1
|
Lukose B, Goyal S, Naganathan AN. Oligomerization-mediated phase separation in the nucleoid-associated sensory protein H-NS is controlled by ambient cues. Protein Sci 2025; 34:e5250. [PMID: 39660932 PMCID: PMC11633056 DOI: 10.1002/pro.5250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/26/2024] [Accepted: 11/24/2024] [Indexed: 12/12/2024]
Abstract
H-NS, a nucleoid-associated protein (NAP) from enterobacteria, regulates gene expression by dynamically transducing environmental cues to conformational assembly and DNA binding. In this work, we show that H-NS from Escherichia coli, which can assemble into octameric and tetrameric oligomerization states, forms spontaneous micron-sized liquid-like condensates with DNA at sub-physiological concentrations in vitro. The heterotypic condensates are metastable at 298 K, partially solubilizing with time, while still retaining their liquid-like properties. The condensates display UCST-like phase behavior solubilizing at higher temperatures, but with a large decrease in droplet-assembly propensities at 310 K and at higher ionic strength. Condensate formation can be tuned in a cyclic manner between 298 and 310 K with the extent of reversibility determined by the incubation time, highlighting strong hysteresis. An engineered phospho-mimetic variant of H-NS (Y61E), which is dimeric and only weakly binds DNA, is unable to form condensates. The Y61E mutant solubilizes pre-formed H-NS condensates with DNA in a few minutes with nearly an order of magnitude speed-up in droplet dissolution at 310 K relative to 298 K, demonstrating rapid molecular transport between dilute and condensed phases. Our results establish that the oligomerization of H-NS is intrinsically tied not only to DNA binding but also its phase-separation tendencies, while showcasing the regulatable and programmable nature of heterotypic condensates formed by an archetypal NAP via multiple cues and their lifetimes.
Collapse
Affiliation(s)
- Bincy Lukose
- Department of Biotechnology, Bhupat & Jyoti Mehta School of BiosciencesIndian Institute of Technology MadrasChennaiIndia
| | - Saloni Goyal
- Department of Biotechnology, Bhupat & Jyoti Mehta School of BiosciencesIndian Institute of Technology MadrasChennaiIndia
| | - Athi N. Naganathan
- Department of Biotechnology, Bhupat & Jyoti Mehta School of BiosciencesIndian Institute of Technology MadrasChennaiIndia
| |
Collapse
|
2
|
Bera P, Mondal J. Machine learning unravels inherent structural patterns in Escherichia coli Hi-C matrices and predicts chromosome dynamics. Nucleic Acids Res 2024; 52:10836-10849. [PMID: 39217471 PMCID: PMC11472170 DOI: 10.1093/nar/gkae749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
High dimensional nature of the chromosomal conformation contact map ('Hi-C Map'), even for microscopically small bacterial cell, poses challenges for extracting meaningful information related to its complex organization. Here we first demonstrate that an artificial deep neural network-based machine-learnt (ML) low-dimensional representation of a recently reported Hi-C interaction map of archetypal bacteria Escherichia coli can decode crucial underlying structural pattern. The ML-derived representation of Hi-C map can automatically detect a set of spatially distinct domains across E. coli genome, sharing reminiscences of six putative macro-domains previously posited via recombination assay. Subsequently, a ML-generated model assimilates the intricate relationship between large array of Hi-C-derived chromosomal contact probabilities and respective diffusive dynamics of each individual chromosomal gene and identifies an optimal number of functionally important chromosomal contact-pairs that are majorly responsible for heterogenous, coordinate-dependent sub-diffusive motions of chromosomal loci. Finally, the ML models, trained on wild-type E. coli show-cased its predictive capabilities on mutant bacterial strains, shedding light on the structural and dynamic nuances of ΔMatP30MM and ΔMukBEF22MM chromosomes. Overall our results illuminate the power of ML techniques in unraveling the complex relationship between structure and dynamics of bacterial chromosomal loci, promising meaningful connections between ML-derived insights and biological phenomena.
Collapse
Affiliation(s)
- Palash Bera
- Tata Institute of Fundamental Research Hyderabad, Telangana 500046, India
| | - Jagannath Mondal
- Tata Institute of Fundamental Research Hyderabad, Telangana 500046, India
| |
Collapse
|
3
|
Woldringh CL. Compaction and Segregation of DNA in Escherichia coli. Life (Basel) 2024; 14:660. [PMID: 38929644 PMCID: PMC11205073 DOI: 10.3390/life14060660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/26/2024] [Accepted: 05/01/2024] [Indexed: 06/28/2024] Open
Abstract
Theoretical and experimental approaches have been applied to study the polymer physics underlying the compaction of DNA in the bacterial nucleoid. Knowledge of the compaction mechanism is necessary to obtain a mechanistic understanding of the segregation process of replicating chromosome arms (replichores) during the cell cycle. The first part of this review discusses light microscope observations demonstrating that the nucleoid has a lower refractive index and thus, a lower density than the cytoplasm. A polymer physics explanation for this phenomenon was given by a theory discussed at length in this review. By assuming a phase separation between the nucleoid and the cytoplasm and by imposing equal osmotic pressure and chemical potential between the two phases, a minimal energy situation is obtained, in which soluble proteins are depleted from the nucleoid, thus explaining its lower density. This theory is compared to recent views on DNA compaction that are based on the exclusion of polyribosomes from the nucleoid or on the transcriptional activity of the cell. These new views prompt the question of whether they can still explain the lower refractive index or density of the nucleoid. In the second part of this review, we discuss the question of how DNA segregation occurs in Escherichia coli in the absence of the so-called active ParABS system, which is present in the majority of bacteria. How is the entanglement of nascent chromosome arms generated at the origin in the parental DNA network of the E. coli nucleoid prevented? Microscopic observations of the position of fluorescently-labeled genetic loci have indicated that the four nascent chromosome arms synthesized in the initial replication bubble segregate to opposite halves of the sister nucleoids. This implies that extensive intermingling of daughter strands does not occur. Based on the hypothesis that leading and lagging replichores synthesized in the replication bubble fold into microdomains that do not intermingle, a passive four-excluding-arms model for segregation is proposed. This model suggests that the key for segregation already exists in the structure of the replication bubble at the very start of DNA replication; it explains the different patterns of chromosome arms as well as the segregation distances between replicated loci, as experimentally observed.
Collapse
Affiliation(s)
- Conrad L Woldringh
- Faculty of Science, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
4
|
Wasim A, Bera P, Mondal J. Elucidation of Spatial Positioning of Ribosomes around Chromosome in Escherichia coli Cytoplasm via a Data-Informed Polymer-Based Model. J Phys Chem B 2024; 128:3368-3382. [PMID: 38560890 DOI: 10.1021/acs.jpcb.4c01210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The spatial arrangement of ribosomes and chromosome in Escherichia coli's cytoplasm challenges conventional wisdom. Contrary to the notion of ribosomes acting as inert crowders to the chromosome in the cytoplasm, here we propose a nuanced view by integrating a wide array of experimental data sets into a polymer-based computer model. A set of data-informed computer simulations determines that a delicate balance of attractive and repulsive interactions between ribosomes and the chromosome is required in order to reproduce experimentally obtained linear densities and brings forth the view that ribosomes are not mere inert crowders in the cytoplasm. The model finds that the ribosomes represent themselves as a poor solvent for the chromosome with a 50 nm mesh size, consistent with previous experimental analysis. Our multidimensional analysis of ribosome distribution, both free (30S and 50S) and bound (70S polysome), uncovers a relatively less pronounced segregation pattern than previously thought. Notably, we identify a ribosome-rich central region within the innermost core of the nucleoid. Moreover, our exploration of the chromosome mesh size and the conformation of bound ribosomes suggests that these ribosomes maintain elongated shapes, enabling them to navigate through the chromosome mesh and access the central core. This dynamic localization challenges the static segregation model and underscores the pivotal role of ribosome-chromosome interactions in cellular media.
Collapse
Affiliation(s)
- Abdul Wasim
- Tata Institute of Fundamental Research Hyderabad, Hyderabad, Telangana 500046, India
| | - Palash Bera
- Tata Institute of Fundamental Research Hyderabad, Hyderabad, Telangana 500046, India
| | - Jagannath Mondal
- Tata Institute of Fundamental Research Hyderabad, Hyderabad, Telangana 500046, India
| |
Collapse
|
5
|
Wasim A, Bera P, Mondal J. Development of a Data-Driven Integrative Model of a Bacterial Chromosome. J Chem Theory Comput 2024; 20:1673-1688. [PMID: 37083406 DOI: 10.1021/acs.jctc.3c00118] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
The chromosome of archetypal bacteria E. coli is known for a complex topology with a 4.6 × 106 base pairs (bp) long sequence of nucleotides packed within a micrometer-sized cellular confinement. The inherent organization underlying this chromosome eludes general consensus due to the lack of a high-resolution picture of its conformation. Here we present our development of an integrative model of E. coli at a 500 bp resolution (https://github.com/JMLab-tifrh/ecoli_finer), which optimally combines a set of multiresolution genome-wide experimentally measured data within a framework of polymer based architecture. In particular the model is informed with an intragenome contact probability map at 5000 bp resolution derived via the Hi-C experiment and RNA-sequencing data at 500 bp resolution. Via dynamical simulations, this data-driven polymer based model generates an appropriate conformational ensemble commensurate with chromosome architectures that E. coli adopts. As a key hallmark of the E. coli chromosome the model spontaneously self-organizes into a set of nonoverlapping macrodomains and suitably locates plectonemic loops near the cell membrane. As novel extensions, it predicts a contact probability map simulated at a higher resolution than precedent experiments and can demonstrate segregation of chromosomes in a partially replicating cell. Finally, the modular nature of the model helps us devise control simulations to quantify the individual role of key features in hierarchical organization of the bacterial chromosome.
Collapse
Affiliation(s)
- Abdul Wasim
- Tata Institute of Fundamental Research Hyderabad, Hyderabad, Telangana 500046, India
| | - Palash Bera
- Tata Institute of Fundamental Research Hyderabad, Hyderabad, Telangana 500046, India
| | - Jagannath Mondal
- Tata Institute of Fundamental Research Hyderabad, Hyderabad, Telangana 500046, India
| |
Collapse
|
6
|
Chaudhuri D, Mulder BM. Molecular Dynamics Simulation of a Feather-Boa Model of a Bacterial Chromosome. Methods Mol Biol 2024; 2819:611-623. [PMID: 39028526 DOI: 10.1007/978-1-0716-3930-6_28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The chromosome of a bacterium consists of a mega-base pair-long circular DNA, which self-organizes within the micron-sized bacterial cell volume, compacting itself by three orders of magnitude. Unlike eukaryotic chromosomes, it lacks a nuclear membrane and freely floats in the cytosol confined by the cell membrane. It is believed that strong confinement, cross-linking by associated proteins, and molecular crowding all contribute to determine chromosome size and morphology. Modelling the chromosome simply as a circular polymer decorated with closed side loops in a cylindrical confining volume has been shown to already recapture some of the salient properties observed experimentally. Here we describe how a computer simulation can be set up to study structure and dynamics of bacterial chromosomes using this model.
Collapse
Affiliation(s)
- Debasish Chaudhuri
- Institute of Physics, Bhubaneswar, India.
- Homi Bhaba National Institute, Mumbai, India.
| | | |
Collapse
|
7
|
Sadhir I, Murray SM. Mid-cell migration of the chromosomal terminus is coupled to origin segregation in Escherichia coli. Nat Commun 2023; 14:7489. [PMID: 37980336 PMCID: PMC10657355 DOI: 10.1038/s41467-023-43351-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 11/07/2023] [Indexed: 11/20/2023] Open
Abstract
Bacterial chromosomes are dynamically and spatially organised within cells. In slow-growing Escherichia coli, the chromosomal terminus is initially located at the new pole and must therefore migrate to midcell during replication to reproduce the same pattern in the daughter cells. Here, we use high-throughput time-lapse microscopy to quantify this transition, its timing and its relationship to chromosome segregation. We find that terminus centralisation is a rapid discrete event that occurs ~25 min after initial separation of duplicated origins and ~50 min before the onset of bulk nucleoid segregation but with substantial variation between cells. Despite this variation, its movement is tightly coincident with the completion of origin segregation, even in the absence of its linkage to the divisome, suggesting a coupling between these two events. Indeed, we find that terminus centralisation does not occur if origin segregation away from mid-cell is disrupted, which results in daughter cells having an inverted chromosome organisation. Overall, our study quantifies the choreography of origin-terminus positioning and identifies an unexplored connection between these loci, furthering our understanding of chromosome segregation in this bacterium.
Collapse
Affiliation(s)
- Ismath Sadhir
- Max Planck Institute for Terrestrial Microbiology and LOEWE Centre for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
- Microcosm Earth Center, Max Planck Institute for Terrestrial Microbiology and Philipps-Universität Marburg, Marburg, Germany
| | - Seán M Murray
- Max Planck Institute for Terrestrial Microbiology and LOEWE Centre for Synthetic Microbiology (SYNMIKRO), Marburg, Germany.
| |
Collapse
|
8
|
Köhler R, Kaganovitch E, Murray SM. High-throughput imaging and quantitative analysis uncovers the nature of plasmid positioning by ParABS. eLife 2022; 11:78743. [PMID: 36374535 PMCID: PMC9662831 DOI: 10.7554/elife.78743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 10/23/2022] [Indexed: 11/16/2022] Open
Abstract
The faithful segregation and inheritance of bacterial chromosomes and low-copy number plasmids requires dedicated partitioning systems. The most common of these, ParABS, consists of ParA, a DNA-binding ATPase and ParB, a protein that binds to centromeric-like parS sequences on the DNA cargo. The resulting nucleoprotein complexes are believed to move up a self-generated gradient of nucleoid-associated ParA. However, it remains unclear how this leads to the observed cargo positioning and dynamics. In particular, the evaluation of models of plasmid positioning has been hindered by the lack of quantitative measurements of plasmid dynamics. Here, we use high-throughput imaging, analysis and modelling to determine the dynamical nature of these systems. We find that F plasmid is actively brought to specific subcellular home positions within the cell with dynamics akin to an over-damped spring. We develop a unified stochastic model that quantitatively explains this behaviour and predicts that cells with the lowest plasmid concentration transition to oscillatory dynamics. We confirm this prediction for F plasmid as well as a distantly-related ParABS system. Our results indicate that ParABS regularly positions plasmids across the nucleoid but operates just below the threshold of an oscillatory instability, which according to our model, minimises ATP consumption. Our work also clarifies how various plasmid dynamics are achievable in a single unified stochastic model. Overall, this work uncovers the dynamical nature of plasmid positioning by ParABS and provides insights relevant for chromosome-based systems.
Collapse
Affiliation(s)
- Robin Köhler
- Max Planck Institute for Terrestrial Microbiology and LOEWE Centre for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | - Eugen Kaganovitch
- Max Planck Institute for Terrestrial Microbiology and LOEWE Centre for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | - Seán M Murray
- Max Planck Institute for Terrestrial Microbiology and LOEWE Centre for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| |
Collapse
|
9
|
Paturej J, Koperwas K, Tarnacka M, Jurkiewicz K, Maksym P, Grelska J, Paluch M, Kamiński K. Supramolecular structures of self-assembled oligomers under confinement. SOFT MATTER 2022; 18:4930-4936. [PMID: 35730478 DOI: 10.1039/d2sm00343k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We study the molecular origin of a prepeak (PP) observed at low q values in the structure factors of three oligomers in a bulk (poly(mercaptopropyl)methylsiloxane, PMMS, poly(methylmercaptopropyl)-grafted-hexylmethacrylate, PMMS-g-HMA, and poly(methylphenyl)siloxane, PMPS) in order to understand the lowering of the PP intensity detected for oligomers confined in cylindrical pores with low diameter. For this purpose, we use a combination of X-ray diffraction measurements and coarse-grained bead-spring molecular dynamics simulations. Our molecular modelling demonstrated that the planarity of the pendant groups triggers the self-association of oligomers into nanoaggregates. However, the formation of oligomeric nanodomains is not sufficient for building-up the PP. The latter requires spatial disturbance in the arrangement of the side groups of oligomers within clusters. Importantly, our numerical analysis revealed that the increasing degree of the confinement of oligomers limits their aggregation and consequently lowers the amplitude of the PP observed in the experimental data.
Collapse
Affiliation(s)
- Jarosław Paturej
- August Chełkowski Institute of Physics, University of Silesia in Katowice, 75 Pułku Piechoty 1, 41-500 Chorzów, Poland.
- Leibniz-Institut für Polymerforschung, Dresden e.V., Hohe Str. 6, 01069 Dresden, Germany
| | - Kajetan Koperwas
- August Chełkowski Institute of Physics, University of Silesia in Katowice, 75 Pułku Piechoty 1, 41-500 Chorzów, Poland.
| | - Magdalena Tarnacka
- August Chełkowski Institute of Physics, University of Silesia in Katowice, 75 Pułku Piechoty 1, 41-500 Chorzów, Poland.
| | - Karolina Jurkiewicz
- August Chełkowski Institute of Physics, University of Silesia in Katowice, 75 Pułku Piechoty 1, 41-500 Chorzów, Poland.
| | - Paulina Maksym
- Institute of Materials Engineering, University of Silesia, 75 Pułku Piechoty 1a, 41-500 Chorzow, Poland
| | - Joanna Grelska
- August Chełkowski Institute of Physics, University of Silesia in Katowice, 75 Pułku Piechoty 1, 41-500 Chorzów, Poland.
| | - Marian Paluch
- August Chełkowski Institute of Physics, University of Silesia in Katowice, 75 Pułku Piechoty 1, 41-500 Chorzów, Poland.
| | - Kamil Kamiński
- August Chełkowski Institute of Physics, University of Silesia in Katowice, 75 Pułku Piechoty 1, 41-500 Chorzów, Poland.
| |
Collapse
|
10
|
Sołtys K, Tarczewska A, Bystranowska D, Sozańska N. Getting Closer to Decrypting the Phase Transitions of Bacterial Biomolecules. Biomolecules 2022; 12:907. [PMID: 35883463 PMCID: PMC9312465 DOI: 10.3390/biom12070907] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/24/2022] [Accepted: 06/26/2022] [Indexed: 12/31/2022] Open
Abstract
Liquid-liquid phase separation (LLPS) of biomolecules has emerged as a new paradigm in cell biology, and the process is one proposed mechanism for the formation of membraneless organelles (MLOs). Bacterial cells have only recently drawn strong interest in terms of studies on both liquid-to-liquid and liquid-to-solid phase transitions. It seems that these processes drive the formation of prokaryotic cellular condensates that resemble eukaryotic MLOs. In this review, we present an overview of the key microbial biomolecules that undergo LLPS, as well as the formation and organization of biomacromolecular condensates within the intracellular space. We also discuss the current challenges in investigating bacterial biomacromolecular condensates. Additionally, we highlight a summary of recent knowledge about the participation of bacterial biomolecules in a phase transition and provide some new in silico analyses that can be helpful for further investigations.
Collapse
Affiliation(s)
- Katarzyna Sołtys
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland; (A.T.); (D.B.); (N.S.)
| | | | | | | |
Collapse
|
11
|
Bera P, Wasim A, Mondal J. Hi-C embedded polymer model of Escherichia coli reveals the origin of heterogeneous subdiffusion in chromosomal loci. Phys Rev E 2022; 105:064402. [PMID: 35854496 DOI: 10.1103/physreve.105.064402] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Underneath its apparently simple architecture, the circular chromosome of Escherichia coli is known for displaying complex dynamics in its cytoplasm, with past investigations hinting at inherently diverse mobilities of chromosomal loci across the genome. To decipher its origin, we simulate the dynamics of genome-wide spectrum of E. coli chromosomal loci, via integrating its experimentally derived Hi-C interaction matrix within a polymer-based model. Our analysis demonstrates that, while the dynamics of the chromosome is subdiffusive in a viscoelastic media, the diffusion constants are strongly dependent of chromosomal loci coordinates and diffusive exponents (α) are widely heterogenous with α ≈ 0.36-0.60. The loci-dependent heterogeneous dynamics and mean first-passage times of interloci encounter were found to be modulated via genetically distant interloci communications and is robust even in the presence of active, ATP-dependent noises. Control investigations reveal that the absence of Hi-C-derived interactions in the model would have abolished the traits of heterogeneous loci diffusion, underscoring the key role of loci-specific genetically distant interaction in modulating the underlying heterogeneity of the loci diffusion.
Collapse
Affiliation(s)
- Palash Bera
- Tata Institute of Fundamental Research, Hyderabad 500046, India
| | - Abdul Wasim
- Tata Institute of Fundamental Research, Hyderabad 500046, India
| | | |
Collapse
|
12
|
Relationship between the Chromosome Structural Dynamics and Gene Expression—A Chicken and Egg Dilemma? Microorganisms 2022; 10:microorganisms10050846. [PMID: 35630292 PMCID: PMC9144111 DOI: 10.3390/microorganisms10050846] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 04/14/2022] [Indexed: 02/06/2023] Open
Abstract
Prokaryotic transcription was extensively studied over the last half-century. A great deal of data has been accumulated regarding the control of gene expression by transcription factors regulating their target genes by binding at specific DNA sites. However, there is a significant gap between the mechanistic description of transcriptional control obtained from in vitro biochemical studies and the complexity of transcriptional regulation in the context of the living cell. Indeed, recent studies provide ample evidence for additional levels of complexity pertaining to the regulation of transcription in vivo, such as, for example, the role of the subcellular localization and spatial organization of different molecular components involved in the transcriptional control and, especially, the role of chromosome configurational dynamics. The question as to how the chromosome is dynamically reorganized under the changing environmental conditions and how this reorganization is related to gene expression is still far from being clear. In this article, we focus on the relationships between the chromosome structural dynamics and modulation of gene expression during bacterial adaptation. We argue that spatial organization of the bacterial chromosome is of central importance in the adaptation of gene expression to changing environmental conditions and vice versa, that gene expression affects chromosome dynamics.
Collapse
|
13
|
Mancini L, Crozat E, Javer A, Lagomarsino MC, Cicuta P. Dynamics of Bacterial Chromosomes by Locus Tracking in Fluorescence Microscopy. Methods Mol Biol 2022; 2476:155-170. [PMID: 35635703 DOI: 10.1007/978-1-0716-2221-6_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In the last two decades, it has been shown that bacterial chromosomes have remarkable spatial organization at various scales, and they display well-defined movements during the cell cycle, for example to reliably segregate daughter chromosomes. More recently, various labs have begun investigating also the short time dynamics (displacements during time intervals of 0.1 s-100 s), which should be related to the molecular structure. Probing these dynamics is analogous to "microrheology" approaches that have been applied successfully to study mechanical response of complex fluids. These studies of chromosome fluctuation dynamics have revealed differences of fluctuation amplitude across the chromosome, and different characters of motion depending on the time window of interest. Different fluctuation amplitudes have also been observed for the same chromosomal loci under antibiotic treatments, with magnitudes that are correlated to changes in intracellular density and thus crowding. We describe how to carry out tracking experiments of single loci and how to analyze locus motility. We point out the importance of considering in the analysis the number of GFP molecules per fluorescent locus, as well as the nature of the protein they are fused to, and also how to measure intracellular density.
Collapse
Affiliation(s)
- Leonardo Mancini
- Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - Estelle Crozat
- Centre de Biologie Intégrative de Toulouse, Laboratoire de Microbiologie et de Génétique Moléculaires, Université de Toulouse, CNRS, UPS, Toulouse, France
- Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - Avelino Javer
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK
- Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - Marco Cosentino Lagomarsino
- IFOM, FIRC Institute of Molecular Oncology, Milan, Italy
- Physics Department, University of Milan, and INFN, Milan, Italy
| | - Pietro Cicuta
- Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge, UK.
| |
Collapse
|
14
|
Hanauer C, Bergeler S, Frey E, Broedersz CP. Theory of Active Intracellular Transport by DNA Relaying. PHYSICAL REVIEW LETTERS 2021; 127:138101. [PMID: 34623846 DOI: 10.1103/physrevlett.127.138101] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 08/12/2021] [Indexed: 06/13/2023]
Abstract
The spatiotemporal organization of bacterial cells is crucial for the active segregation of replicating chromosomes. In several species, including Caulobacter crescentus, the ATPase ParA binds to DNA and forms a gradient along the long cell axis. The ParB partition complex on the newly replicated chromosome translocates up this ParA gradient, thereby contributing to chromosome segregation. A DNA-relay mechanism-deriving from the elasticity of the fluctuating chromosome-has been proposed as the driving force for this cargo translocation, but a mechanistic theoretical description remains elusive. Here, we propose a minimal model to describe force generation by the DNA-relay mechanism over a broad range of operational conditions. Conceptually, we identify four distinct force-generation regimes characterized by their dependence on chromosome fluctuations. These relay force regimes arise from an interplay of the imposed ParA gradient, chromosome fluctuations, and an emergent friction force due to chromosome-cargo interactions.
Collapse
Affiliation(s)
- Christian Hanauer
- Arnold-Sommerfeld-Center for Theoretical Physics and Center for NanoScience, Ludwig-Maximilians-Universität München, D-80333 München, Germany
| | - Silke Bergeler
- Arnold-Sommerfeld-Center for Theoretical Physics and Center for NanoScience, Ludwig-Maximilians-Universität München, D-80333 München, Germany
| | - Erwin Frey
- Arnold-Sommerfeld-Center for Theoretical Physics and Center for NanoScience, Ludwig-Maximilians-Universität München, D-80333 München, Germany
| | - Chase P Broedersz
- Arnold-Sommerfeld-Center for Theoretical Physics and Center for NanoScience, Ludwig-Maximilians-Universität München, D-80333 München, Germany
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, Netherlands
| |
Collapse
|
15
|
Mäkelä J, Uphoff S, Sherratt DJ. Nonrandom segregation of sister chromosomes by Escherichia coli MukBEF. Proc Natl Acad Sci U S A 2021; 118:e2022078118. [PMID: 34385314 PMCID: PMC8379921 DOI: 10.1073/pnas.2022078118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Structural maintenance of chromosomes (SMC) complexes contribute to chromosome organization in all domains of life. In Escherichia coli, MukBEF, the functional SMC homolog, promotes spatiotemporal chromosome organization and faithful chromosome segregation. Here, we address the relative contributions of MukBEF and the replication terminus (ter) binding protein, MatP, to chromosome organization-segregation. We show that MukBEF, but not MatP, is required for the normal localization of the origin of replication to midcell and for the establishment of translational symmetry between newly replicated sister chromosomes. Overall, chromosome orientation is normally maintained through division from one generation to the next. Analysis of loci flanking the replication termination region (ter), which demark the ends of the linearly organized portion of the nucleoid, demonstrates that MatP is required for maintenance of chromosome orientation. We show that DNA-bound β2-processivity clamps, which mark the lagging strands at DNA replication forks, localize to the cell center, independent of replisome location but dependent on MukBEF action, and consistent with translational symmetry of sister chromosomes. Finally, we directly show that the older ("immortal") template DNA strand, propagated from previous generations, is preferentially inherited by the cell forming at the old pole, dependent on MukBEF and MatP. The work further implicates MukBEF and MatP as central players in chromosome organization, segregation, and nonrandom inheritance of genetic material and suggests a general framework for understanding how chromosome conformation and dynamics shape subcellular organization.
Collapse
Affiliation(s)
- Jarno Mäkelä
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Stephan Uphoff
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - David J Sherratt
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| |
Collapse
|
16
|
Xiang Y, Surovtsev IV, Chang Y, Govers SK, Parry BR, Liu J, Jacobs-Wagner C. Interconnecting solvent quality, transcription, and chromosome folding in Escherichia coli. Cell 2021; 184:3626-3642.e14. [PMID: 34186018 DOI: 10.1016/j.cell.2021.05.037] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 12/09/2020] [Accepted: 05/25/2021] [Indexed: 12/12/2022]
Abstract
All cells fold their genomes, including bacterial cells, where the chromosome is compacted into a domain-organized meshwork called the nucleoid. How compaction and domain organization arise is not fully understood. Here, we describe a method to estimate the average mesh size of the nucleoid in Escherichia coli. Using nucleoid mesh size and DNA concentration estimates, we find that the cytoplasm behaves as a poor solvent for the chromosome when the cell is considered as a simple semidilute polymer solution. Monte Carlo simulations suggest that a poor solvent leads to chromosome compaction and DNA density heterogeneity (i.e., domain formation) at physiological DNA concentration. Fluorescence microscopy reveals that the heterogeneous DNA density negatively correlates with ribosome density within the nucleoid, consistent with cryoelectron tomography data. Drug experiments, together with past observations, suggest the hypothesis that RNAs contribute to the poor solvent effects, connecting chromosome compaction and domain formation to transcription and intracellular organization.
Collapse
Affiliation(s)
- Yingjie Xiang
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, CT 06520, USA; Microbial Sciences Institute, Yale University, West Haven, CT 06516, USA
| | - Ivan V Surovtsev
- Microbial Sciences Institute, Yale University, West Haven, CT 06516, USA; Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA; Howard Hughes Medical Institute, Yale University, New Haven, CT 06520, USA
| | - Yunjie Chang
- Microbial Sciences Institute, Yale University, West Haven, CT 06516, USA; Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT 06510, USA
| | - Sander K Govers
- Microbial Sciences Institute, Yale University, West Haven, CT 06516, USA; Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA; Howard Hughes Medical Institute, Yale University, New Haven, CT 06520, USA; Department of Biology and Institute of Chemistry, Engineering and Medicine for Human Health, Stanford University, Palo Alto, CA 94305, USA
| | - Bradley R Parry
- Microbial Sciences Institute, Yale University, West Haven, CT 06516, USA; Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA; Howard Hughes Medical Institute, Yale University, New Haven, CT 06520, USA
| | - Jun Liu
- Microbial Sciences Institute, Yale University, West Haven, CT 06516, USA; Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT 06510, USA
| | - Christine Jacobs-Wagner
- Microbial Sciences Institute, Yale University, West Haven, CT 06516, USA; Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA; Howard Hughes Medical Institute, Yale University, New Haven, CT 06520, USA; Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT 06510, USA; Department of Biology and Institute of Chemistry, Engineering and Medicine for Human Health, Stanford University, Palo Alto, CA 94305, USA.
| |
Collapse
|
17
|
Wasim A, Gupta A, Mondal J. A Hi-C data-integrated model elucidates E. coli chromosome's multiscale organization at various replication stages. Nucleic Acids Res 2021; 49:3077-3091. [PMID: 33660781 PMCID: PMC8034658 DOI: 10.1093/nar/gkab094] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 01/31/2021] [Accepted: 02/17/2021] [Indexed: 11/13/2022] Open
Abstract
The chromosome of Escherichia coli is riddled with multi-faceted complexity. The emergence of chromosome conformation capture techniques are providing newer ways to explore chromosome organization. Here we combine a beads-on-a-spring polymer-based framework with recently reported Hi-C data for E. coli chromosome, in rich growth condition, to develop a comprehensive model of its chromosome at 5 kb resolution. The investigation focuses on a range of diverse chromosome architectures of E. coli at various replication states corresponding to a collection of cells, individually present in different stages of cell cycle. The Hi-C data-integrated model captures the self-organization of E. coli chromosome into multiple macrodomains within a ring-like architecture. The model demonstrates that the position of oriC is dependent on architecture and replication state of chromosomes. The distance profiles extracted from the model reconcile fluorescence microscopy and DNA-recombination assay experiments. Investigations into writhe of the chromosome model reveal that it adopts helix-like conformation with no net chirality, earlier hypothesized in experiments. A genome-wide radius of gyration map captures multiple chromosomal interaction domains and identifies the precise locations of rrn operons in the chromosome. We show that a model devoid of Hi-C encoded information would fail to recapitulate most genomic features unique to E. coli.
Collapse
Affiliation(s)
- Abdul Wasim
- Tata Institute of Fundamental Research, Centre for Interdisciplinary Sciences, Hyderabad 500046, India
| | - Ankit Gupta
- Tata Institute of Fundamental Research, Centre for Interdisciplinary Sciences, Hyderabad 500046, India
| | - Jagannath Mondal
- Tata Institute of Fundamental Research, Centre for Interdisciplinary Sciences, Hyderabad 500046, India
| |
Collapse
|
18
|
Messelink JJB, van Teeseling MCF, Janssen J, Thanbichler M, Broedersz CP. Learning the distribution of single-cell chromosome conformations in bacteria reveals emergent order across genomic scales. Nat Commun 2021; 12:1963. [PMID: 33785756 PMCID: PMC8010069 DOI: 10.1038/s41467-021-22189-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 02/15/2021] [Indexed: 02/01/2023] Open
Abstract
The order and variability of bacterial chromosome organization, contained within the distribution of chromosome conformations, are unclear. Here, we develop a fully data-driven maximum entropy approach to extract single-cell 3D chromosome conformations from Hi-C experiments on the model organism Caulobacter crescentus. The predictive power of our model is validated by independent experiments. We find that on large genomic scales, organizational features are predominantly present along the long cell axis: chromosomal loci exhibit striking long-ranged two-point axial correlations, indicating emergent order. This organization is associated with large genomic clusters we term Super Domains (SuDs), whose existence we support with super-resolution microscopy. On smaller genomic scales, our model reveals chromosome extensions that correlate with transcriptional and loop extrusion activity. Finally, we quantify the information contained in chromosome organization that may guide cellular processes. Our approach can be extended to other species, providing a general strategy to resolve variability in single-cell chromosomal organization.
Collapse
Affiliation(s)
- Joris J B Messelink
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig Maximilian University Munich, Munich, Germany
| | - Muriel C F van Teeseling
- Department of Biology, University of Marburg, Marburg, Germany
- Prokaryotic Cell Biology Group, Department of Microbial Interactions, Institute for Microbiology, Friedrich Schiller University Jena, Jena, Germany
| | - Jacqueline Janssen
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig Maximilian University Munich, Munich, Germany
| | - Martin Thanbichler
- Department of Biology, University of Marburg, Marburg, Germany
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | - Chase P Broedersz
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig Maximilian University Munich, Munich, Germany.
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
19
|
Tarnacka M, Geppert-Rybczyńska M, Dulski M, Grelska J, Jurkiewicz K, Grzybowska K, Kamiński K, Paluch M. Local structure and molecular dynamics of highly polar propylene carbonate derivative infiltrated within alumina and silica porous templates. J Chem Phys 2021; 154:064701. [PMID: 33588559 DOI: 10.1063/5.0040150] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Herein, we examined the effect of finite size and wettability on the structural dynamics and the molecular arrangement of the propylene carbonate derivative, (S)-(-)-4-methoxymethyl-1,3-dioxolan-2-one (assigned as s-methoxy-PC), incorporated into alumina and silica porous templates of pore diameters d = 4 nm-10 nm using Raman and broadband dielectric spectroscopy, differential scanning calorimetry, and x-ray diffraction. It was demonstrated that only subtle changes in the molecular organization and short-range order of confined s-methoxy-PC molecules were detected. Yet, a significant deviation of the structural dynamics and depression of the glass transition temperatures, Tg, was found for all confined samples with respect to the bulk material. Interestingly, these changes correlate with neither the finite size effects nor the interfacial energy but seem to vary with wettability, generally. Nevertheless, for s-methoxy-PC infiltrated into native (more hydrophilic) and modified (more hydrophobic) silica templates of the same nanochannel size (d = 4 nm), a change in the dynamics and Tg was negligible despite a significant variation in wettability. These results indicated that although wettability might be a suitable variable to predict alteration of the structural dynamics and depression of the glass transition temperature, other factors, i.e., surface roughness and the density packing, might also have a strong contribution to the observed confinement effects.
Collapse
Affiliation(s)
- Magdalena Tarnacka
- Institute of Physics, University of Silesia in Katowice, 75 Pułku Piechoty 1, 41-500 Chorzow, Poland
| | | | - Mateusz Dulski
- Silesian Center of Education and Interdisciplinary Research, 75 Pułku Piechoty 1A, 41-500 Chorzow, Poland
| | - Joanna Grelska
- Institute of Physics, University of Silesia in Katowice, 75 Pułku Piechoty 1, 41-500 Chorzow, Poland
| | - Karolina Jurkiewicz
- Institute of Physics, University of Silesia in Katowice, 75 Pułku Piechoty 1, 41-500 Chorzow, Poland
| | - Katarzyna Grzybowska
- Institute of Physics, University of Silesia in Katowice, 75 Pułku Piechoty 1, 41-500 Chorzow, Poland
| | - Kamil Kamiński
- Institute of Physics, University of Silesia in Katowice, 75 Pułku Piechoty 1, 41-500 Chorzow, Poland
| | - Marian Paluch
- Institute of Physics, University of Silesia in Katowice, 75 Pułku Piechoty 1, 41-500 Chorzow, Poland
| |
Collapse
|
20
|
El Hamoui O, Yadav I, Radiom M, Wien F, Berret JF, van der Maarel JRC, Arluison V. Interactions between DNA and the Hfq Amyloid-like Region Trigger a Viscoelastic Response. Biomacromolecules 2020; 21:3668-3677. [PMID: 32786728 DOI: 10.1021/acs.biomac.0c00747] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Molecular transport of biomolecules plays a pivotal role in the machinery of life. Yet, this role is poorly understood due the lack of quantitative information. Here, the role and properties of the C-terminal region of Escherichia coli Hfq is reported, involved in controlling the flow of a DNA solution. A combination of experimental methodologies has been used to probe the interaction of Hfq with DNA and to measure the rheological properties of the complex. A physical gel with a temperature reversible elasticity modulus is formed due to the formation of noncovalent cross-links. The mechanical response of the complexes shows that they are inhomogeneous soft solids. Our experiments indicate that the Hfq C-terminal region could contribute to the genome's mechanical response. The reported viscoelasticity of the DNA-protein complex might have implications for cellular processes involving molecular transport of DNA or segments thereof.
Collapse
Affiliation(s)
| | - Indresh Yadav
- Department of Physics, National University of Singapore, Singapore 117542, Singapore
| | - Milad Radiom
- Matière et Systèmes Complexes, UMR 7057 CNRS Université de Paris, Bâtiment Condorcet, 10 rue Alice Domon et Léonie Duquet, F-75205 Paris, France
| | - Frank Wien
- Synchrotron SOLEIL, F-91192 Gif-sur-Yvette, France
| | - Jean-Francois Berret
- Matière et Systèmes Complexes, UMR 7057 CNRS Université de Paris, Bâtiment Condorcet, 10 rue Alice Domon et Léonie Duquet, F-75205 Paris, France
| | | | - Véronique Arluison
- Laboratoire Léon Brillouin LLB, CEA, CNRS UMR12, Université Paris Saclay, CEA Saclay, F-91191 Gif-sur-Yvette, France.,Université de Paris, F-75006 Paris, France
| |
Collapse
|
21
|
Clusters of bacterial RNA polymerase are biomolecular condensates that assemble through liquid-liquid phase separation. Proc Natl Acad Sci U S A 2020; 117:18540-18549. [PMID: 32675239 PMCID: PMC7414142 DOI: 10.1073/pnas.2005019117] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Bacterial cells are small and were long thought to have little to no internal structure. However, advances in microscopy have revealed that bacteria do indeed contain subcellular compartments. But how these compartments form has remained a mystery. Recent progress in larger, more complex eukaryotic cells has identified a novel mechanism for intracellular organization known as liquid–liquid phase separation. This process causes certain types of molecules to concentrate within distinct compartments inside the cell. Here, we demonstrate that the same process also occurs in bacteria. This work, together with a growing body of literature, suggests that liquid–liquid phase separation is a common mechanism for intracellular organization in both eukaryotic and prokaryotic cells. Once described as mere “bags of enzymes,” bacterial cells are in fact highly organized, with many macromolecules exhibiting nonuniform localization patterns. Yet the physical and biochemical mechanisms that govern this spatial heterogeneity remain largely unknown. Here, we identify liquid–liquid phase separation (LLPS) as a mechanism for organizing clusters of RNA polymerase (RNAP) in Escherichia coli. Using fluorescence imaging, we show that RNAP quickly transitions from a dispersed to clustered localization pattern as cells enter log phase in nutrient-rich media. RNAP clusters are sensitive to hexanediol, a chemical that dissolves liquid-like compartments in eukaryotic cells. In addition, we find that the transcription antitermination factor NusA forms droplets in vitro and in vivo, suggesting that it may nucleate RNAP clusters. Finally, we use single-molecule tracking to characterize the dynamics of cluster components. Our results indicate that RNAP and NusA molecules move inside clusters, with mobilities faster than a DNA locus but slower than bulk diffusion through the nucleoid. We conclude that RNAP clusters are biomolecular condensates that assemble through LLPS. This work provides direct evidence for LLPS in bacteria and demonstrates that this process can serve as a mechanism for intracellular organization in prokaryotes and eukaryotes alike.
Collapse
|
22
|
Japaridze A, Gogou C, Kerssemakers JWJ, Nguyen HM, Dekker C. Direct observation of independently moving replisomes in Escherichia coli. Nat Commun 2020; 11:3109. [PMID: 32561741 PMCID: PMC7305307 DOI: 10.1038/s41467-020-16946-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 05/29/2020] [Indexed: 12/18/2022] Open
Abstract
The replication and transfer of genomic material from a cell to its progeny are vital processes in all living systems. Here we visualize the process of chromosome replication in widened E. coli cells. Monitoring the replication of single chromosomes yields clear examples of replication bubbles that reveal that the two replisomes move independently from the origin to the terminus of replication along each of the two arms of the circular chromosome, providing direct support for the so-called train-track model, and against a factory model for replisomes. The origin of replication duplicates near midcell, initially splitting to random directions and subsequently towards the poles. The probability of successful segregation of chromosomes significantly decreases with increasing cell width, indicating that chromosome confinement by the cell boundary is an important driver of DNA segregation. Our findings resolve long standing questions in bacterial chromosome organization.
Collapse
Affiliation(s)
- Aleksandre Japaridze
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Christos Gogou
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Jacob W J Kerssemakers
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Huyen My Nguyen
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Cees Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands.
| |
Collapse
|
23
|
Remesh SG, Verma SC, Chen JH, Ekman AA, Larabell CA, Adhya S, Hammel M. Nucleoid remodeling during environmental adaptation is regulated by HU-dependent DNA bundling. Nat Commun 2020; 11:2905. [PMID: 32518228 PMCID: PMC7283360 DOI: 10.1038/s41467-020-16724-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 05/19/2020] [Indexed: 01/26/2023] Open
Abstract
Bacterial nucleoid remodeling dependent on conserved histone-like protein, HU is one of the determining factors in global gene regulation. By imaging of near-native, unlabeled E. coli cells by soft X-ray tomography, we show that HU remodels nucleoids by promoting the formation of a dense condensed core surrounded by less condensed isolated domains. Nucleoid remodeling during cell growth and environmental adaptation correlate with pH and ionic strength controlled molecular switch that regulated HUαα dependent intermolecular DNA bundling. Through crystallographic and solution-based studies we show that these effects mechanistically rely on HUαα promiscuity in forming multiple electrostatically driven multimerization interfaces. Changes in DNA bundling consequently affects gene expression globally, likely by constrained DNA supercoiling. Taken together our findings unveil a critical function of HU–DNA interaction in nucleoid remodeling that may serve as a general microbial mechanism for transcriptional regulation to synchronize genetic responses during the cell cycle and adapt to changing environments. HU is among the most conserved and abundant nucleoid-associated proteins in eubacteria. Here the authors investigate the role of histone-like proteins (HU) in the 3D organization of the bacteria DNA and show via soft X-ray tomography the process of nucleoid remodeling.
Collapse
Affiliation(s)
- Soumya G Remesh
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA.,Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Subhash C Verma
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Jian-Hua Chen
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,Department of Anatomy, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Axel A Ekman
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,Department of Anatomy, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Carolyn A Larabell
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,Department of Anatomy, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Sankar Adhya
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Michal Hammel
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| |
Collapse
|
24
|
Schvartzman JB, Hernández P, Krimer DB, Dorier J, Stasiak A. Closing the DNA replication cycle: from simple circular molecules to supercoiled and knotted DNA catenanes. Nucleic Acids Res 2019; 47:7182-7198. [PMID: 31276584 PMCID: PMC6698734 DOI: 10.1093/nar/gkz586] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/20/2019] [Accepted: 07/02/2019] [Indexed: 01/28/2023] Open
Abstract
Due to helical structure of DNA, massive amounts of positive supercoils are constantly introduced ahead of each replication fork. Positive supercoiling inhibits progression of replication forks but various mechanisms evolved that permit very efficient relaxation of that positive supercoiling. Some of these mechanisms lead to interesting topological situations where DNA supercoiling, catenation and knotting coexist and influence each other in DNA molecules being replicated. Here, we first review fundamental aspects of DNA supercoiling, catenation and knotting when these qualitatively different topological states do not coexist in the same circular DNA but also when they are present at the same time in replicating DNA molecules. We also review differences between eukaryotic and prokaryotic cellular strategies that permit relaxation of positive supercoiling arising ahead of the replication forks. We end our review by discussing very recent studies giving a long-sought answer to the question of how slow DNA topoisomerases capable of relaxing just a few positive supercoils per second can counteract the introduction of hundreds of positive supercoils per second ahead of advancing replication forks.
Collapse
Affiliation(s)
- Jorge B Schvartzman
- Department of Cell and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Pablo Hernández
- Department of Cell and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Dora B Krimer
- Department of Cell and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Julien Dorier
- SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Andrzej Stasiak
- SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland.,Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
25
|
Kisner JR, Kuwada NJ. Nucleoid-mediated positioning and transport in bacteria. Curr Genet 2019; 66:279-291. [PMID: 31691024 DOI: 10.1007/s00294-019-01041-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/21/2019] [Accepted: 10/23/2019] [Indexed: 12/28/2022]
Abstract
Precise management of the spatiotemporal position of subcellular components is critical to a number of essential processes in the bacterial cell. The bacterial nucleoid is a highly structured yet dynamic object that undergoes significant reorganization during the relatively short cell cycle, e.g. during gene expression, chromosome replication, and segregation. Although the nucleoid takes up a large fraction of the volume of the cell, the mobility of macromolecules within these dense regions is relatively high and recent results suggest that the nucleoid plays an integral role of dynamic localization in a host of seemingly disparate cellular processes. Here, we review a number of recent reports of nucleoid-mediated positioning and transport in the model bacteria Escherichia coli. These results viewed as a whole suggest that the dynamic, cellular-scale structure of the nucleoid may be a key driver of positioning and transport within the cell. This model of a global, default positioning and transport system may help resolve many unanswered questions about the mechanisms of partitioning and segregation in bacteria.
Collapse
Affiliation(s)
- Jessica R Kisner
- Department of Physics, Central Washington University, Ellensburg, WA, 98926, USA
| | - Nathan J Kuwada
- Department of Physics, Central Washington University, Ellensburg, WA, 98926, USA.
| |
Collapse
|
26
|
Weber PM, Moessel F, Paredes GF, Viehboeck T, Vischer NO, Bulgheresi S. A Bidimensional Segregation Mode Maintains Symbiont Chromosome Orientation toward Its Host. Curr Biol 2019; 29:3018-3028.e4. [DOI: 10.1016/j.cub.2019.07.064] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 06/24/2019] [Accepted: 07/22/2019] [Indexed: 11/24/2022]
|
27
|
Hofmann A, Mäkelä J, Sherratt DJ, Heermann D, Murray SM. Self-organised segregation of bacterial chromosomal origins. eLife 2019; 8:e46564. [PMID: 31397672 PMCID: PMC6701925 DOI: 10.7554/elife.46564] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 08/09/2019] [Indexed: 01/12/2023] Open
Abstract
The chromosomal replication origin region (ori) of characterised bacteria is dynamically positioned throughout the cell cycle. In slowly growing Escherichia coli, ori is maintained at mid-cell from birth until its replication, after which newly replicated sister oris move to opposite quarter positions. Here, we provide an explanation for ori positioning based on the self-organisation of the Structural Maintenance of Chromosomes complex, MukBEF, which forms dynamically positioned clusters on the chromosome. We propose that a non-trivial feedback between the self-organising gradient of MukBEF complexes and the oris leads to accurate ori positioning. We find excellent agreement with quantitative experimental measurements and confirm key predictions. Specifically, we show that oris exhibit biased motion towards MukBEF clusters, rather than mid-cell. Our findings suggest that MukBEF and oris act together as a self-organising system in chromosome organisation-segregation and introduces protein self-organisation as an important consideration for future studies of chromosome dynamics.
Collapse
Affiliation(s)
- Andreas Hofmann
- Institute for Theoretical PhysicsHeidelberg UniversityHeidelbergGermany
| | - Jarno Mäkelä
- Department of BiochemistryUniversity of OxfordOxfordUnited Kingdom
| | - David J Sherratt
- Department of BiochemistryUniversity of OxfordOxfordUnited Kingdom
| | - Dieter Heermann
- Institute for Theoretical PhysicsHeidelberg UniversityHeidelbergGermany
| | - Seán M Murray
- Max Planck Institute for Terrestrial Microbiology, LOEWE Centre for Synthetic Microbiology (SYNMIKRO)MarburgGermany
| |
Collapse
|
28
|
Kober M, Bergeler S, Frey E. Can a Flux-Based Mechanism Explain Protein Cluster Positioning in a Three-Dimensional Cell Geometry? Biophys J 2019; 117:420-428. [PMID: 31349992 DOI: 10.1016/j.bpj.2019.06.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 05/22/2019] [Accepted: 06/17/2019] [Indexed: 11/16/2022] Open
Abstract
The plane of bacterial cell division must be precisely positioned. In the bacterium Myxococcus xanthus, the proteins PomX and PomY form a large cluster, which is tethered to the nucleoid by the ATPase PomZ and moves in a stochastic but biased manner toward midcell where it initiates cell division. Previously, a positioning mechanism based on the fluxes of PomZ on the nucleoid was proposed. However, the cluster dynamics was analyzed in a reduced, one-dimensional geometry. Here, we introduce a mathematical model that accounts for the three-dimensional shape of the nucleoid, such that nucleoid-bound PomZ dimers can diffuse past the cluster without interacting with it. Using stochastic simulations, we find that the cluster still moves to and localizes at midcell. Redistribution of PomZ by diffusion in the cytosol is essential for this cluster dynamics. Our mechanism also positions two clusters equidistantly on the nucleoid, as observed for low-copy-number plasmid partitioning. We conclude that a flux-based mechanism allows for cluster positioning in a biologically realistic three-dimensional cell geometry.
Collapse
Affiliation(s)
- Matthias Kober
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Silke Bergeler
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Erwin Frey
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
29
|
Yildirim A, Feig M. High-resolution 3D models of Caulobacter crescentus chromosome reveal genome structural variability and organization. Nucleic Acids Res 2019. [PMID: 29529244 PMCID: PMC5934669 DOI: 10.1093/nar/gky141] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
High-resolution three-dimensional models of Caulobacter crescentus nucleoid structures were generated via a multi-scale modeling protocol. Models were built as a plectonemically supercoiled circular DNA and by incorporating chromosome conformation capture based data to generate an ensemble of base pair resolution models consistent with the experimental data. Significant structural variability was found with different degrees of bending and twisting but with overall similar topologies and shapes that are consistent with C. crescentus cell dimensions. The models allowed a direct mapping of the genomic sequence onto the three-dimensional nucleoid structures. Distinct spatial distributions were found for several genomic elements such as AT-rich sequence elements where nucleoid associated proteins (NAPs) are likely to bind, promoter sites, and some genes with common cellular functions. These findings shed light on the correlation between the spatial organization of the genome and biological functions.
Collapse
Affiliation(s)
- Asli Yildirim
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Michael Feig
- Department of Biochemistry & Molecular Biology, Michigan State University, MI 48824, USA
| |
Collapse
|
30
|
Wu F, Swain P, Kuijpers L, Zheng X, Felter K, Guurink M, Solari J, Jun S, Shimizu TS, Chaudhuri D, Mulder B, Dekker C. Cell Boundary Confinement Sets the Size and Position of the E. coli Chromosome. Curr Biol 2019; 29:2131-2144.e4. [PMID: 31155353 PMCID: PMC7050463 DOI: 10.1016/j.cub.2019.05.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 04/27/2019] [Accepted: 05/03/2019] [Indexed: 11/28/2022]
Abstract
Although the spatiotemporal structure of the genome is crucial to its biological function, many basic questions remain unanswered on the morphology and segregation of chromosomes. Here, we experimentally show in Escherichia coli that spatial confinement plays a dominant role in determining both the chromosome size and position. In non-dividing cells with lengths increased to 10 times normal, single chromosomes are observed to expand > 4-fold in size. Chromosomes show pronounced internal dynamics but exhibit a robust positioning where single nucleoids reside robustly at mid-cell, whereas two nucleoids self-organize at 1/4 and 3/4 positions. The cell-size-dependent expansion of the nucleoid is only modestly influenced by deletions of nucleoid-associated proteins, whereas osmotic manipulation experiments reveal a prominent role of molecular crowding. Molecular dynamics simulations with model chromosomes and crowders recapitulate the observed phenomena and highlight the role of entropic effects caused by confinement and molecular crowding in the spatial organization of the chromosome.
Collapse
Affiliation(s)
- Fabai Wu
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, the Netherlands; Division of Geological and Planetary Sciences, California Institute of Technology, 1200 E California Blvd, Pasadena, CA 91125, USA
| | - Pinaki Swain
- Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502285, Telangana, India
| | - Louis Kuijpers
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, the Netherlands
| | - Xuan Zheng
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, the Netherlands
| | - Kevin Felter
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, the Netherlands
| | - Margot Guurink
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, the Netherlands
| | - Jacopo Solari
- Institute AMOLF, Science Park 104, 1098 XG, Amsterdam, the Netherlands
| | - Suckjoon Jun
- Department of Physics, University of California San Diego, 9500 Gilman Dr. La Jolla, CA 92093, USA; Section of Molecular Biology, Division of Biological Sciences, University of California San Diego, 9500 Gilman Dr. La Jolla, CA 92093, USA
| | - Thomas S Shimizu
- Institute AMOLF, Science Park 104, 1098 XG, Amsterdam, the Netherlands
| | - Debasish Chaudhuri
- Institute of Physics, Sachivalaya Marg, Bhubaneswar 751005, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Bela Mulder
- Institute AMOLF, Science Park 104, 1098 XG, Amsterdam, the Netherlands; Laboratory of Cell Biology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands.
| | - Cees Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, the Netherlands.
| |
Collapse
|
31
|
Wu F, Japaridze A, Zheng X, Wiktor J, Kerssemakers JWJ, Dekker C. Direct imaging of the circular chromosome in a live bacterium. Nat Commun 2019; 10:2194. [PMID: 31097704 PMCID: PMC6522522 DOI: 10.1038/s41467-019-10221-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 04/26/2019] [Indexed: 01/08/2023] Open
Abstract
Although the physical properties of chromosomes, including their morphology, mechanics, and dynamics are crucial for their biological function, many basic questions remain unresolved. Here we directly image the circular chromosome in live E. coli with a broadened cell shape. We find that it exhibits a torus topology with, on average, a lower-density origin of replication and an ultrathin flexible string of DNA at the terminus of replication. At the single-cell level, the torus is strikingly heterogeneous, with blob-like Mbp-size domains that undergo major dynamic rearrangements, splitting and merging at a minute timescale. Our data show a domain organization underlying the chromosome structure of E. coli, where MatP proteins induce site-specific persistent domain boundaries at Ori/Ter, while transcription regulators HU and Fis induce weaker transient domain boundaries throughout the genome. These findings provide an architectural basis for the understanding of the dynamic spatial organization of bacterial genomes in live cells.
Collapse
MESH Headings
- Chromosomal Proteins, Non-Histone/metabolism
- Chromosomes, Bacterial/chemistry
- Chromosomes, Bacterial/metabolism
- DNA Replication
- DNA, Bacterial/chemistry
- DNA, Bacterial/metabolism
- DNA, Circular/chemistry
- DNA, Circular/metabolism
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Escherichia coli Proteins/metabolism
- Genome, Bacterial
- Intravital Microscopy/instrumentation
- Intravital Microscopy/methods
- Microscopy, Fluorescence/instrumentation
- Microscopy, Fluorescence/methods
- Nucleic Acid Conformation
- Single-Cell Analysis/instrumentation
- Single-Cell Analysis/methods
Collapse
Affiliation(s)
- Fabai Wu
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
- Division of Geological and Planetary Sciences, California Institute of Technology, 1200 E California Blvd, Pasadena, CA, 91125, USA
| | - Aleksandre Japaridze
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Xuan Zheng
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Jakub Wiktor
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Jacob W J Kerssemakers
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Cees Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands.
| |
Collapse
|
32
|
Abstract
The chromosome of a bacterium consists of a mega-base pair long circular DNA, which self-organizes within the micron-sized bacterial cell volume, compacting itself by three orders of magnitude. Unlike in eukaryotes, it lacks a nuclear membrane, and freely floats in the cytosol confined by the cell membrane. It is believed that strong confinement, cross-linking by associated proteins, and molecular crowding all contribute to determine chromosome size and morphology. Modeling the chromosome simply as a circular polymer decorated with closed side-loops in a cylindrical confining volume, has been shown to already recapture some of the salient properties observed experimentally. Here, we describe how a computer simulation can be set up to study structure and dynamics of bacterial chromosomes using this model.
Collapse
|
33
|
Abstract
Spatial organization is a hallmark of all living systems. Even bacteria, the smallest forms of cellular life, display defined shapes and complex internal organization, showcasing a highly structured genome, cytoskeletal filaments, localized scaffolding structures, dynamic spatial patterns, active transport, and occasionally, intracellular organelles. Spatial order is required for faithful and efficient cellular replication and offers a powerful means for the development of unique biological properties. Here, we discuss organizational features of bacterial cells and highlight how bacteria have evolved diverse spatial mechanisms to overcome challenges cells face as self-replicating entities.
Collapse
|
34
|
Murray SM, Howard M. Center Finding in E. coli and the Role of Mathematical Modeling: Past, Present and Future. J Mol Biol 2019; 431:928-938. [PMID: 30664868 DOI: 10.1016/j.jmb.2019.01.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/09/2019] [Accepted: 01/14/2019] [Indexed: 10/27/2022]
Abstract
We review the key role played by mathematical modeling in elucidating two center-finding patterning systems in Escherichia coli: midcell division positioning by the MinCDE system and DNA partitioning by the ParABS system. We focus particularly on how, despite much experimental effort, these systems were simply too complex to unravel by experiments alone, and instead required key injections of quantitative, mathematical thinking. We conclude the review by analyzing the frequency of modeling approaches in microbiology over time. We find that while such methods are increasing in popularity, they are still probably heavily under-utilized for optimal progress on complex biological questions.
Collapse
Affiliation(s)
- Seán M Murray
- Max Planck Institute for Terrestrial Microbiology and LOEWE Centre for Synthetic Microbiology (SYNMIKRO), Karl-von-Frisch Strasse 16, 35043 Marburg, Germany.
| | - Martin Howard
- Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom.
| |
Collapse
|
35
|
Yu S, Sheats J, Cicuta P, Sclavi B, Cosentino Lagomarsino M, Dorfman KD. Subdiffusion of loci and cytoplasmic particles are different in compressed Escherichia coli cells. Commun Biol 2018; 1:176. [PMID: 30374466 PMCID: PMC6200837 DOI: 10.1038/s42003-018-0185-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 10/03/2018] [Indexed: 12/13/2022] Open
Abstract
The complex physical nature of the bacterial intracellular environment remains largely unknown, and has relevance for key biochemical and biological processes of the cell. Although recent work has addressed the role of non-equilibrium sources of activity and crowding, the consequences of mechanical perturbations are relatively less explored. Here we use a microfabricated valve system to track both fluorescently labeled chromosomal loci and cytoplasmic particles in Escherichia coli cells shortly after applying a compressive force, observing the response on time scales that are too sudden to allow for biochemical response from the cell. Cytoplasmic diffusion slows markedly on compression but the exponent governing the growth of the ensemble-averaged mean-squared displacement of cytoplasmic particles is unaffected. In contrast, the corresponding exponent for DNA loci changes significantly. These results suggest that DNA elasticity and nucleoid organization play a more important role in loci subdiffusion than cytoplasmic viscoelasticity under such short time scales.
Collapse
Affiliation(s)
- Shi Yu
- Department of Chemical Engineering and Materials Science, University of Minnesota-Twin Cities, 421 Washington Ave SE, Minneapolis, MN, 55455, USA
- School of Chemical Engineering and Technology, China University of Mining & Technology, Xuzhou, 221116, China
| | - Julian Sheats
- Department of Chemical Engineering and Materials Science, University of Minnesota-Twin Cities, 421 Washington Ave SE, Minneapolis, MN, 55455, USA
| | - Pietro Cicuta
- Cavendish Laboratory, Cambridge University, Cambridge, UK
| | - Bianca Sclavi
- LBPA, UMR 8113 du CNRS, École Normale Supérieure Paris-Saclay, Cachan, France
| | - Marco Cosentino Lagomarsino
- Génophysique/Genomic Physics Group, UMR 7238 CNRS Génomique des Microorganismes, Université Pierre et Marie Curie, 4, Place Jussieu, 75005, Paris, France
- Sorbonne Universités, Université Pierre et Marie Curie, 4 Place Jussieu, Paris, France
- IFOM Institute for Molecular Oncology, Milan, Italy
| | - Kevin D Dorfman
- Department of Chemical Engineering and Materials Science, University of Minnesota-Twin Cities, 421 Washington Ave SE, Minneapolis, MN, 55455, USA.
| |
Collapse
|
36
|
Miermans CA, Broedersz CP. Bacterial chromosome organization by collective dynamics of SMC condensins. J R Soc Interface 2018; 15:rsif.2018.0495. [PMID: 30333247 DOI: 10.1098/rsif.2018.0495] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 09/19/2018] [Indexed: 11/12/2022] Open
Abstract
A prominent organizational feature of bacterial chromosomes was revealed by Hi-C experiments, indicating anomalously high contacts between the left and right chromosomal arms. These long-range contacts have been attributed to various nucleoid-associated proteins, including the ATPase Structural Maintenance of Chromosomes (SMC) condensin. Although the molecular structure of these ATPases has been mapped in detail, it still remains unclear by which physical mechanisms they collectively generate long-range chromosomal contacts. Here, we develop a computational model that captures the subtle interplay between molecular-scale activity of slip-links and large-scale chromosome organization. We first consider a scenario in which the ATPase activity of slip-links regulates their DNA-recruitment near the origin of replication, while the slip-link dynamics is assumed to be diffusive. We find that such diffusive slip-links can collectively organize the entire chromosome into a state with aligned arms, but not within physiological constraints. However, slip-links that include motor activity are far more effective at organizing the entire chromosome over all length-scales. The persistence of motor slip-links at physiological densities can generate large, nested loops and drive them into the bulk of the DNA. Finally, our model with motor slip-links can quantitatively account for the rapid arm-arm alignment of chromosomal arms observed in vivo.
Collapse
Affiliation(s)
- Christiaan A Miermans
- Arnold-Sommerfeld-Center for Theoretical Physics and Center for NanoScience, Ludwig-Maximilians-Universität München, 80333 München, Germany
| | - Chase P Broedersz
- Arnold-Sommerfeld-Center for Theoretical Physics and Center for NanoScience, Ludwig-Maximilians-Universität München, 80333 München, Germany
| |
Collapse
|
37
|
Krogh TJ, Møller-Jensen J, Kaleta C. Impact of Chromosomal Architecture on the Function and Evolution of Bacterial Genomes. Front Microbiol 2018; 9:2019. [PMID: 30210483 PMCID: PMC6119826 DOI: 10.3389/fmicb.2018.02019] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 08/09/2018] [Indexed: 12/14/2022] Open
Abstract
The bacterial nucleoid is highly condensed and forms compartment-like structures within the cell. Much attention has been devoted to investigating the dynamic topology and organization of the nucleoid. In contrast, the specific nucleoid organization, and the relationship between nucleoid structure and function is often neglected with regard to importance for adaption to changing environments and horizontal gene acquisition. In this review, we focus on the structure-function relationship in the bacterial nucleoid. We provide an overview of the fundamental properties that shape the chromosome as a structured yet dynamic macromolecule. These fundamental properties are then considered in the context of the living cell, with focus on how the informational flow affects the nucleoid structure, which in turn impacts on the genetic output. Subsequently, the dynamic living nucleoid will be discussed in the context of evolution. We will address how the acquisition of foreign DNA impacts nucleoid structure, and conversely, how nucleoid structure constrains the successful and sustainable chromosomal integration of novel DNA. Finally, we will discuss current challenges and directions of research in understanding the role of chromosomal architecture in bacterial survival and adaptation.
Collapse
Affiliation(s)
- Thøger J Krogh
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Jakob Møller-Jensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Christoph Kaleta
- Institute of Experimental Medicine, Christian-Albrechts-University Kiel, Kiel, Germany
| |
Collapse
|
38
|
Bergeler S, Frey E. Regulation of Pom cluster dynamics in Myxococcus xanthus. PLoS Comput Biol 2018; 14:e1006358. [PMID: 30102692 PMCID: PMC6107250 DOI: 10.1371/journal.pcbi.1006358] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 08/23/2018] [Accepted: 07/11/2018] [Indexed: 11/18/2022] Open
Abstract
Precise positioning of the cell division site is essential for the correct segregation of the genetic material into the two daughter cells. In the bacterium Myxococcus xanthus, the proteins PomX and PomY form a cluster on the chromosome that performs a biased random walk to midcell and positively regulates cell division there. PomZ, an ATPase, is necessary for tethering of the cluster to the nucleoid and regulates its movement towards midcell. It has remained unclear how the cluster dynamics change when the biochemical parameters, such as the attachment rates of PomZ dimers to the nucleoid and the cluster, the ATP hydrolysis rate of PomZ or the mobility of PomZ interacting with the nucleoid and cluster, are varied. To answer these questions, we investigate a one-dimensional model that includes the nucleoid, the Pom cluster and PomZ proteins. We find that a mechanism based on the diffusive PomZ fluxes on the nucleoid into the cluster can explain the latter's midnucleoid localization for a broad parameter range. Furthermore, there is an ATP hydrolysis rate that minimizes the time the cluster needs to reach midnucleoid. If the dynamics of PomZ on the nucleoid is slow relative to the cluster's velocity, we observe oscillatory cluster movements around midnucleoid. To understand midnucleoid localization, we developed a semi-analytical approach that dissects the net movement of the cluster into its components: the difference in PomZ fluxes into the cluster from either side, the force exerted by a single PomZ dimer on the cluster and the effective friction coefficient of the cluster. Importantly, we predict that the Pom cluster oscillates around midnucleoid if the diffusivity of PomZ on the nucleoid is reduced. A similar approach to that applied here may also prove useful for cargo localization in ParABS systems.
Collapse
Affiliation(s)
- Silke Bergeler
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Erwin Frey
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität München, Munich, Germany
- * E-mail:
| |
Collapse
|
39
|
Kleckner NE, Chatzi K, White MA, Fisher JK, Stouf M. Coordination of Growth, Chromosome Replication/Segregation, and Cell Division in E. coli. Front Microbiol 2018; 9:1469. [PMID: 30038602 PMCID: PMC6046412 DOI: 10.3389/fmicb.2018.01469] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 06/12/2018] [Indexed: 11/13/2022] Open
Abstract
Bacterial cells growing in steady state maintain a 1:1:1 relationship between an appropriate mass increase, a round of DNA replication plus sister chromosome segregation, and cell division. This is accomplished without the cell cycle engine found in eukaryotic cells. We propose here a formal logic, and an accompanying mechanism, for how such coordination could be provided in E. coli. Completion of chromosomal and divisome-related events would lead, interactively, to a “progression control complex” (PCC) which provides integrated physical coupling between sister terminus regions and the nascent septum. When a cell has both (i) achieved a sufficient mass increase, and (ii) the PCC has developed, a conformational change in the PCC occurs. This change results in “progression permission,” which triggers both onset of cell division and release of terminus regions. Release of the terminus region, in turn, directly enables a next round of replication initiation via physical changes transmitted through the nucleoid. Division and initiation are then implemented, each at its own rate and timing, according to conditions present. Importantly: (i) the limiting step for progression permission may be either completion of the growth requirement or the chromosome/divisome processes required for assembly of the PCC; and, (ii) the outcome of the proposed process is granting of permission to progress, not determination of the absolute or relative timings of downstream events. This basic logic, and the accompanying mechanism, can explain coordination of events in both slow and fast growth conditions; can accommodate diverse variations and perturbations of cellular events; and is compatible with existing mathematical descriptions of the E. coli cell cycle. Also, while our proposition is specifically designed to provide 1:1:1 coordination among basic events on a “per-cell cycle” basis, it is a small step to further envision permission progression is also the target of basic growth rate control. In such a case, the rate of mass accumulation (or its equivalent) would determine the length of the interval between successive permission events and, thus, successive cell divisions and successive replication initiations.
Collapse
Affiliation(s)
- Nancy E Kleckner
- Department of Molecular and Cellular Biology Harvard University, Cambridge, MA, United States
| | - Katerina Chatzi
- Department of Molecular and Cellular Biology Harvard University, Cambridge, MA, United States
| | - Martin A White
- Department of Molecular and Cellular Biology Harvard University, Cambridge, MA, United States
| | | | - Mathieu Stouf
- Department of Molecular and Cellular Biology Harvard University, Cambridge, MA, United States
| |
Collapse
|
40
|
Huls PG, Vischer NOE, Woldringh CL. Different Amounts of DNA in Newborn Cells of Escherichia coli Preclude a Role for the Chromosome in Size Control According to the "Adder" Model. Front Microbiol 2018; 9:664. [PMID: 29675011 PMCID: PMC5895768 DOI: 10.3389/fmicb.2018.00664] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 03/21/2018] [Indexed: 11/18/2022] Open
Abstract
According to the recently-revived adder model for cell size control, newborn cells of Escherichia coli will grow and divide after having added a constant size or length, ΔL, irrespective of their size at birth. Assuming exponential elongation, this implies that large newborns will divide earlier than small ones. The molecular basis for the constant size increment is still unknown. As DNA replication and cell growth are coordinated, the constant ΔL could be based on duplication of an equal amount of DNA, ΔG, present in newborn cells. To test this idea, we measured amounts of DNA and lengths of nucleoids in DAPI-stained cells growing in batch culture at slow and fast rates. Deeply-constricted cells were divided in two subpopulations of longer and shorter lengths than average; these were considered to represent large and small prospective daughter cells, respectively. While at slow growth, large and small prospective daughter cells contained similar amounts of DNA, fast growing cells with multiforked replicating chromosomes, showed a significantly higher amount of DNA (20%) in the larger cells. This observation precludes the hypothesis that ΔL is based on the synthesis of a constant ΔG. Growth curves were constructed for siblings generated by asymmetric division and growing according to the adder model. Under the assumption that all cells at the same growth rate exhibit the same time between initiation of DNA replication and cell division (i.e., constant C+D-period), the constructions predict that initiation occurs at different sizes (Li) and that, at fast growth, large newborn cells transiently contain more DNA than small newborns, in accordance with the observations. Because the state of segregation, measured as the distance between separated nucleoids, was found to be more advanced in larger deeply-constricted cells, we propose that in larger newborns nucleoid separation occurs faster and at a shorter length, allowing them to divide earlier. We propose a composite model in which both differential initiation and segregation leads to an adder-like behavior of large and small newborn cells.
Collapse
Affiliation(s)
- Peter G Huls
- Faculty of Science, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Norbert O E Vischer
- Bacterial Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Conrad L Woldringh
- Bacterial Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
41
|
Brocken DJ, Tark-Dame M, Dame RT. The organization of bacterial genomes: Towards understanding the interplay between structure and function. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.coisb.2018.02.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
42
|
Hacker WC, Li S, Elcock AH. Features of genomic organization in a nucleotide-resolution molecular model of the Escherichia coli chromosome. Nucleic Acids Res 2017. [PMID: 28645155 PMCID: PMC5570083 DOI: 10.1093/nar/gkx541] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
We describe structural models of the Escherichia coli chromosome in which the positions of all 4.6 million nucleotides of each DNA strand are resolved. Models consistent with two basic chromosomal orientations, differing in their positioning of the origin of replication, have been constructed. In both types of model, the chromosome is partitioned into plectoneme-abundant and plectoneme-free regions, with plectoneme lengths and branching patterns matching experimental distributions, and with spatial distributions of highly-transcribed chromosomal regions matching recent experimental measurements of the distribution of RNA polymerases. Physical analysis of the models indicates that the effective persistence length of the DNA and relative contributions of twist and writhe to the chromosome's negative supercoiling are in good correspondence with experimental estimates. The models exhibit characteristics similar to those of ‘fractal globules,’ and even the most genomically-distant parts of the chromosome can be physically connected, through paths combining linear diffusion and inter-segmental transfer, by an average of only ∼10 000 bp. Finally, macrodomain structures and the spatial distributions of co-expressed genes are analyzed: the latter are shown to depend strongly on the overall orientation of the chromosome. We anticipate that the models will prove useful in exploring other static and dynamic features of the bacterial chromosome.
Collapse
Affiliation(s)
- William C Hacker
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| | - Shuxiang Li
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| | - Adrian H Elcock
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
43
|
Schumacher D, Bergeler S, Harms A, Vonck J, Huneke-Vogt S, Frey E, Søgaard-Andersen L. The PomXYZ Proteins Self-Organize on the Bacterial Nucleoid to Stimulate Cell Division. Dev Cell 2017; 41:299-314.e13. [PMID: 28486132 DOI: 10.1016/j.devcel.2017.04.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 04/05/2017] [Accepted: 04/12/2017] [Indexed: 11/29/2022]
Abstract
Cell division site positioning is precisely regulated to generate correctly sized and shaped daughters. We uncover the strategy used by the social bacterium Myxococcus xanthus to position the FtsZ cytokinetic ring at midcell. PomX, PomY, and the nucleoid-binding ParA/MinD ATPase PomZ self-assemble forming a large nucleoid-associated complex that localizes at the division site before FtsZ to directly guide and stimulate division. PomXYZ localization is generated through self-organized biased random motion on the nucleoid toward midcell and constrained motion at midcell. Experiments and theory show that PomXYZ motion is produced by diffusive PomZ fluxes on the nucleoid into the complex. Flux differences scale with the intracellular asymmetry of the complex and are converted into a local PomZ concentration gradient across the complex with translocation toward the higher PomZ concentration. At midcell, fluxes equalize resulting in constrained motion. Flux-based mechanisms may represent a general paradigm for positioning of macromolecular structures in bacteria.
Collapse
Affiliation(s)
- Dominik Schumacher
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Straße 10, 35043 Marburg, Germany
| | - Silke Bergeler
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität München, Theresienstraße 37, 80333 Munich, Germany
| | - Andrea Harms
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Straße 10, 35043 Marburg, Germany
| | - Janet Vonck
- Department of Structural Biology, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - Sabrina Huneke-Vogt
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Straße 10, 35043 Marburg, Germany
| | - Erwin Frey
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität München, Theresienstraße 37, 80333 Munich, Germany
| | - Lotte Søgaard-Andersen
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Straße 10, 35043 Marburg, Germany.
| |
Collapse
|
44
|
A ring-polymer model shows how macromolecular crowding controls chromosome-arm organization in Escherichia coli. Sci Rep 2017; 7:11896. [PMID: 28928399 PMCID: PMC5605704 DOI: 10.1038/s41598-017-10421-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 08/08/2017] [Indexed: 12/21/2022] Open
Abstract
Macromolecular crowding influences various cellular processes such as macromolecular association and transcription, and is a key determinant of chromosome organization in bacteria. The entropy of crowders favors compaction of long chain molecules such as chromosomes. To what extent is the circular bacterial chromosome, often viewed as consisting of “two arms”, organized entropically by crowding? Using computer simulations, we examine how a ring polymer is organized in a crowded and cylindrically-confined space, as a coarse-grained bacterial chromosome. Our results suggest that in a wide parameter range of biological relevance crowding is essential for separating the two arms in the way observed with Escherichia coli chromosomes at fast-growth rates, in addition to maintaining the chromosome in an organized collapsed state. Under different conditions, however, the ring polymer is centrally condensed or adsorbed onto the cylindrical wall with the two arms laterally collapsed onto each other. We discuss the relevance of our results to chromosome-membrane interactions.
Collapse
|
45
|
Kumar R, Nurse P, Bahng S, Lee CM, Marians KJ. The MukB-topoisomerase IV interaction is required for proper chromosome compaction. J Biol Chem 2017; 292:16921-16932. [PMID: 28842485 DOI: 10.1074/jbc.m117.803346] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/14/2017] [Indexed: 11/06/2022] Open
Abstract
The bacterial condensin MukB and the cellular decatenating enzyme topoisomerase IV interact. This interaction stimulates intramolecular reactions catalyzed by topoisomerase IV, supercoiled DNA relaxation, and DNA knotting but not intermolecular reactions such as decatenation of linked DNAs. We have demonstrated previously that MukB condenses DNA by sequestering negative supercoils and stabilizing topologically isolated loops in the DNA. We show here that the MukB-topoisomerase IV interaction stabilizes MukB on DNA, increasing the extent of DNA condensation without increasing the amount of MukB bound to the DNA. This effect does not require the catalytic activity of topoisomerase IV. Cells carrying a mukB mutant allele that encodes a protein that does not interact with topoisomerase IV exhibit severe nucleoid decompaction leading to chromosome segregation defects. These findings suggest that the MukB-topoisomerase IV complex may provide a scaffold for DNA condensation.
Collapse
Affiliation(s)
- Rupesh Kumar
- From the Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - Pearl Nurse
- From the Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - Soon Bahng
- From the Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - Chong M Lee
- From the Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - Kenneth J Marians
- From the Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| |
Collapse
|
46
|
Chow E, Skolnick J. DNA Internal Motion Likely Accelerates Protein Target Search in a Packed Nucleoid. Biophys J 2017; 112:2261-2270. [PMID: 28591599 DOI: 10.1016/j.bpj.2017.04.049] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 04/17/2017] [Accepted: 04/28/2017] [Indexed: 12/18/2022] Open
Abstract
Transcription factors must diffuse through densely packed and coiled DNA to find their binding sites. Using a coarse-grained model of DNA and lac repressor (LacI) in the Escherichia coli nucleoid, simulations were performed to examine how LacI diffuses in such a space. Despite the canonical picture of LacI diffusing rather freely, in reality the DNA is densely packed, is not rigid but highly mobile, and the dynamics of DNA dictates to a great extent the LacI motion. A possibly better picture of unbound LacI motion is that of gated diffusion, where DNA confines LacI in a cage, but LacI can move between cages when hindering DNA strands move out of the way. Three-dimensional diffusion constants for unbound LacI computed from simulations closely match those for unbound LacI in vivo reported in the literature. The internal motions of DNA appear to be governed by strong internal forces arising from being crowded into the small space of the nucleoid. A consequence of the DNA internal motion is that protein target search may be accelerated.
Collapse
Affiliation(s)
- Edmond Chow
- School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia.
| | - Jeffrey Skolnick
- Center for the Study of Systems Biology, School of Biosciences, Georgia Institute of Technology, Atlanta, Georgia
| |
Collapse
|
47
|
Cass JA, Kuwada NJ, Traxler B, Wiggins PA. Escherichia coli Chromosomal Loci Segregate from Midcell with Universal Dynamics. Biophys J 2017; 110:2597-2609. [PMID: 27332118 DOI: 10.1016/j.bpj.2016.04.046] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 03/31/2016] [Accepted: 04/28/2016] [Indexed: 12/31/2022] Open
Abstract
The structure of the Escherichia coli chromosome is inherently dynamic over the duration of the cell cycle. Genetic loci undergo both stochastic motion around their initial positions and directed motion to opposite poles of the rod-shaped cell during segregation. We developed a quantitative method to characterize cell-cycle dynamics of the E. coli chromosome to probe the chromosomal steady-state mobility and segregation process. By tracking fluorescently labeled chromosomal loci in thousands of cells throughout the entire cell cycle, our method allows for the statistical analysis of locus position and motion, the step-size distribution for movement during segregation, and the locus drift velocity. The robust statistics of our detailed analysis of the wild-type E. coli nucleoid allow us to observe loci moving toward midcell before segregation occurs, consistent with a replication factory model. Then, as segregation initiates, we perform a detailed characterization of the average segregation velocity of loci. Contrary to origin-centric models of segregation, which predict distinct dynamics for oriC-proximal versus oriC-distal loci, we find that the dynamics of loci were universal and independent of genetic position.
Collapse
Affiliation(s)
- Julie A Cass
- Departments of Physics, Bioengineering, and Microbiology, University of Washington, Seattle, Washington
| | - Nathan J Kuwada
- Departments of Physics, Bioengineering, and Microbiology, University of Washington, Seattle, Washington
| | - Beth Traxler
- Departments of Physics, Bioengineering, and Microbiology, University of Washington, Seattle, Washington
| | - Paul A Wiggins
- Departments of Physics, Bioengineering, and Microbiology, University of Washington, Seattle, Washington.
| |
Collapse
|
48
|
Gaal T, Bratton BP, Sanchez-Vazquez P, Sliwicki A, Sliwicki K, Vegel A, Pannu R, Gourse RL. Colocalization of distant chromosomal loci in space in E. coli: a bacterial nucleolus. Genes Dev 2017; 30:2272-2285. [PMID: 27898392 PMCID: PMC5110994 DOI: 10.1101/gad.290312.116] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 10/05/2016] [Indexed: 01/20/2023]
Abstract
Gaal et al. examined the relative positions of the ribosomal RNA operons in space. The results show that E. coli bacterial chromosome folding in three dimensions is not dictated entirely by genetic position but rather includes functionally related, genetically distant loci that come into close proximity, with rRNA operons forming a structure reminiscent of the eukaryotic nucleolus. The spatial organization of DNA within the bacterial nucleoid remains unclear. To investigate chromosome organization in Escherichia coli, we examined the relative positions of the ribosomal RNA (rRNA) operons in space. The seven rRNA operons are nearly identical and separated from each other by as much as 180° on the circular genetic map, a distance of ≥2 million base pairs. By inserting binding sites for fluorescent proteins adjacent to the rRNA operons and then examining their positions pairwise in live cells by epifluorescence microscopy, we found that all but rrnC are in close proximity. Colocalization of the rRNA operons required the rrn P1 promoter region but not the rrn P2 promoter or the rRNA structural genes and occurred with and without active transcription. Non-rRNA operon pairs did not colocalize, and the magnitude of their physical separation generally correlated with that of their genetic separation. Our results show that E. coli bacterial chromosome folding in three dimensions is not dictated entirely by genetic position but rather includes functionally related, genetically distant loci that come into close proximity, with rRNA operons forming a structure reminiscent of the eukaryotic nucleolus.
Collapse
Affiliation(s)
- Tamas Gaal
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Benjamin P Bratton
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | - Alexander Sliwicki
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Kristine Sliwicki
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Andrew Vegel
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Rachel Pannu
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Richard L Gourse
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
49
|
Cass JA, Stylianidou S, Kuwada NJ, Traxler B, Wiggins PA. Probing bacterial cell biology using image cytometry. Mol Microbiol 2016; 103:818-828. [PMID: 27935200 DOI: 10.1111/mmi.13591] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2016] [Indexed: 01/01/2023]
Abstract
Advances in automated fluorescence microscopy have made snapshot and time-lapse imaging of bacterial cells commonplace, yet fundamental challenges remain in analysis. The vast quantity of data collected in high-throughput experiments requires a fast and reliable automated method to analyze fluorescence intensity and localization, cell morphology and proliferation as well as other descriptors. Inspired by effective yet tractable methods of population-level analysis using flow cytometry, we have developed a framework and tools for facilitating analogous analyses in image cytometry. These tools can both visualize and gate (generate subpopulations) more than 70 cell descriptors, including cell size, age and fluorescence. The method is well suited to multi-well imaging, analysis of bacterial cultures with high cell density (thousands of cells per frame) and complete cell cycle imaging. We give a brief description of the analysis of four distinct applications to emphasize the broad applicability of the tool.
Collapse
Affiliation(s)
- Julie A Cass
- Department of Physics, University of Washington, Seattle, WA, 98195, USA
| | - Stella Stylianidou
- Department of Physics, University of Washington, Seattle, WA, 98195, USA
| | - Nathan J Kuwada
- Department of Physics, Central Washington University, Ellensburg, WA, 98926, USA
| | - Beth Traxler
- Department of Microbiology, University of Washington, Seattle, WA, 98195, USA
| | - Paul A Wiggins
- Department of Physics, University of Washington, Seattle, WA, 98195, USA.,Department of Microbiology, University of Washington, Seattle, WA, 98195, USA.,Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
50
|
Surovtsev IV, Campos M, Jacobs-Wagner C. DNA-relay mechanism is sufficient to explain ParA-dependent intracellular transport and patterning of single and multiple cargos. Proc Natl Acad Sci U S A 2016; 113:E7268-E7276. [PMID: 27799522 PMCID: PMC5135302 DOI: 10.1073/pnas.1616118113] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Spatial ordering of macromolecular components inside cells is important for cellular physiology and replication. In bacteria, ParA/B systems are known to generate various intracellular patterns that underlie the transport and partitioning of low-copy-number cargos such as plasmids. ParA/B systems consist of ParA, an ATPase that dimerizes and binds DNA upon ATP binding, and ParB, a protein that binds the cargo and stimulates ParA ATPase activity. Inside cells, ParA is asymmetrically distributed, forming a propagating wave that is followed by the ParB-rich cargo. These correlated dynamics lead to cargo oscillation or equidistant spacing over the nucleoid depending on whether the cargo is in single or multiple copies. Currently, there is no model that explains how these different spatial patterns arise and relate to each other. Here, we test a simple DNA-relay model that has no imposed asymmetry and that only considers the ParA/ParB biochemistry and the known fluctuating and elastic dynamics of chromosomal loci. Stochastic simulations with experimentally derived parameters demonstrate that this model is sufficient to reproduce the signature patterns of ParA/B systems: the propagating ParA gradient correlated with the cargo dynamics, the single-cargo oscillatory motion, and the multicargo equidistant patterning. Stochasticity of ATP hydrolysis breaks the initial symmetry in ParA distribution, resulting in imbalance of elastic force acting on the cargo. Our results may apply beyond ParA/B systems as they reveal how a minimal system of two players, one binding to DNA and the other modulating this binding, can transform directionally random DNA fluctuations into directed motion and intracellular patterning.
Collapse
Affiliation(s)
- Ivan V Surovtsev
- Microbial Sciences Institute, Yale University, West Haven, CT 06517
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06516
- Howard Hughes Medical Institute, Yale University, New Haven, CT 06516
| | - Manuel Campos
- Microbial Sciences Institute, Yale University, West Haven, CT 06517
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06516
- Howard Hughes Medical Institute, Yale University, New Haven, CT 06516
| | - Christine Jacobs-Wagner
- Microbial Sciences Institute, Yale University, West Haven, CT 06517;
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06516
- Howard Hughes Medical Institute, Yale University, New Haven, CT 06516
- Department of Microbial Pathogenesis, Yale Medical School, New Haven, CT 06516
| |
Collapse
|