1
|
Zhang Y, Liu H, Jing H. Community differences and potential function along the particle size spectrum of microbes in the twilight zone. MICROBIOME 2025; 13:121. [PMID: 40369676 PMCID: PMC12076831 DOI: 10.1186/s40168-025-02116-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 04/15/2025] [Indexed: 05/16/2025]
Abstract
BACKGROUND The twilight zone, which extends from the base of the euphotic zone to a depth of 1000 m, is the major area of particulate organic carbon (POC) remineralization in the ocean. However, little is known about the microbial community and metabolic activity that are directly associated with POC remineralization in this consistently underexplored realm. Here, we utilized a large-volume in situ water transfer system to collect the microbes on different-sized particles from the twilight zone in three regions and analyzed their composition and metabolic function by metagenomic analysis. RESULTS Distinct prokaryotic communities with significantly lower diversity and less endemic species were detected on particles in the South East Asian Time-series Study (SEATS) compared with the other two regions, perhaps due to the in situ physicochemical conditions and low labile nutrient availability in this region. Observable transitions in community composition and function at the upper and lower boundaries of the twilight zone suggest that microbes respond differently to (and potentially drive the transformation of) POC through this zone. Substantial variations among different particle sizes were observed, with smaller particles typically exhibiting lower diversity but harboring a greater abundance of carbon degradation-associated genes than the larger particles. Such a pattern might arise due to the relatively larger surface area of the smaller particles relative to their volume, which likely provides more sites for microbial colonization, increasing their chance of being remineralized. This makes them less likely to be transferred to the deep ocean, and thus, they contribute more to carbon recycling than to long-term sequestration. Both contig-based and metagenome-assembled genome-(MAG-) based analyses revealed a high diversity of the Carbohydrate-Active enZymes (CAZy) family. This indicates the versatile carbohydrate metabolisms of the microbial communities associated with sinking particles that modulate the remineralization and export of POC in the twilight zone. CONCLUSION Our study reveals significant shifts in microbial community composition and function in the twilight zone, with clear differences among the three particle sizes. Microbes with diverse metabolic potential exhibited different responses to the POC entering the twilight zone and also collectively drove the transformation of POC through this zone. These findings provided insights into the diversity of prokaryotes in sinking particles and their roles in POC remineralization and export in marine ecosystems. Video Abstract.
Collapse
Affiliation(s)
- Yue Zhang
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
- HKUST-CAS Sanya Joint Laboratory of Marine Science Research, Chinese Academy of Sciences, Sanya, China
| | - Hongbin Liu
- Department of Ocean Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
- HKUST-CAS Sanya Joint Laboratory of Marine Science Research, Chinese Academy of Sciences, Sanya, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, 519000, China
| | - Hongmei Jing
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China.
- HKUST-CAS Sanya Joint Laboratory of Marine Science Research, Chinese Academy of Sciences, Sanya, China.
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, 519000, China.
| |
Collapse
|
2
|
Davies TW, Smyth T. Darkening of the Global Ocean. GLOBAL CHANGE BIOLOGY 2025; 31:e70227. [PMID: 40421554 DOI: 10.1111/gcb.70227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 03/19/2025] [Accepted: 03/20/2025] [Indexed: 05/28/2025]
Abstract
The photic zones of the oceans-where sunlight and moonlight drive ecological interactions-are one of the most productive habitats on the planet and fundamental to the maintenance of healthy global biogeochemical cycles. Ocean darkening occurs when changes in the optical properties of the oceans reduce the depth to which sufficient light penetrates to facilitate biological processes guided by sunlight and moonlight. We analysed a 9 km resolution annual time series of MODIS Aqua's diffuse attenuation coefficient of light at 490 nm [Kd(490)] to quantify whether the oceans have darkened over the last 20 years and the impact of this on the depth of photic zones around the world. Kd(490) increased across 75,341,181 km2 (21%) of the global ocean between 2003 and 2022, resulting in photic zone depths reducing by more than 50 m across 32,449,129 km2 (9%) by area. The depth of the photic zone has reduced by more than 10% across 32,446,942 km2 (9%) of the global ocean. Our analysis indicates that ocean darkening is not restricted to coastal regions, but affects large swathes of the open ocean. A combination of nutrient, organic material and sediment loading near the coasts and changes in global ocean circulation are probable causes of increases in primary and secondary productivity that have reduced light penetration into surface waters. The implications of ocean darkening for marine ecology and the ecosystem services provided by the surface oceans are currently unknown but likely to be severe.
Collapse
Affiliation(s)
- Thomas W Davies
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, UK
| | - Tim Smyth
- Plymouth Marine Laboratory, Prospect Place, Plymouth, UK
- Centre for Geography and Environmental Science, Department of Earth and Environmental Sciences, University of Exeter, Cornwall, UK
| |
Collapse
|
3
|
Woodworth B, Palmeri J, Flannery P, Fregosi L, Donatelli C, Gerringer ME. Swimming kinematics of deep-sea fishes. JOURNAL OF FISH BIOLOGY 2025; 106:805-822. [PMID: 39562148 DOI: 10.1111/jfb.15989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 10/11/2024] [Accepted: 10/23/2024] [Indexed: 11/21/2024]
Abstract
Although the deep oceans represent Earth's largest habitat, the challenges of studying deep-sea organisms in situ have limited our understanding of adaptation, ecology, and behaviour in these important ecosystems. One fundamental trait of fishes that remains largely unexplored in the deep ocean is swimming, a vital process for movement, migration, and dispersal in marine habitats. Deep-sea conditions such as temperature, pressure, and food availability could each impact the speed and efficiency of swimming in fishes. To investigate swimming kinematics of fishes with increasing depth, we analysed in situ video of bony fishes across a 6000-m depth gradient. We compared open-source videos of fishes from National Oceanic and Atmospheric Administration (NOAA) Ocean Exploration with tank-based recordings of shallow-water relatives from Puget Sound, Washington, USA to understand how both habitat depth and phylogeny influence swimming in fishes. We analysed kinematics in four dominant demersal fish groups, the orders Anguilliformes, Gadiformes, Ophidiiformes, and Perciformes. Deep-sea fishes swam consistently slowly. Swimming kinematics varied across temperature, oxygen, body elongation, and depth. These results suggest that swimming kinematics do not change linearly with increasing habitat depth in fishes and that the impacts of deep-sea conditions such as low temperatures, high pressures, and low nutrient availability on swimming behaviour need to be considered independently of one another. These findings provide insight into the evolution of fish form and function in the deep ocean.
Collapse
Affiliation(s)
- Brett Woodworth
- Biology Department, State University of New York, Geneseo, New York, USA
| | - Jessica Palmeri
- Biology Department, State University of New York, Geneseo, New York, USA
| | - Patrick Flannery
- Biology Department, State University of New York, Geneseo, New York, USA
| | - Lydia Fregosi
- Biology Department, State University of New York, Geneseo, New York, USA
| | | | | |
Collapse
|
4
|
Saraswat R, Fathima R, Salman M, Suokhrie T, Saalim SM. Decoupling of carbon burial from productivity in the northeast Indian Ocean. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174587. [PMID: 38986710 DOI: 10.1016/j.scitotenv.2024.174587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/15/2024] [Accepted: 07/05/2024] [Indexed: 07/12/2024]
Abstract
The concentration of atmospheric carbon dioxide (CO2) is a crucial climate parameter as it has far-reaching implications on global temperature. The oceans are a significant sink for CO2. Biologically mediated carbon sequestration, in the form of both inorganic (CaCO3) and organic carbon (Corg), and its subsequent burial in marine sediments play a vital role in regulating atmospheric CO2. Understanding the distribution of carbon in marine sediments under different environments can help predict the fate of excess CO2 in the future. We studied the factors affecting the basin scale variation in carbon burial in the climatically sensitive northeast Indian Ocean, by using the data [CaCO3, Corg, Corg/Nitrogen, and isotopic ratio (δ13C, δ15N) of organic carbon] from a total of 718 surface sediments. The entire continental shelf and slope contain <10 % CaCO3. The highest CaCO3 is in the deepest parts of the central northeast Indian Ocean, away from the mouth of major river systems. Despite of the high productivity, the low Corg on the continental shelf is attributed to the well-oxygenated coarse-grained sediments. The lowest Corg is found in the well-oxygenated deeper central northeast Indian Ocean. Interestingly, the highest total carbon is in the deeper central and equatorial regions, far away from the highly productive marginal marine regions. Our study reveals that the grain size, terrigenous dilution, dissolved oxygen, and water masses strongly influence carbon accumulation in the northeast Indian Ocean, with only secondary influence of the productivity.
Collapse
Affiliation(s)
- Rajeev Saraswat
- Micropaleontology Laboratory, National Institute of Oceanography, Goa, India.
| | - Rinu Fathima
- Micropaleontology Laboratory, National Institute of Oceanography, Goa, India; School of Earth, Ocean and Atmospheric Sciences, Goa University, Goa, India
| | - Mohd Salman
- Micropaleontology Laboratory, National Institute of Oceanography, Goa, India; School of Earth, Ocean and Atmospheric Sciences, Goa University, Goa, India
| | - Thejasino Suokhrie
- Micropaleontology Laboratory, National Institute of Oceanography, Goa, India
| | - S M Saalim
- Micropaleontology Laboratory, National Institute of Oceanography, Goa, India; Department of Geology, Patna University, Bihar, India
| |
Collapse
|
5
|
Wang X, Li H, Zhang J, Chen J, Xie X, Xie W, Yin K, Zhang D, Ruiz-Pino D, Kao SJ. Seamounts generate efficient active transport loops to nourish the twilight ecosystem. SCIENCE ADVANCES 2024; 10:eadk6833. [PMID: 38924405 PMCID: PMC11636984 DOI: 10.1126/sciadv.adk6833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 05/17/2024] [Indexed: 06/28/2024]
Abstract
Seamounts are ecological oases nurturing abundant fisheries resources and epibenthic megafauna in the vast oligotrophic ocean. Despite their significance, the formation mechanisms underlying these seamount ecological oases remain uncertain. To shed light on this phenomenon, this study conducted interdisciplinary in situ observations focusing on a shallow seamount in the oligotrophic ocean. The findings show that the seamount's topography interferes with the oceanic current to generate lee waves, effectively enhancing the nutrient supply to the euphotic layer downstream of the seamount. This continuous supply enhances phytoplankton biomass and subsequently the grazing and diurnal vertical migration of zooplankton, rapidly transporting the augmented phytoplankton biomass to the aphotic layer. Unlike the cyclonic eddies that move in the upper ocean, seamounts stand at fixed locations creating a more efficient and steady active transport loop. This active transport loop connects the euphotic and twilight zones, potentially conveying nourishment to benthic ecosystems to create stereoscopic oases in the oligotrophic ocean.
Collapse
Affiliation(s)
- Xinyang Wang
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, China
| | - Hongliang Li
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Jingjing Zhang
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Jianfang Chen
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, China
- State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
| | - Xiaohui Xie
- State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
| | - Wei Xie
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| | - Kedong Yin
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| | - Dongsheng Zhang
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, China
| | - Diana Ruiz-Pino
- Sorbonne University (S.U.), CNRS-IRD-MNHN, LOCEAN Laboratory/IPSL, Paris, France
| | - Shuh-Ji Kao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| |
Collapse
|
6
|
Segaran TC, Azra MN, Lananan F, Wang Y. Microbe, climate change and marine environment: Linking trends and research hotspots. MARINE ENVIRONMENTAL RESEARCH 2023:106015. [PMID: 37291004 DOI: 10.1016/j.marenvres.2023.106015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/26/2023] [Accepted: 04/30/2023] [Indexed: 06/10/2023]
Abstract
Microbes, or microorganisms, have been the foundation of the biosphere for over 3 billion years and have played an essential role in shaping our planet. The available knowledge on the topic of microbes associated with climate change has the potential to reshape upcoming research trends globally. As climate change impacts the ocean or marine ecosystem, the responses of these "unseen life" will heavily influence the achievement of a sustainable evolutionary environment. The present study aims to identify microbial-related research under changing climate within the marine environment through the mapping of visualized graphs of the available literature. We used scientometric methods to retrieve documents from the Web of Science platform in the Core Collection (WOSCC) database, analyzing a total of 2767 documents based on scientometric indicators. Our findings show that this research area is growing exponentially, with the most influential keywords being "microbial diversity," "bacteria," and "ocean acidification," and the most cited being "microorganism" and "diversity." The identification of influential clusters in the field of marine science provides insight into the hot spots and frontiers of research in this area. Prominent clusters include "coral microbiome," "hypoxic zone," "novel Thermoplasmatota clade," "marine dinoflagellate bloom," and "human health." Analyzing emerging trends and transformative changes in this field can inform the creation of special issues or research topics in selected journals, thus increasing visibility and engagement among the scientific community.
Collapse
Affiliation(s)
- Thirukanthan Chandra Segaran
- Climate Change Adaptation Laboratory, Institute of Marine Biotechnology (IMB), Universiti Malaysia Terengganu (UMT), 21030, Kuala Nerus, Terengganu, Malaysia.
| | - Mohamad Nor Azra
- Climate Change Adaptation Laboratory, Institute of Marine Biotechnology (IMB), Universiti Malaysia Terengganu (UMT), 21030, Kuala Nerus, Terengganu, Malaysia; Research Center for Marine and Land Bioindustry, Earth Sciences and Maritime Organization, National Research and Innovation Agency (BRIN), Pemenang, West Nusa Tenggara, 83352, Indonesia.
| | - Fathurrahman Lananan
- East Coast Environmental Research Institute, Universiti Sultan Zainal Abidin, Gong Badak Campus, 21300, Kuala Nerus, Terengganu, Malaysia.
| | - Youji Wang
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China.
| |
Collapse
|
7
|
Yuan J, Liu Y, Chen S, Peng X, Li YF, Li S, Zhang R, Zheng W, Chen J, Sun R, Heimbürger-Boavida LE. Mercury Isotopes in Deep-Sea Epibenthic Biota Suggest Limited Hg Transfer from Photosynthetic to Chemosynthetic Food Webs. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:6550-6562. [PMID: 37042785 DOI: 10.1021/acs.est.3c01276] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Deep oceans receive mercury (Hg) from upper oceans, sediment diagenesis, and submarine volcanism; meanwhile, sinking particles shuttle Hg to marine sediments. Recent studies showed that Hg in the trench fauna mostly originated from monomethylmercury (MMHg) of the upper marine photosynthetic food webs. Yet, Hg sources in the deep-sea chemosynthetic food webs are still uncertain. Here, we report Hg concentrations and stable isotopic compositions of indigenous biota living at hydrothermal fields of the Indian Ocean Ridge and a cold seep of the South China Sea along with hydrothermal sulfide deposits. We find that Hg is highly enriched in hydrothermal sulfides, which correlated with varying Hg concentrations in inhabited biota. Both the hydrothermal and cold seep biota have small fractions (<10%) of Hg as MMHg and slightly positive Δ199Hg values. These Δ199Hg values are slightly higher than those in near-field sulfides but are 1 order of magnitude lower than the trench counterparts. We suggest that deep-sea chemosynthetic food webs mainly assimilate Hg from ambient seawater/sediments and hydrothermal fluids formed by percolated seawater through magmatic/mantle rocks. The MMHg transfer from photosynthetic to chemosynthetic food webs is likely limited. The contrasting Hg sources between chemosynthetic and trench food webs highlight Hg isotopes as promising tools to trace the deep-sea Hg biogeochemical cycle.
Collapse
Affiliation(s)
- Jingjing Yuan
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, 300072 Tianjin, China
| | - Yi Liu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, 300072 Tianjin, China
| | - Shun Chen
- Deep Sea Science Division, Institute of Deep Sea Science and Engineering, Chinese Academy of Sciences, 572000 Sanya, Hainan, China
| | - Xiaotong Peng
- Deep Sea Science Division, Institute of Deep Sea Science and Engineering, Chinese Academy of Sciences, 572000 Sanya, Hainan, China
| | - Yu-Feng Li
- CAS-HKU Joint Laboratory of Metallomics on Health and Environment, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Beijing Metallomics Facility, Institute of High Energy Physics, Chinese Academy of Sciences, 100049 Beijing, China
| | - Songjing Li
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, 300072 Tianjin, China
| | - Rui Zhang
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, 300072 Tianjin, China
| | - Wang Zheng
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, 300072 Tianjin, China
| | - Jiubin Chen
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, 300072 Tianjin, China
| | - Ruoyu Sun
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, 300072 Tianjin, China
| | - Lars-Eric Heimbürger-Boavida
- Aix Marseille Université, CNRS/INSU, Université de Toulon, IRD, Mediterranean Institute of Oceanography (MIO) UM 110, 13288 Marseille, France
| |
Collapse
|
8
|
Messié M, Sherlock RE, Huffard CL, Pennington JT, Choy CA, Michisaki RP, Gomes K, Chavez FP, Robison BH, Smith KL. Coastal upwelling drives ecosystem temporal variability from the surface to the abyssal seafloor. Proc Natl Acad Sci U S A 2023; 120:e2214567120. [PMID: 36947518 PMCID: PMC10068760 DOI: 10.1073/pnas.2214567120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 02/10/2023] [Indexed: 03/23/2023] Open
Abstract
Long-term biological time series that monitor ecosystems across the ocean's full water column are extremely rare. As a result, classic paradigms are yet to be tested. One such paradigm is that variations in coastal upwelling drive changes in marine ecosystems throughout the water column. We examine this hypothesis by using data from three multidecadal time series spanning surface (0 m), midwater (200 to 1,000 m), and benthic (~4,000 m) habitats in the central California Current Upwelling System. Data include microscopic counts of surface plankton, video quantification of midwater animals, and imaging of benthic seafloor invertebrates. Taxon-specific plankton biomass and midwater and benthic animal densities were separately analyzed with principal component analysis. Within each community, the first mode of variability corresponds to most taxa increasing and decreasing over time, capturing seasonal surface blooms and lower-frequency midwater and benthic variability. When compared to local wind-driven upwelling variability, each community correlates to changes in upwelling damped over distinct timescales. This suggests that periods of high upwelling favor increase in organism biomass or density from the surface ocean through the midwater down to the abyssal seafloor. These connections most likely occur directly via changes in primary production and vertical carbon flux, and to a lesser extent indirectly via other oceanic changes. The timescales over which species respond to upwelling are taxon-specific and are likely linked to the longevity of phytoplankton blooms (surface) and of animal life (midwater and benthos), which dictate how long upwelling-driven changes persist within each community.
Collapse
Affiliation(s)
- Monique Messié
- Monterey Bay Aquarium Research Institute, Moss Landing, CA95039
| | - Rob E. Sherlock
- Monterey Bay Aquarium Research Institute, Moss Landing, CA95039
| | | | | | - C. Anela Choy
- Monterey Bay Aquarium Research Institute, Moss Landing, CA95039
- Integrative Oceanography Division, Scripps Institution of Oceanography, University of California San Diego, San Diego, CA92093
| | | | - Kevin Gomes
- Monterey Bay Aquarium Research Institute, Moss Landing, CA95039
| | | | | | | |
Collapse
|
9
|
Wang Y, Wu P, Zhang Y. Climate-driven changes of global marine mercury cycles in 2100. Proc Natl Acad Sci U S A 2023; 120:e2202488120. [PMID: 36595667 PMCID: PMC9926249 DOI: 10.1073/pnas.2202488120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 11/08/2022] [Indexed: 01/05/2023] Open
Abstract
Human exposure to monomethylmercury (CH3Hg), a potent neurotoxin, is principally through the consumption of seafood. The formation of CH3Hg and its bioaccumulation in marine food webs experience ongoing impacts of global climate warming and ocean biogeochemistry alterations. Employing a series of sensitivity experiments, here we explicitly consider the effects of climate change on marine mercury (Hg) cycling within a global ocean model in the hypothesized twenty-first century under the business-as-usual scenario. Even though the overall prediction is subjected to significant uncertainty, we identify several important climate change impact pathways. Elevated seawater temperature exacerbates elemental Hg (Hg0) evasion, while decreased surface wind speed reduces air-sea exchange rates. The reduced export of particulate organic carbon shrinks the pool of potentially bioavailable divalent Hg (HgII) that can be methylated in the subsurface ocean, where shallower remineralization depth associated with lower productivity causes impairment of methylation activity. We also simulate an increase in CH3Hg photodemethylation potential caused by increased incident shortwave radiation and less attenuation by decreased sea ice and chlorophyll. The model suggests that these impacts can also be propagated to the CH3Hg concentration in the base of the marine food web. Our results offer insight into synergisms/antagonisms in the marine Hg cycling among different climate change stressors.
Collapse
Affiliation(s)
- Yujuan Wang
- School of Atmospheric Sciences, Nanjing University, Nanjing, Jiangsu210023, China
| | - Peipei Wu
- School of Atmospheric Sciences, Nanjing University, Nanjing, Jiangsu210023, China
| | - Yanxu Zhang
- School of Atmospheric Sciences, Nanjing University, Nanjing, Jiangsu210023, China
| |
Collapse
|
10
|
Girard F, Litvin SY, Sherman A, McGill P, Gannon A, Lovera C, DeVogelaere A, Burton E, Graves D, Schnittger A, Barry J. Phenology in the deep sea: seasonal and tidal feeding rhythms in a keystone octocoral. Proc Biol Sci 2022; 289:20221033. [PMID: 36259212 PMCID: PMC9579760 DOI: 10.1098/rspb.2022.1033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Biological rhythms are widely known in terrestrial and marine systems, where the behaviour or function of organisms may be tuned to environmental variation over periods from minutes to seasons or longer. Although well characterized in coastal environments, phenology remains poorly understood in the deep sea. Here we characterized intra-annual dynamics of feeding activity for the deep-sea octocoral Paragorgia arborea. Hourly changes in polyp activity were quantified using a time-lapse camera deployed for a year on Sur Ridge (1230 m depth; Northeast Pacific). The relationship between feeding and environmental variables, including surface primary production, temperature, acoustic backscatter, current speed and direction, was evaluated. Feeding activity was highly seasonal, with a dormancy period identified between January and early April, reflecting seasonal changes in food availability as suggested by primary production and acoustic backscatter data. Moreover, feeding varied with tides, which likely affected food delivery through cyclic oscillation in current speed and direction. This study provides the first evidence of behavioural rhythms in a coral species at depth greater than 1 km. Information on the feeding biology of this cosmopolitan deep-sea octocoral will contribute to a better understanding of how future environmental change may affect deep-sea coral communities and the ecosystem services they provide.
Collapse
Affiliation(s)
- Fanny Girard
- Monterey Bay Aquarium Research Institute, 7700 Sandholdt Road, Moss Landing, CA 95039, USA
| | - Steven Y Litvin
- Monterey Bay Aquarium Research Institute, 7700 Sandholdt Road, Moss Landing, CA 95039, USA
| | - Alana Sherman
- Monterey Bay Aquarium Research Institute, 7700 Sandholdt Road, Moss Landing, CA 95039, USA
| | - Paul McGill
- Monterey Bay Aquarium Research Institute, 7700 Sandholdt Road, Moss Landing, CA 95039, USA
| | - Amanda Gannon
- Monterey Bay Aquarium Research Institute, 7700 Sandholdt Road, Moss Landing, CA 95039, USA
| | - Christopher Lovera
- Monterey Bay Aquarium Research Institute, 7700 Sandholdt Road, Moss Landing, CA 95039, USA
| | - Andrew DeVogelaere
- Monterey Bay National Marine Sanctuary, National Ocean Service, National Oceanic and Atmospheric Administration, Monterey, CA 93940, USA
| | - Erica Burton
- Monterey Bay National Marine Sanctuary, National Ocean Service, National Oceanic and Atmospheric Administration, Monterey, CA 93940, USA
| | - Dale Graves
- Monterey Bay Aquarium Research Institute, 7700 Sandholdt Road, Moss Landing, CA 95039, USA
| | - Aaron Schnittger
- Monterey Bay Aquarium Research Institute, 7700 Sandholdt Road, Moss Landing, CA 95039, USA
| | - Jim Barry
- Monterey Bay Aquarium Research Institute, 7700 Sandholdt Road, Moss Landing, CA 95039, USA
| |
Collapse
|
11
|
Shi J, Zeng Y, Wang H, Niu Y, He P, Chen H. Complete genome sequencing and analysis revealed the nitrogen utilization strategy of a novel Acuticoccus species isolated from surface water of the Indian Ocean. Mar Genomics 2022; 65:100971. [DOI: 10.1016/j.margen.2022.100971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/06/2022] [Accepted: 07/06/2022] [Indexed: 11/24/2022]
|
12
|
Martin MV, Venkatesan R, Weller RA, Tandon A, Joseph KJ. Seasonal temperature variability observed at abyssal depths in the Arabian Sea. Sci Rep 2022; 12:15820. [PMID: 36138040 PMCID: PMC9500021 DOI: 10.1038/s41598-022-19869-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 09/06/2022] [Indexed: 11/25/2022] Open
Abstract
The abyssal ocean is generally considered an aseasonal environment decoupled from the variabilities observed at and just below the ocean's surface. Herein, we describe the first in-situ timeseries record of seasonal warming and cooling in the Arabian Sea at a depth of 4000 m. The seasonal cycle was observed over the nearly four-year-long record (from November 2018 to March 2022). The abyssal seasonal temperature cycle also exhibited noticeable interannual variability. We investigate whether or not surface processes influence the near-seabed temperature through deep meridional overturning circulation modulated by the Indian monsoon or by Rossby wave propagation. We also consider if bottom water circulation variability and discharge of the dense Persian Gulf and Red Sea Water may contribute to the observed seasonality.
Collapse
Affiliation(s)
- M V Martin
- National Institute of Ocean Technology, Ministry of Earth Sciences, Chennai, India.
| | - R Venkatesan
- National Institute of Ocean Technology, Ministry of Earth Sciences, Chennai, India.,University of Massachusetts Dartmouth, North Dartmouth, MA, USA
| | | | - Amit Tandon
- University of Massachusetts Dartmouth, North Dartmouth, MA, USA
| | - K Jossia Joseph
- National Institute of Ocean Technology, Ministry of Earth Sciences, Chennai, India
| |
Collapse
|
13
|
Deep-sea infauna with calcified exoskeletons imaged in situ using a new 3D acoustic coring system (A-core-2000). Sci Rep 2022; 12:12101. [PMID: 35896776 PMCID: PMC9329462 DOI: 10.1038/s41598-022-16356-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 07/08/2022] [Indexed: 11/08/2022] Open
Abstract
The deep ocean is Earth’s largest habitable space inhabited by diverse benthic organisms. Infauna play crucial roles in shaping sedimentary structures, relocating organic matter, porewater chemistry, and hence biogeochemical cycles. However, the visualization and quantification of infauna in situ inside deep-sea sediment has been challenging, due to their sparse distribution and that deep-sea cameras do not visualize animals living below the sediment surface. Here, we newly developed a 3D acoustic “coring” system and applied it to visualize and detect burrowing bivalves in deep-sea sediments. The in situ acoustic observation was conducted at a dense colony of vesicomyid clams in a hydrocarbon seep in Sagami Bay, Japan, focusing on a patch of juvenile clams with a completely infaunal life style. We clearly observed strong backscatters from the top and lower edges of animals in our 3D acoustic data. At least 17 reflectors were identified in the survey area (625 cm2), interpreted to correspond to living clams. The estimated depths of the lower edge of clams ranged between 41 and 98 mm. The acoustic system presented here is effective for detecting and monitoring infauna with calcified exoskeletons. This novel tool will help us better assess and understand the distribution of deep-sea infauna, particularly those groups with hard exoskeletons, as well as biogeochemical cycles.
Collapse
|
14
|
Lu Y, Wang P, Wang C, Zhang M, Cao X, Chen C, Wang C, Xiu C, Du D, Cui H, Li X, Qin W, Zhang Y, Wang Y, Zhang A, Yu M, Mao R, Song S, Johnson AC, Shao X, Zhou X, Wang T, Liang R, Su C, Zheng X, Zhang S, Lu X, Chen Y, Zhang Y, Li Q, Ono K, Stenseth NC, Visbeck M, Ittekkot V. Multiple pollutants stress the coastal ecosystem with climate and anthropogenic drivers. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127570. [PMID: 34753647 DOI: 10.1016/j.jhazmat.2021.127570] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/09/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
Coastal ecosystem health is of vital importance to human well-being. Field investigations of major pollutants along the whole coast of China were carried out to explore associations between coastal development activities and pollutant inputs. Measurements of target pollutants such as PFAAs and PAHs uncovered notable levels in small estuary rivers. The Yangtze River was identified to deliver the highest loads of these pollutants to the seas as a divide for the spatial distribution of pollutant compositions. Soil concentrations of the volatile and semi-volatile pollutants showed a cold-trapping effect in pace with increasing latitudinal gradient. The coastal ecosystem is facing high ecological risks from metal pollution, especially copper (Cu) and zinc (Zn), while priority pollutants of high risks vary for different kinds of protected species, and the ecological risks were influenced by both climate and physicochemical properties of environmental matrices, which should be emphasized to protect and restore coastal ecosystem functioning.
Collapse
Affiliation(s)
- Yonglong Lu
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian 361102, China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Pei Wang
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian 361102, China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Chenchen Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meng Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xianghui Cao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunci Chen
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cong Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cuo Xiu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Di Du
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Sino-Danish Center for Education and Research, Beijing 10019, China
| | - Haotian Cui
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoqian Li
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenyou Qin
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yi Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yichao Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Anqi Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingzhao Yu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruoyu Mao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuai Song
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | | | - Xiuqing Shao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xuan Zhou
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ting Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ruoyu Liang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Su
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoqi Zheng
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Sheng Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaotian Lu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuqing Chen
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yueqing Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qifeng Li
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kotaro Ono
- Institute of Marine Research, P.O. Box 1870 Nordnes, N-5817 Bergen, Norway
| | - Nils C Stenseth
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, 03160 Oslo, Norway
| | - Martin Visbeck
- GEOMAR Helmholtz Centre for Ocean Research and Kiel University, Germany
| | | |
Collapse
|
15
|
Harms TK, Groffman PM, Aluwihare L, Craft C, Wieder WR, Hobbie SE, Baer SG, Blair JM, Frey S, Remucal CK, Rudgers JA, Collins SL, Kominoski JS, Ball BA. Patterns and trends of organic matter processing and transport: Insights from the US long-term ecological research network. CLIMATE CHANGE ECOLOGY 2021. [DOI: 10.1016/j.ecochg.2021.100025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
16
|
Nomaki H, Rastelli E, Ogawa NO, Matsui Y, Tsuchiya M, Manea E, Corinaldesi C, Hirai M, Ohkouchi N, Danovaro R, Nunoura T, Amaro T. In situ experimental evidences for responses of abyssal benthic biota to shifts in phytodetritus compositions linked to global climate change. GLOBAL CHANGE BIOLOGY 2021; 27:6139-6155. [PMID: 34523189 PMCID: PMC9293103 DOI: 10.1111/gcb.15882] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/04/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
Abyssal plains cover more than half of Earth's surface, and the main food source in these ecosystems is phytodetritus, mainly originating from primary producers in the euphotic zone of the ocean. Global climate change is influencing phytoplankton abundance, productivity, and distribution. Increasing importance of picoplankton over diatom as primary producers in surface oceans (especially projected for higher latitudes) is projected and hence altering the quantity of organic carbon supplied to the abyssal seafloor as phytodetritus, consequences of which remain largely unknown. Here, we investigated the in situ responses of abyssal biota from viruses to megafauna to different types of phytoplankton input (diatoms or cyanobacteria which were labeled with stable isotopes) at equatorial (oligotrophic) and temperate (eutrophic) benthic sites in the Pacific Ocean (1°N at 4277 m water depth and 39°N at 5260 m water depth, respectively). Our results show that meiofauna and macrofauna generally preferred diatoms as a food source and played a relatively larger role in the consumption of phytodetritus at higher latitudes (39°N). Contrarily, prokaryotes and viruses showed similar or even stronger responses to cyanobacterial than to diatom supply. Moreover, the response of prokaryotes and viruses was very rapid (within 1-2 days) at both 1°N and 39°N, with quickest responses reported in the case of cyanobacterial supply at higher latitudes. Overall, our results suggest that benthic deep-sea eukaryotes will be negatively affected by the predicted decrease in diatoms in surface oceans, especially at higher latitudes, where benthic prokaryotes and viruses will otherwise likely increase their quantitative role and organic carbon cycling rates. In turn, such changes can contribute to decrease carbon transfer from phytodetritus to higher trophic levels, with strong potential to affect oceanic food webs, their biodiversity and consequently carbon sequestration capacity at the global scale.
Collapse
Affiliation(s)
- Hidetaka Nomaki
- X‐starJapan Agency for Marine‐Earth Science and Technology (JAMSTEC)YokosukaJapan
| | - Eugenio Rastelli
- Department of Marine BiotechnologyStazione Zoologica Anton DohrnFano Marine CentreFanoItaly
| | | | - Yohei Matsui
- X‐starJapan Agency for Marine‐Earth Science and Technology (JAMSTEC)YokosukaJapan
| | | | - Elisabetta Manea
- Institute of Marine SciencesNational Research Council (ISMAR‐CNR)VeniceItaly
| | - Cinzia Corinaldesi
- Department of Materials, Environmental Sciences and Urban PlanningPolytechnic University of MarcheAnconaItaly
| | - Miho Hirai
- X‐starJapan Agency for Marine‐Earth Science and Technology (JAMSTEC)YokosukaJapan
| | | | - Roberto Danovaro
- Department of Environmental and Life SciencesPolytechnic University of MarcheAnconaItaly
- Stazione Zoologica Anton DohrnNaplesItaly
| | - Takuro Nunoura
- Research Center for Bioscience and Nanoscience (CeBN)JAMSTECYokosukaJapan
| | - Teresa Amaro
- Department of Biology & CESAMUniversity of AveiroAveiroPortugal
- Hellenic Center for Marine Research (HCMR)HeraklionGreece
| |
Collapse
|
17
|
Kazanidis G, Henry L, Vad J, Johnson C, De Clippele LH, Roberts JM. Sensitivity of a cold‐water coral reef to interannual variability in regional oceanography. DIVERS DISTRIB 2021. [DOI: 10.1111/ddi.13363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Affiliation(s)
- Georgios Kazanidis
- Changing Oceans Research Group School of GeoSciences University of Edinburgh Edinburgh UK
| | - Lea‐Anne Henry
- Changing Oceans Research Group School of GeoSciences University of Edinburgh Edinburgh UK
| | - Johanne Vad
- Changing Oceans Research Group School of GeoSciences University of Edinburgh Edinburgh UK
| | | | | | - J. Murray Roberts
- Changing Oceans Research Group School of GeoSciences University of Edinburgh Edinburgh UK
| |
Collapse
|
18
|
Parker LM, Scanes E, O'Connor WA, Ross PM. Transgenerational plasticity responses of oysters to ocean acidification differ with habitat. J Exp Biol 2021; 224:jeb.239269. [PMID: 33785501 DOI: 10.1242/jeb.239269] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 03/23/2021] [Indexed: 01/06/2023]
Abstract
Transgenerational plasticity (TGP) has been identified as a critical mechanism of acclimation that may buffer marine organisms against climate change, yet whether the TGP response of marine organisms is altered depending on their habitat is unknown. Many marine organisms are found in intertidal zones where they experience episodes of emersion (air exposure) daily as the tide rises and recedes. During episodes of emersion, the accumulation of metabolic carbon dioxide (CO2) leads to hypercapnia for many species. How this metabolic hypercapnia impacts the TGP response of marine organisms to climate change is unknown as all previous transgenerational studies have been done under subtidal conditions, where parents are constantly immersed. Here, we assess the capacity of the ecologically and economically important oyster, Saccostrea glomerata, to acclimate to elevated CO2 dependent on habitat, across its vertical distribution, from the subtidal to intertidal zone. Tidal habitat altered both the existing tolerance and transgenerational response of S. glomerata to elevated CO2. Overall, larvae from parents conditioned in an intertidal habitat had a greater existing tolerance to elevated CO2 than larvae from parents conditioned in a subtidal habitat, but had a lower capacity for beneficial TGP following parental exposure to elevated CO2. Our results suggest that the TGP responses of marine species will not be uniform across their distribution and highlights the need to consider the habitat of a species when assessing TGP responses to climate change stressors.
Collapse
Affiliation(s)
- Laura M Parker
- The University of Sydney, School of Life and Environmental Sciences, Camperdown, NSW 2006, Australia.,The University of New South Wales, School of Biological, Earth and Environmental Sciences, Kensington, NSW 2052, Australia
| | - Elliot Scanes
- The University of Sydney, School of Life and Environmental Sciences, Camperdown, NSW 2006, Australia.,The Western Sydney University, School of Science and Health, Locked Bag 1797, Penrith South DC 2751, Sydney, NSW 2751, Australia
| | - Wayne A O'Connor
- New South Wales Department of Primary Industries, Port Stephens Fisheries Institute, Taylors Beach, NSW 2316, Australia
| | - Pauline M Ross
- The University of Sydney, School of Life and Environmental Sciences, Camperdown, NSW 2006, Australia.,The Western Sydney University, School of Science and Health, Locked Bag 1797, Penrith South DC 2751, Sydney, NSW 2751, Australia
| |
Collapse
|
19
|
Laffoley D, Baxter J, Amon D, Claudet J, Hall‐Spencer J, Grorud‐Colvert K, Levin L, Reid P, Rogers A, Taylor M, Woodall L, Andersen N. Evolving the narrative for protecting a rapidly changing ocean, post-COVID-19. AQUATIC CONSERVATION : MARINE AND FRESHWATER ECOSYSTEMS 2021; 31:1512-1534. [PMID: 33362396 PMCID: PMC7753556 DOI: 10.1002/aqc.3512] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/06/2020] [Accepted: 10/08/2020] [Indexed: 05/02/2023]
Abstract
The ocean is the linchpin supporting life on Earth, but it is in declining health due to an increasing footprint of human use and climate change. Despite notable successes in helping to protect the ocean, the scale of actions is simply not now meeting the overriding scale and nature of the ocean's problems that confront us.Moving into a post-COVID-19 world, new policy decisions will need to be made. Some, especially those developed prior to the pandemic, will require changes to their trajectories; others will emerge as a response to this global event. Reconnecting with nature, and specifically with the ocean, will take more than good intent and wishful thinking. Words, and how we express our connection to the ocean, clearly matter now more than ever before.The evolution of the ocean narrative, aimed at preserving and expanding options and opportunities for future generations and a healthier planet, is articulated around six themes: (1) all life is dependent on the ocean; (2) by harming the ocean, we harm ourselves; (3) by protecting the ocean, we protect ourselves; (4) humans, the ocean, biodiversity, and climate are inextricably linked; (5) ocean and climate action must be undertaken together; and (6) reversing ocean change needs action now.This narrative adopts a 'One Health' approach to protecting the ocean, addressing the whole Earth ocean system for better and more equitable social, cultural, economic, and environmental outcomes at its core. Speaking with one voice through a narrative that captures the latest science, concerns, and linkages to humanity is a precondition to action, by elevating humankind's understanding of our relationship with 'planet Ocean' and why it needs to become a central theme to everyone's lives. We have only one ocean, we must protect it, now. There is no 'Ocean B'.
Collapse
Affiliation(s)
- D. Laffoley
- IUCN World Commission on Protected AreasIUCN (International Union for Conservation of Nature)GlandSwitzerland
| | - J.M. Baxter
- Marine Alliance for Science and Technology for Scotland, School of Biology, East SandsUniversity of St AndrewsSt AndrewsUK
| | - D.J. Amon
- Department of Life SciencesNatural History MuseumLondonUK
| | - J. Claudet
- National Centre for Scientific ResearchPSL Université Paris, CRIOBE, USR 3278 CNRS‐EPHE‐UPVDParisFrance
| | - J.M. Hall‐Spencer
- School of Marine and Biological SciencesUniversity of PlymouthPlymouthUK
- Shimoda Marine Research CenterUniversity of TsukubaShimodaJapan
| | - K. Grorud‐Colvert
- Department of Integrative BiologyOregon State UniversityCorvallisUSA
| | - L.A. Levin
- Center for Marine Biodiversity and Conservation, Scripps Institution of OceanographyUniversity of California San DiegoLa JollaUSA
| | - P.C. Reid
- School of Marine and Biological SciencesUniversity of PlymouthPlymouthUK
- The LaboratoryThe Continuous Plankton Recorder Survey, Marine Biological AssociationCitadel HillPlymouthUK
| | - A.D. Rogers
- Somerville CollegeUniversity of OxfordOxfordUK
- REV OceanLysakerNorway
| | | | - L.C. Woodall
- Department of ZoologyUniversity of OxfordOxfordUK
| | - N.F. Andersen
- Department of Environment and GeographyUniversity of YorkYorkUK
- Centre for Ecology and ConservationUniversity of ExeterPenrynUK
| |
Collapse
|
20
|
Phoma BS, Makhalanyane TP. Depth-Dependent Variables Shape Community Structure and Functionality in the Prince Edward Islands. MICROBIAL ECOLOGY 2021; 81:396-409. [PMID: 32935183 DOI: 10.1007/s00248-020-01589-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 08/03/2020] [Indexed: 06/11/2023]
Abstract
Physicochemical variables limit and control the distribution of microbial communities in all environments. In the oceans, this may significantly influence functional processes such the consumption of dissolved organic material and nutrient sequestration. Yet, the relative contributions of physical factors, such as water mass variability and depth, on functional processes are underexplored. We assessed microbial community structure and functionality in the Prince Edward Islands (PEIs) using 16S rRNA gene amplicon analysis and extracellular enzymatic activity assays, respectively. We found that depth and nutrients substantially drive the structural patterns of bacteria and archaea in this region. Shifts from epipelagic to bathypelagic zones were linked to decreases in the activities of several extracellular enzymes. These extracellular enzymatic activities were positively correlated with several phyla including several Alphaproteobacteria (including members of the SAR 11 clade and order Rhodospirillales) and Cyanobacteria. We show that depth-dependent variables may be essential drivers of community structure and functionality in the PEIs.
Collapse
Affiliation(s)
- Boitumelo Sandra Phoma
- Centre for Microbial Ecology and Genomics (CMEG), Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Hatfield, Pretoria, 0028, South Africa
- Marine Microbiomics Programme, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, 0028, South Africa
| | - Thulani Peter Makhalanyane
- Centre for Microbial Ecology and Genomics (CMEG), Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Hatfield, Pretoria, 0028, South Africa.
- Marine Microbiomics Programme, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, 0028, South Africa.
| |
Collapse
|
21
|
Dominance of Wolbachia sp. in the deep-sea sediment bacterial metataxonomic sequencing analysis in the Bay of Bengal, Indian Ocean. Genomics 2019; 112:1030-1041. [PMID: 31229556 DOI: 10.1016/j.ygeno.2019.06.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 05/24/2019] [Accepted: 06/17/2019] [Indexed: 11/23/2022]
Abstract
The Bay of Bengal, located in the north-eastern part of the Indian Ocean is world's largest bay occupying an area of ~8,39,000 mile2. The variability in bacterial community structure and function in sediment ecosystems of the Bay of Bengal is examined by Illumina high-throughput metagenomic sequencing. Of five metataxonomics data sets presented, two (SD1 and SD2) were from stations close to the shore and three (SD4, SD5, and SD6) were from the deep-sea (~3000 m depth). Phylum Proteobacteria (90.27 to 92.52%) dominated the deep-sea samples, whereas phylum Firmicutes (65.35 to 90.98%) dominated the coastal samples. Comparative analysis showed that coastal and deep-sea sediments showed distinct microbial communities. Wolbachia species, belonging to class Alphaproteobacteria was the most dominant species in the deep-sea sediments. The gene functions of bacterial communities were predicted for deep-sea and coastal sediment ecosystems. The results indicated that deep-sea sediment bacterial communities were involved in metabolic activities like dehalogenation and sulphide oxidation.
Collapse
|
22
|
Jones DOB, Gates AR, Huvenne VAI, Phillips AB, Bett BJ. Autonomous marine environmental monitoring: Application in decommissioned oil fields. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 668:835-853. [PMID: 30870752 DOI: 10.1016/j.scitotenv.2019.02.310] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 02/19/2019] [Accepted: 02/19/2019] [Indexed: 06/09/2023]
Abstract
Hundreds of Oil & Gas Industry structures in the marine environment are approaching decommissioning. In most areas decommissioning operations will need to be supported by environmental assessment and monitoring, potentially over the life of any structures left in place. This requirement will have a considerable cost for industry and the public. Here we review approaches for the assessment of the primary operating environments associated with decommissioning - namely structures, pipelines, cuttings piles, the general seabed environment and the water column - and show that already available marine autonomous systems (MAS) offer a wide range of solutions for this major monitoring challenge. Data of direct relevance to decommissioning can be collected using acoustic, visual, and oceanographic sensors deployed on MAS. We suggest that there is considerable potential for both cost savings and a substantial improvement in the temporal and spatial resolution of environmental monitoring. We summarise the trade-offs between MAS and current conventional approaches to marine environmental monitoring. MAS have the potential to successfully carry out much of the monitoring associated with decommissioning and to offer viable alternatives where a direct match for the conventional approach is not possible.
Collapse
Affiliation(s)
- Daniel O B Jones
- National Oceanography Centre, University of Southampton Waterfront Campus, Southampton SO14 3ZH, UK.
| | - Andrew R Gates
- National Oceanography Centre, University of Southampton Waterfront Campus, Southampton SO14 3ZH, UK
| | - Veerle A I Huvenne
- National Oceanography Centre, University of Southampton Waterfront Campus, Southampton SO14 3ZH, UK
| | - Alexander B Phillips
- National Oceanography Centre, University of Southampton Waterfront Campus, Southampton SO14 3ZH, UK
| | - Brian J Bett
- National Oceanography Centre, University of Southampton Waterfront Campus, Southampton SO14 3ZH, UK
| |
Collapse
|
23
|
Liu J, Xue CX, Sun H, Zheng Y, Meng Z, Zhang XH. Carbohydrate catabolic capability of a Flavobacteriia bacterium isolated from hadal water. Syst Appl Microbiol 2019; 42:263-274. [DOI: 10.1016/j.syapm.2019.01.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 12/17/2018] [Accepted: 01/15/2019] [Indexed: 11/26/2022]
|
24
|
The temporal variability of the macrofauna at the deep-sea observatory HAUSGARTEN (Fram Strait, Arctic Ocean). Polar Biol 2019. [DOI: 10.1007/s00300-018-02442-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
25
|
Abstract
As evident from the nearby examples of Proxima Centauri and TRAPPIST-1, Earth-sized planets in the habitable zone of low-mass stars are common. Here, we focus on such planetary systems and argue that their (oceanic) tides could be more prominent due to stronger tidal forces. We identify the conditions under which tides may exert a significant positive influence on biotic processes including abiogenesis, biological rhythms, nutrient upwelling, and stimulating photosynthesis. We conclude our analysis with the identification of large-scale algal blooms as potential temporal biosignatures in reflectance light curves that can arise indirectly as a consequence of strong tidal forces. Key Words: Tidal effects-Abiogenesis-Biological clocks-Planetary habitability-Temporal biosignatures. Astrobiology 18, 967-982.
Collapse
Affiliation(s)
- Manasvi Lingam
- 1 Harvard-Smithsonian Center for Astrophysics , Cambridge, Massachusetts
- 2 John A. Paulson School of Engineering and Applied Sciences, Harvard University , Cambridge, Massachusetts
| | - Abraham Loeb
- 1 Harvard-Smithsonian Center for Astrophysics , Cambridge, Massachusetts
| |
Collapse
|
26
|
O'Leary BC, Roberts CM. Ecological connectivity across ocean depths: Implications for protected area design. Glob Ecol Conserv 2018. [DOI: 10.1016/j.gecco.2018.e00431] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
27
|
Dobashi T, Iida M, Takemoto K. Decomposing the effects of ocean environments on predator-prey body-size relationships in food webs. ROYAL SOCIETY OPEN SCIENCE 2018; 5:180707. [PMID: 30109114 PMCID: PMC6083727 DOI: 10.1098/rsos.180707] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 06/14/2018] [Indexed: 06/08/2023]
Abstract
Body-size relationships between predators and their prey are important in ecological studies because they reflect the structure and function of food webs. Inspired by studies on the impact of global warming on food webs, the effects of temperature on body-size relationships have been widely investigated; however, the impact of environmental factors on body-size relationships has not been fully evaluated because climate warming affects various ocean environments. Thus, here, we comprehensively investigated the effects of ocean environments and predator-prey body-size relationships by integrating a large-scale dataset of predator-prey body-size relationships in marine food webs with global oceanographic data. We showed that various oceanographic parameters influence prey size selection. In particular, oxygen concentration, primary production and salinity, in addition to temperature, significantly alter body-size relationships. Furthermore, we demonstrated that variability (seasonality) of ocean environments significantly affects body-size relationships. The effects of ocean environments on body-size relationships were generally remarkable for small body sizes, but were also significant for large body sizes and were relatively weak for intermediate body sizes, in the cases of temperature seasonality, oxygen concentration and salinity variability. These findings break down the complex effects of ocean environments on body-size relationships, advancing our understanding of how ocean environments influence the structure and functioning of food webs.
Collapse
Affiliation(s)
- Tomoya Dobashi
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, Iizuka, Fukuoka 820-8502, Japan
| | - Midori Iida
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, Iizuka, Fukuoka 820-8502, Japan
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577, Japan
| | - Kazuhiro Takemoto
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, Iizuka, Fukuoka 820-8502, Japan
| |
Collapse
|
28
|
Climate change impacts on the biota and on vulnerable habitats of the deep Mediterranean Sea. RENDICONTI LINCEI-SCIENZE FISICHE E NATURALI 2018. [DOI: 10.1007/s12210-018-0725-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
29
|
Brown A, Hauton C, Stratmann T, Sweetman A, van Oevelen D, Jones DOB. Metabolic rates are significantly lower in abyssal Holothuroidea than in shallow-water Holothuroidea. ROYAL SOCIETY OPEN SCIENCE 2018; 5:172162. [PMID: 29892403 PMCID: PMC5990736 DOI: 10.1098/rsos.172162] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 04/23/2018] [Indexed: 06/08/2023]
Abstract
Recent analyses of metabolic rates in fishes, echinoderms, crustaceans and cephalopods have concluded that bathymetric declines in temperature- and mass-normalized metabolic rate do not result from resource-limitation (e.g. oxygen or food/chemical energy), decreasing temperature or increasing hydrostatic pressure. Instead, based on contrasting bathymetric patterns reported in the metabolic rates of visual and non-visual taxa, declining metabolic rate with depth is proposed to result from relaxation of selection for high locomotory capacity in visual predators as light diminishes. Here, we present metabolic rates of Holothuroidea, a non-visual benthic and benthopelagic echinoderm class, determined in situ at abyssal depths (greater than 4000 m depth). Mean temperature- and mass-normalized metabolic rate did not differ significantly between shallow-water (less than 200 m depth) and bathyal (200-4000 m depth) holothurians, but was significantly lower in abyssal (greater than 4000 m depth) holothurians than in shallow-water holothurians. These results support the dominance of the visual interactions hypothesis at bathyal depths, but indicate that ecological or evolutionary pressures other than biotic visual interactions contribute to bathymetric variation in holothurian metabolic rates. Multiple nonlinear regression assuming power or exponential models indicates that in situ hydrostatic pressure and/or food/chemical energy availability are responsible for variation in holothurian metabolic rates. Consequently, these results have implications for modelling deep-sea energetics and processes.
Collapse
Affiliation(s)
- Alastair Brown
- Ocean and Earth Science, University of Southampton, National Oceanography Centre Southampton, European Way, Southampton SO14 3ZH, UK
| | - Chris Hauton
- Ocean and Earth Science, University of Southampton, National Oceanography Centre Southampton, European Way, Southampton SO14 3ZH, UK
| | - Tanja Stratmann
- Department of Estuarine and Delta Systems, Royal Netherlands Institute for Sea Research (NIOZ-Yerseke), and Utrecht University, PO Box 140, 4400 AC Yerseke, The Netherlands
| | - Andrew Sweetman
- The Sir Charles Lyell Centre for Earth and Marine Science and Technology, Heriot-Watt University, Edinburgh EH14 4AS, UK
| | - Dick van Oevelen
- Department of Estuarine and Delta Systems, Royal Netherlands Institute for Sea Research (NIOZ-Yerseke), and Utrecht University, PO Box 140, 4400 AC Yerseke, The Netherlands
| | - Daniel O. B. Jones
- National Oceanography Centre, University of Southampton Waterfront Campus, European Way, Southampton SO14 3ZH, UK
| |
Collapse
|
30
|
Yasuhara M, Doi H, Wei CL, Danovaro R, Myhre SE. Biodiversity-ecosystem functioning relationships in long-term time series and palaeoecological records: deep sea as a test bed. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0282. [PMID: 27114583 DOI: 10.1098/rstb.2015.0282] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2016] [Indexed: 11/12/2022] Open
Abstract
The link between biodiversity and ecosystem functioning (BEF) over long temporal scales is poorly understood. Here, we investigate biological monitoring and palaeoecological records on decadal, centennial and millennial time scales from a BEF framework by using deep sea, soft-sediment environments as a test bed. Results generally show positive BEF relationships, in agreement with BEF studies based on present-day spatial analyses and short-term manipulative experiments. However, the deep-sea BEF relationship is much noisier across longer time scales compared with modern observational studies. We also demonstrate with palaeoecological time-series data that a larger species pool does not enhance ecosystem stability through time, whereas higher abundance as an indicator of higher ecosystem functioning may enhance ecosystem stability. These results suggest that BEF relationships are potentially time scale-dependent. Environmental impacts on biodiversity and ecosystem functioning may be much stronger than biodiversity impacts on ecosystem functioning at long, decadal-millennial, time scales. Longer time scale perspectives, including palaeoecological and ecosystem monitoring data, are critical for predicting future BEF relationships on a rapidly changing planet.
Collapse
Affiliation(s)
- Moriaki Yasuhara
- School of Biological Sciences, The University of Hong Kong, Pok Fu Lam Road, Hong Kong SAR, China Department of Earth Sciences, The University of Hong Kong, Pok Fu Lam Road, Hong Kong SAR, China Swire Institute of Marine Science, The University of Hong Kong, Cape d'Aguilar Road, Shek O, Hong Kong SAR, China
| | - Hideyuki Doi
- Graduate School of Simulation Studies, University of Hyogo, 7-1-28 Minatojima Minami-machi, Chuo-ku, Kobe, 650-0047, Japan
| | - Chih-Lin Wei
- Institute of Oceanography, National Taiwan University, Taipei 106, Taiwan
| | - Roberto Danovaro
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - Sarah E Myhre
- Future of Ice Initiative, University of Washington, Johnson Hall, Room 377A, Box 351310 Seattle, WA 98195-1310, USA
| |
Collapse
|
31
|
Yool A, Martin AP, Anderson TR, Bett BJ, Jones DOB, Ruhl HA. Big in the benthos: Future change of seafloor community biomass in a global, body size-resolved model. GLOBAL CHANGE BIOLOGY 2017; 23:3554-3566. [PMID: 28317324 DOI: 10.1111/gcb.13680] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 02/24/2017] [Accepted: 02/24/2017] [Indexed: 05/16/2023]
Abstract
Deep-water benthic communities in the ocean are almost wholly dependent on near-surface pelagic ecosystems for their supply of energy and material resources. Primary production in sunlit surface waters is channelled through complex food webs that extensively recycle organic material, but lose a fraction as particulate organic carbon (POC) that sinks into the ocean interior. This exported production is further rarefied by microbial breakdown in the abyssal ocean, but a residual ultimately drives diverse assemblages of seafloor heterotrophs. Advances have led to an understanding of the importance of size (body mass) in structuring these communities. Here we force a size-resolved benthic biomass model, BORIS, using seafloor POC flux from a coupled ocean-biogeochemistry model, NEMO-MEDUSA, to investigate global patterns in benthic biomass. BORIS resolves 16 size classes of metazoans, successively doubling in mass from approximately 1 μg to 28 mg. Simulations find a wide range of seasonal responses to differing patterns of POC forcing, with both a decline in seasonal variability, and an increase in peak lag times with increasing body size. However, the dominant factor for modelled benthic communities is the integrated magnitude of POC reaching the seafloor rather than its seasonal pattern. Scenarios of POC forcing under climate change and ocean acidification are then applied to investigate how benthic communities may change under different future conditions. Against a backdrop of falling surface primary production (-6.1%), and driven by changes in pelagic remineralization with depth, results show that while benthic communities in shallow seas generally show higher biomass in a warmed world (+3.2%), deep-sea communities experience a substantial decline (-32%) under a high greenhouse gas emissions scenario. Our results underscore the importance for benthic ecology of reducing uncertainty in the magnitude and seasonality of seafloor POC fluxes, as well as the importance of studying a broader range of seafloor environments for future model development.
Collapse
Affiliation(s)
- Andrew Yool
- National Oceanography Centre, University of Southampton Waterfront Campus, Southampton, UK
| | - Adrian P Martin
- National Oceanography Centre, University of Southampton Waterfront Campus, Southampton, UK
| | - Thomas R Anderson
- National Oceanography Centre, University of Southampton Waterfront Campus, Southampton, UK
| | - Brian J Bett
- National Oceanography Centre, University of Southampton Waterfront Campus, Southampton, UK
| | - Daniel O B Jones
- National Oceanography Centre, University of Southampton Waterfront Campus, Southampton, UK
| | - Henry A Ruhl
- National Oceanography Centre, University of Southampton Waterfront Campus, Southampton, UK
| |
Collapse
|
32
|
Leduc D, Rowden AA. Not to be Sneezed at: Does Pollen from Forests of Exotic Pine Affect Deep Oceanic Trench Ecosystems? Ecosystems 2017. [DOI: 10.1007/s10021-017-0146-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
33
|
Bioaccumulation of persistent organic pollutants in the deepest ocean fauna. Nat Ecol Evol 2017; 1:51. [DOI: 10.1038/s41559-016-0051] [Citation(s) in RCA: 186] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 12/13/2016] [Indexed: 11/09/2022]
|
34
|
Drazen JC, Sutton TT. Dining in the Deep: The Feeding Ecology of Deep-Sea Fishes. ANNUAL REVIEW OF MARINE SCIENCE 2017; 9:337-366. [PMID: 27814034 DOI: 10.1146/annurev-marine-010816-060543] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Deep-sea fishes inhabit ∼75% of the biosphere and are a critical part of deep-sea food webs. Diet analysis and more recent trophic biomarker approaches, such as stable isotopes and fatty-acid profiles, have enabled the description of feeding guilds and an increased recognition of the vertical connectivity in food webs in a whole-water-column sense, including benthic-pelagic coupling. Ecosystem modeling requires data on feeding rates; the available estimates indicate that deep-sea fishes have lower per-individual feeding rates than coastal and epipelagic fishes, but the overall predation impact may be high. A limited number of studies have measured the vertical flux of carbon by mesopelagic fishes, which appears to be substantial. Anthropogenic activities are altering deep-sea ecosystems and their services, which are mediated by trophic interactions. We also summarize outstanding data gaps.
Collapse
Affiliation(s)
- Jeffrey C Drazen
- Department of Oceanography, University of Hawaii at Manoa, Honolulu, Hawaii 96822;
| | - Tracey T Sutton
- Halmos College of Natural Sciences and Oceanography, Nova Southeastern University, Dania Beach, Florida 33004;
| |
Collapse
|
35
|
Boyd PW, Cornwall CE, Davison A, Doney SC, Fourquez M, Hurd CL, Lima ID, McMinn A. Biological responses to environmental heterogeneity under future ocean conditions. GLOBAL CHANGE BIOLOGY 2016; 22:2633-50. [PMID: 27111095 DOI: 10.1111/gcb.13287] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Revised: 03/08/2016] [Accepted: 03/09/2016] [Indexed: 05/20/2023]
Abstract
Organisms are projected to face unprecedented rates of change in future ocean conditions due to anthropogenic climate-change. At present, marine life encounters a wide range of environmental heterogeneity from natural fluctuations to mean climate change. Manipulation studies suggest that biota from more variable marine environments have more phenotypic plasticity to tolerate environmental heterogeneity. Here, we consider current strategies employed by a range of representative organisms across various habitats - from short-lived phytoplankton to long-lived corals - in response to environmental heterogeneity. We then discuss how, if and when organismal responses (acclimate/migrate/adapt) may be altered by shifts in the magnitude of the mean climate-change signal relative to that for natural fluctuations projected for coming decades. The findings from both novel climate-change modelling simulations and prior biological manipulation studies, in which natural fluctuations are superimposed on those of mean change, provide valuable insights into organismal responses to environmental heterogeneity. Manipulations reveal that different experimental outcomes are evident between climate-change treatments which include natural fluctuations vs. those which do not. Modelling simulations project that the magnitude of climate variability, along with mean climate change, will increase in coming decades, and hence environmental heterogeneity will increase, illustrating the need for more realistic biological manipulation experiments that include natural fluctuations. However, simulations also strongly suggest that the timescales over which the mean climate-change signature will become dominant, relative to natural fluctuations, will vary for individual properties, being most rapid for CO2 (~10 years from present day) to 4 decades for nutrients. We conclude that the strategies used by biota to respond to shifts in environmental heterogeneity may be complex, as they will have to physiologically straddle wide-ranging timescales in the alteration of ocean conditions, including the need to adapt to rapidly rising CO2 and also acclimate to environmental heterogeneity in more slowly changing properties such as warming.
Collapse
Affiliation(s)
- Philip W Boyd
- Institute for Marine and Antarctic Studies, University of Tasmania, Private Bag 129, Hobart, Tas., 7001, Australia
- ACE CRC Antarctic Climate & Ecosystems CRC, UTAS, Private Bag 80, Hobart, Tas., 7001, Australia
| | - Christopher E Cornwall
- Institute for Marine and Antarctic Studies, University of Tasmania, Private Bag 129, Hobart, Tas., 7001, Australia
| | - Andrew Davison
- Australian Antarctic Division, Channel Highway, Kingston, Tas., 7050, Australia
| | - Scott C Doney
- Marine Chemistry & Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Marion Fourquez
- Institute for Marine and Antarctic Studies, University of Tasmania, Private Bag 129, Hobart, Tas., 7001, Australia
- ACE CRC Antarctic Climate & Ecosystems CRC, UTAS, Private Bag 80, Hobart, Tas., 7001, Australia
| | - Catriona L Hurd
- Institute for Marine and Antarctic Studies, University of Tasmania, Private Bag 129, Hobart, Tas., 7001, Australia
| | - Ivan D Lima
- Marine Chemistry & Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Andrew McMinn
- Institute for Marine and Antarctic Studies, University of Tasmania, Private Bag 129, Hobart, Tas., 7001, Australia
- ACE CRC Antarctic Climate & Ecosystems CRC, UTAS, Private Bag 80, Hobart, Tas., 7001, Australia
| |
Collapse
|
36
|
Smith KL, Huffard CL, Sherman AD, Ruhl HA. Decadal Change in Sediment Community Oxygen Consumption in the Abyssal Northeast Pacific. AQUATIC GEOCHEMISTRY 2016; 22:401-417. [PMID: 32355451 PMCID: PMC7175715 DOI: 10.1007/s10498-016-9293-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 04/30/2016] [Indexed: 06/11/2023]
Abstract
Long time-series studies are critical to assessing impacts of climate change on the marine carbon cycle. A 27-year time-series study in the abyssal northeast Pacific (Sta. M, 4000 m depth) has provided the first concurrent measurements of sinking particulate organic carbon supply (POC flux) and remineralization by the benthic community. Sediment community oxygen consumption (SCOC), an estimate of organic carbon remineralization, was measured in situ over daily to interannual periods with four different instruments. Daily averages of SCOC ranged from a low of 5.0 mg C m-2 day-1 in February 1991 to a high of 31.0 mg C m-2 day-1 in June 2012. POC flux estimated from sediment trap collections at 600 and 50 m above bottom ranged from 0.3 mg C m-2 day-1 in October 2013 to 32.0 mg C m-2 day-1 in June 2011. Monthly averages of SCOC and POC flux correlated significantly with no time lag. Over the long time series, yearly average POC flux accounted for 63 % of the estimated carbon demand of the benthic community. Long time-series studies of sediment community processes, particularly SCOC, have shown similar fluctuations with the flux of POC reaching the abyssal seafloor. SCOC quickly responds to changes in food supply and tracks POC flux. Yet, SCOC consistently exceeds POC flux as measured by sediment traps alone. The shortfall of ~37 % could be explained by sediment trap sampling artifacts over decadal scales including undersampling of large sinking particles. High-resolution measurements of SCOC are critical to developing a realistic carbon cycle model for the open ocean. Such input is essential to evaluate the impact of climate change on the oceanic carbon cycle, and the long-term influences on the sedimentation record.
Collapse
Affiliation(s)
- K. L. Smith
- Monterey Bay Aquarium Research Institute, Moss Landing, CA USA
| | - C. L. Huffard
- Monterey Bay Aquarium Research Institute, Moss Landing, CA USA
| | - A. D. Sherman
- Monterey Bay Aquarium Research Institute, Moss Landing, CA USA
| | - H. A. Ruhl
- National Oceanography Centre, Southampton, UK
| |
Collapse
|
37
|
Bienhold C, Zinger L, Boetius A, Ramette A. Diversity and Biogeography of Bathyal and Abyssal Seafloor Bacteria. PLoS One 2016; 11:e0148016. [PMID: 26814838 PMCID: PMC4731391 DOI: 10.1371/journal.pone.0148016] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 01/12/2016] [Indexed: 11/19/2022] Open
Abstract
The deep ocean floor covers more than 60% of the Earth's surface, and hosts diverse bacterial communities with important functions in carbon and nutrient cycles. The identification of key bacterial members remains a challenge and their patterns of distribution in seafloor sediment yet remain poorly described. Previous studies were either regionally restricted or included few deep-sea sediments, and did not specifically test biogeographic patterns across the vast oligotrophic bathyal and abyssal seafloor. Here we define the composition of this deep seafloor microbiome by describing those bacterial operational taxonomic units (OTU) that are specifically associated with deep-sea surface sediments at water depths ranging from 1000-5300 m. We show that the microbiome of the surface seafloor is distinct from the subsurface seafloor. The cosmopolitan bacterial OTU were affiliated with the clades JTB255 (class Gammaproteobacteria, order Xanthomonadales) and OM1 (Actinobacteria, order Acidimicrobiales), comprising 21% and 7% of their respective clades, and about 1% of all sequences in the study. Overall, few sequence-abundant bacterial types were globally dispersed and displayed positive range-abundance relationships. Most bacterial populations were rare and exhibited a high degree of endemism, explaining the substantial differences in community composition observed over large spatial scales. Despite the relative physicochemical uniformity of deep-sea sediments, we identified indicators of productivity regimes, especially sediment organic matter content, as factors significantly associated with changes in bacterial community structure across the globe.
Collapse
Affiliation(s)
- Christina Bienhold
- HGF-MPG Group for Deep Sea Ecology and Technology, Alfred Wegener Institute Helmholtz Center for Polar and Marine Research, Bremerhaven, Germany, and Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Lucie Zinger
- HGF-MPG Group for Deep Sea Ecology and Technology, Alfred Wegener Institute Helmholtz Center for Polar and Marine Research, Bremerhaven, Germany, and Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Antje Boetius
- HGF-MPG Group for Deep Sea Ecology and Technology, Alfred Wegener Institute Helmholtz Center for Polar and Marine Research, Bremerhaven, Germany, and Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Alban Ramette
- HGF-MPG Group for Deep Sea Ecology and Technology, Alfred Wegener Institute Helmholtz Center for Polar and Marine Research, Bremerhaven, Germany, and Max Planck Institute for Marine Microbiology, Bremen, Germany
| |
Collapse
|
38
|
Effect of lead pollution on fitness and its dependence on heterozygosity in Drosophila subobscura. J Genet 2015; 94:643-9. [PMID: 26690519 DOI: 10.1007/s12041-015-0569-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Lead is one of the most present contaminants in the environment, and different species respond differently to this type of polution. If combined with genomic stress, lead may act synergistically, causing significant decrease of fitness components. We used two genetically diverse Drosophila subobscura populations (regarding both putatively adaptive inversion and microsatellite loci polymorphisms) originating from two ecologically distinct habitats. To establish different levels of genome heterozygosity, series of intraline, intrapopulation and interpopulation crosses were made. The progeny were reared on a standard medium and a medium with 200 μg/mL of lead acetate. Development time was significantly extended to all groups reared on lead. The progeny of intraline crosses showed significantly extended development time compared to all other groups. The obtained results suggest that genome heterozygosity reduces the effect of lead pollution.
Collapse
|
39
|
Chen CS, Anaya JM, Chen EYT, Farr E, Chin WC. Ocean warming-acidification synergism undermines dissolved organic matter assembly. PLoS One 2015; 10:e0118300. [PMID: 25714090 PMCID: PMC4340923 DOI: 10.1371/journal.pone.0118300] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 01/13/2015] [Indexed: 11/18/2022] Open
Abstract
Understanding the influence of synergisms on natural processes is a critical step toward determining the full-extent of anthropogenic stressors. As carbon emissions continue unabated, two major stressors--warming and acidification--threaten marine systems on several scales. Here, we report that a moderate temperature increase (from 30°C to 32°C) is sufficient to slow--even hinder--the ability of dissolved organic matter, a major carbon pool, to self-assemble to form marine microgels, which contribute to the particulate organic matter pool. Moreover, acidification lowers the temperature threshold at which we observe our results. These findings carry implications for the marine carbon cycle, as self-assembled marine microgels generate an estimated global seawater budget of ~1016 g C. We used laser scattering spectroscopy to test the influence of temperature and pH on spontaneous marine gel assembly. The results of independent experiments revealed that at a particular point, both pH and temperature block microgel formation (32°C, pH 8.2), and disperse existing gels (35°C). We then tested the hypothesis that temperature and pH have a synergistic influence on marine gel dispersion. We found that the dispersion temperature decreases concurrently with pH: from 32°C at pH 8.2, to 28°C at pH 7.5. If our laboratory observations can be extrapolated to complex marine environments, our results suggest that a warming-acidification synergism can decrease carbon and nutrient fluxes, disturbing marine trophic and trace element cycles, at rates faster than projected.
Collapse
Affiliation(s)
- Chi-Shuo Chen
- School of Engineering, University of California Merced, Merced, California, United States of America
| | - Jesse M. Anaya
- School of Natural Sciences, University of California Merced, Merced, California, United States of America
| | - Eric Y-T Chen
- School of Engineering, University of California Merced, Merced, California, United States of America
| | - Erik Farr
- School of Natural Sciences, University of California Merced, Merced, California, United States of America
| | - Wei-Chun Chin
- School of Engineering, University of California Merced, Merced, California, United States of America
| |
Collapse
|
40
|
Henson SA. Slow science: the value of long ocean biogeochemistry records. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2014; 372:rsta.2013.0334. [PMID: 25157192 PMCID: PMC4150291 DOI: 10.1098/rsta.2013.0334] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Sustained observations (SOs) have provided invaluable information on the ocean's biology and biogeochemistry for over 50 years. They continue to play a vital role in elucidating the functioning of the marine ecosystem, particularly in the light of ongoing climate change. Repeated, consistent observations have provided the opportunity to resolve temporal and/or spatial variability in ocean biogeochemistry, which has driven exploration of the factors controlling biological parameters and processes. Here, I highlight some of the key breakthroughs in biological oceanography that have been enabled by SOs, which include areas such as trophic dynamics, understanding variability, improved biogeochemical models and the role of ocean biology in the global carbon cycle. In the near future, SOs are poised to make progress on several fronts, including detecting climate change effects on ocean biogeochemistry, high-resolution observations of physical-biological interactions and greater observational capability in both the mesopelagic zone and harsh environments, such as the Arctic. We are now entering a new era for biological SOs, one in which our motivations have evolved from the need to acquire basic understanding of the ocean's state and variability, to a need to understand ocean biogeochemistry in the context of increasing pressure in the form of climate change, overfishing and eutrophication.
Collapse
|
41
|
Barry JP, Lovera C, Buck KR, Peltzer ET, Taylor JR, Walz P, Whaling PJ, Brewer PG. Use of a free ocean CO₂ enrichment (FOCE) system to evaluate the effects of ocean acidification on the foraging behavior of a deep-sea urchin. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:9890-9897. [PMID: 25051305 DOI: 10.1021/es501603r] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The influence of ocean acidification in deep-sea ecosystems is poorly understood but is expected to be large because of the presumed low tolerance of deep-sea taxa to environmental change. We used a newly developed deep-sea free ocean CO2 enrichment (dp-FOCE) system to evaluate the potential consequences of future ocean acidification on the feeding behavior of a deep-sea echinoid, the sea urchin, Strongylocentrotus fragilis. The dp-FOCE system simulated future ocean acidification inside an experimental enclosure where observations of feeding behavior were performed. We measured the average movement (speed) of urchins as well as the time required (foraging time) for S. fragilis to approach its preferred food (giant kelp) in the dp-FOCE chamber (-0.46 pH units) and a control chamber (ambient pH). Measurements were performed during each of 4 trials (days -2, 2, 24, 27 after CO2 injection) during the month-long period when groups of urchins were continuously exposed to low pH or control conditions. Although urchin speed did not vary significantly in relation to pH or time exposed, foraging time was significantly longer for urchins in the low-pH treatment. This first deep-sea FOCE experiment demonstrated the utility of the FOCE system approach and suggests that the chemosensory behavior of a deep-sea urchin may be impaired by ocean acidification.
Collapse
Affiliation(s)
- James P Barry
- Monterey Bay Aquarium Research Institute , 7700 Sandholdt Road, Moss Landing, California 95039, United States
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Ruhl HA, Bett BJ, Hughes SJM, Alt CHS, Ross EJ, Lampitt RS, Pebody CA, Smith KL, Billett DSM. Links between deep-sea respiration and community dynamics. Ecology 2014; 95:1651-62. [DOI: 10.1890/13-0675.1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
43
|
|
44
|
Jeffreys RM, Burke C, Jamieson AJ, Narayanaswamy BE, Ruhl HA, Smith KL, Witte U. Feeding preferences of abyssal macrofauna inferred from in situ pulse chase experiments. PLoS One 2013; 8:e80510. [PMID: 24303022 PMCID: PMC3841197 DOI: 10.1371/journal.pone.0080510] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 10/03/2013] [Indexed: 11/18/2022] Open
Abstract
Climatic fluctuations may significantly alter the taxonomic and biochemical composition of phytoplankton blooms and subsequently phytodetritus, the food source for the majority of deep-sea communities. To examine the response of abyssal benthic communities to different food resources we simulated a food sedimentation event containing diatoms and coccolithophorids at Station M in the NE Pacific. In one set of experiments we measured incorporation of diatomC and coccoN into the macrofauna using isotopically enriched 13C-diatoms and 15N-coccolithophores. In a second experiment we measured incorporation of C and N from dual-labelled (13C and 15N) diatoms. The second experiment was repeated 2 months later to assess the effect of seasonality. The simulated food pulses represented additions of 650 – 800 mg C m−2 and 120 mg N m−2 to the seafloor. In all cases rapid incorporation of tracer was observed within 4 days, with between 20% and 52% of the macrofauna displaying evidence of enrichment. However, incorporation levels of both diatomC and coccoN were low (<0.05% and 0.005% of the added C and N). Incorporation of labelled diatoms was similar during both June and September suggesting that the community was not food limited during either period. We found no evidence for selective ingestion of the different food types in the metazoan fauna suggesting that macrofauna do not have strong preferences for diatom vs. coccolithophore dominated phytodetrital pulses. C∶N ratios from both experiments suggest that the metazoan macrofauna community appear to have higher C demands and/or assimilation efficiencies compared to N. Concomitantly, the foraminifera preferentially selected for diatomN over coccoN, and we suggest that this may be related to foraminiferal requirements for intracellular nitrate. These experiments provide evidence that abyssal faunal feeding strategies are in part driven by an organism's internal stoichiometric budgets and biochemical requirements.
Collapse
Affiliation(s)
- Rachel M. Jeffreys
- School of Environmental Sciences, University of Liverpool, Liverpool, Merseyside, United Kingdom
- * E-mail:
| | - Ciara Burke
- Oceanlab, University of Aberdeen, Newburgh, Aberdeenshire, United Kingdom
| | - Alan J. Jamieson
- Oceanlab, University of Aberdeen, Newburgh, Aberdeenshire, United Kingdom
| | - Bhavani E. Narayanaswamy
- Ecology Department, Scottish Association for Marine Science, Scottish Marine Institute Oban, Argyll, United Kingdom
| | - Henry A. Ruhl
- National Oceanography Centre, University of Southampton Waterfront Campus, Southampton, Hampshire, United Kingdom
| | - Kenneth L. Smith
- Monterey Bay Aquarium Research Institute, Moss Landing, California, United States of America
| | - Ursula Witte
- Oceanlab, University of Aberdeen, Newburgh, Aberdeenshire, United Kingdom
| |
Collapse
|
45
|
Abstract
Analysis of maximum depth of occurrence of 11 952 marine fish species shows a global decrease in species number (N) with depth (x; m): log10 N = -0·000422x + 3·610000 (r(2) = 0·948). The rate of decrease is close to global estimates for change in pelagic and benthic biomass with depth (-0·000430), indicating that species richness of fishes may be limited by food energy availability in the deep sea. The slopes for the Classes Myxini (-0·000488) and Actinopterygii (-0·000413) follow this trend but Chondrichthyes decrease more rapidly (-0·000731) implying deficiency in ability to colonize the deep sea. Maximum depths attained are 2743, 4156 and 8370 m for Myxini, Chondrichthyes and Actinopterygii, respectively. Endemic species occur in abundance at 7-7800 m depth in hadal trenches but appear to be absent from the deepest parts of the oceans, >9000 m deep. There have been six global oceanic anoxic events (OAE) since the origin of the major fish taxa in the Devonian c. 400 million years ago (mya). Colonization of the deep sea has taken place largely since the most recent OAE in the Cretaceous 94 mya when the Atlantic Ocean opened up. Patterns of global oceanic circulation oxygenating the deep ocean basins became established coinciding with a period of teleost diversification and appearance of the Acanthopterygii. Within the Actinopterygii, there is a trend for greater invasion of the deep sea by the lower taxa in accordance with the Andriashev paradigm. Here, 31 deep-sea families of Actinopterygii were identified with mean maximum depth >1000 m and with >10 species. Those with most of their constituent species living shallower than 1000 m are proposed as invasive, with extinctions in the deep being continuously balanced by export of species from shallow seas. Specialized families with most species deeper than 1000 m are termed deep-sea endemics in this study; these appear to persist in the deep by virtue of global distribution enabling recovery from regional extinctions. Deep-sea invasive families such as Ophidiidae and Liparidae make the greatest contribution to fish fauna at depths >6000 m.
Collapse
Affiliation(s)
- I G Priede
- Oceanlab, Institute of Biological and Environmental Sciences, University of AberdeenMain Street, Newburgh, Aberdeen AB41 6AA, U.K.
- †Author to whom correspondence should be addressed. Tel.: +44 1224 274401;
| | - R Froese
- GEOMAR Helmholtz-Centre for Ocean ResearchDuesternbrooker Weg 20, Kiel 24105, Germany
| |
Collapse
|
46
|
Deep ocean communities impacted by changing climate over 24 y in the abyssal northeast Pacific Ocean. Proc Natl Acad Sci U S A 2013; 110:19838-41. [PMID: 24218565 DOI: 10.1073/pnas.1315447110] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The deep ocean, covering a vast expanse of the globe, relies almost exclusively on a food supply originating from primary production in surface waters. With well-documented warming of oceanic surface waters and conflicting reports of increasing and decreasing primary production trends, questions persist about how such changes impact deep ocean communities. A 24-y time-series study of sinking particulate organic carbon (food) supply and its utilization by the benthic community was conducted in the abyssal northeast Pacific (~4,000-m depth). Here we show that previous findings of food deficits are now punctuated by large episodic surpluses of particulate organic carbon reaching the sea floor, which meet utilization. Changing surface ocean conditions are translated to the deep ocean, where decadal peaks in supply, remineralization, and sequestration of organic carbon have broad implications for global carbon budget projections.
Collapse
|
47
|
Giovannelli D, Molari M, d’Errico G, Baldrighi E, Pala C, Manini E. Large-scale distribution and activity of prokaryotes in deep-sea surface sediments of the Mediterranean Sea and the adjacent Atlantic Ocean. PLoS One 2013; 8:e72996. [PMID: 24039667 PMCID: PMC3755984 DOI: 10.1371/journal.pone.0072996] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 07/22/2013] [Indexed: 11/19/2022] Open
Abstract
The deep-sea represents a substantial portion of the biosphere and has a major influence on carbon cycling and global biogeochemistry. Benthic deep-sea prokaryotes have crucial roles in this ecosystem, with their recycling of organic matter from the photic zone. Despite this, little is known about the large-scale distribution of prokaryotes in the surface deep-sea sediments. To assess the influence of environmental and trophic variables on the large-scale distribution of prokaryotes, we investigated the prokaryotic assemblage composition (Bacteria to Archaea and Euryarchaeota to Crenarchaeota ratio) and activity in the surface deep-sea sediments of the Mediterranean Sea and the adjacent North Atlantic Ocean. Prokaryotic abundance and biomass did not vary significantly across the Mediterranean Sea; however, there were depth-related trends in all areas. The abundance of prokaryotes was positively correlated with the sedimentary concentration of protein, an indicator of the quality and bioavailability of organic matter. Moving eastwards, the Bacteria contribution to the total prokaryotes decreased, which appears to be linked to the more oligotrophic conditions of the Eastern Mediterranean basins. Despite the increased importance of Archaea, the contributions of Crenarchaeota Marine Group I to the total pool was relatively constant across the investigated stations, with the exception of Matapan-Vavilov Deep, in which Euryarchaeota Marine Group II dominated. Overall, our data suggest that deeper areas of the Mediterranean Sea share more similar communities with each other than with shallower sites. Freshness and quality of sedimentary organic matter were identified through Generalized Additive Model analysis as the major factors for describing the variation in the prokaryotic community structure and activity in the surface deep-sea sediments. Longitude was also important in explaining the observed variability, which suggests that the overlying water masses might have a critical role in shaping the benthic communities.
Collapse
Affiliation(s)
- Donato Giovannelli
- Institute for Marine Science - ISMAR, National Research Council of Italy - CNR, Ancona, Italy
- Institute for Marine and Coastal Science - IMCS, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Massimiliano Molari
- Institute for Marine Science - ISMAR, National Research Council of Italy - CNR, Ancona, Italy
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Giuseppe d’Errico
- Institute for Marine Science - ISMAR, National Research Council of Italy - CNR, Ancona, Italy
| | - Elisa Baldrighi
- Institute for Marine Science - ISMAR, National Research Council of Italy - CNR, Ancona, Italy
| | - Claudia Pala
- Institute for Marine Science - ISMAR, National Research Council of Italy - CNR, Ancona, Italy
- Department of Bioscience, University of Parma, Parma, Italy
| | - Elena Manini
- Institute for Marine Science - ISMAR, National Research Council of Italy - CNR, Ancona, Italy
- * E-mail:
| |
Collapse
|
48
|
|
49
|
Early life history of deep-water gorgonian corals may limit their abundance. PLoS One 2013; 8:e65394. [PMID: 23762358 PMCID: PMC3677872 DOI: 10.1371/journal.pone.0065394] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 04/29/2013] [Indexed: 11/19/2022] Open
Abstract
Deep-water gorgonian corals are long-lived organisms found worldwide off continental margins and seamounts, usually occurring at depths of ∼200–1,000 m. Most corals undergo sexual reproduction by releasing a planktonic larval stage that disperses; however, recruitment rates and the environmental and biological factors influencing recruitment in deep-sea species are poorly known. Here, we present results from a 4-year field experiment conducted in the Gulf of Maine (northwest Atlantic) at depths >650 m that document recruitment for 2 species of deep-water gorgonian corals, Primnoa resedaeformis and Paragorgia arborea. The abundance of P. resedaeformis recruits was high, and influenced by the structural complexity of the recipient habitat, but very few recruits of P. arborea were found. We suggest that divergent reproductive modes (P. resedaeformis as a broadcast spawner and P. arborea as a brooder) may explain this pattern. Despite the high recruitment of P. resedaeformis, severe mortality early on in the benthic stage of this species may limit the abundance of adult colonies. Most recruits of this species (∼80%) were at the primary polyp stage, and less than 1% of recruits were at stage of 4 polyps or more. We propose that biological disturbance, possibly by the presence of suspension-feeding brittle stars, and limited food supply in the deep sea may cause this mortality. Our findings reinforce the vulnerability of these corals to anthropogenic disturbances, such as trawling with mobile gear, and the importance of incorporating knowledge on processes during the early life history stages in conservation decisions.
Collapse
|
50
|
Tecchio S, van Oevelen D, Soetaert K, Navarro J, Ramírez-Llodra E. Trophic dynamics of deep-sea megabenthos are mediated by surface productivity. PLoS One 2013; 8:e63796. [PMID: 23691098 PMCID: PMC3656946 DOI: 10.1371/journal.pone.0063796] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 04/05/2013] [Indexed: 11/19/2022] Open
Abstract
Most deep-sea benthic ecosystems are food limited and, in the majority of cases, are driven by the organic matter falling from the surface or advected downslope. Species may adapt to this scarceness by applying a wide variety of responses, such as feeding specialisation, niche width variation, and reduction in metabolic rates. The Mediterranean Sea hosts a gradient of food availability at the deep seafloor over its wide longitudinal transect. In the Mediterranean, broad regional studies on trophic habits are almost absent, and the response of deep-sea benthos to different trophic conditions is still speculative. Here, we show that both primary and secondary production processes taking place at surface layers are key drivers of deep-sea food web structuring. By employing an innovative statistical tool, we interpreted bulk-tissue δ(13)C and δ(15)N isotope ratios in benthic megafauna, and associated surface and mesopelagic components from the 3 basins of the Mediterranean Sea at 3 different depths (1200, 2000, and 3000 m). The trophic niche width and the amplitude of primary carbon sources were positively correlated with both primary and secondary surface production indicators. Moreover, mesopelagic organic matter utilization processes showed an intermediate position between surface and deep benthic components. These results shed light on the understanding of deep-sea ecosystems functioning and, at the same time, they demand further investigation.
Collapse
Affiliation(s)
- Samuele Tecchio
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas, Barcelona, Spain.
| | | | | | | | | |
Collapse
|