1
|
Dabravolski SA, Churov AV, Ravani AL, Karimova AE, Luchinkin IG, Sukhorukov VN, Orekhov AN. The role of Epsins in atherosclerosis: From molecular mechanisms to therapeutic applications. Vascul Pharmacol 2025; 158:107457. [PMID: 39672315 DOI: 10.1016/j.vph.2024.107457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/29/2024] [Accepted: 12/09/2024] [Indexed: 12/15/2024]
Abstract
Atherosclerosis is a multifaceted disease characterised by chronic inflammation and vascular remodelling, leading to plaque formation and cardiovascular complications. Recent evidence highlights the critical role of epsins, a family of endocytic proteins, in the pathogenesis of atherosclerosis. This manuscript explores the multifarious functions of epsins in atherosclerosis, focusing on their involvement in angiogenesis, lymphangiogenesis, and the modulation of key signalling pathways. We discuss how epsins facilitate EndoMT through their interaction with the TGFβ signalling pathway, which contributes to vascular smooth muscle cell-like phenotypes and plaque instability. Additionally, we examine the therapeutic potential of targeting epsins, elucidating their interactions with crucial partners such as LDLR, LRP-1, and TLR 2/4, among others, in mediating lipid metabolism and inflammation. Furthermore, we highlight the promising prospects of epsin-targeting peptides and small interfering RNAs as therapeutic agents for atherosclerosis treatment. Despite these advancements, the research faces limitations, including a reliance on specific mouse models and a need for comprehensive studies on the long-term effects of epsin modulation. Therefore, future investigations should focus on elucidating the detailed mechanisms of epsin function and their implications in cardiovascular health, fostering collaborations to translate basic research into innovative therapeutic strategies. This work underscores the necessity for further exploration of epsins to unlock their full therapeutic potential in combating atherosclerosis and related cardiovascular diseases.
Collapse
Affiliation(s)
- Siarhei A Dabravolski
- Department of Biotechnology Engineering, Braude Academic College of Engineering, Snunit 51, P.O. Box 78, Karmiel 2161002, Israel.
| | - Alexey V Churov
- Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Street, Moscow 125315, Russia; Pirogov Russian National Research Medical University, Russia Gerontology Clinical Research Centre, Moscow, Institute on Ageing Research, Russian Federation, 16 1st Leonova Street, 129226 Moscow, Russia
| | - Alessio L Ravani
- Institute for Atherosclerosis Research, Osennyaya Street 4-1-207, 121609 Moscow, Russia
| | - Amina E Karimova
- Faculty of Biology and Biotechnology, National Research University Higher School of Economics, 33, Profsoyuznaya Street, Building 4, 117418 Moscow, Russia
| | - Igor G Luchinkin
- Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Street, Moscow 125315, Russia
| | - Vasily N Sukhorukov
- Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Street, Moscow 125315, Russia; Institute of Human Morphology, Petrovsky Russian National Center of Surgery, 2 Abrikosovsky Lane, 119991 Moscow, Russia
| | - Alexander N Orekhov
- Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Street, Moscow 125315, Russia
| |
Collapse
|
2
|
Li J, Guo S, Zhang X, He Y, Wang Y, Tian H, Zhang Q. Identification of Key Genes Involved in Seed Germination of Astragalus mongholicus. Int J Mol Sci 2024; 25:12342. [PMID: 39596407 PMCID: PMC11595215 DOI: 10.3390/ijms252212342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
Seed germination is a fundamental process in plant reproduction, and it involves a series of complex physiological mechanisms. The germination rate of Astragalus mongholicus (AM) seeds is significantly lower under natural conditions. To investigate the key genes associated with AM seed germination, seeds from AM plants were collected at 0, 12, 24, and 48 h for a transcriptomic analysis, weighted gene co-expression network analysis (WGCNA), and machine learning (ML) analysis. The primary pathways involved in AM seed germination include plant-pathogen interactions and plant hormone signaling. Four key genes were identified through the WGCNA and ML: Cluster-28,554.0, FAS4, T10O24.10, and EPSIN2. These findings were validated using real-time quantitative reverse transcription PCR (qRT-PCR), and results from RNA sequencing demonstrated a high degree of concordance. This study reveals, for the first time, the key genes related to AM seed germination, providing potential gene targets for further research. The discovery of N4-acetylcysteine (ac4C) modification during seed germination not only enhances our understanding of plant ac4C but also offers valuable insights for future functional research and application exploration.
Collapse
Affiliation(s)
- Junlin Li
- Industrial Crop Institute, Shanxi Agricultural University, Fenyang 032200, China; (J.L.); (S.G.); (Y.W.)
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China;
| | - Shuhong Guo
- Industrial Crop Institute, Shanxi Agricultural University, Fenyang 032200, China; (J.L.); (S.G.); (Y.W.)
| | - Xian Zhang
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China;
| | - Yuhao He
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China;
| | - Yaoqin Wang
- Industrial Crop Institute, Shanxi Agricultural University, Fenyang 032200, China; (J.L.); (S.G.); (Y.W.)
| | - Hongling Tian
- Industrial Crop Institute, Shanxi Agricultural University, Fenyang 032200, China; (J.L.); (S.G.); (Y.W.)
| | - Qiong Zhang
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China;
| |
Collapse
|
3
|
Zhu B, Gupta K, Cui K, Wang B, Malovichko MV, Han X, Li K, Wu H, Arulsamy KS, Singh B, Gao J, Wong S, Cowan DB, Wang D, Biddinger S, Srivastava S, Shi J, Chen K, Chen H. Targeting Liver Epsins Ameliorates Dyslipidemia in Atherosclerosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.26.609742. [PMID: 39253478 PMCID: PMC11383288 DOI: 10.1101/2024.08.26.609742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Rationale Low density cholesterol receptor (LDLR) in the liver is critical for the clearance of low-density lipoprotein cholesterol (LDL-C) in the blood. In atherogenic conditions, proprotein convertase subtilisin/kexin 9 (PCSK9) secreted by the liver, in a nonenzymatic fashion, binds to LDLR on the surface of hepatocytes, preventing its recycling and enhancing its degradation in lysosomes, resulting in reduced LDL-C clearance. Our recent studies demonstrate that epsins, a family of ubiquitin-binding endocytic adaptors, are critical regulators of atherogenicity. Given the fundamental contribution of circulating LDL-C to atherosclerosis, we hypothesize that liver epsins promote atherosclerosis by controlling LDLR endocytosis and degradation. Objective We will determine the role of liver epsins in promoting PCSK9-mediated LDLR degradation and hindering LDL-C clearance to propel atherosclerosis. Methods and Results We generated double knockout mice in which both paralogs of epsins, namely, epsin-1 and epsin-2, are specifically deleted in the liver (Liver-DKO) on an ApoE -/- background. We discovered that western diet (WD)-induced atherogenesis was greatly inhibited, along with diminished blood cholesterol and triglyceride levels. Mechanistically, using scRNA-seq analysis on cells isolated from the livers of ApoE-/- and ApoE-/- /Liver-DKO mice on WD, we found lipogenic Alb hi hepatocytes to glycogenic HNF4α hi hepatocytes transition in ApoE-/- /Liver-DKO. Subsequently, gene ontology analysis of hepatocyte-derived data revealed elevated pathways involved in LDL particle clearance and very-low-density lipoprotein (VLDL) particle clearance under WD treatment in ApoE-/- /Liver-DKO, which was coupled with diminished plasma LDL-C levels. Further analysis using the MEBOCOST algorithm revealed enhanced communication score between LDLR and cholesterol, suggesting elevated LDL-C clearance in the ApoE-/- Liver-DKO mice. In addition, we showed that loss of epsins in the liver upregulates of LDLR protein level. We further showed that epsins bind LDLR via the ubiquitin-interacting motif (UIM), and PCSK9-triggered LDLR degradation was abolished by depletion of epsins, preventing atheroma progression. Finally, our therapeutic strategy, which involved targeting liver epsins with nanoparticle-encapsulated siRNAs, was highly efficacious at inhibiting dyslipidemia and impeding atherosclerosis. Conclusions Liver epsins promote atherogenesis by mediating PCSK9-triggered degradation of LDLR, thus raising the circulating LDL-C levels. Targeting epsins in the liver may serve as a novel therapeutic strategy to treat atherosclerosis by suppression of PCSK9-mediated LDLR degradation.
Collapse
Affiliation(s)
- Bo Zhu
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, United States
| | - Krishan Gupta
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Kui Cui
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, United States
| | - Beibei Wang
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, United States
| | - Marina V Malovichko
- Department of Medicine, Division of Cardiovascular Medicine, University of Louisville, Louisville, KY, United States
| | - Xiangfei Han
- Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Kathryn Li
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, United States
| | - Hao Wu
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, United States
| | - Kulandai Samy Arulsamy
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Bandana Singh
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, United States
| | - Jianing Gao
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, United States
| | - Scott Wong
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, United States
| | - Douglas B Cowan
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, United States
| | - Dazhi Wang
- College of Medicine Molecular Pharmacology, University of South Florida, Tampa, FL, United States
| | - Sudha Biddinger
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Sanjay Srivastava
- Department of Medicine, Division of Cardiovascular Medicine, University of Louisville, Louisville, KY, United States
| | - Jinjun Shi
- Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Kaifu Chen
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Hong Chen
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
4
|
Badrhan S, Karanwal S, Pal A, Chera JS, Chauhan V, Patel A, Bhakat M, Datta TK, Kumar R. Differential protein repertoires related to sperm function identified in extracellular vesicles (EVs) in seminal plasma of distinct fertility buffalo ( Bubalus bubalis) bulls. Front Cell Dev Biol 2024; 12:1400323. [PMID: 39135778 PMCID: PMC11318068 DOI: 10.3389/fcell.2024.1400323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/03/2024] [Indexed: 08/15/2024] Open
Abstract
Buffalo bulls are backbone of Indian dairy industry, and the quality of semen donating bulls determine the overall production efficiency of dairy farms. Seminal plasma harbor millions of lipid bilayer nanovesicles known as extracellular vesicles (EVs). These EVs carry a heterogenous cargo of essential biomolecules including fertility-associated proteins which contribute to fertilizing potential of spermatozoa. In this study, we explored size, concentration, and complete proteome profiles of SP EVs from two distinct fertility groups to uncover proteins influencing bull fertility. Through Dynamic Light Scattering (DLS) it was found that purified EVs were present in 7-14 size exclusion chromatographic (SEC) fractions with sizes ranging from 146.5 to 258.7 nm in high fertile (HF) and low fertile (LF) bulls. Nanoparticle Tracking Analysis (NTA) confirmed the size of seminal EVs up to 200 nm, and concentrations varying from 2.84 to 6.82 × 1011 and 3.57 to 7.74 × 1011 particles per ml in HF and LF bulls, respectively. No significant difference was observed in size and concentration of seminal EVs between two groups. We identified a total of 1,862 and 1,807 proteins in seminal EVs of HF and LF bulls, respectively using high throughput LC-MS/MS approach. Out of these total proteins, 1,754 proteins were common in both groups and about 87 proteins were highly abundant in HF group while 1,292 were less abundant as compared to LF bulls. Gene ontology (GO) analysis, revealed that highly abundant proteins in HF group were mainly part of the nucleus and involved in nucleosome assembly along with DNA binding. Additionally, highly abundant proteins in EVs of HF group were found to be involved in spermatogenesis, motility, acrosome reaction, capacitation, gamete fusion, and cryotolerance. Two highly abundant proteins, protein disulfide-isomerase A4 and gelsolin, are associated with sperm-oocyte fusion and acrosome reaction, respectively, and their immunolocalization on spermatozoa may indicate that these proteins are transferred through EVs. Our evidences support that proteins in EVs and subsequently their presence on sperm, are strongly associated with sperm functions. Altogether, our investigation indicates that SPEVs possess crucial protein repertoires that are essential for enhancing sperm fertilizing capacity.
Collapse
Affiliation(s)
- Shiva Badrhan
- Animal Genomics Laboratory, Animal Biotechnology Division, National Dairy Research Institute, Karnal, India
| | - Seema Karanwal
- Animal Genomics Laboratory, Animal Biotechnology Division, National Dairy Research Institute, Karnal, India
| | - Ankit Pal
- Animal Genomics Laboratory, Animal Biotechnology Division, National Dairy Research Institute, Karnal, India
| | - Jatinder Singh Chera
- Animal Genomics Laboratory, Animal Biotechnology Division, National Dairy Research Institute, Karnal, India
| | - Vitika Chauhan
- Animal Genomics Laboratory, Animal Biotechnology Division, National Dairy Research Institute, Karnal, India
| | - Aditya Patel
- Animal Genomics Laboratory, Animal Biotechnology Division, National Dairy Research Institute, Karnal, India
| | - Mukesh Bhakat
- ICAR- Central Institute of Research on Goat, Mathura, Uttar Pradesh, India
| | - Tirtha K. Datta
- Central Institute for Research on Buffaloes, Hisar, Haryana, India
| | - Rakesh Kumar
- Animal Genomics Laboratory, Animal Biotechnology Division, National Dairy Research Institute, Karnal, India
| |
Collapse
|
5
|
Chen S, Tang D, Deng L, Xu S. Asian-European differentiation of schizophrenia-associated genes driven by admixture and natural selection. iScience 2024; 27:109560. [PMID: 38638564 PMCID: PMC11024917 DOI: 10.1016/j.isci.2024.109560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/29/2023] [Accepted: 03/22/2024] [Indexed: 04/20/2024] Open
Abstract
The European-centered genome-wide association studies of schizophrenia (SCZ) may not be well applied to non-European populations. We analyzed 1,592 reported SCZ-associated genes using the public genome data and found an overall higher Asian-European differentiation on the SCZ-associated variants than at the genome-wide level. Notable examples included 15 missense variants, a regulatory variant SLC5A10-rs1624825, and a damaging variant TSPAN18-rs1001292. Independent local adaptations in recent 25,000 years, after the Asian-European divergence, could have contributed to such genetic differentiation, as were identified at a missense mutation LTN1-rs57646126-A in Asians, and a non-risk allele ZSWIM6-rs72761442-G in Europeans. Altai-Neanderthal-derived alleles may have opposite effects on SCZ susceptibility between ancestries. Furthermore, adaptive introgression was detected on the non-risk haplotype at 1q21.2 in Europeans, while in Asians it was observed on the SCZ risk haplotype at 3p21.31 which is also potentially ultra-violet protective. This study emphasizes the importance of including more representative Asian samples in future SCZ studies.
Collapse
Affiliation(s)
- Sihan Chen
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Center for Evolutionary Biology, School of Life Sciences, Department of Liver Surgery and Transplantation Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Die Tang
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Center for Evolutionary Biology, School of Life Sciences, Department of Liver Surgery and Transplantation Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Lian Deng
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Center for Evolutionary Biology, School of Life Sciences, Department of Liver Surgery and Transplantation Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Shuhua Xu
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Center for Evolutionary Biology, School of Life Sciences, Department of Liver Surgery and Transplantation Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200438, China
| |
Collapse
|
6
|
Cowan DB, Wu H, Chen H. Epsin Endocytic Adaptor Proteins in Angiogenic and Lymphangiogenic Signaling. Cold Spring Harb Perspect Med 2024; 14:a041165. [PMID: 37217282 PMCID: PMC10759987 DOI: 10.1101/cshperspect.a041165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Circulating vascular endothelial growth factor (VEGF) ligands and receptors are central regulators of vasculogenesis, angiogenesis, and lymphangiogenesis. In response to VEGF ligand binding, VEGF receptor tyrosine kinases initiate the chain of events that transduce extracellular signals into endothelial cell responses such as survival, proliferation, and migration. These events are controlled by intricate cellular processes that include the regulation of gene expression at multiple levels, interactions of numerous proteins, and intracellular trafficking of receptor-ligand complexes. Endocytic uptake and transport of macromolecular complexes through the endosome-lysosome system helps fine-tune endothelial cell responses to VEGF signals. Clathrin-dependent endocytosis remains the best understood means of macromolecular entry into cells, although the importance of non-clathrin-dependent pathways is increasingly recognized. Many of these endocytic events rely on adaptor proteins that coordinate internalization of activated cell-surface receptors. In the endothelium of both blood and lymphatic vessels, epsins 1 and 2 are functionally redundant adaptors involved in receptor endocytosis and intracellular sorting. These proteins are capable of binding both lipids and proteins and are important for promoting curvature of the plasma membrane as well as binding ubiquitinated cargo. Here, we discuss the role of epsin proteins and other endocytic adaptors in governing VEGF signaling in angiogenesis and lymphangiogenesis and discuss their therapeutic potential as molecular targets.
Collapse
Affiliation(s)
- Douglas B Cowan
- Vascular Biology Program, Boston Children's Hospital, and Department of Surgery, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Hao Wu
- Vascular Biology Program, Boston Children's Hospital, and Department of Surgery, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Hong Chen
- Vascular Biology Program, Boston Children's Hospital, and Department of Surgery, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
7
|
Cheng A, Cai B, Fukunaga K, Sasaki T, Lakkaraju A. Feasibility and considerations of epsin2 as a candidate target for multiple system atrophy treatment. Expert Opin Ther Targets 2023; 27:1031-1034. [PMID: 37902421 DOI: 10.1080/14728222.2023.2277227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 10/26/2023] [Indexed: 10/31/2023]
Affiliation(s)
- An Cheng
- Department of Ophthalmology, School of Medicine, University of California, San Francisco, CA, USA
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Bo Cai
- Department of chemistry, Purdue university, West Lafayett, IN, USA
| | - Kohji Fukunaga
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Takuya Sasaki
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Aparna Lakkaraju
- Department of Ophthalmology, School of Medicine, University of California, San Francisco, CA, USA
| |
Collapse
|
8
|
Dong Y, Wang B, Du M, Zhu B, Cui K, Li K, Yuan K, Cowan DB, Bhattacharjee S, Wong S, Shi J, Wang DZ, Chen K, Bischoff J, Linton MF, Chen H. Targeting Epsins to Inhibit Fibroblast Growth Factor Signaling While Potentiating Transforming Growth Factor-β Signaling Constrains Endothelial-to-Mesenchymal Transition in Atherosclerosis. Circulation 2023; 147:669-685. [PMID: 36591786 PMCID: PMC10136057 DOI: 10.1161/circulationaha.122.063075] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/29/2022] [Indexed: 01/03/2023]
Abstract
BACKGROUND Epsin endocytic adaptor proteins are implicated in the progression of atherosclerosis; however, the underlying molecular mechanisms have not yet been fully defined. In this study, we determined how epsins enhance endothelial-to-mesenchymal transition (EndoMT) in atherosclerosis and assessed the efficacy of a therapeutic peptide in a preclinical model of this disease. METHODS Using single-cell RNA sequencing combined with molecular, cellular, and biochemical analyses, we investigated the role of epsins in stimulating EndoMT using knockout in Apoe-/- and lineage tracing/proprotein convertase subtilisin/kexin type 9 serine protease mutant viral-induced atherosclerotic mouse models. The therapeutic efficacy of a synthetic peptide targeting atherosclerotic plaques was then assessed in Apoe-/- mice. RESULTS Single-cell RNA sequencing and lineage tracing revealed that epsins 1 and 2 promote EndoMT and that the loss of endothelial epsins inhibits EndoMT marker expression and transforming growth factor-β signaling in vitro and in atherosclerotic mice, which is associated with smaller lesions in the Apoe-/- mouse model. Mechanistically, the loss of endothelial cell epsins results in increased fibroblast growth factor receptor-1 expression, which inhibits transforming growth factor-β signaling and EndoMT. Epsins directly bind ubiquitinated fibroblast growth factor receptor-1 through their ubiquitin-interacting motif, which results in endocytosis and degradation of this receptor complex. Consequently, administration of a synthetic ubiquitin-interacting motif-containing peptide atheroma ubiquitin-interacting motif peptide inhibitor significantly attenuates EndoMT and progression of atherosclerosis. CONCLUSIONS We conclude that epsins potentiate EndoMT during atherogenesis by increasing transforming growth factor-β signaling through fibroblast growth factor receptor-1 internalization and degradation. Inhibition of EndoMT by reducing epsin-fibroblast growth factor receptor-1 interaction with a therapeutic peptide may represent a novel treatment strategy for atherosclerosis.
Collapse
Affiliation(s)
- Yunzhou Dong
- Vascular Biology Program, Boston Children’s Hospital, Boston, MA 02115
- Department of Surgery, Harvard Medical School, Boston, MA 02115
| | - Beibei Wang
- Vascular Biology Program, Boston Children’s Hospital, Boston, MA 02115
- Department of Surgery, Harvard Medical School, Boston, MA 02115
| | - Mulong Du
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115
| | - Bo Zhu
- Vascular Biology Program, Boston Children’s Hospital, Boston, MA 02115
- Department of Surgery, Harvard Medical School, Boston, MA 02115
| | - Kui Cui
- Vascular Biology Program, Boston Children’s Hospital, Boston, MA 02115
- Department of Surgery, Harvard Medical School, Boston, MA 02115
| | - Kathryn Li
- Vascular Biology Program, Boston Children’s Hospital, Boston, MA 02115
| | - Ke Yuan
- Department of Medicine, Boston Children’s Hospital, Boston, MA 02115
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115
| | - Douglas B. Cowan
- Vascular Biology Program, Boston Children’s Hospital, Boston, MA 02115
- Department of Surgery, Harvard Medical School, Boston, MA 02115
| | - Sudarshan Bhattacharjee
- Vascular Biology Program, Boston Children’s Hospital, Boston, MA 02115
- Department of Surgery, Harvard Medical School, Boston, MA 02115
| | - Scott Wong
- Vascular Biology Program, Boston Children’s Hospital, Boston, MA 02115
| | - Jinjun Shi
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA, 02115
- Department of Anæsthesia, Harvard Medical School, Boston, MA 02115
| | - Da-Zhi Wang
- USF Heart Institute, Center for Regenerative Medicine, University of South Florida, Tampa, FL 33612
| | - Kaifu Chen
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115
- Department of Cardiology, Boston Children’s Hospital, Boston, MA 02115
| | - Joyce Bischoff
- Vascular Biology Program, Boston Children’s Hospital, Boston, MA 02115
- Department of Surgery, Harvard Medical School, Boston, MA 02115
| | - MacRae F. Linton
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Hong Chen
- Vascular Biology Program, Boston Children’s Hospital, Boston, MA 02115
- Department of Surgery, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
9
|
Cui K, Gao X, Wang B, Wu H, Arulsamy K, Dong Y, Xiao Y, Jiang X, Malovichko MV, Li K, Peng Q, Lu YW, Zhu B, Zheng R, Wong S, Cowan DB, Linton M, Srivastava S, Shi J, Chen K, Chen H. Epsin Nanotherapy Regulates Cholesterol Transport to Fortify Atheroma Regression. Circ Res 2023; 132:e22-e42. [PMID: 36444722 PMCID: PMC9822875 DOI: 10.1161/circresaha.122.321723] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/14/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Excess cholesterol accumulation in lesional macrophages elicits complex responses in atherosclerosis. Epsins, a family of endocytic adaptors, fuel the progression of atherosclerosis; however, the underlying mechanism and therapeutic potential of targeting Epsins remains unknown. In this study, we determined the role of Epsins in macrophage-mediated metabolic regulation. We then developed an innovative method to therapeutically target macrophage Epsins with specially designed S2P-conjugated lipid nanoparticles, which encapsulate small-interfering RNAs to suppress Epsins. METHODS We used single-cell RNA sequencing with our newly developed algorithm MEBOCOST (Metabolite-mediated Cell Communication Modeling by Single Cell Transcriptome) to study cell-cell communications mediated by metabolites from sender cells and sensor proteins on receiver cells. Biomedical, cellular, and molecular approaches were utilized to investigate the role of macrophage Epsins in regulating lipid metabolism and transport. We performed this study using myeloid-specific Epsin double knockout (LysM-DKO) mice and mice with a genetic reduction of ABCG1 (ATP-binding cassette subfamily G member 1; LysM-DKO-ABCG1fl/+). The nanoparticles targeting lesional macrophages were developed to encapsulate interfering RNAs to treat atherosclerosis. RESULTS We revealed that Epsins regulate lipid metabolism and transport in atherosclerotic macrophages. Inhibiting Epsins by nanotherapy halts inflammation and accelerates atheroma resolution. Harnessing lesional macrophage-specific nanoparticle delivery of Epsin small-interfering RNAs, we showed that silencing of macrophage Epsins diminished atherosclerotic plaque size and promoted plaque regression. Mechanistically, we demonstrated that Epsins bound to CD36 to facilitate lipid uptake by enhancing CD36 endocytosis and recycling. Conversely, Epsins promoted ABCG1 degradation via lysosomes and hampered ABCG1-mediated cholesterol efflux and reverse cholesterol transport. In a LysM-DKO-ABCG1fl/+ mouse model, enhanced cholesterol efflux and reverse transport due to Epsin deficiency was suppressed by the reduction of ABCG1. CONCLUSIONS Our findings suggest that targeting Epsins in lesional macrophages may offer therapeutic benefits for advanced atherosclerosis by reducing CD36-mediated lipid uptake and increasing ABCG1-mediated cholesterol efflux.
Collapse
Affiliation(s)
- Kui Cui
- Vascular Biology Program, Boston Children’s Hospital and Department of Surgery, Harvard Medical School; Boston, MA, 02115, USA
| | - Xinlei Gao
- Department of Cardiology, Boston Children’s Hospital, Harvard Medical School; Boston, MA, 02115, USA
| | - Beibei Wang
- Vascular Biology Program, Boston Children’s Hospital and Department of Surgery, Harvard Medical School; Boston, MA, 02115, USA
| | - Hao Wu
- Vascular Biology Program, Boston Children’s Hospital and Department of Surgery, Harvard Medical School; Boston, MA, 02115, USA
| | - Kulandaisamy Arulsamy
- Department of Cardiology, Boston Children’s Hospital, Harvard Medical School; Boston, MA, 02115, USA
| | - Yunzhou Dong
- Vascular Biology Program, Boston Children’s Hospital and Department of Surgery, Harvard Medical School; Boston, MA, 02115, USA
| | - Yuling Xiao
- Center for Nanomedicine and Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School; Boston, MA, 02115, USA
| | - Xingya Jiang
- Center for Nanomedicine and Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School; Boston, MA, 02115, USA
| | - Marina V. Malovichko
- Division of Environmental Medicine, University of Louisville, Louisville, KY, 40292, USA
| | - Kathryn Li
- Vascular Biology Program, Boston Children’s Hospital and Department of Surgery, Harvard Medical School; Boston, MA, 02115, USA
| | - Qianman Peng
- Vascular Biology Program, Boston Children’s Hospital and Department of Surgery, Harvard Medical School; Boston, MA, 02115, USA
| | - Yao Wei Lu
- Vascular Biology Program, Boston Children’s Hospital and Department of Surgery, Harvard Medical School; Boston, MA, 02115, USA
| | - Bo Zhu
- Vascular Biology Program, Boston Children’s Hospital and Department of Surgery, Harvard Medical School; Boston, MA, 02115, USA
| | - Rongbin Zheng
- Department of Cardiology, Boston Children’s Hospital, Harvard Medical School; Boston, MA, 02115, USA
| | - Scott Wong
- Vascular Biology Program, Boston Children’s Hospital and Department of Surgery, Harvard Medical School; Boston, MA, 02115, USA
| | - Douglas B. Cowan
- Vascular Biology Program, Boston Children’s Hospital and Department of Surgery, Harvard Medical School; Boston, MA, 02115, USA
| | - MacRae Linton
- Atherosclerosis Research Unit, Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center; Nashville, TN, 37232, USA
| | - Sanjay Srivastava
- Division of Environmental Medicine, University of Louisville, Louisville, KY, 40292, USA
| | - Jinjun Shi
- Center for Nanomedicine and Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School; Boston, MA, 02115, USA
| | - Kaifu Chen
- Department of Cardiology, Boston Children’s Hospital, Harvard Medical School; Boston, MA, 02115, USA
| | - Hong Chen
- Vascular Biology Program, Boston Children’s Hospital and Department of Surgery, Harvard Medical School; Boston, MA, 02115, USA
| |
Collapse
|
10
|
Zhao XW, Zhu HL, Qi YX, Wu T, Huang DW, Cheng GL, Yang YX, Bu DP, Hu H, Meng LF. Regulatory role of phosphoproteins in the development of bovine small intestine during early life. J Dairy Sci 2022; 105:9240-9252. [PMID: 36175223 DOI: 10.3168/jds.2022-21983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 06/20/2022] [Indexed: 11/19/2022]
Abstract
The small intestine is the primary site of nutrient digestion and absorption, which plays a key role in the survival of neonatal calves. A comprehensive assessment of the phosphoproteomic changes in the small intestine of neonatal calves is unavailable; therefore, we used phosphopeptide enrichment coupled with liquid chromatography-tandem mass spectrometry to investigate the changes in the phosphoproteome profile in the bovine small intestine during the first 36 h of life. Twelve neonatal male calves were assigned to one of the following groups: (1) calves not fed colostrum and slaughtered approximately 2 h postpartum (n = 3), (2) calves fed colostrum at 1 to 2 h and slaughtered 8 h postpartum (n = 3), (3) calves fed 2 colostrum meals (at 1-2 and 10-12 h) and slaughtered 24 h postpartum (n = 3), (4) calves fed 3 colostrum meals (at 1-2, 10-12, and 22-24 h) and slaughtered 36 h postpartum (n = 3). Mid-duodenal, jejunal, and ileal samples of the calves were collected after slaughter. We identified 1,678 phosphoproteins with approximately 3,080 phosphosites, which were mainly Ser (89.9%), Thr (9.8%), and Tyr (0.3%) residues; they belonged to the prodirected (52.9%), basic (20.4%), acidic (16.6%), and Tyr-directed (1.7%) motif categories. The regional differentially expressed phosphoproteins included zonula occludens 2, sorting nexin 12, and protein kinase C, which are mainly associated with developmental processes, intracellular transport, vesicle-mediated transport, and immune system process. They are enriched in the endocytosis, tight junction, insulin signaling, and focal adhesion pathways. The temporal differentially expressed phosphoproteins included occludin, epsin 1, and bridging integrator 1, which were mainly associated with macromolecule metabolic process, cell adhesion, and growth. They were enriched in the spliceosomes, adherens junctions, and tight junctions. The observed changes in the phosphoproteins in the tissues of small intestine suggest the protein phosphorylation plays an important role in nutrient transport and immune response of calves during early life, which needs to be confirmed in a larger study.
Collapse
Affiliation(s)
- X W Zhao
- Anhui Key Laboratory of Animal and Poultry Product Safety Engineering, Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - H L Zhu
- Anhui Key Laboratory of Animal and Poultry Product Safety Engineering, Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Y X Qi
- Anhui Key Laboratory of Animal and Poultry Product Safety Engineering, Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - T Wu
- Anhui Key Laboratory of Animal and Poultry Product Safety Engineering, Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - D W Huang
- Anhui Key Laboratory of Animal and Poultry Product Safety Engineering, Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - G L Cheng
- Anhui Key Laboratory of Animal and Poultry Product Safety Engineering, Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Y X Yang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China.
| | - D P Bu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - H Hu
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - L F Meng
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| |
Collapse
|
11
|
Bell S, Tozer DJ, Markus HS. Genome-wide association study of the human brain functional connectome reveals strong vascular component underlying global network efficiency. Sci Rep 2022; 12:14938. [PMID: 36056064 PMCID: PMC9440133 DOI: 10.1038/s41598-022-19106-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 08/24/2022] [Indexed: 11/23/2022] Open
Abstract
Complex brain networks play a central role in integrating activity across the human brain, and such networks can be identified in the absence of any external stimulus. We performed 10 genome-wide association studies of resting state network measures of intrinsic brain activity in up to 36,150 participants of European ancestry in the UK Biobank. We found that the heritability of global network efficiency was largely explained by blood oxygen level-dependent (BOLD) resting state fluctuation amplitudes (RSFA), which are thought to reflect the vascular component of the BOLD signal. RSFA itself had a significant genetic component and we identified 24 genomic loci associated with RSFA, 157 genes whose predicted expression correlated with it, and 3 proteins in the dorsolateral prefrontal cortex and 4 in plasma. We observed correlations with cardiovascular traits, and single-cell RNA specificity analyses revealed enrichment of vascular related cells. Our analyses also revealed a potential role of lipid transport, store-operated calcium channel activity, and inositol 1,4,5-trisphosphate binding in resting-state BOLD fluctuations. We conclude that that the heritability of global network efficiency is largely explained by the vascular component of the BOLD response as ascertained by RSFA, which itself has a significant genetic component.
Collapse
Affiliation(s)
- Steven Bell
- Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.
| | - Daniel J Tozer
- Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Hugh S Markus
- Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.
| |
Collapse
|
12
|
Wiedmann M, Kuitunen-Paul S, Basedow LA, Wolff M, DiDonato N, Franzen J, Wagner W, Roessner V, Golub Y. DNA methylation changes associated with cannabis use and verbal learning performance in adolescents: an exploratory whole genome methylation study. Transl Psychiatry 2022; 12:317. [PMID: 35933470 PMCID: PMC9357061 DOI: 10.1038/s41398-022-02025-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 06/02/2022] [Accepted: 06/09/2022] [Indexed: 11/09/2022] Open
Abstract
The association between extent of chronic cannabis use (CCU-extent) and cognitive impairment among adolescents has been the subject of controversial debate. Linking DNA methylation to CCU-extent could help to understand cannabis associated changes in cognitive performance. We analyzed cognitive task performances, CpG methylation in peripheral whole-blood samples and self-reported past-year CCU-extent of n = 18 adolescents (n = 9 psychiatric outpatients with chronic cannabis use (CCU), n = 9 without) who were matched for age, gender and psychiatric disorders. Patients with CCU were at least 24 h abstinent when cognitive tasks were performed. A Principal Component Analysis (PCA) was carried out to identify group differences in whole genome DNA methylation. Mediation analyses were performed between CCU-extent associated CpG sites and CCU-extent associated variables of cognitive tasks. PCA results indicated large differences in whole genome DNA methylation levels between the groups that did not reach statistical significance. Six CpG sites revealed reduced methylation associated with CCU-extent. Furthermore, CCU-extent was associated with lower scores in verbal learning. All six CpG sites mediated the effects between CCU-extent and verbal learning free recall. Our results indicate that CCU is associated with certain patterns in the methylome. Furthermore, CCU-extent associated impairments in memory function are mediated via differential methylation of the six CCU-associated CpG sits. Six identified CpG are located in genes previously described in the context of neurodegeneration, hippocampus-dependent learning and neurogenesis. However, these results have to be carefully interpreted due to a small sample size. Replication studies are warranted.
Collapse
Affiliation(s)
- Melina Wiedmann
- Department of Child and Adolescent Psychiatry, Technische Universität Dresden, Faculty of Medicine, 01307, Dresden, Germany.
| | - Sören Kuitunen-Paul
- grid.4488.00000 0001 2111 7257Department of Child and Adolescent Psychiatry, Technische Universität Dresden, Faculty of Medicine, 01307 Dresden, Germany ,grid.6810.f0000 0001 2294 5505Technische Universität Chemnitz, Chair for Clinical Psychology and Psychotherapy, Chemnitz, Germany
| | - Lukas Andreas Basedow
- grid.4488.00000 0001 2111 7257Department of Child and Adolescent Psychiatry, Technische Universität Dresden, Faculty of Medicine, 01307 Dresden, Germany
| | - Max Wolff
- grid.6363.00000 0001 2218 4662Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Berlin, Germany
| | - Nataliya DiDonato
- grid.4488.00000 0001 2111 7257Technische Universität Dresden, University Hospital, Institute for Clinical Genetics, Dresden, Germany
| | - Julia Franzen
- grid.1957.a0000 0001 0728 696XHelmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, Aachen, Germany
| | - Wolfgang Wagner
- grid.1957.a0000 0001 0728 696XHelmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, Aachen, Germany
| | - Veit Roessner
- grid.4488.00000 0001 2111 7257Department of Child and Adolescent Psychiatry, Technische Universität Dresden, Faculty of Medicine, 01307 Dresden, Germany
| | - Yulia Golub
- grid.4488.00000 0001 2111 7257Department of Child and Adolescent Psychiatry, Technische Universität Dresden, Faculty of Medicine, 01307 Dresden, Germany
| |
Collapse
|
13
|
Langridge PD, Garcia Diaz A, Chan JY, Greenwald I, Struhl G. Evolutionary plasticity in the requirement for force exerted by ligand endocytosis to activate C. elegans Notch proteins. Curr Biol 2022; 32:2263-2271.e6. [PMID: 35349791 PMCID: PMC9133158 DOI: 10.1016/j.cub.2022.03.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/28/2022] [Accepted: 03/08/2022] [Indexed: 10/18/2022]
Abstract
The conserved transmembrane receptor Notch has diverse and profound roles in controlling cell fate during animal development. In the absence of ligand, a negative regulatory region (NRR) in the Notch ectodomain adopts an autoinhibited confirmation, masking an ADAM protease cleavage site;1,2 ligand binding induces cleavage of the NRR, leading to Notch ectodomain shedding as the first step of signal transduction.3,4 In Drosophila and vertebrates, recruitment of transmembrane Delta/Serrate/LAG-2 (DSL) ligands by the endocytic adaptor Epsin, and their subsequent internalization by Clathrin-mediated endocytosis, exerts a "pulling force" on Notch that is essential to expose the cleavage site in the NRR.4-6 Here, we show that Epsin-mediated endocytosis of transmembrane ligands is not essential to activate the two C. elegans Notch proteins, LIN-12 and GLP-1. Using an in vivo force sensing assay in Drosophila,6 we present evidence (1) that the LIN-12 and GLP-1 NRRs are tuned to lower force thresholds than the NRR of Drosophila Notch, and (2) that this difference depends on the absence of a "leucine plug" that occludes the cleavage site in the Drosophila and vertebrate Notch NRRs.1,2 Our results thus establish an unexpected evolutionary plasticity in the force-dependent mechanism of Notch activation and implicate a specific structural element, the leucine plug, as a determinant.
Collapse
Affiliation(s)
- Paul D Langridge
- Department of Genetics and Development, Columbia University, New York, NY 10027, USA; Mortimer B. Zuckerman Mind Brain Behavior Institute, New York, NY 10027, USA.
| | | | - Jessica Yu Chan
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Iva Greenwald
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA.
| | - Gary Struhl
- Department of Genetics and Development, Columbia University, New York, NY 10027, USA; Mortimer B. Zuckerman Mind Brain Behavior Institute, New York, NY 10027, USA.
| |
Collapse
|
14
|
Djakbarova U, Madraki Y, Chan ET, Kural C. Dynamic interplay between cell membrane tension and clathrin-mediated endocytosis. Biol Cell 2021; 113:344-373. [PMID: 33788963 PMCID: PMC8898183 DOI: 10.1111/boc.202000110] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 03/08/2021] [Accepted: 03/19/2021] [Indexed: 12/26/2022]
Abstract
Deformability of the plasma membrane, the outermost surface of metazoan cells, allows cells to be dynamic, mobile and flexible. Factors that affect this deformability, such as tension on the membrane, can regulate a myriad of cellular functions, including membrane resealing, cell motility, polarisation, shape maintenance, membrane area control and endocytic vesicle trafficking. This review focuses on mechanoregulation of clathrin-mediated endocytosis (CME). We first delineate the origins of cell membrane tension and the factors that yield to its spatial and temporal fluctuations within cells. We then review the recent literature demonstrating that tension on the membrane is a fast-acting and reversible regulator of CME. Finally, we discuss tension-based regulation of endocytic clathrin coat formation during physiological processes.
Collapse
Affiliation(s)
| | - Yasaman Madraki
- Department of Physics, The Ohio State University, Columbus, OH 43210, USA
| | - Emily T. Chan
- Interdiscipiinary Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA
- Molecular Biophysics Training Program, The Ohio State University, Columbus, OH 43210, USA
| | - Comert Kural
- Department of Physics, The Ohio State University, Columbus, OH 43210, USA
- Interdiscipiinary Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
15
|
Dong Y, Wang B, Cui K, Cai X, Bhattacharjee S, Wong S, Cowan DB, Chen H. Epsins Negatively Regulate Aortic Endothelial Cell Function by Augmenting Inflammatory Signaling. Cells 2021; 10:1918. [PMID: 34440686 PMCID: PMC8391889 DOI: 10.3390/cells10081918] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 12/21/2022] Open
Abstract
Background: The endothelial epsin 1 and 2 endocytic adaptor proteins play an important role in atherosclerosis by regulating the degradation of the calcium release channel inositol 1,4,5-trisphosphate receptor type 1 (IP3R1). In this study, we sought to identify additional targets responsible for epsin-mediated atherosclerotic endothelial cell activation and inflammation in vitro and in vivo. Methods: Atherosclerotic ApoE-/- mice and ApoE-/- mice with an endothelial cell-specific deletion of epsin 1 on a global epsin 2 knock-out background (EC-iDKO/ApoE-/-), and aortic endothelial cells isolated from these mice, were used to examine inflammatory signaling in the endothelium. Results: Inflammatory signaling was significantly abrogated by both acute (tumor necrosis factor-α (TNFα) or lipopolysaccharide (LPS)) and chronic (oxidized low-density lipoprotein (oxLDL)) stimuli in EC-iDKO/ApoE-/- mice and murine aortic endothelial cells (MAECs) isolated from epsin-deficient animals when compared to ApoE-/- controls. Mechanistically, the epsin ubiquitin interacting motif (UIM) bound to Toll-like receptors (TLR) 2 and 4 to potentiate inflammatory signaling and deletion of the epsin UIM mitigated this interaction. Conclusions: The epsin endocytic adaptor proteins potentiate endothelial cell activation in acute and chronic models of atherogenesis. These studies further implicate epsins as therapeutic targets for the treatment of inflammation of the endothelium associated with atherosclerosis.
Collapse
Affiliation(s)
- Yunzhou Dong
- Vascular Biology Program, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (Y.D.); (B.W.); (K.C.); (S.B.); (S.W.); (D.B.C.)
| | - Beibei Wang
- Vascular Biology Program, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (Y.D.); (B.W.); (K.C.); (S.B.); (S.W.); (D.B.C.)
| | - Kui Cui
- Vascular Biology Program, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (Y.D.); (B.W.); (K.C.); (S.B.); (S.W.); (D.B.C.)
| | - Xiaofeng Cai
- Cardiovascular Biology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA;
| | - Sudarshan Bhattacharjee
- Vascular Biology Program, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (Y.D.); (B.W.); (K.C.); (S.B.); (S.W.); (D.B.C.)
| | - Scott Wong
- Vascular Biology Program, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (Y.D.); (B.W.); (K.C.); (S.B.); (S.W.); (D.B.C.)
| | - Douglas B. Cowan
- Vascular Biology Program, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (Y.D.); (B.W.); (K.C.); (S.B.); (S.W.); (D.B.C.)
| | - Hong Chen
- Vascular Biology Program, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (Y.D.); (B.W.); (K.C.); (S.B.); (S.W.); (D.B.C.)
| |
Collapse
|
16
|
Camblor-Perujo S, Kononenko NL. Brain-specific functions of the endocytic machinery. FEBS J 2021; 289:2219-2246. [PMID: 33896112 DOI: 10.1111/febs.15897] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 03/29/2021] [Indexed: 12/12/2022]
Abstract
Endocytosis is an essential cellular process required for multiple physiological functions, including communication with the extracellular environment, nutrient uptake, and signaling by the cell surface receptors. In a broad sense, endocytosis is accomplished through either constitutive or ligand-induced invagination of the plasma membrane, which results in the formation of the plasma membrane-retrieved endocytic vesicles, which can either be sent for degradation to the lysosomes or recycled back to the PM. This additional function of endocytosis in membrane retrieval has been adopted by excitable cells, such as neurons, for membrane equilibrium maintenance at synapses. The last two decades were especially productive with respect to the identification of brain-specific functions of the endocytic machinery, which additionally include but not limited to regulation of neuronal differentiation and migration, maintenance of neuron morphology and synaptic plasticity, and prevention of neurotoxic aggregates spreading. In this review, we highlight the current knowledge of brain-specific functions of endocytic machinery with a specific focus on three brain cell types, neuronal progenitor cells, neurons, and glial cells.
Collapse
Affiliation(s)
| | - Natalia L Kononenko
- CECAD Cluster of Excellence, University of Cologne, Germany.,Center for Physiology & Pathophysiology, Medical Faculty, University of Cologne, Germany
| |
Collapse
|
17
|
Mishra R, Sengül GF, Candiello E, Schu P. Synaptic AP2 CCV life cycle regulation by the Eps15, ITSN1, Sgip1/AP2, synaptojanin1 interactome. Sci Rep 2021; 11:8007. [PMID: 33850201 PMCID: PMC8044098 DOI: 10.1038/s41598-021-87591-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 03/30/2021] [Indexed: 11/18/2022] Open
Abstract
The AP1/σ1B knockout causes impaired synaptic vesicle recycling and enhanced protein sorting into endosomes, leading to severe intellectual disability. These disturbances in synaptic protein sorting induce as a secondary phenotype the upregulation of AP2 CCV mediated endocytosis. Synapses contain canonical AP2 CCV and AP2 CCV with a more stable coat and thus extended life time. In AP1/σ1B knockout synapses, pool sizes of both CCV classes are doubled. Additionally, stable CCV of the knockout are more stabilised than stable wt CCV. One mechanism responsible for enhanced CCV stabilisation is the reduction of synaptojanin1 CCV levels, the PI-4,5-P2 phosphatase essential for AP2 membrane dissociation. To identify mechanisms regulating synaptojanin1 recruitment, we compared synaptojanin1 CCV protein interactome levels and CCV protein interactions between both CCV classes from wt and knockout mice. We show that ITSN1 determines synaptojanin1 CCV levels. Sgip1/AP2 excess hinders synaptojanin1 binding to ITSN1, further lowering its levels. ITSN1 levels are determined by Eps15, not Eps15L1. In addition, the data reveal that reduced amounts of pacsin1 can be counter balanced by its enhanced activation. These data exemplify the complexity of CCV life cycle regulation and indicate how cargo proteins determine the life cycle of their CCV.
Collapse
Affiliation(s)
- R Mishra
- Department of Cellular Biochemistry, University Medical Center, Georg-August University Göttingen, Humboldtallee 23, 37073, Göttingen, Germany
- Department of Clinical Neurosciences, John Van Geest Centre for Brain Repair, University of Cambridge, Cambridge, England, UK
| | - G F Sengül
- Department of Cellular Biochemistry, University Medical Center, Georg-August University Göttingen, Humboldtallee 23, 37073, Göttingen, Germany
| | - E Candiello
- Department of Cellular Biochemistry, University Medical Center, Georg-August University Göttingen, Humboldtallee 23, 37073, Göttingen, Germany
- Institute for Cancer Research and Treatment (IRCC), Turin, Italy
| | - P Schu
- Department of Cellular Biochemistry, University Medical Center, Georg-August University Göttingen, Humboldtallee 23, 37073, Göttingen, Germany.
| |
Collapse
|
18
|
Song K, Cai X, Dong Y, Wu H, Wei Y, Shankavaram UT, Cui K, Lee Y, Zhu B, Bhattacharjee S, Wang B, Zhang K, Wen A, Wong S, Yu L, Xia L, Welm AL, Bielenberg DR, Camphausen KA, Kang Y, Chen H. Epsins 1 and 2 promote NEMO linear ubiquitination via LUBAC to drive breast cancer development. J Clin Invest 2021; 131:129374. [PMID: 32960814 PMCID: PMC7773373 DOI: 10.1172/jci129374] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 09/17/2020] [Indexed: 12/14/2022] Open
Abstract
Estrogen receptor-negative (ER-negative) breast cancer is thought to be more malignant and devastating than ER-positive breast cancer. ER-negative breast cancer exhibits elevated NF-κB activity, but how this abnormally high NF-κB activity is maintained is poorly understood. The importance of linear ubiquitination, which is generated by the linear ubiquitin chain assembly complex (LUBAC), is increasingly appreciated in NF-κB signaling, which regulates cell activation and death. Here, we showed that epsin proteins, a family of ubiquitin-binding endocytic adaptors, interacted with LUBAC via its ubiquitin-interacting motif and bound LUBAC's bona fide substrate NEMO via its N-terminal homolog (ENTH) domain. Furthermore, epsins promoted NF-κB essential modulator (NEMO) linear ubiquitination and served as scaffolds for recruiting other components of the IκB kinase (IKK) complex, resulting in the heightened IKK activation and sustained NF-κB signaling essential for the development of ER-negative breast cancer. Heightened epsin levels in ER-negative human breast cancer are associated with poor relapse-free survival. We showed that transgenic and pharmacological approaches eliminating epsins potently impeded breast cancer development in both spontaneous and patient-derived xenograft breast cancer mouse models. Our findings established the pivotal role epsins played in promoting breast cancer. Thus, targeting epsins may represent a strategy to restrain NF-κB signaling and provide an important perspective into ER-negative breast cancer treatment.
Collapse
Affiliation(s)
- Kai Song
- Vascular Biology Program, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Xiaofeng Cai
- Vascular Biology Program, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Yunzhou Dong
- Vascular Biology Program, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Hao Wu
- Vascular Biology Program, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Yong Wei
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
- Cancer Metabolism and Growth Program, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
| | - Uma T. Shankavaram
- Radiation Oncology Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Kui Cui
- Vascular Biology Program, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Yang Lee
- Vascular Biology Program, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Bo Zhu
- Vascular Biology Program, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Sudarshan Bhattacharjee
- Vascular Biology Program, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Beibei Wang
- Vascular Biology Program, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Kun Zhang
- Vascular Biology Program, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Aiyun Wen
- Vascular Biology Program, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Scott Wong
- Vascular Biology Program, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Lili Yu
- Vascular Biology Program, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Lijun Xia
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Alana L. Welm
- Department of Oncological Sciences, University of Utah, Salt Lake City, Utah, USA
| | - Diane R. Bielenberg
- Vascular Biology Program, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Kevin A. Camphausen
- Radiation Oncology Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Yibin Kang
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
- Cancer Metabolism and Growth Program, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
| | - Hong Chen
- Vascular Biology Program, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
19
|
Giangreco G, Malabarba MG, Sigismund S. Specialised endocytic proteins regulate diverse internalisation mechanisms and signalling outputs in physiology and cancer. Biol Cell 2020; 113:165-182. [PMID: 33617023 DOI: 10.1111/boc.202000129] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 12/20/2022]
Abstract
Although endocytosis was first described as the process mediating macromolecule or nutrient uptake through the plasma membrane, it is now recognised as a critical component of the cellular infrastructure involved in numerous processes, ranging from receptor signalling, proliferation and migration to polarity and stem cell regulation. To realise these varying roles, endocytosis needs to be finely regulated. Accordingly, multiple endocytic mechanisms exist that require specialised molecular machineries and an array of endocytic adaptor proteins with cell-specific functions. This review provides some examples of specialised functions of endocytic adaptors and other components of the endocytic machinery in different cell physiological processes, and how the alteration of these functions is linked to cancer. In particular, we focus on: (i) cargo selection and endocytic mechanisms linked to different adaptors; (ii) specialised functions in clathrin-mediated versus non-clathrin endocytosis; (iii) differential regulation of endocytic mechanisms by post-translational modification of endocytic proteins; (iv) cell context-dependent expression and function of endocytic proteins. As cases in point, we describe two endocytic protein families, dynamins and epsins. Finally, we discuss how dysregulation of the physiological role of these specialised endocytic proteins is exploited by cancer cells to increase cell proliferation, migration and invasion, leading to anti-apoptotic or pro-metastatic behaviours.
Collapse
Affiliation(s)
| | - Maria Grazia Malabarba
- IEO, Istituto Europeo di Oncologia IRCCS, Milan, Italy.,Università degli Studi di Milano, Dipartimento di Oncologia ed Emato-oncologia, , Milan, Italy
| | - Sara Sigismund
- IEO, Istituto Europeo di Oncologia IRCCS, Milan, Italy.,Università degli Studi di Milano, Dipartimento di Oncologia ed Emato-oncologia, , Milan, Italy
| |
Collapse
|
20
|
Cui K, Dong Y, Wang B, Cowan DB, Chan SL, Shyy J, Chen H. Endocytic Adaptors in Cardiovascular Disease. Front Cell Dev Biol 2020; 8:624159. [PMID: 33363178 PMCID: PMC7759532 DOI: 10.3389/fcell.2020.624159] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 11/23/2020] [Indexed: 12/11/2022] Open
Abstract
Endocytosis is the process of actively transporting materials into a cell by membrane engulfment. Traditionally, endocytosis was divided into three forms: phagocytosis (cell eating), pinocytosis (cell drinking), and the more selective receptor-mediated endocytosis (clathrin-mediated endocytosis); however, other important endocytic pathways (e.g., caveolin-dependent endocytosis) contribute to the uptake of extracellular substances. In each, the plasma membrane changes shape to allow the ingestion and internalization of materials, resulting in the formation of an intracellular vesicle. While receptor-mediated endocytosis remains the best understood pathway, mammalian cells utilize each form of endocytosis to respond to their environment. Receptor-mediated endocytosis permits the internalization of cell surface receptors and their ligands through a complex membrane invagination process that is facilitated by clathrin and adaptor proteins. Internalized vesicles containing these receptor-ligand cargoes fuse with early endosomes, which can then be recycled back to the plasma membrane, delivered to other cellular compartments, or destined for degradation by fusing with lysosomes. These intracellular fates are largely determined by the interaction of specific cargoes with adaptor proteins, such as the epsins, disabled-homolog 2 (Dab2), the stonin proteins, epidermal growth factor receptor substrate 15, and adaptor protein 2 (AP-2). In this review, we focus on the role of epsins and Dab2 in controlling these sorting processes in the context of cardiovascular disease. In particular, we will focus on the function of epsins and Dab2 in inflammation, cholesterol metabolism, and their fundamental contribution to atherogenicity.
Collapse
Affiliation(s)
- Kui Cui
- Vascular Biology Program, Boston Children's Hospital, Boston, MA, United States.,Department of Surgery, Harvard Medical School, Boston, MA, United States
| | - Yunzhou Dong
- Vascular Biology Program, Boston Children's Hospital, Boston, MA, United States.,Department of Surgery, Harvard Medical School, Boston, MA, United States
| | - Beibei Wang
- Vascular Biology Program, Boston Children's Hospital, Boston, MA, United States.,Department of Surgery, Harvard Medical School, Boston, MA, United States
| | - Douglas B Cowan
- Vascular Biology Program, Boston Children's Hospital, Boston, MA, United States.,Department of Surgery, Harvard Medical School, Boston, MA, United States.,Department of Cardiology, Boston Children's Hospital, Boston, MA, United States
| | - Siu-Lung Chan
- Vascular Biology Program, Boston Children's Hospital, Boston, MA, United States.,Department of Surgery, Harvard Medical School, Boston, MA, United States
| | - John Shyy
- Division of Cardiology, Department of Medicine, University of California, San Diego, San Diego, CA, United States
| | - Hong Chen
- Vascular Biology Program, Boston Children's Hospital, Boston, MA, United States.,Department of Surgery, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
21
|
Wang Y, Pedigo CE, Inoue K, Tian X, Cross E, Ebenezer K, Li W, Wang Z, Shin JW, Schwartze E, Groener M, Ishibe S. Murine Epsins Play an Integral Role in Podocyte Function. J Am Soc Nephrol 2020; 31:2870-2886. [PMID: 33051360 PMCID: PMC7790213 DOI: 10.1681/asn.2020050691] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/30/2020] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Epsins, a family of evolutionarily conserved membrane proteins, play an essential role in endocytosis and signaling in podocytes. METHODS Podocyte-specific Epn1, Epn2, Epn3 triple-knockout mice were generated to examine downstream regulation of serum response factor (SRF) by cell division control protein 42 homolog (Cdc42). RESULTS Podocyte-specific loss of epsins resulted in increased albuminuria and foot process effacement. Primary podocytes isolated from these knockout mice exhibited abnormalities in cell adhesion and spreading, which may be attributed to reduced activation of cell division control protein Cdc42 and SRF, resulting in diminished β1 integrin expression. In addition, podocyte-specific loss of Srf resulted in severe albuminuria and foot process effacement, and defects in cell adhesion and spreading, along with decreased β1 integrin expression. CONCLUSIONS Epsins play an indispensable role in maintaining properly functioning podocytes through the regulation of Cdc42 and SRF-dependent β1 integrin expression.
Collapse
Affiliation(s)
- Ying Wang
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
- Centre for Evidence-Based Chinese Medicine, Beijing University of Chinese Medicine, Chaoyang District, Beijing, 100029, China
| | - Christopher E Pedigo
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Kazunori Inoue
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Xuefei Tian
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Elizabeth Cross
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Karen Ebenezer
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Wei Li
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Zhen Wang
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Jee Won Shin
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Eike Schwartze
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Marwin Groener
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Shuta Ishibe
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
22
|
Kroppen B, Teske N, Yambire KF, Denkert N, Mukherjee I, Tarasenko D, Jaipuria G, Zweckstetter M, Milosevic I, Steinem C, Meinecke M. Cooperativity of membrane-protein and protein-protein interactions control membrane remodeling by epsin 1 and affects clathrin-mediated endocytosis. Cell Mol Life Sci 2020; 78:2355-2370. [PMID: 32997199 PMCID: PMC7966211 DOI: 10.1007/s00018-020-03647-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 08/11/2020] [Accepted: 09/12/2020] [Indexed: 01/01/2023]
Abstract
Membrane remodeling is a critical process for many membrane trafficking events, including clathrin-mediated endocytosis. Several molecular mechanisms for protein-induced membrane curvature have been described in some detail. Contrary, the effect that the physico-chemical properties of the membrane have on these processes is far less well understood. Here, we show that the membrane binding and curvature-inducing ENTH domain of epsin1 is regulated by phosphatidylserine (PS). ENTH binds to membranes in a PI(4,5)P2-dependent manner but only induces curvature in the presence of PS. On PS-containing membranes, the ENTH domain forms rigid homo-oligomers and assembles into clusters. Membrane binding and membrane remodeling can be separated by structure-to-function mutants. Such oligomerization mutants bind to membranes but do not show membrane remodeling activity. In vivo, they are not able to rescue defects in epidermal growth factor receptor (EGFR) endocytosis in epsin knock-down cells. Together, these data show that the membrane lipid composition is important for the regulation of protein-dependent membrane deformation during clathrin-mediated endocytosis.
Collapse
Affiliation(s)
- Benjamin Kroppen
- Department of Cellular Biochemistry, University Medical Center Göttingen, Humboldtallee 23, 37073, Göttingen, Germany
| | - Nelli Teske
- Institute for Organic and Biomolecular Chemistry, University of Göttingen, Tammannstr. 2, 37077, Göttingen, Germany
| | - King F Yambire
- European Neuroscience Institute, Göttingen - A Joint Initiative of the University Medical Center Göttingen and the Max-Planck-Society, Grisebachstr. 5, 37077, Göttingen, Germany
| | - Niels Denkert
- Department of Cellular Biochemistry, University Medical Center Göttingen, Humboldtallee 23, 37073, Göttingen, Germany
| | - Indrani Mukherjee
- Department of Cellular Biochemistry, University Medical Center Göttingen, Humboldtallee 23, 37073, Göttingen, Germany
| | - Daryna Tarasenko
- Department of Cellular Biochemistry, University Medical Center Göttingen, Humboldtallee 23, 37073, Göttingen, Germany
| | - Garima Jaipuria
- German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, 37075, Göttingen, Germany
| | - Markus Zweckstetter
- German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, 37075, Göttingen, Germany
- Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Ira Milosevic
- European Neuroscience Institute, Göttingen - A Joint Initiative of the University Medical Center Göttingen and the Max-Planck-Society, Grisebachstr. 5, 37077, Göttingen, Germany
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, OX3 7BN, UK
| | - Claudia Steinem
- Institute for Organic and Biomolecular Chemistry, University of Göttingen, Tammannstr. 2, 37077, Göttingen, Germany.
- Göttinger Zentrum für Molekulare Biowissenschaften - GZMB, 37077, Göttingen, Germany.
- Max Planck Institute for Dynamics and Self-Organization, Am Faßberg 17, 37077, Göttingen, Germany.
| | - Michael Meinecke
- Department of Cellular Biochemistry, University Medical Center Göttingen, Humboldtallee 23, 37073, Göttingen, Germany.
- Göttinger Zentrum für Molekulare Biowissenschaften - GZMB, 37077, Göttingen, Germany.
| |
Collapse
|
23
|
Bhattacharjee S, Lee Y, Zhu B, Wu H, Chen Y, Chen H. Epsins in vascular development, function and disease. Cell Mol Life Sci 2020; 78:833-842. [PMID: 32930806 DOI: 10.1007/s00018-020-03642-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/14/2020] [Accepted: 09/03/2020] [Indexed: 12/15/2022]
Abstract
Epsins are a family of adaptor proteins involved in clathrin-dependent endocytosis. In the vasculature, epsins 1 and 2 are functionally redundant members of this family that are expressed in the endothelial cells of blood vessels and the lymphatic system throughout development and adulthood. These proteins contain a number of peptide motifs that allow them to interact with lipid moieties and a variety of proteins. These interactions facilitate the regulation of a wide range of cell signaling pathways. In this review, we focus on the involvement of epsins 1 and 2 in controlling vascular endothelial growth factor receptor signaling in angiogenesis and lymphangiogenesis. We also discuss the therapeutic implications of understanding the molecular mechanisms of epsin-mediated regulation in diseases such as atherosclerosis and diabetes.
Collapse
Affiliation(s)
- Sudarshan Bhattacharjee
- Vascular Biology Program, Harvard Medical School, Boston Children's Hospital and Department of Surgery, Boston, MA, 02115, USA
| | - Yang Lee
- Vascular Biology Program, Harvard Medical School, Boston Children's Hospital and Department of Surgery, Boston, MA, 02115, USA
| | - Bo Zhu
- Vascular Biology Program, Harvard Medical School, Boston Children's Hospital and Department of Surgery, Boston, MA, 02115, USA
| | - Hao Wu
- Vascular Biology Program, Harvard Medical School, Boston Children's Hospital and Department of Surgery, Boston, MA, 02115, USA
| | - Yabing Chen
- Department of Pathology, Birmingham Veterans Affairs Medical Center, University of Alabama at Birmingham and Research Department, Birmingham, AL, 35294, USA
| | - Hong Chen
- Vascular Biology Program, Harvard Medical School, Boston Children's Hospital and Department of Surgery, Boston, MA, 02115, USA.
| |
Collapse
|
24
|
Dong Y, Lee Y, Cui K, He M, Wang B, Bhattacharjee S, Zhu B, Yago T, Zhang K, Deng L, Ouyang K, Wen A, Cowan DB, Song K, Yu L, Brophy ML, Liu X, Wylie-Sears J, Wu H, Wong S, Cui G, Kawashima Y, Matsumoto H, Kodera Y, Wojcikiewicz RJH, Srivastava S, Bischoff J, Wang DZ, Ley K, Chen H. Epsin-mediated degradation of IP3R1 fuels atherosclerosis. Nat Commun 2020; 11:3984. [PMID: 32770009 PMCID: PMC7414107 DOI: 10.1038/s41467-020-17848-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 07/15/2020] [Indexed: 12/18/2022] Open
Abstract
The epsin family of endocytic adapter proteins are widely expressed, and interact with both proteins and lipids to regulate a variety of cell functions. However, the role of epsins in atherosclerosis is poorly understood. Here, we show that deletion of endothelial epsin proteins reduces inflammation and attenuates atherosclerosis using both cell culture and mouse models of this disease. In atherogenic cholesterol-treated murine aortic endothelial cells, epsins interact with the ubiquitinated endoplasmic reticulum protein inositol 1,4,5-trisphosphate receptor type 1 (IP3R1), which triggers proteasomal degradation of this calcium release channel. Epsins potentiate its degradation via this interaction. Genetic reduction of endothelial IP3R1 accelerates atherosclerosis, whereas deletion of endothelial epsins stabilizes IP3R1 and mitigates inflammation. Reduction of IP3R1 in epsin-deficient mice restores atherosclerotic progression. Taken together, epsin-mediated degradation of IP3R1 represents a previously undiscovered biological role for epsin proteins and may provide new therapeutic targets for the treatment of atherosclerosis and other diseases.
Collapse
Affiliation(s)
- Yunzhou Dong
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Yang Lee
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Kui Cui
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Ming He
- Department of Medicine, University of California, San Diego, San Diego, CA, 92093, USA
| | - Beibei Wang
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Sudarshan Bhattacharjee
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Bo Zhu
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Tadayuki Yago
- Cardiovascular Biology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Kun Zhang
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Lin Deng
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Kunfu Ouyang
- Department of Medicine, University of California, San Diego, San Diego, CA, 92093, USA
| | - Aiyun Wen
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Douglas B Cowan
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Kai Song
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Lili Yu
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Megan L Brophy
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Xiaolei Liu
- Center for Vascular and Developmental Biology, Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Jill Wylie-Sears
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Hao Wu
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Scott Wong
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Guanglin Cui
- Department of Nutrition and Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Yusuke Kawashima
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Center for Disease Proteomics, Kitasato University School of Science, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0373, Japan
| | - Hiroyuki Matsumoto
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Yoshio Kodera
- Center for Disease Proteomics, Kitasato University School of Science, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0373, Japan
| | | | - Sanjay Srivastava
- Department of Medicine, Division of Cardiovascular Medicine, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Joyce Bischoff
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Da-Zhi Wang
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Klaus Ley
- La Jolla Institute for Allergy and Immunology, La Jolla, CA, 92037, USA
| | - Hong Chen
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
25
|
Ju Y, Guo H, Edman M, Hamm-Alvarez SF. Application of advances in endocytosis and membrane trafficking to drug delivery. Adv Drug Deliv Rev 2020; 157:118-141. [PMID: 32758615 PMCID: PMC7853512 DOI: 10.1016/j.addr.2020.07.026] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 12/12/2022]
Abstract
Multidisciplinary research efforts in the field of drug delivery have led to the development of a variety of drug delivery systems (DDS) designed for site-specific delivery of diagnostic and therapeutic agents. Since efficient uptake of drug carriers into target cells is central to effective drug delivery, a comprehensive understanding of the biological pathways for cellular internalization of DDS can facilitate the development of DDS capable of precise tissue targeting and enhanced therapeutic outcomes. Diverse methods have been applied to study the internalization mechanisms responsible for endocytotic uptake of extracellular materials, which are also the principal pathways exploited by many DDS. Chemical inhibitors remain the most commonly used method to explore endocytotic internalization mechanisms, although genetic methods are increasingly accessible and may constitute more specific approaches. This review highlights the molecular basis of internalization pathways most relevant to internalization of DDS, and the principal methods used to study each route. This review also showcases examples of DDS that are internalized by each route, and reviews the general effects of biophysical properties of DDS on the internalization efficiency. Finally, options for intracellular trafficking and targeting of internalized DDS are briefly reviewed, representing an additional opportunity for multi-level targeting to achieve further specificity and therapeutic efficacy.
Collapse
Affiliation(s)
- Yaping Ju
- Department of Pharmacology and Pharmaceutical Sciences, USC School of Pharmacy, USA
| | - Hao Guo
- Department of Pharmacology and Pharmaceutical Sciences, USC School of Pharmacy, USA
| | - Maria Edman
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, USA
| | - Sarah F Hamm-Alvarez
- Department of Pharmacology and Pharmaceutical Sciences, USC School of Pharmacy, USA; Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, USA.
| |
Collapse
|
26
|
Brophy ML, Dong Y, Tao H, Yancey PG, Song K, Zhang K, Wen A, Wu H, Lee Y, Malovichko MV, Sithu SD, Wong S, Yu L, Kocher O, Bischoff J, Srivastava S, Linton MF, Ley K, Chen H. Myeloid-Specific Deletion of Epsins 1 and 2 Reduces Atherosclerosis by Preventing LRP-1 Downregulation. Circ Res 2019; 124:e6-e19. [PMID: 30595089 DOI: 10.1161/circresaha.118.313028] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
RATIONALE Atherosclerosis is, in part, caused by immune and inflammatory cell infiltration into the vascular wall, leading to enhanced inflammation and lipid accumulation in the aortic endothelium. Understanding the molecular mechanisms underlying this disease is critical for the development of new therapies. Our recent studies demonstrate that epsins, a family of ubiquitin-binding endocytic adaptors, are critical regulators of atherogenicity. Given the fundamental contribution lesion macrophages make to fuel atherosclerosis, whether and how myeloid-specific epsins promote atherogenesis is an open and significant question. OBJECTIVE We will determine the role of myeloid-specific epsins in regulating lesion macrophage function during atherosclerosis. METHODS AND RESULTS We engineered myeloid cell-specific epsins double knockout mice (LysM-DKO) on an ApoE-/- background. On Western diet, these mice exhibited marked decrease in atherosclerotic lesion formation, diminished immune and inflammatory cell content in aortas, and reduced necrotic core content but increased smooth muscle cell content in aortic root sections. Epsins deficiency hindered foam cell formation and suppressed proinflammatory macrophage phenotype but increased efferocytosis and anti-inflammatory macrophage phenotype in primary macrophages. Mechanistically, we show that epsin loss specifically increased total and surface levels of LRP-1 (LDLR [low-density lipoprotein receptor]-related protein 1), an efferocytosis receptor with antiatherosclerotic properties. We further show that epsin and LRP-1 interact via epsin's ubiquitin-interacting motif domain. ox-LDL (oxidized LDL) treatment increased LRP-1 ubiquitination, subsequent binding to epsin, and its internalization from the cell surface, suggesting that epsins promote the ubiquitin-dependent internalization and downregulation of LRP-1. Crossing ApoE-/-/LysM-DKO mice onto an LRP-1 heterozygous background restored, in part, atherosclerosis, suggesting that epsin-mediated LRP-1 downregulation in macrophages plays a pivotal role in propelling atherogenesis. CONCLUSIONS Myeloid epsins promote atherogenesis by facilitating proinflammatory macrophage recruitment and inhibiting efferocytosis in part by downregulating LRP-1, implicating that targeting epsins in macrophages may serve as a novel therapeutic strategy to treat atherosclerosis.
Collapse
Affiliation(s)
- Megan L Brophy
- From the Vascular Biology Program and Department of Surgery, Boston Children's Hospital (M.L.B., Y.D., K.S., K.Z., A.W., H.W., Y.L., S.W., L.Y., J.B., H.C.), Harvard Medical School, MA.,Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center (M.L.B.)
| | - Yunzhou Dong
- From the Vascular Biology Program and Department of Surgery, Boston Children's Hospital (M.L.B., Y.D., K.S., K.Z., A.W., H.W., Y.L., S.W., L.Y., J.B., H.C.), Harvard Medical School, MA
| | - Huan Tao
- Atherosclerosis Research Unit, Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (H.T., P.G.Y., M.F.L.)
| | - Patricia G Yancey
- Atherosclerosis Research Unit, Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (H.T., P.G.Y., M.F.L.)
| | - Kai Song
- From the Vascular Biology Program and Department of Surgery, Boston Children's Hospital (M.L.B., Y.D., K.S., K.Z., A.W., H.W., Y.L., S.W., L.Y., J.B., H.C.), Harvard Medical School, MA
| | - Kun Zhang
- From the Vascular Biology Program and Department of Surgery, Boston Children's Hospital (M.L.B., Y.D., K.S., K.Z., A.W., H.W., Y.L., S.W., L.Y., J.B., H.C.), Harvard Medical School, MA.,Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China (K.Z.)
| | - Aiyun Wen
- From the Vascular Biology Program and Department of Surgery, Boston Children's Hospital (M.L.B., Y.D., K.S., K.Z., A.W., H.W., Y.L., S.W., L.Y., J.B., H.C.), Harvard Medical School, MA
| | - Hao Wu
- From the Vascular Biology Program and Department of Surgery, Boston Children's Hospital (M.L.B., Y.D., K.S., K.Z., A.W., H.W., Y.L., S.W., L.Y., J.B., H.C.), Harvard Medical School, MA
| | - Yang Lee
- From the Vascular Biology Program and Department of Surgery, Boston Children's Hospital (M.L.B., Y.D., K.S., K.Z., A.W., H.W., Y.L., S.W., L.Y., J.B., H.C.), Harvard Medical School, MA
| | - Marina V Malovichko
- Division of Cardiovascular Medicine, Department of Medicine, University of Louisville, KY (M.V.M., S.D.S., S.S.)
| | - Srinivas D Sithu
- Division of Cardiovascular Medicine, Department of Medicine, University of Louisville, KY (M.V.M., S.D.S., S.S.)
| | - Scott Wong
- From the Vascular Biology Program and Department of Surgery, Boston Children's Hospital (M.L.B., Y.D., K.S., K.Z., A.W., H.W., Y.L., S.W., L.Y., J.B., H.C.), Harvard Medical School, MA
| | - Lili Yu
- From the Vascular Biology Program and Department of Surgery, Boston Children's Hospital (M.L.B., Y.D., K.S., K.Z., A.W., H.W., Y.L., S.W., L.Y., J.B., H.C.), Harvard Medical School, MA
| | - Olivier Kocher
- Department of Pathology and Center for Vascular Biology Research, Beth Israel Medical Deaconess Medical Center (O.K.), Harvard Medical School, MA
| | - Joyce Bischoff
- From the Vascular Biology Program and Department of Surgery, Boston Children's Hospital (M.L.B., Y.D., K.S., K.Z., A.W., H.W., Y.L., S.W., L.Y., J.B., H.C.), Harvard Medical School, MA
| | - Sanjay Srivastava
- Division of Cardiovascular Medicine, Department of Medicine, University of Louisville, KY (M.V.M., S.D.S., S.S.)
| | - MacRae F Linton
- Atherosclerosis Research Unit, Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (H.T., P.G.Y., M.F.L.)
| | - Klaus Ley
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, CA (K.L.)
| | - Hong Chen
- From the Vascular Biology Program and Department of Surgery, Boston Children's Hospital (M.L.B., Y.D., K.S., K.Z., A.W., H.W., Y.L., S.W., L.Y., J.B., H.C.), Harvard Medical School, MA
| |
Collapse
|
27
|
Endocytic Adaptor Proteins in Health and Disease: Lessons from Model Organisms and Human Mutations. Cells 2019; 8:cells8111345. [PMID: 31671891 PMCID: PMC6912373 DOI: 10.3390/cells8111345] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 10/24/2019] [Accepted: 10/25/2019] [Indexed: 12/11/2022] Open
Abstract
Cells need to exchange material and information with their environment. This is largely achieved via cell-surface receptors which mediate processes ranging from nutrient uptake to signaling responses. Consequently, their surface levels have to be dynamically controlled. Endocytosis constitutes a powerful mechanism to regulate the surface proteome and to recycle vesicular transmembrane proteins that strand at the plasma membrane after exocytosis. For efficient internalization, the cargo proteins need to be linked to the endocytic machinery via adaptor proteins such as the heterotetrameric endocytic adaptor complex AP-2 and a variety of mostly monomeric endocytic adaptors. In line with the importance of endocytosis for nutrient uptake, cell signaling and neurotransmission, animal models and human mutations have revealed that defects in these adaptors are associated with several diseases ranging from metabolic disorders to encephalopathies. This review will discuss the physiological functions of the so far known adaptor proteins and will provide a comprehensive overview of their links to human diseases.
Collapse
|
28
|
Rópolo AS, Feliziani C, Touz MC. Unusual proteins in Giardia duodenalis and their role in survival. ADVANCES IN PARASITOLOGY 2019; 106:1-50. [PMID: 31630755 DOI: 10.1016/bs.apar.2019.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The capacity of the parasite Giardia duodenalis to perform complex functions with minimal amounts of proteins and organelles has attracted increasing numbers of scientists worldwide, trying to explain how this parasite adapts to internal and external changes to survive. One explanation could be that G. duodenalis evolved from a structurally complex ancestor by reductive evolution, resulting in adaptation to its parasitic lifestyle. Reductive evolution involves the loss of genes, organelles, and functions that commonly occur in many parasites, by which the host renders some structures and functions redundant. However, there is increasing data that Giardia possesses proteins able to perform more than one function. During recent decades, the concept of moonlighting was described for multitasking proteins, which involves only proteins with an extra independent function(s). In this chapter, we provide an overview of unusual proteins in Giardia that present multifunctional properties depending on the location and/or parasite requirement. We also discuss experimental evidence that may allow some giardial proteins to be classified as moonlighting proteins by examining the properties of moonlighting proteins in general. Up to date, Giardia does not seem to require the numerous redundant proteins present in other organisms to accomplish its normal functions, and thus this parasite may be an appropriate model for understanding different aspects of moonlighting proteins, which may be helpful in the design of drug targets.
Collapse
Affiliation(s)
- Andrea S Rópolo
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Constanza Feliziani
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
| | - María C Touz
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina.
| |
Collapse
|
29
|
Israel S, Ernst M, Psathaki OE, Drexler HCA, Casser E, Suzuki Y, Makalowski W, Boiani M, Fuellen G, Taher L. An integrated genome-wide multi-omics analysis of gene expression dynamics in the preimplantation mouse embryo. Sci Rep 2019; 9:13356. [PMID: 31527703 PMCID: PMC6746714 DOI: 10.1038/s41598-019-49817-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 08/27/2019] [Indexed: 01/28/2023] Open
Abstract
Early mouse embryos have an atypical translational machinery that consists of cytoplasmic lattices and is poorly competent for translation. Hence, the impact of transcriptomic changes on the operational level of proteins is predicted to be relatively modest. To investigate this, we performed liquid chromatography–tandem mass spectrometry and mRNA sequencing at seven developmental stages, from the mature oocyte to the blastocyst, and independently validated our data by immunofluorescence and qPCR. We detected and quantified 6,550 proteins and 20,535 protein-coding transcripts. In contrast to the transcriptome – where changes occur early, mostly at the 2-cell stage – our data indicate that the most substantial changes in the proteome take place towards later stages, between the morula and blastocyst. We also found little to no concordance between the changes in protein and transcript levels, especially for early stages, but observed that the concordance increased towards the morula and blastocyst, as did the number of free ribosomes. These results are consistent with the cytoplasmic lattice-to-free ribosome transition being a key mediator of developmental regulation. Finally, we show how these data can be used to appraise the strengths and limitations of mRNA-based studies of pre-implantation development and expand on the list of known developmental markers.
Collapse
Affiliation(s)
- Steffen Israel
- Max-Planck-Institute for Molecular Biomedicine, Roentgenstr. 20, 48149, Muenster, Germany
| | - Mathias Ernst
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, Ernst-Heydemann Str. 8, 18057, Rostock, Germany.,Division of Bioinformatics, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, 91058, Erlangen, Germany
| | - Olympia E Psathaki
- Max-Planck-Institute for Molecular Biomedicine, Roentgenstr. 20, 48149, Muenster, Germany.,University of Osnabrück, Center for Cellular Nanoanalytics Osnabrück (CellNanOs), Integrated Bioimaging Facility Osnabrück (iBiOs), Barbarastr. 11, 49076, Osnabrück, Germany
| | - Hannes C A Drexler
- Max-Planck-Institute for Molecular Biomedicine, Roentgenstr. 20, 48149, Muenster, Germany
| | - Ellen Casser
- Max-Planck-Institute for Molecular Biomedicine, Roentgenstr. 20, 48149, Muenster, Germany
| | - Yutaka Suzuki
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba, 277-8562, Japan
| | - Wojciech Makalowski
- Institute of Bioinformatics, Faculty of Medicine, University of Münster, Niels Stensen Str. 14, 48149, Münster, Germany
| | - Michele Boiani
- Max-Planck-Institute for Molecular Biomedicine, Roentgenstr. 20, 48149, Muenster, Germany.
| | - Georg Fuellen
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, Ernst-Heydemann Str. 8, 18057, Rostock, Germany.
| | - Leila Taher
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, Ernst-Heydemann Str. 8, 18057, Rostock, Germany. .,Division of Bioinformatics, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, 91058, Erlangen, Germany.
| |
Collapse
|
30
|
Activation of Arp2/3 by WASp Is Essential for the Endocytosis of Delta Only during Cytokinesis in Drosophila. Cell Rep 2019; 28:1-10.e3. [DOI: 10.1016/j.celrep.2019.06.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/26/2019] [Accepted: 06/04/2019] [Indexed: 12/11/2022] Open
|
31
|
Feng M, Ren F, Zhou Y, Zhang N, Lu Q, Swevers L, Sun J. Correlation in Expression between LTR Retrotransposons and Potential Host Cis-Targets during Infection of Antherea pernyi with ApNPV Baculovirus. Viruses 2019; 11:v11050421. [PMID: 31064084 PMCID: PMC6563192 DOI: 10.3390/v11050421] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 05/04/2019] [Indexed: 12/14/2022] Open
Abstract
The published genome sequence of Antheraeayamamai (Saturnnidae) was used to construct a library of long terminal repeat (LTR)-retrotransposons that is representative of the wild silkmoth (Antherea) genus, and that includes 22,666 solo LTRs and 541 full-length LTRs. The LTR retrotransposons of Antheraeayamamai (AyLTRs) could be classified into the three canonical groups of Gypsy, Copia and Belpao. Eleven AyLTRs contained the env gene element, but the relationship with the env element of baculovirus, particularly A. yamamai and pernyi nucleopolyhedrovirus (AyNPV and ApNPV), was distant. A total of 251 “independent” full-length AyLTRs were identified that were located within 100 kb distance (downstream or upstream) of 406 neighboring genes in A. yamamai. Regulation of these genes might occur in cis by the AyLTRs, and the neighboring genes were found to be enriched in GO terms such as “response to stimulus”, and KEGG terms such as “mTOR signaling pathway” among others. Furthermore, the library of LTR-retrotransposons and the A. yamamai genome were used to identify and analyze the expression of LTR-retrotransposons and genes in ApNPV-infected and non-infected A. pernyi larval midguts, using raw data of a published transcriptome study. Our analysis demonstrates that 93 full-length LTR-retrotransposons are transcribed in the midgut of A. pernyi of which 12 significantly change their expression after ApNPV infection (differentially expressed LTR-retrotransposons or DELs). In addition, the expression of differentially expressed genes (DEGs) and neighboring DELs on the chromosome following ApNPV infection suggests the possibility of regulation of expression of DEGs by DELs through a cis mechanism, which will require experimental verification. When examined in more detail, it was found that genes involved in Notch signaling and stress granule (SG) formation were significantly up-regulated in ApNPV-infected A. pernyi larval midgut. Moreover, several DEGs in the Notch and SG pathways were found to be located in the neighborhood of particular DELs, indicating the possibility of DEG-DEL cross-regulation in cis for these two pathways.
Collapse
Affiliation(s)
- Min Feng
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences and Applications, National Centre for Scientific Research Demokritos, Aghia Paraskevi, Athens 15341, Greece.
| | - Feifei Ren
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Yaohong Zhou
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Nan Zhang
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Qiuyuan Lu
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Luc Swevers
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences and Applications, National Centre for Scientific Research Demokritos, Aghia Paraskevi, Athens 15341, Greece.
| | - Jingchen Sun
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
32
|
Epsins Regulate Mouse Embryonic Stem Cell Exit from Pluripotency and Neural Commitment by Controlling Notch Activation. Stem Cells Int 2019; 2019:4084351. [PMID: 30930949 PMCID: PMC6410434 DOI: 10.1155/2019/4084351] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 10/29/2018] [Accepted: 11/19/2018] [Indexed: 01/09/2023] Open
Abstract
Epsins are part of the internalization machinery pivotal to control clathrin-mediated endocytosis. Here, we report that epsin family members are expressed in mouse embryonic stem cells (mESCs) and that epsin1/2 knockdown alters both mESC exits from pluripotency and their differentiation. Furthermore, we show that epsin1/2 knockdown compromises the correct polarization and division of mESC-derived neural progenitors and their conversion into expandable radial glia-like neural stem cells. Finally, we provide evidence that Notch signaling is impaired following epsin1/2 knockdown and that experimental restoration of Notch signaling rescues the epsin-mediated phenotypes. We conclude that epsins contribute to control mESC exit from pluripotency and allow their neural differentiation by appropriate modulation of Notch signaling.
Collapse
|
33
|
Wu H, Rahman HA, Dong Y, Liu X, Lee Y, Wen A, To KH, Xiao L, Birsner AE, Bazinet L, Wong S, Song K, Brophy ML, Mahamud MR, Chang B, Cai X, Pasula S, Kwak S, Yang W, Bischoff J, Xu J, Bielenberg DR, Dixon JB, D’Amato RJ, Srinivasan RS, Chen H. Epsin deficiency promotes lymphangiogenesis through regulation of VEGFR3 degradation in diabetes. J Clin Invest 2018; 128:4025-4043. [PMID: 30102256 PMCID: PMC6118634 DOI: 10.1172/jci96063] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 06/26/2018] [Indexed: 12/18/2022] Open
Abstract
Impaired lymphangiogenesis is a complication of chronic complex diseases, including diabetes. VEGF-C/VEGFR3 signaling promotes lymphangiogenesis, but how this pathway is affected in diabetes remains poorly understood. We previously demonstrated that loss of epsins 1 and 2 in lymphatic endothelial cells (LECs) prevented VEGF-C-induced VEGFR3 from endocytosis and degradation. Here, we report that diabetes attenuated VEGF-C-induced lymphangiogenesis in corneal micropocket and Matrigel plug assays in WT mice but not in mice with inducible lymphatic-specific deficiency of epsins 1 and 2 (LEC-iDKO). Consistently, LECs isolated from diabetic LEC-iDKO mice elevated in vitro proliferation, migration, and tube formation in response to VEGF-C over diabetic WT mice. Mechanistically, ROS produced in diabetes induced c-Src-dependent but VEGF-C-independent VEGFR3 phosphorylation, and upregulated epsins through the activation of transcription factor AP-1. Augmented epsins bound to and promoted degradation of newly synthesized VEGFR3 in the Golgi, resulting in reduced availability of VEGFR3 at the cell surface. Preclinically, the loss of lymphatic-specific epsins alleviated insufficient lymphangiogenesis and accelerated the resolution of tail edema in diabetic mice. Collectively, our studies indicate that inhibiting expression of epsins in diabetes protects VEGFR3 against degradation and ameliorates diabetes-triggered inhibition of lymphangiogenesis, thereby providing a novel potential therapeutic strategy to treat diabetic complications.
Collapse
Affiliation(s)
- Hao Wu
- Vascular Biology Program, Harvard Medical School, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - H.N. Ashiqur Rahman
- Vascular Biology Program, Harvard Medical School, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Yunzhou Dong
- Vascular Biology Program, Harvard Medical School, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Xiaolei Liu
- Center for Vascular and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Yang Lee
- Vascular Biology Program, Harvard Medical School, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Aiyun Wen
- Vascular Biology Program, Harvard Medical School, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Kim H.T. To
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Li Xiao
- Department of Nephrology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Amy E. Birsner
- Vascular Biology Program, Harvard Medical School, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Lauren Bazinet
- Vascular Biology Program, Harvard Medical School, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Scott Wong
- Vascular Biology Program, Harvard Medical School, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Kai Song
- Vascular Biology Program, Harvard Medical School, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Megan L. Brophy
- Vascular Biology Program, Harvard Medical School, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma, USA
| | - M. Riaj Mahamud
- Cardiovascular Biology Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Baojun Chang
- Vascular Medicine Institute, Pulmonary, Allergy and Critical Care Division, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Xiaofeng Cai
- Cardiovascular Biology Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Satish Pasula
- Cardiovascular Biology Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Sukyoung Kwak
- Vascular Biology Program, Harvard Medical School, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Wenxia Yang
- Department of Nephrology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Joyce Bischoff
- Vascular Biology Program, Harvard Medical School, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Jian Xu
- Department of Medicine, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma, USA
| | - Diane R. Bielenberg
- Vascular Biology Program, Harvard Medical School, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - J. Brandon Dixon
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Robert J. D’Amato
- Vascular Biology Program, Harvard Medical School, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - R. Sathish Srinivasan
- Cardiovascular Biology Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Hong Chen
- Vascular Biology Program, Harvard Medical School, Boston Children’s Hospital, Boston, Massachusetts, USA
| |
Collapse
|
34
|
Takatori S, Tomita T. AP180 N-Terminal Homology (ANTH) and Epsin N-Terminal Homology (ENTH) Domains: Physiological Functions and Involvement in Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1111:55-76. [DOI: 10.1007/5584_2018_218] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
35
|
Li L, Han L, Zhang J, Liu X, Ma R, Hou X, Ge J, Wang Q. Epsin2 promotes polarity establishment and meiotic division through activating Cdc42 in mouse oocyte. Oncotarget 2018; 7:50927-50936. [PMID: 27463009 PMCID: PMC5239448 DOI: 10.18632/oncotarget.10815] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 07/14/2016] [Indexed: 01/04/2023] Open
Abstract
Epsins are a conserved family of endocytic adaptors essential for diverse biological events. However, its role in oocytes remains completely unknown. Here, we report that specific depletion of Epsin2 in mouse oocytes significantly disrupts meiotic progression. Confocal microscopy reveals that Epsin2 knockdown results in the failure of actin cap formation and polar body extrusion during meiosis, indicative of the importance of Epsin2 in polarity establishment and cytokinesis. In addition, spindle defects and chromosome misalignment are readily observed in oocytes depleted of Epsin2. Moreover, we find that Epsin2 knockdown markedly decreases the activity of Cdc42 in oocytes and importantly, that the dominant-positive mutant of Cdc42 (Cdc42Q61L) is capable of partially rescuing the deficient phenotypes of Epsin2-knockdown oocytes. Together, our data identify Epsin2 as a novel player in regulating oocyte maturation, and demonstrate that Epsin2 promotes polarity establishment and meiotic division via activating Cdc42.
Collapse
Affiliation(s)
- Ling Li
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Longsen Han
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Jiaqi Zhang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Xiaohui Liu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Rujun Ma
- Center of Reproductive Medicine, Nanjing Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Xiaojing Hou
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Juan Ge
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Qiang Wang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
36
|
Therapeutic efficacy of a synthetic epsin mimetic peptide in glioma tumor model: uncovering multiple mechanisms beyond the VEGF-associated tumor angiogenesis. J Neurooncol 2018; 138:17-27. [PMID: 29357089 DOI: 10.1007/s11060-018-2766-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 01/13/2018] [Indexed: 12/21/2022]
Abstract
Binding of epsin ubiquitin-interacting motif (UIM) with ubiquitylated VEGFR2 is a critical mechanism for epsin-dependent VEGFR2 endocytosis and physiological angiogenesis. Deletion of epsins in vessel endothelium produces uncontrolled tumor angiogenesis and retards tumor growth in animal models. The aim of this study is to test the therapeutic efficacy and targeting specificity of a chemically-synthesized peptide, UPI, which compete for epsin binding sites in VEGFR2 and potentially inhibits Epsin-VEGFR2 interaction in vivo, in an attempt to reproduce an epsin-deficient phenotype in tumor angiogenesis. Our data show that UPI treatment significantly inhibits and shrinks tumor growth in GL261 glioma tumor model. UPI peptide specifically targets VEGFR2 signaling pathway revealed by genetic and biochemical approaches. Furthermore, we demonstrated that UPI peptide treatment caused serious thrombosis in tumor vessels and damages tumor cells after a long-term UPI peptide administration. Besides, we revealed that UPI peptides were unexpectedly targeted cancer cells and induced apoptosis. We conclude that UPI peptide is a potent inhibitor to glioma tumor growth through specific targeting of VEGFR2 signaling in the tumor vasculature and cancer cells, which may offer a potentially novel treatment for cancer patients who are resistant to current anti-VEGF therapies.
Collapse
|
37
|
Endosomal Trafficking During Mitosis and Notch-Dependent Asymmetric Division. ENDOCYTOSIS AND SIGNALING 2018; 57:301-329. [DOI: 10.1007/978-3-319-96704-2_11] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
38
|
Epsin-Dependent Ligand Endocytosis Activates Notch by Force. Cell 2017; 171:1383-1396.e12. [PMID: 29195077 DOI: 10.1016/j.cell.2017.10.048] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/30/2017] [Accepted: 09/28/2017] [Indexed: 01/09/2023]
Abstract
DSL ligands activate Notch by inducing proteolytic cleavage of the receptor ectodomain, an event that requires ligand to be endocytosed in signal-sending cells by the adaptor protein Epsin. Two classes of explanation for this unusual requirement are (1) recycling models, in which the ligand must be endocytosed to be modified or repositioned before it binds Notch and (2) pulling models, in which the ligand must be endocytosed after it binds Notch to exert force that exposes an otherwise buried site for cleavage. We demonstrate in vivo that ligands that cannot enter the Epsin pathway nevertheless bind Notch but fail to activate the receptor because they cannot exert sufficient force. This argues against recycling models and in favor of pulling models. Our results also suggest that once ligand binds receptor, activation depends on a competition between Epsin-mediated ligand endocytosis, which induces cleavage, and transendocytosis of the ligand by the receptor, which aborts the incipient signal.
Collapse
|
39
|
Chakravarti B, Yang J, Ahlers-Dannen KE, Luo Z, Flaherty HA, Meyerholz DK, Anderson ME, Fisher RA. Essentiality of Regulator of G Protein Signaling 6 and Oxidized Ca 2+/Calmodulin-Dependent Protein Kinase II in Notch Signaling and Cardiovascular Development. J Am Heart Assoc 2017; 6:JAHA.117.007038. [PMID: 29079565 PMCID: PMC5721783 DOI: 10.1161/jaha.117.007038] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background Congenital heart defects are the most common birth defects worldwide. Although defective Notch signaling is the major cause of mouse embryonic death from cardiovascular defects, how Notch signaling is regulated during embryonic vasculogenesis and heart development is poorly understood. Methods and Results Regulator of G protein signaling 6 (RGS6)−/−/Ca2+/calmodulin‐dependent protein kinase II (CaMKII)VV double mutant mice were developed by crossing RGS6−/− mice with mice expressing an oxidation‐resistant CaMKIIδ (CaMKIIVV), and the resulting embryonic defects/lethality were investigated using E7.5 to E15.5 embryos. While loss of either RGS6 or oxidized CaMKIIδ does not alter embryogenesis, their combined loss causes defective Notch signaling, severe cardiovascular defects, and embryonic lethality (≈E10.5–11.5). Embryos lacking RGS6 and expressing oxidation‐resistant CaMKIIδ exhibit reduced myocardial wall thickness, abnormal trabeculation, and arterial specification defects. Double mutants show vascular remodeling defects, including reduced neurovascularization, delayed neural tube maturation, and small dorsal aortae. These striking cardiovascular defects were accompanied by placental and yolk sac defects in angiogenesis, hematopoiesis, and vascular remodeling similar to what is seen with defective Notch1 signaling. Double mutant hearts, embryos, and yolk sacs exhibit profound downregulation of Notch1, Jagged 1, and Notch downstream target genes Hey1, Hey2, and Hey1L as well as impaired Notch1 signaling in embryos/hearts. Conclusions RGS6 and oxidized CaMKIIδ together function as novel critical upstream modulators of Notch signaling required for normal cardiovascular development and embryo survival. Their combined need indicates that they function in parallel pathways needed for Notch1 signaling in yolk sac, placenta and embryos. Thus, dysregulated embryonic RGS6 expression and oxidative activation of CaMKII may potentially contribute to congenital heart defects.
Collapse
Affiliation(s)
- Bandana Chakravarti
- Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA
| | - Jianqi Yang
- Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA
| | | | - Zili Luo
- Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA
| | | | - David K Meyerholz
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA
| | - Mark E Anderson
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Rory A Fisher
- Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA
| |
Collapse
|
40
|
A mammalian mirtron miR-1224 promotes tube-formation of human primary endothelial cells by targeting anti-angiogenic factor epsin2. Sci Rep 2017; 7:5541. [PMID: 28717225 PMCID: PMC5514154 DOI: 10.1038/s41598-017-05782-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 06/05/2017] [Indexed: 01/29/2023] Open
Abstract
Angiogenesis, new vessel formation from pre-existing vessels, is a highly conserved event through vertebrates. However, the system for tuning angiogenesis by species-intrinsic factors is totally unknown. miR-1224 is a member of mammal-specific mirtrons, which were identified as non-canonical microRNAs. We found that the expression of miR-1224 was upregulated in capillary-like tube-forming human umbilical vein endothelial cells on Matrigel. Enforced expression of miR-1224 stimulated tube formation, whereas repression of endogenous miR-1224 inhibited formation. Enforced expression of miR-1224 enhanced VEGF signaling and repressed NOTCH signaling. The adaptor protein of clathrin-dependent endocytosis, epsin2, which has been shown to be a suppressor of angiogenesis, was a direct target of miR-1224. Knockdown of EPN2 stimulated tube formation, while overexpression of EPN2 repressed miR-1224-mediated stimulation. Our findings indicate that miR-1224 is a mammal specific modulator of angiogenesis.
Collapse
|
41
|
Dong Y, Wu H, Dong J, Song K, Rahman HA, Towner R, Chen H. Mimetic peptide of ubiquitin-interacting motif of epsin as a cancer therapeutic-perspective in brain tumor therapy through regulating VEGFR2 signaling. VESSEL PLUS 2017; 1:3-11. [PMID: 29905336 PMCID: PMC5997290 DOI: 10.20517/2574-1209.2016.01] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Epsins, endocytic adaptor proteins required for internalization of ubiquitylated receptors, are generally upregulated in human cancers. It has been characterized that mice deficient of epsins in the endothelium inhibit tumor growth by dysregulating vascular endothelial growth factor receptor-2 (VEGFR2) signaling and non-productive tumor angiogenesis. Binding of the epsin ubiquitin (Ub)-interacting motif (UIM) with ubiquitylated VEGFR2 is a critical mechanism for epsin-dependent VEGFR2 endocytosis and degradation, indicative of epsin UIM as a potential therapeutic target. A Computer Assisted Drug Design approach was utilized to create the UIM mimetic peptides for the functional competition of epsin binding sites in ubiquitylated VEGFR2 in vivo. Specifically targeting VEGFR2 in the tumor vasculature, the chemically synthesized chimeric UIM peptide, UPI, causes non-functional tumor angiogenesis, retards tumor growth, and increases survival rates in several tumor models. The authors showed that UPI binds ubiquitylated VEGFR2 to form a supercomplex in an Ub-dependent fashion. Collectively, the UPI targeting strategy offers a potentially novel treatment for cancer patients who are resistant to current anti-angiogenic therapies. In this review, the authors outline the main points of this research specifically as a potential application for glioma tumor therapy.
Collapse
Affiliation(s)
- Yunzhou Dong
- Vascular Biology Program, Department of Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Hao Wu
- Vascular Biology Program, Department of Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jerry Dong
- Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, Oklahoma, OK 73104, USA
| | - Kai Song
- Vascular Biology Program, Department of Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Habibunnabi Ashiqur Rahman
- Vascular Biology Program, Department of Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Rheal Towner
- Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, Oklahoma, OK 73104, USA
| | - Hong Chen
- Vascular Biology Program, Department of Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
42
|
Mori J, Tanikawa C, Ohnishi N, Funauchi Y, Toyoshima O, Ueda K, Matsuda K. EPSIN 3, A Novel p53 Target, Regulates the Apoptotic Pathway and Gastric Carcinogenesis. Neoplasia 2017; 19:185-195. [PMID: 28152424 PMCID: PMC5288315 DOI: 10.1016/j.neo.2016.12.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 12/07/2016] [Accepted: 12/12/2016] [Indexed: 12/31/2022]
Abstract
BACKGROUND & AIM p53 activation by cellular stresses induces the transcription of hundreds of its target genes. To elucidate the entire picture of its downstream pathway, we screened a cDNA microarray dataset of adriamycin-treated HCT116 p53-/- or p53+/+ cells and identified EPSIN 3 as a novel p53 target. METHODS Potential p53 binding sequences in the EPSIN 3 locus were evaluated by reporter and CHIP assays. To investigate the role of EPSIN 3 in the p53 downstream pathway, we assessed DNA damage-induced apoptosis in EPSIN 3-knockdown HCT116 cells or Epsin 3-deficient mice. In addition, we evaluated EPSIN 3 expression levels in various tissues, including gastric adenocarcinoma, human gastric mucosa with or without Helicobacter pylori infection, and mouse acute gastritis tissues induced by indomethacin. RESULTS In response to DNA damage, p53 induced the expression of EPSIN 3 through the p53 binding elements in the EPSIN 3 promoter and the first intron. Knockdown of EPSIN 3 resulted in resistance to DNA damage-induced apoptosis both in vitro and in vivo. EPSIN 3 expression was down-regulated in gastric cancer tissues compared with normal tissues. In addition, Helicobacter pylori infection and indomethacin-induced acute gastritis repressed EPSIN 3 expression in gastric mucosa. CONCLUSIONS EPSIN 3 is a novel p53 target and a key mediator of apoptosis. Chronic or acute mucosal inflammation as well as p53 inactivation induced down-regulation of EPSIN 3 and subsequently caused apoptosis resistance, which is a hallmark of cancer cells.
Collapse
Affiliation(s)
- Jinichi Mori
- Laboratory of Clinical Genome sequencing, Department of Computational biology and medical Sciences, Graduate school of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Chizu Tanikawa
- Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Naomi Ohnishi
- Project for Realization of Personalized Cancer Medicine, Genome Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Yuki Funauchi
- Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | | | - Koji Ueda
- Project for Realization of Personalized Cancer Medicine, Genome Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Koichi Matsuda
- Laboratory of Clinical Genome sequencing, Department of Computational biology and medical Sciences, Graduate school of Frontier Sciences, The University of Tokyo, Tokyo, Japan; Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
43
|
Dong Y, Cai X, Wu Y, Liu Y, Deng L, Chen H. Insights from Genetic Model Systems of Retinal Degeneration: Role of Epsins in Retinal Angiogenesis and VEGFR2 Signaling. JOURNAL OF NATURE AND SCIENCE 2017; 3:e281. [PMID: 28191500 PMCID: PMC5303005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The retina is a light sensitive tissue that contains specialized photoreceptor cells called rods and cones which process visual signals. These signals are relayed to the brain through interneurons and the fibers of the optic nerve. The retina is susceptible to a variety of degenerative diseases, including age-related macular degeneration (AMD), diabetic retinopathy (DR), retinitis pigmentosa (RP) and other inherited retinal degenerations. In order to reveal the mechanism underlying these diseases and to find methods for the prevention/treatment of retinal degeneration, animal models have been generated to mimic human eye diseases. In this paper, several well-characterized and commonly used animal models are reviewed. Of particular interest are the contributions of these models to our understanding of the mechanisms of retinal degeneration and thereby providing novel treatment options including gene therapy, stem cell therapy, nanomedicine, and CRISPR/Cas9 genome editing. Role of newly-identified adaptor protein epsins from our laboratory is discussed in retinal angiogenesis and VEGFR2 signaling.
Collapse
Affiliation(s)
- Yunzhou Dong
- Vascular Biology Program, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Xue Cai
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Yong Wu
- Department of Internal Medicine, Charles R. Drew University of Medicine & Sciences, University of California School of Medicine, Los Angeles, CA 90059, USA
| | - Yanjun Liu
- Department of Internal Medicine, Charles R. Drew University of Medicine & Sciences, University of California School of Medicine, Los Angeles, CA 90059, USA
| | - Lin Deng
- Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Hong Chen
- Vascular Biology Program, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
44
|
Rodor J, FitzPatrick DR, Eyras E, Cáceres JF. The RNA-binding landscape of RBM10 and its role in alternative splicing regulation in models of mouse early development. RNA Biol 2016; 14:45-57. [PMID: 27763814 PMCID: PMC5270529 DOI: 10.1080/15476286.2016.1247148] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Mutations in the RNA-binding protein, RBM10, result in a human syndromic form of cleft palate, termed TARP syndrome. A role for RBM10 in alternative splicing regulation has been previously demonstrated in human cell lines. To uncover the cellular functions of RBM10 in a cell line that is relevant to the phenotype observed in TARP syndrome, we used iCLIP to identify its endogenous RNA targets in a mouse embryonic mandibular cell line. We observed that RBM10 binds to pre-mRNAs with significant enrichment in intronic regions, in agreement with a role for this protein in pre-mRNA splicing. In addition to protein-coding transcripts, RBM10 also binds to a variety of cellular RNAs, including non-coding RNAs, such as spliceosomal small nuclear RNAs, U2 and U12. RNA-seq was used to investigate changes in gene expression and alternative splicing in RBM10 KO mouse mandibular cells and also in mouse ES cells. We uncovered a role for RBM10 in the regulation of alternative splicing of common transcripts in both cell lines but also identified cell-type specific events. Importantly, those pre-mRNAs that display changes in alternative splicing also contain RBM10 iCLIP tags, suggesting a direct role of RBM10 in these events. Finally, we show that depletion of RBM10 in mouse ES cells leads to proliferation defects and to gross alterations in their differentiation potential. These results demonstrate a role for RBM10 in the regulation of alternative splicing in two cell models of mouse early development and suggests that mutations in RBM10 could lead to splicing changes that affect normal palate development and cause human disease.
Collapse
Affiliation(s)
- Julie Rodor
- a Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital , Edinburgh , EH4 2XU , UK
| | - David R FitzPatrick
- a Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital , Edinburgh , EH4 2XU , UK
| | - Eduardo Eyras
- b Computational Genomics Group, Universitat Pompeu Fabra , E08003 , Barcelona , Spain.,c Catalan Institution for Research and Advanced Studies (ICREA) , E08010 , Barcelona , Spain
| | - Javier F Cáceres
- a Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital , Edinburgh , EH4 2XU , UK
| |
Collapse
|
45
|
Song K, Wu H, Rahman HNA, Dong Y, Wen A, Brophy ML, Wong S, Kwak S, Bielenberg DR, Chen H. Endothelial epsins as regulators and potential therapeutic targets of tumor angiogenesis. Cell Mol Life Sci 2016; 74:393-398. [PMID: 27572288 DOI: 10.1007/s00018-016-2347-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 08/17/2016] [Accepted: 08/22/2016] [Indexed: 12/16/2022]
Abstract
VEGF-driven tumor angiogenesis has been validated as a central target in several tumor types deserving of continuous and further considerations to improve the efficacy and selectivity of the current therapeutic paradigms. Epsins, a family of endocytic clathrin adaptors, have been implicated in regulating endothelial cell VEGFR2 signaling, where its inactivation leads to nonproductive leaky neo-angiogenesis and, therefore, impedes tumor development and progression. Targeting endothelial epsins is of special significance due to its lack of affecting other angiogenic-signaling pathways or disrupting normal quiescent vessels, suggesting a selective modulation of tumor angiogenesis. This review highlights seminal findings on the critical role of endothelial epsins in tumor angiogenesis and their underlying molecular events, as well as strategies to prohibit the normal function of endogenous endothelial epsins that capitalize on these newly understood mechanisms.
Collapse
Affiliation(s)
- Kai Song
- Vascular Biology Program, Karp Family Research Laboratory, Department of Surgery, Boston Children's Hospital, Harvard Medical School, 12.214, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Hao Wu
- Vascular Biology Program, Karp Family Research Laboratory, Department of Surgery, Boston Children's Hospital, Harvard Medical School, 12.214, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - H N Ashiqur Rahman
- Vascular Biology Program, Karp Family Research Laboratory, Department of Surgery, Boston Children's Hospital, Harvard Medical School, 12.214, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Yunzhou Dong
- Vascular Biology Program, Karp Family Research Laboratory, Department of Surgery, Boston Children's Hospital, Harvard Medical School, 12.214, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Aiyun Wen
- Vascular Biology Program, Karp Family Research Laboratory, Department of Surgery, Boston Children's Hospital, Harvard Medical School, 12.214, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Megan L Brophy
- Vascular Biology Program, Karp Family Research Laboratory, Department of Surgery, Boston Children's Hospital, Harvard Medical School, 12.214, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Scott Wong
- Vascular Biology Program, Karp Family Research Laboratory, Department of Surgery, Boston Children's Hospital, Harvard Medical School, 12.214, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Sukyoung Kwak
- Vascular Biology Program, Karp Family Research Laboratory, Department of Surgery, Boston Children's Hospital, Harvard Medical School, 12.214, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Diane R Bielenberg
- Vascular Biology Program, Karp Family Research Laboratory, Department of Surgery, Boston Children's Hospital, Harvard Medical School, 12.214, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Hong Chen
- Vascular Biology Program, Karp Family Research Laboratory, Department of Surgery, Boston Children's Hospital, Harvard Medical School, 12.214, 300 Longwood Avenue, Boston, MA, 02115, USA.
| |
Collapse
|
46
|
Bello SM, Eppig JT. Inferring gene-to-phenotype and gene-to-disease relationships at Mouse Genome Informatics: challenges and solutions. J Biomed Semantics 2016. [PMCID: PMC5143442 DOI: 10.1186/s13326-016-0054-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Background Inferring gene-to-phenotype and gene-to-human disease model relationships from annotated mouse phenotypes and disease associations is critical when researching gene function and identifying candidate disease genes. Filtering the various kinds of genotypes to determine which phenotypes are caused by a mutation in a particular gene can be a laborious and time-consuming process. Methods At Mouse Genome Informatics (MGI, www.informatics.jax.org), we have developed a gene annotation derivation algorithm that computes gene-to-phenotype and gene-to-disease annotations from our existing corpus of annotations to genotypes. This algorithm differentiates between simple genotypes with causative mutations in a single gene and more complex genotypes where mutations in multiple genes may contribute to the phenotype. As part of the process, alleles functioning as tools (e.g., reporters, recombinases) are filtered out. Results Using this algorithm derived gene-to-phenotype and gene-to-disease annotations were created for 16,000 and 2100 mouse markers, respectively, starting from over 57,900 and 4800 genotypes with at least one phenotype and disease annotation, respectively. Conclusions Implementation of this algorithm provides consistent and accurate gene annotations across MGI and provides a vital time-savings relative to manual annotation by curators.
Collapse
|
47
|
Hung CW, Duncan MC. Clathrin binding by the adaptor Ent5 promotes late stages of clathrin coat maturation. Mol Biol Cell 2016; 27:1143-53. [PMID: 26842894 PMCID: PMC4814221 DOI: 10.1091/mbc.e15-08-0588] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 01/28/2016] [Indexed: 11/15/2022] Open
Abstract
Clathrin adaptors link cargo to the clathrin coat. The clathrin adaptor Ent5 is also required for the maturation of clathrin coats at the trans-Golgi network or endosome, suggesting that it plays a key mechanistic role in coat formation. This function requires only the Ent5 clathrin-binding sites and not its interaction with other endosomal adaptors. Clathrin is a ubiquitous protein that mediates membrane traffic at many locations. To function, clathrin requires clathrin adaptors that link it to transmembrane protein cargo. In addition to this cargo selection function, many adaptors also play mechanistic roles in the formation of the transport carrier. However, the full spectrum of these mechanistic roles is poorly understood. Here we report that Ent5, an endosomal clathrin adaptor in Saccharomyces cerevisiae, regulates the behavior of clathrin coats after the recruitment of clathrin. We show that loss of Ent5 disrupts clathrin-dependent traffic and prolongs the lifespan of endosomal structures that contain clathrin and other adaptors, suggesting a defect in coat maturation at a late stage. We find that the direct binding of Ent5 with clathrin is required for its role in coat behavior and cargo traffic. Surprisingly, the interaction of Ent5 with other adaptors is dispensable for coat behavior but not cargo traffic. These findings support a model in which Ent5 clathrin binding performs a mechanistic role in coat maturation, whereas Ent5 adaptor binding promotes cargo incorporation.
Collapse
Affiliation(s)
- Chao-Wei Hung
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Mara C Duncan
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
48
|
Rahman HNA, Wu H, Dong Y, Pasula S, Wen A, Sun Y, Brophy ML, Tessneer KL, Cai X, McManus J, Chang B, Kwak S, Rahman NS, Xu W, Fernandes C, Mcdaniel JM, Xia L, Smith L, Srinivasan RS, Chen H. Selective Targeting of a Novel Epsin-VEGFR2 Interaction Promotes VEGF-Mediated Angiogenesis. Circ Res 2016; 118:957-969. [PMID: 26879230 DOI: 10.1161/circresaha.115.307679] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 02/12/2016] [Indexed: 12/17/2022]
Abstract
RATIONALE We previously reported that vascular endothelial growth factor (VEGF)-induced binding of VEGF receptor 2 (VEGFR2) to epsins 1 and 2 triggers VEGFR2 degradation and attenuates VEGF signaling. The epsin ubiquitin interacting motif (UIM) was shown to be required for the interaction with VEGFR2. However, the molecular determinants that govern how epsin specifically interacts with and regulates VEGFR2 were unknown. OBJECTIVE The goals for the present study were as follows: (1) to identify critical molecular determinants that drive the specificity of the epsin and VEGFR2 interaction and (2) to ascertain whether such determinants were critical for physiological angiogenesis in vivo. METHODS AND RESULTS Structural modeling uncovered 2 novel binding surfaces within VEGFR2 that mediate specific interactions with epsin UIM. Three glutamic acid residues in epsin UIM were found to interact with residues in VEGFR2. Furthermore, we found that the VEGF-induced VEGFR2-epsin interaction promoted casitas B-lineage lymphoma-mediated ubiquitination of epsin, and uncovered a previously unappreciated ubiquitin-binding surface within VEGFR2. Mutational analysis revealed that the VEGFR2-epsin interaction is supported by VEGFR2 interacting specifically with the UIM and with ubiquitinated epsin. An epsin UIM peptide, but not a mutant UIM peptide, potentiated endothelial cell proliferation, migration and angiogenic properties in vitro, increased postnatal retinal angiogenesis, and enhanced VEGF-induced physiological angiogenesis and wound healing. CONCLUSIONS Distinct residues in the epsin UIM and VEGFR2 mediate specific interactions between epsin and VEGFR2, in addition to UIM recognition of ubiquitin moieties on VEGFR2. These novel interactions are critical for pathophysiological angiogenesis, suggesting that these sites could be selectively targeted by therapeutics to modulate angiogenesis.
Collapse
Affiliation(s)
- H N Ashiqur Rahman
- Vascular Biology Program, Karp Family Research Labs #12.214, Harvard Medical School, Boston Children's Hospital, 300 Longwood Ave, Boston, MA 02115, USA
| | - Hao Wu
- Vascular Biology Program, Karp Family Research Labs #12.214, Harvard Medical School, Boston Children's Hospital, 300 Longwood Ave, Boston, MA 02115, USA
| | - Yunzhou Dong
- Vascular Biology Program, Karp Family Research Labs #12.214, Harvard Medical School, Boston Children's Hospital, 300 Longwood Ave, Boston, MA 02115, USA
| | - Satish Pasula
- Cardiovascular Biology Program, Oklahoma Medical Research Foundation, Oklahoma, OK 73104, USA
| | - Aiyun Wen
- Vascular Biology Program, Karp Family Research Labs #12.214, Harvard Medical School, Boston Children's Hospital, 300 Longwood Ave, Boston, MA 02115, USA
| | - Ye Sun
- Vascular Biology Program, Karp Family Research Labs #12.214, Harvard Medical School, Boston Children's Hospital, 300 Longwood Ave, Boston, MA 02115, USA
| | - Megan L Brophy
- Vascular Biology Program, Karp Family Research Labs #12.214, Harvard Medical School, Boston Children's Hospital, 300 Longwood Ave, Boston, MA 02115, USA.,Department of Biochemistry and Molecular Biology, University of Oklahoma Health Science Center, Oklahoma, OK 73104, USA
| | - Kandice L Tessneer
- Cardiovascular Biology Program, Oklahoma Medical Research Foundation, Oklahoma, OK 73104, USA
| | - Xiaofeng Cai
- Vascular Biology Program, Karp Family Research Labs #12.214, Harvard Medical School, Boston Children's Hospital, 300 Longwood Ave, Boston, MA 02115, USA
| | - John McManus
- Cardiovascular Biology Program, Oklahoma Medical Research Foundation, Oklahoma, OK 73104, USA
| | - Baojun Chang
- Cardiovascular Biology Program, Oklahoma Medical Research Foundation, Oklahoma, OK 73104, USA
| | - Sukyoung Kwak
- Vascular Biology Program, Karp Family Research Labs #12.214, Harvard Medical School, Boston Children's Hospital, 300 Longwood Ave, Boston, MA 02115, USA
| | - Negar S Rahman
- Cardiovascular Biology Program, Oklahoma Medical Research Foundation, Oklahoma, OK 73104, USA
| | - Wenjia Xu
- Cardiovascular Biology Program, Oklahoma Medical Research Foundation, Oklahoma, OK 73104, USA
| | - Conrad Fernandes
- Cardiovascular Biology Program, Oklahoma Medical Research Foundation, Oklahoma, OK 73104, USA
| | - John Michael Mcdaniel
- Cardiovascular Biology Program, Oklahoma Medical Research Foundation, Oklahoma, OK 73104, USA
| | - Lijun Xia
- Cardiovascular Biology Program, Oklahoma Medical Research Foundation, Oklahoma, OK 73104, USA
| | - Lois Smith
- Vascular Biology Program, Karp Family Research Labs #12.214, Harvard Medical School, Boston Children's Hospital, 300 Longwood Ave, Boston, MA 02115, USA
| | - R Sathish Srinivasan
- Cardiovascular Biology Program, Oklahoma Medical Research Foundation, Oklahoma, OK 73104, USA
| | - Hong Chen
- Vascular Biology Program, Karp Family Research Labs #12.214, Harvard Medical School, Boston Children's Hospital, 300 Longwood Ave, Boston, MA 02115, USA
| |
Collapse
|
49
|
Dong Y, Wu H, Rahman HNA, Liu Y, Pasula S, Tessneer KL, Cai X, Liu X, Chang B, McManus J, Hahn S, Dong J, Brophy ML, Yu L, Song K, Silasi-Mansat R, Saunders D, Njoku C, Song H, Mehta-D'Souza P, Towner R, Lupu F, McEver RP, Xia L, Boerboom D, Srinivasan RS, Chen H. Motif mimetic of epsin perturbs tumor growth and metastasis. J Clin Invest 2015; 125:4349-64. [PMID: 26571402 DOI: 10.1172/jci80349] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 08/06/2015] [Indexed: 12/14/2022] Open
Abstract
Tumor angiogenesis is critical for cancer progression. In multiple murine models, endothelium-specific epsin deficiency abrogates tumor progression by shifting the balance of VEGFR2 signaling toward uncontrolled tumor angiogenesis, resulting in dysfunctional tumor vasculature. Here, we designed a tumor endothelium-targeting chimeric peptide (UPI) for the purpose of inhibiting endogenous tumor endothelial epsins by competitively binding activated VEGFR2. We determined that the UPI peptide specifically targets tumor endothelial VEGFR2 through an unconventional binding mechanism that is driven by unique residues present only in the epsin ubiquitin-interacting motif (UIM) and the VEGFR2 kinase domain. In murine models of neoangiogenesis, UPI peptide increased VEGF-driven angiogenesis and neovascularization but spared quiescent vascular beds. Further, in tumor-bearing mice, UPI peptide markedly impaired functional tumor angiogenesis, tumor growth, and metastasis, resulting in a notable increase in survival. Coadministration of UPI peptide with cytotoxic chemotherapeutics further sustained tumor inhibition. Equipped with localized tumor endothelium-specific targeting, our UPI peptide provides potential for an effective and alternative cancer therapy.
Collapse
MESH Headings
- Adaptor Proteins, Vesicular Transport/genetics
- Adaptor Proteins, Vesicular Transport/metabolism
- Adaptor Proteins, Vesicular Transport/pharmacology
- Amino Acid Motifs
- Animals
- Mice
- Mice, Knockout
- Neoplasm Metastasis
- Neoplasms, Experimental/blood supply
- Neoplasms, Experimental/drug therapy
- Neoplasms, Experimental/genetics
- Neoplasms, Experimental/metabolism
- Neoplasms, Experimental/pathology
- Neovascularization, Pathologic/drug therapy
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/pathology
- Peptides/genetics
- Peptides/metabolism
- Peptides/pharmacology
- Protein Structure, Tertiary
- Vascular Endothelial Growth Factor Receptor-2/genetics
- Vascular Endothelial Growth Factor Receptor-2/metabolism
Collapse
|
50
|
SCYL2 Protects CA3 Pyramidal Neurons from Excitotoxicity during Functional Maturation of the Mouse Hippocampus. J Neurosci 2015. [PMID: 26203146 DOI: 10.1523/jneurosci.2056-14.2015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Neuronal death caused by excessive excitatory signaling, excitotoxicity, plays a central role in neurodegenerative disorders. The mechanisms regulating this process, however, are still incompletely understood. Here we show that the coated vesicle-associated kinase SCYL2/CVAK104 plays a critical role for the normal functioning of the nervous system and for suppressing excitotoxicity in the developing hippocampus. Targeted disruption of Scyl2 in mice caused perinatal lethality in the vast majority of newborn mice and severe sensory-motor deficits in mice that survived to adulthood. Consistent with a neurogenic origin of these phenotypes, neuron-specific deletion of Scyl2 also caused perinatal lethality in the majority of newborn mice and severe neurological defects in adult mice. The neurological deficits in these mice were associated with the degeneration of several neuronal populations, most notably CA3 pyramidal neurons of the hippocampus, which we analyzed in more detail. The loss of CA3 neurons occurred during the functional maturation of the hippocampus and was the result of a BAX-dependent apoptotic process. Excessive excitatory signaling was present at the onset of degeneration, and inhibition of excitatory signaling prevented the degeneration of CA3 neurons. Biochemical fractionation reveals that Scyl2-deficient mice have an altered composition of excitatory receptors at synapses. Our findings demonstrate an essential role for SCYL2 in regulating neuronal function and survival and suggest a role for SCYL2 in regulating excitatory signaling in the developing brain. Significance statement: Here we examine the in vivo function of SCYL2, an evolutionarily conserved and ubiquitously expressed protein pseudokinase thought to regulate protein trafficking along the secretory pathway, and demonstrate its importance for the normal functioning of the nervous system and for suppressing excitatory signaling in the developing brain. Together with recent studies demonstrating a role of SCYL1 in preventing motor neuron degeneration, our findings clearly establish the SCY1-like family of protein pseudokinases as key regulators of neuronal function and survival.
Collapse
|