1
|
Lee S, Miller CL, Bentley AR, Brown MR, Nagarajan P, Noordam R, Morrison J, Schwander K, Westerman K, Kho M, Kraja AT, de Vries PS, Ammous F, Aschard H, Bartz TM, Do A, Dupont CT, Feitosa MF, Gudmundsdottir V, Guo X, Harris SE, Hikino K, Huang Z, Lefevre C, Lyytikäinen LP, Milaneschi Y, Nardone GG, Santin A, Schmidt H, Shen B, Sofer T, Sun Q, Tan YA, Tang J, Thériault S, van der Most PJ, Ware EB, Weiss S, Ya Xing W, Yu C, Zhao W, Ansari MAY, Anugu P, Attia JR, Bazzano LA, Bis JC, Breyer M, Cade B, Chen G, Collins S, Corley J, Davies G, Dörr M, Du J, Edwards TL, Faquih T, Faul JD, Fohner AE, Fretts AM, Gangireddy S, Gepner A, Graff M, Hofer E, Homuth G, Hood MM, Jie X, Kähönen M, Kardia SL, Karvonen-Gutierrez CA, Launer LJ, Levy D, Maheshwari M, Martin LW, Matsuda K, McNeil JJ, Nolte IM, Okochi T, Raffield LM, Raitakari OT, Risch L, Risch M, Roux AD, Ruiz-Narvaez EA, Russ TC, Saito T, Schreiner PJ, Scott RJ, Shikany J, Smith JA, Snieder H, Spedicati B, Tai ES, Taylor AM, Taylor KD, Tesolin P, van Dam RM, Wang R, Wenbin W, Xie T, Yao J, et alLee S, Miller CL, Bentley AR, Brown MR, Nagarajan P, Noordam R, Morrison J, Schwander K, Westerman K, Kho M, Kraja AT, de Vries PS, Ammous F, Aschard H, Bartz TM, Do A, Dupont CT, Feitosa MF, Gudmundsdottir V, Guo X, Harris SE, Hikino K, Huang Z, Lefevre C, Lyytikäinen LP, Milaneschi Y, Nardone GG, Santin A, Schmidt H, Shen B, Sofer T, Sun Q, Tan YA, Tang J, Thériault S, van der Most PJ, Ware EB, Weiss S, Ya Xing W, Yu C, Zhao W, Ansari MAY, Anugu P, Attia JR, Bazzano LA, Bis JC, Breyer M, Cade B, Chen G, Collins S, Corley J, Davies G, Dörr M, Du J, Edwards TL, Faquih T, Faul JD, Fohner AE, Fretts AM, Gangireddy S, Gepner A, Graff M, Hofer E, Homuth G, Hood MM, Jie X, Kähönen M, Kardia SL, Karvonen-Gutierrez CA, Launer LJ, Levy D, Maheshwari M, Martin LW, Matsuda K, McNeil JJ, Nolte IM, Okochi T, Raffield LM, Raitakari OT, Risch L, Risch M, Roux AD, Ruiz-Narvaez EA, Russ TC, Saito T, Schreiner PJ, Scott RJ, Shikany J, Smith JA, Snieder H, Spedicati B, Tai ES, Taylor AM, Taylor KD, Tesolin P, van Dam RM, Wang R, Wenbin W, Xie T, Yao J, Young KL, Zhang R, Zonderman AB, Concas MP, Conen D, Cox SR, Evans MK, Fox ER, de Las Fuentes L, Giri A, Girotto G, Grabe HJ, Gu C, Gudnason V, Harlow SD, Holliday E, Jost JB, Lacaze P, Lee S, Lehtimäki T, Li C, Liu CT, Morrison AC, North KE, Penninx BW, Peyser PA, Province MM, Psaty BM, Redline S, Rosendaal FR, Rotimi CN, Rotter JI, Schmidt R, Sim X, Terao C, Weir DR, Zhu X, Franceschini N, O'Connell JR, Jaquish CE, Wang H, Manning A, Munroe PB, Rao DC, Chen H, Gauderman WJ, Bierut L, Winkler TW, Fornage M. A Large-Scale Genome-wide Association Study of Blood Pressure Accounting for Gene-Depressive Symptomatology Interactions in 564,680 Individuals from Diverse Populations. RESEARCH SQUARE 2025:rs.3.rs-6025759. [PMID: 40034430 PMCID: PMC11875294 DOI: 10.21203/rs.3.rs-6025759/v1] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Background Gene-environment interactions may enhance our understanding of hypertension. Our previous study highlighted the importance of considering psychosocial factors in gene discovery for blood pressure (BP) but was limited in statistical power and population diversity. To address these challenges, we conducted a multi-population genome-wide association study (GWAS) of BP accounting for gene-depressive symptomatology (DEPR) interactions in a larger and more diverse sample. Results Our study included 564,680 adults aged 18 years or older from 67 cohorts and 4 population backgrounds (African (5%), Asian (7%), European (85%), and Hispanic (3%)). We discovered seven novel gene-DEPR interaction loci for BP traits. These loci mapped to genes implicated in neurogenesis (TGFA, CASP3), lipid metabolism (ACSL1), neuronal apoptosis (CASP3), and synaptic activity (CNTN6, DBI). We also identified evidence for gene-DEPR interaction at nine known BP loci, further suggesting links between mood disturbance and BP regulation. Of the 16 identified loci, 11 loci were derived from African, Asian, or Hispanic populations. Post-GWAS analyses prioritized 36 genes, including genes involved in synaptic functions (DOCK4, MAGI2) and neuronal signaling (CCK, UGDH, SLC01A2). Integrative druggability analyses identified 11 druggable candidate gene targets, including genes implicated in pathways linked to mood disorders as well as gene products targeted by known antihypertensive drugs. Conclusions Our findings emphasize the importance of considering gene-DEPR interactions on BP, particularly in non-European populations. Our prioritized genes and druggable targets highlight biological pathways connecting mood disorders and hypertension and suggest opportunities for BP drug repurposing and risk factor prevention, especially in individuals with DEPR.
Collapse
Affiliation(s)
- Songmi Lee
- Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX
| | - Clint L Miller
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia, Charlottesville, VA
| | - Amy R Bentley
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Michael R Brown
- Human Genetics Center, Department of Epidemiology, The University of Texas Health Science Center at Houston School of Public Health, Houston, TX
| | - Pavithra Nagarajan
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women's Hospital, Boston, MA
| | - Raymond Noordam
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden
| | - John Morrison
- Division of Biostatistics, Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA
| | - Karen Schwander
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO
| | - Kenneth Westerman
- Clinical and Translational Epidemiology Unit, Mongan Institute, Massachusetts General Hospital, Boston, MA
| | - Minjung Kho
- Graduate School of Data Science, Seoul National University, Seoul
| | - Aldi T Kraja
- University of Mississippi Medical Center, Jackson, MS
| | - Paul S de Vries
- Human Genetics Center, Department of Epidemiology, The University of Texas Health Science Center at Houston School of Public Health, Houston, TX
| | - Farah Ammous
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI
| | - Hughes Aschard
- Department of Computational Biology, F-75015 Paris, France Institut Pasteur, Université Paris Cité, Paris
| | - Traci M Bartz
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA
| | - Anh Do
- Center for Biostatistics and Data Science, Institute for Informatics, Data Science, and Biostatistics, Washington University in St. Louis, School of Medicine, St. Louis, MO
| | - Charles T Dupont
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN
| | - Mary F Feitosa
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO
| | | | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA
| | - Sarah E Harris
- Lothian Birth Cohorts, Department of Psychology, The University of Edinburgh, Edinburgh
| | - Keiko Hikino
- Laboratory for Pharmacogenomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa
| | - Zhijie Huang
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA
| | - Christophe Lefevre
- Department of Data Sciences, Hunter Medical Research Institute, New Lambton Heights, NSW
| | - Leo-Pekka Lyytikäinen
- Finnish Cardiovascular Research Center - Tampere, Department of Clinical Chemistry, Fimlab Laboratories and Faculty of Medicine and Health Technology, Tampere University, Tampere
| | - Yuri Milaneschi
- Department of Psychiatry, Amsterdam UMC/Vrije universiteit, Amsterdam
| | | | - Aurora Santin
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste
| | - Helena Schmidt
- Department of Molecular Biology and Biochemistry, Medical University Graz, Graz, Styria
| | - Botong Shen
- Laboratory of Epidemiology and Population Sciences, Health Disparities Research Section, National Institute on Aging, National Institutes of Health, Baltimore, MD
| | - Tamar Sofer
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women's Hospital, Boston, MA
| | - Quan Sun
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Ye An Tan
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore
| | - Jingxian Tang
- Department of Biostatistics, Boston University School of Public Health, Boston, MA
| | - Sébastien Thériault
- Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Quebec City, QC
| | - Peter J van der Most
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen
| | - Erin B Ware
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI
| | - Stefan Weiss
- Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, University Medicine Greifswald, Greifswald
| | - Wang Ya Xing
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing, Beijing
| | - Chenglong Yu
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC
| | - Wei Zhao
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI
| | - Md Abu Yusuf Ansari
- Department of Data Science, University of Mississippi Medical Center, Jackson, MS
| | - Pramod Anugu
- Jackson Heart Study, University of Mississippi Medical Center, Jackson, MS
| | - John R Attia
- School of Medicine and Public Health, College of Health Medicine and Wellbeing, University of Newcastle, New Lambton Heights, NSW
| | - Lydia A Bazzano
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA
| | - Joshua C Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA
| | - Max Breyer
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Brian Cade
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women's Hospital, Boston, MA
| | - Guanjie Chen
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Stacey Collins
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI
| | - Janie Corley
- Lothian Birth Cohorts, Department of Psychology, The University of Edinburgh, Edinburgh
| | - Gail Davies
- Lothian Birth Cohorts, Department of Psychology, The University of Edinburgh, Edinburgh
| | - Marcus Dörr
- German Center for Cardiovascular Research (DZHK), partner site Greifswald, Greifswald
| | - Jiawen Du
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Todd L Edwards
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Tariq Faquih
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women's Hospital, Boston, MA
| | - Jessica D Faul
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI
| | - Alison E Fohner
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA
| | - Amanda M Fretts
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA
| | - Srushti Gangireddy
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN
| | - Adam Gepner
- Cardiovascular Medicine, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - MariaElisa Graff
- Cardiovascular Disease (CVD) Genetic Epidemiology Laboratory, Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Edith Hofer
- Department of Neurology, Medical University Graz, Graz, Styria
| | - Georg Homuth
- Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, University Medicine Greifswald, Greifswald
| | - Michelle M Hood
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI
| | - Xu Jie
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing, Beijing
| | - Mika Kähönen
- Finnish Cardiovascular Research Center - Tampere, Department of Clinical Physiology, Tampere University Hospital and Faculty of Medicine and Health Technology, Tampere University, Tampere
| | - Sharon Lr Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI
| | | | - Lenore J Launer
- Laboratory of Epidemiology and Population Sciences, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD
| | - Daniel Levy
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | | | - Lisa W Martin
- Department of Cardiology, George Washington University, Washington, DC
| | - Koichi Matsuda
- Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo
| | - John J McNeil
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC
| | - Ilja M Nolte
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen
| | - Tomo Okochi
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Aichi
| | - Laura M Raffield
- Department of Genetics, University of North Carolina, Chapel Hill, NC
| | - Olli T Raitakari
- Centre for Population Health Research, Department of Clinical Physiology and Nuclear Medicine, InFLAMES Research Flagship, Turku University Hospital and University of Turku, Turku
| | - Lorenz Risch
- Faculty of Medical Sciences , Institute for Laboratory Medicine, Private University in the Principality of Liechtenstein, Vaduz
| | - Martin Risch
- Central Laboratory, Cantonal Hospital Graubünden, Chur
| | - Ana Diez Roux
- Urban Health Collaborative, Department of Epidemiology and Biostatistics, Drexel University, Philadelphia, PA
| | | | - Tom C Russ
- Lothian Birth Cohorts, Department of Psychology, The University of Edinburgh, Edinburgh
| | - Takeo Saito
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Aichi
| | - Pamela J Schreiner
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN
| | - Rodney J Scott
- School of Medicine and Public Health, College of Health Medicine and Wellbeing, University of Newcastle, New Lambton Heights, NSW
| | - James Shikany
- Division of General Internal Medicine and Population Science, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Jennifer A Smith
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI
| | - Harold Snieder
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen
| | - Beatrice Spedicati
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste
| | - E Shyong Tai
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore
| | - Adele M Taylor
- Lothian Birth Cohorts, Department of Psychology, The University of Edinburgh, Edinburgh
| | - Kent D Taylor
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA
| | - Paola Tesolin
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste
| | - Rob M van Dam
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore
| | - Rujia Wang
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen
| | - Wei Wenbin
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, Beijing
| | - Tian Xie
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen
| | - Jie Yao
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA
| | - Kristin L Young
- Cardiovascular Disease (CVD) Genetic Epidemiology Laboratory, Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Ruiyuan Zhang
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA
| | - Alan B Zonderman
- Laboratory of Epidemiology and Population Sciences, Health Disparities Research Section, National Institute on Aging, National Institutes of Health, Baltimore, MD
| | - Maria Pina Concas
- Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Trieste
| | - David Conen
- Population Health Research Institute, Department of Medicine, McMaster University, Hamilton, ON
| | - Simon R Cox
- Lothian Birth Cohorts, Department of Psychology, The University of Edinburgh, Edinburgh
| | - Michele K Evans
- Laboratory of Epidemiology and Population Sciences, Health Disparities Research Section, National Institute on Aging, National Institutes of Health, Baltimore, MD
| | - Ervin R Fox
- Jackson Heart Study, University of Mississippi Medical Center, Jackson, MS
| | - Lisa de Las Fuentes
- Center for Biostatistics and Data Science, Institute for Informatics, Data Science, and Biostatistics, Washington University in St. Louis, School of Medicine, St. Louis, MO
| | - Ayush Giri
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Giorgia Girotto
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste
| | - Hans J Grabe
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Mecklenburg-Western Pomerania
| | - Charles Gu
- Center for Biostatistics and Data Science, Institute for Informatics, Data Science, and Biostatistics, Washington University in St. Louis, School of Medicine, St. Louis, MO
| | | | - Sioban D Harlow
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI
| | - Elizabeth Holliday
- School of Medicine and Public Health, College of Health Medicine and Wellbeing, University of Newcastle, New Lambton Heights, NSW
| | - Jonas B Jost
- Rothschild Foundation Hospital, Institut Français de Myopie, Paris
| | - Paul Lacaze
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC
| | - Seunggeun Lee
- Graduate School of Data Science, Seoul National University, Seoul
| | - Terho Lehtimäki
- Finnish Cardiovascular Research Center - Tampere, Department of Clinical Chemistry, Fimlab Laboratories and Faculty of Medicine and Health Technology, Tampere University, Tampere
| | - Changwei Li
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA
| | - Ching-Ti Liu
- Department of Biostatistics, Boston University School of Public Health, Boston, MA
| | - Alanna C Morrison
- Human Genetics Center, Department of Epidemiology, The University of Texas Health Science Center at Houston School of Public Health, Houston, TX
| | - Kari E North
- Cardiovascular Disease (CVD) Genetic Epidemiology Laboratory, Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | | | - Patricia A Peyser
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI
| | - Michael M Province
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA
| | - Susan Redline
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women's Hospital, Boston, MA
| | - Frits R Rosendaal
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden
| | - Charles N Rotimi
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA
| | | | - Xueling Sim
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore
| | - Chikashi Terao
- The Clinical Research Center at Shizuoka General Hospital, Shizuoka
| | - David R Weir
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI
| | - Xiaofeng Zhu
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio
| | - Nora Franceschini
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Jeffrey R O'Connell
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD
| | - Cashell E Jaquish
- Division of Cardiovascular Science, Epidemiology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Heming Wang
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women's Hospital, Boston, MA
| | - Alisa Manning
- Metabolism Program, Broad Institute of MIT and Harvard, Cambridge, MA
| | - Patricia B Munroe
- Clinical Pharmacology and Precision Medicine, Queen Mary University of London, London
| | - Dabeeru C Rao
- Center for Biostatistics and Data Science, Institute for Informatics, Data Science, and Biostatistics, Washington University in St. Louis, School of Medicine, St. Louis, MO
| | - Han Chen
- Human Genetics Center, Department of Epidemiology, The University of Texas Health Science Center at Houston School of Public Health, Houston, TX
| | - W James Gauderman
- Division of Biostatistics, Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA
| | - Laura Bierut
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO
| | - Thomas W Winkler
- Department of Genetic Epidemiology, University of Regensburg, Regensburg
| | - Myriam Fornage
- Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX
| |
Collapse
|
2
|
Javanshir R, Sedghi M, Esmaeili M, Charsouei S, Anvar LH, Ahmadalipour A. Automatic classification of fatty acid amide hydrolase polymorphism genotype based on EEG signal. Soft comput 2024; 28:12575-12585. [DOI: 10.1007/s00500-024-10306-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2024] [Indexed: 02/18/2025]
|
3
|
Benstock SE, Weaver K, Hettema JM, Verhulst B. Using Alternative Definitions of Controls to Increase Statistical Power in GWAS. Behav Genet 2024; 54:353-366. [PMID: 38869698 PMCID: PMC11661655 DOI: 10.1007/s10519-024-10187-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/29/2024] [Indexed: 06/14/2024]
Abstract
Genome-wide association studies (GWAS) are often underpowered due to small effect sizes of common single nucleotide polymorphisms (SNPs) on phenotypes and extreme multiple testing thresholds. The most common approach for increasing statistical power is to increase sample size. We propose an alternative strategy of redefining case-control outcomes into ordinal case-subthreshold-asymptomatic variables. While maintaining the clinical case threshold, we subdivide controls into two groups: individuals who are symptomatic but do not meet the clinical criteria for diagnosis (subthreshold) and individuals who are effectively asymptomatic. We conducted a simulation study to examine the impact of effect size, minor allele frequency, population prevalence, and the prevalence of the subthreshold group on statistical power to detect genetic associations in three scenarios: a standard case-control, an ordinal, and a case-asymptomatic control analysis. Our results suggest the ordinal model consistently provides the greatest statistical power while the case-control model the least. Power in the case-asymptomatic control model reflects the case-control or ordinal model depending on the population prevalence and size of the subthreshold category. We then analyzed a major depression phenotype from the UK Biobank to corroborate our simulation results. Overall, the ordinal model improves statistical power in GWAS consistent with increasing the sample size by approximately 10%.
Collapse
Affiliation(s)
- Sarah E Benstock
- Department of Psychiatry and Behavioral Sciences, Texas A&M University School of Medicine, College Station, TX, USA
| | - Katherine Weaver
- Department of Psychiatry and Behavioral Sciences, Texas A&M University School of Medicine, College Station, TX, USA
| | - John M Hettema
- Department of Psychiatry and Behavioral Sciences, Texas A&M University School of Medicine, College Station, TX, USA
| | - Brad Verhulst
- Department of Psychiatry and Behavioral Sciences, Texas A&M University School of Medicine, College Station, TX, USA.
| |
Collapse
|
4
|
Benstock SE, Weaver K, Hettema J, Verhulst B. Using Alternative Definitions of Controls to Increase Statistical Power in GWAS. RESEARCH SQUARE 2024:rs.3.rs-3858178. [PMID: 38352402 PMCID: PMC10862954 DOI: 10.21203/rs.3.rs-3858178/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Genome-wide association studies (GWAS) are underpowered due to small effect sizes of single nucleotide polymorphisms (SNPs) on phenotypes and extreme multiple testing thresholds. The most common approach for increasing statistical power is to increase sample size. We propose an alternative strategy of redefining case-control outcomes into ordinal case-subthreshold-asymptomatic variables. While maintaining the clinical case threshold, we subdivide controls into two groups: individuals who are symptomatic but do not meet the clinical criteria for diagnosis (subthreshold) and individuals who are effectively asymptomatic. We conducted a simulation study to examine the impact of effect size, minor allele frequency, population prevalence, and the prevalence of the subthreshold group on statistical power to detect genetic associations in three scenarios: a standard case-control, an ordinal, and a case-asymptomatic control analysis. Our results suggest the ordinal model consistently provides the most statistical power while the case-control model the least. Power in the case-asymptomatic control model reflects the case-control or ordinal model depending on the population prevalence and size of the subthreshold category. We then analyzed a major depression phenotype from the UK Biobank to corroborate our simulation results. Overall, the ordinal model improves statistical power in GWAS consistent with increasing the sample size by approximately 10%.
Collapse
|
5
|
Durydivka O, Gazdarica M, Vecerkova K, Radenkovic S, Blahos J. Multiple Sgip1 splice variants inhibit cannabinoid receptor 1 internalization. Gene 2024; 892:147851. [PMID: 37783296 DOI: 10.1016/j.gene.2023.147851] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 09/23/2023] [Accepted: 09/27/2023] [Indexed: 10/04/2023]
Abstract
Alternative splicing can often result in the expression of distinct protein isoforms from a single gene, with specific composition and properties. SH3-containing GRB2-like protein 3-interacting protein 1 (Sgip1) is a brain-enriched protein that regulates clathrin-mediated endocytosis and interferes with the internalization of cannabinoid receptor 1. Several research groups have studied the physiological importance of Sgip1, and four Sgip1 protein isoforms have been described to date, while the NCBI Gene database predicts the expression of 20 splice variants from the Sgip1 gene in mice. In this work, we cloned 15 Sgip1 splice variants from the mouse brain, including 11 novel splice variants. The cloned splice variants differed in exon composition within two Sgip1 regions: the membrane phospholipid-binding domain and the proline-rich region. All the Sgip1 splice isoforms had similar stability and comparable ability to inhibit the internalization of cannabinoid receptor 1. None of the isoforms influenced the internalization of the µ-opioid receptor. We confirm the expression of Sgip1 splice variants described in previous studies or predicted in silico. Our data provide a basis for further studies exploring the significance of Sgip1 splicing, and we suggest a new classification of Sgip1 splice variants to unify their nomenclature.
Collapse
Affiliation(s)
- Oleh Durydivka
- Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| | - Matej Gazdarica
- Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| | - Katerina Vecerkova
- Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic; Department of Informatics and Chemistry, University of Chemistry and Technology, Technicka 5, 166 28 Prague, Czech Republic
| | - Silvia Radenkovic
- Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| | - Jaroslav Blahos
- Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic.
| |
Collapse
|
6
|
Brief segments of neurophysiological activity enable individual differentiation. Nat Commun 2021; 12:5713. [PMID: 34588439 PMCID: PMC8481307 DOI: 10.1038/s41467-021-25895-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 09/07/2021] [Indexed: 11/08/2022] Open
Abstract
Large, openly available datasets and current analytic tools promise the emergence of population neuroscience. The considerable diversity in personality traits and behaviour between individuals is reflected in the statistical variability of neural data collected in such repositories. Recent studies with functional magnetic resonance imaging (fMRI) have concluded that patterns of resting-state functional connectivity can both successfully distinguish individual participants within a cohort and predict some individual traits, yielding the notion of an individual's neural fingerprint. Here, we aim to clarify the neurophysiological foundations of individual differentiation from features of the rich and complex dynamics of resting-state brain activity using magnetoencephalography (MEG) in 158 participants. We show that akin to fMRI approaches, neurophysiological functional connectomes enable the differentiation of individuals, with rates similar to those seen with fMRI. We also show that individual differentiation is equally successful from simpler measures of the spatial distribution of neurophysiological spectral signal power. Our data further indicate that differentiation can be achieved from brain recordings as short as 30 seconds, and that it is robust over time: the neural fingerprint is present in recordings performed weeks after their baseline reference data was collected. This work, thus, extends the notion of a neural or brain fingerprint to fast and large-scale resting-state electrophysiological dynamics.
Collapse
|
7
|
Zhang Z, Chen G. A logical relationship for schizophrenia, bipolar, and major depressive disorder. Part 1: Evidence from chromosome 1 high density association screen. J Comp Neurol 2020; 528:2620-2635. [PMID: 32266715 DOI: 10.1002/cne.24921] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/28/2020] [Accepted: 03/30/2020] [Indexed: 12/16/2022]
Abstract
Familial clustering of schizophrenia (SCZ), bipolar disorder (BPD), and major depressive disorder (MDD) was investigated systematically (Aukes et al., Genetics in Medicine, 2012, 14, 338-341) and any two or even three of these disorders could coexist in some families. Furthermore, evidence from symptomatology and psychopharmacology also imply the existence of intrinsic connections between these three major psychiatric disorders. A total of 71,445 SNPs on chromosome 1 were genotyped on 119 SCZ, 253 BPD (type-I), 177 MDD cases and 1000 controls and further validated in 986 SCZ patients in the population of Shandong province of China. Outstanding psychosis genes are systematically revealed( ATP1A4, ELTD1, FAM5C, HHAT, KIF26B, LMX1A, NEGR1, NFIA, NR5A2, NTNG1, PAPPA2, PDE4B, PEX14, RYR2, SYT6, TGFBR3, TTLL7, and USH2A). Unexpectedly, flanking genes for up to 97.09% of the associated SNPs were also replicated in an enlarged cohort of 986 SCZ patients. From the perspective of etiological rather than clinical psychiatry, bipolar, and major depressive disorder could be subtypes of schizophrenia. Meanwhile, the varied clinical feature and prognosis might be the result of interaction of genetics and epigenetics, for example, irreversible or reversible shut down, and over or insufficient expression of certain genes, which may gives other aspects of these severe mental disorders.
Collapse
Affiliation(s)
- Zhihua Zhang
- Shandong Mental Health Center, Jinan, Shandong, China
| | - Gang Chen
- Department of Medical Genetics, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| |
Collapse
|
8
|
Sun J, Kranzler HR, Gelernter J, Bi J. A genome-wide association study of cocaine use disorder accounting for phenotypic heterogeneity and gene–environment interaction. J Psychiatry Neurosci 2020; 45:34-44. [PMID: 31490055 PMCID: PMC6919916 DOI: 10.1503/jpn.180098] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Phenotypic heterogeneity and complicated gene–environment interplay in etiology are among the primary factors that hinder the identification of genetic variants associated with cocaine use disorder. METHODS To detect novel genetic variants associated with cocaine use disorder, we derived disease traits with reduced phenotypic heterogeneity using cluster analysis of a study sample (n = 9965). We then used these traits in genome-wide association tests, performed separately for 2070 African Americans and 1570 European Americans, using a new mixed model that accounted for the moderating effects of 5 childhood environmental factors. We used an independent sample (918 African Americans, 1382 European Americans) for replication. RESULTS The cluster analysis yielded 5 cocaine use disorder subtypes, of which subtypes 4 (n = 3258) and 5 (n = 1916) comprised heavy cocaine users, had high heritability estimates (h2 = 0.66 and 0.64, respectively) and were used in association tests. Seven of the 13 identified genetic loci in the discovery phase were available in the replication sample. In African Americans, rs114492924 (discovery p = 1.23 × E−8), a single nucleotide polymorphism in LINC01411, was replicated in the replication sample (p = 3.63 × E−3). In a meta-analysis that combined the discovery and replication results, 3 loci in African Americans were significant genome-wide: rs10188036 in TRAK2 (p = 2.95 × E−8), del-1:15511771 in TMEM51 (p = 9.11 × E−10) and rs149843442 near LPHN2 (p = 3.50 × E−8). LIMITATIONS Lack of data prevented us from replicating 6 of the 13 identified loci. CONCLUSION Our results demonstrate the importance of considering phenotypic heterogeneity and gene–environment interplay in detecting genetic variations that contribute to cocaine use disorder, because new genetic loci have been identified using our novel analytic method.
Collapse
Affiliation(s)
- Jiangwen Sun
- From the Department of Computer Science and Engineering, University of Connecticut, School of Engineering, Storrs, CT (Sun, Bi); the University of Pennsylvania Perelman School of Medicine, Department of Psychiatry, Center for Studies of Addiction and Corporal Michael Crescenz VAMC, Philadelphia, PA (Kranzler); and the Yale University School of Medicine, Department of Psychiatry, Division of Human Genetics and Departments of Genetics and Neurobiology; and VA CT Healthcare Center, New Haven, CT (Gelernter)
| | - Henry R. Kranzler
- From the Department of Computer Science and Engineering, University of Connecticut, School of Engineering, Storrs, CT (Sun, Bi); the University of Pennsylvania Perelman School of Medicine, Department of Psychiatry, Center for Studies of Addiction and Corporal Michael Crescenz VAMC, Philadelphia, PA (Kranzler); and the Yale University School of Medicine, Department of Psychiatry, Division of Human Genetics and Departments of Genetics and Neurobiology; and VA CT Healthcare Center, New Haven, CT (Gelernter)
| | - Joel Gelernter
- From the Department of Computer Science and Engineering, University of Connecticut, School of Engineering, Storrs, CT (Sun, Bi); the University of Pennsylvania Perelman School of Medicine, Department of Psychiatry, Center for Studies of Addiction and Corporal Michael Crescenz VAMC, Philadelphia, PA (Kranzler); and the Yale University School of Medicine, Department of Psychiatry, Division of Human Genetics and Departments of Genetics and Neurobiology; and VA CT Healthcare Center, New Haven, CT (Gelernter)
| | - Jinbo Bi
- From the Department of Computer Science and Engineering, University of Connecticut, School of Engineering, Storrs, CT (Sun, Bi); the University of Pennsylvania Perelman School of Medicine, Department of Psychiatry, Center for Studies of Addiction and Corporal Michael Crescenz VAMC, Philadelphia, PA (Kranzler); and the Yale University School of Medicine, Department of Psychiatry, Division of Human Genetics and Departments of Genetics and Neurobiology; and VA CT Healthcare Center, New Haven, CT (Gelernter)
| |
Collapse
|
9
|
Alhamoudi KM, Bhat J, Nashabat M, Alharbi M, Alyafee Y, Asiri A, Umair M, Alfadhel M. A Missense Mutation in the UGDH Gene Is Associated With Developmental Delay and Axial Hypotonia. Front Pediatr 2020; 8:71. [PMID: 32175296 PMCID: PMC7056728 DOI: 10.3389/fped.2020.00071] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 02/13/2020] [Indexed: 11/13/2022] Open
Abstract
UDP-glucose dehydrogenase (UGDH) encodes an oxidoreductase that converts two successive oxidations of UDP-glucose to produce UDP-glucuronic acid, a key component in the synthesis of several polysaccharides such as glycosaminoglycan and the disaccharide hyaluronic acid. UGDH is critical to the production of extracellular matrix components which are essential to the migration and connectivity of neurons early in human brain development. In this report, we describe one child of a consanguineous family who presented with distinct clinical features including global developmental delay, axial hypotonia, bilateral undescended testis, and subtle dysmorphic features. Whole genome sequencing and a segregation was performed to identify the genetic cause of the disease within the family. Though mutations in the UGDH protein have been described as causing developmental delay in various model organisms, to our knowledge, this is the first identification of the novel homozygous missense variant in exon8 of UGDH NM_003359.3: c.950 G>A (p.Arg317Gln) and most likely the cause of the patient's phenotype. This variant falls in an active region and replaces the highly conserved Arginine 317 residues across mammals.
Collapse
Affiliation(s)
- Kheloud M Alhamoudi
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Javaid Bhat
- Medical Core Facility and Research Platforms, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Marwan Nashabat
- Division of Genetics, Department of Pediatrics, King Abdullah Specialized Children's Hospital, King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Masheal Alharbi
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Yusra Alyafee
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Abdulaziz Asiri
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Muhammad Umair
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Majid Alfadhel
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia.,Division of Genetics, Department of Pediatrics, King Abdullah Specialized Children's Hospital, King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| |
Collapse
|
10
|
Jawinski P, Kirsten H, Sander C, Spada J, Ulke C, Huang J, Burkhardt R, Scholz M, Hensch T, Hegerl U. Human brain arousal in the resting state: a genome-wide association study. Mol Psychiatry 2019; 24:1599-1609. [PMID: 29703947 DOI: 10.1038/s41380-018-0052-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 01/22/2018] [Accepted: 02/19/2018] [Indexed: 12/20/2022]
Abstract
Arousal affects cognition, emotion, and behavior and has been implicated in the etiology of psychiatric disorders. Although environmental conditions substantially contribute to the level of arousal, stable interindividual characteristics are well-established and a genetic basis has been suggested. Here we investigated the molecular genetics of brain arousal in the resting state by conducting a genome-wide association study (GWAS). We selected N = 1877 participants from the population-based LIFE-Adult cohort. Participants underwent a 20-min eyes-closed resting state EEG, which was analyzed using the computerized VIGALL 2.1 (Vigilance Algorithm Leipzig). At the SNP-level, GWAS analyses revealed no genome-wide significant locus (p < 5E-8), although seven loci were suggestive (p < 1E-6). The strongest hit was an expression quantitative trait locus (eQTL) of TMEM159 (lead-SNP: rs79472635, p = 5.49E-8). Importantly, at the gene-level, GWAS analyses revealed significant evidence for TMEM159 (p = 0.013, Bonferroni-corrected). By mapping our SNPs to the GWAS results from the Psychiatric Genomics Consortium, we found that all corresponding markers of TMEM159 showed nominally significant associations with Major Depressive Disorder (MDD; 0.006 ≤ p ≤ 0.011). More specifically, variants associated with high arousal levels have previously been linked to an increased risk for MDD. In line with this, the MetaXcan database suggests increased expression levels of TMEM159 in MDD, as well as Autism Spectrum Disorder, and Alzheimer's Disease. Furthermore, our pathway analyses provided evidence for a role of sodium/calcium exchangers in resting state arousal. In conclusion, the present GWAS identifies TMEM159 as a novel candidate gene which may modulate the risk for psychiatric disorders through arousal mechanisms. Our results also encourage the elaboration of the previously reported interrelations between ion-channel modulators, sleep-wake behavior, and psychiatric disorders.
Collapse
Affiliation(s)
- Philippe Jawinski
- LIFE - Leipzig Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany. .,Department of Psychiatry and Psychotherapy, University Hospital Leipzig, Leipzig, Germany. .,Depression Research Centre, German Depression Foundation, Leipzig, Germany.
| | - Holger Kirsten
- LIFE - Leipzig Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany.,Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany.,Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Christian Sander
- LIFE - Leipzig Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany.,Department of Psychiatry and Psychotherapy, University Hospital Leipzig, Leipzig, Germany.,Depression Research Centre, German Depression Foundation, Leipzig, Germany
| | - Janek Spada
- LIFE - Leipzig Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany.,Depression Research Centre, German Depression Foundation, Leipzig, Germany
| | - Christine Ulke
- LIFE - Leipzig Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany.,Depression Research Centre, German Depression Foundation, Leipzig, Germany
| | - Jue Huang
- Department of Psychiatry and Psychotherapy, University Hospital Leipzig, Leipzig, Germany
| | - Ralph Burkhardt
- LIFE - Leipzig Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany.,Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
| | - Markus Scholz
- LIFE - Leipzig Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany.,Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
| | - Tilman Hensch
- LIFE - Leipzig Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany.,Department of Psychiatry and Psychotherapy, University Hospital Leipzig, Leipzig, Germany
| | - Ulrich Hegerl
- LIFE - Leipzig Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany.,Department of Psychiatry and Psychotherapy, University Hospital Leipzig, Leipzig, Germany.,Depression Research Centre, German Depression Foundation, Leipzig, Germany
| |
Collapse
|
11
|
Endocytic Adaptor Proteins in Health and Disease: Lessons from Model Organisms and Human Mutations. Cells 2019; 8:cells8111345. [PMID: 31671891 PMCID: PMC6912373 DOI: 10.3390/cells8111345] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 10/24/2019] [Accepted: 10/25/2019] [Indexed: 12/11/2022] Open
Abstract
Cells need to exchange material and information with their environment. This is largely achieved via cell-surface receptors which mediate processes ranging from nutrient uptake to signaling responses. Consequently, their surface levels have to be dynamically controlled. Endocytosis constitutes a powerful mechanism to regulate the surface proteome and to recycle vesicular transmembrane proteins that strand at the plasma membrane after exocytosis. For efficient internalization, the cargo proteins need to be linked to the endocytic machinery via adaptor proteins such as the heterotetrameric endocytic adaptor complex AP-2 and a variety of mostly monomeric endocytic adaptors. In line with the importance of endocytosis for nutrient uptake, cell signaling and neurotransmission, animal models and human mutations have revealed that defects in these adaptors are associated with several diseases ranging from metabolic disorders to encephalopathies. This review will discuss the physiological functions of the so far known adaptor proteins and will provide a comprehensive overview of their links to human diseases.
Collapse
|
12
|
Correas A, López-Caneda E, Beaton L, Holguín SR, García-Moreno LM, Antón-Toro LF, Cadaveira F, Maestú F, Marinkovic K. Decreased event-related theta power and phase-synchrony in young binge drinkers during target detection: An anatomically-constrained MEG approach. J Psychopharmacol 2019; 33:335-346. [PMID: 30355025 PMCID: PMC6401286 DOI: 10.1177/0269881118805498] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND The prevalence of binge drinking has risen in recent years. It is associated with a range of neurocognitive deficits among adolescents and young emerging adults who are especially vulnerable to alcohol use. Attention is an essential dimension of executive functioning and attentional disturbances may be associated with hazardous drinking. The aim of the study was to examine the oscillatory neural dynamics of attentional control during visual target detection in emerging young adults as a function of binge drinking. METHOD In total, 51 first-year university students (18 ± 0.6 years) were assigned to light drinking ( n = 26), and binge drinking ( n = 25) groups based on their alcohol consumption patterns. A high-density magnetoencephalography signal was combined with structural magnetic resonance imaging in an anatomically constrained magnetoencephalography model to estimate event-related source power in a theta (4-7 Hz) frequency band. Phase-locked co-oscillations were further estimated between the principally activated regions during task performance. RESULTS Overall, the greatest event-related theta power was elicited by targets in the right inferior frontal cortex and it correlated with performance accuracy and selective attention scores. Binge drinkers exhibited lower theta power and dysregulated oscillatory synchrony to targets in the right inferior frontal cortex, which correlated with higher levels of alcohol consumption. CONCLUSIONS These results confirm that a highly interactive network in the right inferior frontal cortex subserves attentional control, revealing the importance of theta oscillations and neural synchrony for attentional capture and contextual maintenance. Attenuation of theta power and synchronous interactions in binge drinkers may indicate early stages of suboptimal integrative processing in young, highly functioning binge drinkers.
Collapse
Affiliation(s)
- Angeles Correas
- Department of Psychology, San Diego State University, San Diego, USA
| | - Eduardo López-Caneda
- Neuropsychophysiology Lab, Research Center on Psychology (CIPsi), School of Psychology, University of Minho, Braga, Portugal
| | - Lauren Beaton
- Department of Psychology, San Diego State University, San Diego, USA
| | | | - Luis Miguel García-Moreno
- Department of Psychobiology and Methodology in Behavioral Sciences, Complutense University of Madrid, Madrid, Spain
| | - Luis F. Antón-Toro
- Laboratory of Cognitive and Computational Neuroscience (UCM-UPM), Centre of Biomedical Technology (CTB), Madrid, Spain
| | - Fernando Cadaveira
- Department of Clinical Psychology and Psychobiology, University of Santiago de Compostela, Spain
| | - Fernando Maestú
- Laboratory of Cognitive and Computational Neuroscience (UCM-UPM), Centre of Biomedical Technology (CTB), Madrid, Spain
- Department of Experimental Psychology, Complutense University of Madrid, Spain
- Network of Center for Biomedical Research (CIBER-bbn), Madrid, Spain
| | - Ksenija Marinkovic
- Department of Psychology, San Diego State University, San Diego, USA
- Department of Radiology, University of California at San Diego, San Diego, USA
| |
Collapse
|
13
|
Leppäaho E, Renvall H, Salmela E, Kere J, Salmelin R, Kaski S. Discovering heritable modes of MEG spectral power. Hum Brain Mapp 2019; 40:1391-1402. [PMID: 30600573 PMCID: PMC6590382 DOI: 10.1002/hbm.24454] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 09/27/2018] [Accepted: 10/19/2018] [Indexed: 12/14/2022] Open
Abstract
Brain structure and many brain functions are known to be genetically controlled, but direct links between neuroimaging measures and their underlying cellular-level determinants remain largely undiscovered. Here, we adopt a novel computational method for examining potential similarities in high-dimensional brain imaging data between siblings. We examine oscillatory brain activity measured with magnetoencephalography (MEG) in 201 healthy siblings and apply Bayesian reduced-rank regression to extract a low-dimensional representation of familial features in the participants' spectral power structure. Our results show that the structure of the overall spectral power at 1-90 Hz is a highly conspicuous feature that not only relates siblings to each other but also has very high consistency within participants' own data, irrespective of the exact experimental state of the participant. The analysis is extended by seeking genetic associations for low-dimensional descriptions of the oscillatory brain activity. The observed variability in the MEG spectral power structure was associated with SDK1 (sidekick cell adhesion molecule 1) and suggestively with several other genes that function, for example, in brain development. The current results highlight the potential of sophisticated computational methods in combining molecular and neuroimaging levels for exploring brain functions, even for high-dimensional data limited to a few hundred participants.
Collapse
Affiliation(s)
- Eemeli Leppäaho
- Department of Computer Science, Helsinki Institute for Information Technology HIIT, Aalto University, Helsinki, Finland
| | - Hanna Renvall
- Department of Neuroscience and Biomedical Engineering, Aalto University, Helsinki, Finland.,Aalto NeuroImaging, Aalto University, Helsinki, Finland
| | - Elina Salmela
- Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Juha Kere
- Molecular Neurology Research Program, University of Helsinki, Folkhälsan Institute of Genetics, Helsinki, Finland.,Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden.,School of Basic and Medical Biosciences, King's College London, Guy's Hospital, London, United Kingdom
| | - Riitta Salmelin
- Department of Neuroscience and Biomedical Engineering, Aalto University, Helsinki, Finland.,Aalto NeuroImaging, Aalto University, Helsinki, Finland
| | - Samuel Kaski
- Department of Computer Science, Helsinki Institute for Information Technology HIIT, Aalto University, Helsinki, Finland
| |
Collapse
|
14
|
Arabfard M, Kavousi K, Delbari A, Ohadi M. Link between short tandem repeats and translation initiation site selection. Hum Genomics 2018; 12:47. [PMID: 30373661 PMCID: PMC6206671 DOI: 10.1186/s40246-018-0181-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 10/10/2018] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Despite their vast biological implication, the relevance of short tandem repeats (STRs)/microsatellites to the protein-coding gene translation initiation sites (TISs) remains largely unknown. METHODS We performed an Ensembl-based comparative genomics study of all annotated orthologous TIS-flanking sequences in human and 46 other species across vertebrates, on the genomic DNA and cDNA platforms (755,956 TISs), aimed at identifying human-specific STRs in this interval. The collected data were used to examine the hypothesis of a link between STRs and TISs. BLAST was used to compare the initial five amino acids (excluding the initial methionine), codons of which were flanked by STRs in human, with the initial five amino acids of all annotated proteins for the orthologous genes in other vertebrates (total of 5,314,979 pair-wise TIS comparisons on the genomic DNA and cDNA platforms) in order to compare the number of events in which human-specific and non-specific STRs occurred with homologous and non-homologous TISs (i.e., ≥ 50% and < 50% similarity of the five amino acids). RESULTS We detected differential distribution of the human-specific STRs in comparison to the overall distribution of STRs on the genomic DNA and cDNA platforms (Mann Whitney U test p = 1.4 × 10-11 and p < 7.9 × 10-11, respectively). We also found excess occurrence of non-homologous TISs with human-specific STRs and excess occurrence of homologous TISs with non-specific STRs on both platforms (p < 0.00001). CONCLUSION We propose a link between STRs and TIS selection, based on the differential co-occurrence rate of human-specific STRs with non-homologous TISs and non-specific STRs with homologous TISs.
Collapse
Affiliation(s)
- Masoud Arabfard
- Department of Bioinformatics, Kish International Campus University of Tehran, Kish, Iran
- Laboratory of Complex Biological Systems and Bioinformatics (CBB), Department of Bioinformatics, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Kaveh Kavousi
- Laboratory of Complex Biological Systems and Bioinformatics (CBB), Department of Bioinformatics, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Ahmad Delbari
- Iranian Research Center on Aging, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Mina Ohadi
- Iranian Research Center on Aging, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| |
Collapse
|
15
|
Meyers JL, Zhang J, Wang JC, Su J, Kuo SI, Kapoor M, Wetherill L, Bertelsen S, Lai D, Salvatore JE, Kamarajan C, Chorlian D, Agrawal A, Almasy L, Bauer L, Bucholz KK, Chan G, Hesselbrock V, Koganti L, Kramer J, Kuperman S, Manz N, Pandey A, Seay M, Scott D, Taylor RE, Dick DM, Edenberg HJ, Goate A, Foroud T, Porjesz B. An endophenotype approach to the genetics of alcohol dependence: a genome wide association study of fast beta EEG in families of African ancestry. Mol Psychiatry 2017; 22:1767-1775. [PMID: 28070124 PMCID: PMC5503794 DOI: 10.1038/mp.2016.239] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 09/24/2016] [Accepted: 10/27/2016] [Indexed: 01/16/2023]
Abstract
Fast beta (20-28 Hz) electroencephalogram (EEG) oscillatory activity may be a useful endophenotype for studying the genetics of disorders characterized by neural hyperexcitability, including substance use disorders (SUDs). However, the genetic underpinnings of fast beta EEG have not previously been studied in a population of African-American ancestry (AA). In a sample of 2382 AA individuals from 482 families drawn from the Collaborative Study on the Genetics of Alcoholism (COGA), we performed a genome-wide association study (GWAS) on resting-state fast beta EEG power. To further characterize our genetic findings, we examined the functional and clinical/behavioral significance of GWAS variants. Ten correlated single-nucleotide polymorphisms (SNPs) (r2>0.9) located in an intergenic region on chromosome 3q26 were associated with fast beta EEG power at P<5 × 10-8. The most significantly associated SNP, rs11720469 (β: -0.124; P<4.5 × 10-9), is also an expression quantitative trait locus for BCHE (butyrylcholinesterase), expressed in thalamus tissue. Four of the genome-wide SNPs were also associated with Diagnostic and Statistical Manual of Mental Disorders Alcohol Dependence in COGA AA families, and two (rs13093097, rs7428372) were replicated in an independent AA sample (Gelernter et al.). Analyses in the AA adolescent/young adult (offspring from COGA families) subsample indicated association of rs11720469 with heavy episodic drinking (frequency of consuming 5+ drinks within 24 h). Converging findings presented in this study provide support for the role of genetic variants within 3q26 in neural and behavioral disinhibition. These novel genetic findings highlight the importance of including AA populations in genetics research on SUDs and the utility of the endophenotype approach in enhancing our understanding of mechanisms underlying addiction susceptibility.
Collapse
Affiliation(s)
- J L Meyers
- Department of Psychiatry, State University of New York Downstate Medical Center, Brooklyn, NY, USA
| | - J Zhang
- Department of Psychiatry, State University of New York Downstate Medical Center, Brooklyn, NY, USA
| | - J C Wang
- Department of Neuroscience, Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - J Su
- Department of Psychology, Virginia Commonwealth University, Richmond, VA, USA
| | - S I Kuo
- Department of Psychology, Virginia Commonwealth University, Richmond, VA, USA
| | - M Kapoor
- Department of Neuroscience, Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - L Wetherill
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - S Bertelsen
- Department of Neuroscience, Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - D Lai
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - J E Salvatore
- Department of Psychology, Virginia Commonwealth University, Richmond, VA, USA
- Virginia Institute of Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, USA
| | - C Kamarajan
- Department of Psychiatry, State University of New York Downstate Medical Center, Brooklyn, NY, USA
| | - D Chorlian
- Department of Psychiatry, State University of New York Downstate Medical Center, Brooklyn, NY, USA
| | - A Agrawal
- Department of Psychiatry, Washington University School of Medicine in St Louis, St Louis, MO, USA
| | - L Almasy
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - L Bauer
- Department of Psychiatry, University of Connecticut School of Medicine, Farmington, CT, USA
| | - K K Bucholz
- Department of Psychiatry, Washington University School of Medicine in St Louis, St Louis, MO, USA
| | - G Chan
- Department of Psychiatry, University of Connecticut School of Medicine, Farmington, CT, USA
| | - V Hesselbrock
- Department of Psychiatry, University of Connecticut School of Medicine, Farmington, CT, USA
| | - L Koganti
- Department of Neuroscience, Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - J Kramer
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - S Kuperman
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - N Manz
- Department of Physics, The College of Wooster, Wooster, OH, USA
| | - A Pandey
- Department of Psychiatry, State University of New York Downstate Medical Center, Brooklyn, NY, USA
| | - M Seay
- Department of Psychiatry, State University of New York Downstate Medical Center, Brooklyn, NY, USA
| | - D Scott
- Collaborative Alcohol Research Center, Howard University College of Medicine, Washington, DC, USA
| | - R E Taylor
- Collaborative Alcohol Research Center, Howard University College of Medicine, Washington, DC, USA
| | - D M Dick
- Department of Psychology, Virginia Commonwealth University, Richmond, VA, USA
- Virginia Institute of Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, USA
| | - H J Edenberg
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - A Goate
- Department of Neuroscience, Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - T Foroud
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - B Porjesz
- Department of Psychiatry, State University of New York Downstate Medical Center, Brooklyn, NY, USA
| |
Collapse
|
16
|
Peng Q, Schork NJ, Wilhelmsen KC, Ehlers CL. Whole genome sequence association and ancestry-informed polygenic profile of EEG alpha in a Native American population. Am J Med Genet B Neuropsychiatr Genet 2017; 174:435-450. [PMID: 28436151 PMCID: PMC5435561 DOI: 10.1002/ajmg.b.32533] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 02/06/2017] [Indexed: 12/18/2022]
Abstract
EEG alpha activity is the dominant oscillation in most adult humans, is highly heritable, and has been associated with a number of cognitive functions. Two EEG phenotypes, low- and high-voltage alpha (LVA & HVA), have been demonstrated to have high heritabilities. They have different prevalence depending on a population's ancestral origins. In the present study we assessed the influence of ancestry admixture on EEG alpha power, and conducted a whole genome sequencing association analysis and an ancestry-informed polygenic study on those phenotypes in a Native American (NA) population that has a high prevalence of LVA. Seven common variants, in LD with each other upstream from gene ASIC2, reached genome-wide significance (p = 2 × 10-8 ) having a positive association with alpha voltage. They had lower minor allele frequencies in the NAs than in a global population sample. Overall correlations between lower degrees of NA (higher degree European) ancestry and HVA, and higher degrees of NA and LVA were also found. Additionally a rare-variant gene-based study identified gene TIA1 being negatively associated with LVA. Approximately 3% of SNPs exhibited a 15-fold enrichment that explained nearly half of the total SNP-heritability for EEG alpha. These regions showed the most significant anti-correlations between NA ancestry and alpha voltage, and were enriched for genes and pathways mediating cognitive functions. Our findings suggested that these regions likely harbor causal variants for HVA, and lacking of such variants could explain the high prevalence of LVA in this NA population, possibly illuminating the ancestral origin and genetic basis for EEG alpha.
Collapse
Affiliation(s)
- Qian Peng
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, California 92037 USA
- Department of Human Biology, J. Craig Venter Institute, La Jolla, California 92037 USA
| | - Nicholas J. Schork
- Department of Human Biology, J. Craig Venter Institute, La Jolla, California 92037 USA
| | - Kirk C. Wilhelmsen
- Department of Genetics and Neurology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 USA
| | - Cindy L. Ehlers
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, California 92037 USA
| |
Collapse
|
17
|
Meyers JL, Zhang J, Manz N, Rangaswamy M, Kamarajan C, Wetherill L, Chorlian DB, Kang SJ, Bauer L, Hesselbrock V, Kramer J, Kuperman S, Nurnberger JI, Tischfield J, Wang JC, Edenberg HJ, Goate A, Foroud T, Porjesz B. A genome wide association study of fast beta EEG in families of European ancestry. Int J Psychophysiol 2017; 115:74-85. [PMID: 28040410 PMCID: PMC5426060 DOI: 10.1016/j.ijpsycho.2016.12.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 12/08/2016] [Accepted: 12/15/2016] [Indexed: 11/25/2022]
Abstract
BACKGROUND Differences in fast beta (20-28Hz) electroencephalogram (EEG) oscillatory activity distinguish some individuals with psychiatric and substance use disorders, suggesting that it may be a useful endophenotype for studying the genetics of disorders characterized by neural hyper-excitability. Despite the high heritability estimates provided by twin and family studies, there have been relatively few genetic studies of beta EEG, and to date only one genetic association finding has replicated (i.e., GABRA2). METHOD In a sample of 1564 individuals from 117 families of European Ancestry (EA) drawn from the Collaborative Study on the Genetics of Alcoholism (COGA), we performed a Genome-Wide Association Study (GWAS) on resting-state fronto-central fast beta EEG power, adjusting regression models for family relatedness, age, sex, and ancestry. To further characterize genetic findings, we examined the functional and behavioral significance of GWAS findings. RESULTS Three intronic variants located within DSE (dermatan sulfate epimerase) on 6q22 were associated with fast beta EEG at a genome wide significant level (p<5×10-8). The most significant SNP was rs2252790 (p<2.6×10-8; MAF=0.36; β=0.135). rs2252790 is an eQTL for ROS1 expressed most robustly in the temporal cortex (p=1.2×10-6) and for DSE/TSPYL4 expressed most robustly in the hippocampus (p=7.3×10-4; β=0.29). Previous studies have indicated that DSE is involved in a network of genes integral to membrane organization; gene-based tests indicated that several variants within this network (i.e., DSE, ZEB2, RND3, MCTP1, and CTBP2) were also associated with beta EEG (empirical p<0.05), and of these genes, ZEB2 and CTBP2 were associated with DSM-V Alcohol Use Disorder (AUD; empirical p<0.05).' DISCUSSION In this sample of EA families enriched for AUDs, fast beta EEG is associated with variants within DSE on 6q22; the most significant SNP influences the mRNA expression of DSE and ROS1 in hippocampus and temporal cortex, brain regions important for beta EEG activity. Gene-based tests suggest evidence of association with related genes, ZEB2, RND3, MCTP1, CTBP2, and beta EEG. Converging data from GWAS, gene expression, and gene-networks presented in this study provide support for the role of genetic variants within DSE and related genes in neural hyperexcitability, and has highlighted two potential candidate genes for AUD and/or related neurological conditions: ZEB2 and CTBP2. However, results must be replicated in large, independent samples.
Collapse
Affiliation(s)
- Jacquelyn L Meyers
- Henri Begleiter Neurodynamics Laboratory, Department of Psychiatry and Behavioral Sciences, SUNY Downstate Medical Center, Brooklyn, NY, USA.
| | - Jian Zhang
- Henri Begleiter Neurodynamics Laboratory, Department of Psychiatry and Behavioral Sciences, SUNY Downstate Medical Center, Brooklyn, NY, USA
| | - Niklas Manz
- Henri Begleiter Neurodynamics Laboratory, Department of Psychiatry and Behavioral Sciences, SUNY Downstate Medical Center, Brooklyn, NY, USA; Department of Physics, College of Wooster, Wooster, OH, USA
| | | | - Chella Kamarajan
- Henri Begleiter Neurodynamics Laboratory, Department of Psychiatry and Behavioral Sciences, SUNY Downstate Medical Center, Brooklyn, NY, USA
| | - Leah Wetherill
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - David B Chorlian
- Henri Begleiter Neurodynamics Laboratory, Department of Psychiatry and Behavioral Sciences, SUNY Downstate Medical Center, Brooklyn, NY, USA
| | - Sun J Kang
- Albany Stratton VA Medical Center, Albany, NY, USA
| | - Lance Bauer
- University of Connecticut School of Medicine, Farmington, CT, USA
| | | | - John Kramer
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA
| | - Samuel Kuperman
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA
| | - John I Nurnberger
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | | | - Howard J Edenberg
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Alison Goate
- Icahn School of Medicine at Mt. Sinai, New York, NY, USA
| | - Tatiana Foroud
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Bernice Porjesz
- Henri Begleiter Neurodynamics Laboratory, Department of Psychiatry and Behavioral Sciences, SUNY Downstate Medical Center, Brooklyn, NY, USA
| |
Collapse
|
18
|
Martzoukos Y, Papavlasopoulos S, Poulos M, Syrrou M. Biobibliometrics (UGDH-TP53–BRCA1) Genes Connections in the Possible Relationship Between Breast Cancer and EEG. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 987:99-107. [DOI: 10.1007/978-3-319-57379-3_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Iacono WG, Malone SM, Vrieze SI. Endophenotype best practices. Int J Psychophysiol 2017; 111:115-144. [PMID: 27473600 PMCID: PMC5219856 DOI: 10.1016/j.ijpsycho.2016.07.516] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 07/21/2016] [Accepted: 07/24/2016] [Indexed: 01/19/2023]
Abstract
This review examines the current state of electrophysiological endophenotype research and recommends best practices that are based on knowledge gleaned from the last decade of molecular genetic research with complex traits. Endophenotype research is being oversold for its potential to help discover psychopathology relevant genes using the types of small samples feasible for electrophysiological research. This is largely because the genetic architecture of endophenotypes appears to be very much like that of behavioral traits and disorders: they are complex, influenced by many variants (e.g., tens of thousands) within many genes, each contributing a very small effect. Out of over 40 electrophysiological endophenotypes covered by our review, only resting heart, a measure that has received scant advocacy as an endophenotype, emerges as an electrophysiological variable with verified associations with molecular genetic variants. To move the field forward, investigations designed to discover novel variants associated with endophenotypes will need extremely large samples best obtained by forming consortia and sharing data obtained from genome wide arrays. In addition, endophenotype research can benefit from successful molecular genetic studies of psychopathology by examining the degree to which these verified psychopathology-relevant variants are also associated with an endophenotype, and by using knowledge about the functional significance of these variants to generate new endophenotypes. Even without molecular genetic associations, endophenotypes still have value in studying the development of disorders in unaffected individuals at high genetic risk, constructing animal models, and gaining insight into neural mechanisms that are relevant to clinical disorder.
Collapse
|
20
|
Enoch MA, Albaugh BJ. Review: Genetic and environmental risk factors for alcohol use disorders in American Indians and Alaskan Natives. Am J Addict 2016; 26:461-468. [PMID: 27599369 DOI: 10.1111/ajad.12420] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 06/14/2016] [Accepted: 07/23/2016] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Genetic and environmental predictors for alcohol use disorder (AUD) are both important in the general population. As a group, American Indian and Alaskan Native individuals (AI/AN) are at increased risk for alcohol-related morbidity /mortality, early onset problem drinking and AUD. METHODS Alcohol consumption behaviors amongst AI/AN tribes, environmental stressors and genetic studies in AI/AN and European-ancestry individuals are reviewed followed by an analysis of unique difficulties for undertaking research with AI/AN. RESULTS Some AI/AN tribes have high rates of childhood trauma that predict psychopathology including AUD. The deleterious effects of historical trauma and forced placement in boarding schools cross generations to the present day. There are scanty numbers of genetic studies of AUD in AI/AN and these derive from only a few tribes. However, it is important to note that the results are largely similar to findings in European-ancestry individuals indicating that AI/AN do not have increased genetic risk for AUD. Conducting AI/AN genetic studies has been challenging, in part because of tribe disillusionment and mistrust over past experiences and unique hurdles in getting consent from tribes, each a sovereign nation. However, it is encouraging that a new way forward has been established-community-based participatory research with tangible health benefits and a focus on strength-based approaches. CONCLUSIONS AND SCIENTIFIC SIGNIFICANCE Given the high prevalence of AUD in many AI/AN tribes and limited knowledge about genetic risk-resilience factors, it is important for our understanding of prevention and treatment that AI/AN research progresses and that more tribes are represented. (Am J Addict 2017;26:461-468).
Collapse
|
21
|
Alshammari TK, Alshammari MA, Nenov MN, Hoxha E, Cambiaghi M, Marcinno A, James TF, Singh P, Labate D, Li J, Meltzer HY, Sacchetti B, Tempia F, Laezza F. Genetic deletion of fibroblast growth factor 14 recapitulates phenotypic alterations underlying cognitive impairment associated with schizophrenia. Transl Psychiatry 2016; 6:e806. [PMID: 27163207 PMCID: PMC5070049 DOI: 10.1038/tp.2016.66] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 02/25/2016] [Accepted: 03/05/2016] [Indexed: 12/14/2022] Open
Abstract
Cognitive processing is highly dependent on the functional integrity of gamma-amino-butyric acid (GABA) interneurons in the brain. These cells regulate excitability and synaptic plasticity of principal neurons balancing the excitatory/inhibitory tone of cortical networks. Reduced function of parvalbumin (PV) interneurons and disruption of GABAergic synapses in the cortical circuitry result in desynchronized network activity associated with cognitive impairment across many psychiatric disorders, including schizophrenia. However, the mechanisms underlying these complex phenotypes are still poorly understood. Here we show that in animal models, genetic deletion of fibroblast growth factor 14 (Fgf14), a regulator of neuronal excitability and synaptic transmission, leads to loss of PV interneurons in the CA1 hippocampal region, a critical area for cognitive function. Strikingly, this cellular phenotype associates with decreased expression of glutamic acid decarboxylase 67 (GAD67) and vesicular GABA transporter (VGAT) and also coincides with disrupted CA1 inhibitory circuitry, reduced in vivo gamma frequency oscillations and impaired working memory. Bioinformatics analysis of schizophrenia transcriptomics revealed functional co-clustering of FGF14 and genes enriched within the GABAergic pathway along with correlatively decreased expression of FGF14, PVALB, GAD67 and VGAT in the disease context. These results indicate that Fgf14(-/-) mice recapitulate salient molecular, cellular, functional and behavioral features associated with human cognitive impairment, and FGF14 loss of function might be associated with the biology of complex brain disorders such as schizophrenia.
Collapse
Affiliation(s)
- T K Alshammari
- Pharmacology and Toxicology Graduate Program, University of Texas Medical Branch, Galveston, TX, USA
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
- King Saud University Graduate Studies Abroad Program, King Saud University, Riyadh, Saudi Arabia
| | - M A Alshammari
- Pharmacology and Toxicology Graduate Program, University of Texas Medical Branch, Galveston, TX, USA
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
- King Saud University Graduate Studies Abroad Program, King Saud University, Riyadh, Saudi Arabia
| | - M N Nenov
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - E Hoxha
- Neuroscience Institute Cavalieri Ottolenghi, Turin, Italy
- Department of Neuroscience, University of Torino, Turin, Italy
| | - M Cambiaghi
- Department of Neuroscience, University of Torino, Turin, Italy
| | - A Marcinno
- Neuroscience Institute Cavalieri Ottolenghi, Turin, Italy
| | - T F James
- Department of Neuroscience, University of Torino, Turin, Italy
| | - P Singh
- Department of Mathematics, University of Houston, Houston, TX, USA
| | - D Labate
- Department of Mathematics, University of Houston, Houston, TX, USA
| | - J Li
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Mitchell Center for Neurodegenerative Diseases, The University of Texas Medical Branch, Galveston, TX, USA
| | - H Y Meltzer
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - B Sacchetti
- Department of Neuroscience, University of Torino, Turin, Italy
| | - F Tempia
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
- Neuroscience Institute Cavalieri Ottolenghi, Turin, Italy
- Department of Neuroscience, University of Torino, Turin, Italy
| | - F Laezza
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
- Mitchell Center for Neurodegenerative Diseases, The University of Texas Medical Branch, Galveston, TX, USA
- Center for Addiction Research, The University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
22
|
Gitik M, Srivastava V, Hodgkinson CA, Shen PH, Goldman D, Meyerhoff DJ. Association of Superoxide Dismutase 2 (SOD2) Genotype with Gray Matter Volume Shrinkage in Chronic Alcohol Users: Replication and Further Evaluation of an Addiction Gene Panel. Int J Neuropsychopharmacol 2016; 19:pyw033. [PMID: 27207918 PMCID: PMC5043642 DOI: 10.1093/ijnp/pyw033] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 04/01/2016] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Reduction in brain volume, especially gray matter volume, has been shown to be one of the many deleterious effects of prolonged alcohol consumption. High variance in the degree of gray matter tissue shrinkage among alcohol-dependent individuals and a previous neuroimaging genetics report suggest the involvement of environmental and/or genetic factors, such as superoxide dismutase 2 (SOD2). Identification of such underlying factors will help in the clinical management of alcohol dependence. METHODS We analyzed quantitative magnetic resonance imaging and genotype data from 103 alcohol users, including both light drinkers and treatment-seeking alcohol-dependent individuals. Genotyping was performed using a custom gene array that included genes selected from 8 pathways relevant to chronic alcohol-related brain volume loss. RESULTS We replicated a significant association of a functional SOD2 single nucleotide polymorphism with normalized gray matter volume, which had been reported previously in an independent smaller sample of alcohol-dependent individuals. The SOD2-related genetic protection was observed only at the cohort's lower drinking range. Additional associations between normalized gray matter volume and other candidate genes such as alcohol dehydrogenase gene cluster (ADH), GCLC, NOS3, and SYT1 were observed across the entire sample but did not survive corrections for multiple comparisons. CONCLUSION Converging independent evidence for a SOD2 gene association with gray matter volume shrinkage in chronic alcohol users suggests that SOD2 genetic variants predict differential brain volume loss mediated by free radicals. This study also provides the first catalog of genetic variations relevant to gray matter loss in chronic alcohol users. The identified gene-brain structure relationships are functionally pertinent and merit replication.
Collapse
Affiliation(s)
- Miri Gitik
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, NIH, Rockville, Maryland (Drs Gitik, Srivastava, and Hodgkinson, Ms Shen, and Dr Goldman); Department of Radiology and Biomedical Imaging, University of California, San Francisco, California (Dr Meyerhoff); Center for Imaging of Neurodegenerative Diseases, Veterans Administration Medical Center, San Francisco, California (Dr Meyerhoff).Current address (V.S.): Molecular Genetic Technology Program, School of Health Professions, MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030
| | - Vibhuti Srivastava
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, NIH, Rockville, Maryland (Drs Gitik, Srivastava, and Hodgkinson, Ms Shen, and Dr Goldman); Department of Radiology and Biomedical Imaging, University of California, San Francisco, California (Dr Meyerhoff); Center for Imaging of Neurodegenerative Diseases, Veterans Administration Medical Center, San Francisco, California (Dr Meyerhoff).Current address (V.S.): Molecular Genetic Technology Program, School of Health Professions, MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030
| | - Colin A Hodgkinson
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, NIH, Rockville, Maryland (Drs Gitik, Srivastava, and Hodgkinson, Ms Shen, and Dr Goldman); Department of Radiology and Biomedical Imaging, University of California, San Francisco, California (Dr Meyerhoff); Center for Imaging of Neurodegenerative Diseases, Veterans Administration Medical Center, San Francisco, California (Dr Meyerhoff).Current address (V.S.): Molecular Genetic Technology Program, School of Health Professions, MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030
| | - Pei-Hong Shen
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, NIH, Rockville, Maryland (Drs Gitik, Srivastava, and Hodgkinson, Ms Shen, and Dr Goldman); Department of Radiology and Biomedical Imaging, University of California, San Francisco, California (Dr Meyerhoff); Center for Imaging of Neurodegenerative Diseases, Veterans Administration Medical Center, San Francisco, California (Dr Meyerhoff).Current address (V.S.): Molecular Genetic Technology Program, School of Health Professions, MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030
| | - David Goldman
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, NIH, Rockville, Maryland (Drs Gitik, Srivastava, and Hodgkinson, Ms Shen, and Dr Goldman); Department of Radiology and Biomedical Imaging, University of California, San Francisco, California (Dr Meyerhoff); Center for Imaging of Neurodegenerative Diseases, Veterans Administration Medical Center, San Francisco, California (Dr Meyerhoff).Current address (V.S.): Molecular Genetic Technology Program, School of Health Professions, MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030
| | - Dieter J Meyerhoff
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, NIH, Rockville, Maryland (Drs Gitik, Srivastava, and Hodgkinson, Ms Shen, and Dr Goldman); Department of Radiology and Biomedical Imaging, University of California, San Francisco, California (Dr Meyerhoff); Center for Imaging of Neurodegenerative Diseases, Veterans Administration Medical Center, San Francisco, California (Dr Meyerhoff).Current address (V.S.): Molecular Genetic Technology Program, School of Health Professions, MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030.
| |
Collapse
|
23
|
Iacono WG. Genome-wide scans of genetic variants for psychophysiological endophenotypes: introduction to this special issue of Psychophysiology. Psychophysiology 2015; 51:1201-2. [PMID: 25387700 DOI: 10.1111/psyp.12340] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
This special issue addresses the heritability and molecular genetic basis of 17 putative endophenotypes involving resting EEG power, P300 event-related potential amplitude, electrodermal orienting and habituation, antisaccade eye tracking, and affective modulation of the startle eye blink. These measures were collected from approximately 4,900 twins and parents who provided DNA samples through their participation in the Minnesota Twin Family Study. Included are papers that detail the methodology followed, genome-wide association analyses of single nucleotide polymorphisms and genes, analysis of rare variants in the human exome, and a whole genome sequencing study. Also included are 11 articles by leading experts in psychophysiology and genetics that provide perspective and commentary. A final integrative report summarizes findings and addresses issues raised. This introduction provides an overview of the aims and rationale behind these studies.
Collapse
Affiliation(s)
- William G Iacono
- Department of Psychology, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
24
|
Malone SM, Burwell SJ, Vaidyanathan U, Miller MB, McGue M, Iacono WG. Heritability and molecular-genetic basis of resting EEG activity: a genome-wide association study. Psychophysiology 2015; 51:1225-45. [PMID: 25387704 DOI: 10.1111/psyp.12344] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Several EEG parameters are potential endophenotypes for different psychiatric disorders. The present study consists of a comprehensive behavioral- and molecular-genetic analysis of such parameters in a large community sample (N = 4,026) of adolescent twins and their parents, genotyped for 527,829 single nucleotide polymorphisms (SNPs). Biometric heritability estimates ranged from .49 to .85, with a median of .78. The additive effect of all SNPs (SNP heritability) varied across electrodes. Although individual SNPs were not significantly associated with EEG parameters, several genes were associated with delta power. We also obtained an association between the GABRA2 gene and beta power (p < .014), consistent with findings reported by others, although this did not survive Bonferroni correction. If EEG parameters conform to a largely polygenic model of inheritance, larger sample sizes will be required to detect individual variants reliably.
Collapse
Affiliation(s)
- Stephen M Malone
- Department of Psychology, University of Minnesota, Minneapolis, Minnesota, USA
| | | | | | | | | | | |
Collapse
|
25
|
Abstract
Genetic variation altering behavior is elusive. This commentary discusses implications for the search for "missing heritability" posed by a unified series of studies from the Minnesota Center for Twin and Family Research. Endophenotypes are measured in a longitudinal cohort including twins, analyzed for heritability and genetically mapped via genome-wide association and genome sequencing. The genes identified account for a fraction of the heritability, but the manner in which the studies were conducted points to explanations other than methodology. The MCTFR data are an unprecedented addition to the research information commons. Other gene discoveries will follow when they are analyzed in new ways and in combination with other studies. Even larger samples may be needed. Alternatively or in addition, locus identification, especially rare alleles, may require the study of families and population isolates with founder characteristics.
Collapse
Affiliation(s)
- David Goldman
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health (NIH), Rockville, Maryland, USA
| |
Collapse
|
26
|
Alfimova MV, Melnikova TS, Golimbet VE. [Molecular-genetic and electroencephalographic markers of neurocognitive processes in depressive disorders]. Zh Nevrol Psikhiatr Im S S Korsakova 2015; 115:103-109. [PMID: 26438903 DOI: 10.17116/jnevro201511551103-109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Perspectives of molecular-genetic approaches to the establishment of mechanisms of development and causes of heterogeneity of neurocognitive impairment are discussed. The current results indicate that candidate genes for depression can contribute to the variance of memory and regulatory functions in patients. At the same time, these genes are closely related to affective information processing and .cortisol level. By that fact, it can't be excluded that affective processes moderate the association between cognition and genes. EEG parameters could be useful phenotypes in the search for and understanding of genetic mechanisms of cognitive deficit in depression. Parameters of resting EEG and its reactive changes are known to reflect the certain cognitive processes. They are influenced by genetic factors and are sensitive indicators of mechanisms that might underlie cognitive impairment in depressive patients. Accumulating data on molecular-genetic correlates of normal electric brain activity may be a source of choosing new candidate genes for cognitive impairment in depression.
Collapse
Affiliation(s)
- M V Alfimova
- Mental Health Research Centre, Russian Academy of Sciences, Moscow; Moscow Research Institute of Psychiatry, Ministry of Health of the Russian Federation, Moscow
| | - T S Melnikova
- Moscow Research Institute of Psychiatry, Ministry of Health of the Russian Federation, Moscow
| | - V E Golimbet
- Mental Health Research Centre, Russian Academy of Sciences, Moscow
| |
Collapse
|
27
|
Mamdani M, Williamson V, McMichael GO, Blevins T, Aliev F, Adkins A, Hack L, Bigdeli T, D. van der Vaart A, Web BT, Bacanu SA, Kalsi G, Kendler KS, Miles MF, Dick D, Riley BP, Dumur C, Vladimirov VI. Integrating mRNA and miRNA Weighted Gene Co-Expression Networks with eQTLs in the Nucleus Accumbens of Subjects with Alcohol Dependence. PLoS One 2015; 10:e0137671. [PMID: 26381263 PMCID: PMC4575063 DOI: 10.1371/journal.pone.0137671] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 08/05/2015] [Indexed: 11/18/2022] Open
Abstract
Alcohol consumption is known to lead to gene expression changes in the brain. After performing weighted gene co-expression network analyses (WGCNA) on genome-wide mRNA and microRNA (miRNA) expression in Nucleus Accumbens (NAc) of subjects with alcohol dependence (AD; N = 18) and of matched controls (N = 18), six mRNA and three miRNA modules significantly correlated with AD were identified (Bonferoni-adj. p≤ 0.05). Cell-type-specific transcriptome analyses revealed two of the mRNA modules to be enriched for neuronal specific marker genes and downregulated in AD, whereas the remaining four mRNA modules were enriched for astrocyte and microglial specific marker genes and upregulated in AD. Gene set enrichment analysis demonstrated that neuronal specific modules were enriched for genes involved in oxidative phosphorylation, mitochondrial dysfunction and MAPK signaling. Glial-specific modules were predominantly enriched for genes involved in processes related to immune functions, i.e. cytokine signaling (all adj. p≤ 0.05). In mRNA and miRNA modules, 461 and 25 candidate hub genes were identified, respectively. In contrast to the expected biological functions of miRNAs, correlation analyses between mRNA and miRNA hub genes revealed a higher number of positive than negative correlations (χ2 test p≤ 0.0001). Integration of hub gene expression with genome-wide genotypic data resulted in 591 mRNA cis-eQTLs and 62 miRNA cis-eQTLs. mRNA cis-eQTLs were significantly enriched for AD diagnosis and AD symptom counts (adj. p = 0.014 and p = 0.024, respectively) in AD GWAS signals in a large, independent genetic sample from the Collaborative Study on Genetics of Alcohol (COGA). In conclusion, our study identified putative gene network hubs coordinating mRNA and miRNA co-expression changes in the NAc of AD subjects, and our genetic (cis-eQTL) analysis provides novel insights into the etiological mechanisms of AD.
Collapse
Affiliation(s)
- Mohammed Mamdani
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Vernell Williamson
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Gowon O. McMichael
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Tana Blevins
- Department of Pathology, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Fazil Aliev
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, United States of America
- Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Amy Adkins
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Laura Hack
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Tim Bigdeli
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Andrew D. van der Vaart
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Bradley Todd Web
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Silviu-Alin Bacanu
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Gursharan Kalsi
- Department of Social, Genetic and Developmental Psychiatry, Institute of Psychiatry, London SE5 8AF, United Kingdom
| | | | - Kenneth S. Kendler
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, United States of America
- Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, United States of America
- Department of Human & Molecular Genetics, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Michael F. Miles
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, United States of America
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Danielle Dick
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, United States of America
- Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, United States of America
- Department of Human & Molecular Genetics, Virginia Commonwealth University, Richmond, VA, United States of America
- Department of Psychology, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Brien P. Riley
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, United States of America
- Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, United States of America
- Department of Human & Molecular Genetics, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Catherine Dumur
- Department of Pathology, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Vladimir I. Vladimirov
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, United States of America
- Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, United States of America
- Center for Biomarker Research and Personalized Medicine, Virginia Commonwealth University, Richmond, VA, United States of America
- Lieber Institute for Brain Development, Johns Hopkins University, Baltimore, MD, United States of America
| |
Collapse
|
28
|
Yarosh HL, Meda SA, de Wit H, Hart AB, Pearlson GD. Multivariate analysis of subjective responses to d-amphetamine in healthy volunteers finds novel genetic pathway associations. Psychopharmacology (Berl) 2015; 232:2781-94. [PMID: 25843748 PMCID: PMC4504822 DOI: 10.1007/s00213-015-3914-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Accepted: 03/06/2015] [Indexed: 11/24/2022]
Abstract
RATIONALE Researchers studying behavioral and physiologic effects of d-amphetamine have explored individual response differences to the drug. Concurrently, genome-wide analyses have identified several single-nucleotide polymorphisms (SNPs) associated with these traits. Univariate methods can identify SNPs associated with behavioral and physiological traits, but multivariate analyses allow identification of clusters of related biologically relevant SNPs and behavioral components. OBJECTIVES The aim of the study was to identify clusters of related biologically relevant SNPs and behavioral components in the responses of healthy individuals to d-amphetamine using multivariate analysis. METHODS Individuals (N = 375) without substance abuse histories completed surveys and detailed cardiovascular monitoring during randomized, blinded sessions: d-amphetamine (10 and 20 mg) and placebo. We applied parallel independent component analysis (Para-ICA) to data previously analyzed with univariate approaches, revealing new associations between genes and behavioral responses to d-amphetamine. RESULTS Three significantly associated (p < .001) phenotype-genotype pairs emerged. The first component included physiologic measures of systolic and diastolic blood pressure (BP) and mean arterial pressure (MAP) along with SNPs in calcium and glutamatergic signaling pathways. The second associated components included the "Anger" items from the Profile of Mood States (POMS) questionnaire and the marijuana effects from the Addiction Research Center Inventory (Cuyas, Verdejo-Garcia et al.), with enriched genetic pathways involved in cardiomyopathy and MAPK signaling. The final pair included "Anxious," "Fatigue," and "Confusion" items from the POMS questionnaire, plus functional pathways related to cardiac muscle contraction and cardiomyopathy. CONCLUSIONS Multifactorial genetic networks related to calcium signaling, glutamatergic and dopaminergic synapse function, and amphetamine addiction appear to mediate common behavioral and cardiovascular responses to d-amphetamine.
Collapse
Affiliation(s)
- Haley L. Yarosh
- Olin Neuropsychiatry Research Center, Institute of Living at Hartford Hospital, Hartford, Connecticut,Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Shashwath A. Meda
- Olin Neuropsychiatry Research Center, Institute of Living at Hartford Hospital, Hartford, Connecticut
| | - Harriet de Wit
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, Illinois
| | - Amy B. Hart
- Department of Human Genetics, University of Chicago, Chicago, Illinois
| | - Godfrey D. Pearlson
- Olin Neuropsychiatry Research Center, Institute of Living at Hartford Hospital, Hartford, Connecticut,Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut,Department of Neurobiology, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
29
|
Multivariate genetic determinants of EEG oscillations in schizophrenia and psychotic bipolar disorder from the BSNIP study. Transl Psychiatry 2015; 5:e588. [PMID: 26101851 PMCID: PMC4490286 DOI: 10.1038/tp.2015.76] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 04/27/2015] [Accepted: 05/04/2015] [Indexed: 01/18/2023] Open
Abstract
Schizophrenia (SZ) and psychotic bipolar disorder (PBP) are disabling psychiatric illnesses with complex and unclear etiologies. Electroencephalogram (EEG) oscillatory abnormalities in SZ and PBP probands are heritable and expressed in their relatives, but the neurobiology and genetic factors mediating these abnormalities in the psychosis dimension of either disorder are less explored. We examined the polygenic architecture of eyes-open resting state EEG frequency activity (intrinsic frequency) from 64 channels in 105 SZ, 145 PBP probands and 56 healthy controls (HCs) from the multisite BSNIP (Bipolar-Schizophrenia Network on Intermediate Phenotypes) study. One million single-nucleotide polymorphisms (SNPs) were derived from DNA. We assessed eight data-driven EEG frequency activity derived from group-independent component analysis (ICA) in conjunction with a reduced subset of 10,422 SNPs through novel multivariate association using parallel ICA (para-ICA). Genes contributing to the association were examined collectively using pathway analysis tools. Para-ICA extracted five frequency and nine SNP components, of which theta and delta activities were significantly correlated with two different gene components, comprising genes participating extensively in brain development, neurogenesis and synaptogenesis. Delta and theta abnormality was present in both SZ and PBP, while theta differed between the two disorders. Theta abnormalities were also mediated by gene clusters involved in glutamic acid pathways, cadherin and synaptic contact-based cell adhesion processes. Our data suggest plausible multifactorial genetic networks, including novel and several previously identified (DISC1) candidate risk genes, mediating low frequency delta and theta abnormalities in psychoses. The gene clusters were enriched for biological properties affecting neural circuitry and involved in brain function and/or development.
Collapse
|
30
|
Solís-Ortiz S, Pérez-Luque E, Gutiérrez-Muñoz M. Modulation of the COMT Val(158)Met polymorphism on resting-state EEG power. Front Hum Neurosci 2015; 9:136. [PMID: 25883560 PMCID: PMC4382983 DOI: 10.3389/fnhum.2015.00136] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 02/27/2015] [Indexed: 12/14/2022] Open
Abstract
The catechol-O-methyltransferase (COMT) Val(158)Met polymorphism impacts cortical dopamine (DA) levels and may influence cortical electrical activity in the human brain. This study investigated whether COMT genotype influences resting-state electroencephalogram (EEG) power in the frontal, parietal and midline regions in healthy volunteers. EEG recordings were conducted in the resting-state in 13 postmenopausal healthy woman carriers of the Val/Val genotype and 11 with the Met/Met genotype. The resting EEG spectral absolute power in the frontal (F3, F4, F7, F8, FC3 and FC4), parietal (CP3, CP4, P3 and P4) and midline (Fz, FCz, Cz, CPz, Pz and Oz) was analyzed during the eyes-open and eyes-closed conditions. The frequency bands considered were the delta, theta, alpha1, alpha2, beta1 and beta2. EEG data of the Val/Val and Met/Met genotypes, brain regions and conditions were analyzed using a general linear model analysis. In the individuals with the Met/Met genotype, delta activity was increased in the eyes-closed condition, theta activity was increased in the eyes-closed and in the eyes-open conditions, and alpha1 band, alpha2 band and beta1band activity was increased in the eyes-closed condition. A significant interaction between COMT genotypes and spectral bands was observed. Met homozygote individuals exhibited more delta, theta and beta1 activity than individuals with the Val/Val genotype. No significant interaction between COMT genotypes and the resting-state EEG regional power and conditions were observed for the three brain regions studied. Our findings indicate that the COMT Val(158)Met polymorphism does not directly impact resting-state EEG regional power, but instead suggest that COMT genotype can modulate resting-state EEG spectral power in postmenopausal healthy women.
Collapse
Affiliation(s)
- Silvia Solís-Ortiz
- Laboratory of Cognitive Electrophysiology and Hormones, Department of Medical Sciences, University of GuanajuatoLeón, Mexico
| | - Elva Pérez-Luque
- Laboratory of Cognitive Electrophysiology and Hormones, Department of Medical Sciences, University of GuanajuatoLeón, Mexico
| | | |
Collapse
|
31
|
Hoeffding LK, Kock KF, Johnsen IG, Hansen T, Werge T. Usefulness of the SNP microarray technology to identify rare mutations in the case of perinatal death. CASE REPORTS IN PERINATAL MEDICINE 2015. [DOI: 10.1515/crpm-2014-0046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Background: The single nucleotide polymorphism (SNP) microarray technology has emerged as a powerful tool to screen the whole genome for sub-microscopic duplications and deletions that are not detectable by traditional cytogenetic analysis.
Case: We report a case of a female twin born at 27th week of gestation who died 1 day after birth whereas the co-twin survived without complications. The case twin was referred to our unit for autopsy, and in addition we performed an SNP microarray analysis.
Results: Three copy number variants (CNVs) were identified by the SNP microarray analysis. The most interesting CNV in relation to the clinical phenotype (pulmonary immaturity) was a disruption in the gene ST6GALNAC3 (1p31.1) that is involved in the biosynthesis of gangliosides.
Conclusions: It is unknown from this case report whether the CNV at 1p31.1 contributes to a genetic predisposition that is related to maturation of the lungs or the perinatal death of one of the twins. However, disruptions in the biosynthesis of gangliosides have been previously associated with premature death in mice.
Collapse
Affiliation(s)
- Louise K. Hoeffding
- Research Institute of Biological Psychiatry, Mental Health Centre Sct. Hans, Copenhagen University Hospital, Roskilde, Denmark
| | - Kirsten F. Kock
- Department of Clinical Pathology, Odense University Hospital, Odense, Denmark
| | - Iben G. Johnsen
- Department of Clinical Pathology, Odense University Hospital, Odense, Denmark
| | - Thomas Hansen
- Research Institute of Biological Psychiatry, Mental Health Centre Sct. Hans, Copenhagen University Hospital, Roskilde, Denmark
| | - Thomas Werge
- Research Institute of Biological Psychiatry, Mental Health Centre Sct. Hans, Copenhagen University Hospital, Roskilde, Denmark
| |
Collapse
|
32
|
Interpreting EEG alpha activity. Neurosci Biobehav Rev 2014; 44:94-110. [DOI: 10.1016/j.neubiorev.2013.05.007] [Citation(s) in RCA: 259] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 04/05/2013] [Accepted: 05/03/2013] [Indexed: 01/04/2023]
|
33
|
Genetic psychophysiology: advances, problems, and future directions. Int J Psychophysiol 2014; 93:173-97. [PMID: 24739435 DOI: 10.1016/j.ijpsycho.2014.04.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 02/10/2014] [Accepted: 04/07/2014] [Indexed: 12/20/2022]
Abstract
This paper presents an overview of historical advances and the current state of genetic psychophysiology, a rapidly developing interdisciplinary research linking genetics, brain, and human behavior, discusses methodological problems, and outlines future directions of research. The main goals of genetic psychophysiology are to elucidate the neural pathways and mechanisms mediating genetic influences on cognition and emotion, identify intermediate brain-based phenotypes for psychopathology, and provide a functional characterization of genes being discovered by large association studies of behavioral phenotypes. Since the initiation of this neurogenetic approach to human individual differences in the 1970s, numerous twin and family studies have provided strong evidence for heritability of diverse aspects of brain function including resting-state brain oscillations, functional connectivity, and event-related neural activity in a variety of cognitive and emotion processing tasks, as well as peripheral psychophysiological responses. These data indicate large differences in the presence and strength of genetic influences across measures and domains, permitting the selection of heritable characteristics for gene finding studies. More recently, candidate gene association studies began to implicate specific genetic variants in different aspects of neurocognition. However, great caution is needed in pursuing this line of research due to its demonstrated proneness to generate false-positive findings. Recent developments in methods for physiological signal analysis, hemodynamic imaging, and genomic technologies offer new exciting opportunities for the investigation of the interplay between genetic and environmental factors in the development of individual differences in behavior, both normal and abnormal.
Collapse
|
34
|
Mulholland CV, Somogyi AA, Barratt DT, Coller JK, Hutchinson MR, Jacobson GM, Cursons RT, Sleigh JW. Association of innate immune single-nucleotide polymorphisms with the electroencephalogram during desflurane general anaesthesia. J Mol Neurosci 2013; 52:497-506. [PMID: 24352713 DOI: 10.1007/s12031-013-0201-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 12/01/2013] [Indexed: 11/24/2022]
Abstract
The electroencephalogram (EEG) records the electrical activity of the brain and enables effects of anaesthetic drugs on brain functioning to be monitored. Identification of genes contributing to EEG variability during anaesthesia is important to the clinical application of anaesthesia monitoring and may provide an avenue to identify molecular mechanisms underlying the generation and regulation of brain oscillations. Central immune signalling can impact neuronal activity in the brain and accumulating evidence suggests an important role for cytokines as neuronal modulators. We tested 21 single-nucleotide polymorphisms (SNPs) in immune-related genes for associations with three anaesthesia-induced EEG patterns; spindle amplitude, delta power and alpha power, during general anaesthesia with desflurane in 111 patients undergoing general, gynaecological or orthopaedic surgery. Wide inter-patient variability was observed for all EEG variables. MYD88 rs6853 (p = 6.7 × 10(-4)) and IL-1β rs1143627 in conjunction with rs6853 (p = 1.5 × 10(-3)) were associated with spindle amplitude, and IL-10 rs1800896 was associated with delta power (p = 1.3 × 10(-2)) suggesting involvement of cytokine signalling in modulation of EEG patterns during desflurane anaesthesia. BDNF rs6265 was associated with alpha power (p = 3.9 × 10(-3)), suggesting differences in neuronal plasticity might also influence EEG patterns during desflurane anaesthesia. This is the first study we are aware of that has investigated genetic polymorphisms that may influence the EEG during general anaesthesia.
Collapse
|
35
|
Abstract
Alcoholism has a substantial heritability yet the detection of specific genetic influences has largely proved elusive. The strongest findings are with genes encoding alcohol metabolizing enzymes. A few candidate genes such as GABRA2 have shown robust associations with alcoholism. Moreover, it has become apparent that variants in stress-related genes such as CRHR1, may only confer risk in individuals exposed to trauma, particularly in early life. Over the past decade there have been tremendous advances in large scale SNP genotyping technologies allowing for genome-wide associations studies (GWAS). As a result, it is now recognized that genetic risk for alcoholism is likely to be due to common variants in very many genes, each of small effect, although rare variants with large effects might also play a role. This has resulted in a paradigm shift away from gene centric studies toward analyses of gene interactions and gene networks within biologically relevant pathways.
Collapse
Affiliation(s)
- Mary-Anne Enoch
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA,
| |
Collapse
|
36
|
Park TJ, Hwang JY, Go MJ, Lee HJ, Jang HB, Choi Y, Kang JH, Park KH, Choi MG, Song J, Kim BJ, Lee JY. Genome-wide association study of liver enzymes in korean children. Genomics Inform 2013; 11:149-54. [PMID: 24124411 PMCID: PMC3794088 DOI: 10.5808/gi.2013.11.3.149] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 08/22/2013] [Accepted: 08/23/2013] [Indexed: 12/13/2022] Open
Abstract
Liver enzyme elevations, as an indicator of liver function, are widely associated with metabolic diseases. Genome-wide population-based association studies have identified a genetic susceptibility to liver enzyme elevations and their related traits; however, the genetic architecture in childhood remains largely unknown. We performed a genome-wide association study to identify new genetic loci for liver enzyme levels in a Korean childhood cohort (n = 484). We observed three novel loci (rs4949718, rs80311637, and rs596406) that were multiply associated with elevated levels of alanine transaminase and aspartate transaminase. Although there are some limitations, including genetic power, additional replication and functional characterization will support the clarity on the genetic contribution that the ST6GALNAC3, ADAMTS9, and CELF2 genes have in childhood liver function.
Collapse
Affiliation(s)
- Tae-Joon Park
- Division of Structural and Functional Genomics, Center for Genome Science, Korea National Institute of Health, Cheongwon 363-951, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Hart AB, de Wit H, Palmer AA. Candidate gene studies of a promising intermediate phenotype: failure to replicate. Neuropsychopharmacology 2013; 38:802-16. [PMID: 23303064 PMCID: PMC3671998 DOI: 10.1038/npp.2012.245] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 11/07/2012] [Accepted: 11/26/2012] [Indexed: 11/08/2022]
Abstract
Many candidate gene studies use 'intermediate phenotypes' instead of disease diagnoses. It has been proposed that intermediate phenotypes have simpler genetic architectures such that individual alleles account for a larger percentage of trait variance. This implies that smaller samples can be used to identify genetic associations. Pharmacogenomic drug challenge studies may be an especially promising class of intermediate phenotype. We previously conducted a series of 12 candidate gene analyses of acute subjective and physiological responses to amphetamine in 99-162 healthy human volunteers (ADORA2A, SLC6A3, BDNF, SLC6A4, CSNK1E, SLC6A2, DRD2, FAAH, COMT, OPRM1). Here, we report our attempt to replicate these findings in over 200 additional participants ascertained using identical methodology. We were unable to replicate any of our previous findings. These results raise critical issues related to non-replication of candidate gene studies, such as power, sample size, multiple testing within and between studies, publication bias and the expectation that true allelic effect sizes are similar to those reported in genome-wide association studies. Many of these factors may have contributed to our failure to replicate our previous findings. Our results should instill caution in those considering similarly designed studies.
Collapse
Affiliation(s)
- Amy B Hart
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Harriet de Wit
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL, USA
| | - Abraham A Palmer
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL, USA
| |
Collapse
|
38
|
Bogdan R, Hyde LW, Hariri AR. A neurogenetics approach to understanding individual differences in brain, behavior, and risk for psychopathology. Mol Psychiatry 2013; 18:288-99. [PMID: 22614291 DOI: 10.1038/mp.2012.35] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Neurogenetics research has begun to advance our understanding of how genetic variation gives rise to individual differences in brain function, which, in turn, shapes behavior and risk for psychopathology. Despite these advancements, neurogenetics research is currently confronted by three major challenges: (1) conducting research on individual variables with small effects, (2) absence of detailed mechanisms, and (3) a need to translate findings toward greater clinical relevance. In this review, we showcase techniques and developments that address these challenges and highlight the benefits of a neurogenetics approach to understanding brain, behavior and psychopathology. To address the challenge of small effects, we explore approaches including incorporating the environment, modeling epistatic relationships and using multilocus profiles. To address the challenge of mechanism, we explore how non-human animal research, epigenetics research and genome-wide association studies can inform our mechanistic understanding of behaviorally relevant brain function. Finally, to address the challenge of clinical relevance, we examine how neurogenetics research can identify novel therapeutic targets and for whom treatments work best. By addressing these challenges, neurogenetics research is poised to exponentially increase our understanding of how genetic variation interacts with the environment to shape the brain, behavior and risk for psychopathology.
Collapse
Affiliation(s)
- R Bogdan
- Laboratory of NeuroGenetics, Department of Psychology and Neuroscience, Duke University, Durham, NC 27705, USA.
| | | | | |
Collapse
|
39
|
Bevilacqua L, Goldman D. Genetics of impulsive behaviour. Philos Trans R Soc Lond B Biol Sci 2013; 368:20120380. [PMID: 23440466 DOI: 10.1098/rstb.2012.0380] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Impulsivity, defined as the tendency to act without foresight, comprises a multitude of constructs and is associated with a variety of psychiatric disorders. Dissecting different aspects of impulsive behaviour and relating these to specific neurobiological circuits would improve our understanding of the etiology of complex behaviours for which impulsivity is key, and advance genetic studies in this behavioural domain. In this review, we will discuss the heritability of some impulsivity constructs and their possible use as endophenotypes (heritable, disease-associated intermediate phenotypes). Several functional genetic variants associated with impulsive behaviour have been identified by the candidate gene approach and re-sequencing, and whole genome strategies can be implemented for discovery of novel rare and common alleles influencing impulsivity. Via deep sequencing an uncommon HTR2B stop codon, common in one population, was discovered, with implications for understanding impulsive behaviour in both humans and rodents and for future gene discovery.
Collapse
Affiliation(s)
- Laura Bevilacqua
- Department of Psychiatry, New York University School of Medicine, New York, NY 10016, USA.
| | | |
Collapse
|
40
|
Abstract
OBJECTIVE Although tribes differ with regard to the use of alcohol and drugs, substance dependence is one of the primary sources of health problems facing Native Americans. General population studies have demonstrated that substance dependence has a substantially heritable component (approximately 50% of the risk resulting from genetic influences); however, fewer studies have investigated the role of genetics in the risk for substance dependence in Native Americans. METHOD The authors present a literature review of the evidence for a genetic component in the etiology of substance dependence in Native Americans, including studies of heritability, linkage analyses, and candidate genes. RESULTS Evidence for the heritability of alcohol and drug dependence was found. Linkage analyses revealed that genes influencing risk for substance dependence and related phenotypes, such as body mass index (BMI), drug tolerance, EEG patterns, and externalizing traits, reside on several chromosome regions identified in other population samples. Overlap in the gene locations for substance dependence and BMI suggests that a common genetic substrate may exist for disorders of consumption. Studies of the genes that code for alcohol-metabolizing enzymes have not revealed any risk variants specific to Native American populations, although most Native Americans lack protective variants seen in other populations. Other candidate genes associated with substance dependence phenotypes in Native Americans include OPRM1, CRN1, COMT, GABRA2, MAOA, and HTR3-B. CONCLUSIONS Substance dependence has a substantial genetic component in Native Americans, similar in magnitude to that reported for other populations. The high rates of substance dependence seen in some tribes is likely a combination of a lack of genetic protective factors (metabolizing enzyme variants) combined with genetically mediated risk factors (externalizing traits, consumption drive, and drug sensitivity or tolerance) that combine with key environmental factors (trauma exposure, early age at onset of use, and environmental hardship) to produce an elevated risk for the disorder.
Collapse
Affiliation(s)
- Cindy L. Ehlers
- Department of Molecular and Integrative Neurosciences, The Scripps Research Institute, La Jolla, California, USA
| | - Ian R. Gizer
- Department of Psychological Sciences, University of Missouri, Columbia, MO, USA
| |
Collapse
|
41
|
Dimasi DP, Burdon KP, Hewitt AW, Fitzgerald J, Wang JJ, Healey PR, Mitchell P, Mackey DA, Craig JE. Genetic investigation into the endophenotypic status of central corneal thickness and optic disc parameters in relation to open-angle glaucoma. Am J Ophthalmol 2012; 154:833-842.e2. [PMID: 22840486 DOI: 10.1016/j.ajo.2012.04.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 04/25/2012] [Accepted: 04/26/2012] [Indexed: 12/31/2022]
Abstract
PURPOSE To ascertain if single nucleotide polymorphisms (SNPs) involved in the determination of central corneal thickness, optic disc area, and vertical cup-to-disc ratio (VCDR) also are associated with open-angle glaucoma (OAG). DESIGN Retrospective case-control genetic association study. METHODS A total of 16 SNPs associated with central corneal thickness, optic disc area, and VCDR were genotyped in 876 OAG cases and 883 normal controls. To determine if the SNPs were also correlated with OAG severity, the cohort was stratified into advanced OAG (n = 326) and nonadvanced OAG (n = 550). Both the cases and controls were of European descent and were recruited from within Australia. RESULTS Two VCDR SNPs were found to be significantly associated with OAG after correction for multiple testing. The 2 SNPs were rs10483727, found adjacent to the SIX1 gene (P = 6.2 × 10(-06); odds ratio, 1.38; 95% confidence interval, 1.20 to 1.59), and rs1063192, found within the CDKN2B gene (P = 2.2 × 10(-05); odds ratio, 0.74; 95% confidence interval, 0.64 to 0.85). The CDKN2B variant rs1063192 also was found to be associated more strongly with advanced OAG. CONCLUSIONS The findings from this study indicate that variants influencing VCDR are also risk alleles for OAG in our Australian cohort of European descent. The identification of SIX1 and CDKN2B as susceptibility loci will assist in understanding the pathologic mechanisms involved in the development of OAG.
Collapse
|
42
|
Palmer RHC, McGeary JE, Francazio S, Raphael BJ, Lander AD, Heath AC, Knopik VS. The genetics of alcohol dependence: advancing towards systems-based approaches. Drug Alcohol Depend 2012; 125:179-91. [PMID: 22854292 PMCID: PMC3470479 DOI: 10.1016/j.drugalcdep.2012.07.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 07/09/2012] [Accepted: 07/10/2012] [Indexed: 01/02/2023]
Abstract
BACKGROUND Personalized treatment for psychopathologies, in particular alcoholism, is highly dependent upon our ability to identify patterns of genetic and environmental effects that influence a person's risk. Unfortunately, array-based whole genome investigations into heritable factors that explain why one person becomes dependent upon alcohol and another does not, have indicated that alcohol's genetic architecture is highly complex. That said, uncovering and interpreting the missing heritability in alcohol genetics research has become all the more important, especially since the problem may extend to our inability to model the cumulative and combinatorial relationships between common and rare genetic variants. As numerous studies begin to illustrate the dependency of alcohol pharmacotherapies on an individual's genotype, the field is further challenged to identify new ways to transcend agnostic genomewide association approaches. We discuss insights from genetic studies of alcohol related diseases, as well as issues surrounding alcohol's genetic complexity and etiological heterogeneity. Finally, we describe the need for innovative systems-based approaches (systems genetics) that can provide additional statistical power that can enhance future gene-finding strategies and help to identify heretofore-unrealized mechanisms that may provide new targets for prevention/treatments efforts. Emerging evidence from early studies suggest that systems genetics has the potential to organize our neurological, pharmacological, and genetic understanding of alcohol dependence into a biologically plausible framework that represents how perturbations across evolutionarily robust biological systems determine susceptibility to alcohol dependence.
Collapse
Affiliation(s)
- R H C Palmer
- Division of Behavioral Genetics, Department of Psychiatry at Rhode Island Hospital, USA.
| | | | | | | | | | | | | |
Collapse
|
43
|
Olfson E, Bierut LJ. Convergence of genome-wide association and candidate gene studies for alcoholism. Alcohol Clin Exp Res 2012; 36:2086-94. [PMID: 22978509 DOI: 10.1111/j.1530-0277.2012.01843.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 03/20/2012] [Indexed: 11/30/2022]
Abstract
BACKGROUND Genome-wide association (GWA) studies have led to a paradigm shift in how researchers study the genetics underlying disease. Many GWA studies are now publicly available and can be used to examine whether or not previously proposed candidate genes are supported by GWA data. This approach is particularly important for the field of alcoholism because the contribution of many candidate genes remains controversial. METHODS Using the Human Genome Epidemiology (HuGE) Navigator, we selected candidate genes for alcoholism that have been frequently examined in scientific articles in the past decade. Specific candidate loci as well as all the reported single nucleotide polymorphisms (SNPs) in candidate genes were examined in the Study of Addiction: Genetics and Environment (SAGE), a GWA study comparing alcohol-dependent and nondependent subjects. RESULTS Several commonly reported candidate loci, including rs1800497 in DRD2, rs698 in ADH1C, rs1799971 in OPRM1, and rs4680 in COMT, are not replicated in SAGE (p > 0.05). Among candidate loci available for analysis, only rs279858 in GABRA2 (p = 0.0052, OR = 1.16) demonstrated a modest association. Examination of all SNPs reported in SAGE in over 50 candidate genes revealed no SNPs with large frequency differences between cases and controls, and the lowest p-value of any SNP was 0.0006. CONCLUSIONS We provide evidence that several extensively studied candidate loci do not have a strong contribution to risk of developing alcohol dependence in European and African ancestry populations. Owing to the lack of coverage, we were unable to rule out the contribution of other variants, and these genes and particular loci warrant further investigation. Our analysis demonstrates that publicly available GWA results can be used to better understand which if any of previously proposed candidate genes contribute to disease. Furthermore, we illustrate how examining the convergence of candidate gene and GWA studies can help elucidate the genetic architecture of alcoholism and more generally complex diseases.
Collapse
Affiliation(s)
- Emily Olfson
- Department of Human and Statistical Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | |
Collapse
|
44
|
Featherstone RE, Liang Y, Saunders JA, Tatard-Leitman VM, Ehrlichman RS, Siegel SJ. Subchronic ketamine treatment leads to permanent changes in EEG, cognition and the astrocytic glutamate transporter EAAT2 in mice. Neurobiol Dis 2012; 47:338-46. [DOI: 10.1016/j.nbd.2012.05.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2011] [Revised: 04/09/2012] [Accepted: 05/11/2012] [Indexed: 01/11/2023] Open
|
45
|
Hart AB, Engelhardt BE, Wardle MC, Sokoloff G, Stephens M, de Wit H, Palmer AA. Genome-wide association study of d-amphetamine response in healthy volunteers identifies putative associations, including cadherin 13 (CDH13). PLoS One 2012; 7:e42646. [PMID: 22952603 PMCID: PMC3429486 DOI: 10.1371/journal.pone.0042646] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 07/11/2012] [Indexed: 12/11/2022] Open
Abstract
Both the subjective response to d-amphetamine and the risk for amphetamine addiction are known to be heritable traits. Because subjective responses to drugs may predict drug addiction, identifying alleles that influence acute response may also provide insight into the genetic risk factors for drug abuse. We performed a Genome Wide Association Study (GWAS) for the subjective responses to amphetamine in 381 non-drug abusing healthy volunteers. Responses to amphetamine were measured using a double-blind, placebo-controlled, within-subjects design. We used sparse factor analysis to reduce the dimensionality of the data to ten factors. We identified several putative associations; the strongest was between a positive subjective drug-response factor and a SNP (rs3784943) in the 8(th) intron of cadherin 13 (CDH13; P = 4.58×10(-8)), a gene previously associated with a number of psychiatric traits including methamphetamine dependence. Additionally, we observed a putative association between a factor representing the degree of positive affect at baseline and a SNP (rs472402) in the 1(st) intron of steroid-5-alpha-reductase-α-polypeptide-1 (SRD5A1; P = 2.53×10(-7)), a gene whose protein product catalyzes the rate-limiting step in synthesis of the neurosteroid allopregnanolone. This SNP belongs to an LD-block that has been previously associated with the expression of SRD5A1 and differences in SRD5A1 enzymatic activity. The purpose of this study was to begin to explore the genetic basis of subjective responses to stimulant drugs using a GWAS approach in a modestly sized sample. Our approach provides a case study for analysis of high-dimensional intermediate pharmacogenomic phenotypes, which may be more tractable than clinical diagnoses.
Collapse
Affiliation(s)
- Amy B. Hart
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
| | - Barbara E. Engelhardt
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
- Department of Computer Science, University of Chicago, Chicago, Illinois, United States of America
| | - Margaret C. Wardle
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, Illinois, United States of America
| | - Greta Sokoloff
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
| | - Matthew Stephens
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
- Department of Statistics, University of Chicago, Chicago, Illinois, United States of America
| | - Harriet de Wit
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, Illinois, United States of America
| | - Abraham A. Palmer
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
46
|
Bogdan R, Nikolova YS, Pizzagalli DA. Neurogenetics of depression: a focus on reward processing and stress sensitivity. Neurobiol Dis 2012; 52:12-23. [PMID: 22659304 DOI: 10.1016/j.nbd.2012.05.007] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 04/30/2012] [Accepted: 05/24/2012] [Indexed: 11/27/2022] Open
Abstract
Major depressive disorder (MDD) is etiologically complex and has a heterogeneous presentation. This heterogeneity hinders the ability of molecular genetic research to reliably detect the small effects conferred by common genetic variation. As a result, significant research efforts have been directed at investigating more homogenous intermediate phenotypes believed to be more proximal to gene function and lie between genes and/or environmental effects and disease processes. In the current review we survey and integrate research on two promising intermediate phenotypes linked to depression: reward processing and stress sensitivity. A synthesis of this burgeoning literature indicates that a molecular genetic approach focused on intermediate phenotypes holds significant promise to fundamentally improve our understanding of the pathophysiology and etiology of depression, which will be required for improved diagnostic definitions and the development of novel and more efficacious treatment and prevention strategies. We conclude by highlighting challenges facing intermediate phenotype research and future development that will be required to propel this pivotal research into new directions.
Collapse
Affiliation(s)
- Ryan Bogdan
- BRAIN Laboratory, Department of Psychology, Washington University in St. Louis, Box 1125, One Brookings Drive, St. Louis, MO 63130, USA.
| | | | | |
Collapse
|
47
|
Poulos M, Felekis T, Evangelou A. Is it possible to extract a fingerprint for early breast cancer via EEG analysis? Med Hypotheses 2012; 78:711-6. [DOI: 10.1016/j.mehy.2012.02.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 01/24/2012] [Accepted: 02/10/2012] [Indexed: 12/27/2022]
|
48
|
Abstract
Addictions are common, chronic, and relapsing diseases that develop through a multistep process. The impact of addictions on morbidity and mortality is high worldwide. Twin studies have shown that the heritability of addictions ranges from 0.39 (hallucinogens) to 0.72 (cocaine). Twin studies indicate that genes influence each stage from initiation to addiction, although the genetic determinants may differ. Addictions are by definition the result of gene × environment interaction. These disorders, which are in part volitional, in part inborn, and in part determined by environmental experience, pose the full range of medical, genetic, policy, and moral challenges. Gene discovery is being facilitated by a variety of powerful approaches, but is in its infancy. It is not surprising that the genes discovered so far act in a variety of ways: via altered metabolism of drug (the alcohol and nicotine metabolic gene variants), via altered function of a drug receptor (the nicotinic receptor, which may alter affinity for nicotine but as discussed may also alter circuitry of reward), and via general mechanisms of addiction (genes such as monoamine oxidase A and the serotonin transporter that modulate stress response, emotion, and behavioral control). Addiction medicine today benefits from genetic studies that buttress the case for a neurobiologic origin of addictive behavior, and some general information on familially transmitted propensity that can be used to guide prevention. A few well-validated, specific predictors such as OPRM1, ADH1B, ALDH2, CHRNA5, and CYP26 have been identified and can provide some specific guidance, for example, to understand alcohol-related flushing and upper GI cancer risk (ADH1B and AKLDH2), variation in nicotine metabolism (CYP26), and, potentially, naltrexone treatment response (OPRM1). However, the genetic predictors available are few in number and account for only a small portion of the genetic variance in liability, and have not been integrated into clinical nosology or care.
Collapse
Affiliation(s)
- Francesca Ducci
- Institute of Psychiatry, Psychological Medicine, Kings College, Box P063, De Crespigny Park, London SE5 8AF, UK
| | - David Goldman
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 5625 Fishers Lane, Rockville, MD 20852, USA
| |
Collapse
|
49
|
Shehzad Z, DeYoung CG, Kang Y, Grigorenko EL, Gray JR. Interaction of COMT val158met and externalizing behavior: relation to prefrontal brain activity and behavioral performance. Neuroimage 2012; 60:2158-68. [PMID: 22306803 DOI: 10.1016/j.neuroimage.2012.01.097] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2011] [Revised: 01/16/2012] [Accepted: 01/18/2012] [Indexed: 01/16/2023] Open
Abstract
A promising approach in neuroimaging studies aimed at understanding effects of single genetic variants on behavior is the study of gene-trait interactions. Variation in the catechol-O-methyl-transferase gene (COMT) is associated with the regulation of dopamine levels in the prefrontal cortex and with cognitive functioning. Given the involvement of dopaminergic neurotransmission in externalizing behavior, a trait characterized by impulsivity and aggression, especially in men, externalizing (as a trait) may index a set of genetic, environmental, and neural characteristics pertinent to understanding phenotypic effects of genetic variation in the COMT gene. In the current study, we used a gene-trait approach to investigate effects of the COMT val(158)met polymorphism and externalizing on brain activity during moments involving low or high demands on cognitive control. In 104 male participants, interference-related activation depended conjointly on externalizing and val(158)met: stronger activation in the dorsal anterior cingulate and lateral prefrontal cortex was found for val/val individuals with high trait externalizing while stronger activation in cingulate motor areas and sensorimotor precuneus was found for met/met individuals with low externalizing. Our results suggest that the val/val genotype, coupled with high levels of trait externalizing, lowers the efficiency of stimulus conflict resolution, whereas the met/met genotype, coupled with low levels of externalizing, lowers the efficiency of response selection.
Collapse
Affiliation(s)
- Zarrar Shehzad
- Department of Psychology, Yale University, New Haven, CT, USA
| | | | | | | | | |
Collapse
|
50
|
Derringer J, Krueger RF, Manz N, Porjesz B, Almasy L, Bookman E, Edenberg HJ, Kramer JR, Tischfield JA, Bierut LJ. Nonreplication of an association of SGIP1 SNPs with alcohol dependence and resting theta EEG power. Psychiatr Genet 2011; 21:265-6. [PMID: 21317682 PMCID: PMC3139721 DOI: 10.1097/ypg.0b013e32834371fd] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A recent study in a sample of Plains Indians showed association between eight single nucleotide polymorphisms (SNPs) located in the SGIP1 gene and resting θ electroencephalogram (EEG) power. This association appeared to generalize to alcohol use disorders, for which EEG power is a potential endophenotype. We analyzed a large, diverse sample for replication of the association of these implicated SGIP1 SNPs (genotyped on the Illumina 1M platform) with alcohol dependence (N=3988) and θ EEG power (N=1066). We found no evidence of association of the earlier implicated SGIP1 SNPs with either alcohol dependence or θ EEG power (all P>0.15) in this sample. The earlier implicated SNPs located in SGIP1 gene showed no association with alcohol dependence or θ EEG power in this sample of individuals with European and/or African ancestry. This failure to replicate may be the result of differences in ancestry between this sample and the original sample.
Collapse
Affiliation(s)
- Jaime Derringer
- Department of Psychology, University of Minnesota, Minneapolis, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|