1
|
Morrison CA, Gill JA, Buchan C, Robinson RA, Arizaga J, Baltà O, Baltag E, Cepák J, Henry P, Henshaw I, Karcza Z, Lehikoinen P, Lopes RJ, Meister B, Pirrello S, Thorup K, Butler SJ. How Do Synchrony in Survival and Productivity Influence Abundance Synchrony in European Landbirds? Ecol Lett 2025; 28:e70105. [PMID: 40358129 PMCID: PMC12070856 DOI: 10.1111/ele.70105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 02/28/2025] [Accepted: 03/03/2025] [Indexed: 05/15/2025]
Abstract
Synchronous fluctuations in species' abundance are influenced by synchrony in underlying rates of productivity and survival. However, it remains unclear how rate synchrony varies in space and time, contributes to abundance synchrony, and differs among species. Using long-term annual count (number of adults captured), adult survival and productivity (number of juveniles captured per adult) data for breeding land-birds at ringing sites across Europe, we show that synchrony is strongest and largest scale in productivity and weakest and smallest scale in counts. However, counts fluctuate more synchronously with survival than they do with productivity. These patterns hold for species which do not migrate or only migrate within Europe (European-residents) and those migrating to sub-Saharan Africa (subSaharan-migrants), but the periodicity of productivity and survival synchrony is longer in European-residents than in subSaharan-migrants. This suggests that survival and productivity synchrony may interact to weaken abundance fluctuations but are influenced by environmental drivers operating over differing timescales in European-resident and subSaharan-migrant species.
Collapse
Affiliation(s)
| | | | - Claire Buchan
- School of Biological SciencesUniversity of East AngliaNorwichUK
| | | | - Juan Arizaga
- Department of OrnithologyAranzadi Sciences SocietyDonostiaSpain
| | - Oriol Baltà
- Catalan Ornithological Institute, Nat‐Museu de Ciències Naturals de BarcelonaBarcelonaSpain
| | - Emanuel Baltag
- Marine Biological Research Station “Prof. Dr. Ioan Borcea” AgigeaUniversity “Alexandru Ioan Cuza” of IașiIaşiRomania
| | | | - Pierre‐Yves Henry
- Centre de Recherches sur la Biologie des Populations d'Oiseaux (CRBPO), Mécanismes Adaptatifs et évolution (MECADEV UMR 7179), Muséum National d'Histoire Naturelle, Centre National de la Recherche ScientifiqueBrunoyFrance
| | - Ian Henshaw
- Swedish Bird Ringing Centre, Department for Nature and Environmental MonitoringThe Swedish Museum of Natural HistoryStockholmSweden
| | - Zsolt Karcza
- Hungarian Bird Ringing Centre, Birdlife HungaryBudapestHungary
| | | | - Ricardo Jorge Lopes
- cE3C, Center for Ecology, Evolution and Environmental Change, Departamento de Biologia AnimalFaculdade de Ciências, Universidade de LisboaLisboaPortugal
| | | | - Simone Pirrello
- Area Avifauna Migratrice (BIO‐AVM), Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA)BolognaItaly
| | - Kasper Thorup
- Center for Macroecology, Evolution and Climate, Natural History Museum od Denmark, University of CopenhagenCopenhagenDenmark
| | - Simon J. Butler
- School of Biological SciencesUniversity of East AngliaNorwichUK
| |
Collapse
|
2
|
Liu C, Vidal MC. Dispersal promotes stability and persistence of exploited yeast mutualisms. THE ISME JOURNAL 2025; 19:wraf003. [PMID: 39787040 PMCID: PMC11778857 DOI: 10.1093/ismejo/wraf003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 11/26/2024] [Accepted: 01/08/2025] [Indexed: 01/12/2025]
Abstract
Multispecies mutualistic interactions are ubiquitous and essential in nature, yet they face several threats, many of which have been exacerbated in the Anthropocene era. Understanding the factors that drive the stability and persistence of mutualism has become increasingly important in light of global change. Although dispersal is widely recognized as a crucial spatially explicit process in maintaining biodiversity and community structure, knowledge about how the dispersal of mutualists contributes to the persistence of mutualistic systems remains limited. In this study, we used a synthetic mutualism formed by genetically modified budding yeast to investigate the effect of dispersal on the persistence and stability of mutualisms under exploitation. We found that dispersal increased the persistence of exploited mutualisms by 80% compared to the isolated systems. Furthermore, our results showed that dispersal increased local diversity, decreased beta diversity among local communities, and stabilized community structure at the regional scale. Our results indicate that dispersal can allow mutualisms to persist in meta-communities by reintroducing species that are locally competitively excluded by exploiters. With limited dispersal, e.g. due to increased fragmentation of meta-communities, mutualisms might be more prone to breakdown. Taken together, our results highlight the critical role of dispersal in facilitating the persistence of mutualism.
Collapse
Affiliation(s)
- Cong Liu
- Biology Department, University of Massachusetts Boston, Boston, MA 02125, United States
- Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, United States
| | - Mayra C Vidal
- Biology Department, University of Massachusetts Boston, Boston, MA 02125, United States
| |
Collapse
|
3
|
Gravem SA, Poirson BN, Robinson JW, Menge BA. Resistance of rocky intertidal communities to oceanic climate fluctuations. PLoS One 2024; 19:e0297697. [PMID: 38809830 PMCID: PMC11135789 DOI: 10.1371/journal.pone.0297697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 01/11/2024] [Indexed: 05/31/2024] Open
Abstract
A powerful way to predict how ecological communities will respond to future climate change is to test how they have responded to the climate of the past. We used climate oscillations including the Pacific Decadal Oscillation (PDO), North Pacific Gyre Oscillation, and El Niño Southern Oscillation (ENSO) and variation in upwelling, air temperature, and sea temperatures to test the sensitivity of nearshore rocky intertidal communities to climate variability. Prior research shows that multiple ecological processes of key taxa (growth, recruitment, and physiology) were sensitive to environmental variation during this time frame. We also investigated the effect of the concurrent sea star wasting disease outbreak in 2013-2014. We surveyed nearly 150 taxa from 11 rocky intertidal sites in Oregon and northern California annually for up to 14-years (2006-2020) to test if community structure (i.e., the abundance of functional groups) and diversity were sensitive to past environmental variation. We found little to no evidence that these communities were sensitive to annual variation in any of the environmental measures, and that each metric was associated with < 8.6% of yearly variation in community structure. Only the years elapsed since the outbreak of sea star wasting disease had a substantial effect on community structure, but in the mid-zone only where spatially dominant mussels are a main prey of the keystone predator sea star, Pisaster ochraceus. We conclude that the established sensitivity of multiple ecological processes to annual fluctuations in climate has not yet scaled up to influence community structure. Hence, the rocky intertidal system along this coastline appears resistant to the range of oceanic climate fluctuations that occurred during the study. However, given ongoing intensification of climate change and increasing frequencies of extreme events, future responses to climate change seem likely.
Collapse
Affiliation(s)
- Sarah A. Gravem
- Department of Integrative Biology, Partnership for Interdisciplinary Studies of Coastal Oceans (PISCO), Oregon State University, Corvallis, Oregon, United States of America
| | - Brittany N. Poirson
- Department of Integrative Biology, Partnership for Interdisciplinary Studies of Coastal Oceans (PISCO), Oregon State University, Corvallis, Oregon, United States of America
| | - Jonathan W. Robinson
- Department of Integrative Biology, Partnership for Interdisciplinary Studies of Coastal Oceans (PISCO), Oregon State University, Corvallis, Oregon, United States of America
| | - Bruce A. Menge
- Department of Integrative Biology, Partnership for Interdisciplinary Studies of Coastal Oceans (PISCO), Oregon State University, Corvallis, Oregon, United States of America
| |
Collapse
|
4
|
Foulk A, Gouhier T, Choi F, Torossian JL, Matzelle A, Sittenfeld D, Helmuth B. Physiologically informed organismal climatologies reveal unexpected spatiotemporal trends in temperature. CONSERVATION PHYSIOLOGY 2024; 12:coae025. [PMID: 38779431 PMCID: PMC11109819 DOI: 10.1093/conphys/coae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 03/15/2024] [Accepted: 04/15/2024] [Indexed: 05/25/2024]
Abstract
Body temperature is universally recognized as a dominant driver of biological performance. Although the critical distinction between the temperature of an organism and its surrounding habitat has long been recognized, it remains common practice to assume that trends in air temperature-collected via remote sensing or weather stations-are diagnostic of trends in animal temperature and thus of spatiotemporal patterns of physiological stress and mortality risk. Here, by analysing long-term trends recorded by biomimetic temperature sensors designed to emulate intertidal mussel temperature across the US Pacific Coast, we show that trends in maximal organismal temperature ('organismal climatologies') during aerial exposure can differ substantially from those exhibited by co-located environmental data products. Specifically, using linear regression to compare maximal organismal and environmental (air temperature) climatologies, we show that not only are the magnitudes of body and air temperature markedly different, as expected, but so are their temporal trends at both local and biogeographic scales, with some sites showing significant decadal-scale increases in organismal temperature despite reductions in air temperature, or vice versa. The idiosyncratic relationship between the spatiotemporal patterns of organismal and air temperatures suggests that environmental climatology cannot be statistically corrected to serve as an accurate proxy for organismal climatology. Finally, using quantile regression, we show that spatiotemporal trends vary across the distribution of organismal temperature, with extremes shifting in different directions and at different rates than average metrics. Overall, our results highlight the importance of quantifying changes in the entire distribution of temperature to better predict biological performance and dispel the notion that raw or 'corrected' environmental (and specially air temperature) climatologies can be used to predict organismal temperature trends. Hence, despite their widespread coverage and availability, the severe limitations of environmental climatologies suggest that their role in conservation and management policy should be carefully considered.
Collapse
Affiliation(s)
- Aubrey Foulk
- Department of Marine and Environmental Sciences, Northeastern University Marine Science Center, Nahant, MA 01908, USA
| | - Tarik Gouhier
- Department of Marine and Environmental Sciences, Northeastern University Marine Science Center, Nahant, MA 01908, USA
| | - Francis Choi
- Department of Marine and Environmental Sciences, Northeastern University Marine Science Center, Nahant, MA 01908, USA
| | - Jessica L Torossian
- Department of Marine and Environmental Sciences, Northeastern University Marine Science Center, Nahant, MA 01908, USA
- Volpe Center, U.S. Department of Transportation, Cambridge, MA 02142, USA
| | - Allison Matzelle
- Department of Marine and Environmental Sciences, Northeastern University Marine Science Center, Nahant, MA 01908, USA
| | - David Sittenfeld
- Center for the Environment, Museum of Science, Boston, MA 02114, USA
- School of Public Policy and Urban Affairs, Northeastern University, Boston, MA 02115, USA
| | - Brian Helmuth
- Department of Marine and Environmental Sciences, Northeastern University Marine Science Center, Nahant, MA 01908, USA
- School of Public Policy and Urban Affairs, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
5
|
Wanner MS, Walter JA, Reuman DC, Bell TW, Castorani MCN. Dispersal synchronizes giant kelp forests. Ecology 2024; 105:e4270. [PMID: 38415343 DOI: 10.1002/ecy.4270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 12/07/2023] [Accepted: 01/22/2024] [Indexed: 02/29/2024]
Abstract
Spatial synchrony is the tendency for population fluctuations to be correlated among different locations. This phenomenon is a ubiquitous feature of population dynamics and is important for ecosystem stability, but several aspects of synchrony remain unresolved. In particular, the extent to which any particular mechanism, such as dispersal, contributes to observed synchrony in natural populations has been difficult to determine. To address this gap, we leveraged recent methodological improvements to determine how dispersal structures synchrony in giant kelp (Macrocystis pyrifera), a global marine foundation species that has served as a useful system for understanding synchrony. We quantified population synchrony and fecundity with satellite imagery across 11 years and 880 km of coastline in southern California, USA, and estimated propagule dispersal probabilities using a high-resolution ocean circulation model. Using matrix regression models that control for the influence of geographic distance, resources (seawater nitrate), and disturbance (destructive waves), we discovered that dispersal was an important driver of synchrony. Our findings were robust to assumptions about propagule mortality during dispersal and consistent between two metrics of dispersal: (1) the individual probability of dispersal and (2) estimates of demographic connectivity that incorporate fecundity (the number of propagules dispersing). We also found that dispersal and environmental conditions resulted in geographic clusters with distinct patterns of synchrony. This study is among the few to statistically associate synchrony with dispersal in a natural population and the first to do so in a marine organism. The synchronizing effects of dispersal and environmental conditions on foundation species, such as giant kelp, likely have cascading effects on the spatial stability of biodiversity and ecosystem function.
Collapse
Affiliation(s)
- Miriam S Wanner
- Department of Environmental Sciences, University of Virginia, Charlottesville, Virginia, USA
| | - Jonathan A Walter
- Department of Environmental Sciences, University of Virginia, Charlottesville, Virginia, USA
- Center for Watershed Sciences, University of California, Davis, California, USA
| | - Daniel C Reuman
- Department of Ecology and Evolutionary Biology and Center for Ecological Research, University of Kansas, Lawrence, Kansas, USA
| | - Tom W Bell
- Department of Applied Ocean Physics and Engineering, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| | - Max C N Castorani
- Department of Environmental Sciences, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
6
|
Zhao Q, Devries JH, Clark RG, Weegman MD. Causes and consequences of demography in continent-scale, full-annual-cycle population dynamics under global change. Glob Ecol Conserv 2023. [DOI: 10.1016/j.gecco.2023.e02461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023] Open
|
7
|
Salois SL, Gouhier TC, Helmuth B, Choi F, Seabra R, Lima FP. Coastal upwelling generates cryptic temperature refugia. Sci Rep 2022; 12:19313. [PMID: 36369260 PMCID: PMC9652353 DOI: 10.1038/s41598-022-23717-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 11/03/2022] [Indexed: 11/13/2022] Open
Abstract
Understanding the effects of climate-mediated environmental variation on the distribution of organisms is critically important in an era of global change. We used wavelet analysis to quantify the spatiotemporal (co)variation in daily water temperature for predicting the distribution of cryptic refugia across 16 intertidal sites that were characterized as 'no', 'weak' or 'strong' upwelling and spanned 2000 km of the European Atlantic Coast. Sites experiencing weak upwelling exhibited high synchrony in temperature but low levels of co-variability at monthly to weekly timescales, whereas the opposite was true for sites experiencing strong upwelling. This suggests upwelling generates temporal thermal refugia that can promote organismal performance by both supplying colder water that mitigates thermal stress during hot Summer months and ensuring high levels of fine-scale variation in temperature that reduce the duration of thermal extremes. Additionally, pairwise correlograms based on the Pearson-product moment correlation coefficient and wavelet coherence revealed scale dependent trends in temperature fluctuations across space, with a rapid decay in strong upwelling sites at monthly and weekly timescales. This suggests upwelling also generates spatial thermal refugia that can 'rescue' populations from unfavorable conditions at local and regional scales. Overall, this study highlights the importance of identifying cryptic spatiotemporal refugia that emerge from fine-scale environmental variation to map potential patterns of organismal performance in a rapidly changing world.
Collapse
Affiliation(s)
- Sarah L Salois
- Marine Science Center, Northeastern University, 430 Nahant Road, Nahant, MA, 01908, USA.
- School for Marine Science and Technology, University of Massachusetts Dartmouth, 836 South Rodney French Blvd, New Bedford, MA, 02744, USA.
| | - Tarik C Gouhier
- Marine Science Center, Northeastern University, 430 Nahant Road, Nahant, MA, 01908, USA
| | - Brian Helmuth
- Marine Science Center, Northeastern University, 430 Nahant Road, Nahant, MA, 01908, USA
| | - Francis Choi
- Marine Science Center, Northeastern University, 430 Nahant Road, Nahant, MA, 01908, USA
| | - Rui Seabra
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Campus de Vairão, 4485-661, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, Campus de Vairão, 4485-661, Vairão, Portugal
| | - Fernando P Lima
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Campus de Vairão, 4485-661, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, Campus de Vairão, 4485-661, Vairão, Portugal
| |
Collapse
|
8
|
Castorani MCN, Bell TW, Walter JA, Reuman D, Cavanaugh KC, Sheppard LW. Disturbance and nutrients synchronise kelp forests across scales through interacting Moran effects. Ecol Lett 2022; 25:1854-1868. [PMID: 35771209 PMCID: PMC9541195 DOI: 10.1111/ele.14066] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/20/2022] [Accepted: 06/02/2022] [Indexed: 11/30/2022]
Abstract
Spatial synchrony is a ubiquitous and important feature of population dynamics, but many aspects of this phenomenon are not well understood. In particular, it is largely unknown how multiple environmental drivers interact to determine synchrony via Moran effects, and how these impacts vary across spatial and temporal scales. Using new wavelet statistical techniques, we characterised synchrony in populations of giant kelp Macrocystis pyrifera, a widely distributed marine foundation species, and related synchrony to variation in oceanographic conditions across 33 years (1987-2019) and >900 km of coastline in California, USA. We discovered that disturbance (storm-driven waves) and resources (seawater nutrients)-underpinned by climatic variability-act individually and interactively to produce synchrony in giant kelp across geography and timescales. Our findings demonstrate that understanding and predicting synchrony, and thus the regional stability of populations, relies on resolving the synergistic and antagonistic Moran effects of multiple environmental drivers acting on different timescales.
Collapse
Affiliation(s)
- Max C. N. Castorani
- Department of Environmental SciencesUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Tom W. Bell
- Department of Applied Ocean Physics & EngineeringWoods Hole Oceanographic InstitutionWoods HoleMassachusettsUSA
- Earth Research InstituteUniversity of CaliforniaSanta BarbaraCaliforniaUSA
| | - Jonathan A. Walter
- Department of Environmental SciencesUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Daniel C. Reuman
- Department of Ecology and Evolutionary BiologyUniversity of KansasLawrenceKansasUSA
- Center for Ecological ResearchUniversity of KansasLawrenceKansasUSA
- Laboratory of PopulationsRockefeller UniversityNew YorkNew YorkUSA
| | - Kyle C. Cavanaugh
- Department of GeographyUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Lawrence W. Sheppard
- Department of Ecology and Evolutionary BiologyUniversity of KansasLawrenceKansasUSA
- Marine Biological Association of the United KingdomPlymouthUK
| |
Collapse
|
9
|
Navarrete SA, Barahona M, Weidberg N, Broitman BR. Climate change in the coastal ocean: shifts in pelagic productivity and regionally diverging dynamics of coastal ecosystems. Proc Biol Sci 2022; 289:20212772. [PMID: 35259989 PMCID: PMC8914614 DOI: 10.1098/rspb.2021.2772] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Climate change has led to intensification and poleward migration of the Southeastern Pacific Anticyclone, forcing diverging regions of increasing, equatorward and decreasing, poleward coastal phytoplankton productivity along the Humboldt Upwelling Ecosystem, and a transition zone around 31° S. Using a 20-year dataset of barnacle larval recruitment and adult abundances, we show that striking increases in larval arrival have occurred since 1999 in the region of higher productivity, while slower but significantly negative trends dominate poleward of 30° S, where years of recruitment failure are now common. Rapid increases in benthic adults result from fast recruitment-stock feedbacks following increased recruitment. Slower population declines in the decreased productivity region may result from aging but still reproducing adults that provide temporary insurance against population collapses. Thus, in this region of the ocean where surface waters have been cooling down, climate change is transforming coastal pelagic and benthic ecosystems through altering primary productivity, which seems to propagate up the food web at rates modulated by stock-recruitment feedbacks and storage effects. Slower effects of downward productivity warn us that poleward stocks may be closer to collapse than current abundances may suggest.
Collapse
Affiliation(s)
- Sergio A Navarrete
- Estación Costera de Investigaciones Marinas, Las Cruces, Center for Applied Ecology and Sustainability (CAPES), and Millennium Nucleus for Ecology and Conservation of Temperate Mesophotic Reefs (NUTME), Pontificia Universidad Católica de Chile, Santiago, Chile.,Millennium Institute for Coastal Socio-Ecology (SECOS), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Mario Barahona
- Estación Costera de Investigaciones Marinas, Las Cruces, Center for Applied Ecology and Sustainability (CAPES), and Millennium Nucleus for Ecology and Conservation of Temperate Mesophotic Reefs (NUTME), Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Ciencias, Facultad de Artes Liberales, Nucleo Milenio UPWELL, Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Viña del Mar, Chile
| | - Nicolas Weidberg
- Estación Costera de Investigaciones Marinas, Las Cruces, Center for Applied Ecology and Sustainability (CAPES), and Millennium Nucleus for Ecology and Conservation of Temperate Mesophotic Reefs (NUTME), Pontificia Universidad Católica de Chile, Santiago, Chile.,Department of Biological Sciences, University of South Carolina, Columbia, SC, USA.,Facultad de Ciencias del Mar, Universidad de Vigo, Vigo, Galicia, Spain
| | - Bernardo R Broitman
- Millennium Institute for Coastal Socio-Ecology (SECOS), Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Ciencias, Facultad de Artes Liberales, Nucleo Milenio UPWELL, Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Viña del Mar, Chile
| |
Collapse
|
10
|
Abstract
Climate change threatens to destabilize ecological communities, potentially moving them from persistently occupied "basins of attraction" to different states. Increasing variation in key ecological processes can signal impending state shifts in ecosystems. In a rocky intertidal meta-ecosystem consisting of three distinct regions spread across 260 km of the Oregon coast, we show that annually cleared sites are characterized by communities that exhibit signs of increasing destabilization (loss of resilience) over the past decade despite persistent community states. In all cases, recovery rates slowed and became more variable over time. The conditions underlying these shifts appear to be external to the system, with thermal disruptions (e.g., marine heat waves, El Niño-Southern Oscillation) and shifts in ocean currents (e.g., upwelling) being the likely proximate drivers. Although this iconic ecosystem has long appeared resistant to stress, the evidence suggests that subtle destabilization has occurred over at least the last decade.
Collapse
|
11
|
Youngflesh C, Li Y, Lynch HJ, Delord K, Barbraud C, Ji R, Jenouvrier S. Lack of synchronized breeding success in a seabird community: extreme events, niche separation, and environmental variability. OIKOS 2021. [DOI: 10.1111/oik.08426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Casey Youngflesh
- Dept of Ecology and Evolutionary Biology, Univ. of California – Los Angeles Los Angeles CA USA
| | - Yun Li
- School of Marine Science and Policy, Univ. of Delaware Lewes DE USA
| | - Heather J. Lynch
- Inst. for Advanced Computational Science, Stony Brook Univ. Stony Brook NY USA
- Dept of Ecology and Evolution, Stony Brook Univ. Stony Brook NY USA
| | - Karine Delord
- Centre d'Etudes Biologiques de Chizé, UMR 7372 Centre National de la Recherche Scientifique/La Rochelle Univ. Villiers en Bois France
| | - Christophe Barbraud
- Centre d'Etudes Biologiques de Chizé, UMR 7372 Centre National de la Recherche Scientifique/La Rochelle Univ. Villiers en Bois France
| | - Rubao Ji
- Biology Dept, Woods Hole Oceanographic Inst. Woods Hole MA USA
| | | |
Collapse
|
12
|
Gross T, Allhoff KT, Blasius B, Brose U, Drossel B, Fahimipour AK, Guill C, Yeakel JD, Zeng F. Modern models of trophic meta-communities. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190455. [PMID: 33131442 PMCID: PMC7662193 DOI: 10.1098/rstb.2019.0455] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2020] [Indexed: 02/06/2023] Open
Abstract
Dispersal and foodweb dynamics have long been studied in separate models. However, over the past decades, it has become abundantly clear that there are intricate interactions between local dynamics and spatial patterns. Trophic meta-communities, i.e. meta-foodwebs, are very complex systems that exhibit complex and often counterintuitive dynamics. Over the past decade, a broad range of modelling approaches have been used to study these systems. In this paper, we review these approaches and the insights that they have revealed. We focus particularly on recent papers that study trophic interactions in spatially extensive settings and highlight the common themes that emerged in different models. There is overwhelming evidence that dispersal (and particularly intermediate levels of dispersal) benefits the maintenance of biodiversity in several different ways. Moreover, some insights have been gained into the effect of different habitat topologies, but these results also show that the exact relationships are much more complex than previously thought, highlighting the need for further research in this area. This article is part of the theme issue 'Integrative research perspectives on marine conservation'.
Collapse
Affiliation(s)
- Thilo Gross
- University of California Davis, Department of Computer Science, 1 Shields Avenue, Davis, CA 95616, USA
- Alfred Wegener Institut. Helmholtz Zentrum für Polar und Meeresforschung, Am Handelshafen 12, 27570 Bremerhaven, Germany
- Univeristät Oldenburg, Institut für Chemie und Biologie des Meeres, Carl-von-Ossietzky-Strasse 9-11, 26111 Oldenburg, Germany
- Helmholtz Institute for Functional Marine Bidiversity, Ammerländer Heerstrasse 231, Oldenburg, Germany
| | - Korinna T. Allhoff
- Universität Tübingen, Department of Biology, Auf der Morgenstelle 5, 72076 Tübingen, Germany
| | - Bernd Blasius
- Alfred Wegener Institut. Helmholtz Zentrum für Polar und Meeresforschung, Am Handelshafen 12, 27570 Bremerhaven, Germany
- Univeristät Oldenburg, Institut für Chemie und Biologie des Meeres, Carl-von-Ossietzky-Strasse 9-11, 26111 Oldenburg, Germany
| | - Ulrich Brose
- German Centre for Integrative Biodiversity Research, Deutscher Platz 5e, 04103 Leipzig, Germany
- Institute for Biodiversity, Friedrich Schiller University Jena, Dornburger-Strasse 159, 07743 Jena, Germany
| | - Barbara Drossel
- TU Darmstadt, Institut für Festkörperphysik, Hochschulstrasse 6, 64289 Darmstadt, Germany
| | - Ashkaan K. Fahimipour
- National Oceanic and Atmospheric Administration, Southwest Fisheries Science Center, 110 McAllister Way, Santa Cruz, CA 95060, USA
| | - Christian Guill
- Universität Potsdam, Institut für Biochemie und Biologie, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam, Germany
| | - Justin D. Yeakel
- University of California, Merced, School of Natural Sciences, 5200 North Lake Road, Merced, CA 95343, USA
| | - Fanqi Zeng
- University of Bristol, Department of Engineering Mathematics, Merchant Venturers Building, Bristol BS8 1UB, UK
| |
Collapse
|
13
|
Karatayev VA, Baskett ML. At what spatial scales are alternative stable states relevant in highly interconnected ecosystems? Ecology 2020; 101:e02930. [PMID: 31724154 DOI: 10.1002/ecy.2930] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 09/05/2019] [Accepted: 09/11/2019] [Indexed: 11/08/2022]
Abstract
Whether ecosystems recover from disturbance depends on the presence of alternative stable states, which are theoretically possible in simple models of many systems. However, definitive empirical evidence for this phenomenon remains limited to demographically closed ecosystems such as lakes. In more interconnected systems such as temperate rocky reefs, the local relevance of alternative stable states might erode as immigration overwhelms local feedbacks and produces a single stable state. At larger spatial scales, dispersal might counter localized disturbance and feedbacks to synchronize states throughout a region. Here, we quantify how interconnectedness affects the relevance of alternative stable states using dynamical models of California rocky reef communities that incorporate observed environmental stochasticity and feedback loops in kelp-urchin-predator interactions. Our models demonstrate the potential for localized alternative states despite high interconnectedness likely due to feedbacks affecting dispersers as they settle into local communities. Regionally, such feedbacks affecting settlement can produce a mosaic of alternative stable states that span local (10-20 km) scales despite the synchronizing effect of long-distance dispersal. The specific spatial scale and duration of each state predominantly depend on the scales of environmental variation and on local dynamics (here, fishing). Model predictions reflect observed scales of community states in California rocky reefs and suggest how alternative states co-occur in the wide array of marine and terrestrial systems with settlement feedbacks.
Collapse
Affiliation(s)
- Vadim A Karatayev
- Department of Environmental Science and Policy, University of California, Davis, 2004 Wickson Hall, One Shields Avenue, Davis, California, 95616, USA
- Graduate Group in Ecology, University of California, Davis, One Shields Avenue, Davis, California, 95616, USA
| | - Marissa L Baskett
- Department of Environmental Science and Policy, University of California, Davis, 2004 Wickson Hall, One Shields Avenue, Davis, California, 95616, USA
| |
Collapse
|
14
|
|
15
|
Spatial and interspecific differences in recruitment decouple synchrony and stability in trophic metacommunities. THEOR ECOL-NETH 2018. [DOI: 10.1007/s12080-018-0397-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
16
|
Salois SL, Gouhier TC, Menge BA. The multifactorial effects of dispersal on biodiversity in environmentally forced metacommunities. Ecosphere 2018. [DOI: 10.1002/ecs2.2357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Sarah L. Salois
- Marine Science Center; Northeastern University; 430 Nahant Road Nahant Massachusetts 01908 USA
| | - Tarik C. Gouhier
- Marine Science Center; Northeastern University; 430 Nahant Road Nahant Massachusetts 01908 USA
| | - Bruce A. Menge
- Department of Integrative Biology; Oregon State University; 3029 Cordley Hall Corvallis Oregon 97331 USA
| |
Collapse
|
17
|
Lany NK, Zarnetske PL, Gouhier TC, Menge BA. Incorporating Context Dependency of Species Interactions in Species Distribution Models. Integr Comp Biol 2017; 57:159-167. [PMID: 28881933 DOI: 10.1093/icb/icx057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
SYNOPSIS Species distribution models typically use correlative approaches that characterize the species-environment relationship using occurrence or abundance data for a single species. However, species distributions are determined by both abiotic conditions and biotic interactions with other species in the community. Therefore, climate change is expected to impact species through direct effects on their physiology and indirect effects propagated through their resources, predators, competitors, or mutualists. Furthermore, the sign and strength of species interactions can change according to abiotic conditions, resulting in context-dependent species interactions that may change across space or with climate change. Here, we incorporated the context dependency of species interactions into a dynamic species distribution model. We developed a multi-species model that uses a time-series of observational survey data to evaluate how abiotic conditions and species interactions affect the dynamics of three rocky intertidal species. The model further distinguishes between the direct effects of abiotic conditions on abundance and the indirect effects propagated through interactions with other species. We apply the model to keystone predation by the sea star Pisaster ochraceus on the mussel Mytilus californianus and the barnacle Balanus glandula in the rocky intertidal zone of the Pacific coast, USA. Our method indicated that biotic interactions between P. ochraceus and B. glandula affected B. glandula dynamics across >1000 km of coastline. Consistent with patterns from keystone predation, the growth rate of B. glandula varied according to the abundance of P. ochraceus in the previous year. The data and the model did not indicate that the strength of keystone predation by P. ochraceus varied with a mean annual upwelling index. Balanus glandula cover increased following years with high phytoplankton abundance measured as mean annual chlorophyll-a. M. californianus exhibited the same pattern to a lesser degree, although this pattern was not significant. This work bridges the disciplines of biogeography and community ecology to develop tools to better understand the direct and indirect effects of abiotic conditions on ecological communities.
Collapse
Affiliation(s)
- Nina K Lany
- Department of Forestry, and Ecology, Evolutionary Biology, and Behavior Program, Michigan State University, East Lansing, MI 48824, USA
| | - Phoebe L Zarnetske
- Department of Forestry, and Ecology, Evolutionary Biology, and Behavior Program, Michigan State University, East Lansing, MI 48824, USA
| | - Tarik C Gouhier
- Marine Science Center, Northeastern University, Nahant, MA 01908, USA
| | - Bruce A Menge
- Department of Integrative Biology, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
18
|
Tolonen KT, Vilmi A, Karjalainen SM, Hellsten S, Sutela T, Heino J. Ignoring spatial effects results in inadequate models for variation in littoral macroinvertebrate diversity. OIKOS 2016. [DOI: 10.1111/oik.03587] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Kimmo T. Tolonen
- Finnish Environment Institute; Natural Environment Centre; PO Box 413 FI-90014 Oulu Finland
| | - Annika Vilmi
- Finnish Environment Institute; Natural Environment Centre; PO Box 413 FI-90014 Oulu Finland
| | | | - Seppo Hellsten
- Finnish Environment Institute; Freshwater Centre; Oulu Finland
| | - Tapio Sutela
- Natural Resources Institute Finland; Oulu Finland
| | - Jani Heino
- Finnish Environment Institute; Natural Environment Centre; PO Box 413 FI-90014 Oulu Finland
| |
Collapse
|
19
|
Damos P. Using multivariate cross correlations, Granger causality and graphical models to quantify spatiotemporal synchronization and causality between pest populations. BMC Ecol 2016; 16:33. [PMID: 27495149 PMCID: PMC4974811 DOI: 10.1186/s12898-016-0087-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Accepted: 07/06/2016] [Indexed: 11/30/2022] Open
Abstract
Background This work combines multivariate time series analysis and graph theory to detect synchronization and causality among certain ecological variables and to represent significant correlations via network projections. Four different statistical tools (cross-correlations, partial cross-correlations, Granger causality and partial Granger causality) utilized to quantify correlation strength and causality among biological entities. These indices correspond to different ways to estimate the relationships between different variables and to construct ecological networks using the variables as nodes and the indices as edges. Specifically, correlations and Granger causality indices introduce rules that define the associations (links) between the ecological variables (nodes). This approach is used for the first time to analyze time series of moth populations as well as temperature and relative humidity in order to detect spatiotemporal synchronization over an agricultural study area and to illustrate significant correlations and causality interactions via graphical models. Results The networks resulting from the different approaches are trimmed and show how the network configurations are affected by each construction technique. The Granger statistical rules provide a simple test to determine whether one series (population) is caused by another series (i.e. environmental variable or other population) even when they are not correlated. In most cases, the statistical analysis and the related graphical models, revealed intra-specific links, a fact that may be linked to similarities in pest population life cycles and synchronizations. Graph theoretic landscape projections reveal that significant associations in the populations are not subject to landscape characteristics. Populations may be linked over great distances through physical features such as rivers and not only at adjacent locations in which significant interactions are more likely to appear. In some cases, incidental connections, with no ecological explanation, were also observed; however, this was expected because some of the statistical methods used to define non trivial associations show connections that cannot be interpreted phenomenologically. Conclusions Incorporating multivariate causal interactions in a probabilistic sense comes closer to reality than doing per se binary theoretic constructs because the former conceptually incorporate the dynamics of all kinds of ecological variables within the network. The advantage of Granger rules over correlations is that Granger rules have dynamic features and provide an easy way to examine the dynamic causal relations of multiple time-series variables. The constructed networks may provide an intuitive, advantageous representation of multiple populations’ associations that can be realized within an agro-ecosystem. These relationships may be due to life cycle synchronizations, exposure to a shared climate or even more complicated ecological interactions such as moving behavior, dispersal patterns and host allocation. Moreover, they are useful for drawing inferences regarding pest population dynamics and their spatial management. Extending these models by including more variables should allow the exploration of intra and interspecies relationships in larger ecological systems, and the identification of specific population traits that might constrain their structures in larger areas. Electronic supplementary material The online version of this article (doi:10.1186/s12898-016-0087-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Petros Damos
- Department of Environmental Conservation and Management, Faculty of Pure and Applied Sciences, Open University of Cyprus, Main OUC building: 33, Giannou Kranidioti Ave., Latsia, 2220, Nicosia, Cyprus. .,WebScience, Mathematics Department, Faculty of Sciences, Aristotle University of Thessaloniki, University Campus, 59100, Thessaloniki, Greece. .,Laboratory of Applied Zoology and Parasitology, Department of Crop Production (Field Crops and Ecology, Horticulture and Viticulture and Plant Protection), Faculty of Agriculture, Forestry and Natural Environment, University Campus, 59100, Thessaloniki, Greece.
| |
Collapse
|
20
|
Pedersen EJ, Marleau JN, Granados M, Moeller HV, Guichard F. Nonhierarchical Dispersal Promotes Stability and Resilience in a Tritrophic Metacommunity. Am Nat 2016; 187:E116-28. [DOI: 10.1086/685773] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
21
|
Hughes AR, Schenck FR, Bloomberg J, Hanley TC, Feng D, Gouhier TC, Beighley RE, Kimbro DL. Biogeographic gradients in ecosystem processes of the invasive ecosystem engineer Phragmites australis. Biol Invasions 2016. [DOI: 10.1007/s10530-016-1143-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Torossian J, Kordas R, Helmuth B. Cross-Scale Approaches to Forecasting Biogeographic Responses to Climate Change. ADV ECOL RES 2016. [DOI: 10.1016/bs.aecr.2016.08.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
23
|
Spiecker B, Gouhier TC, Guichard F. Reciprocal feedbacks between spatial subsidies and reserve networks in coral reef meta-ecosystems. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2016; 26:264-278. [PMID: 27039524 DOI: 10.1890/15-0478] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Top-down processes such as predation and herbivory have been shown to control the dynamics of communities across a range of ecosystems by generating trophic cascades. However, theory is only beginning to describe how these local trophic processes interact with spatial subsidies in the form of material (nutrient, detritus) transport and organismal dispersal to (1) shape the structure of interconnected (meta-) ecosystems and (2) determine their optimal management via reserve networks. Here, we develop a meta-ecosystem model to understand how the reciprocal feedbacks between spatial subsidies and reserve networks modulate the importance of top-down control in a simple herbivorous fish-macroalgae-coral system. We show that in large and isolated reserve networks where connectivity between protected and unprotected areas is limited, spatial subsidies remain largely confined to reserves. This retention of spatial subsidies promotes the top-down control of corals and macroalgae by herbivores inside reserves but reduces it outside reserves. Conversely, in small and aggregated reserves where connectivity between protected and unprotected areas is high, the spillover of spatial subsidies causes a reduction in top-down control of corals and macroalgae by herbivores inside reserves and an increase in the strength of top-down control outside reserves. In addition, we demonstrate that there is a trade-off between local and regional conservation objectives when designing reserve networks: small and aggregated reserves based on the extent of dispersal maximize the abundance of corals and herbivores regionally, whereas large and isolated reserves always maximize the abundance of corals within reserves, regardless of the extent of dispersal. The existence of such "conservation traps," which arise from the fulfillment of population-level objectives within local reserves at the cost of community-level objectives at regional scales, suggests the importance of adopting a more holistic strategy to manage complex and interconnected ecosystems.
Collapse
|
24
|
Cobbold CA, Lutscher F, Sherratt JA. Diffusion-driven instabilities and emerging spatial patterns in patchy landscapes. ECOLOGICAL COMPLEXITY 2015. [DOI: 10.1016/j.ecocom.2015.10.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Duncan AB, Gonzalez A, Kaltz O. Dispersal, environmental forcing, and parasites combine to affect metapopulation synehrony and stability. Ecology 2015; 96:284-90. [PMID: 26236913 DOI: 10.1890/14-0137.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Dispersal can have positive and negative effects on metapopulation stability and persistence. One prediction is that high levels of dispersal synchronize density fluctuations between subpopulations. However, little is still known about how biotic and abiotic factors combine to modify the effects of dispersal rate on synchrony and metapopulation dynamics. In a fully factorial experimental design, we investigated the combined effects of (1) dispersal, (2) parasite infection, and (3) synchrony in temperature fluctuations on subpopulation synchrony, metapopulation instability, and minimum population size, in laboratory metapopulations of the ciliate Paramecium caudatum. Metapopulations, comprising two subpopulations linked by high or low levels of dispersal, were exposed to daily fluctuations in temperature between permissive (23 degrees C) and restrictive (5 degrees C) conditions. Infected metapopulations started the experiment with one subpopulation uninfected, while the other was infected at a prevalence of 5% with the bacterial parasite Holospora undulata. The temperature synchrony treatment involved subpopulations within a metapopulation following the same (synchronous temperatures) or different (asynchronous temperatures) temporal sequences. Population size was tracked over the 56-day experiment. We found that subpopulation density fluctuations were synchronized by high dispersal in infected metapopulations, and by synchronous temperatures in all metapopulations. Subpopulation synchrony was positively correlated with metapopulation instability and minimum metapopulation size, highlighting the multiple consequences of our treatments for metapopulation dynamics. Our results illustrate how parasites can generate dispersal-driven synchrony in non-cycling, declining populations. This "biotic forcing" via a natural enemy added to the temperature-dependent environmental forcing. We therefore conclude that predictions of metapopulation persistence in natural populations require simultaneous investigation of multiple ecological and epidemiological factors.
Collapse
|
26
|
Le Corre N, Johnson LE, Smith GK, Guichard F. Patterns and scales of connectivity: temporal stability and variation within a marine metapopulation. Ecology 2015; 96:2245-56. [DOI: 10.1890/14-2126.1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
27
|
Chevalier M, Laffaille P, Ferdy JB, Grenouillet G. Measurements of spatial population synchrony: influence of time series transformations. Oecologia 2015; 179:15-28. [DOI: 10.1007/s00442-015-3331-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 04/25/2015] [Indexed: 11/28/2022]
|
28
|
Menge BA, Gouhier TC, Hacker SD, Chan F, Nielsen KJ. Are meta-ecosystems organized hierarchically? A model and test in rocky intertidal habitats. ECOL MONOGR 2015. [DOI: 10.1890/14-0113.1] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
29
|
Mortelliti A, Westgate M, Stein J, Wood J, Lindenmayer D. Ecological and spatial drivers of population synchrony in bird assemblages. Basic Appl Ecol 2015. [DOI: 10.1016/j.baae.2015.01.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
30
|
Guichard F, Gouhier TC. Non-equilibrium spatial dynamics of ecosystems. Math Biosci 2014; 255:1-10. [PMID: 24984261 DOI: 10.1016/j.mbs.2014.06.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 06/16/2014] [Accepted: 06/19/2014] [Indexed: 11/20/2022]
Abstract
Ecological systems show tremendous variability across temporal and spatial scales. It is this variability that ecologists try to predict and that managers attempt to harness in order to mitigate risk. However, the foundations of ecological science and its mainstream agenda focus on equilibrium dynamics to describe the balance of nature. Despite a rich body of literature on non-equilibrium ecological dynamics, we lack a well-developed set of predictions that can relate the spatiotemporal heterogeneity of natural systems to their underlying ecological processes. We argue that ecology needs to expand its current toolbox for the study of non-equilibrium ecosystems in order to both understand and manage their spatiotemporal variability. We review current approaches and outstanding questions related to the study of spatial dynamics and its application to natural ecosystems, including the design of reserves networks. We close by emphasizing the importance of ecosystem function as a key component of a non-equilibrium ecological theory, and of spatial synchrony as a central phenomenon for its inference in natural systems.
Collapse
Affiliation(s)
- Frederic Guichard
- Department of Biology, McGill University, 1205 Docteur Penfield, Montreal, Quebec H3A 1B1, Canada.
| | - Tarik C Gouhier
- Marine Science Center, Northeastern University, 430 Nahant Road, Nahant, MA 01908, USA.
| |
Collapse
|
31
|
Affiliation(s)
- Tarik C. Gouhier
- Marine Science Center; Northeastern University; 430 Nahant Road Nahant MA 01908 USA
| | - Frederic Guichard
- Department of Biology; McGill University; 1205 Avenue Docteur Penfield Montreal QC H3A 1B1 Canada
| |
Collapse
|
32
|
Wang S, Loreau M. Ecosystem stability in space: α, β and γ variability. Ecol Lett 2014; 17:891-901. [DOI: 10.1111/ele.12292] [Citation(s) in RCA: 156] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 03/24/2014] [Accepted: 04/09/2014] [Indexed: 11/28/2022]
Affiliation(s)
- Shaopeng Wang
- Centre for Biodiversity Theory and Modelling; Station d'Ecologie Expérimentale du CNRS 09200 Moulis France
| | - Michel Loreau
- Centre for Biodiversity Theory and Modelling; Station d'Ecologie Expérimentale du CNRS 09200 Moulis France
| |
Collapse
|
33
|
Gouhier TC, Guichard F, Menge BA. Designing effective reserve networks for nonequilibrium metacommunities. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2013; 23:1488-1503. [PMID: 24147418 DOI: 10.1890/12-1801.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The proliferation of efficient fishing practices has promoted the depletion of commercial stocks around the world and caused significant collateral damage to marine habitats. Recent empirical studies have shown that marine reserves can play an important role in reversing these effects. Equilibrium metapopulation models predict that networks of marine reserves can provide similar benefits so long as individual reserves are sufficiently large to achieve self-sustainability, or spaced based on the extent of dispersal of the target species in order to maintain connectivity between neighboring reserves. However, these guidelines have not been tested in nonequilibrium metacommunity models that exhibit the kinds of complex spatiotemporal dynamics typically seen in natural marine communities. Here, we used a spatially explicit predator-prey model whose predictions have been validated in a marine system to show that current guidelines are not optimal for metacommunities. In equilibrium metacommunities, there is a community-level trade-off for designing effective reserves: Networks whose size and spacing are smaller than the extent of dispersal maximize global predator abundance but minimize global prey abundance because of trophic cascades, whereas the converse is true for reserve networks whose size and spacing are larger than the extent of dispersal. In nonequilibrium metacommunities, reserves whose size and spacing match the extent of spatial autocorrelation in adult abundance (i.e., the extent of patchiness) escape this community-level trade-off by maximizing global abundance and persistence of both the prey and the predator. Overall, these results suggest that using the extent of adult patchiness instead of the extent of larval dispersal as the size and spacing of reserve networks is critical for designing community-based management strategies. By emphasizing patchiness over dispersal distance, our results show how the apparent complexity of nonequilibrium communities can actually simplify management guidelines and reduce uncertainty associated with the assessment of dispersal in marine environments.
Collapse
Affiliation(s)
- Tarik C Gouhier
- Marine Science Center, Northeastern University, 430 Nahant Road, Nahant, Massachusetts 01908, USA.
| | | | | |
Collapse
|
34
|
Menge BA, Menge DNL. Dynamics of coastal meta-ecosystems: the intermittent upwelling hypothesis and a test in rocky intertidal regions. ECOL MONOGR 2013. [DOI: 10.1890/12-1706.1] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
35
|
Different types of synchrony in chaotic and cyclic communities. Nat Commun 2013; 4:1359. [PMID: 23322047 DOI: 10.1038/ncomms2355] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 12/03/2012] [Indexed: 11/08/2022] Open
Abstract
Stability and persistence of populations is of great interest for management and conservation purposes. Spatial dynamics can have a crucial role in population stability via synchronization, and beneficial and detrimental effects on population persistence have been shown. Despite a theoretical understanding of synchronization, empirical data on synchrony of populations are restricted to systems that do not display the full spectrum of complex dynamics that may occur in nature (that is, chaos or quasiperiodicity). Here we show in experiments that the qualitative form of dynamic behaviour of chaotic and periodic oscillating communities did not change when unidirectionally coupled to oscillating driver communities. Driver and response populations were phase locked in cyclic communities, whereas chaotic communities showed only short periods of statistical coherencies. Our study provides the first empirical analysis of synchronization of chaotic communities and shows that the likelihood for chaos is not lowered in spatially explicit systems but that cyclic and chaotic systems differ in synchronization.
Collapse
|
36
|
Fukaya K, Okuda T, Hori M, Yamamoto T, Nakaoka M, Noda T. Variable processes that determine population growth and an invariant mean-variance relationship of intertidal barnacles. Ecosphere 2013. [DOI: 10.1890/es12-00272.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
37
|
Cavanaugh KC, Kendall BE, Siegel DA, Reed DC, Alberto F, Assis J. Synchrony in dynamics of giant kelp forests is driven by both local recruitment and regional environmental controls. Ecology 2013; 94:499-509. [PMID: 23691668 DOI: 10.1890/12-0268.1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Populations of many species display spatially synchronous fluctuations in abundance. Synchrony is most commonly attributed to three processes: factors that influence recruitment (e.g., dispersal, early survival), large-scale environmental variability, and spatially autocorrelated trophic interactions. However it is often difficult to link population synchrony to a specific dominant process, particularly when multiple synchronizing forces are operating. We utilized a new satellite-based data set of giant kelp (Macrocystis pyrifera) canopy biomass to examine population synchrony in southern California kelp forests on spatial scales ranging from 50 m to 300 km and temporal scales ranging from 1 to 11 years. We examined the relationship between synchrony and distance for adult kelp populations, kelp recruits, sea urchin abundance (a major grazer of kelp), and environmental variables known to influence kelp population dynamics. Population synchrony in giant kelp decreased with distance between populations: an initial rapid exponential decrease between 50 m and 1.3 km was followed by a second, large-scale decrease between distances of 1.3 km and 172 km. The 50-m to 1.3-km spatial scale corresponded to the scales of synchrony in the abundance of sea urchins and young kelp recruits, suggesting that local drivers of predation and recruitment influence small-scale synchrony in kelp populations. The spatial correlation patterns of environmental variables, particularly wave height, were similar to the synchrony-distance relationship of kelp populations from 1.3 km to 172 km, suggesting that regional environmental variability, i.e., the Moran effect, was the dominant process affecting synchrony at larger spatial scales. This two-step pattern in the relationship between kelp biomass synchrony and distance was apparent in each of the 11 years of our study. Our results highlight the potential for synthesizing approaches from both landscape and population ecology in order to identify the multiple processes that generate synchrony in population dynamics.
Collapse
Affiliation(s)
- Kyle C Cavanaugh
- Earth Research Institute, University of California, Santa Barbara, California 93106, USA.
| | | | | | | | | | | |
Collapse
|
38
|
Gouhier TC, Menge BA, Hacker SD. Recruitment facilitation can promote coexistence and buffer population growth in metacommunities. Ecol Lett 2011; 14:1201-10. [DOI: 10.1111/j.1461-0248.2011.01690.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
39
|
Vogt RJ, Rusak JA, Patoine A, Leavitt PR. Differential effects of energy and mass influx on the landscape synchrony of lake ecosystems. Ecology 2011; 92:1104-14. [PMID: 21661571 DOI: 10.1890/10-1846.1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Interannual variation of 45 annually resolved time series of environmental, limnological, and biotic parameters was quantified (1994-2009) in six lakes within 52,000 km2 to test the hypothesis that influx of energy (E; as irradiance, heat, wind) varies synchronously among sites and induces temporal coherence in lakes and their food webs, whereas influx of mass (m; as water, solutes, particles) reduces synchrony because local catchments uniquely modify hydrologic inputs. Overall, 82% of parameters exhibited significant (P < 0.05) synchrony (S) estimated as mean pair-wise correlation of Z-transformed time series. Influx of E as atmospheric heat and irradiance was both more highly synchronous and less temporally variable (months-to-decades) than influx of m as summer precipitation, snow, or river discharge. Similarly, S of limnological parameters varied from 0.08 to 0.85, with variables known to be regulated by E influx (ice melt, gas solubility) up to twofold more coherent than those regulated by m inputs (organic solutes). Pairs of variables linked by simple direct mechanisms exhibited similar S values (air temperature and ice melt, nutrients and algae), whereas the coherence of other parameters (water temperature, mixing) was intermediate to that of multiple regulatory agents. Overall, aggregate measures of plankton density varied more coherently among lakes than did constituent taxa. These findings suggest that environmental variability is transmitted to most levels of aquatic ecosystems, but that the precise effects depend on whether E or m fluxes predominate, the coherence of each forcing mechanism, and the strength of linkages between exogenous forcing and lake response.
Collapse
Affiliation(s)
- Richard J Vogt
- Limnology Laboratory, Department of Biology, University of Regina, Regina, Saskatchewan S4S 0A2, Canada.
| | | | | | | |
Collapse
|
40
|
|
41
|
Monaco CJ, Helmuth B. Tipping points, thresholds and the keystone role of physiology in marine climate change research. ADVANCES IN MARINE BIOLOGY 2011; 60:123-160. [PMID: 21962751 DOI: 10.1016/b978-0-12-385529-9.00003-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The ongoing and future effects of global climate change on natural and human-managed ecosystems have led to a renewed interest in the concept of ecological thresholds or tipping points. While generalizations such as poleward range shifts serve as a useful heuristic framework to understand the overall ecological impacts of climate change, sophisticated approaches to management require spatially and temporally explicit predictions that move beyond these oversimplified models. Most approaches to studying ecological thresholds in marine ecosystems tend to focus on populations, or on non-linearities in physical drivers. Here we argue that many of the observed thresholds observed at community and ecosystem levels can potentially be explained as the product of non-linearities that occur at three scales: (a) the mechanisms by which individual organisms interact with their ambient habitat, (b) the non-linear relationship between organismal physiological performance and variables such as body temperature and (c) the indirect effects of physiological stress on species interactions such as competition and predation. We explore examples at each of these scales in detail and explain why a failure to consider these non-linearities - many of which can be counterintuitive - can lead to Type II errors (a failure to predict significant ecological responses to climate change). Specifically, we examine why ecological thresholds can occur well before concomitant thresholds in physical drivers are observed, i.e. how even small linear changes in the physical environment can lead to ecological tipping points. We advocate for an integrated framework that combines biophysical, ecological and physiological methods to generate hypotheses that can be tested using experimental manipulation as well as hindcasting and nowcasting of observed change, on a spatially and temporally explicit basis.
Collapse
Affiliation(s)
- Cristián J Monaco
- Department of Biological Sciences and Environment and Sustainability Program, University of South Carolina, Columbia, SC, USA.
| | | |
Collapse
|