1
|
Kück U, Pöggeler S. STRIPAK, a fundamental signaling hub of eukaryotic development. Microbiol Mol Biol Rev 2024; 88:e0020523. [PMID: 39526753 DOI: 10.1128/mmbr.00205-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
SUMMARYThe striatin-interacting phosphatase and kinase (STRIPAK) complex is involved in the regulation of many developmental processes in eukaryotic microorganisms and all animals, including humans. STRIPAK is a component of protein phosphatase 2A (PP2A), a highly conserved serine-threonine phosphatase composed of catalytic subunits (PP2Ac), a scaffolding subunit (PP2AA) and various substrate-directing B regulatory subunits. In particular, the B''' regulatory subunit called striatin has evoked major interest over the last 20 years. Studies in fungal systems have contributed substantially to our current knowledge about STRIPAK composition, assembly, and cellular localization, as well as its regulatory role in autophagy and the morphology of fungal development. STRIPAK represents a signaling hub with many kinases and thus integrates upstream and downstream information from many conserved eukaryotic signaling pathways. A profound understanding of STRIPAK's regulatory role in fungi opens the gateway to understanding the multifarious functions carried out by STRIPAK in higher eukaryotes, including its contribution to malignant cell growth.
Collapse
Affiliation(s)
- Ulrich Kück
- Allgemeine & Molekulare Botanik, Ruhr-University, Bochum, Germany
| | - Stefanie Pöggeler
- Department of Genetics of Eukaryotic Microorganisms, Institute of Microbiology and Genetics, Georg-August-University, Göttingen, Germany
- Göttingen Center for Molecular Biosciences (GZMB), Georg-August-University, Göttingen, Germany
| |
Collapse
|
2
|
Wang W, Liu Y, Duan S, Bai N, Zhu M, Yang J. Cellular communication and fusion regulate cell fusion, trap morphogenesis, conidiation, and secondary metabolism in Arthrobotrys oligospora. Microbiol Res 2024; 278:127516. [PMID: 37857124 DOI: 10.1016/j.micres.2023.127516] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/05/2023] [Accepted: 10/10/2023] [Indexed: 10/21/2023]
Abstract
Signal-mediated cell fusion is vital for colony development in filamentous fungi. Arthrobotrys oligospora is a representative nematode-trapping (NT) fungus that produces adhesive networks (traps) to capture nematodes. Here, we characterized Aoadv-1, Aoso, Aoham-6, and Aoham-5 of A. oligospora, homologs of proteins involved in cellular communication and fusion in the model fungus Neurospora crassa. The deletion of four genes resulted in the complete loss of cell fusion, and traps produced by mutants did not close to form mycelial rings but were still capable of capturing nematodes. The absence of these genes inhibits aerial mycelial extension, slows colony growth, and increases mycelial branching. In addition, the mutants showed reduced sporulation capacity and tolerance to oxidative stress, increased sensitivity to SDS, and disturbed lipid droplet accumulation and autophagy. In addition, transcriptome and metabolomic analyses suggested that Aoadv-1 and Aoso are involved in multiple cellular processes and secondary metabolism. Our results revealed that Aoadv-1, Aoso, Aoham-6, and Aoham-5 regulate mycelial growth and trap morphogenesis through cell fusion, which contributed to elucidating the molecular mechanisms of cellular communication regulating mycelial development and trap morphogenesis in NT fungi.
Collapse
Affiliation(s)
- Wenjie Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, and School of Life Science, Yunnan University, Kunming 650032, China
| | - Yankun Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, and School of Life Science, Yunnan University, Kunming 650032, China
| | - Shipeng Duan
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, and School of Life Science, Yunnan University, Kunming 650032, China
| | - Na Bai
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, and School of Life Science, Yunnan University, Kunming 650032, China
| | - Meichen Zhu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, and School of Life Science, Yunnan University, Kunming 650032, China
| | - Jinkui Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, and School of Life Science, Yunnan University, Kunming 650032, China.
| |
Collapse
|
3
|
Mayer A, McLaughlin G, Gladfelter A, Glass NL, Mela A, Roper M. Syncytial Assembly Lines: Consequences of Multinucleate Cellular Compartments for Fungal Protein Synthesis. Results Probl Cell Differ 2024; 71:159-183. [PMID: 37996678 DOI: 10.1007/978-3-031-37936-9_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Fast growth and prodigious cellular outputs make fungi powerful tools in biotechnology. Recent modeling work has exposed efficiency gains associated with dividing the labor of transcription over multiple nuclei, and experimental innovations are opening new windows on the capacities and adaptations that allow nuclei to behave autonomously or in coordination while sharing a single, common cytoplasm. Although the motivation of our review is to motivate and connect recent work toward a greater understanding of fungal factories, we use the analogy of the assembly line as an organizing idea for studying coordinated gene expression, generally.
Collapse
Affiliation(s)
- Alex Mayer
- Department of Mathematics, University of California Los Angeles, Los Angeles, CA, USA
| | - Grace McLaughlin
- Department of Cell Biology, Duke University, Durham, NC, USA
- Department of Biology, University of North Carolina Chapel Hill, Chapel Hill, NC, USA
| | - Amy Gladfelter
- Department of Cell Biology, Duke University, Durham, NC, USA
| | - N Louise Glass
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, USA
| | - Alexander Mela
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, USA
| | - Marcus Roper
- Department of Mathematics, University of California Los Angeles, Los Angeles, CA, USA.
- Department of Computational Medicine, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
4
|
Wernet V, Kriegler M, Kumpost V, Mikut R, Hilbert L, Fischer R. Synchronization of oscillatory growth prepares fungal hyphae for fusion. eLife 2023; 12:e83310. [PMID: 37602797 PMCID: PMC10522335 DOI: 10.7554/elife.83310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 08/19/2023] [Indexed: 08/22/2023] Open
Abstract
Communication is crucial for organismic interactions, from bacteria, to fungi, to humans. Humans may use the visual sense to monitor the environment before starting acoustic interactions. In comparison, fungi, lacking a visual system, rely on a cell-to-cell dialogue based on secreted signaling molecules to coordinate cell fusion and establish hyphal networks. Within this dialogue, hyphae alternate between sending and receiving signals. This pattern can be visualized via the putative signaling protein Soft (SofT), and the mitogen-activated protein kinase MAK-2 (MakB) which are recruited in an alternating oscillatory manner to the respective cytoplasmic membrane or nuclei of interacting hyphae. Here, we show that signal oscillations already occur in single hyphae of Arthrobotrys flagrans in the absence of potential fusion partners (cell monologue). They were in the same phase as growth oscillations. In contrast to the anti-phasic oscillations observed during the cell dialogue, SofT and MakB displayed synchronized oscillations in phase during the monologue. Once two fusion partners came into each other's vicinity, their oscillation frequencies slowed down (entrainment phase) and transit into anti-phasic synchronization of the two cells' oscillations with frequencies of 104±28 s and 117±19 s, respectively. Single-cell oscillations, transient entrainment, and anti-phasic oscillations were reproduced by a mathematical model where nearby hyphae can absorb and secrete a limited molecular signaling component into a shared extracellular space. We show that intracellular Ca2+ concentrations oscillate in two approaching hyphae, and depletion of Ca2+ from the medium affected vesicle-driven extension of the hyphal tip, abolished the cell monologue and the anti-phasic synchronization of two hyphae. Our results suggest that single hyphae engage in a 'monologue' that may be used for exploration of the environment and can dynamically shift their extracellular signaling systems into a 'dialogue' to initiate hyphal fusion.
Collapse
Affiliation(s)
- Valentin Wernet
- Karlsruhe Institute of Technology - South Campus Institute for Applied Biosciences Dept. of MicrobiologyKarlsruheGermany
| | - Marius Kriegler
- Karlsruhe Institute of Technology - South Campus Institute for Applied Biosciences Dept. of MicrobiologyKarlsruheGermany
| | - Vojtech Kumpost
- Karlsruhe Institute of Technology – North Campus Institute for Automation and Applied InformaticsEggenstein-LeopoldshafenGermany
- Karlsruhe Institute of Technology – North Campus Institute of Biological and Chemical Systems – Biological Information ProcessingEggenstein-LeopoldshafenGermany
| | - Ralf Mikut
- Karlsruhe Institute of Technology – North Campus Institute for Automation and Applied InformaticsEggenstein-LeopoldshafenGermany
| | - Lennart Hilbert
- Karlsruhe Institute of Technology – North Campus Institute of Biological and Chemical Systems – Biological Information ProcessingEggenstein-LeopoldshafenGermany
- Karlsruhe Institute of Technology – South Campus Zoological Institute Dept. of Systems Biology / BioinformaticsEggenstein-LeopoldshafenGermany
| | - Reinhard Fischer
- Karlsruhe Institute of Technology - South Campus Institute for Applied Biosciences Dept. of MicrobiologyKarlsruheGermany
| |
Collapse
|
5
|
Mela AP, Glass NL. Permissiveness and competition within and between Neurospora crassa syncytia. Genetics 2023; 224:iyad112. [PMID: 37313736 PMCID: PMC10411585 DOI: 10.1093/genetics/iyad112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 06/15/2023] Open
Abstract
A multinucleate syncytium is a common growth form in filamentous fungi. Comprehensive functions of the syncytial state remain unknown, but it likely allows for a wide range of adaptations to enable filamentous fungi to coordinate growth, reproduction, responses to the environment, and to distribute nuclear and cytoplasmic elements across a colony. Indeed, the underlying mechanistic details of how syncytia regulate cellular and molecular processes spatiotemporally across a colony are largely unexplored. Here, we implemented a strategy to analyze the relative fitness of different nuclear populations in syncytia of Neurospora crassa, including nuclei with loss-of-function mutations in essential genes, based on production of multinucleate asexual spores using flow cytometry of pairings between strains with differentially fluorescently tagged nuclear histones. The distribution of homokaryotic and heterokaryotic asexual spores in pairings was assessed between different auxotrophic and morphological mutants, as well as with strains that were defective in somatic cell fusion or were heterokaryon incompatible. Mutant nuclei were compartmentalized into both homokaryotic and heterokaryotic asexual spores, a type of bet hedging for maintenance and evolution of mutational events, despite disadvantages to the syncytium. However, in pairings between strains that were blocked in somatic cell fusion or were heterokaryon incompatible, we observed a "winner-takes-all" phenotype, where asexual spores originating from paired strains were predominantly one genotype. These data indicate that syncytial fungal cells are permissive and tolerate a wide array of nuclear functionality, but that cells/colonies that are unable to cooperate via syncytia formation actively compete for resources.
Collapse
Affiliation(s)
- Alexander P Mela
- The Plant and Microbial Biology Department, University of California Berkeley, Berkeley, CA 94720, USA
| | - N Louise Glass
- The Plant and Microbial Biology Department, University of California Berkeley, Berkeley, CA 94720, USA
- The Environmental Genomics and Systems Biology Division, The Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
6
|
Panstruga R, Antonin W, Lichius A. Looking outside the box: a comparative cross-kingdom view on the cell biology of the three major lineages of eukaryotic multicellular life. Cell Mol Life Sci 2023; 80:198. [PMID: 37418047 PMCID: PMC10329083 DOI: 10.1007/s00018-023-04843-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/16/2023] [Accepted: 06/17/2023] [Indexed: 07/08/2023]
Abstract
Many cell biological facts that can be found in dedicated scientific textbooks are based on findings originally made in humans and/or other mammals, including respective tissue culture systems. They are often presented as if they were universally valid, neglecting that many aspects differ-in part considerably-between the three major kingdoms of multicellular eukaryotic life, comprising animals, plants and fungi. Here, we provide a comparative cross-kingdom view on the basic cell biology across these lineages, highlighting in particular essential differences in cellular structures and processes between phyla. We focus on key dissimilarities in cellular organization, e.g. regarding cell size and shape, the composition of the extracellular matrix, the types of cell-cell junctions, the presence of specific membrane-bound organelles and the organization of the cytoskeleton. We further highlight essential disparities in important cellular processes such as signal transduction, intracellular transport, cell cycle regulation, apoptosis and cytokinesis. Our comprehensive cross-kingdom comparison emphasizes overlaps but also marked differences between the major lineages of the three kingdoms and, thus, adds to a more holistic view of multicellular eukaryotic cell biology.
Collapse
Affiliation(s)
- Ralph Panstruga
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, 52056, Aachen, Germany.
| | - Wolfram Antonin
- Institute of Biochemistry and Molecular Cell Biology, Medical School, RWTH Aachen University, 52074, Aachen, Germany
| | - Alexander Lichius
- inncellys GmbH, Dorfstrasse 20/3, 6082, Patsch, Austria
- Department of Microbiology, University of Innsbruck, Technikerstrasse 25, 6020, Innsbruck, Austria
| |
Collapse
|
7
|
Components of TOR and MAP kinase signaling control chemotropism and pathogenicity in the fungal pathogen Verticillium dahliae. Microbiol Res 2023; 271:127361. [PMID: 36921400 DOI: 10.1016/j.micres.2023.127361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 03/03/2023] [Accepted: 03/10/2023] [Indexed: 03/13/2023]
Abstract
Filamentous fungi can sense useful resources and hazards in their environment and direct growth of their hyphae accordingly. Chemotropism ensures access to nutrients, contact with other individuals (e.g., for mating), and interaction with hosts in the case of pathogens. Previous studies have revealed a complex chemotropic sensing landscape during host-pathogen interactions, but the underlying molecular machinery remains poorly characterized. Here we studied mechanisms controlling directed hyphal growth of the important plant-pathogenic fungus Verticillium dahliae towards different chemoattractants. We found that the homologs of the Rag GTPase Gtr1 and the GTPase-activating protein Tsc2, an activator and a repressor of the TOR kinase respectively, play important roles in hyphal chemotropism towards nutrients, plant-derived signals, and heterologous α-pheromone of Fusarium oxysporum. Furthermore, important roles of these regulators were identified in fungal development and pathogenicity. We also found that the mitogen-activated protein kinase (MAPK) Fus3 is required for chemotropism towards nutrients, while the G protein-coupled receptor (GPCR) Ste2 and the MAPK Slt2 control chemosensing of plant-derived signals and α-pheromone. Our study establishes V. dahliae as a suitable model system for the analysis of fungal chemotropism and discovers new components of chemotropic signaling during growth and host-pathogen interactions of V. dahliae.
Collapse
|
8
|
Medina-Castellanos E, Salgado-Bautista DA, Martínez-Andrade JM, Cadena-Nava RD, Riquelme M. Nanosized extracellular vesicles released by Neurospora crassa hyphae. Fungal Genet Biol 2023; 165:103778. [PMID: 36690295 DOI: 10.1016/j.fgb.2023.103778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023]
Abstract
Extracellular vesicles (EVs) are nanosized structures containing proteins, lipids, and nucleic acids, released by living cells to the surrounding medium. EVs participate in diverse processes, such as intercellular communication, virulence, and disease. In pathogenic fungi, EVs carry enzymes that allow them to invade the host or undergo environmental adaptation successfully. In Neurospora crassa, a non-pathogenic filamentous fungus widely used as a model organism, the vesicle-dependent secretory mechanisms that lead to polarized growth are well studied. In contrast, biosynthesis of EVs in this fungus has been practically unexplored. In the present work, we analyzed N. crassa culture's supernatant for the presence of EVs by dynamic light scattering (DLS), transmission electron microscopy (TEM) and proteomic analysis. We identified spherical membranous structures, with a predominant subpopulation averaging a hydrodynamic diameter (dh) of 68 nm and a particle diameter (dp) of 38 nm. EV samples stained with osmium tetroxide vapors were better resolved than those stained with uranyl acetate. Mass spectrometry analysis identified 252 proteins, including enzymes involved in carbohydrate metabolic processes, oxidative stress response, cell wall organization/remodeling, and circadian clock-regulated proteins. Some of these proteins have been previously reported in exosomes from human cells or in EVs of other fungi. In view of the results, it is suggested a putative role for EVs in cell wall biosynthesis and vegetative development in N. crassa.
Collapse
Affiliation(s)
- Elizabeth Medina-Castellanos
- Department of Microbiology, Centro de Investigación Científica y Educación Superior de Ensenada (CICESE), Ensenada, Mexico
| | - Daniel A Salgado-Bautista
- Department of Microbiology, Centro de Investigación Científica y Educación Superior de Ensenada (CICESE), Ensenada, Mexico
| | - Juan M Martínez-Andrade
- Department of Microbiology, Centro de Investigación Científica y Educación Superior de Ensenada (CICESE), Ensenada, Mexico
| | - Ruben Dario Cadena-Nava
- Department of Bionanotechnology, Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Ensenada, Mexico
| | - Meritxell Riquelme
- Department of Microbiology, Centro de Investigación Científica y Educación Superior de Ensenada (CICESE), Ensenada, Mexico.
| |
Collapse
|
9
|
Schalamun M, Beier S, Hinterdobler W, Wanko N, Schinnerl J, Brecker L, Engl DE, Schmoll M. MAPkinases regulate secondary metabolism, sexual development and light dependent cellulase regulation in Trichoderma reesei. Sci Rep 2023; 13:1912. [PMID: 36732590 PMCID: PMC9894936 DOI: 10.1038/s41598-023-28938-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
The filamentous fungus Trichoderma reesei is a prolific producer of plant cell wall degrading enzymes, which are regulated in response to diverse environmental signals for optimal adaptation, but also produces a wide array of secondary metabolites. Available carbon source and light are the strongest cues currently known to impact secreted enzyme levels and an interplay with regulation of secondary metabolism became increasingly obvious in recent years. While cellulase regulation is already known to be modulated by different mitogen activated protein kinase (MAPK) pathways, the relevance of the light signal, which is transmitted by this pathway in other fungi as well, is still unknown in T. reesei as are interconnections to secondary metabolism and chemical communication under mating conditions. Here we show that MAPkinases differentially influence cellulase regulation in light and darkness and that the Hog1 homologue TMK3, but not TMK1 or TMK2 are required for the chemotropic response to glucose in T. reesei. Additionally, MAPkinases regulate production of specific secondary metabolites including trichodimerol and bisorbibutenolid, a bioactive compound with cytostatic effect on cancer cells and deterrent effect on larvae, under conditions facilitating mating, which reflects a defect in chemical communication. Strains lacking either of the MAPkinases become female sterile, indicating the conservation of the role of MAPkinases in sexual fertility also in T. reesei. In summary, our findings substantiate the previously detected interconnection of cellulase regulation with regulation of secondary metabolism as well as the involvement of MAPkinases in light dependent gene regulation of cellulase and secondary metabolite genes in fungi.
Collapse
Affiliation(s)
- Miriam Schalamun
- Center for Health and Bioresources, Bioresources Unit, AIT Austrian Institute of Technology GmbH, Konrad Lorenz Strasse 24, 3430, Tulln, Austria
| | - Sabrina Beier
- Center for Health and Bioresources, Bioresources Unit, AIT Austrian Institute of Technology GmbH, Konrad Lorenz Strasse 24, 3430, Tulln, Austria
| | - Wolfgang Hinterdobler
- Center for Health and Bioresources, Bioresources Unit, AIT Austrian Institute of Technology GmbH, Konrad Lorenz Strasse 24, 3430, Tulln, Austria
- MyPilz GmbH, Wienerbergstrasse 55/13-15, 1120, Vienna, Austria
| | - Nicole Wanko
- Center for Health and Bioresources, Bioresources Unit, AIT Austrian Institute of Technology GmbH, Konrad Lorenz Strasse 24, 3430, Tulln, Austria
| | - Johann Schinnerl
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030, Vienna, Austria
| | - Lothar Brecker
- Department of Organic Chemistry, University of Vienna, Währinger Strasse 38, 1090, Vienna, Austria
| | - Dorothea Elisa Engl
- Department of Organic Chemistry, University of Vienna, Währinger Strasse 38, 1090, Vienna, Austria
| | - Monika Schmoll
- Center for Health and Bioresources, Bioresources Unit, AIT Austrian Institute of Technology GmbH, Konrad Lorenz Strasse 24, 3430, Tulln, Austria.
- Division of Terrestrial Ecosystem Research, Department of Microbiology and Ecosystem Science, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria.
| |
Collapse
|
10
|
Wernet V, Fischer R. Establishment of Arthrobotrys flagrans as biocontrol agent against the root pathogenic nematode Xiphinema index. Environ Microbiol 2023; 25:283-293. [PMID: 36354014 DOI: 10.1111/1462-2920.16282] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/08/2022] [Indexed: 11/11/2022]
Abstract
Plant-parasitic nematodes cause devastating agricultural damage worldwide. Only a few synthetic nematicides can be used and their application is limited in fields. Therefore, there is a need for sustainable and environment-friendly alternatives. Nematode-trapping fungi (NTF) are natural predators of nematodes. They capture and digest them with their hyphae and are starting to being used as bio-control agents. In this study, we applied the NTF Arthrobotrys flagrans (Duddingtonia flagrans) against the wine pathogenic nematode Xiphinema index. A. flagrans reduced the number of X. index juveniles in pot cultures of Ficus carica, an alternative host plant for X. index, significantly. Sodium-alginate pellets with A. flagrans spores were produced for vineyard soil inoculation under laboratory conditions. The NTF A. conoides, A. musiformis and A. superba were enriched from several soil samples, showing their natural presence. Trap formation is an energy-consuming process and depends upon various biotic and abiotic stimuli. Here, we show that bacteria of the genus Delftia, Bacillus, Pseudomonas, Enterobacter and Serratia induced trap formation in NTF like A. conoides and A. oligospora but not in A. flagrans in the absence of nematodes. The application of NTF along with such bacteria could be a combinatorial way of efficient biocontrol in nematode-infested soil.
Collapse
Affiliation(s)
- Valentin Wernet
- Department of Microbiology, Institute for Applied Biosciences, Karlsruhe, Germany
| | - Reinhard Fischer
- Department of Microbiology, Institute for Applied Biosciences, Karlsruhe, Germany
| |
Collapse
|
11
|
Kasbekar DP. An evolutionarily conserved mechanism underlies interspecies cell–cell signalling in fungi. J Biosci 2023. [DOI: 10.1007/s12038-023-00327-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
12
|
Fleißner A, Oostlander AG, Well L. Highly conserved, but highly specific: Somatic cell-cell fusion in filamentous fungi. Curr Opin Cell Biol 2022; 79:102140. [PMID: 36347130 DOI: 10.1016/j.ceb.2022.102140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 11/06/2022]
Abstract
The development of ascomycete fungal colonies involves cell-cell fusion at different growth stages. In the model fungus Neurospora crassa, communication of two fusing cells is mediated by an unusual signaling mechanism, in which the two partners take turns in signal sending and receiving. In recent years, the molecular basis of this unusual cellular behavior has started to unfold, indicating the presence of an excitable signaling network. New evidence suggests that this communication system is highly conserved in ascomycete fungi and, unexpectedly, even mediates interspecies interactions. At the same time, intricate allorecognition mechanisms were identified, which prevent the fusion of genetically unlike individuals. These observations suggest that signal specificity during fungal social behavior has not evolved on the level of signals and receptors, but is achieved at downstream checkpoints. Despite growing insight into the molecular mechanisms controlling self and non-self fungal interactions, their role in natural environments remains largely unknown.
Collapse
Affiliation(s)
- André Fleißner
- Institut für Genetik, Technische Universität Braunschweig, Braunschweig, Germany.
| | - Anne G Oostlander
- Institut für Genetik, Technische Universität Braunschweig, Braunschweig, Germany
| | - Lucas Well
- Institut für Genetik, Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
13
|
Hyphal Fusions Enable Efficient Nutrient Distribution in Colletotrichum graminicola Conidiation and Symptom Development on Maize. Microorganisms 2022; 10:microorganisms10061146. [PMID: 35744664 PMCID: PMC9231406 DOI: 10.3390/microorganisms10061146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 02/01/2023] Open
Abstract
Hyphal and germling fusion is a common phenomenon in ascomycetous fungi. Due to the formed hyphal network, this process enables a coordinated development as well as an interaction with plant hosts and efficient nutrient distribution. Recently, our laboratory work demonstrated a positive correlation between germling fusion and the formation of penetrating hyphopodia on maize leaves outgoing from Colletotrichum graminicola oval conidia. To investigate the probable interconnectivity of these processes, we generated a deletion mutant in Cgso, in which homologs are essential for cellular fusion in other fungal species. However, hyphopodia development was not affected, indicating that both processes are not directly connected. Instead, we were able to link the cellular fusion defect in ∆Cgso to a decreased formation of asexual fruiting bodies of C. graminicola on the leaves. The monitoring of a fluorescent-labelled autophagy marker, eGFP-CgAtg8, revealed a high autophagy activity in the hyphae surrounding the acervuli. These results support the hypothesis that the efficient nutrient transport of degraded cellular material by hyphal fusions enables proper acervuli maturation and, therefore, symptom development on the leaves.
Collapse
|
14
|
A dialogue-like cell communication mechanism is conserved in filamentous ascomycete fungi and mediates interspecies interactions. Proc Natl Acad Sci U S A 2022; 119:e2112518119. [PMID: 35286209 PMCID: PMC8944665 DOI: 10.1073/pnas.2112518119] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
This study reveals that a dialogue-like communication mechanism, which mediates cell–cell fusion in filamentous fungi, is a conserved complex trait. It allows the communication and behavioral coordination of cells of distantly related species and mediates their mutual attraction and subsequent physical contact, although interspecies fusion does not occur. Through the activation of this signaling machinery, one species can reprogram the developmental program of the other fungus. These data promote our understanding of microbial communication, illustrate the mechanism of repurposing of existing building blocks in cellular evolution, revive the hypothesis of vegetative fusion as an avenue of horizontal gene transfer in fungi, and establish the idea of developmental reprogramming as a tool for controlling fungi. In many filamentous fungi, germinating spores cooperate by fusing into supracellular structures, which develop into the mycelial colony. In the model fungus Neurospora crassa, this social behavior is mediated by an intriguing mode of communication, in which two fusing cells take turns in signal sending and receiving. Here we show that this dialogue-like cell communication mechanism is highly conserved in distantly related fungal species and mediates interspecies interactions. In mixed populations, cells of N. crassa and the phytopathogenic gray mold Botrytis cinerea coordinate their behavior over a spatial distance and establish physical contact. Subsequent cell–cell fusion is, however, restricted to germlings of the same species, indicating that species specificity of germling fusion has evolved not on the level of the signal/receptor but at subsequent levels of the fusion process. In B. cinerea, fusion and infectious growth are mutually exclusive cellular programs. Remarkably, the presence of N. crassa can reprogram this behavior and induce fusion of the gray mold on plant surfaces, potentially weakening its pathogenic potential. In a third fungal species, the nematode-trapping fungus Arthrobotrys flagrans, the conserved signaling mechanism mediates vegetative fusion within mycelial colonies but has also been repurposed for the formation of nematode-catching traps. In summary, this study identified the cell dialogue mechanism as a conserved complex trait and revealed that even distantly related fungi possess a common molecular language, which promotes cellular contact formation across species borders.
Collapse
|
15
|
Abstract
Fungi exhibit an enormous variety of morphologies, including yeast colonies, hyphal mycelia, and elaborate fruiting bodies. This diversity arises through a combination of polar growth, cell division, and cell fusion. Because fungal cells are nonmotile and surrounded by a protective cell wall that is essential for cell integrity, potential fusion partners must grow toward each other until they touch and then degrade the intervening cell walls without impacting cell integrity. Here, we review recent progress on understanding how fungi overcome these challenges. Extracellular chemoattractants, including small peptide pheromones, mediate communication between potential fusion partners, promoting the local activation of core cell polarity regulators to orient polar growth and cell wall degradation. However, in crowded environments, pheromone gradients can be complex and potentially confusing, raising the question of how cells can effectively find their partners. Recent findings suggest that the cell polarity circuit exhibits searching behavior that can respond to pheromone cues through a remarkably flexible and effective strategy called exploratory polarization.
Collapse
|
16
|
Kurian SM, Lichius A, Read ND. Ca2+ Signalling Differentially Regulates Germ-Tube Formation and Cell Fusion in Fusarium oxysporum. J Fungi (Basel) 2022; 8:jof8010090. [PMID: 35050029 PMCID: PMC8780837 DOI: 10.3390/jof8010090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 11/16/2022] Open
Abstract
Fusarium oxysporum is an important plant pathogen and an emerging opportunistic human pathogen. Germination of conidial spores and their fusion via conidial anastomosis tubes (CATs) are significant events during colony establishment in culture and on host plants and, hence, very likely on human epithelia. CAT fusion exhibited by conidial germlings of Fusarium species has been postulated to facilitate mitotic recombination, leading to heterokaryon formation and strains with varied genotypes and potentially increased virulence. Ca2+ signalling is key to many of the important physiological processes in filamentous fungi. Here, we tested pharmacological agents with defined modes of action in modulation of the mammalian Ca2+ signalling machinery for their effect on germination and CAT-mediated cell fusion in F. oxysporum. We found various drug-specific and dose-dependent effects. Inhibition of calcineurin by FK506 or cyclosporin A, as well as chelation of extracellular Ca2+ by BAPTA, exclusively inhibit CAT induction but not germ-tube formation. On the other hand, inhibition of Ca2+ channels by verapamil, calmodulin inhibition by calmidazolium, and inhibition of mitochondrial calcium uniporters by RU360 inhibited both CAT induction and germ-tube formation. Thapsigargin, an inhibitor of mammalian sarco/endoplasmic reticulum Ca2+ ATPase (SERCA), partially inhibited CAT induction but had no effect on germ-tube formation. These results provide initial evidence for morphologically defining roles of Ca2+-signalling components in the early developmental stages of F. oxysporum colony establishment—most notably, the indication that calcium ions act as self-signalling molecules in this process. Our findings contribute an important first step towards the identification of Ca2+ inhibitors with fungas-specific effects that could be exploited for the treatment of infected plants and humans.
Collapse
Affiliation(s)
- Smija M. Kurian
- Manchester Fungal Infection Group, University of Manchester, Manchester M13 9NT, UK;
- College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK
- Correspondence:
| | - Alexander Lichius
- Department of Microbiology, University of Innsbruck, 6020 Innsbruck, Austria;
| | - Nick D. Read
- Manchester Fungal Infection Group, University of Manchester, Manchester M13 9NT, UK;
| |
Collapse
|
17
|
The NADPH Oxidase A of Verticillium dahliae Is Essential for Pathogenicity, Normal Development, and Stress Tolerance, and It Interacts with Yap1 to Regulate Redox Homeostasis. J Fungi (Basel) 2021; 7:jof7090740. [PMID: 34575778 PMCID: PMC8468606 DOI: 10.3390/jof7090740] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 12/23/2022] Open
Abstract
Maintenance of redox homeostasis is vital for aerobic organisms and particularly relevant to plant pathogens. A balance is required between their endogenous ROS production, which is important for their development and pathogenicity, and host-derived oxidative stress. Endogenous ROS in fungi are generated by membrane-bound NADPH oxidase (NOX) complexes and the mitochondrial respiratory chain, while transcription factor Yap1 is a major regulator of the antioxidant response. Here, we investigated the roles of NoxA and Yap1 in fundamental biological processes of the important plant pathogen Verticillium dahliae. Deletion of noxA impaired growth and morphogenesis, compromised formation of hyphopodia, diminished penetration ability and pathogenicity, increased sensitivity against antifungal agents, and dysregulated expression of antioxidant genes. On the other hand, deletion of yap1 resulted in defects in conidial and microsclerotia formation, increased sensitivity against oxidative stress, and down-regulated antioxidant genes. Localized accumulation of ROS was observed before conidial fusion and during the heterokaryon incompatibility reaction upon nonself fusion. The frequency of inviable fusions was not affected by the deletion of Yap1. Analysis of a double knockout mutant revealed an epistatic relationship between noxA and yap1. Our results collectively reveal instrumental roles of NoxA and ROS homeostasis in the biology of V. dahliae.
Collapse
|
18
|
Herold I, Zolti A, Garduño-Rosales M, Wang Z, López-Giráldez F, Mouriño-Pérez RR, Townsend JP, Ulitsky I, Yarden O. The GUL-1 Protein Binds Multiple RNAs Involved in Cell Wall Remodeling and Affects the MAK-1 Pathway in Neurospora crassa. FRONTIERS IN FUNGAL BIOLOGY 2021; 2:672696. [PMID: 37744127 PMCID: PMC10512220 DOI: 10.3389/ffunb.2021.672696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 03/19/2021] [Indexed: 09/26/2023]
Abstract
The Neurospora crassa GUL-1 is part of the COT-1 pathway, which plays key roles in regulating polar hyphal growth and cell wall remodeling. We show that GUL-1 is a bona fide RNA-binding protein (RBP) that can associate with 828 "core" mRNA species. When cell wall integrity (CWI) is challenged, expression of over 25% of genomic RNA species are modulated (2,628 mRNAs, including the GUL-1 mRNA). GUL-1 binds mRNAs of genes related to translation, cell wall remodeling, circadian clock, endoplasmic reticulum (ER), as well as CWI and MAPK pathway components. GUL-1 interacts with over 100 different proteins, including stress-granule and P-body proteins, ER components and components of the MAPK, COT-1, and STRIPAK complexes. Several additional RBPs were also shown to physically interact with GUL-1. Under stress conditions, GUL-1 can localize to the ER and affect the CWI pathway-evident via altered phosphorylation levels of MAK-1, interaction with mak-1 transcript, and involvement in the expression level of the transcription factor adv-1. We conclude that GUL-1 functions in multiple cellular processes, including the regulation of cell wall remodeling, via a mechanism associated with the MAK-1 pathway and stress-response.
Collapse
Affiliation(s)
- Inbal Herold
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Avihai Zolti
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Marisela Garduño-Rosales
- Departamento de Microbiología, CICESE (Centro de Investigación Científica y Educación Superior de Ensenada), Ensenada, Mexico
| | - Zheng Wang
- Department of Biostatistics, Yale University, New Haven, CT, United States
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, United States
| | - Francesc López-Giráldez
- Yale Center for Genome Analysis, Department of Genetics, Yale University, New Haven, CT, United States
| | - Rosa R. Mouriño-Pérez
- Departamento de Microbiología, CICESE (Centro de Investigación Científica y Educación Superior de Ensenada), Ensenada, Mexico
| | - Jeffrey P. Townsend
- Department of Biostatistics, Yale University, New Haven, CT, United States
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, United States
| | - Igor Ulitsky
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Oded Yarden
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
19
|
Mehta N, Baghela A. Quorum sensing-mediated inter-specific conidial anastomosis tube fusion between Colletotrichum gloeosporioides and C. siamense. IMA Fungus 2021; 12:7. [PMID: 33789776 PMCID: PMC8015167 DOI: 10.1186/s43008-021-00058-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 02/21/2021] [Indexed: 02/07/2023] Open
Abstract
Many plant pathogenic filamentous fungi undergo fusion of conidia through conidial anastomosis tubes (CATs), which is believed to facilitate horizontal gene transfer between species. We discovered a remarkable inter-specific CAT fusion between two important plant fungal pathogens Colletotrichum gloeosporioides and C. siamense. In an invitro assay, under no selection pressure, the inter-specific CAT fusion was preferred with higher frequency (25% ± 5%) than intra-specific CAT fusion (11% ± 3.6%). Different stages of CAT fusion viz. CAT induction, homing, and fusion were observed during this inter-specific CAT fusion. The CAT fusion was found to be higher in absence of nutrients and under physiological stresses. This CAT fusion involved a quorum sensing phenomenon, wherein the CAT induction was dependent on conidial density and the putative quorum sensing molecule was extractable in chloroform. Movement of nuclei, mitochondria, and lipid droplets were observed during the CAT fusion. Post CAT fusion, the resulting conidia gave rise to putative heterokaryotic progenies with variable colony characteristics as compared to their parental strains. Few heterokaryons showed variable AFLP banding pattern compared to their parental strains, thereby suggesting a possible genetic exchange between the two species through CAT fusion. The heterokaryotic progenies exhibited varied fitness under different stress conditions. Our study illustrated a possible role of inter-specific CAT fusion in generation of genetic and phenotypic diversity in these fungal pathogens.
Collapse
Affiliation(s)
- Nikita Mehta
- National Fungal Culture Collection of India (NFCCI), Biodiversity and Palaeobiology Group, MACS-Agharkar Research Institute, G.G. Agarkar Road, Pune, 411004, India.,Savitribai Phule Pune University, Pune, 411007, India
| | - Abhishek Baghela
- National Fungal Culture Collection of India (NFCCI), Biodiversity and Palaeobiology Group, MACS-Agharkar Research Institute, G.G. Agarkar Road, Pune, 411004, India. .,Savitribai Phule Pune University, Pune, 411007, India.
| |
Collapse
|
20
|
The Predicted Mannosyltransferase GT69-2 Antagonizes RFW-1 To Regulate Cell Fusion in Neurospora crassa. mBio 2021; 12:mBio.00307-21. [PMID: 33727349 PMCID: PMC8092235 DOI: 10.1128/mbio.00307-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Filamentous fungi undergo somatic cell fusion to create a syncytial, interconnected hyphal network which confers a fitness benefit during colony establishment. However, barriers to somatic cell fusion between genetically different cells have evolved that reduce invasion by parasites or exploitation by maladapted genetic entities (cheaters). Here, we identified a predicted mannosyltransferase, glycosyltransferase family 69 protein (GT69-2) that was required for somatic cell fusion in Neurospora crassa Cells lacking GT69-2 prematurely ceased chemotropic signaling and failed to complete cell wall dissolution and membrane merger in pairings with wild-type cells or between Δgt69-2 cells (self fusion). However, loss-of-function mutations in the linked regulator of cell fusion and cell wall remodeling-1 (rfw-1) locus suppressed the self-cell-fusion defects of Δgt69-2 cells, although Δgt69-2 Δrfw-1 double mutants still failed to undergo fusion with wild-type cells. Both GT69-2 and RFW-1 localized to the Golgi apparatus. Genetic analyses indicated that RFW-1 negatively regulates cell wall remodeling-dependent processes, including cell wall dissolution during cell fusion, separation of conidia during asexual sporulation, and conidial germination. GT69-2 acts as an antagonizer to relieve or prevent negative functions on cell fusion by RFW-1. In Neurospora species and N. crassa populations, alleles of gt69-2 were highly polymorphic and fell into two discrete haplogroups. In all isolates within haplogroup I, rfw-1 was conserved and linked to gt69-2 All isolates within haplogroup II lacked rfw-1. These data indicated that gt69-2/rfw-1 are under balancing selection and provide new mechanisms regulating cell wall remodeling during cell fusion and conidial separation.IMPORTANCE Cell wall remodeling is a dynamic process that balances cell wall integrity versus cell wall dissolution. In filamentous fungi, cell wall dissolution is required for somatic cell fusion and conidial separation during asexual sporulation. In the filamentous fungus Neurospora crassa, allorecognition checkpoints regulate the cell fusion process between genetically different cells. Our study revealed two linked loci with transspecies polymorphisms and under coevolution, rfw-1 and gt69-2, which form a coordinated system to regulate cell wall remodeling during somatic cell fusion, conidial separation, and asexual spore germination. RFW-1 acts as a negative regulator of these three processes, while GT69-2 functions antagonistically to RFW-1. Our findings provide new insight into the mechanisms involved in regulation of fungal cell wall remodeling during growth and development.
Collapse
|
21
|
Vangalis V, Knop M, Typas MA, Papaioannou IA. Establishment of conidial fusion in the asexual fungus Verticillium dahliae as a useful system for the study of non-sexual genetic interactions. Curr Genet 2021; 67:471-485. [PMID: 33582843 PMCID: PMC8139932 DOI: 10.1007/s00294-021-01157-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/11/2021] [Accepted: 01/22/2021] [Indexed: 02/07/2023]
Abstract
Cell-to-cell fusion is a fundamental biological process across the tree of life. In filamentous fungi, somatic fusion (or anastomosis) is required for the normal development of their syncytial hyphal networks, and it can initiate non-sexual genetic exchange processes, such as horizontal genetic transfer and the parasexual cycle. Although these could be important drivers of the evolution of asexual fungi, this remains a largely unexplored possibility due to the lack of suitable resources for their study in these puzzling organisms. We thus aimed at the characterization of cell fusion in the important asexual fungus Verticillium dahliae via Conidial Anastomosis Tubes (CATs), which can be useful for the analysis of parasexuality. We optimized appropriate procedures for their highly reproducible quantification and live-cell imaging, which were used to characterize their physiology and cell biology, and to start elucidating their underlying genetic machinery. Formation of CATs was shown to depend on growth conditions and require functional Fus3 and Slt2 MAP kinases, as well as the NADPH oxidase NoxA, whereas the GPCR Ste2 and the mating-type protein MAT1-2-1 were dispensable. We show that nuclei and other organelles can migrate through CATs, which often leads to the formation of transient dikaryons. Their nuclei have possible windows of opportunity for genetic interaction before degradation of one by a presumably homeostatic mechanism. We establish here CAT-mediated fusion in V. dahliae as an experimentally convenient system for the cytological analysis of fungal non-sexual genetic interactions. We expect that it will facilitate the dissection of sexual alternatives in asexual fungi.
Collapse
Affiliation(s)
- Vasileios Vangalis
- Department of Genetics and Biotechnology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Michael Knop
- Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg, Germany.,German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Milton A Typas
- Department of Genetics and Biotechnology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | | |
Collapse
|
22
|
Grum-Grzhimaylo AA, Bastiaans E, van den Heuvel J, Berenguer Millanes C, Debets AJM, Aanen DK. Somatic deficiency causes reproductive parasitism in a fungus. Nat Commun 2021; 12:783. [PMID: 33542245 PMCID: PMC7862218 DOI: 10.1038/s41467-021-21050-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 01/05/2021] [Indexed: 12/05/2022] Open
Abstract
Some multicellular organisms can fuse because mergers potentially provide mutual benefits. However, experimental evolution in the fungus Neurospora crassa has demonstrated that free fusion of mycelia favours cheater lineages, but the mechanism and evolutionary dynamics of this exploitation are unknown. Here we show, paradoxically, that all convergently evolved cheater lineages have similar fusion deficiencies. These mutants are unable to initiate fusion but retain access to wild-type mycelia that fuse with them. This asymmetry reduces cheater-mutant contributions to somatic substrate-bound hyphal networks, but increases representation of their nuclei in the aerial reproductive hyphae. Cheaters only benefit when relatively rare and likely impose genetic load reminiscent of germline senescence. We show that the consequences of somatic fusion can be unequally distributed among fusion partners, with the passive non-fusing partner profiting more. We discuss how our findings may relate to the extensive variation in fusion frequency of fungi found in nature.
Collapse
Affiliation(s)
- Alexey A Grum-Grzhimaylo
- Laboratory of Genetics, Wageningen University, Wageningen, The Netherlands
- Microbial Ecology Department, NIOO-KNAW, Wageningen, The Netherlands
| | - Eric Bastiaans
- Laboratory of Genetics, Wageningen University, Wageningen, The Netherlands
| | | | | | - Alfons J M Debets
- Laboratory of Genetics, Wageningen University, Wageningen, The Netherlands
| | - Duur K Aanen
- Laboratory of Genetics, Wageningen University, Wageningen, The Netherlands.
| |
Collapse
|
23
|
Weichert M, Herzog S, Robson SA, Brandt R, Priegnitz BE, Brandt U, Schulz S, Fleißner A. Plasma Membrane Fusion Is Specifically Impacted by the Molecular Structure of Membrane Sterols During Vegetative Development of Neurospora crassa. Genetics 2020; 216:1103-1116. [PMID: 33046504 PMCID: PMC7768248 DOI: 10.1534/genetics.120.303623] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/11/2020] [Indexed: 02/07/2023] Open
Abstract
Cell-to-cell fusion is crucial for the development and propagation of most eukaryotic organisms. Despite this importance, the molecular mechanisms mediating this process are only poorly understood in biological systems. In particular, the step of plasma membrane merger and the contributing proteins and physicochemical factors remain mostly unknown. Earlier studies provided the first evidence of a role of membrane sterols in cell-to-cell fusion. By characterizing different ergosterol biosynthesis mutants of the fungus Neurospora crassa, which accumulate different ergosterol precursors, we show that the structure of the sterol ring system specifically affects plasma membrane merger during the fusion of vegetative spore germlings. Genetic analyses pinpoint this defect to an event prior to engagement of the fusion machinery. Strikingly, this effect is not observed during sexual fusion, suggesting that the specific sterol precursors do not generally block membrane merger, but rather impair subcellular processes exclusively mediating fusion of vegetative cells. At a colony-wide level, the altered structure of the sterol ring system affects a subset of differentiation processes, including vegetative sporulation and steps before and after fertilization during sexual propagation. Together, these observations corroborate the notion that the accumulation of particular sterol precursors has very specific effects on defined cellular processes rather than nonspecifically disturbing membrane functioning. Given the phenotypic similarities of the ergosterol biosynthesis mutants of N. crassa during vegetative fusion and of Saccharomyces cerevisiae cells undergoing mating, our data support the idea that yeast mating is evolutionarily and mechanistically more closely related to vegetative than sexual fusion of filamentous fungi.
Collapse
Affiliation(s)
- Martin Weichert
- Institut für Genetik, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Stephanie Herzog
- Institut für Genetik, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Sarah-Anne Robson
- Institut für Genetik, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Raphael Brandt
- Institut für Genetik, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Bert-Ewald Priegnitz
- Institut für Genetik, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Ulrike Brandt
- Institut für Genetik, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Stefan Schulz
- Institut für Organische Chemie, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - André Fleißner
- Institut für Genetik, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| |
Collapse
|
24
|
Mela AP, Rico-Ramírez AM, Glass NL. Syncytia in Fungi. Cells 2020; 9:cells9102255. [PMID: 33050028 PMCID: PMC7600787 DOI: 10.3390/cells9102255] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/27/2020] [Accepted: 09/29/2020] [Indexed: 12/27/2022] Open
Abstract
Filamentous fungi typically grow as interconnected multinucleate syncytia that can be microscopic to many hectares in size. Mechanistic details and rules that govern the formation and function of these multinucleate syncytia are largely unexplored, including details on syncytial morphology and the regulatory controls of cellular and molecular processes. Recent discoveries have revealed various adaptations that enable fungal syncytia to accomplish coordinated behaviors, including cell growth, nuclear division, secretion, communication, and adaptation of the hyphal network for mixing nuclear and cytoplasmic organelles. In this review, we highlight recent studies using advanced technologies to define rules that govern organizing principles of hyphal and colony differentiation, including various aspects of nuclear and mitochondrial cooperation versus competition. We place these findings into context with previous foundational literature and present still unanswered questions on mechanistic aspects, function, and morphological diversity of fungal syncytia across the fungal kingdom.
Collapse
Affiliation(s)
- Alexander P. Mela
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA; (A.P.M.); (A.M.R.-R.)
| | - Adriana M. Rico-Ramírez
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA; (A.P.M.); (A.M.R.-R.)
| | - N. Louise Glass
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA; (A.P.M.); (A.M.R.-R.)
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Correspondence:
| |
Collapse
|
25
|
Francisco CS, Zwyssig MM, Palma-Guerrero J. The role of vegetative cell fusions in the development and asexual reproduction of the wheat fungal pathogen Zymoseptoria tritici. BMC Biol 2020; 18:99. [PMID: 32782023 PMCID: PMC7477884 DOI: 10.1186/s12915-020-00838-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 07/27/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The ability of fungal cells to undergo cell-to-cell communication and anastomosis, the process of vegetative hyphal fusion, allows them to maximize their overall fitness. Previous studies in a number of fungal species have identified the requirement of several signaling pathways for anastomosis, including the so far best characterized soft (So) gene, and the MAPK pathway components MAK-1 and MAK-2 of Neurospora crassa. Despite the observations of hyphal fusions' involvement in pathogenicity and host adhesion, the connection between cell fusion and fungal lifestyles is still unclear. Here, we address the role of anastomosis in fungal development and asexual reproduction in Zymoseptoria tritici, the most important fungal pathogen of wheat in Europe. RESULTS We show that Z. tritici undergoes self-fusion between distinct cellular structures, and its mechanism is dependent on the initial cell density. Contrary to other fungi, cell fusion in Z. tritici only resulted in cytoplasmic mixing but not in multinucleated cell formation. The deletion of the So orthologous ZtSof1 disrupted cell-to-cell communication affecting both hyphal and germling fusion. We show that Z. tritici mutants for MAPK-encoding ZtSlt2 (orthologous to MAK-1) and ZtFus3 (orthologous to MAK-2) genes also failed to undergo anastomosis, demonstrating the functional conservation of this signaling mechanism across species. Additionally, the ΔZtSof1 mutant was severely impaired in melanization, suggesting that the So gene function is related to melanization. Finally, we demonstrated that anastomosis is dispensable for pathogenicity, but essential for the pycnidium development, and its absence abolishes the asexual reproduction of Z. tritici. CONCLUSIONS We demonstrate the role for ZtSof1, ZtSlt2, and ZtFus3 in cell fusions of Z. tritici. Cell fusions are essential for different aspects of the Z. tritici biology, and the ZtSof1 gene is a potential target to control septoria tritici blotch (STB) disease.
Collapse
Affiliation(s)
| | - Maria Manuela Zwyssig
- Plant Pathology Group, Institute of Integrative Biology, ETH Zürich, 8092, Zürich, Switzerland
| | - Javier Palma-Guerrero
- Plant Pathology Group, Institute of Integrative Biology, ETH Zürich, 8092, Zürich, Switzerland.
- New Address: Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, UK.
| |
Collapse
|
26
|
Tanaka A, Kamiya S, Ozaki Y, Kameoka S, Kayano Y, Saikia S, Akano F, Uemura A, Takagi H, Terauchi R, Maruyama J, Hammadeh HH, Fleissner A, Scott B, Takemoto D. A nuclear protein NsiA from
Epichloë festucae
interacts with a MAP kinase MpkB and regulates the expression of genes required for symbiotic infection and hyphal cell fusion. Mol Microbiol 2020; 114:626-640. [DOI: 10.1111/mmi.14568] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/20/2020] [Accepted: 06/29/2020] [Indexed: 12/29/2022]
Affiliation(s)
- Aiko Tanaka
- Graduate School of Bioagricultural Sciences Nagoya University Nagoya Japan
- School of Fundamental Sciences Massey University Palmerston North New Zealand
| | - Shota Kamiya
- Graduate School of Bioagricultural Sciences Nagoya University Nagoya Japan
| | - Yoshino Ozaki
- Graduate School of Bioagricultural Sciences Nagoya University Nagoya Japan
| | - Shinichi Kameoka
- Graduate School of Bioagricultural Sciences Nagoya University Nagoya Japan
| | - Yuka Kayano
- Graduate School of Bioagricultural Sciences Nagoya University Nagoya Japan
| | - Sanjay Saikia
- School of Fundamental Sciences Massey University Palmerston North New Zealand
| | - Fumitake Akano
- Graduate School of Bioagricultural Sciences Nagoya University Nagoya Japan
| | - Aiko Uemura
- Iwate Biotechnology Research Center Kitakami Japan
| | | | | | | | - Hamzeh Haj Hammadeh
- Institut für Genetik Technische Universität Braunschweig Braunschweig Germany
| | - André Fleissner
- Institut für Genetik Technische Universität Braunschweig Braunschweig Germany
| | - Barry Scott
- School of Fundamental Sciences Massey University Palmerston North New Zealand
| | - Daigo Takemoto
- Graduate School of Bioagricultural Sciences Nagoya University Nagoya Japan
- School of Fundamental Sciences Massey University Palmerston North New Zealand
| |
Collapse
|
27
|
Gonçalves AP, Heller J, Rico-Ramírez AM, Daskalov A, Rosenfield G, Glass NL. Conflict, Competition, and Cooperation Regulate Social Interactions in Filamentous Fungi. Annu Rev Microbiol 2020; 74:693-712. [PMID: 32689913 DOI: 10.1146/annurev-micro-012420-080905] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Social cooperation impacts the development and survival of species. In higher taxa, kin recognition occurs via visual, chemical, or tactile cues that dictate cooperative versus competitive interactions. In microbes, the outcome of cooperative versus competitive interactions is conferred by identity at allorecognition loci, so-called kind recognition. In syncytial filamentous fungi, the acquisition of multicellularity is associated with somatic cell fusion within and between colonies. However, such intraspecific cooperation entails risks, as fusion can transmit deleterious genotypes or infectious components that reduce fitness, or give rise to cheaters that can exploit communal goods without contributing to their production. Allorecognition mechanisms in syncytial fungi regulate somatic cell fusion by operating precontact during chemotropic interactions, during cell adherence, and postfusion by triggering programmed cell death reactions. Alleles at fungal allorecognition loci are highly polymorphic, fall into distinct haplogroups, and show evolutionary signatures of balancing selection, similar to allorecognition loci across the tree of life.
Collapse
Affiliation(s)
- A Pedro Gonçalves
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA.,Current Affiliation: Institute of Molecular Biology, Academia Sinica, Nangang District, Taipei 115, Taiwan
| | - Jens Heller
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA.,Current Affiliation: Perfect Day, Inc., Emeryville, California 94608, USA
| | - Adriana M Rico-Ramírez
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA
| | - Asen Daskalov
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA.,Current Affiliation: Institut Européen de Chimie et Biologie, 33600 Pessac, France
| | - Gabriel Rosenfield
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA.,Current Affiliation: Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - N Louise Glass
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
28
|
Gonçalves AP, Chow KM, Cea-Sánchez S, Glass NL. WHI-2 Regulates Intercellular Communication via a MAP Kinase Signaling Complex. Front Microbiol 2020; 10:3162. [PMID: 32038591 PMCID: PMC6987382 DOI: 10.3389/fmicb.2019.03162] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 12/31/2019] [Indexed: 01/15/2023] Open
Abstract
The formation of the fungal mycelial network is facilitated by somatic cell fusion of germinating asexual spores (or germlings). Neurospora crassa germlings in close proximity display chemotropic growth that is dependent upon an intracellular network of mitogen-activated protein kinase (MAPK) signaling cascades. Approximately 80 genes involved in intercellular communication and fusion have been identified, including three mutants with similar morphological phenotypes: Δwhi-2, Δcsp-6, and Δamph-1. Here we show that WHI-2 localizes to the cell periphery and regulates endocytosis, mitochondrial organization, sporulation, and cell fusion. WHI-2 was required to transduce signals through a conserved MAPK pathway (NRC-1/MEK-2/MAK-2) and target transcription factors (PP-1/ADV-1). The amph-1 locus encodes a Bin/Amphiphysin/Rvs domain-containing protein and mis-expression of whi-2 compensated for the cell fusion and endocytosis deficiencies of a Δamph-1 mutant. The csp-6 locus encodes a haloacid dehalogenase phosphatase whose activity was essential for cell fusion. Although fusion-deficient with themselves, cells that lacked whi-2, csp-6, or amph-1 showed a low frequency of chemotropic interactions with wild type cells. We hypothesize that WHI-2 could be important for signal perception during chemotropic interactions via a role in endocytosis.
Collapse
Affiliation(s)
- A Pedro Gonçalves
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Karen M Chow
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Sara Cea-Sánchez
- Departamento de Genética, Universidad de Sevilla, Sevilla, Spain
| | - N Louise Glass
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| |
Collapse
|
29
|
Nordzieke DE, Fernandes TR, El Ghalid M, Turrà D, Di Pietro A. NADPH oxidase regulates chemotropic growth of the fungal pathogen Fusarium oxysporum towards the host plant. THE NEW PHYTOLOGIST 2019; 224:1600-1612. [PMID: 31364172 DOI: 10.1111/nph.16085] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 07/24/2019] [Indexed: 05/06/2023]
Abstract
Soil-inhabiting fungal pathogens use chemical signals to locate and colonise the host plant. In the vascular wilt fungus Fusarium oxysporum, hyphal chemotropism towards tomato roots is triggered by secreted plant peroxidases (Prx), which catalyse the reductive cleavage of reactive oxygen species (ROS). Here we show that this chemotropic response requires the regulated synthesis of ROS by the conserved fungal NADPH oxidase B (NoxB) complex, and their transformation into hydrogen peroxide (H2 O2 ) by superoxide dismutase (SOD). Deletion of NoxB or the regulatory subunit NoxR, or pharmacological inhibition of SOD, specifically abolished chemotropism of F. oxysporum towards Prx gradients. Addition of isotropic concentrations of H2 O2 rescued chemotropic growth in the noxBΔ and noxRΔ mutants, but not in a mutant lacking the G protein-coupled receptor Ste2. Prx-triggered rapid Nox- and Ste2-dependent phosphorylation of the cell wall integrity mitogen-activated protein kinase (CWI MAPK) Mpk1, an essential component of the chemotropic response. These results suggest that Ste2 and the CWI MAPK cascade function downstream of NoxB in Prx chemosensing. Our findings reveal a new role for Nox enzymes in directed hyphal growth of a filamentous pathogen towards its host and might be of broad interest for chemotropic interactions between plants and root-colonising fungi.
Collapse
Affiliation(s)
| | - Tânia R Fernandes
- Departamento de Genética, Universidad de Córdoba, Córdoba, 14071, Spain
| | - Mennat El Ghalid
- Departamento de Genética, Universidad de Córdoba, Córdoba, 14071, Spain
| | - David Turrà
- Departamento de Genética, Universidad de Córdoba, Córdoba, 14071, Spain
| | - Antonio Di Pietro
- Departamento de Genética, Universidad de Córdoba, Córdoba, 14071, Spain
| |
Collapse
|
30
|
Rebolleda-Gómez M, Wood CW. Unclear Intentions: Eavesdropping in Microbial and Plant Systems. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00385] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
31
|
Allorecognition upon Fungal Cell-Cell Contact Determines Social Cooperation and Impacts the Acquisition of Multicellularity. Curr Biol 2019; 29:3006-3017.e3. [PMID: 31474536 DOI: 10.1016/j.cub.2019.07.060] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 07/16/2019] [Accepted: 07/19/2019] [Indexed: 12/18/2022]
Abstract
Somatic cell fusion and conspecific cooperation are crucial social traits for microbial unicellular-to-multicellular transitions, colony expansion, and substrate foraging but are also associated with risks of parasitism. We identified a cell wall remodeling (cwr) checkpoint that acts upon cell contact to assess genetic compatibility and regulate cell wall dissolution during somatic cell fusion in a wild population of the filamentous fungus Neurospora crassa. Non-allelic interactions between two linked loci, cwr-1 and cwr-2, were necessary and sufficient to block cell fusion: cwr-1 encodes a polysaccharide monooxygenase (PMO), a class of enzymes associated with extracellular degradative capacities, and cwr-2 encodes a predicted transmembrane protein. Mutations of sites in CWR-1 essential for PMO catalytic activity abolished the block in cell fusion between formerly incompatible strains. In Neurospora, alleles cwr-1 and cwr-2 were highly polymorphic, fell into distinct haplogroups, and showed trans-species polymorphisms. Distinct haplogroups and trans-species polymorphisms at cwr-1 and cwr-2 were also identified in the distantly related genus Fusarium, suggesting convergent evolution. Proteins involved in chemotropic processes showed extended localization at contact sites, suggesting that cwr regulates the transition between chemotropic growth and cell wall dissolution. Our work revealed an allorecognition surveillance system based on kind discrimination that inhibits cooperative behavior in fungi by blocking cell fusion upon contact, contributing to fungal immunity by preventing formation of chimeras between genetically non-identical colonies.
Collapse
|
32
|
Martin SG. Molecular mechanisms of chemotropism and cell fusion in unicellular fungi. J Cell Sci 2019; 132:132/11/jcs230706. [PMID: 31152053 DOI: 10.1242/jcs.230706] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In all eukaryotic phyla, cell fusion is important for many aspects of life, from sexual reproduction to tissue formation. Fungal cells fuse during mating to form the zygote, and during vegetative growth to connect mycelia. Prior to fusion, cells first detect gradients of pheromonal chemoattractants that are released by their partner and polarize growth in their direction. Upon pairing, cells digest their cell wall at the site of contact and merge their plasma membrane. In this Review, I discuss recent work on the chemotropic response of the yeast models Saccharomyces cerevisiae and Schizosaccharomyces pombe, which has led to a novel model of gradient sensing: the cell builds a motile cortical polarized patch, which acts as site of communication where pheromones are released and sensed. Initial patch dynamics serve to correct its position and align it with the gradient from the partner cell. Furthermore, I highlight the transition from cell wall expansion during growth to cell wall digestion, which is imposed by physical and signaling changes owing to hyperpolarization that is induced by cell proximity. To conclude, I discuss mechanisms of membrane fusion, whose characterization remains a major challenge for the future.
Collapse
Affiliation(s)
- Sophie G Martin
- Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
33
|
Fischer MS, Glass NL. Communicate and Fuse: How Filamentous Fungi Establish and Maintain an Interconnected Mycelial Network. Front Microbiol 2019; 10:619. [PMID: 31001214 PMCID: PMC6455062 DOI: 10.3389/fmicb.2019.00619] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 03/12/2019] [Indexed: 12/22/2022] Open
Abstract
Cell-to-cell communication and cell fusion are fundamental biological processes across the tree of life. Survival is often dependent upon being able to identify nearby individuals and respond appropriately. Communication between genetically different individuals allows for the identification of potential mating partners, symbionts, prey, or predators. In contrast, communication between genetically similar (or identical) individuals is important for mediating the development of multicellular organisms or for coordinating density-dependent behaviors (i.e., quorum sensing). This review describes the molecular and genetic mechanisms that mediate cell-to-cell communication and cell fusion between cells of Ascomycete filamentous fungi, with a focus on Neurospora crassa. Filamentous fungi exist as a multicellular, multinuclear network of hyphae, and communication-mediated cell fusion is an important aspect of colony development at each stage of the life cycle. Asexual spore germination occurs in a density-dependent manner. Germinated spores (germlings) avoid cells that are genetically different at specific loci, while chemotropically engaging with cells that share identity at these recognition loci. Germlings with genetic identity at recognition loci undergo cell fusion when in close proximity, a fitness attribute that contributes to more rapid colony establishment. Communication and cell fusion also occur between hyphae in a colony, which are important for reinforcing colony architecture and supporting the development of complex structures such as aerial hyphae and sexual reproductive structures. Over 70 genes have been identified in filamentous fungi (primarily N. crassa) that are involved in kind recognition, chemotropic interactions, and cell fusion. While the hypothetical signal(s) and receptor(s) remain to be described, a dynamic molecular signaling network that regulates cell-cell interactions has been revealed, including two conserved MAP-Kinase cascades, a conserved STRIPAK complex, transcription factors, a NOX complex involved in the generation of reactive oxygen species, cell-integrity sensors, actin, components of the secretory pathway, and several other proteins. Together these pathways facilitate the integration of extracellular signals, direct polarized growth, and initiate a transcriptional program that reinforces signaling and prepares cells for downstream processes, such as membrane merger, cell fusion and adaptation to heterokaryon formation.
Collapse
Affiliation(s)
- Monika S. Fischer
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley CA, United States
| | - N. Louise Glass
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley CA, United States
- Environmental Genomics and Systems Biology Division, The Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| |
Collapse
|
34
|
Assembly of a heptameric STRIPAK complex is required for coordination of light-dependent multicellular fungal development with secondary metabolism in Aspergillus nidulans. PLoS Genet 2019; 15:e1008053. [PMID: 30883543 PMCID: PMC6438568 DOI: 10.1371/journal.pgen.1008053] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 03/28/2019] [Accepted: 02/28/2019] [Indexed: 12/19/2022] Open
Abstract
Eukaryotic striatin forms striatin-interacting phosphatase and kinase (STRIPAK) complexes that control many cellular processes including development, cellular transport, signal transduction, stem cell differentiation and cardiac functions. However, detailed knowledge of complex assembly and its roles in stress responses are currently poorly understood. Here, we discovered six striatin (StrA) interacting proteins (Sips), which form a heptameric complex in the filamentous fungus Aspergillus nidulans. The complex consists of the striatin scaffold StrA, the Mob3-type kinase coactivator SipA, the SIKE-like protein SipB, the STRIP1/2 homolog SipC, the SLMAP-related protein SipD and the catalytic and regulatory phosphatase 2A subunits SipE (PpgA), and SipF, respectively. Single and double deletions of the complex components result in loss of multicellular light-dependent fungal development, secondary metabolite production (e.g. mycotoxin Sterigmatocystin) and reduced stress responses. sipA (Mob3) deletion is epistatic to strA deletion by supressing all the defects caused by the lack of striatin. The STRIPAK complex, which is established during vegetative growth and maintained during the early hours of light and dark development, is mainly formed on the nuclear envelope in the presence of the scaffold StrA. The loss of the scaffold revealed three STRIPAK subcomplexes: (I) SipA only interacts with StrA, (II) SipB-SipD is found as a heterodimer, (III) SipC, SipE and SipF exist as a heterotrimeric complex. The STRIPAK complex is required for proper expression of the heterotrimeric VeA-VelB-LaeA complex which coordinates fungal development and secondary metabolism. Furthermore, the STRIPAK complex modulates two important MAPK pathways by promoting phosphorylation of MpkB and restricting nuclear shuttling of MpkC in the absence of stress conditions. SipB in A. nidulans is similar to human suppressor of IKK-ε(SIKE) protein which supresses antiviral responses in mammals, while velvet family proteins show strong similarity to mammalian proinflammatory NF-KB proteins. The presence of these proteins in A. nidulans further strengthens the hypothesis that mammals and fungi use similar proteins for their immune response and secondary metabolite production, respectively. The multisubunit STRIPAK complex has been studied from yeast to human and plays a range of roles from cell-cycle arrest, fruit body formation to neuronal functions. Molecular assembly of the STRIPAK complex and its roles in stress responses are not well-documented. Fungi, with an estimated 1.5 million members are friends and foes of mankind, acting as pathogens, natural product and enzyme producers. In filamentous fungus Aspergillus nidulans, we found a heptameric STRIPAK core complex made from three subcomplexes, which sits on the nuclear envelope and coordinates signal influx for light-dependent fungal development, secondary metabolism and stress responses. STRIPAK complex controls activities of two major Mitogen Activated Protein Kinase (MAPK) signaling pathways through either promoting their phosphorylation or limiting their nuclear localization under resting conditions. These findings establish a basis for how fungi govern signal influx by using multimeric scaffold protein complexes on the nuclear envelope to control different downstream pathways.
Collapse
|
35
|
Integration of Self and Non-self Recognition Modulates Asexual Cell-to-Cell Communication in Neurospora crassa. Genetics 2019; 211:1255-1267. [PMID: 30718271 DOI: 10.1534/genetics.118.301780] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 01/27/2019] [Indexed: 02/06/2023] Open
Abstract
Cells rarely exist alone, which drives the evolution of diverse mechanisms for identifying and responding appropriately to the presence of other nearby cells. Filamentous fungi depend on somatic cell-to-cell communication and fusion for the development and maintenance of a multicellular, interconnected colony that is characteristic of this group of organisms. The filamentous fungus Neurospora crassa is a model for investigating the mechanisms of somatic cell-to-cell communication and fusion. N. crassa cells chemotropically grow toward genetically similar cells, which ultimately make physical contact and undergo cell fusion. Here, we describe the development of a Pprm1-luciferase reporter system that differentiates whether genes function upstream or downstream of a conserved MAP kinase (MAPK) signaling complex, by using a set of mutants required for communication and cell fusion. The vast majority of these mutants are deficient for self-fusion and for fusion when paired with wild-type cells. However, the Δham-11 mutant is unique in that it fails to undergo self-fusion, but chemotropic interactions and cell fusion are restored in Δham-11 + wild-type interactions. In genetically dissimilar cells, chemotropic interactions are regulated by genetic differences at doc-1 and doc-2, which regulate prefusion non-self recognition; cells with dissimilar doc-1 and doc-2 alleles show greatly reduced cell-fusion frequencies. Here, we show that HAM-11 functions in parallel with the DOC-1 and DOC-2 proteins to regulate the activity of the MAPK signaling complex. Together, our data support a model of integrated self and non-self recognition processes that modulate somatic cell-to-cell communication in N. crassa.
Collapse
|
36
|
Takeshita N. Control of Actin and Calcium for Chitin Synthase Delivery to the Hyphal Tip of Aspergillus. Curr Top Microbiol Immunol 2019; 425:113-129. [PMID: 31974757 DOI: 10.1007/82_2019_193] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Filamentous fungi are covered by a cell wall consisting mainly of chitin and glucan. The synthesis of chitin, a β-1,4-linked homopolymer of N-acetylglucosamine, is essential for hyphal morphogenesis. Fungal chitin synthases are integral membrane proteins that have been classified into seven classes. ChsB, a class III chitin synthase, is known to play a key role in hyphal tip growth and has been used here as a model to understand the cell biology of cell wall biosynthesis in Aspergillus nidulans. Chitin synthases are transported on secretory vesicles to the plasma membrane for new cell wall synthesis. Super-resolution localization imaging as a powerful biophysical approach indicated dynamics of the Spitzenkörper where spatiotemporally regulated exocytosis and cell extension, whereas high-speed pulse-chase imaging has revealed ChsB transport mechanism mediated by kinesin-1 and myosin-5. In addition, live imaging analysis showed correlations among intracellular Ca2+ levels, actin assembly, and exocytosis in growing hyphal tips. This suggests that pulsed Ca2+ influxes coordinate the temporal control of actin assembly and exocytosis, which results in stepwise cell extension. It is getting clear that turgor pressure and cell wall pressure are involved in the activation of Ca2+ channels for Ca2+ oscillation and cell extension. Here the cell wall synthesis and tip growth meet again.
Collapse
Affiliation(s)
- Norio Takeshita
- Microbiology Research Center for Sustainability (MiCS), Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan.
| |
Collapse
|
37
|
Kurian SM, Di Pietro A, Read ND. Live-cell imaging of conidial anastomosis tube fusion during colony initiation in Fusarium oxysporum. PLoS One 2018; 13:e0195634. [PMID: 29734342 PMCID: PMC5937734 DOI: 10.1371/journal.pone.0195634] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 03/26/2018] [Indexed: 01/07/2023] Open
Abstract
Fusarium oxysporum exhibits conidial anastomosis tube (CAT) fusion during colony initiation to form networks of conidial germlings. Here we determined the optimal culture conditions for this fungus to undergo CAT fusion between microconidia in liquid medium. Extensive high resolution, confocal live-cell imaging was performed to characterise the different stages of CAT fusion, using genetically encoded fluorescent labelling and vital fluorescent organelle stains. CAT homing and fusion were found to be dependent on adhesion to the surface, in contrast to germ tube development which occurs in the absence of adhesion. Staining with fluorescently labelled concanavalin A indicated that the cell wall composition of CATs differs from that of microconidia and germ tubes. The movement of nuclei, mitochondria, vacuoles and lipid droplets through fused germlings was observed by live-cell imaging.
Collapse
Affiliation(s)
- Smija M. Kurian
- Manchester Fungal Infection Group, Institute of Inflammation and Repair, University of Manchester, Manchester, United Kingdom
| | - Antonio Di Pietro
- Departamento de Genetica, Universidad de Cordoba, Campus Rabanales C5, Cordoba, Spain
| | - Nick D. Read
- Manchester Fungal Infection Group, Institute of Inflammation and Repair, University of Manchester, Manchester, United Kingdom
- * E-mail:
| |
Collapse
|
38
|
Serrano A, Illgen J, Brandt U, Thieme N, Letz A, Lichius A, Read ND, Fleißner A. Spatio-temporal MAPK dynamics mediate cell behavior coordination during fungal somatic cell fusion. J Cell Sci 2018; 131:jcs.213462. [PMID: 29592970 DOI: 10.1242/jcs.213462] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 03/20/2018] [Indexed: 01/17/2023] Open
Abstract
Mitogen-activated protein kinases (MAPKs) are conserved regulators of proliferation, differentiation and adaptation in eukaryotic cells. Their activity often involves changes in their subcellular localization, indicating an important role for these spatio-temporal dynamics in signal transmission. A striking model illustrating these dynamics is somatic cell fusion in Neurospora crassa Germinating spores of this fungus rapidly alternate between signal sending and receiving, thereby establishing a cell-cell dialog, which involves the alternating membrane recruitment of the MAPK MAK-2 in both fusion partners. Here, we show that the dynamic translocation of MAK-2 is essential for coordinating the behavior of the fusion partners before physical contact. The activation and function of the kinase strongly correlate with its subcellular localization, indicating a crucial contribution of the MAPK dynamics in establishing regulatory feedback loops, which establish the oscillatory signaling mode. In addition, we provide evidence that MAK-2 not only contributes to cell-cell communication, but also mediates cell-cell fusion. The MAK-2 dynamics significantly differ between these two processes, suggesting a role for the MAPK in switching of the cellular program between communication and fusion.
Collapse
Affiliation(s)
- Antonio Serrano
- Institut für Genetik, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Julia Illgen
- Institut für Genetik, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Ulrike Brandt
- Institut für Genetik, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Nils Thieme
- Institut für Genetik, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Anja Letz
- Institut für Genetik, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Alexander Lichius
- Institute of Microbiology, University of Innsbruck, 6020 Innsbruck, Austria
| | - Nick D Read
- Manchester Fungal Infection Group, Division of Infection, Immunity and Respiratory Medicine, University of Manchester, Manchester M13 9NT, UK
| | - André Fleißner
- Institut für Genetik, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| |
Collapse
|
39
|
Regulation of Cell-to-Cell Communication and Cell Wall Integrity by a Network of MAP Kinase Pathways and Transcription Factors in Neurospora crassa. Genetics 2018; 209:489-506. [PMID: 29678830 DOI: 10.1534/genetics.118.300904] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 04/18/2018] [Indexed: 11/18/2022] Open
Abstract
Maintenance of cell integrity and cell-to-cell communication are fundamental biological processes. Filamentous fungi, such as Neurospora crassa, depend on communication to locate compatible cells, coordinate cell fusion, and establish a robust hyphal network. Two MAP kinase (MAPK) pathways are essential for communication and cell fusion in N. crassa: the cell wall integrity/MAK-1 pathway and the MAK-2 (signal response) pathway. Previous studies have demonstrated several points of cross-talk between the MAK-1 and MAK-2 pathways, which is likely necessary for coordinating chemotropic growth toward an extracellular signal, and then mediating cell fusion. Canonical MAPK pathways begin with signal reception and end with a transcriptional response. Two transcription factors, ADV-1 and PP-1, are essential for communication and cell fusion. PP-1 is the conserved target of MAK-2, but it is unclear what targets ADV-1. We did RNA sequencing on Δadv-1, Δpp-1, and wild-type cells and found that ADV-1 and PP-1 have a shared regulon including many genes required for communication, cell fusion, growth, development, and stress response. We identified ADV-1 and PP-1 binding sites across the genome by adapting the in vitro method of DNA-affinity purification sequencing for N. crassa To elucidate the regulatory network, we misexpressed each transcription factor in each upstream MAPK deletion mutant. Misexpression of adv-1 was sufficient to fully suppress the phenotype of the Δpp-1 mutant and partially suppress the phenotype of the Δmak-1 mutant. Collectively, our data demonstrate that the MAK-1/ADV-1 and MAK-2/PP-1 pathways form a tight regulatory network that maintains cell integrity and mediates communication and cell fusion.
Collapse
|
40
|
Oscillatory fungal cell growth. Fungal Genet Biol 2017; 110:10-14. [PMID: 29229585 DOI: 10.1016/j.fgb.2017.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 11/26/2017] [Accepted: 12/06/2017] [Indexed: 12/20/2022]
Abstract
Cells are dynamic systems, the state of which undergoes constant alteration that results in morphological changes and movement. Many dynamic cellular processes that appear continuous are driven by underlying mechanisms that oscillate with distinct periods. For example eukaryotic cells do not grow continuously, but rather by pulsed extension of the periphery. Stepwise cell extension at the hyphal tips of several filamentous fungi was discovered 20 years ago, but only a few molecular details of the mechanism have been clarified since then. A recent study has provided evidence for correlations among intracellular Ca2+ levels, actin assembly, exocytosis and cell extension in growing hyphal tips. This suggests that pulsed Ca2+ influxes coordinate the temporal control of actin assembly and exocytosis, which results in stepwise cell extension. The coordinated oscillation of these machineries are likely to be ubiquitous among all eukaryotes. Indeed, intracellular Ca2+ levels and/or actin polymerization oscillate in mammalian and plant cells. This review summarizes the mechanisms of oscillation in several systems.
Collapse
|
41
|
Zhao X, Spraker JE, Bok JW, Velk T, He ZM, Keller NP. A Cellular Fusion Cascade Regulated by LaeA Is Required for Sclerotial Development in Aspergillus flavus. Front Microbiol 2017; 8:1925. [PMID: 29051754 PMCID: PMC5633613 DOI: 10.3389/fmicb.2017.01925] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 09/21/2017] [Indexed: 11/13/2022] Open
Abstract
Aspergillus flavus is a saprophytic soil fungus that poses a serious threat worldwide as it contaminates many food and feed crops with the carcinogenic mycotoxin called aflatoxin. This pathogen persists as sclerotia in the soil which enables fungal survival in harsh environmental conditions. Sclerotia formation by A. flavus depends on successful cell communication and hyphal fusion events. Loss of LaeA, a conserved developmental regulator in fungi, abolishes sclerotia formation in this species whereas overexpression (OE) of laeA results in enhanced sclerotia production. Here we demonstrate that sclerotia loss and inability to form heterokaryons in A. flavusΔlaeA is mediated by homologs of the Neurospora crassa ham (hyphal anastomosis) genes termed hamE-I in A. flavus. LaeA positively regulates ham gene expression and deletion of hamF, G, H, or I phenocopies ΔlaeA as demonstrated by heterokaryon and sclerotia loss and reduced aflatoxin synthesis and virulence of these mutants. Deletion of hamE showed a less severe phenotype. hamE-I homologs are positively regulated by the clock controlled transcription factor ADV-1 in N. crassa. Similarly, the ADV-1 homolog NosA regulates hamE-I expression in A. flavus, is required for sclerotial development and is itself positively regulated by LaeA. We speculate that a putative LaeA>NosA>fusion cascade underlies the previously described circadian clock regulation of sclerotia production in A. flavus.
Collapse
Affiliation(s)
- Xixi Zhao
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, United States
| | - Joseph E Spraker
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, United States
| | - Jin Woo Bok
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, United States
| | - Thomas Velk
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, United States
| | - Zhu-Mei He
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Nancy P Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, United States.,Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
42
|
Pulses of Ca 2+ coordinate actin assembly and exocytosis for stepwise cell extension. Proc Natl Acad Sci U S A 2017; 114:5701-5706. [PMID: 28507141 DOI: 10.1073/pnas.1700204114] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many eukaryotic cells grow by extending their cell periphery in pulses. The molecular mechanisms underlying this process are not yet fully understood. Here we present a comprehensive model of stepwise cell extension by using the unique tip growth system of filamentous fungi. Live-cell imaging analysis, including superresolution microscopy, revealed that the fungus Aspergillus nidulans extends the hyphal tip in an oscillatory manner. The amount of F-actin and secretory vesicles (SV) accumulating at the hyphal tip oscillated with a positive temporal correlation, whereas vesicle amounts were negatively correlated to the growth rate. The intracellular Ca2+ level also pulsed with a positive temporal correlation to the amount of F-actin and SV at the hyphal tip. Two Ca2+ channels, MidA and CchA, were needed for proper tip growth and the oscillations of actin polymerization, exocytosis, and the growth rate. The data indicate a model in which transient Ca2+ pluses cause depolymerization of F-actin at the cortex and promote SV fusion with the plasma membrane, thereby extending the cell tip. Over time, Ca2+ diffuses away and F-actin and SV accumulate again at the hyphal tip. Our data provide evidence that temporally controlled actin polymerization and exocytosis are coordinated by pulsed Ca2+ influx, resulting in stepwise cell extension.
Collapse
|
43
|
Almeida MC, Brand AC. Thigmo Responses: The Fungal Sense of Touch. Microbiol Spectr 2017; 5:10.1128/microbiolspec.funk-0040-2016. [PMID: 28884680 PMCID: PMC11687469 DOI: 10.1128/microbiolspec.funk-0040-2016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Indexed: 01/18/2023] Open
Abstract
The growth and development of most fungi take place on a two-dimensional surface or within a three-dimensional matrix. The fungal sense of touch is therefore critical for fungi in the interpretation of their environment and often signals the switch to a new developmental state. Contact sensing, or thigmo-based responses, include thigmo differentiation, such as the induction of invasion structures by plant pathogens in response to topography; thigmonasty, where contact with a motile prey rapidly triggers its capture; and thigmotropism, where the direction of hyphal growth is guided by physical features in the environment. Like plants and some bacteria, fungi grow as walled cells. Despite the well-demonstrated importance of thigmo responses in numerous stages of fungal growth and development, it is not known how fungal cells sense contact through the relatively rigid structure of the cell wall. However, while sensing mechanisms at the molecular level are not entirely understood, the downstream signaling pathways that are activated by contact sensing are being elucidated. In the majority of cases, the response to contact is complemented by chemical cues and both are required, either sequentially or simultaneously, to elicit normal developmental responses. The importance of a sense of touch in the lifestyles and development of diverse fungi is highlighted in this review, and the candidate molecular mechanisms that may be involved in fungal contact sensing are discussed.
Collapse
Affiliation(s)
- Mariana Cruz Almeida
- MRC Centre for Medical Mycology, University of Aberdeen, School of Medicine, Medical Sciences & Nutrition, Institute of Medical Sciences, Foresterhill, Aberdeen, Aberdeenshire AB25 2ZD, United Kingdom
| | - Alexandra C Brand
- MRC Centre for Medical Mycology, University of Aberdeen, School of Medicine, Medical Sciences & Nutrition, Institute of Medical Sciences, Foresterhill, Aberdeen, Aberdeenshire AB25 2ZD, United Kingdom
| |
Collapse
|
44
|
Daskalov A, Heller J, Herzog S, Fleißner A, Glass NL. Molecular Mechanisms Regulating Cell Fusion and Heterokaryon Formation in Filamentous Fungi. Microbiol Spectr 2017; 5:10.1128/microbiolspec.funk-0015-2016. [PMID: 28256191 PMCID: PMC11687462 DOI: 10.1128/microbiolspec.funk-0015-2016] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Indexed: 12/13/2022] Open
Abstract
For the majority of fungal species, the somatic body of an individual is a network of interconnected cells sharing a common cytoplasm and organelles. This syncytial organization contributes to an efficient distribution of resources, energy, and biochemical signals. Cell fusion is a fundamental process for fungal development, colony establishment, and habitat exploitation and can occur between hyphal cells of an individual colony or between colonies of genetically distinct individuals. One outcome of cell fusion is the establishment of a stable heterokaryon, culminating in benefits for each individual via shared resources or being of critical importance for the sexual or parasexual cycle of many fungal species. However, a second outcome of cell fusion between genetically distinct strains is formation of unstable heterokaryons and the induction of a programmed cell death reaction in the heterokaryotic cells. This reaction of nonself rejection, which is termed heterokaryon (or vegetative) incompatibility, is widespread in the fungal kingdom and acts as a defense mechanism against genome exploitation and mycoparasitism. Here, we review the currently identified molecular players involved in the process of somatic cell fusion and its regulation in filamentous fungi. Thereafter, we summarize the knowledge of the molecular determinants and mechanism of heterokaryon incompatibility and place this phenomenon in the broader context of biotropic interactions and immunity.
Collapse
Affiliation(s)
- Asen Daskalov
- Department of Plant and Microbial Biology, The University of California, Berkeley, CA 94720
| | - Jens Heller
- Department of Plant and Microbial Biology, The University of California, Berkeley, CA 94720
| | - Stephanie Herzog
- Institut für Genetik, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - André Fleißner
- Institut für Genetik, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - N Louise Glass
- Department of Plant and Microbial Biology, The University of California, Berkeley, CA 94720
| |
Collapse
|
45
|
Serrano A, Hammadeh HH, Herzog S, Illgen J, Schumann MR, Weichert M, Fleiβner A. The dynamics of signal complex formation mediating germling fusion in Neurospora crassa. Fungal Genet Biol 2017; 101:31-33. [PMID: 28216441 DOI: 10.1016/j.fgb.2017.02.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 02/07/2017] [Accepted: 02/11/2017] [Indexed: 12/11/2022]
Abstract
Colony initiation of filamentous fungi commonly involves fusion of germinating vegetative spores. Studies in Neurospora crassa revealed an unusual cell-cell communication mechanism mediating this process, in which the fusion partners coordinately alternate between two physiological stages, probably related to signal sending and receiving. This "cell dialog" involves the alternating, oscillatory recruitment of the SO protein and the MAK-2 MAP kinase module to the apical plasma membrane of growing fusion tips. In this review video article, we show the dynamics of the fluorescent labeled proteins SO and MAK-2 and provide an animated graphical model of the "cell dialog" process.
Collapse
Affiliation(s)
- Antonio Serrano
- Institut für Genetik, Technische Universität Braunschweig, Spielmannstraβe 7, 38106 Braunschweig, Germany
| | - Hamzeh H Hammadeh
- Institut für Genetik, Technische Universität Braunschweig, Spielmannstraβe 7, 38106 Braunschweig, Germany
| | - Stephanie Herzog
- Institut für Genetik, Technische Universität Braunschweig, Spielmannstraβe 7, 38106 Braunschweig, Germany
| | - Julia Illgen
- Institut für Genetik, Technische Universität Braunschweig, Spielmannstraβe 7, 38106 Braunschweig, Germany
| | - Marcel R Schumann
- Institut für Genetik, Technische Universität Braunschweig, Spielmannstraβe 7, 38106 Braunschweig, Germany
| | - Martin Weichert
- Institut für Genetik, Technische Universität Braunschweig, Spielmannstraβe 7, 38106 Braunschweig, Germany
| | - André Fleiβner
- Institut für Genetik, Technische Universität Braunschweig, Spielmannstraβe 7, 38106 Braunschweig, Germany.
| |
Collapse
|
46
|
Shukla N, Osmani AH, Osmani SA. Microtubules are reversibly depolymerized in response to changing gaseous microenvironments within Aspergillus nidulans biofilms. Mol Biol Cell 2017; 28:634-644. [PMID: 28057761 PMCID: PMC5328622 DOI: 10.1091/mbc.e16-10-0750] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 12/16/2016] [Accepted: 12/29/2016] [Indexed: 12/20/2022] Open
Abstract
How microtubules (MTs) are regulated during fungal biofilm formation is unknown. By tracking MT +end-binding proteins (+TIPS) in Aspergillus nidulans, we find that MTs are regulated to depolymerize within forming fungal biofilms. During this process, EB1, dynein, and ClipA form transient fibrous and then bar-like structures, novel configurations for +TIPS. Cells also respond in an autonomous manner, with cells separated by a septum able to maintain different MT dynamics. Surprisingly, all cells with depolymerized MTs rapidly repolymerize their MTs after air exchange above the static culture medium of biofilms. Although the specific gasotransmitter for this biofilm response is not known, we find that addition of hydrogen sulfide gas to growing cells recapitulates all aspects of reversible MT depolymerization and transient formation of +TIPs bars. However, as biofilms mature, physical removal of part of the biofilm is required to promote MT repolymerization, which occurs at the new biofilm edge. We further show MT depolymerization within biofilms is regulated by the SrbA hypoxic transcription factor and that without SrbA, MTs are maintained as biofilms form. This reveals a new mode of MT regulation in response to changing gaseous biofilm microenvironments, which could contribute to the unique characteristics of fungal biofilms in medical and industrial settings.
Collapse
Affiliation(s)
- Nandini Shukla
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210.,Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
| | - Aysha H Osmani
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
| | - Stephen A Osmani
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210 .,Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
47
|
Dekhang R, Wu C, Smith KM, Lamb TM, Peterson M, Bredeweg EL, Ibarra O, Emerson JM, Karunarathna N, Lyubetskaya A, Azizi E, Hurley JM, Dunlap JC, Galagan JE, Freitag M, Sachs MS, Bell-Pedersen D. The Neurospora Transcription Factor ADV-1 Transduces Light Signals and Temporal Information to Control Rhythmic Expression of Genes Involved in Cell Fusion. G3 (BETHESDA, MD.) 2017; 7:129-142. [PMID: 27856696 PMCID: PMC5217103 DOI: 10.1534/g3.116.034298] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 11/01/2016] [Indexed: 12/20/2022]
Abstract
Light and the circadian clock have a profound effect on the biology of organisms through the regulation of large sets of genes. Toward understanding how light and the circadian clock regulate gene expression, we used genome-wide approaches to identify the direct and indirect targets of the light-responsive and clock-controlled transcription factor ADV-1 in Neurospora crassa A large proportion of ADV-1 targets were found to be light- and/or clock-controlled, and enriched for genes involved in development, metabolism, cell growth, and cell fusion. We show that ADV-1 is necessary for transducing light and/or temporal information to its immediate downstream targets, including controlling rhythms in genes critical to somatic cell fusion. However, while ADV-1 targets are altered in predictable ways in Δadv-1 cells in response to light, this is not always the case for rhythmic target gene expression. These data suggest that a complex regulatory network downstream of ADV-1 functions to generate distinct temporal dynamics of target gene expression relative to the central clock mechanism.
Collapse
Affiliation(s)
- Rigzin Dekhang
- Department of Biology, Texas A&M University, College Station, Texas 77843
| | - Cheng Wu
- Department of Biology, Texas A&M University, College Station, Texas 77843
| | - Kristina M Smith
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331
| | - Teresa M Lamb
- Department of Biology, Texas A&M University, College Station, Texas 77843
| | | | - Erin L Bredeweg
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331
| | - Oneida Ibarra
- Department of Biology, Texas A&M University, College Station, Texas 77843
| | - Jillian M Emerson
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755
| | | | | | - Elham Azizi
- Bioinformatics Program, Boston University, Massachusetts 02215
| | - Jennifer M Hurley
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York 12180
| | - Jay C Dunlap
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755
| | - James E Galagan
- Bioinformatics Program, Boston University, Massachusetts 02215
- National Emerging Infectious Diseases Laboratories, Boston University, Massachusetts 02118
- Department of Microbiology, Boston University, Massachusetts 02215
- Department of Biomedical Engineering, Boston University, Massachusetts 02215
| | - Michael Freitag
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331
| | - Matthew S Sachs
- Department of Biology, Texas A&M University, College Station, Texas 77843
| | | |
Collapse
|
48
|
Wang M, Zhang M, Li L, Dong Y, Jiang Y, Liu K, Zhang R, Jiang B, Niu K, Fang X. Role of Trichoderma reesei mitogen-activated protein kinases (MAPKs) in cellulase formation. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:99. [PMID: 28435444 PMCID: PMC5397809 DOI: 10.1186/s13068-017-0789-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 04/12/2017] [Indexed: 05/02/2023]
Abstract
BACKGROUND Despite being the most important cellulase producer, the cellulase-regulating carbon source signal transduction processes in Trichoderma reesei are largely unknown. Elucidating these processes is the key for unveiling how external carbon sources regulate cellulase formation, and ultimately for the improvement of cellulase production and biofuel production from lignocellulose. RESULTS In this work, the role of the mitogen-activated protein kinase (MAPK) signal transduction pathways on cellulase formation was investigated. The deletion of yeast FUS3-like tmk1 in T. reesei leads to improved growth and significantly improved cellulase formation. However, tmk1 deletion has no effect on the transcription of cellulase-coding genes. The involvement of the cell wall integrity maintenance governing yeast Slt2-like Tmk2 in cellulase formation was investigated by overexpressing tmk3 in T. reesei Δtmk2 to restore cell wall integrity. Transcriptional analysis found little changes in cellulase-coding genes between T. reesei parent, Δtmk2, and Δtmk2::OEtmk3 strains. Cell wall integrity decreased in T. reesei Δtmk2 over the parent strain and restored in Δtmk2::OEtmk3. Meanwhile, cellulase formation is increased in T. reesei Δtmk2 and then decreased in T. reesei Δtmk2::OEtmk3. CONCLUSIONS These investigations elucidate the role of Tmk1 and Tmk2 on cellulase formation: they repress cellulase formation, respectively, by repressing growth and maintaining cell wall integrity, while neither MAPK regulates the transcription of cellulase-coding genes. This work, together with the previous investigations, suggests that all MAPKs are involved in cellulase formation, while Tmk3 is the only MAPK involved in signal transduction for the regulation of cellulase expression on the transcriptional level.
Collapse
Affiliation(s)
- Mingyu Wang
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan, China
| | - Meiling Zhang
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan, China
| | - Ling Li
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan, China
| | - Yanmei Dong
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan, China
| | - Yi Jiang
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan, China
| | - Kuimei Liu
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan, China
| | - Ruiqin Zhang
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan, China
| | - Baojie Jiang
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan, China
| | - Kangle Niu
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan, China
| | - Xu Fang
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan, China
| |
Collapse
|
49
|
Green KA, Becker Y, Tanaka A, Takemoto D, Fitzsimons HL, Seiler S, Lalucque H, Silar P, Scott B. SymB and SymC, two membrane associated proteins, are required forEpichloë festucaehyphal cell-cell fusion and maintenance of a mutualistic interaction withLolium perenne. Mol Microbiol 2016; 103:657-677. [DOI: 10.1111/mmi.13580] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2016] [Indexed: 12/30/2022]
Affiliation(s)
- Kimberly A. Green
- Institute of Fundamental Sciences, Massey University; Palmerston North 4442 New Zealand
- Bioprotection Research Centre, Massey University; Palmerston North 4442 New Zealand
| | - Yvonne Becker
- Institute of Fundamental Sciences, Massey University; Palmerston North 4442 New Zealand
- Leibniz Institute of Vegetable and Ornamental Crops; Großbeeren 14979 Germany
| | - Aiko Tanaka
- Graduate School of Bioagricultural Sciences; Nagoya University; Nagoya 464-8601 Japan
| | - Daigo Takemoto
- Graduate School of Bioagricultural Sciences; Nagoya University; Nagoya 464-8601 Japan
| | - Helen L. Fitzsimons
- Institute of Fundamental Sciences, Massey University; Palmerston North 4442 New Zealand
| | - Stephan Seiler
- Freiburg Institute for Advanced Studies, Albert-Ludwigs Universität Freiburg; Freiburg Germany
| | - Hervé Lalucque
- Université Paris Diderot, Sorbonne Paris Cité, Laboratoire des Energies de Demain; Paris 75205 France
| | - Philippe Silar
- Université Paris Diderot, Sorbonne Paris Cité, Laboratoire des Energies de Demain; Paris 75205 France
| | - Barry Scott
- Institute of Fundamental Sciences, Massey University; Palmerston North 4442 New Zealand
- Bioprotection Research Centre, Massey University; Palmerston North 4442 New Zealand
| |
Collapse
|
50
|
Green KA, Becker Y, Fitzsimons HL, Scott B. An Epichloë festucae homologue of MOB3, a component of the STRIPAK complex, is required for the establishment of a mutualistic symbiotic interaction with Lolium perenne. MOLECULAR PLANT PATHOLOGY 2016; 17:1480-1492. [PMID: 27277141 PMCID: PMC5132070 DOI: 10.1111/mpp.12443] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 06/04/2016] [Accepted: 06/06/2016] [Indexed: 05/13/2023]
Abstract
In both Sordaria macrospora and Neurospora crassa, components of the conserved STRIPAK (striatin-interacting phosphatase and kinase) complex regulate cell-cell fusion, hyphal network development and fruiting body formation. Interestingly, a number of Epichloë festucae genes that are required for hyphal cell-cell fusion, such as noxA, noxR, proA, mpkA and mkkA, are also required for the establishment of a mutualistic symbiotic interaction with Lolium perenne. To determine whether MobC, a homologue of the STRIPAK complex component MOB3 in S. macrospora and N. crassa, is required for E. festucae hyphal fusion and symbiosis, a mobC deletion strain was generated. The ΔmobC mutant showed reduced rates of hyphal cell-cell fusion, formed intrahyphal hyphae and exhibited enhanced conidiation. Plants infected with ΔmobC were severely stunted. Hyphae of ΔmobC showed a proliferative pattern of growth within the leaves of Lolium perenne with increased colonization of the intercellular spaces and vascular bundles. Although hyphae were still able to form expressoria, structures allowing the colonization of the leaf surface, the frequency of formation was significantly reduced. Collectively, these results show that the STRIPAK component MobC is required for the establishment of a mutualistic symbiotic association between E. festucae and L. perenne, and plays an accessory role in the regulation of hyphal cell-cell fusion and expressorium development in E. festucae.
Collapse
Affiliation(s)
- Kimberly A. Green
- Institute of Fundamental Sciences, Massey UniversityPalmerston North 4442New Zealand
| | - Yvonne Becker
- Institute of Fundamental Sciences, Massey UniversityPalmerston North 4442New Zealand
| | - Helen L. Fitzsimons
- Institute of Fundamental Sciences, Massey UniversityPalmerston North 4442New Zealand
| | - Barry Scott
- Institute of Fundamental Sciences, Massey UniversityPalmerston North 4442New Zealand
| |
Collapse
|