1
|
Xie YY, Wen B, Bai MZ, Guo YY. De Novo Creation of Two Novel Spliceosomal Introns of RECG1 by Intronization of Formerly Exonic Sequences in Orchidaceae. J Mol Evol 2025; 93:267-277. [PMID: 40202594 DOI: 10.1007/s00239-025-10242-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 03/21/2025] [Indexed: 04/10/2025]
Abstract
Spliceosomal introns are a key characteristic of eukaryotic genes. However, the origins and mechanisms of new spliceosomal introns remain elusive, and definitive case studies documenting intron creation are still limited. This study examined the RECG1 genes of 49 land plants, including 21 orchids and 28 non-orchid species. Sequence comparison revealed that the fourth intron of Gastrodia and Platanthera (Orchidaceae) is a newly gained spliceosomal intron, originating from the intronization of former exonic sequences. This intronization event was accompanied by the creation of novel recognizable GT/AG splice sites. In contrast, other orchid species lack the corresponding splice sites in the counterpart regions. Moreover, the secondary and tertiary protein structures implied that the intronization events do not affect the protein function. Given the diverse trophic modes of the two genera, we infer that relaxed selection may have contributed to the fluidity of gene structures. This study provides a typical example of de novo lineage-specific intron creation via intronization in orchids supported by multiple lines of evidence, and the two intronization events occurred independently in the same gene. This research enhances our understanding of gene evolution in orchids and provides valuable insights that may assist the annotation of structurally complex genes.
Collapse
Affiliation(s)
- Yuan-Yuan Xie
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Bin Wen
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Ming-Zhu Bai
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Yan-Yan Guo
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China.
| |
Collapse
|
2
|
McDonald JMC, Reed RD. Beyond modular enhancers: new questions in cis-regulatory evolution. Trends Ecol Evol 2024; 39:1035-1046. [PMID: 39266441 DOI: 10.1016/j.tree.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 06/28/2024] [Accepted: 07/08/2024] [Indexed: 09/14/2024]
Abstract
Our understanding of how cis-regulatory elements work has advanced rapidly, outpacing our evolutionary models. In this review, we consider the implications of new mechanistic findings for evolutionary developmental biology. We focus on three different debates: whether evolutionary innovation occurs more often via the modification of old cis-regulatory elements or the emergence of new ones; the extent to which individual elements are specific and autonomous or multifunctional and interdependent; and how the robustness of cis-regulatory architectures influences the rate of trait evolution. These discussions lead us to propose new questions for the evo-devo of cis-regulation.
Collapse
Affiliation(s)
- Jeanne M C McDonald
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA.
| | - Robert D Reed
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
3
|
Gout JF, Hao Y, Johri P, Arnaiz O, Doak TG, Bhullar S, Couloux A, Guérin F, Malinsky S, Potekhin A, Sawka N, Sperling L, Labadie K, Meyer E, Duharcourt S, Lynch M. Dynamics of Gene Loss following Ancient Whole-Genome Duplication in the Cryptic Paramecium Complex. Mol Biol Evol 2023; 40:msad107. [PMID: 37154524 PMCID: PMC10195154 DOI: 10.1093/molbev/msad107] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/30/2023] [Accepted: 05/05/2023] [Indexed: 05/10/2023] Open
Abstract
Whole-genome duplications (WGDs) have shaped the gene repertoire of many eukaryotic lineages. The redundancy created by WGDs typically results in a phase of massive gene loss. However, some WGD-derived paralogs are maintained over long evolutionary periods, and the relative contributions of different selective pressures to their maintenance are still debated. Previous studies have revealed a history of three successive WGDs in the lineage of the ciliate Paramecium tetraurelia and two of its sister species from the Paramecium aurelia complex. Here, we report the genome sequence and analysis of 10 additional P. aurelia species and 1 additional out group, revealing aspects of post-WGD evolution in 13 species sharing a common ancestral WGD. Contrary to the morphological radiation of vertebrates that putatively followed two WGD events, members of the cryptic P. aurelia complex have remained morphologically indistinguishable after hundreds of millions of years. Biases in gene retention compatible with dosage constraints appear to play a major role opposing post-WGD gene loss across all 13 species. In addition, post-WGD gene loss has been slower in Paramecium than in other species having experienced genome duplication, suggesting that the selective pressures against post-WGD gene loss are especially strong in Paramecium. A near complete lack of recent single-gene duplications in Paramecium provides additional evidence for strong selective pressures against gene dosage changes. This exceptional data set of 13 species sharing an ancestral WGD and 2 closely related out group species will be a useful resource for future studies on Paramecium as a major model organism in the evolutionary cell biology.
Collapse
Affiliation(s)
- Jean-Francois Gout
- Department of Biology, Indiana University, Bloomington, IN
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ
- Department of Biological Sciences, Mississippi State University, Starkville, MS
| | - Yue Hao
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ
- Cancer and Cell Biology Division, Translational Genomics Research Institute, Phoenix, AZ
| | - Parul Johri
- Department of Biology, Indiana University, Bloomington, IN
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ
- School of Life Sciences, Arizona State University, Tempe, AZ
| | - Olivier Arnaiz
- Institute for Integrative Biology of the Cell (I2BC), Commissariat à l'Energie Atomique (CEA), CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Thomas G Doak
- Department of Biology, Indiana University, Bloomington, IN
- National Center for Genome Analysis Support, Indiana University, Bloomington, IN
| | - Simran Bhullar
- Institut de biologie de l’ENS, Département de Biologie, Ecole Normale Supérieure, CNRS, Inserm, Université PSL, Paris, France
| | - Arnaud Couloux
- Génomique Métabolique, Genoscope, Institut François Jacob, Commissariat à l'Energie Atomique (CEA), CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Fréderic Guérin
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| | - Sophie Malinsky
- Institut de biologie de l’ENS, Département de Biologie, Ecole Normale Supérieure, CNRS, Inserm, Université PSL, Paris, France
| | - Alexey Potekhin
- Department of Microbiology, Faculty of Biology, Saint Petersburg State University, Saint Petersburg, Russia
- Laboratory of Cellular and Molecular Protistology, Zoological Institute RAS, Saint Petersburg, Russia
| | - Natalia Sawka
- Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Krakow, Poland
| | - Linda Sperling
- Institute for Integrative Biology of the Cell (I2BC), Commissariat à l'Energie Atomique (CEA), CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Karine Labadie
- Genoscope, Institut François Jacob, Commissariat à l'Energie Atomique (CEA), Université Paris-Saclay, Evry, France
| | - Eric Meyer
- Institut de biologie de l’ENS, Département de Biologie, Ecole Normale Supérieure, CNRS, Inserm, Université PSL, Paris, France
| | | | - Michael Lynch
- Department of Biology, Indiana University, Bloomington, IN
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ
| |
Collapse
|
4
|
Dosage sensitivity and exon shuffling shape the landscape of polymorphic duplicates in Drosophila and humans. Nat Ecol Evol 2021; 6:273-287. [PMID: 34969986 DOI: 10.1038/s41559-021-01614-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 11/10/2021] [Indexed: 11/08/2022]
Abstract
Despite polymorphic duplicate genes' importance for the early stages of duplicate gene evolution, they are less studied than old gene duplicates. Two essential questions thus remain poorly addressed: how does dosage sensitivity, imposed by stoichiometry in protein complexes or by X chromosome dosage compensation, affect the emergence of complete duplicate genes? Do introns facilitate intergenic and intragenic chimaerism as predicted by the theory of exon shuffling? Here, we analysed new data for Drosophila and public data for humans, to characterize polymorphic duplicate genes with respect to dosage, exon-intron structures and allele frequencies. We found that complete duplicate genes are under dosage constraint induced by protein stoichiometry but potentially tolerated by X chromosome dosage compensation. We also found that in the intron-rich human genome, gene fusions and intragenic duplications extensively use intronic breakpoints generating in-frame proteins, in accordance with the theory of exon shuffling. Finally, we found that only a small proportion of complete or partial duplicates are at high frequencies, indicating the deleterious nature of dosage or gene structural changes. Altogether, we demonstrate how mechanistic factors including dosage sensitivity and exon-intron structure shape the short-term functional consequences of gene duplication.
Collapse
|
5
|
Královičová J, Borovská I, Pengelly R, Lee E, Abaffy P, Šindelka R, Grutzner F, Vořechovský I. Restriction of an intron size en route to endothermy. Nucleic Acids Res 2021; 49:2460-2487. [PMID: 33550394 PMCID: PMC7969005 DOI: 10.1093/nar/gkab046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 01/11/2021] [Accepted: 01/15/2021] [Indexed: 11/15/2022] Open
Abstract
Ca2+-insensitive and -sensitive E1 subunits of the 2-oxoglutarate dehydrogenase complex (OGDHC) regulate tissue-specific NADH and ATP supply by mutually exclusive OGDH exons 4a and 4b. Here we show that their splicing is enforced by distant lariat branch points (dBPs) located near the 5' splice site of the intervening intron. dBPs restrict the intron length and prevent transposon insertions, which can introduce or eliminate dBP competitors. The size restriction was imposed by a single dominant dBP in anamniotes that expanded into a conserved constellation of four dBP adenines in amniotes. The amniote clusters exhibit taxon-specific usage of individual dBPs, reflecting accessibility of their extended motifs within a stable RNA hairpin rather than U2 snRNA:dBP base-pairing. The dBP expansion took place in early terrestrial species and was followed by a uridine enrichment of large downstream polypyrimidine tracts in mammals. The dBP-protected megatracts permit reciprocal regulation of exon 4a and 4b by uridine-binding proteins, including TIA-1/TIAR and PUF60, which promote U1 and U2 snRNP recruitment to the 5' splice site and BP, respectively, but do not significantly alter the relative dBP usage. We further show that codons for residues critically contributing to protein binding sites for Ca2+ and other divalent metals confer the exon inclusion order that mirrors the Irving-Williams affinity series, linking the evolution of auxiliary splicing motifs in exons to metallome constraints. Finally, we hypothesize that the dBP-driven selection for Ca2+-dependent ATP provision by E1 facilitated evolution of endothermy by optimizing the aerobic scope in target tissues.
Collapse
Affiliation(s)
- Jana Královičová
- University of Southampton, Faculty of Medicine, HDH, Southampton SO16 6YD, UK
- Slovak Academy of Sciences, Centre for Biosciences, 840 05 Bratislava, Slovak Republic
| | - Ivana Borovská
- Slovak Academy of Sciences, Centre for Biosciences, 840 05 Bratislava, Slovak Republic
| | - Reuben Pengelly
- University of Southampton, Faculty of Medicine, HDH, Southampton SO16 6YD, UK
| | - Eunice Lee
- School of Biological Sciences, University of Adelaide, Adelaide 5005, SA, Australia
| | - Pavel Abaffy
- Czech Academy of Sciences, Institute of Biotechnology, 25250 Vestec, Czech Republic
| | - Radek Šindelka
- Czech Academy of Sciences, Institute of Biotechnology, 25250 Vestec, Czech Republic
| | - Frank Grutzner
- School of Biological Sciences, University of Adelaide, Adelaide 5005, SA, Australia
| | - Igor Vořechovský
- University of Southampton, Faculty of Medicine, HDH, Southampton SO16 6YD, UK
| |
Collapse
|
6
|
Cross I, García E, Rodríguez ME, Arias-Pérez A, Portela-Bens S, Merlo MA, Rebordinos L. The genomic structure of the highly-conserved dmrt1 gene in Solea senegalensis (Kaup, 1868) shows an unexpected intragenic duplication. PLoS One 2020; 15:e0241518. [PMID: 33137109 PMCID: PMC7605655 DOI: 10.1371/journal.pone.0241518] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 10/15/2020] [Indexed: 01/17/2023] Open
Abstract
Knowing the factors responsible for sex determination in a species has significant theoretical and practical implications; the dmrt1 gene (Doublesex and Mab-3 (DM)-related Transcription factor 1) plays this role in diverse animal species. Solea senegalensis is a commercially important flat fish in which females grow 30% faster than males. It has 2n = 42 chromosomes and an XX / XY chromosome system for sex determination, without heteromorph chromosomes but with sex proto-chromosome. In the present study, we are providing the genomic structure and nucleotide sequence of dmrt1 gene obtained from cDNA from male and female adult gonads. A cDNA of 2027 containing an open-reading frame (ORF) of 1206 bp and encoding a 402 aa protein it is described for dmrt1 gene of S. senegalensis. Multiple mRNA isoforms indicating a high variable system of alternative splicing in the expression of dmrt1 of the sole in gonads were studied. None isoforms could be related to sex of individuals. The genomic structure of the dmrt1 of S. senegalensis showed a gene of 31400 bp composed of 7 exons and 6 introns. It contains an unexpected duplication of more than 10399 bp, involving part of the exon I, exons II and III and a SINE element found in the sequence that it is proposed as responsible for the duplication. A mature miRNA of 21 bp in length was localized at 336 bp from exon V. Protein-protein interacting networks of the dmrt1 gene showed matches with dmrt1 protein from Cynoglossus semilaevis and a protein interaction network with 11 nodes (dmrt1 plus 10 other proteins). The phylogenetic relationship of the dmrt1 gene in S. senegalensis is consistent with the evolutionary position of its species. The molecular characterization of this gene will enhance its functional analysis and the understanding of sex differentiation in Solea senegalensis and other flatfish.
Collapse
Affiliation(s)
- Ismael Cross
- Area de Genética, CASEM, Universidad de Cádiz, Puerto Real, Cádiz, Spain
| | - Emilio García
- Area de Genética, CASEM, Universidad de Cádiz, Puerto Real, Cádiz, Spain
| | - María E. Rodríguez
- Area de Genética, CASEM, Universidad de Cádiz, Puerto Real, Cádiz, Spain
| | | | | | - Manuel A. Merlo
- Area de Genética, CASEM, Universidad de Cádiz, Puerto Real, Cádiz, Spain
| | | |
Collapse
|
7
|
Salimonti A, Carbone F, Romano E, Pellegrino M, Benincasa C, Micali S, Tondelli A, Conforti FL, Perri E, Ienco A, Zelasco S. Association Study of the 5'UTR Intron of the FAD2-2 Gene With Oleic and Linoleic Acid Content in Olea europaea L. FRONTIERS IN PLANT SCIENCE 2020; 11:66. [PMID: 32117401 PMCID: PMC7031445 DOI: 10.3389/fpls.2020.00066] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 01/16/2020] [Indexed: 05/21/2023]
Abstract
Cultivated olive (Olea europaea L. subsp. europaea var. europaea) is the most ancient and spread tree crop in the Mediterranean basin. An important quality trait for the extra virgin olive oil is the fatty acid composition. In particular, a high content of oleic acid and low of linoleic, linolenic, and palmitic acid is considered very relevant in the health properties of the olive oil. The oleate desaturase enzyme encoding-gene (FAD2-2) is the main responsible for the linoleic acid content in the olive fruit mesocarp and, therefore, in the olive oil revealing to be the most important candidate gene for the linoleic acid biosynthesis. In this study, an in silico and structural analysis of the 5'UTR intron of the FAD2-2 gene was conducted with the aim to explore the natural sequence variability and its role in the gene expression regulation. In order to identify functional allele variants, the 5'UTR intron was isolated and partially sequenced in 97 olive cultivars. The sequence analysis allowed to find a 117-bp insertion including two long duplications never found before in FAD2-2 genes in olive and the existence of many intron-mediated enhancement (IME) elements. The sequence polymorphism analysis led to detect 39 SNPs. The candidate gene association study conducted for oleic and linoleic acids content revealed seven SNPs and one indel significantly associated able to explain a phenotypic variation ranging from 7% to 16% among the years. Our study highlighted new structural variants within the FAD2-2 gene in olive, putatively involved in the regulation mechanisms of gene expression associated with the variation of the content of oleic and linoleic acid.
Collapse
Affiliation(s)
- Amelia Salimonti
- Research Centre for Olive, Citrus and Tree Fruit, CREA, Rende, Italy
| | - Fabrizio Carbone
- Research Centre for Olive, Citrus and Tree Fruit, CREA, Rende, Italy
| | - Elvira Romano
- Research Centre for Olive, Citrus and Tree Fruit, CREA, Rende, Italy
| | | | - Cinzia Benincasa
- Research Centre for Olive, Citrus and Tree Fruit, CREA, Rende, Italy
| | - Sabrina Micali
- Research Centre for Olive, Citrus and Tree Fruit, CREA, Roma, Italy
| | - Alessandro Tondelli
- Research Centre for Genomics and Bioinformatics, CREA, Fiorenzuola D’Arda, Italy
| | - Francesca L. Conforti
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Enzo Perri
- Research Centre for Olive, Citrus and Tree Fruit, CREA, Rende, Italy
| | | | - Samanta Zelasco
- Research Centre for Olive, Citrus and Tree Fruit, CREA, Rende, Italy
- *Correspondence: Samanta Zelasco,
| |
Collapse
|
8
|
Abstract
Boasting nearly 30,000 species, teleosts account for half of all extant vertebrates and approximately 98% of all ray-finned fish species (Actinopterygii). Teleosts are also the largest and most diverse group of vertebrates, exhibiting an astonishing level of morphological, physiological, and behavioral diversity. Previous studies had indicated that the teleost lineage has experienced an additional whole-genome duplication event. Recent comparative genomic analyses of teleosts and other bony vertebrates using spotted gar (a nonteleost ray-finned fish) and elephant shark (a cartilaginous fish) as outgroups have revealed several divergent features of teleost genomes. These include an accelerated evolutionary rate of protein-coding and nucleotide sequences, a higher rate of intron turnover, loss of many potential cis-regulatory elements and shorter conserved syntenic blocks. A combination of these divergent genomic features might have contributed to the evolution of the amazing phenotypic diversity and morphological innovations of teleosts.
Collapse
Affiliation(s)
- Vydianathan Ravi
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138673; ,
| | - Byrappa Venkatesh
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138673; ,
| |
Collapse
|
9
|
Genome wide analysis of the transition to pathogenic lifestyles in Magnaporthales fungi. Sci Rep 2018; 8:5862. [PMID: 29651164 PMCID: PMC5897359 DOI: 10.1038/s41598-018-24301-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 03/29/2018] [Indexed: 11/08/2022] Open
Abstract
The rice blast fungus Pyricularia oryzae (syn. Magnaporthe oryzae, Magnaporthe grisea), a member of the order Magnaporthales in the class Sordariomycetes, is an important plant pathogen and a model species for studying pathogen infection and plant-fungal interaction. In this study, we generated genome sequence data from five additional Magnaporthales fungi including non-pathogenic species, and performed comparative genome analysis of a total of 13 fungal species in the class Sordariomycetes to understand the evolutionary history of the Magnaporthales and of fungal pathogenesis. Our results suggest that the Magnaporthales diverged ca. 31 millon years ago from other Sordariomycetes, with the phytopathogenic blast clade diverging ca. 21 million years ago. Little evidence of inter-phylum horizontal gene transfer (HGT) was detected in Magnaporthales. In contrast, many genes underwent positive selection in this order and the majority of these sequences are clade-specific. The blast clade genomes contain more secretome and avirulence effector genes, which likely play key roles in the interaction between Pyricularia species and their plant hosts. Finally, analysis of transposable elements (TE) showed differing proportions of TE classes among Magnaporthales genomes, suggesting that species-specific patterns may hold clues to the history of host/environmental adaptation in these fungi.
Collapse
|
10
|
Liu G, Arnaud P, Offmann B, Picimbon JF. Genotyping and Bio-Sensing Chemosensory Proteins in Insects. SENSORS (BASEL, SWITZERLAND) 2017; 17:E1801. [PMID: 28777348 PMCID: PMC5579523 DOI: 10.3390/s17081801] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/28/2017] [Accepted: 07/29/2017] [Indexed: 12/20/2022]
Abstract
Genotyping is the process of determining differences in the genetic make-up of an individual and comparing it to that of another individual. Focus on the family of chemosensory proteins (CSPs) in insects reveals differences at the genomic level across various strains and biotypes, but none at the level of individuals, which could be extremely useful in the biotyping of insect pest species necessary for the agricultural, medical and veterinary industries. Proposed methods of genotyping CSPs include not only restriction enzymatic cleavage and amplification of cleaved polymorphic sequences, but also detection of retroposons in some specific regions of the insect chromosome. Design of biosensors using CSPs addresses tissue-specific RNA mutations in a particular subtype of the protein, which could be used as a marker of specific physiological conditions. Additionally, we refer to the binding properties of CSP proteins tuned to lipids and xenobiotic insecticides for the development of a new generation of biosensor chips, monitoring lipid blood concentration and chemical environmental pollution.
Collapse
Affiliation(s)
- Guoxia Liu
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan 250100, China.
| | - Philippe Arnaud
- Protein Engineering and Functionality Unit, University of Nantes, Nantes 44322, France.
| | - Bernard Offmann
- Protein Engineering and Functionality Unit, University of Nantes, Nantes 44322, France.
| | - Jean-François Picimbon
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan 250100, China.
- QILU University of Technology, School of Bioengineering, Jinan 250353, China.
| |
Collapse
|
11
|
Catania F. From intronization to intron loss: How the interplay between mRNA-associated processes can shape the architecture and the expression of eukaryotic genes. Int J Biochem Cell Biol 2017; 91:136-144. [PMID: 28673893 DOI: 10.1016/j.biocel.2017.06.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 06/25/2017] [Accepted: 06/30/2017] [Indexed: 12/29/2022]
Abstract
Transcription-coupled processes such as capping, splicing, and cleavage/polyadenylation participate in the journey from genes to proteins. Although they are traditionally thought to serve only as steps in the generation of mature mRNAs, a synthesis of available data indicates that these processes could also act as a driving force for the evolution of eukaryotic genes. A theoretical framework for how mRNA-associated processes may shape gene structure and expression has recently been proposed. Factors that promote splicing and cleavage/polyadenylation in this framework compete for access to overlapping or neighboring signals throughout the transcription cycle. These antagonistic interactions allow mechanisms for intron gain and splice site recognition as well as common trends in eukaryotic gene structure and expression to be coherently integrated. Here, I extend this framework further. Observations that largely (but not exclusively) revolve around the formation of DNA-RNA hybrid structures, called R loops, and promoter directionality are integrated. Additionally, the interplay between splicing factors and cleavage/polyadenylation factors is theorized to also affect the formation of intragenic DNA double-stranded breaks thereby contributing to intron loss. The most notable prediction in this proposition is that RNA molecules can mediate intron loss by serving as a template to repair DNA double-stranded breaks. The framework presented here leverages a vast body of empirical observations, logically extending previous suggestions, and generating verifiable predictions to further substantiate the view that the intracellular environment plays an active role in shaping the structure and the expression of eukaryotic genes.
Collapse
Affiliation(s)
- Francesco Catania
- Institute for Evolution and Biodiversity, University of Münster, Hüfferstraße 1, 48149 Münster, Germany.
| |
Collapse
|
12
|
Ma MY, Lan XR, Niu DK. Intron gain by tandem genomic duplication: a novel case in a potato gene encoding RNA-dependent RNA polymerase. PeerJ 2016; 4:e2272. [PMID: 27547574 PMCID: PMC4974935 DOI: 10.7717/peerj.2272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 06/29/2016] [Indexed: 01/15/2023] Open
Abstract
The origin and subsequent accumulation of spliceosomal introns are prominent events in the evolution of eukaryotic gene structure. However, the mechanisms underlying intron gain remain unclear because there are few proven cases of recently gained introns. In an RNA-dependent RNA polymerase (RdRp) gene, we found that a tandem duplication occurred after the divergence of potato and its wild relatives among other Solanum plants. The duplicated sequence crosses the intron-exon boundary of the first intron and the second exon. A new intron was detected at this duplicated region, and it includes a small previously exonic segment of the upstream copy of the duplicated sequence and the intronic segment of the downstream copy of the duplicated sequence. The donor site of this new intron was directly obtained from the small previously exonic segment. Most of the splicing signals were inherited directly from the parental intron/exon structure, including a putative branch site, the polypyrimidine tract, the 3' splicing site, two putative exonic splicing enhancers, and the GC contents differed between the intron and exon. In the widely cited model of intron gain by tandem genomic duplication, the duplication of an AGGT-containing exonic segment provides the GT and AG splicing sites for the new intron. Our results illustrate that the tandem duplication model of intron gain should be diverse in terms of obtaining the proper splicing signals.
Collapse
Affiliation(s)
- Ming-Yue Ma
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering and Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University , Beijing , China
| | - Xin-Ran Lan
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering and Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University , Beijing , China
| | - Deng-Ke Niu
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering and Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University , Beijing , China
| |
Collapse
|
13
|
Liang Q, Li W, Guo N, Tong C, Zhou Y, Fang W, Li X. Identification and Functional Analysis of Interleukin-1β in the Chinese Soft-Shelled Turtle Pelodiscus sinensis. Genes (Basel) 2016; 7:genes7050018. [PMID: 27153094 PMCID: PMC4880838 DOI: 10.3390/genes7050018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 04/25/2016] [Accepted: 04/27/2016] [Indexed: 02/06/2023] Open
Abstract
Chinese soft-shelled turtle (Pelodiscus sinensis) is commercially cultured in East and Southeast Asia for its nutritional and medicinal values. In this study, we identified interleukin-1β (IL-1β) from Chinese soft-shelled turtle. The full-length cDNA of Pelodiscus sinensis IL-1β (tIL-1β) consists of 1529 base pairs with an 831-base-pair open reading frame, encoding 277 amino acids. The guanine-cytosine (GC) content in the coding sequence and 3' untranslated region of tIL-1β is considerably higher than that of other vertebrates. Its mRNA expression level increased significantly during Aeromonas hydrophila infection. The tIL-1β lacks the typical IL-1β-converting enzyme (ICE) cut site found in mammalian IL-1β, but still could be cleaved by turtle caspase-1. By mutating the potential cleavage sites, we identified aspartic acid (Asp/D) 130 as the ICE cut site in tIL-1β. The peptide truncated at D130 was expressed using the baculovirus expression system; its bioactivity is confirmed by the ability to induce cyclooxygenase-2 (COX-2) and tIL-1β itself in peripheral blood monocytes. In conclusion, we characterized IL-1β from Chinese soft-shelled turtle and identified its D130 as a non-typical ICE cut size.
Collapse
Affiliation(s)
- Quan Liang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Science, Zhejiang University, Hangzhou 310058, China.
| | - Weifen Li
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Science, Zhejiang University, Hangzhou 310058, China.
| | - Ningning Guo
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou 310058, China.
| | - Chao Tong
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou 310058, China.
| | - Yingshan Zhou
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou 310058, China.
| | - Weihuan Fang
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou 310058, China.
| | - Xiaoliang Li
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
14
|
Evolution of a Novel Antiviral Immune-Signaling Interaction by Partial-Gene Duplication. PLoS One 2015; 10:e0137276. [PMID: 26356745 PMCID: PMC4565553 DOI: 10.1371/journal.pone.0137276] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 08/16/2015] [Indexed: 12/28/2022] Open
Abstract
The RIG-like receptors (RLRs) are related proteins that identify viral RNA in the cytoplasm and activate cellular immune responses, primarily through direct protein-protein interactions with the signal transducer, IPS1. Although it has been well established that the RLRs, RIG-I and MDA5, activate IPS1 through binding between the twin caspase activation and recruitment domains (CARDs) on the RLR and a homologous CARD on IPS1, it is less clear which specific RLR CARD(s) are required for this interaction, and almost nothing is known about how the RLR-IPS1 interaction evolved. In contrast to what has been observed in the presence of immune-modulating K63-linked polyubiquitin, here we show that-in the absence of ubiquitin-it is the first CARD domain of human RIG-I and MDA5 (CARD1) that binds directly to IPS1 CARD, and not the second (CARD2). Although the RLRs originated in the earliest animals, both the IPS1 gene and the twin-CARD domain architecture of RIG-I and MDA5 arose much later in the deuterostome lineage, probably through a series of tandem partial-gene duplication events facilitated by tight clustering of RLRs and IPS1 in the ancestral deuterostome genome. Functional differentiation of RIG-I CARD1 and CARD2 appears to have occurred early during this proliferation of RLR and related CARDs, potentially driven by adaptive coevolution between RIG-I CARD domains and IPS1 CARD. However, functional differentiation of MDA5 CARD1 and CARD2 occurred later. These results fit a general model in which duplications of protein-protein interaction domains into novel gene contexts could facilitate the expansion of signaling networks and suggest a potentially important role for functionally-linked gene clusters in generating novel immune-signaling pathways.
Collapse
|
15
|
Abstract
Introns in protein-coding genes are very rare in hemiascomycetous yeast genomes. It has been suggested that these species have experienced extensive intron loss during their evolution from the postulated intron-rich fungal ancestor. However, no intron-devoid yeast species have been identified and some of the introns remaining within the genomes of intron-poor species, such as Saccharomyces cerevisiae, appear to be beneficial during growth under stress conditions. In order to reveal the pattern of intron retention within intron-poor yeast species and better understand the mechanisms of intron evolution, we generated a comprehensive set of 250 orthologous introns in the 20 species that comprise the Saccharomycetaceae, by analyzing RNA deep-sequencing data and alignments of intron-containing genes. Analysis of these intron sets shows that intron loss is at least two orders of magnitude more frequent than intron gain. Fine mapping of intron positions shows that intron sliding is rare, and that introns are almost always removed without changing the primary sequence of the encoded protein. The latter finding is consistent with the prevailing view that homologous recombination between reverse-transcribed mature mRNAs and the corresponding genomic locus is the primary mechanism of intron loss. However, we also find evidence that loss of a small number of introns is mediated by micro-homology, and that the number of intron losses is diminished in yeast species that have lost the microhomology end joining and nonhomologous end joining machinery.
Collapse
Affiliation(s)
- Katarzyna B. Hooks
- Faculty of Life Sciences, University of Manchester, United Kingdom
- U1053 INSERM, Université de Bordeaux, France
| | - Daniela Delneri
- Faculty of Life Sciences, University of Manchester, United Kingdom
| | - Sam Griffiths-Jones
- Faculty of Life Sciences, University of Manchester, United Kingdom
- *Corresponding author: E-mail:
| |
Collapse
|
16
|
Ma MY, Zhu T, Li XN, Lan XR, Liu HY, Yang YF, Niu DK. Imprecise intron losses are less frequent than precise intron losses but are not rare in plants. Biol Direct 2015; 10:24. [PMID: 27392031 PMCID: PMC4443532 DOI: 10.1186/s13062-015-0056-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 04/24/2015] [Indexed: 11/10/2022] Open
Abstract
Abstract In this study, we identified 19 intron losses, including 11 precise intron losses (PILs), six imprecise intron losses (IILs), one de-exonization, and one exon deletion in tomato and potato, and 17 IILs in Arabidopsis thaliana. Comparative analysis of related genomes confirmed that all of the IILs have been fixed during evolution. Consistent with previous studies, our results indicate that PILs are a major type of intron loss. However, at least in plants, IILs are unlikely to be as rare as previously reported. Reviewers This article was reviewed by Jun Yu and Zhang Zhang. For complete reviews, see the Reviewers’ Reports section. Electronic supplementary material The online version of this article (doi:10.1186/s13062-015-0056-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ming-Yue Ma
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Tao Zhu
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Xue-Nan Li
- Beijing Computing Center, Beijing, 10094, China
| | - Xin-Ran Lan
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Heng-Yuan Liu
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Yu-Fei Yang
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.,Present address: Institute of Genetics & Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Deng-Ke Niu
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
17
|
Merkin JJ, Chen P, Alexis MS, Hautaniemi SK, Burge CB. Origins and impacts of new mammalian exons. Cell Rep 2015; 10:1992-2005. [PMID: 25801031 DOI: 10.1016/j.celrep.2015.02.058] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 01/09/2015] [Accepted: 02/23/2015] [Indexed: 02/08/2023] Open
Abstract
Mammalian genes are composed of exons, but the evolutionary origins and functions of new internal exons are poorly understood. Here, we analyzed patterns of exon gain using deep cDNA sequencing data from five mammals and one bird, identifying thousands of species- and lineage-specific exons. Most new exons derived from unique rather than repetitive intronic sequence. Unlike exons conserved across mammals, species-specific internal exons were mostly located in 5' UTRs and alternatively spliced. They were associated with upstream intronic deletions, increased nucleosome occupancy, and RNA polymerase II pausing. Genes containing new internal exons had increased gene expression, but only in tissues in which the exon was included. Increased expression correlated with the level of exon inclusion, promoter proximity, and signatures of cotranscriptional splicing. Altogether, these findings suggest that increased splicing at the 5' ends of genes enhances expression and that changes in 5' end splicing alter gene expression between tissues and between species.
Collapse
Affiliation(s)
- Jason J Merkin
- Departments of Biology and Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Ping Chen
- Research Programs Unit, Genome-Scale Biology and Institute of Biomedicine, University of Helsinki, 00014 Helsinki, Finland
| | - Maria S Alexis
- Departments of Biology and Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Program in Computational and Systems Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Sampsa K Hautaniemi
- Research Programs Unit, Genome-Scale Biology and Institute of Biomedicine, University of Helsinki, 00014 Helsinki, Finland
| | - Christopher B Burge
- Departments of Biology and Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Program in Computational and Systems Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| |
Collapse
|
18
|
Li W, Kuzoff R, Wong CK, Tucker A, Lynch M. Characterization of newly gained introns in Daphnia populations. Genome Biol Evol 2014; 6:2218-34. [PMID: 25123113 PMCID: PMC4202315 DOI: 10.1093/gbe/evu174] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
As one of the few known species in an active phase of intron proliferation, the microcrustacean Daphnia pulex is an especially attractive system for interrogating the gain and loss of introns in natural populations. In this study, we used a comparative population-genomic approach to identify and characterize 90 recently gained introns in this species. Molecular clock analyses indicate that these introns arose between 3.9 × 10(5) and 1.45 × 10(4) years ago, with a spike in intron proliferation approximately 5.2 × 10(4) to 1.22 × 10(5) years ago. Parallel gains at homologous positions contribute to 47.8% (43/90) of discovered new introns. A disproportionally large number of new introns were found in historically isolated populations in Oregon. Nonetheless, derived, intron-bearing alleles were also identified in a wide range of geographic locations, suggesting intron gain and, to a lesser degree, intron loss are important sources of genetic variation in natural populations of Daphnia. A majority (55/90 or 61.1%) of the identified neointrons have associated internal direct repeats with lengths and compositions that are unlikely to occur by chance, suggesting repeated bouts of staggered double-strand breaks (DSBs) during their evolution. Accordingly, internal, staggered DSBs may contribute to a passive trend toward increased length and sequence diversity in nascent introns.
Collapse
Affiliation(s)
- Wenli Li
- Department of Pediatrics, Section of Genomic Pediatrics, Medical College of Wisconsin
| | - Robert Kuzoff
- Department of Biology, University of Wisconsin-Whitewater
| | - Chen Khuan Wong
- Genetics and Genomics Program, Department of Medicine, Boston University
| | | | - Michael Lynch
- Department of Biology, Indiana University, Bloomington
| |
Collapse
|
19
|
Catania F, McGrath CL, Doak TG, Lynch M. Spliced DNA sequences in the Paramecium germline: their properties and evolutionary potential. Genome Biol Evol 2013; 5:1200-11. [PMID: 23737328 PMCID: PMC3698930 DOI: 10.1093/gbe/evt087] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Despite playing a crucial role in germline-soma differentiation, the evolutionary significance of developmentally regulated genome rearrangements (DRGRs) has received scant attention. An example of DRGR is DNA splicing, a process that removes segments of DNA interrupting genic and/or intergenic sequences. Perhaps, best known for shaping immune-system genes in vertebrates, DNA splicing plays a central role in the life of ciliated protozoa, where thousands of germline DNA segments are eliminated after sexual reproduction to regenerate a functional somatic genome. Here, we identify and chronicle the properties of 5,286 sequences that putatively undergo DNA splicing (i.e., internal eliminated sequences [IESs]) across the genomes of three closely related species of the ciliate Paramecium (P. tetraurelia, P. biaurelia, and P. sexaurelia). The study reveals that these putative IESs share several physical characteristics. Although our results are consistent with excision events being largely conserved between species, episodes of differential IES retention/excision occur, may have a recent origin, and frequently involve coding regions. Our findings indicate interconversion between somatic--often coding--DNA sequences and noncoding IESs, and provide insights into the role of DNA splicing in creating potentially functional genetic innovation.
Collapse
Affiliation(s)
- Francesco Catania
- Institute for Evolution and Biodiversity, University of Münster, Germany
| | | | | | | |
Collapse
|
20
|
Zhu T, Niu DK. Mechanisms of intron loss and gain in the fission yeast Schizosaccharomyces. PLoS One 2013; 8:e61683. [PMID: 23613904 PMCID: PMC3629103 DOI: 10.1371/journal.pone.0061683] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 03/13/2013] [Indexed: 11/24/2022] Open
Abstract
The fission yeast, Schizosaccharomyces pombe, is an important model species with a low intron density. Previous studies showed extensive intron losses during its evolution. To test the models of intron loss and gain in fission yeasts, we conducted a comparative genomic analysis in four Schizosaccharomyces species. Both intronization and de-intronization were observed, although both were at a low frequency. A de-intronization event was caused by a degenerative mutation in the branch site. Four cases of imprecise intron losses were identified, indicating that genomic deletion is not a negligible mechanism of intron loss. Most intron losses were precise deletions of introns, and were significantly biased to the 3′ sides of genes. Adjacent introns tended to be lost simultaneously. These observations indicated that the main force shaping the exon-intron structures of fission yeasts was precise intron losses mediated by reverse transcriptase. We found two cases of intron gains caused by tandem genomic duplication, but failed to identify the mechanisms for the majority of the intron gain events observed. In addition, we found that intron-lost and intron-gained genes had certain similar features, such as similar Gene Ontology categories and expression levels.
Collapse
Affiliation(s)
- Tao Zhu
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering and Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Deng-Ke Niu
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering and Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
- * E-mail:
| |
Collapse
|
21
|
Du ZQ, Yang CX, Rothschild MF, Ross JW. Novel microRNA families expanded in the human genome. BMC Genomics 2013; 14:98. [PMID: 23402294 PMCID: PMC3602292 DOI: 10.1186/1471-2164-14-98] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 01/31/2013] [Indexed: 12/28/2022] Open
Abstract
Background Most studies on the origin and evolution of microRNA in the human genome have been focused on its relationship with repetitive elements and segmental duplications. However, duplication events at a smaller scale (<1 kb) could also contribute to microRNA expansion, as demonstrated in this study. Results Using comparative genome analysis and bioinformatics methods, we found nine novel expanded microRNA families enriched in short duplicated sequences in the human genome. Furthermore, novel genomic regions were found to contain microRNA paralogs for microRNA families previously analyzed to be related to segmental duplications. We found that for microRNA families expanded in the human genome, 14 families are specific to the primate lineage, and nine are non-specific, respectively. Two microRNA families (hsa-mir-1233 and hsa-mir-622) appear to be further expanded in the human genome, and were confirmed by fluorescence in situ hybridization. These novel microRNA families expanded in the human genome were mostly embedded in or close to proteins with conserved functions. Furthermore, besides the Alu element, L1 elements could also contribute to the origination of microRNA paralog families. Conclusions Together, we found that small duplication events could also contribute to microRNA expansion, which could provide us novel insights on the evolution of human genome structure and function.
Collapse
Affiliation(s)
- Zhi-Qiang Du
- Department of Animal Science and Center for Integrated Animal Genomics, Iowa State University, 2255 Kildee Hall, Ames, IA 50011, USA.
| | | | | | | |
Collapse
|
22
|
Vogel KJ, Moran NA. Functional and evolutionary analysis of the genome of an obligate fungal symbiont. Genome Biol Evol 2013; 5:891-904. [PMID: 23563967 PMCID: PMC3673620 DOI: 10.1093/gbe/evt054] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2013] [Indexed: 01/21/2023] Open
Abstract
Nutritional symbionts of insects include some of the most bizarre genomes studied to date, with extremely reduced size, biased base composition, and limited metabolic abilities. A monophyletic group of aphids within the subfamily Cerataphidinae have lost the bacterial symbiont common to all other Aphididae (Buchnera aphidicola), which have been replaced by a eukaryotic one, the yeast-like symbiont (YLS). As symbionts are expected to experience reduced effective population size (Ne) and largely clonal life cycles, we used this system as a model to test the hypothesis that chronically high levels of genetic drift will result in an increase in size of a eukaryotic genome. We sequenced the genome of the YLS of the aphid Cerataphis brasiliensis and observed elevated rates of protein sequence evolution and intron proliferation in YLS orthologs relative to those of its closest-sequenced relative, consistent with predictions. A moderate amount of repetitive DNA was found along with evidence of directed mutation to prevent proliferation of repetitive elements. Despite increased intron numbers, the overall genome structure appears not to have undergone massive expansion and is around 25 Mb in size. Compared with Buchnera, the YLS appears to have a much broader metabolic repertoire, though many gene families have been reduced in the YLS relative to related fungi. The patterns observed in the YLS genome suggest that its symbiotic lifestyle is permissive to intron proliferation and accelerated sequence evolution, though other factors appear to limit its overall genome expansion.
Collapse
Affiliation(s)
- Kevin J Vogel
- Department of Ecology and Evolutionary Biology, University of Arizona, USA.
| | | |
Collapse
|
23
|
d'Alençon E, Bierne N, Girard PA, Magdelenat G, Gimenez S, Seninet I, Escoubas JM. Evolutionary history of x-tox genes in three lepidopteran species: origin, evolution of primary and secondary structure and alternative splicing, generating a repertoire of immune-related proteins. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2013; 43:54-64. [PMID: 23142192 DOI: 10.1016/j.ibmb.2012.10.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 09/24/2012] [Accepted: 10/30/2012] [Indexed: 06/01/2023]
Abstract
The proteins of the X-tox family have imperfectly conserved tandem repeats of several defensin-like motifs known as cysteine-stabilized αβ (CS-αβ) motifs. These immune-related proteins are inducible and expressed principally in hemocytes, but they have lost the antimicrobial properties of the ancestral defensins from which they evolved. We compared x-tox gene structure and expression in three lepidopteran species (Spodoptera frugiperda, Helicoverpa armigera and Bombyx mori). Synteny and phylogenetic analyses showed that the x-tox exons encoding CS-αβ motifs were phylogenetically closely related to defensin genes mapping to chromosomal positions close to the x-tox genes. We were able to define two groups of paralogous x-tox exons (three in Noctuids) that each followed the expected species tree. These results suggest that the ancestor of the three species already possessed an x-tox gene with at least two proto-domains, and an additional duplication/fusion should have occurred in the ancestor of the two noctuid species. An expansion of the number of exons subsequently occurred in each lineage. Alternatively, the proto x-tox gene possessed more copy and each group of x-tox domains might undergo concerted evolution through gene conversion. Accelerated protein evolution was detected in x-tox domains when compared to related defensins, concomitantly to multiplication of exons and/or the possible activation of concerted evolution. The x-tox genes of the three species have similar structural organizations, with repeat motifs composed of CS-αβ-encoding exons flanked by introns in phase 1. Diverse mechanisms underlie this organization: (i) the acquisition of new repeat motifs, (ii) the duplication of preexisting repeat motifs and (iii) the duplication of modules. A comparison of gDNA and cDNA structures showed that alternative splicing results in the production of multiple X-tox protein isoforms from the x-tox genes. Differences in the number and sequence of CS-αβ motifs in these isoforms were found between species, but also between individuals of the same species. Thus, our analysis of the genetic organization and expression of x-tox genes in three lepidopteran species suggests a rapid evolution of the organization of these genes.
Collapse
Affiliation(s)
- Emmanuelle d'Alençon
- INRA, UMR 1333 Laboratoire Diversité, Génomes & Interactions Microorganismes - Insectes (DGIMI), CC54, 2 place E. Bataillon, 34095 Montpellier, France
| | | | | | | | | | | | | |
Collapse
|
24
|
Yenerall P, Zhou L. Identifying the mechanisms of intron gain: progress and trends. Biol Direct 2012; 7:29. [PMID: 22963364 PMCID: PMC3443670 DOI: 10.1186/1745-6150-7-29] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 08/22/2012] [Indexed: 12/22/2022] Open
Abstract
Abstract Continued improvements in Next-Generation DNA/RNA sequencing coupled with advances in gene annotation have provided researchers access to a plethora of annotated genomes. Subsequent analyses of orthologous gene structures have identified numerous intron gain and loss events that have occurred both recently and in the very distant past. This research has afforded exceptional insight into the temporal and lineage-specific rates of intron gain and loss among various species throughout evolution. Numerous studies have also attempted to identify the molecular mechanisms of intron gain and loss. However, even after considerable effort, very little is known about these processes. In particular, the mechanism(s) of intron gain have proven exceptionally enigmatic and remain topics of considerable debate. Currently, there exists no definitive consensus as to what mechanism(s) may generate introns. Because many introns are known to affect gene expression, it is necessary to understand the molecular process(es) by which introns may be gained. Here we review the seven most commonly purported mechanisms of intron gain and, when possible, summarize molecular evidence for or against the occurrence of each of these mechanisms. Furthermore, we catalogue indirect evidence that supports the occurrence of each mechanism. Finally, because these proposed mechanisms fail to explain the mechanistic origin of many recently gained introns, we also look at trends that may aid researchers in identifying other potential mechanism(s) of intron gain. Reviewers This article was reviewed by Eugene Koonin, Scott Roy (nominated by W. Ford Doolittle), and John Logsdon.
Collapse
Affiliation(s)
- Paul Yenerall
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | |
Collapse
|
25
|
Novel genes from formation to function. INTERNATIONAL JOURNAL OF EVOLUTIONARY BIOLOGY 2012; 2012:821645. [PMID: 22811949 PMCID: PMC3395120 DOI: 10.1155/2012/821645] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 04/26/2012] [Indexed: 11/29/2022]
Abstract
The study of the evolution of novel genes generally focuses on the formation of new coding sequences. However, equally important in the evolution of novel functional genes are the formation of regulatory regions that allow the expression of the genes and the effects of the new genes in the organism as well. Herein, we discuss the current knowledge on the evolution of novel functional genes, and we examine in more detail the youngest genes discovered. We examine the existing data on a very recent and rapidly evolving cluster of duplicated genes, the Sdic gene cluster. This cluster of genes is an excellent model for the evolution of novel genes, as it is very recent and may still be in the process of evolving.
Collapse
|
26
|
Mbanefo EC, Chuanxin Y, Kikuchi M, Shuaibu MN, Boamah D, Kirinoki M, Hayashi N, Chigusa Y, Osada Y, Hamano S, Hirayama K. Origin of a novel protein-coding gene family with similar signal sequence in Schistosoma japonicum. BMC Genomics 2012; 13:260. [PMID: 22716200 PMCID: PMC3434034 DOI: 10.1186/1471-2164-13-260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 06/11/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Evolution of novel protein-coding genes is the bedrock of adaptive evolution. Recently, we identified six protein-coding genes with similar signal sequence from Schistosoma japonicum egg stage mRNA using signal sequence trap (SST). To find the mechanism underlying the origination of these genes with similar core promoter regions and signal sequence, we adopted an integrated approach utilizing whole genome, transcriptome and proteome database BLAST queries, other bioinformatics tools, and molecular analyses. RESULTS Our data, in combination with database analyses showed evidences of expression of these genes both at the mRNA and protein levels exclusively in all developmental stages of S. japonicum. The signal sequence motif was identified in 27 distinct S. japonicum UniGene entries with multiple mRNA transcripts, and in 34 genome contigs distributed within 18 scaffolds with evidence of genome-wide dispersion. No homolog of these genes or similar domain was found in deposited data from any other organism. We observed preponderance of flanking repetitive elements (REs), albeit partial copies, especially of the RTE-like and Perere class at either side of the duplication source locus. The role of REs as major mediators of DNA-level recombination leading to dispersive duplication is discussed with evidence from our analyses. We also identified a stepwise pathway towards functional selection in evolving genes by alternative splicing. Equally, the possible transcription models of some protein-coding representatives of the duplicons are presented with evidence of expression in vitro. CONCLUSION Our findings contribute to the accumulating evidence of the role of REs in the generation of evolutionary novelties in organisms' genomes.
Collapse
Affiliation(s)
- Evaristus Chibunna Mbanefo
- Department of Immunogenetics, Institute of Tropical Medicine (NEKKEN), and Global COE Program, Nagasaki University, 1-12-4 Sakamoto, 852-8523, Nagasaki, Japan
- Department of Parasitology and Entomology, Faculty of Bioscience, Nnamdi Azikiwe University, P.M.B. 5025, Awka, Nigeria
| | - Yu Chuanxin
- Laboratory on Technology for Parasitic Disease Prevention and Control, Jiangsu Institute of Parasitic Diseases, 117 Yangxiang, Meiyuan, Wuxi, 214064, People's Republic of China
| | - Mihoko Kikuchi
- Department of Immunogenetics, Institute of Tropical Medicine (NEKKEN), and Global COE Program, Nagasaki University, 1-12-4 Sakamoto, 852-8523, Nagasaki, Japan
| | - Mohammed Nasir Shuaibu
- Department of Immunogenetics, Institute of Tropical Medicine (NEKKEN), and Global COE Program, Nagasaki University, 1-12-4 Sakamoto, 852-8523, Nagasaki, Japan
| | - Daniel Boamah
- Department of Immunogenetics, Institute of Tropical Medicine (NEKKEN), and Global COE Program, Nagasaki University, 1-12-4 Sakamoto, 852-8523, Nagasaki, Japan
| | - Masashi Kirinoki
- Laboratory of Tropical Medicine and Parasitology, Dokkyo Medical University, Tochigi, Japan
| | - Naoko Hayashi
- Laboratory of Tropical Medicine and Parasitology, Dokkyo Medical University, Tochigi, Japan
| | - Yuichi Chigusa
- Laboratory of Tropical Medicine and Parasitology, Dokkyo Medical University, Tochigi, Japan
| | - Yoshio Osada
- Department of Immunology and Parasitology, The University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Shinjiro Hamano
- Department of Parasitology, Institute of Tropical Medicine (NEKKEN), and Global COE Program, Nagasaki University, 1-12-4 Sakamoto, 852-8523, Nagasaki, Japan
| | - Kenji Hirayama
- Department of Immunogenetics, Institute of Tropical Medicine (NEKKEN), and Global COE Program, Nagasaki University, 1-12-4 Sakamoto, 852-8523, Nagasaki, Japan
| |
Collapse
|
27
|
Kipnis Y, Dellus-Gur E, Tawfik DS. TRINS: a method for gene modification by randomized tandem repeat insertions. Protein Eng Des Sel 2012; 25:437-44. [DOI: 10.1093/protein/gzs023] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
28
|
Rogozin IB, Carmel L, Csuros M, Koonin EV. Origin and evolution of spliceosomal introns. Biol Direct 2012; 7:11. [PMID: 22507701 PMCID: PMC3488318 DOI: 10.1186/1745-6150-7-11] [Citation(s) in RCA: 245] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 03/15/2012] [Indexed: 12/31/2022] Open
Abstract
Evolution of exon-intron structure of eukaryotic genes has been a matter of long-standing, intensive debate. The introns-early concept, later rebranded ‘introns first’ held that protein-coding genes were interrupted by numerous introns even at the earliest stages of life's evolution and that introns played a major role in the origin of proteins by facilitating recombination of sequences coding for small protein/peptide modules. The introns-late concept held that introns emerged only in eukaryotes and new introns have been accumulating continuously throughout eukaryotic evolution. Analysis of orthologous genes from completely sequenced eukaryotic genomes revealed numerous shared intron positions in orthologous genes from animals and plants and even between animals, plants and protists, suggesting that many ancestral introns have persisted since the last eukaryotic common ancestor (LECA). Reconstructions of intron gain and loss using the growing collection of genomes of diverse eukaryotes and increasingly advanced probabilistic models convincingly show that the LECA and the ancestors of each eukaryotic supergroup had intron-rich genes, with intron densities comparable to those in the most intron-rich modern genomes such as those of vertebrates. The subsequent evolution in most lineages of eukaryotes involved primarily loss of introns, with only a few episodes of substantial intron gain that might have accompanied major evolutionary innovations such as the origin of metazoa. The original invasion of self-splicing Group II introns, presumably originating from the mitochondrial endosymbiont, into the genome of the emerging eukaryote might have been a key factor of eukaryogenesis that in particular triggered the origin of endomembranes and the nucleus. Conversely, splicing errors gave rise to alternative splicing, a major contribution to the biological complexity of multicellular eukaryotes. There is no indication that any prokaryote has ever possessed a spliceosome or introns in protein-coding genes, other than relatively rare mobile self-splicing introns. Thus, the introns-first scenario is not supported by any evidence but exon-intron structure of protein-coding genes appears to have evolved concomitantly with the eukaryotic cell, and introns were a major factor of evolution throughout the history of eukaryotes. This article was reviewed by I. King Jordan, Manuel Irimia (nominated by Anthony Poole), Tobias Mourier (nominated by Anthony Poole), and Fyodor Kondrashov. For the complete reports, see the Reviewers’ Reports section.
Collapse
Affiliation(s)
- Igor B Rogozin
- National Center for Biotechnology Information NLM/NIH, 8600 Rockville Pike, Bldg, 38A, Bethesda, MD 20894, USA
| | | | | | | |
Collapse
|
29
|
Abstract
The recent explosion of genome sequences from all major phylogenetic groups has unveiled an unexpected wealth of cases of recurrent evolution of strikingly similar genomic features in different lineages. Here, we review the diverse known types of recurrent evolution in eukaryotic genomes, with a special focus on metazoans, ranging from reductive genome evolution to origins of splice-leader trans-splicing, from tandem exon duplications to gene family expansions. We first propose a general classification scheme for evolutionary recurrence at the genomic level, based on the type of driving force-mutation or selection-and the environmental and genomic circumstances underlying these forces. We then discuss various cases of recurrent genomic evolution under this scheme. Finally, we provide a broader context for repeated genomic evolution, including the unique relationship of genomic recurrence with the genotype-phenotype map, and the ways in which the study of recurrent genomic evolution can be used to understand fundamental evolutionary processes.
Collapse
Affiliation(s)
- Ignacio Maeso
- Department of Zoology, University of Oxford, United Kingdom
| | - Scott William Roy
- Department of Biology, Stanford University
- Department of Biology, San Francisco State University
| | - Manuel Irimia
- Department of Biology, Stanford University
- Banting and Best Department of Medical Research, Donnelly Centre, University of Toronto, Canada
| |
Collapse
|
30
|
Yenerall P, Krupa B, Zhou L. Mechanisms of intron gain and loss in Drosophila. BMC Evol Biol 2011; 11:364. [PMID: 22182367 PMCID: PMC3296678 DOI: 10.1186/1471-2148-11-364] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 12/19/2011] [Indexed: 12/02/2022] Open
Abstract
Background It is widely accepted that orthologous genes have lost or gained introns throughout evolution. However, the specific mechanisms that generate these changes have proved elusive. Introns are known to affect nearly every level of gene expression. Therefore, understanding their mechanism of evolution after their initial fixation in eukaryotes is pertinent to understanding the means by which organisms develop greater regulation and complexity. Results To investigate possible mechanisms of intron gain and loss, we identified 189 intron gain and 297 intron loss events among 11 Drosophila species. We then investigated these events for signatures of previously proposed mechanisms of intron gain and loss. This work constitutes the first comprehensive study into the specific mechanisms that may generate intron gains and losses in Drosophila. We report evidence of intron gain via transposon insertion; the first intron loss that may have occurred via non-homologous end joining; intron gains via the repair of a double strand break; evidence of intron sliding; and evidence that internal or 5' introns may not frequently be deleted via the self-priming of reverse transcription during mRNA-mediated intron loss. Our data also suggest that the transcription process may promote or result in intron gain. Conclusion Our findings support the occurrence of intron gain via transposon insertion, repair of double strand breaks, as well as intron loss via non-homologous end joining. Furthermore, our data suggest that intron gain may be enabled by or due to transcription, and we shed further light on the exact mechanism of mRNA-mediated intron loss.
Collapse
Affiliation(s)
- Paul Yenerall
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | | |
Collapse
|
31
|
Extensive intron gain in the ancestor of placental mammals. Biol Direct 2011; 6:59. [PMID: 22112745 PMCID: PMC3257199 DOI: 10.1186/1745-6150-6-59] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Accepted: 11/23/2011] [Indexed: 01/29/2023] Open
Abstract
Background Genome-wide studies of intron dynamics in mammalian orthologous genes have found convincing evidence for loss of introns but very little for intron turnover. Similarly, large-scale analysis of intron dynamics in a few vertebrate genomes has identified only intron losses and no gains, indicating that intron gain is an extremely rare event in vertebrate evolution. These studies suggest that the intron-rich genomes of vertebrates do not allow intron gain. The aim of this study was to search for evidence of de novo intron gain in domesticated genes from an analysis of their exon/intron structures. Results A phylogenomic approach has been used to analyse all domesticated genes in mammals and chordates that originated from the coding parts of transposable elements. Gain of introns in domesticated genes has been reconstructed on well established mammalian, vertebrate and chordate phylogenies, and examined as to where and when the gain events occurred. The locations, sizes and amounts of de novo introns gained in the domesticated genes during the evolution of mammals and chordates has been analyzed. A significant amount of intron gain was found only in domesticated genes of placental mammals, where more than 70 cases were identified. De novo gained introns show clear positional bias, since they are distributed mainly in 5' UTR and coding regions, while 3' UTR introns are very rare. In the coding regions of some domesticated genes up to 8 de novo gained introns have been found. Intron densities in Eutheria-specific domesticated genes and in older domesticated genes that originated early in vertebrates are lower than those for normal mammalian and vertebrate genes. Surprisingly, the majority of intron gains have occurred in the ancestor of placentals. Conclusions This study provides the first evidence for numerous intron gains in the ancestor of placental mammals and demonstrates that adequate taxon sampling is crucial for reconstructing intron evolution. The findings of this comprehensive study slightly challenge the current view on the evolutionary stasis in intron dynamics during the last 100 - 200 My. Domesticated genes could constitute an excellent system on which to analyse the mechanisms of intron gain in placental mammals. Reviewers: this article was reviewed by Dan Graur, Eugene V. Koonin and Jürgen Brosius.
Collapse
|
32
|
Abstract
The cotG and cotH genes of Bacillus subtilis encode two previously characterized spore coat proteins. The two genes are adjacent on the chromosome and divergently transcribed by σ(K), a sporulation-specific σ factor of the RNA polymerase. We report evidence that the cotH promoter maps 812 bp upstream of the beginning of its coding region and that the divergent cotG gene is entirely contained between the promoter and the coding part of cotH. A bioinformatic analysis of all entirely sequenced prokaryotic genomes showed that such chromosomal organization is not common in spore-forming bacilli. Indeed, CotG is present only in B. subtilis, B. amyloliquefaciens, and B. atrophaeus and in two Geobacillus strains. When present, cotG always encodes a modular protein composed of tandem repeats and is always close to but divergently transcribed with respect to cotH. Bioinformatic and phylogenic data suggest that such genomic organizations have a common evolutionary origin and that the modular structure of the extant cotG genes is the outcome of multiple rounds of gene elongation events of an ancestral minigene.
Collapse
|
33
|
Lefèvre S, Dumay-Odelot H, El-Ayoubi L, Budd A, Legrand P, Pinaud N, Teichmann M, Fribourg S. Structure-function analysis of hRPC62 provides insights into RNA polymerase III transcription initiation. Nat Struct Mol Biol 2011; 18:352-8. [PMID: 21358628 DOI: 10.1038/nsmb.1996] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Accepted: 12/02/2010] [Indexed: 02/07/2023]
Abstract
The 17-subunit human RNA polymerase III (hPol III) transcribes small, untranslated RNA genes that are involved in the regulation of transcription, splicing and translation. hPol III subunits hRPC62, hRPC39 and hRPC32 form a stable ternary subcomplex required for promoter-specific transcription initiation by hPol III. Here, we report the crystal structure of hRPC62. This subunit folds as a four-tandem extended winged helix (eWH) protein that is structurally related to the transcription factor TFIIEα N terminus. Through biochemical analyses, we mapped the protein-protein interactions of hRPC62, hRPC32 and hRPC39. In addition, we demonstrated that hRPC62 and hRPC39 bind single-stranded and duplex DNA, respectively, in a sequence-independent manner. Overall, we shed light on structural similarities between the hPol III-specific subunit hRPC62 and TFIIEα and propose specific functions for hRPC39 and hRPC62 in transcription initiation by hPol III.
Collapse
|
34
|
Ragg H. Intron creation and DNA repair. Cell Mol Life Sci 2011; 68:235-42. [PMID: 20853128 PMCID: PMC11115024 DOI: 10.1007/s00018-010-0532-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Revised: 09/07/2010] [Accepted: 09/07/2010] [Indexed: 10/19/2022]
Abstract
The genesis of the exon-intron patterns of eukaryotic genes persists as one of the most enigmatic questions in molecular genetics. In particular, the origin and mechanisms responsible for creation of spliceosomal introns have remained controversial. Now the issue appears to have taken a turn. The formation of novel introns in eukaryotes, including some vertebrate lineages, is not as rare as commonly assumed. Moreover, introns appear to have been gained in parallel at closely spaced sites and even repeatedly at the same position. Based on these discoveries, novel hypotheses of intron creation have been developed. The new concepts posit that DNA repair processes are a major source of intron formation. Here, after summarizing the current views of intron gain mechanisms, I review findings in support of the DNA repair hypothesis that provides a global mechanistic scenario for intron creation. Some implications on our perception of the mosaic structure of eukaryotic genes are also discussed.
Collapse
Affiliation(s)
- Hermann Ragg
- Department of Biotechnology, University of Bielefeld, Germany.
| |
Collapse
|
35
|
Ebner B, Panopoulou G, Vinogradov SN, Kiger L, Marden MC, Burmester T, Hankeln T. The globin gene family of the cephalochordate amphioxus: implications for chordate globin evolution. BMC Evol Biol 2010; 10:370. [PMID: 21118516 PMCID: PMC3087553 DOI: 10.1186/1471-2148-10-370] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Accepted: 11/30/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The lancelet amphioxus (Cephalochordata) is a close relative of vertebrates and thus may enhance our understanding of vertebrate gene and genome evolution. In this context, the globins are one of the best studied models for gene family evolution. Previous biochemical studies have demonstrated the presence of an intracellular globin in notochord tissue and myotome of amphioxus, but the corresponding gene has not yet been identified. Genomic resources of Branchiostoma floridae now facilitate the identification, experimental confirmation and molecular evolutionary analysis of its globin gene repertoire. RESULTS We show that B. floridae harbors at least fifteen paralogous globin genes, all of which reveal evidence of gene expression. The protein sequences of twelve globins display the conserved characteristics of a functional globin fold. In phylogenetic analyses, the amphioxus globin BflGb4 forms a common clade with vertebrate neuroglobins, indicating the presence of this nerve globin in cephalochordates. Orthology is corroborated by conserved syntenic linkage of BflGb4 and flanking genes. The kinetics of ligand binding of recombinantly expressed BflGb4 reveals that this globin is hexacoordinated with a high oxygen association rate, thus strongly resembling vertebrate neuroglobin. In addition, possible amphioxus orthologs of the vertebrate globin X lineage and of the myoglobin/cytoglobin/hemoglobin lineage can be identified, including one gene as a candidate for being expressed in notochord tissue. Genomic analyses identify conserved synteny between amphioxus globin-containing regions and the vertebrate β-globin locus, possibly arguing against a late transpositional origin of the β-globin cluster in vertebrates. Some amphioxus globin gene structures exhibit minisatellite-like tandem duplications of intron-exon boundaries ("mirages"), which may serve to explain the creation of novel intron positions within the globin genes. CONCLUSIONS The identification of putative orthologs of vertebrate globin variants in the B. floridae genome underlines the importance of cephalochordates for elucidating vertebrate genome evolution. The present study facilitates detailed functional studies of the amphioxus globins in order to trace conserved properties and specific adaptations of respiratory proteins at the base of chordate evolution.
Collapse
Affiliation(s)
- Bettina Ebner
- Institute of Molecular Genetics, Johannes Gutenberg-University, D-55099 Mainz, Germany
| | | | | | | | | | | | | |
Collapse
|
36
|
Zhang LY, Yang YF, Niu DK. Evaluation of models of the mechanisms underlying intron loss and gain in Aspergillus fungi. J Mol Evol 2010; 71:364-73. [PMID: 20862581 DOI: 10.1007/s00239-010-9391-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Accepted: 09/08/2010] [Indexed: 11/26/2022]
Abstract
Although intron loss and gain have been widely observed, their mechanisms are still to be determined. In four Aspergillus genomes, we found 204 cases of intron loss and 84 cases of intron gain. Using this data, we tested common hypotheses of intron loss or gain. Statistical analysis showed that adjacent introns tend to be lost simultaneously and small introns were preferentially lost, supporting the model of mRNA-mediated intron loss. The lost introns reside in internal regions of genes, which is inconsistent with the traditional version of the model (partial length cDNAs are reverse transcribed from 3' ends of mRNAs), but consistent with an alternate version (partial length cDNAs are produced by self-primed reverse transcription). The latter version was not supported by examination of the abundance of T-rich segments in mRNAs. Preferential loss of internal introns might be explained by highly efficient recombination at internal regions of genes. Among the 84 cases of intron gain, we found a significantly higher frequency of short direct repeats near exon-intron boundary than in conserved introns, supporting the double-strand break repair model. We also found possible source sequences for two cases of intron gain, one by gene conversion and one by insertion of a mitochondrial sequence during double-strand break repair. Source sequences for most gained introns could not be identified and the possible reasons were discussed. In the four Aspergillus genomes studied, we did not find evidence of frequent parallel intron gains.
Collapse
Affiliation(s)
- Lei-Ying Zhang
- MOE Key Laboratory for Biodiversity Sciences and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | | | | |
Collapse
|
37
|
Irimia M, Maeso I, Gunning PW, Garcia-Fernàndez J, Roy SW. Internal and external paralogy in the evolution of tropomyosin genes in metazoans. Mol Biol Evol 2010; 27:1504-17. [PMID: 20147436 DOI: 10.1093/molbev/msq018] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Nature contains a tremendous diversity of forms both at the organismal and genomic levels. This diversity motivates the twin central questions of molecular evolution: what are the molecular mechanisms of adaptation, and what are the functional consequences of genomic diversity. We report a 22-species comparative analysis of tropomyosin (PPM) genes, which exist in a variety of forms and are implicated in the emergence of a wealth of cellular functions, including the novel muscle functions integral to the functional diversification of bilateral animals. TPM genes encode either or both of long-form [284 amino acid (aa)] and short-form (approximately 248 aa) proteins. Consistent with a role of TPM diversification in the origins and radiation of bilaterians, we find evidence that the muscle-specific long-form protein arose in proximal bilaterian ancestors (the bilaterian 'stem'). Duplication of the 5' end of the gene led to alternative promoters encoding long- and short-form transcripts with distinct functions. This dual-function gene then underwent strikingly parallel evolution in different bilaterian lineages. In each case, recurrent tandem exon duplication and mutually exclusive alternative splicing of the duplicates, with further association between these alternatively spliced exons along the gene, led to long- and short-form-specific exons, allowing for gradual emergence of alternative "internal paralogs" within the same gene. We term these Mutually exclusively Alternatively spliced Tandemly duplicated Exon sets "MATEs". This emergence of internal paralogs in various bilaterians has employed every single TPM exon in at least one lineage and reaches striking levels of divergence with up to 77% of long- and short-form transcripts being transcribed from different genomic regions. Interestingly, in some lineages, these internal alternatively spliced paralogs have subsequently been "externalized" by full gene duplication and reciprocal retention/loss of the two transcript isoforms, a particularly clear case of evolution by subfunctionalization. This parallel evolution of TPM genes in diverse metazoans attests to common selective forces driving divergence of different gene transcripts and represents a striking case of emergence of evolutionary novelty by alternative splicing.
Collapse
Affiliation(s)
- Manuel Irimia
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | | | | | | | | |
Collapse
|
38
|
Nonsense-mediated decay enables intron gain in Drosophila. PLoS Genet 2010; 6:e1000819. [PMID: 20107520 PMCID: PMC2809761 DOI: 10.1371/journal.pgen.1000819] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Accepted: 12/18/2009] [Indexed: 12/03/2022] Open
Abstract
Intron number varies considerably among genomes, but despite their fundamental importance, the mutational mechanisms and evolutionary processes underlying the expansion of intron number remain unknown. Here we show that Drosophila, in contrast to most eukaryotic lineages, is still undergoing a dramatic rate of intron gain. These novel introns carry significantly weaker splice sites that may impede their identification by the spliceosome. Novel introns are more likely to encode a premature termination codon (PTC), indicating that nonsense-mediated decay (NMD) functions as a backup for weak splicing of new introns. Our data suggest that new introns originate when genomic insertions with weak splice sites are hidden from selection by NMD. This mechanism reduces the sequence requirement imposed on novel introns and implies that the capacity of the spliceosome to recognize weak splice sites was a prerequisite for intron gain during eukaryotic evolution. The surprising observation 30 years ago that genes are interrupted by non-coding introns changed our view of gene architecture. Intron number varies dramatically among species; ranging from nine introns/gene in humans to less than one in some simple eukyarotes. Here we ask where new introns come from and how they are maintained in a population. We find that novel introns do not arise from pre-existing introns, although the mechanisms that generate novel introns remain unclear. We also show that novel introns carry only weak signals for their identification and removal, and therefore depend on nonsense-mediated decay (NMD). NMD maintains RNA quality control by degrading transcripts that have not been spliced properly. We propose that NMD shelters novel introns from natural selection. This increases the likelihood that a novel intron will rise in frequency and be maintained within a population, thus increasing the rate of intron gain.
Collapse
|