Department of Biomedical Engineering, The University of Melbourne, Melbourne, VIC 3010, Australia; School of Mathematics and Statistics, The University of Melbourne, Melbourne, VIC 3010, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, School of Chemical and Biomedical Engineering, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Hilary Hunt
- School of Mathematics and Statistics, The University of Melbourne, Melbourne, VIC 3010, Australia
| | | | - Edmund J Crampin
- Department of Biomedical Engineering, The University of Melbourne, Melbourne, VIC 3010, Australia; School of Mathematics and Statistics, The University of Melbourne, Melbourne, VIC 3010, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, School of Chemical and Biomedical Engineering, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Stuart T Johnston
- School of Mathematics and Statistics, The University of Melbourne, Melbourne, VIC 3010, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, School of Chemical and Biomedical Engineering, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - H Llewelyn Roderick
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, 3000, Leuven, Belgium.
| | - Vijay Rajagopal
- Department of Biomedical Engineering, The University of Melbourne, Melbourne, VIC 3010, Australia; Baker Department of Cardiometabolic Health, The University of Melbourne, Melbourne, VIC 3010, Australia.
| |
Collapse
|
8
|
Demydenko K, Ekhteraei-Tousi S, Roderick HL. Inositol 1,4,5-trisphosphate receptors in cardiomyocyte physiology and disease. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210319. [PMID: 36189803 PMCID: PMC9527928 DOI: 10.1098/rstb.2021.0319] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The contraction of cardiac muscle underlying the pumping action of the heart is mediated by the process of excitation-contraction coupling (ECC). While triggered by Ca2+ entry across the sarcolemma during the action potential, it is the release of Ca2+ from the sarcoplasmic reticulum (SR) intracellular Ca2+ store via ryanodine receptors (RyRs) that plays the major role in induction of contraction. Ca2+ also acts as a key intracellular messenger regulating transcription underlying hypertrophic growth. Although Ca2+ release via RyRs is by far the greatest contributor to the generation of Ca2+ transients in the cardiomyocyte, Ca2+ is also released from the SR via inositol 1,4,5-trisphosphate (InsP3) receptors (InsP3Rs). This InsP3-induced Ca2+ release modifies Ca2+ transients during ECC, participates in directing Ca2+ to the mitochondria, and stimulates the transcription of genes underlying hypertrophic growth. Central to these specific actions of InsP3Rs is their localization to responsible signalling microdomains, the dyad, the SR-mitochondrial interface and the nucleus. In this review, the various roles of InsP3R in cardiac (patho)physiology and the mechanisms by which InsP3 signalling selectively influences the different cardiomyocyte cell processes in which it is involved will be presented. This article is part of the theme issue ‘The cardiomyocyte: new revelations on the interplay between architecture and function in growth, health, and disease’.
Collapse
Affiliation(s)
- Kateryna Demydenko
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Samaneh Ekhteraei-Tousi
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - H Llewelyn Roderick
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
9
|
Holmes M, Hurley ME, Sheard TMD, Benson AP, Jayasinghe I, Colman MA. Increased SERCA2a sub-cellular heterogeneity in right-ventricular heart failure inhibits excitation-contraction coupling and modulates arrhythmogenic dynamics. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210317. [PMID: 36189801 PMCID: PMC9527927 DOI: 10.1098/rstb.2021.0317] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/21/2021] [Indexed: 12/14/2022] Open
Abstract
The intracellular calcium handling system of cardiomyocytes is responsible for controlling excitation-contraction coupling (ECC) and has been linked to pro-arrhythmogenic cellular phenomena in conditions such as heart failure (HF). SERCA2a, responsible for intracellular uptake, is a primary regulator of calcium homeostasis, and remodelling of its function has been proposed as a causal factor underlying cellular and tissue dysfunction in disease. Whereas adaptations to the global (i.e. whole-cell) expression of SERCA2a have been previously investigated in the context of multiple diseases, the role of its spatial profile in the sub-cellular volume has yet to be elucidated. We present an approach to characterize the sub-cellular heterogeneity of SERCA2a and apply this approach to quantify adaptations to the length-scale of heterogeneity (the distance over which expression is correlated) associated with right-ventricular (RV)-HF. These characterizations informed simulations to predict the functional implications of this heterogeneity, and its remodelling in disease, on ECC, the dynamics of calcium-transient alternans and the emergence of spontaneous triggered activity. Image analysis reveals that RV-HF is associated with an increase in length-scale and its inter-cellular variability; simulations predict that this increase in length-scale can reduce ECC and critically modulate the vulnerability to both alternans and triggered activity. This article is part of the theme issue 'The cardiomyocyte: new revelations on the interplay between architecture and function in growth, health, and disease'.
Collapse
Affiliation(s)
- M. Holmes
- Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - M. E. Hurley
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - T. M. D. Sheard
- School of Biosciences, The University of Sheffield, Sheffield S10 2TN, UK
| | - A. P. Benson
- Institute of Membrane and Systems Biology, University of Leeds, Leeds LS2 9JT, UK
| | - I. Jayasinghe
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK
- School of Biosciences, The University of Sheffield, Sheffield S10 2TN, UK
| | - M. A. Colman
- Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
10
|
Jin X, Amoni M, Gilbert G, Dries E, Doñate Puertas R, Tomar A, Nagaraju CK, Pradhan A, Yule DI, Martens T, Menten R, Vanden Berghe P, Rega F, Sipido K, Roderick HL. InsP 3R-RyR Ca 2+ channel crosstalk facilitates arrhythmias in the failing human ventricle. Basic Res Cardiol 2022; 117:60. [PMID: 36378362 DOI: 10.1007/s00395-022-00967-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/13/2022] [Accepted: 10/31/2022] [Indexed: 11/16/2022]
Abstract
Dysregulated intracellular Ca2+ handling involving altered Ca2+ release from intracellular stores via RyR channels underlies both arrhythmias and reduced function in heart failure (HF). Mechanisms linking RyR dysregulation and disease are not fully established. Studies in animals support a role for InsP3 receptor Ca2+ channels (InsP3R) in pathological alterations in cardiomyocyte Ca2+ handling but whether these findings translate to the divergent physiology of human cardiomyocytes during heart failure is not determined. Using electrophysiological and Ca2+ recordings in human ventricular cardiomyocytes, we uncovered that Ca2+ release via InsP3Rs facilitated Ca2+ release from RyR and induced arrhythmogenic delayed after depolarisations and action potentials. InsP3R-RyR crosstalk was particularly increased in HF at RyR clusters isolated from the T-tubular network. Reduced SERCA activity in HF further facilitated the action of InsP3. Nanoscale imaging revealed co-localisation of InsP3Rs with RyRs in the dyad, which was increased in HF, providing a mechanism for augmented Ca2+ channel crosstalk. Notably, arrhythmogenic activity dependent on InsP3Rs was increased in tissue wedges from failing hearts perfused with AngII to promote InsP3 generation. These data indicate a central role for InsP3R-RyR Ca2+ signalling crosstalk in the pro-arrhythmic action of GPCR agonists elevated in HF and the potential for their therapeutic targeting.
Collapse
Affiliation(s)
- Xin Jin
- Department of Cardiovascular Sciences, Laboratory of Experimental Cardiology, KU Leuven, 3000, Leuven, Belgium.,Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Matthew Amoni
- Department of Cardiovascular Sciences, Laboratory of Experimental Cardiology, KU Leuven, 3000, Leuven, Belgium
| | - Guillaume Gilbert
- Department of Cardiovascular Sciences, Laboratory of Experimental Cardiology, KU Leuven, 3000, Leuven, Belgium
| | - Eef Dries
- Department of Cardiovascular Sciences, Laboratory of Experimental Cardiology, KU Leuven, 3000, Leuven, Belgium
| | - Rosa Doñate Puertas
- Department of Cardiovascular Sciences, Laboratory of Experimental Cardiology, KU Leuven, 3000, Leuven, Belgium
| | - Ashutosh Tomar
- Department of Cardiovascular Sciences, Laboratory of Experimental Cardiology, KU Leuven, 3000, Leuven, Belgium
| | - Chandan K Nagaraju
- Department of Cardiovascular Sciences, Laboratory of Experimental Cardiology, KU Leuven, 3000, Leuven, Belgium
| | - Ankit Pradhan
- Department of Cardiovascular Sciences, Laboratory of Experimental Cardiology, KU Leuven, 3000, Leuven, Belgium
| | - David I Yule
- Department of Pharmacology and Physiology, Medical Center School of Medicine and Dentistry, University of Rochester, 601 Elmwood Avenue, Box 711, Rochester, NY, 14642, USA
| | - Tobie Martens
- Laboratory for Enteric NeuroScience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, 3000, Leuven, Belgium.,Cell and Tissue Imaging Cluster (CIC), KU Leuven, 3000, Leuven, Belgium
| | - Roxane Menten
- Department of Cardiovascular Sciences, Laboratory of Experimental Cardiology, KU Leuven, 3000, Leuven, Belgium
| | - Pieter Vanden Berghe
- Laboratory for Enteric NeuroScience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, 3000, Leuven, Belgium.,Cell and Tissue Imaging Cluster (CIC), KU Leuven, 3000, Leuven, Belgium
| | - Filip Rega
- Department of Cardiovascular Sciences, Laboratory of Experimental Cardiology, KU Leuven, 3000, Leuven, Belgium.,Department of Cardiology and Department of Cardiac Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Karin Sipido
- Department of Cardiovascular Sciences, Laboratory of Experimental Cardiology, KU Leuven, 3000, Leuven, Belgium
| | - H Llewelyn Roderick
- Department of Cardiovascular Sciences, Laboratory of Experimental Cardiology, KU Leuven, 3000, Leuven, Belgium.
| |
Collapse
|
11
|
Rajagopal V, Arumugam S, Hunter PJ, Khadangi A, Chung J, Pan M. The Cell Physiome: What Do We Need in a Computational Physiology Framework for Predicting Single-Cell Biology? Annu Rev Biomed Data Sci 2022; 5:341-366. [PMID: 35576556 DOI: 10.1146/annurev-biodatasci-072018-021246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Modern biology and biomedicine are undergoing a big data explosion, needing advanced computational algorithms to extract mechanistic insights on the physiological state of living cells. We present the motivation for the Cell Physiome project: a framework and approach for creating, sharing, and using biophysics-based computational models of single-cell physiology. Using examples in calcium signaling, bioenergetics, and endosomal trafficking, we highlight the need for spatially detailed, biophysics-based computational models to uncover new mechanisms underlying cell biology. We review progress and challenges to date toward creating cell physiome models. We then introduce bond graphs as an efficient way to create cell physiome models that integrate chemical, mechanical, electromagnetic, and thermal processes while maintaining mass and energy balance. Bond graphs enhance modularization and reusability of computational models of cells at scale. We conclude with a look forward at steps that will help fully realize this exciting new field of mechanistic biomedical data science. Expected final online publication date for the Annual Review of Biomedical Data Science, Volume 5 is August 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Vijay Rajagopal
- Department of Biomedical Engineering, University of Melbourne, Melbourne, Victoria, Australia;
| | - Senthil Arumugam
- Cellular Physiology Lab, Monash Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences; European Molecular Biological Laboratory (EMBL) Australia; and Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton/Melbourne, Victoria, Australia
| | - Peter J Hunter
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Afshin Khadangi
- Department of Biomedical Engineering, University of Melbourne, Melbourne, Victoria, Australia;
| | - Joshua Chung
- Department of Biomedical Engineering, University of Melbourne, Melbourne, Victoria, Australia;
| | - Michael Pan
- School of Mathematics and Statistics, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
12
|
On the Mechanism of Cardioprotective Effect of Fabomotizole in Alcoholic Cardiomyopathy. Bull Exp Biol Med 2021; 171:41-44. [PMID: 34050832 DOI: 10.1007/s10517-021-05168-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Indexed: 10/21/2022]
Abstract
The molecular mechanisms underlying the cardioprotective effect of fabomotizole were studied using the translational rat model of alcoholic cardiomyopathy developed by us. It was shown that intraperitoneal administration of fabomotizole (15 mg/kg) for 28 days to animals with alcoholic cardiomyopathy contributes to normalization of the expression of mRNA of genes of regulatory proteins СаМ (p=0.00001), Ерас1 (p=0.021), and Ерас2 (p=0.018) and receptors RyR2 (p=0.0031) and IP3R2 (p=0.006) in the myocardium of the myocardium of the left ventricle that is enhanced in control animals (p<0.05). These changes were accompanied by echocardiographically documented decrease in the degree of left ventricle remodeling and improvement of its inotropic function.
Collapse
|
13
|
Gong Y, Lin J, Ma Z, Yu M, Wang M, Lai D, Fu G. Mitochondria-associated membrane-modulated Ca 2+ transfer: A potential treatment target in cardiac ischemia reperfusion injury and heart failure. Life Sci 2021; 278:119511. [PMID: 33864818 DOI: 10.1016/j.lfs.2021.119511] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/25/2021] [Accepted: 03/31/2021] [Indexed: 12/12/2022]
Abstract
Effective Ca2+ dependent mitochondrial energy supply is imperative for proper cardiac contractile activity, while disruption of Ca2+ homeostasis participates in the pathogenesis of multiple human diseases. This phenomenon is particularly prominent in cardiac ischemia and reperfusion (I/R) and heart failure, both of which require strict clinical intervention. The interface between endoplasmic reticula (ER) and mitochondria, designated the mitochondria-associated membrane (MAM), is now regarded as a crucial mediator of Ca2+ transportation. Thus, interventions targeting this physical and functional coupling between mitochondria and the ER are highly desirable. Increasing evidence supports the notion that restoration, and maintenance, of the physiological contact between these two organelles can improve mitochondrial function, while inhibiting cell death, thereby sufficiently ameliorating I/R injury and heart failure development. A better understanding regarding the underlying mechanism of MAM-mediated transport will pave the way for identification of novel treatment approaches for heart disease. Therefore, in this review, we summarize the crucial functions and potential mechanisms of MAMs in the pathogenesis of I/R and heart failure.
Collapse
Affiliation(s)
- Yingchao Gong
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, China
| | - Jun Lin
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, China
| | - Zetao Ma
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, China
| | - Mei Yu
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, China
| | - Meihui Wang
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, China.
| | - Dongwu Lai
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, China.
| | - Guosheng Fu
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, China.
| |
Collapse
|
14
|
Qi XY, Vahdati Hassani F, Hoffmann D, Xiao J, Xiong F, Villeneuve LR, Ljubojevic-Holzer S, Kamler M, Abu-Taha I, Heijman J, Bers DM, Dobrev D, Nattel S. Inositol Trisphosphate Receptors and Nuclear Calcium in Atrial Fibrillation. Circ Res 2020; 128:619-635. [PMID: 33375812 DOI: 10.1161/circresaha.120.317768] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
RATIONALE The mechanisms underlying atrial fibrillation (AF), the most common clinical arrhythmia, are poorly understood. Nucleoplasmic Ca2+ regulates gene expression, but the nature and significance of nuclear Ca2+-changes in AF are largely unknown. OBJECTIVE To elucidate mechanisms by which AF alters atrial-cardiomyocyte nuclear Ca2+ ([Ca2+]Nuc) and CaMKII (Ca2+/calmodulin-dependent protein kinase-II)-related signaling. METHODS AND RESULTS Atrial cardiomyocytes were isolated from control and AF dogs (kept in AF by atrial tachypacing [600 bpm × 1 week]). [Ca2+]Nuc and cytosolic [Ca2+] ([Ca2+]Cyto) were recorded via confocal microscopy. Diastolic [Ca2+]Nuc was greater than [Ca2+]Cyto under control conditions, while resting [Ca2+]Nuc was similar to [Ca2+]Cyto; both diastolic and resting [Ca2+]Nuc increased with AF. IP3R (Inositol-trisphosphate receptor) stimulation produced larger [Ca2+]Nuc increases in AF versus control cardiomyocytes, and IP3R-blockade suppressed the AF-related [Ca2+]Nuc differences. AF upregulated nuclear protein expression of IP3R1 (IP3R-type 1) and of phosphorylated CaMKII (immunohistochemistry and immunoblot) while decreasing the nuclear/cytosolic expression ratio for HDAC4 (histone deacetylase type-4). Isolated atrial cardiomyocytes tachypaced at 3 Hz for 24 hours mimicked AF-type [Ca2+]Nuc changes and L-type calcium current decreases versus 1-Hz-paced cardiomyocytes; these changes were prevented by IP3R knockdown with short-interfering RNA directed against IP3R1. Nuclear/cytosolic HDAC4 expression ratio was decreased by 3-Hz pacing, while nuclear CaMKII phosphorylation was increased. Either CaMKII-inhibition (by autocamtide-2-related peptide) or IP3R-knockdown prevented the CaMKII-hyperphosphorylation and nuclear-to-cytosolic HDAC4 shift caused by 3-Hz pacing. In human atrial cardiomyocytes from AF patients, nuclear IP3R1-expression was significantly increased, with decreased nuclear/nonnuclear HDAC4 ratio. MicroRNA-26a was predicted to target ITPR1 (confirmed by luciferase assay) and was downregulated in AF atrial cardiomyocytes; microRNA-26a silencing reproduced AF-induced IP3R1 upregulation and nuclear diastolic Ca2+-loading. CONCLUSIONS AF increases atrial-cardiomyocyte nucleoplasmic [Ca2+] by IP3R1-upregulation involving miR-26a, leading to enhanced IP3R1-CaMKII-HDAC4 signaling and L-type calcium current downregulation. Graphic Abstract: A graphic abstract is available for this article.
Collapse
Affiliation(s)
- Xiao-Yan Qi
- Medicine, Montreal Heart Institute, Université de Montréal, Canada (X.-Y.Q., F.V.H., J.X., F.X., L.R.V., D.D., S.N.)
| | - Faezeh Vahdati Hassani
- Medicine, Montreal Heart Institute, Université de Montréal, Canada (X.-Y.Q., F.V.H., J.X., F.X., L.R.V., D.D., S.N.)
| | - Dennis Hoffmann
- Institute of Pharmacology, West German Heart and Vascular Center, Medical Faculty, University Duisburg-Essen, Germany (D.H., I.A.-T., J.H., D.D., S.N.)
| | - Jiening Xiao
- Medicine, Montreal Heart Institute, Université de Montréal, Canada (X.-Y.Q., F.V.H., J.X., F.X., L.R.V., D.D., S.N.)
| | - Feng Xiong
- Medicine, Montreal Heart Institute, Université de Montréal, Canada (X.-Y.Q., F.V.H., J.X., F.X., L.R.V., D.D., S.N.)
| | - Louis R Villeneuve
- Medicine, Montreal Heart Institute, Université de Montréal, Canada (X.-Y.Q., F.V.H., J.X., F.X., L.R.V., D.D., S.N.)
| | | | - Markus Kamler
- Departments of Thoracic and Cardiovascular Surgery Huttrop (M.K.)
| | - Issam Abu-Taha
- Institute of Pharmacology, West German Heart and Vascular Center, Medical Faculty, University Duisburg-Essen, Germany (D.H., I.A.-T., J.H., D.D., S.N.)
| | - Jordi Heijman
- Institute of Pharmacology, West German Heart and Vascular Center, Medical Faculty, University Duisburg-Essen, Germany (D.H., I.A.-T., J.H., D.D., S.N.).,Cardiology, Cardiovascular Research Institute Maastricht, Faculty of Health, Medicine, and Life Sciences, Maastricht University, the Netherlands (J.H.)
| | - Donald M Bers
- Physiology, University of California, Davis (S.L.-H., D.M.B.)
| | - Dobromir Dobrev
- Medicine, Montreal Heart Institute, Université de Montréal, Canada (X.-Y.Q., F.V.H., J.X., F.X., L.R.V., D.D., S.N.).,Institute of Pharmacology, West German Heart and Vascular Center, Medical Faculty, University Duisburg-Essen, Germany (D.H., I.A.-T., J.H., D.D., S.N.)
| | - Stanley Nattel
- Medicine, Montreal Heart Institute, Université de Montréal, Canada (X.-Y.Q., F.V.H., J.X., F.X., L.R.V., D.D., S.N.).,Institute of Pharmacology, West German Heart and Vascular Center, Medical Faculty, University Duisburg-Essen, Germany (D.H., I.A.-T., J.H., D.D., S.N.).,Pharmacology, McGill University Montreal, Canada (S.N.).,IHU LIRYC, Bordeaux, France (S.N.)
| |
Collapse
|
15
|
Diaz-Juarez J, Suarez JA, Dillmann WH, Suarez J. Mitochondrial calcium handling and heart disease in diabetes mellitus. Biochim Biophys Acta Mol Basis Dis 2020; 1867:165984. [PMID: 33002576 DOI: 10.1016/j.bbadis.2020.165984] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 01/23/2023]
Abstract
Diabetes mellitus-induced heart disease, including diabetic cardiomyopathy, is an important medical problem and is difficult to treat. Diabetes mellitus increases the risk for heart failure and decreases cardiac myocyte function, which are linked to changes in cardiac mitochondrial energy metabolism. The free mitochondrial calcium concentration ([Ca2+]m) is fundamental in activating the mitochondrial respiratory chain complexes and ATP production and is also known to regulate the activity of key mitochondrial dehydrogenases. The mitochondrial calcium uniporter complex (MCUC) plays a major role in mediating mitochondrial Ca2+ import, and its expression and function therefore may have a marked impact on cardiac myocyte metabolism and function. Here, we summarize the pathophysiological role of [Ca2+]m handling and MCUC in the diabetic heart. In addition, we evaluate potential therapeutic targets, directed to the machinery that regulates mitochondrial calcium handling, to alleviate diabetes-related cardiac disease.
Collapse
Affiliation(s)
- Julieta Diaz-Juarez
- Department of Pharmacology, Instituto Nacional de Cardiología, Juan Badiano No. 1, Col. Seccion XVI, 14080 Tlalpan, Ciudad de Mexico, Mexico
| | - Jorge A Suarez
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Wolfgang H Dillmann
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Jorge Suarez
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
16
|
Ca 2+ Release via IP 3 Receptors Shapes the Cardiac Ca 2+ Transient for Hypertrophic Signaling. Biophys J 2020; 119:1178-1192. [PMID: 32871099 DOI: 10.1016/j.bpj.2020.08.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 06/16/2020] [Accepted: 08/04/2020] [Indexed: 12/27/2022] Open
Abstract
Calcium (Ca2+) plays a central role in mediating both contractile function and hypertrophic signaling in ventricular cardiomyocytes. L-type Ca2+ channels trigger release of Ca2+ from ryanodine receptors for cellular contraction, whereas signaling downstream of G-protein-coupled receptors stimulates Ca2+ release via inositol 1,4,5-trisphosphate receptors (IP3Rs), engaging hypertrophic signaling pathways. Modulation of the amplitude, duration, and duty cycle of the cytosolic Ca2+ contraction signal and spatial localization have all been proposed to encode this hypertrophic signal. Given current knowledge of IP3Rs, we develop a model describing the effect of functional interaction (cross talk) between ryanodine receptor and IP3R channels on the Ca2+ transient and examine the sensitivity of the Ca2+ transient shape to properties of IP3R activation. A key result of our study is that IP3R activation increases Ca2+ transient duration for a broad range of IP3R properties, but the effect of IP3R activation on Ca2+ transient amplitude is dependent on IP3 concentration. Furthermore we demonstrate that IP3-mediated Ca2+ release in the cytosol increases the duty cycle of the Ca2+ transient, the fraction of the cycle for which [Ca2+] is elevated, across a broad range of parameter values and IP3 concentrations. When coupled to a model of downstream transcription factor (NFAT) activation, we demonstrate that there is a high correspondence between the Ca2+ transient duty cycle and the proportion of activated NFAT in the nucleus. These findings suggest increased cytosolic Ca2+ duty cycle as a plausible mechanism for IP3-dependent hypertrophic signaling via Ca2+-sensitive transcription factors such as NFAT in ventricular cardiomyocytes.
Collapse
|
17
|
Kaiser E, Tian Q, Wagner M, Barth M, Xian W, Schröder L, Ruppenthal S, Kaestner L, Boehm U, Wartenberg P, Lu H, McMillin SM, Bone DBJ, Wess J, Lipp P. DREADD technology reveals major impact of Gq signalling on cardiac electrophysiology. Cardiovasc Res 2020; 115:1052-1066. [PMID: 30321287 DOI: 10.1093/cvr/cvy251] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 06/02/2018] [Accepted: 10/11/2018] [Indexed: 02/04/2023] Open
Abstract
AIMS Signalling via Gq-coupled receptors is of profound importance in many cardiac diseases such as hypertrophy and arrhythmia. Nevertheless, owing to their widespread expression and the inability to selectively stimulate such receptors in vivo, their relevance for cardiac function is not well understood. We here use DREADD technology to understand the role of Gq-coupled signalling in vivo in cardiac function. METHODS AND RESULTS We generated a novel transgenic mouse line that expresses a Gq-coupled DREADD (Dq) in striated muscle under the control of the muscle creatine kinase promotor. In vivo injection of the DREADD agonist clozapine-N-oxide (CNO) resulted in a dose-dependent, rapid mortality of the animals. In vivo electrocardiogram data revealed severe cardiac arrhythmias including lack of P waves, atrioventricular block, and ventricular tachycardia. Following Dq activation, electrophysiological malfunction of the heart could be recapitulated in the isolated heart ex vivo. Individual ventricular and atrial myocytes displayed a positive inotropic response and arrhythmogenic events in the absence of altered action potentials. Ventricular tissue sections revealed a strong co-localization of Dq with the principal cardiac connexin CX43. Western blot analysis with phosphor-specific antibodies revealed strong phosphorylation of a PKC-dependent CX43 phosphorylation site following CNO application in vivo. CONCLUSION Activation of Gq-coupled signalling has a major impact on impulse generation, impulse propagation, and coordinated impulse delivery in the heart. Thus, Gq-coupled signalling does not only modulate the myocytes' Ca2+ handling but also directly alters the heart's electrophysiological properties such as intercellular communication. This study greatly advances our understanding of the plethora of modulatory influences of Gq signalling on the heart in vivo.
Collapse
Affiliation(s)
- Elisabeth Kaiser
- Center for Molecular Signaling (PZMS), Institute for Molecular Cell Biology; Medical Faculty, Saarland University, Homburg, Germany
| | - Qinghai Tian
- Center for Molecular Signaling (PZMS), Institute for Molecular Cell Biology; Medical Faculty, Saarland University, Homburg, Germany
| | - Michael Wagner
- Center for Molecular Signaling (PZMS), Institute for Molecular Cell Biology; Medical Faculty, Saarland University, Homburg, Germany
| | - Monika Barth
- Center for Molecular Signaling (PZMS), Institute for Molecular Cell Biology; Medical Faculty, Saarland University, Homburg, Germany
| | - Wenying Xian
- Center for Molecular Signaling (PZMS), Institute for Molecular Cell Biology; Medical Faculty, Saarland University, Homburg, Germany
| | - Laura Schröder
- Center for Molecular Signaling (PZMS), Institute for Molecular Cell Biology; Medical Faculty, Saarland University, Homburg, Germany
| | - Sandra Ruppenthal
- Center for Molecular Signaling (PZMS), Institute for Molecular Cell Biology; Medical Faculty, Saarland University, Homburg, Germany
| | - Lars Kaestner
- Center for Molecular Signaling (PZMS), Institute for Molecular Cell Biology; Medical Faculty, Saarland University, Homburg, Germany
| | - Ulrich Boehm
- Center for Molecular Signaling (PZMS), Institute for Experimental and Clinical Pharmacology and Toxicology, Medical Faculty, Saarland University, Homburg, Germany
| | - Philipp Wartenberg
- Center for Molecular Signaling (PZMS), Institute for Experimental and Clinical Pharmacology and Toxicology, Medical Faculty, Saarland University, Homburg, Germany
| | - Huiyan Lu
- Mouse Transgenic Core Facility, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Sara M McMillin
- Molecular Signaling Section, Lab. of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Derek B J Bone
- Molecular Signaling Section, Lab. of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Jürgen Wess
- Molecular Signaling Section, Lab. of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Peter Lipp
- Center for Molecular Signaling (PZMS), Institute for Molecular Cell Biology; Medical Faculty, Saarland University, Homburg, Germany
| |
Collapse
|
18
|
Mijares A, Espinosa R, Adams J, Lopez JR. Increases in [IP3]i aggravates diastolic [Ca2+] and contractile dysfunction in Chagas' human cardiomyocytes. PLoS Negl Trop Dis 2020; 14:e0008162. [PMID: 32275663 PMCID: PMC7176279 DOI: 10.1371/journal.pntd.0008162] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 04/22/2020] [Accepted: 02/21/2020] [Indexed: 11/18/2022] Open
Abstract
Chagas cardiomyopathy is the most severe manifestation of human Chagas disease and represents the major cause of morbidity and mortality in Latin America. We previously demonstrated diastolic Ca2+ alterations in cardiomyocytes isolated from Chagas' patients to different degrees of cardiac dysfunction. In addition, we have found a significant elevation of diastolic [Na+]d in Chagas' cardiomyocytes (FCII>FCI) that was greater than control. Exposure of cardiomyocytes to agents that enhance inositol 1,4,5 trisphosphate (IP3) generation or concentration like endothelin (ET-1) or bradykinin (BK), or membrane-permeant myoinositol 1,4,5-trisphosphate hexakis(butyryloxy-methyl) esters (IP3BM) caused an elevation in diastolic [Ca2+] ([Ca2+]d) that was always greater in cardiomyocytes from Chagas' than non- Chagas' subjects, and the magnitude of the [Ca2+]d elevation in Chagas' cardiomyocytes was related to the degree of cardiac dysfunction. Incubation with xestospongin-C (Xest-C), a membrane-permeable selective blocker of the IP3 receptors (IP3Rs), significantly reduced [Ca2+]d in Chagas' cardiomyocytes but did not have a significant effect on non-Chagas' cells. The effects of ET-1, BK, and IP3BM on [Ca2+]d were not modified by the removal of extracellular [Ca2+]e. Furthermore, cardiomyocytes from Chagas' patients had a significant decrease in the sarcoplasmic reticulum (SR) Ca2+content compared to control (Control>FCI>FCII), a higher intracellular IP3 concentration ([IP3]i) and markedly depressed contractile properties compared to control cardiomyocytes. These results provide additional and convincing support about the implications of IP3 in the pathogenesis of Chagas cardiomyopathy in patients at different stages of chronic infection. Additionally, these findings open the door for novel therapeutic strategies oriented to improve cardiac function and quality of life of individuals suffering from chronic Chagas cardiomyopathy (CC).
Collapse
Affiliation(s)
- Alfredo Mijares
- Centro de Biofísica y Bioquímica, Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela
| | - Raúl Espinosa
- Departamento de Cardiología, Hospital Miguel Pérez Carreño, Instituto venezolano de los Seguros Sociales, Caracas, Venezuela
| | - José Adams
- Division of Neonatology, Mount Sinai, Medical Center, Miami, FL, United States of America
| | - José R. Lopez
- Department of Research, Mount Sinai, Medical Center, Miami, FL, United States of America
| |
Collapse
|
19
|
Gilbert G, Demydenko K, Dries E, Puertas RD, Jin X, Sipido K, Roderick HL. Calcium Signaling in Cardiomyocyte Function. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a035428. [PMID: 31308143 DOI: 10.1101/cshperspect.a035428] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Rhythmic increases in intracellular Ca2+ concentration underlie the contractile function of the heart. These heart muscle-wide changes in intracellular Ca2+ are induced and coordinated by electrical depolarization of the cardiomyocyte sarcolemma by the action potential. Originating at the sinoatrial node, conduction of this electrical signal throughout the heart ensures synchronization of individual myocytes into an effective cardiac pump. Ca2+ signaling pathways also regulate gene expression and cardiomyocyte growth during development and in pathology. These fundamental roles of Ca2+ in the heart are illustrated by the prevalence of altered Ca2+ homeostasis in cardiovascular diseases. Indeed, heart failure (an inability of the heart to support hemodynamic needs), rhythmic disturbances, and inappropriate cardiac growth all share an involvement of altered Ca2+ handling. The prevalence of these pathologies, contributing to a third of all deaths in the developed world as well as to substantial morbidity makes understanding the mechanisms of Ca2+ handling and dysregulation in cardiomyocytes of great importance.
Collapse
Affiliation(s)
- Guillaume Gilbert
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, BE3000 Leuven, Belgium
| | - Kateryna Demydenko
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, BE3000 Leuven, Belgium
| | - Eef Dries
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, BE3000 Leuven, Belgium
| | - Rosa Doñate Puertas
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, BE3000 Leuven, Belgium
| | - Xin Jin
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, BE3000 Leuven, Belgium
| | - Karin Sipido
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, BE3000 Leuven, Belgium
| | - H Llewelyn Roderick
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, BE3000 Leuven, Belgium
| |
Collapse
|
20
|
Abstract
Ionized calcium (Ca2+) is the most versatile cellular messenger. All cells use Ca2+ signals to regulate their activities in response to extrinsic and intrinsic stimuli. Alterations in cellular Ca2+ signaling and/or Ca2+ homeostasis can subvert physiological processes into driving pathological outcomes. Imaging of living cells over the past decades has demonstrated that Ca2+ signals encode information in their frequency, kinetics, amplitude, and spatial extent. These parameters alter depending on the type and intensity of stimulation, and cellular context. Moreover, it is evident that different cell types produce widely varying Ca2+ signals, with properties that suit their physiological functions. This primer discusses basic principles and mechanisms underlying cellular Ca2+ signaling and Ca2+ homeostasis. Consequently, we have cited some historical articles in addition to more recent findings. A brief summary of the core features of cellular Ca2+ signaling is provided, with particular focus on Ca2+ stores and Ca2+ transport across cellular membranes, as well as mechanisms by which Ca2+ signals activate downstream effector systems.
Collapse
|
21
|
Ladd D, Tilūnaitė A, Roderick HL, Soeller C, Crampin EJ, Rajagopal V. Assessing Cardiomyocyte Excitation-Contraction Coupling Site Detection From Live Cell Imaging Using a Structurally-Realistic Computational Model of Calcium Release. Front Physiol 2019; 10:1263. [PMID: 31632297 PMCID: PMC6783691 DOI: 10.3389/fphys.2019.01263] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/17/2019] [Indexed: 01/11/2023] Open
Abstract
Calcium signaling plays a pivotal role in cardiomyocytes, coupling electrical excitation to mechanical contraction of the heart. Determining locations of active calcium release sites, and how their recruitment changes in response to stimuli and in disease states is therefore of central interest in cardiac physiology. Current algorithms for detecting release sites from live cell imaging data are however not easily validated against a known “ground truth,” which makes interpretation of the output of such algorithms, in particular the degree of confidence in site detection, a challenging task. Computational models are capable of integrating findings from multiple sources into a consistent, predictive framework. In cellular physiology, such models have the potential to reveal structure and function beyond the temporal and spatial resolution limitations of individual experimental measurements. Here, we create a spatially detailed computational model of calcium release in an eight sarcomere section of a ventricular cardiomyocyte, using electron tomography reconstruction of cardiac ultrastructure and confocal imaging of protein localization. This provides a high-resolution model of calcium diffusion from intracellular stores, which can be used as a platform to simulate confocal fluorescence imaging in the context of known ground truth structures from the higher resolution model. We use this capability to evaluate the performance of a recently proposed method for detecting the functional response of calcium release sites in live cells. Model permutations reveal how calcium release site density and mitochondria acting as diffusion barriers impact the detection performance of the algorithm. We demonstrate that site density has the greatest impact on detection precision and recall, in particular affecting the effective detectable depth of sites in confocal data. Our findings provide guidance on how such detection algorithms may best be applied to experimental data and give insights into limitations when using two-dimensional microscopy images to analyse three-dimensional cellular structures.
Collapse
Affiliation(s)
- David Ladd
- Systems Biology Lab, Department of Biomedical Engineering, School of Mathematics and Statistics, University of Melbourne, Melbourne, VIC, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, School of Chemical and Biomedical Engineering, University of Melbourne, Melbourne, VIC, Australia.,Cell Structure and Mechanobiology Group, Department of Biomedical Engineering, University of Melbourne, Melbourne, VIC, Australia
| | - Agnė Tilūnaitė
- Systems Biology Lab, Department of Biomedical Engineering, School of Mathematics and Statistics, University of Melbourne, Melbourne, VIC, Australia
| | - H Llewelyn Roderick
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Christian Soeller
- Living Systems Institute, University of Exeter, Exeter, United Kingdom
| | - Edmund J Crampin
- Systems Biology Lab, Department of Biomedical Engineering, School of Mathematics and Statistics, University of Melbourne, Melbourne, VIC, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, School of Chemical and Biomedical Engineering, University of Melbourne, Melbourne, VIC, Australia
| | - Vijay Rajagopal
- Cell Structure and Mechanobiology Group, Department of Biomedical Engineering, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
22
|
Mayourian J, Ceholski DK, Gonzalez DM, Cashman TJ, Sahoo S, Hajjar RJ, Costa KD. Physiologic, Pathologic, and Therapeutic Paracrine Modulation of Cardiac Excitation-Contraction Coupling. Circ Res 2019; 122:167-183. [PMID: 29301848 DOI: 10.1161/circresaha.117.311589] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cardiac excitation-contraction coupling (ECC) is the orchestrated process of initial myocyte electrical excitation, which leads to calcium entry, intracellular trafficking, and subsequent sarcomere shortening and myofibrillar contraction. Neurohumoral β-adrenergic signaling is a well-established mediator of ECC; other signaling mechanisms, such as paracrine signaling, have also demonstrated significant impact on ECC but are less well understood. For example, resident heart endothelial cells are well-known physiological paracrine modulators of cardiac myocyte ECC mainly via NO and endothelin-1. Moreover, recent studies have demonstrated other resident noncardiomyocyte heart cells (eg, physiological fibroblasts and pathological myofibroblasts), and even experimental cardiotherapeutic cells (eg, mesenchymal stem cells) are also capable of altering cardiomyocyte ECC through paracrine mechanisms. In this review, we first focus on the paracrine-mediated effects of resident and therapeutic noncardiomyocytes on cardiomyocyte hypertrophy, electrophysiology, and calcium handling, each of which can modulate ECC, and then discuss the current knowledge about key paracrine factors and their underlying mechanisms of action. Next, we provide a case example demonstrating the promise of tissue-engineering approaches to study paracrine effects on tissue-level contractility. More specifically, we present new functional and molecular data on the effects of human adult cardiac fibroblast conditioned media on human engineered cardiac tissue contractility and ion channel gene expression that generally agrees with previous murine studies but also suggests possible species-specific differences. By contrast, paracrine secretions by human dermal fibroblasts had no discernible effect on human engineered cardiac tissue contractile function and gene expression. Finally, we discuss systems biology approaches to help identify key stem cell paracrine mediators of ECC and their associated mechanistic pathways. Such integration of tissue-engineering and systems biology methods shows promise to reveal novel insights into paracrine mediators of ECC and their underlying mechanisms of action, ultimately leading to improved cell-based therapies for patients with heart disease.
Collapse
Affiliation(s)
- Joshua Mayourian
- From the Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Delaine K Ceholski
- From the Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY
| | - David M Gonzalez
- From the Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Timothy J Cashman
- From the Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Susmita Sahoo
- From the Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Roger J Hajjar
- From the Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Kevin D Costa
- From the Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY.
| |
Collapse
|
23
|
Singh N, Adlakha N. Three dimensional coupled reaction–diffusion modeling of calcium and inositol 1,4,5-trisphosphate dynamics in cardiomyocytes. RSC Adv 2019; 9:42459-42469. [PMID: 35542883 PMCID: PMC9076935 DOI: 10.1039/c9ra06929a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 11/28/2019] [Indexed: 11/30/2022] Open
Abstract
Nanoparticles have shown great promise in improving cancer treatment efficacy by changing the intracellular calcium level through activation of intracellular mechanisms. One of the mechanisms of the killing of the cancerous cell by a nanoparticle is through elevation of the intracellular calcium level. Evidence accumulated over the past decade indicates a pivotal role for the IP3 receptor mediated Ca2+ release in the regulation of the cytosolic and the nuclear Ca2+ signals. There have been various studies done suggesting the role of IP3 receptors (IP3R) and IP3 production and degradation in cardiomyocytes. In the present work, we have proposed a three-dimensional unsteady-state mathematical model to describe the mechanism of cardiomyocytes which focuses on evaluation of various parameters that affect these coupled dynamics and elevate the cytosolic calcium concentration which can be helpful to search for novel therapies to cure these malignancies by targeting the complex calcium signaling process in cardiomyocytes. Our study suggests that there are other factors involved in this signaling which can increase the calcium level, which can help in finding treatment for cancer. The cytosolic calcium level may be controlled by IP3 signaling, leak, source influx of calcium (σ) and maximum production of IP3 (VP). We believe that the proposed model suggests new insight into finding treatment for cancer in cardiomyocytes through elevation of the cytosolic Ca2+ concentration by various parameters like leak, σ, VP and especially by other complex cell signaling dynamics, namely IP3 dynamics. We propose a three-dimensional unsteady-state mathematical model to describe the mechanism of cardiomyocytes.![]()
Collapse
Affiliation(s)
- Nisha Singh
- Applied Mathematics and Humanities Department
- SVNIT
- Surat
- India
| | - Neeru Adlakha
- Applied Mathematics and Humanities Department
- SVNIT
- Surat
- India
| |
Collapse
|
24
|
Chen M, Xu D, Wu AZ, Kranias E, Lin SF, Chen PS, Chen Z. Phospholamban regulates nuclear Ca 2+ stores and inositol 1,4,5-trisphosphate mediated nuclear Ca 2+ cycling in cardiomyocytes. J Mol Cell Cardiol 2018; 123:185-197. [PMID: 30261161 DOI: 10.1016/j.yjmcc.2018.09.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/04/2018] [Accepted: 09/21/2018] [Indexed: 01/15/2023]
Abstract
AIMS Phospholamban (PLB) is the key regulator of the cardiac Ca2+ pump (SERCA2a)-mediated sarcoplasmic reticulum Ca2+ stores. We recently reported that PLB is highly concentrated in the nuclear envelope (NE) from where it can modulate perinuclear Ca2+ handling of the cardiomyocytes (CMs). Since inositol 1,4,5-trisphosphate (IP3) receptor (IP3R) mediates nuclear Ca2+ release, we examined whether the nuclear pool of PLB regulates IP3-induced nuclear Ca2+ handling. METHODS AND RESULTS Fluo-4 based confocal Ca2+ imaging was performed to measure Ca2+ dynamics across both nucleus and cytosol in saponin-permeabilized CMs isolated from wild-type (WT) or PLB-knockout (PLB-KO) mice. At diastolic intracellular Ca2+ ([Ca2+]i = 100 nM), the Fab fragment of the monoclonal PLB antibody (anti-PLB Fab) facilitated the formation and increased the length of spontaneous Ca2+ waves (SCWs) originating from the nuclear region in CMs from WT but not from PLB-KO mice. We next examined nuclear Ca2+ activities at basal condition and after sequential addition of IP3, anti-PLB Fab, and the IP3R inhibitor 2-aminoethoxydiphenyl borate (2-APB) at a series of [Ca2+]i. In WT mice, at 10 nM [Ca2+]i where ryanodine receptor (RyR2) based spontaneous Ca2+ sparks rarely occurred, IP3 increased fluorescence amplitude (F/F0) of overall nuclear region to 1.19 ± 0.02. Subsequent addition of anti-PLB Fab significantly decreased F/F0 to 1.09 ± 0.02. At 50 nM [Ca2+]i, anti-PLB Fab not only decreased the overall nuclear F/F0 previously elevated by IP3, but also increased the amplitude and duration of spark-like nuclear Ca2+ release events. These nuclear Ca2+ releases were blocked by 2-APB. At 100 nM [Ca2+]i, IP3 induced short SCWs originating from nucleus. Anti-PLB Fab transformed those short waves into long SCWs with propagation from the nucleus into the cytosol. In contrast, neither nuclear nor cytosolic Ca2+ dynamics was affected by anti-PLB Fab in CMs from PLB-KO mice in all these conditions. Furthermore, in WT CMs pretreated with RyR2 blocker tetracaine, IP3 and anti-PLB Fab still increased the magnitude of nuclear Ca2+ release but failed to regenerate SCWs. Finally, anti-PLB Fab increased low Ca2+ affinity mag-fluo 4 fluorescence intensity in the lumen of NE of nuclei isolated from WT but not in PLB-KO mice. CONCLUSION PLB regulates nuclear Ca2+ handling. By increasing Ca2+ uptake into lumen of the NE and perhaps other perinuclear membranes, the acute reversal of PLB inhibition decreases global Ca2+ concentration at rest in the nucleoplasm, and increases Ca2+ release into the nucleus, through mechanisms involving IP3R and RyR2 in the vicinity.
Collapse
Affiliation(s)
- Mu Chen
- Krannert Institute of Cardiology, Indiana University, Indianapolis, IN, USA; Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Dongzhu Xu
- Krannert Institute of Cardiology, Indiana University, Indianapolis, IN, USA; Cardiovascular Division, Institute of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Japan
| | - Adonis Z Wu
- Krannert Institute of Cardiology, Indiana University, Indianapolis, IN, USA
| | - Evangelia Kranias
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Shien-Fong Lin
- Krannert Institute of Cardiology, Indiana University, Indianapolis, IN, USA; Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Chiao Tung University, Hsin-Chu, Taiwan
| | - Peng-Sheng Chen
- Krannert Institute of Cardiology, Indiana University, Indianapolis, IN, USA
| | - Zhenhui Chen
- Krannert Institute of Cardiology, Indiana University, Indianapolis, IN, USA.
| |
Collapse
|
25
|
Blanch i Salvador J, Egger M. Obstruction of ventricular Ca 2+ -dependent arrhythmogenicity by inositol 1,4,5-trisphosphate-triggered sarcoplasmic reticulum Ca 2+ release. J Physiol 2018; 596:4323-4340. [PMID: 30004117 PMCID: PMC6138286 DOI: 10.1113/jp276319] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 07/06/2018] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Augmented inositol 1,4,5-trisphosphate (IP3 ) receptor (IP3 R2) expression has been linked to a variety of cardiac pathologies. Although cardiac IP3 R2 function has been in the focus of research for some time, a detailed understanding of its potential role in ventricular myocyte excitation-contraction coupling under pathophysiological conditions remains elusive. The present study focuses on mechanisms of IP3 R2-mediated sarcoplasmic reticulum (SR)-Ca2+ release in ventricular excitation-contraction coupling under IP3 R2-overexpressing conditions by studying intracellular Ca2+ events. We report that, upon IP3 R2 overexpression in ventricular myocytes, IP3 -induced Ca2+ release (IP3 ICR) modulates the SR-Ca2+ content via "eventless" SR-Ca2+ release, affecting the global SR-Ca2+ leak. Thus, IP3 R2 activation could act as a SR-Ca2+ gateway mechanism to escape ominous SR-Ca2+ overload. Our approach unmasks a so far unrecognized mechanism by which "eventless" IP3 ICR plays a protective role against ventricular Ca2+ -dependent arrhythmogenicity. ABSTRACT Augmented inositol 1,4,5-trisphosphate (IP3 ) receptor (IP3 R2) function has been linked to a variety of cardiac pathologies including cardiac arrhythmias. The functional role of IP3 -induced Ca2+ release (IP3 ICR) within ventricular excitation-contraction coupling (ECC) remains elusive. As part of pathophysiological cellular remodelling, IP3 R2s are overexpressed and have been repeatedly linked to enhanced Ca2+ -dependent arrhythmogenicity. In this study we test the hypothesis that an opposite scenario might be plausible in which IP3 ICR is part of an ECC protecting mechanism, resulting in a Ca2+ -dependent anti-arrhythmogenic response on the cellular scale. IP3 R2 activation was triggered via endothelin-1 or IP3 -salt application in single ventricular myocytes from a cardiac-specific IP3 R type 2 overexpressing mouse model. Upon IP3 R2 overexpression, IP3 R activation reduced Ca2+ -wave occurrence (46 vs. 21.72%; P < 0.001) while its block increased SR-Ca2+ content (∼29.4% 2-aminoethoxydiphenyl borate, ∼16.4% xestospongin C; P < 0.001), suggesting an active role of IP3 ICR in SR-Ca2+ content regulation and anti-arrhythmogenic function. Pharmacological separation of ryanodine receptor RyR2 and IP3 R2 functions and two-dimensional Ca2+ event analysis failed to identify local IP3 ICR events (Ca2+ puffs). SR-Ca2+ leak measurements revealed that under pathophysiological conditions, "eventless" SR-Ca2+ efflux via enhanced IP3 ICR maintains the SR-Ca2+ content below Ca2+ spark threshold, preventing aberrant SR-Ca2+ release and resulting in a protective mechanism against SR-Ca2+ overload and arrhythmias. Our results support a so far unrecognized modulatory mechanism in ventricular myocytes working in an anti-arrhythmogenic fashion.
Collapse
Affiliation(s)
| | - Marcel Egger
- Department of PhysiologyUniversity of BernBuehlplatz 5CH‐3012BernSwitzerland
| |
Collapse
|
26
|
Dixon RE. The anti-arrhythmic drIP 3 from a leaky SR. J Physiol 2018; 596:4291-4293. [PMID: 30047612 DOI: 10.1113/jp276793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Rose E Dixon
- Department of Physiology & Membrane Biology, University of California Davis, Davis, CA, 95616, USA
| |
Collapse
|
27
|
Smyrnias I, Goodwin N, Wachten D, Skogestad J, Aronsen JM, Robinson EL, Demydenko K, Segonds-Pichon A, Oxley D, Sadayappan S, Sipido K, Bootman MD, Roderick HL. Contractile responses to endothelin-1 are regulated by PKC phosphorylation of cardiac myosin binding protein-C in rat ventricular myocytes. J Mol Cell Cardiol 2018; 117:1-18. [DOI: 10.1016/j.yjmcc.2018.02.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 02/02/2018] [Accepted: 02/16/2018] [Indexed: 01/07/2023]
|
28
|
Berridge MJ. Vitamin D, reactive oxygen species and calcium signalling in ageing and disease. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0434. [PMID: 27377727 DOI: 10.1098/rstb.2015.0434] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2016] [Indexed: 12/13/2022] Open
Abstract
Vitamin D is a hormone that maintains healthy cells. It functions by regulating the low resting levels of cell signalling components such as Ca(2+) and reactive oxygen species (ROS). Its role in maintaining phenotypic stability of these signalling pathways depends on the ability of vitamin D to control the expression of those components that act to reduce the levels of both Ca(2+) and ROS. This regulatory role of vitamin D is supported by both Klotho and Nrf2. A decline in the vitamin D/Klotho/Nrf2 regulatory network may enhance the ageing process, and this is well illustrated by the age-related decline in cognition in rats that can be reversed by administering vitamin D. A deficiency in vitamin D has also been linked to two of the major diseases in man: heart disease and Alzheimer's disease (AD). In cardiac cells, this deficiency alters the Ca(2+) transients to activate the gene transcriptional events leading to cardiac hypertrophy and the failing heart. In the case of AD, it is argued that vitamin D deficiency results in the Ca(2+) landscape that initiates amyloid formation, which then elevates the resting level of Ca(2+) to drive the memory loss that progresses to neuronal cell death and dementia.This article is part of the themed issue 'Evolution brings Ca(2+) and ATP together to control life and death'.
Collapse
|
29
|
Wullschleger M, Blanch J, Egger M. Functional local crosstalk of inositol 1,4,5-trisphosphate receptor- and ryanodine receptor-dependent Ca2+ release in atrial cardiomyocytes. Cardiovasc Res 2017; 113:542-552. [PMID: 28158491 DOI: 10.1093/cvr/cvx020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 01/31/2017] [Indexed: 11/12/2022] Open
Abstract
Aims Enhanced inositol 1,4,5-trisphosphate receptor (InsP3R2) expression has been associated with a variety of proarrhythmogenic cardiac disorders. The functional interaction between the two major Ca2+ release mechanisms in cardiomyocytes, Ca2+ release mediated by ryanodine receptors (RyR2s) and InsP3-induced intracellular Ca2+ release (IP3ICR) remains enigmatic. We aimed at identifying characterizing local IP3ICR events, and elucidating functional local crosstalk mechanisms between cardiac InsP3R2s and RyR2s under conditions of enhanced cardiac specific InsP3R2 activity. Methods and results Using confocal imaging and two-dimensional spark analysis, we demonstrate in atrial myocytes (mouse model cardiac specific overexpressing InsP3R2s) that local Ca2+ release through InsP3Rs (Ca2+ puff) directly activates RyRs and triggers elementary Ca2+ release events (Ca2+ sparks). In the presence of increased intracellular InsP3 concentrations IP3ICR can modulate RyRs openings and Ca2+ spark probability. We show as well that IP3ICR remains under local control of Ca2+ release through RyRs. Conclusions Our results support the concept of bidirectional interaction between RyRs and InsP3Rs (i.e. Ca2+ sparks and Ca2+ puffs) in atrial myocytes. We conclude that highly efficient InsP3 dependent SR-Ca2+ flux constitute the main mechanism of functional crosstalk between InsP3Rs and RyRs resulting in more Ca2+ sensitized RyRs to trigger subsequent Ca2+-induced Ca2+ release activation. In this way, bidirectional local interaction of both SR-Ca2+ release channels may contribute to the shaping of global Ca2+ transients and thereby to contractility in cardiac myocytes.
Collapse
MESH Headings
- Animals
- Calcium Signaling/drug effects
- Electric Stimulation
- Endothelin-1/pharmacology
- Heart Atria/metabolism
- Image Processing, Computer-Assisted
- Inositol 1,4,5-Trisphosphate/metabolism
- Inositol 1,4,5-Trisphosphate Receptors/drug effects
- Inositol 1,4,5-Trisphosphate Receptors/genetics
- Inositol 1,4,5-Trisphosphate Receptors/metabolism
- Mice, Inbred C57BL
- Mice, Transgenic
- Microscopy, Confocal
- Myocardial Contraction
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Phenotype
- Receptor Cross-Talk/drug effects
- Ryanodine Receptor Calcium Release Channel/drug effects
- Ryanodine Receptor Calcium Release Channel/metabolism
- Sarcoplasmic Reticulum/metabolism
- Time Factors
Collapse
|
30
|
Garcia MI, Karlstaedt A, Chen JJ, Amione-Guerra J, Youker KA, Taegtmeyer H, Boehning D. Functionally redundant control of cardiac hypertrophic signaling by inositol 1,4,5-trisphosphate receptors. J Mol Cell Cardiol 2017; 112:95-103. [PMID: 28923351 DOI: 10.1016/j.yjmcc.2017.09.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 09/09/2017] [Accepted: 09/14/2017] [Indexed: 01/06/2023]
Abstract
Calcium plays an integral role to many cellular processes including contraction, energy metabolism, gene expression, and cell death. The inositol 1, 4, 5-trisphosphate receptor (IP3R) is a calcium channel expressed in cardiac tissue. There are three IP3R isoforms encoded by separate genes. In the heart, the IP3R-2 isoform is reported to being most predominant with regards to expression levels and functional significance. The functional roles of IP3R-1 and IP3R-3 in the heart are essentially unexplored despite measureable expression levels. Here we show that all three IP3Rs isoforms are expressed in both neonatal and adult rat ventricular cardiomyocytes, and in human heart tissue. The three IP3R proteins are expressed throughout the cardiomyocyte sarcoplasmic reticulum. Using isoform specific siRNA, we found that expression of all three IP3R isoforms are required for hypertrophic signaling downstream of endothelin-1 stimulation. Mechanistically, IP3Rs specifically contribute to activation of the hypertrophic program by mediating the positive inotropic effects of endothelin-1 and leading to downstream activation of nuclear factor of activated T-cells. Our findings highlight previously unidentified functions for IP3R isoforms in the heart with specific implications for hypertrophic signaling in animal models and in human disease.
Collapse
Affiliation(s)
- M Iveth Garcia
- Cell Biology Graduate Program, University of Texas Medical Branch, Galveston, TX 77555, United States; Department of Biochemistry and Molecular Biology, McGovern Medical School at UTHealth, Houston, TX 77030, United States
| | - Anja Karlstaedt
- Department of Internal Medicine, Division of Cardiology, McGovern Medical School at UTHealth, Houston, TX 77030, United States
| | - Jessica J Chen
- Department of Biochemistry and Molecular Biology, McGovern Medical School at UTHealth, Houston, TX 77030, United States
| | | | - Keith A Youker
- Houston Methodist Hospital, Houston, TX 77030, United States
| | - Heinrich Taegtmeyer
- Department of Internal Medicine, Division of Cardiology, McGovern Medical School at UTHealth, Houston, TX 77030, United States
| | - Darren Boehning
- Department of Biochemistry and Molecular Biology, McGovern Medical School at UTHealth, Houston, TX 77030, United States.
| |
Collapse
|
31
|
Peana D, Domeier TL. Cardiomyocyte Ca 2+ homeostasis as a therapeutic target in heart failure with reduced and preserved ejection fraction. Curr Opin Pharmacol 2017; 33:17-26. [PMID: 28437711 DOI: 10.1016/j.coph.2017.03.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Accepted: 03/22/2017] [Indexed: 12/28/2022]
Abstract
Heart failure is a highly prevalent syndrome of multiple etiologies and associated comorbidities, and aberrant intracellular Ca2+ homeostasis is a hallmark finding in heart failure patients. The cyclical changes in Ca2+ concentration within cardiomyocytes control cycles of cardiac contraction and relaxation, and dysregulation of Ca2+ handling processes leads to systolic dysfunction, diastolic dysfunction, and adverse remodeling. For this reason, greater understanding of Ca2+ handling mechanisms in heart failure is critical for selection of appropriate treatment strategies. In this review, we summarize the mechanisms of altered Ca2+ handling in two subsets of heart failure, heart failure with reduced ejection fraction and heart failure with preserved ejection fraction, and outline current and experimental treatments that target cardiomyocyte Ca2+ handling processes.
Collapse
Affiliation(s)
- Deborah Peana
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Timothy L Domeier
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO 65212, USA.
| |
Collapse
|
32
|
Bartlett PJ, Antony AN, Agarwal A, Hilly M, Prince VL, Combettes L, Hoek JB, Gaspers LD. Chronic alcohol feeding potentiates hormone-induced calcium signalling in hepatocytes. J Physiol 2017; 595:3143-3164. [PMID: 28220501 DOI: 10.1113/jp273891] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 01/26/2017] [Indexed: 12/14/2022] Open
Abstract
KEY POINTS Chronic alcohol consumption causes a spectrum of liver diseases, but the pathogenic mechanisms driving the onset and progression of disease are not clearly defined. We show that chronic alcohol feeding sensitizes rat hepatocytes to Ca2+ -mobilizing hormones resulting in a leftward shift in the concentration-response relationship and the transition from oscillatory to more sustained and prolonged Ca2+ increases. Our data demonstrate that alcohol-dependent adaptation in the Ca2+ signalling pathway occurs at the level of hormone-induced inositol 1,4,5 trisphosphate (IP3 ) production and does not involve changes in the sensitivity of the IP3 receptor or size of internal Ca2+ stores. We suggest that prolonged and aberrant hormone-evoked Ca2+ increases may stimulate the production of mitochondrial reactive oxygen species and contribute to alcohol-induced hepatocyte injury. ABSTRACT: 'Adaptive' responses of the liver to chronic alcohol consumption may underlie the development of cell and tissue injury. Alcohol administration can perturb multiple signalling pathways including phosphoinositide-dependent cytosolic calcium ([Ca2+ ]i ) increases, which can adversely affect mitochondrial Ca2+ levels, reactive oxygen species production and energy metabolism. Our data indicate that chronic alcohol feeding induces a leftward shift in the dose-response for Ca2+ -mobilizing hormones resulting in more sustained and prolonged [Ca2+ ]i increases in both cultured hepatocytes and hepatocytes within the intact perfused liver. Ca2+ increases were initiated at lower hormone concentrations, and intercellular calcium wave propagation rates were faster in alcoholics compared to controls. Acute alcohol treatment (25 mm) completely inhibited hormone-induced calcium increases in control livers, but not after chronic alcohol-feeding, suggesting desensitization to the inhibitory actions of ethanol. Hormone-induced inositol 1,4,5 trisphosphate (IP3 ) accumulation and phospholipase C (PLC) activity were significantly potentiated in hepatocytes from alcohol-fed rats compared to controls. Removal of extracellular calcium, or chelation of intracellular calcium did not normalize the differences in hormone-stimulated PLC activity, indicating calcium-dependent PLCs are not upregulated by alcohol. We propose that the liver 'adapts' to chronic alcohol exposure by increasing hormone-dependent IP3 formation, leading to aberrant calcium increases, which may contribute to hepatocyte injury.
Collapse
Affiliation(s)
- Paula J Bartlett
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School Rutgers, The State University of New Jersey, Newark, NJ, 07103, USA
| | - Anil Noronha Antony
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Amit Agarwal
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School Rutgers, The State University of New Jersey, Newark, NJ, 07103, USA
| | - Mauricette Hilly
- INSERM UMR-S 757, Université de Paris-Sud, bât 443, 91405, Orsay, France
| | - Victoria L Prince
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School Rutgers, The State University of New Jersey, Newark, NJ, 07103, USA
| | - Laurent Combettes
- INSERM UMR-S 757, Université de Paris-Sud, bât 443, 91405, Orsay, France
| | - Jan B Hoek
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Lawrence D Gaspers
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School Rutgers, The State University of New Jersey, Newark, NJ, 07103, USA
| |
Collapse
|
33
|
Multiple H + sensors mediate the extracellular acidification-induced [Ca 2+] i elevation in cultured rat ventricular cardiomyocytes. Sci Rep 2017; 7:44951. [PMID: 28332558 PMCID: PMC5362981 DOI: 10.1038/srep44951] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 02/16/2017] [Indexed: 02/04/2023] Open
Abstract
Acidosis has been known to cause “Ca2+ transients”, however, the mechanism is still uncertain. Here, we demonstrated that multiple H+ sensors, such as ASICs, TRPV1 and proton-sensing G protein coupled receptors (GPCRs) are involved in extracellular acidification-induced intracellular calcium ([Ca2+]i) elevation. By using calcium imaging measures, we observed that both ASIC and TRPV1 channels inhibitors suppressed the [Ca2+]i elevation induced by extracellular acidosis in cultured rat cardiac myocytes. Then, both channels mRNA and proteins were identified by RT-PCR, western blotting and immunofluorescence. ASIC-like and TRPV1-like currents were induced by extracellular acidification, suggesting that functional ASIC and TRPV1 channels jointly mediated extracellular calcium entry. Furthermore, either pre-exhaustion of sarcoplasmic reticulum (SR) Ca2+ with thapsigargin or IP3 receptor blocker 2-APB or PLC inhibitor U73122 significantly attenuated the elevation of [Ca2+]i, indicating that the intracellular Ca2+ stores and the PLC-IP3 signaling also contributed to the acidosis-induced elevation of [Ca2+]i. By using genetic and pharmacological approaches, we identified that ovarian cancer G protein-coupled receptor 1 (OGR1) might be another main component in acidosis-induced release of [Ca2+]i. These results suggest that multiple H+-sensitive receptors are involved in “Ca2+ transients” induced by acidosis in the heart.
Collapse
|
34
|
Bassett JJ, Monteith GR. Genetically Encoded Calcium Indicators as Probes to Assess the Role of Calcium Channels in Disease and for High-Throughput Drug Discovery. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2017; 79:141-171. [PMID: 28528667 DOI: 10.1016/bs.apha.2017.01.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The calcium ion (Ca2+) is an important signaling molecule implicated in many cellular processes, and the remodeling of Ca2+ homeostasis is a feature of a variety of pathologies. Typical methods to assess Ca2+ signaling in cells often employ small molecule fluorescent dyes, which are sometimes poorly suited to certain applications such as assessment of cellular processes, which occur over long periods (hours or days) or in vivo experiments. Genetically encoded calcium indicators are a set of tools available for the measurement of Ca2+ changes in the cytosol and subcellular compartments, which circumvent some of the inherent limitations of small molecule Ca2+ probes. Recent advances in genetically encoded calcium sensors have greatly increased their ability to provide reliable monitoring of Ca2+ changes in mammalian cells. New genetically encoded calcium indicators have diverse options in terms of targeting, Ca2+ affinity and fluorescence spectra, and this will further enhance their potential use in high-throughput drug discovery and other assays. This review will outline the methods available for Ca2+ measurement in cells, with a focus on genetically encoded calcium sensors. How these sensors will improve our understanding of the deregulation of Ca2+ handling in disease and their application to high-throughput identification of drug leads will also be discussed.
Collapse
Affiliation(s)
- John J Bassett
- School of Pharmacy, The University of Queensland, Brisbane, QLD, Australia
| | - Gregory R Monteith
- School of Pharmacy, The University of Queensland, Brisbane, QLD, Australia; Mater Research, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
35
|
Enhanced nucleoplasmic Ca2+ signaling in ventricular myocytes from young hypertensive rats. J Mol Cell Cardiol 2016; 101:58-68. [DOI: 10.1016/j.yjmcc.2016.11.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Revised: 10/31/2016] [Accepted: 11/01/2016] [Indexed: 11/20/2022]
|
36
|
Garcia MI, Boehning D. Cardiac inositol 1,4,5-trisphosphate receptors. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1864:907-914. [PMID: 27884701 DOI: 10.1016/j.bbamcr.2016.11.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 11/16/2016] [Accepted: 11/16/2016] [Indexed: 10/20/2022]
Abstract
Calcium is a second messenger that regulates almost all cellular functions. In cardiomyocytes, calcium plays an integral role in many functions including muscle contraction, gene expression, and cell death. Inositol 1,4,5-trisphosphate receptors (IP3Rs) are a family of calcium channels that are ubiquitously expressed in all tissues. In the heart, IP3Rs have been associated with regulation of cardiomyocyte function in response to a variety of neurohormonal agonists, including those implicated in cardiac disease. Notably, IP3R activity is thought to be essential for mediating the hypertrophic response to multiple stimuli including endothelin-1 and angiotensin II. In this review, we will explore the functional implications of IP3R activity in the heart in health and disease.
Collapse
Affiliation(s)
- M Iveth Garcia
- Cell Biology Graduate Program, University of Texas Medical Branch, Galveston, TX 77555, United States; Department of Biochemistry and Molecular Biology, McGovern Medical School at UTHealth, Houston, TX 77030, United States
| | - Darren Boehning
- Department of Biochemistry and Molecular Biology, McGovern Medical School at UTHealth, Houston, TX 77030, United States.
| |
Collapse
|
37
|
Berridge MJ. The Inositol Trisphosphate/Calcium Signaling Pathway in Health and Disease. Physiol Rev 2016; 96:1261-96. [DOI: 10.1152/physrev.00006.2016] [Citation(s) in RCA: 377] [Impact Index Per Article: 41.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Many cellular functions are regulated by calcium (Ca2+) signals that are generated by different signaling pathways. One of these is the inositol 1,4,5-trisphosphate/calcium (InsP3/Ca2+) signaling pathway that operates through either primary or modulatory mechanisms. In its primary role, it generates the Ca2+ that acts directly to control processes such as metabolism, secretion, fertilization, proliferation, and smooth muscle contraction. Its modulatory role occurs in excitable cells where it modulates the primary Ca2+ signal generated by the entry of Ca2+ through voltage-operated channels that releases Ca2+ from ryanodine receptors (RYRs) on the internal stores. In carrying out this modulatory role, the InsP3/Ca2+ signaling pathway induces subtle changes in the generation and function of the voltage-dependent primary Ca2+ signal. Changes in the nature of both the primary and modulatory roles of InsP3/Ca2+ signaling are a contributory factor responsible for the onset of a large number human diseases.
Collapse
Affiliation(s)
- Michael J. Berridge
- Laboratory of Molecular Signalling, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, United Kingdom
| |
Collapse
|
38
|
Salazar-Cantú A, Pérez-Treviño P, Montalvo-Parra D, Balderas-Villalobos J, Gómez-Víquez NL, García N, Altamirano J. Role of SERCA and the sarcoplasmic reticulum calcium content on calcium waves propagation in rat ventricular myocytes. Arch Biochem Biophys 2016; 604:11-9. [DOI: 10.1016/j.abb.2016.05.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 05/14/2016] [Accepted: 05/26/2016] [Indexed: 11/25/2022]
|
39
|
Abstract
Calcium (Ca) is a universal second messenger involved in the regulation of various cellular processes, including electrical signaling, contraction, secretion, memory, gene transcription, and cell death. In heart, Ca governs cardiomyocyte contraction, is central in electrophysiological properties, and controls major signaling pathway implicated in gene transcription. How cardiomyocytes decode Ca signal to regulate gene expression without interfering with, or being controlled by, "contractile" Ca that floods the entire cytosol during each heartbeat is still elusive. In this review, we summarize recent findings on nuclear Ca regulation and its downstream signaling in cardiomyocytes. We will address difficulties in reliable quantification of nuclear Ca fluxes and discuss its role in the development and progression of cardiac hypertrophy and heart failure. We also point out key open questions to stimulate future work.
Collapse
|
40
|
Abstract
There is increasing evidence that a deficiency in vitamin D contributes to many human diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS), hypertension and cardiovascular disease. The ability of vitamin D to maintain healthy cells seems to depend on its role as a guardian of phenotypic stability particularly with regard to the reactive oxygen species (ROS) and Ca2+ signalling systems. Vitamin D maintains the expression of those signalling components responsible for stabilizing the low-resting state of these two signalling pathways. This vitamin D signalling stability hypothesis proposes that vitamin D, working in conjunction with klotho and Nrf2 (nuclear factor-erythroid-2-related factor 2), acts as a custodian to maintain the normal function of the ROS and Ca2+ signalling pathways. A decline in vitamin D levels will lead to an erosion of this signalling stability and may account for why so many of the major diseases in man, which have been linked to vitamin D deficiency, are associated with a dysregulation in both ROS and Ca2+ signalling.
Collapse
|
41
|
Endothelin-1-induced remodelling of murine adult ventricular myocytes. Cell Calcium 2016; 59:41-53. [DOI: 10.1016/j.ceca.2015.12.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 12/17/2015] [Accepted: 12/22/2015] [Indexed: 11/30/2022]
|
42
|
Berridge MJ. Vitamin D cell signalling in health and disease. Biochem Biophys Res Commun 2015; 460:53-71. [PMID: 25998734 DOI: 10.1016/j.bbrc.2015.01.008] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 01/05/2015] [Indexed: 12/13/2022]
Abstract
Vitamin D deficiency has been linked to many human diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS), hypertension and cardiovascular disease. A Vitamin D phenotypic stability hypothesis, which is developed in this review, attempts to describe how this vital hormone acts to maintain healthy cellular functions. This role of Vitamin D as a guardian of phenotypic stability seems to depend on its ability to maintain the redox and Ca(2+) signalling systems. It is argued that its primary action is to maintain the expression of those signalling components responsible for stabilizing the low resting state of these two signalling pathways. This phenotypic stability role is facilitated through the ability of vitamin D to increase the expression of both Nrf2 and the anti-ageing protein Klotho, which are also major regulators of Ca(2+) and redox signalling. A decline in Vitamin D levels will lead to a decline in the stability of this regulatory signalling network and may account for why so many of the major diseases in man, which have been linked to vitamin D deficiency, are associated with a dysregulation in both ROS and Ca(2+) signalling.
Collapse
|
43
|
Kapoor N, Tran A, Kang J, Zhang R, Philipson KD, Goldhaber JI. Regulation of calcium clock-mediated pacemaking by inositol-1,4,5-trisphosphate receptors in mouse sinoatrial nodal cells. J Physiol 2015; 593:2649-63. [PMID: 25903031 DOI: 10.1113/jp270082] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 04/15/2015] [Indexed: 01/30/2023] Open
Abstract
KEY POINTS Inositol-1,4,5-trisphosphate receptors (IP3 Rs) modulate pacemaking in embryonic heart, but their role in adult sinoatrial node (SAN) pacemaking is uncertain. We found that stimulation of IP3 Rs accelerates spontaneous pacing rate in isolated mouse SAN cells, whereas inhibition of IP3 Rs slows pacing. In atrial-specific sodium-calcium exchanger (NCX) knockout (KO) SAN cells, where the Ca(2+) clock is uncoupled from the membrane clock, IP3 R agonists and antagonists modulate the rate of spontaneous Ca(2+) waves, suggesting that IP3 R-mediated Ca(2+) release modulates the Ca(2+) clock. IP3 R modulation also regulates Ca(2+) spark parameters, a reflection of ryanodine receptor open probability, consistent with the effect of IP3 signalling on Ca(2+) clock frequency. Modulation of Ca(2+) clock frequency by IP3 signalling in NCX KO SAN cells demonstrates that the effect is independent of NCX. These findings support development of IP3 signalling modulators for regulation of heart rate, particularly in heart failure where IP3 Rs are upregulated. ABSTRACT Cardiac pacemaking initiated by the sinus node is attributable to the interplay of several membrane currents. These include the depolarizing 'funny current' (If ) and the sodium-calcium exchanger current (INCX ). The latter is activated by ryanodine receptor (RyR)-mediated calcium (Ca(2+) ) release from the sarcoplasmic reticulum (SR). Another SR Ca(2+) release channel, the inositol-1,4,5-triphosphate receptor (IP3 R), has been implicated in the generation of spontaneous Ca(2+) release in atrial and ventricular cardiomyocytes. Whether IP3 R-mediated Ca(2+) release also influences SAN automaticity is controversial, in part due to the confounding influence of periodic Ca(2+) flux through the sarcolemma accompanying each beat. We took advantage of atrial-specific sodium-calcium exchanger (NCX) knockout (KO) SAN cells to study the influence of IP3 signalling on cardiac pacemaking in a system where periodic intracellular Ca(2+) cycling persists despite the absence of depolarization or Ca(2+) flux across the sarcolemma. We recorded confocal line scans of spontaneous Ca(2+) release in WT and NCX KO SAN cells in the presence or absence of an IP3 R blocker (2-aminoethoxydiphenyl borate, 2-APB), or during block of IP3 production by the phospholipase C inhibitor U73122. 2-APB and U73122 decreased the frequency of spontaneous Ca(2+) transients and waves in WT and NCX KO cells, respectively. Alternatively, increased IP3 production induced by phenylephrine increased Ca(2+) transient and wave frequency. We conclude that IP3 R-mediated SR Ca(2+) flux is crucial for initiating and modulating the RyR-mediated Ca(2+) cycling that regulates SAN pacemaking. Our results in NCX KO SAN cells also demonstrate that RyRs, but not NCX, are required for IP3 to modulate Ca(2+) clock frequency.
Collapse
Affiliation(s)
- Nidhi Kapoor
- Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Andrew Tran
- Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Jeanney Kang
- Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Rui Zhang
- Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Kenneth D Philipson
- Department of Physiology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, USA
| | - Joshua I Goldhaber
- Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
44
|
Niggli E. IP3 and Ca(2+) signals in the heart: boost them or bust them? J Physiol 2015; 593:1385-6. [PMID: 25772293 DOI: 10.1113/jphysiol.2014.287987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Ernst Niggli
- University of Bern, Department of Physiology, Bühlplatz 5, 3012, Bern, Switzerland
| |
Collapse
|
45
|
Rasheed S, Hashim R, Yan JS. Possible Biomarkers for the Early Detection of HIV-associated Heart Diseases: A Proteomics and Bioinformatics Prediction. Comput Struct Biotechnol J 2015; 13:145-52. [PMID: 25750702 PMCID: PMC4348431 DOI: 10.1016/j.csbj.2015.02.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Revised: 12/30/2014] [Accepted: 02/11/2015] [Indexed: 12/12/2022] Open
Abstract
The frequency of cardiovascular disorders is increasing in HIV-infected individuals despite a significant reduction in the viral load by antiretroviral therapies (ART). Since the CD4 + T-cells are responsible for the viral load as well as immunological responses, we hypothesized that chronic HIV-infection of T-cells produces novel proteins/enzymes that cause cardiac dysfunctions. To identify specific factors that might cause cardiac disorders without the influence of numerous cofactors produced by other pathogenic microorganisms that co-inhabit most HIV-infected individuals, we analyzed genome-wide proteomes of a CD4 + T-cell line at different stages of HIV replication and cell growth over > 6 months. Subtractive analyses of several hundred differentially regulated proteins from HIV-infected and uninfected counterpart cells and comparisons with proteins expressed from the same cells after treating with the antiviral drug Zidovudine/AZT and inhibiting virus replication, identified a well-coordinated network of 12 soluble/diffusible proteins in HIV-infected cells. Functional categorization, bioinformatics and statistical analyses of each protein predicted that the expression of cardiac-specific Ca2 + kinase together with multiple Ca2 + release channels causes a sustained overload of Ca2 + in the heart which induces fetal/cardiac myosin heavy chains (MYH6 and MYH7) and a myosin light-chain kinase. Each of these proteins has been shown to cause cardiac stress, arrhythmia, hypertrophic signaling, cardiomyopathy and heart failure (p = 8 × 10− 11). Translational studies using the newly discovered proteins produced by HIV infection alone would provide additional biomarkers that could be added to the conventional markers for an early diagnosis and/or development of specific therapeutic interventions for heart diseases in HIV-infected individuals.
Collapse
Affiliation(s)
- Suraiya Rasheed
- Laboratory of Viral Oncology and Proteomics Research, Keck School of Medicine, University of Southern California, Cancer Research Laboratory Building, 1303 North Mission Rd, Los Angeles, CA 90033, USA
| | - Rahim Hashim
- Laboratory of Viral Oncology and Proteomics Research, Keck School of Medicine, University of Southern California, Cancer Research Laboratory Building, 1303 North Mission Rd, Los Angeles, CA 90033, USA
| | - Jasper S Yan
- Laboratory of Viral Oncology and Proteomics Research, Keck School of Medicine, University of Southern California, Cancer Research Laboratory Building, 1303 North Mission Rd, Los Angeles, CA 90033, USA
| |
Collapse
|
46
|
Hohendanner F, Walther S, Maxwell JT, Kettlewell S, Awad S, Smith GL, Lonchyna VA, Blatter LA. Inositol-1,4,5-trisphosphate induced Ca2+ release and excitation-contraction coupling in atrial myocytes from normal and failing hearts. J Physiol 2014; 593:1459-77. [PMID: 25416623 DOI: 10.1113/jphysiol.2014.283226] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 11/10/2014] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Impaired calcium (Ca(2+)) signalling is the main contributor to depressed ventricular contractile function and occurrence of arrhythmia in heart failure (HF). Here we report that in atrial cells of a rabbit HF model, Ca(2+) signalling is enhanced and we identified the underlying cellular mechanisms. Enhanced Ca(2+) transients (CaTs) are due to upregulation of inositol-1,4,5-trisphosphate receptor induced Ca(2+) release (IICR) and decreased mitochondrial Ca(2+) sequestration. Enhanced IICR, however, together with an increased activity of the sodium-calcium exchange mechanism, also facilitates spontaneous Ca(2+) release in form of arrhythmogenic Ca(2+) waves and spontaneous action potentials, thus enhancing the arrhythmogenic potential of atrial cells. Our data show that enhanced Ca(2+) signalling in HF provides atrial cells with a mechanism to improve ventricular filling and to maintain cardiac output, but also increases the susceptibility to develop atrial arrhythmias facilitated by spontaneous Ca(2+) release. ABSTRACT We studied excitation-contraction coupling (ECC) and inositol-1,4,5-triphosphate (IP3)-dependent Ca(2+) release in normal and heart failure (HF) rabbit atrial cells. Left ventricular HF was induced by combined volume and pressure overload. In HF atrial myocytes diastolic [Ca(2+)]i was increased, action potential (AP)-induced Ca(2+) transients (CaTs) were larger in amplitude, primarily due to enhanced Ca(2+) release from central non-junctional sarcoplasmic reticulum (SR) and centripetal propagation of activation was accelerated, whereas HF ventricular CaTs were depressed. The larger CaTs were due to enhanced IP3 receptor-induced Ca(2+) release (IICR) and reduced mitochondrial Ca(2+) buffering, consistent with a reduced mitochondrial density and Ca(2+) uptake capacity in HF. Elementary IP3 receptor-mediated Ca(2+) release events (Ca(2+) puffs) were more frequent in HF atrial myoctes and were detected more often in central regions of the non-junctional SR compared to normal cells. HF cells had an overall higher frequency of spontaneous Ca(2+) waves and a larger fraction of waves (termed arrhythmogenic Ca(2+) waves) triggered APs and global CaTs. The higher propensity of arrhythmogenic Ca(2+) waves resulted from the combined action of enhanced IICR and increased activity of sarcolemmal Na(+)-Ca(2+) exchange depolarizing the cell membrane. In conclusion, the data support the hypothesis that in atrial myocytes from hearts with left ventricular failure, enhanced CaTs during ECC exert positive inotropic effects on atrial contractility which facilitates ventricular filling and contributes to maintaining cardiac output. However, HF atrial cells were also more susceptible to developing arrhythmogenic Ca(2+) waves which might form the substrate for atrial rhythm disorders frequently encountered in HF.
Collapse
Affiliation(s)
- Felix Hohendanner
- Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, IL, 60612, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Vervloessem T, Yule DI, Bultynck G, Parys JB. The type 2 inositol 1,4,5-trisphosphate receptor, emerging functions for an intriguing Ca²⁺-release channel. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1853:1992-2005. [PMID: 25499268 DOI: 10.1016/j.bbamcr.2014.12.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Revised: 12/02/2014] [Accepted: 12/03/2014] [Indexed: 12/19/2022]
Abstract
The inositol 1,4,5-trisphosphate (IP3) receptor (IP3R) type 2 (IP3R2) is an intracellular Ca²⁺-release channel located on the endoplasmic reticulum (ER). IP3R2 is characterized by a high sensitivity to both IP3 and ATP and is biphasically regulated by Ca²⁺. Furthermore, IP3R2 is modulated by various protein kinases. In addition to its regulation by protein kinase A, IP3R2 forms a complex with adenylate cyclase 6 and is directly regulated by cAMP. Finally, in the ER, IP3R2 is less mobile than the other IP3R isoforms, while its functional properties appear dominant in heterotetramers. These properties make the IP3R2 a Ca²⁺ channel with exquisite properties for setting up intracellular Ca²⁺ signals with unique characteristics. IP3R2 plays a crucial role in the function of secretory cell types (e.g. pancreatic acinar cells, hepatocytes, salivary gland, eccrine sweat gland). In cardiac myocytes, the role of IP3R2 appears more complex, because, together with IP3R1, it is needed for normal cardiogenesis, while its aberrant activity is implicated in cardiac hypertrophy and arrhythmias. Most importantly, its high sensitivity to IP3 makes IP3R2 a target for anti-apoptotic proteins (e.g. Bcl-2) in B-cell cancers. Disrupting IP3R/Bcl-2 interaction therefore leads in those cells to increased Ca²⁺ release and apoptosis. Intriguingly, IP3R2 is not only implicated in apoptosis but also in the induction of senescence, another tumour-suppressive mechanism. These results were the first to unravel the physiological and pathophysiological role of IP3R2 and we anticipate that further progress will soon be made in understanding the function of IP3R2 in various tissues and organs.
Collapse
Affiliation(s)
- Tamara Vervloessem
- KU Leuven, Laboratory of Molecular and Cellular Signalling, Department of Cellular and Molecular Medicine, Leuven, Belgium
| | - David I Yule
- University of Rochester, Department of Pharmacology and Physiology, Rochester, NY, USA
| | - Geert Bultynck
- KU Leuven, Laboratory of Molecular and Cellular Signalling, Department of Cellular and Molecular Medicine, Leuven, Belgium
| | - Jan B Parys
- KU Leuven, Laboratory of Molecular and Cellular Signalling, Department of Cellular and Molecular Medicine, Leuven, Belgium.
| |
Collapse
|
48
|
Ca²⁺ signal-induced cardiomyocyte hypertrophy through activation of myocardin. Gene 2014; 557:43-51. [PMID: 25485719 DOI: 10.1016/j.gene.2014.12.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 11/21/2014] [Accepted: 12/03/2014] [Indexed: 11/21/2022]
Abstract
Hypertrophic growth of cardiomyocytes in response to pressure overload is an important stage during the development of many cardiac diseases. Ca(2+) overload as well as subsequent activation of Ca(2+) signaling pathways has been reported to induce cardiac hypertrophy. Myocardin, a transcription cofactor of serum response factor (SRF), is a key transducer of hypertrophic signals. However, the direct role of myocardin in Ca(2+) signal-induced cardiomyocyte hypertrophy has not been explained clearly. In the present study, we discovered that embryonic rat heart-derived H9c2 cells responded to the stimulation of calcium ionophore A23187 with a cell surface area enlargement and an increased expression of cardiac hypertrophy marker genes. Increased Ca(2+) also induces an organization of sarcomeres in neonatal rat cardiomyocytes, as revealed by α-actinin staining. Increased Ca(2+) could upregulate the expression of myocardin. Knockdown of myocardin by shRNA attenuates hypertrophic responses triggered by increased intracellular Ca(2+), suggesting that Ca(2+) signals induce cardiomyocyte hypertrophy partly through activation of myocardin. Furthermore, A23187 treatment directly activates myocardin promoter, chelation of Ca(2+) by EGTA inhibits this activation and knockdown of myocardin expression using shRNA also abrogates A23187-induced ANF and SK-α-actin promoter activity. CSA (calcineurin inhibitor) and KN93 (CaMKII inhibitor) inhibit A23187-induced the increase in myocardin expression. These results suggest that myocardin plays a critical role in Ca(2+) signal-induced cardiomyocyte hypertrophy, which may serve as a novel mechanism that is important for cardiac hypertrophy.
Collapse
|
49
|
Abstract
The endoplasmic reticulum (ER) is a cellular compartment that has a key function in protein translation and folding. Maintaining its integrity is of fundamental importance for organism's physiology and viability. The dynamic regulation of intraluminal ER Ca(2+) concentration directly influences the activity of ER-resident chaperones and stress response pathways that balance protein load and folding capacity. We review the emerging evidence that microRNAs play important roles in adjusting these processes to frequently changing intracellular and environmental conditions to modify ER Ca(2+) handling and storage and maintain ER homeostasis.
Collapse
Affiliation(s)
- Fabian Finger
- Institute for Genetics and Cologne Cluster of Excellence Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Thorsten Hoppe
- Institute for Genetics and Cologne Cluster of Excellence Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany.
| |
Collapse
|
50
|
Decreased polycystin 2 expression alters calcium-contraction coupling and changes β-adrenergic signaling pathways. Proc Natl Acad Sci U S A 2014; 111:16604-9. [PMID: 25368166 DOI: 10.1073/pnas.1415933111] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cardiac disorders are the main cause of mortality in autosomal-dominant polycystic kidney disease (ADPKD). However, how mutated polycystins predispose patients with ADPKD to cardiac pathologies before development of renal dysfunction is unknown. We investigate the effect of decreased levels of polycystin 2 (PC2), a calcium channel that interacts with the ryanodine receptor, on myocardial function. We hypothesize that heterozygous PC2 mice (Pkd2(+/-)) undergo cardiac remodeling as a result of changes in calcium handling, separate from renal complications. We found that Pkd2(+/-) cardiomyocytes have altered calcium handling, independent of desensitized calcium-contraction coupling. Paradoxically, in Pkd2(+/-) mice, protein kinase A (PKA) phosphorylation of phospholamban (PLB) was decreased, whereas PKA phosphorylation of troponin I was increased, explaining the decoupling between calcium signaling and contractility. In silico modeling supported this relationship. Echocardiography measurements showed that Pkd2(+/-) mice have increased left ventricular ejection fraction after stimulation with isoproterenol (ISO), a β-adrenergic receptor (βAR) agonist. Blockers of βAR-1 and βAR-2 inhibited the ISO response in Pkd2(+/-) mice, suggesting that the dephosphorylated state of PLB is primarily by βAR-2 signaling. Importantly, the Pkd2(+/-) mice were normotensive and had no evidence of renal cysts. Our results showed that decreased PC2 levels shifted the βAR pathway balance and changed expression of calcium handling proteins, which resulted in altered cardiac contractility. We propose that PC2 levels in the heart may directly contribute to cardiac remodeling in patients with ADPKD in the absence of renal dysfunction.
Collapse
|