1
|
Mabil P, Huidobro N, Flores A, Manjarrez E. Potential role of noise to improve intracortical microstimulation in tactile neuroprostheses. Neural Regen Res 2021; 16:1533-1534. [PMID: 33433469 PMCID: PMC8323671 DOI: 10.4103/1673-5374.303018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Pedro Mabil
- Laboratory of Integrative Neurophysiology, Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, CP, México
| | - Nayeli Huidobro
- Laboratory of Integrative Neurophysiology, Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, CP, México
| | - Amira Flores
- Laboratory of Integrative Neurophysiology, Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, CP, México
| | - Elias Manjarrez
- Laboratory of Integrative Neurophysiology, Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, CP, México
| |
Collapse
|
2
|
Kheradpezhouh E, Adibi M, Arabzadeh E. Response dynamics of rat barrel cortex neurons to repeated sensory stimulation. Sci Rep 2017; 7:11445. [PMID: 28904406 PMCID: PMC5597595 DOI: 10.1038/s41598-017-11477-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 08/24/2017] [Indexed: 11/25/2022] Open
Abstract
Neuronal adaptation is a common feature observed at various stages of sensory processing. Here, we quantified the time course of adaptation in rat somatosensory cortex. Under urethane anesthesia, we juxta-cellularly recorded single neurons (n = 147) while applying a series of whisker deflections at various frequencies (2-32 Hz). For ~90% of neurons, the response per unit of time decreased with frequency. The degree of adaptation increased along the train of deflections and was strongest at the highest frequency. However, a subset of neurons showed facilitation producing higher responses to subsequent deflections. The response latency to consecutive deflections increased both for neurons that exhibited adaptation and for those that exhibited response facilitation. Histological reconstruction of neurons (n = 45) did not reveal a systematic relationship between adaptation profiles and cell types. In addition to the periodic stimuli, we applied a temporally irregular train of deflections with a mean frequency of 8 Hz. For 70% of neurons, the response to the irregular stimulus was greater than that of the 8 Hz regular. This increased response to irregular stimulation was positively correlated with the degree of adaptation. Altogether, our findings demonstrate high levels of diversity among cortical neurons, with a proportion of neurons showing facilitation at specific temporal intervals.
Collapse
Affiliation(s)
- Ehsan Kheradpezhouh
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia.
- Australian Research Council Centre of Excellence for Integrative Brain Function, Australian National University Node, Canberra, ACT, Australia.
| | - Mehdi Adibi
- University of New South Wales, UNSW, Sydney, NSW, Australia
- International School for Advanced Studies - SISSA, Trieste, Italy
| | - Ehsan Arabzadeh
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
- Australian Research Council Centre of Excellence for Integrative Brain Function, Australian National University Node, Canberra, ACT, Australia
| |
Collapse
|
3
|
Abstract
Environmental stimuli and objects, including rewards, are often processed sequentially in the brain. Recent work suggests that the phasic dopamine reward prediction-error response follows a similar sequential pattern. An initial brief, unselective and highly sensitive increase in activity unspecifically detects a wide range of environmental stimuli, then quickly evolves into the main response component, which reflects subjective reward value and utility. This temporal evolution allows the dopamine reward prediction-error signal to optimally combine speed and accuracy.
Collapse
Affiliation(s)
- Wolfram Schultz
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK.
| |
Collapse
|
4
|
Kuroki S, Watanabe J, Nishida S. Neural timing signal for precise tactile timing judgments. J Neurophysiol 2016; 115:1620-9. [PMID: 26843600 DOI: 10.1152/jn.00790.2015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 01/20/2016] [Indexed: 11/22/2022] Open
Abstract
The brain can precisely encode the temporal relationship between tactile inputs. While behavioural studies have demonstrated precise interfinger temporal judgments, the underlying neural mechanism remains unknown. Computationally, two kinds of neural responses can act as the information source. One is the phase-locked response to the phase of relatively slow inputs, and the other is the response to the amplitude change of relatively fast inputs. To isolate the contributions of these components, we measured performance of a synchrony judgment task for sine wave and amplitude-modulation (AM) wave stimuli. The sine wave stimulus was a low-frequency sinusoid, with the phase shifted in the asynchronous stimulus. The AM wave stimulus was a low-frequency sinusoidal AM of a 250-Hz carrier, with only the envelope shifted in the asynchronous stimulus. In the experiment, three stimulus pairs, two synchronous ones and one asynchronous one, were sequentially presented to neighboring fingers, and participants were asked to report which one was the asynchronous pair. We found that the asynchrony of AM waves could be detected as precisely as single impulse pair, with the threshold asynchrony being ∼20 ms. On the other hand, the asynchrony of sine waves could not be detected at all in the range from 5 to 30 Hz. Our results suggest that the timing signal for tactile judgments is provided not by the stimulus phase information but by the envelope of the response of the high-frequency-sensitive Pacini channel (PC), although they do not exclude a possible contribution of the envelope of non-PCs.
Collapse
Affiliation(s)
- Scinob Kuroki
- NTT Communication Science Laboratories, NTT Corporation, Kanagawa, Japan
| | - Junji Watanabe
- NTT Communication Science Laboratories, NTT Corporation, Kanagawa, Japan
| | - Shin'ya Nishida
- NTT Communication Science Laboratories, NTT Corporation, Kanagawa, Japan
| |
Collapse
|
5
|
Abstract
Besides their fundamental movement function evidenced by Parkinsonian deficits, the basal ganglia are involved in processing closely linked non-motor, cognitive and reward information. This review describes the reward functions of three brain structures that are major components of the basal ganglia or are closely associated with the basal ganglia, namely midbrain dopamine neurons, pedunculopontine nucleus, and striatum (caudate nucleus, putamen, nucleus accumbens). Rewards are involved in learning (positive reinforcement), approach behavior, economic choices and positive emotions. The response of dopamine neurons to rewards consists of an early detection component and a subsequent reward component that reflects a prediction error in economic utility, but is unrelated to movement. Dopamine activations to non-rewarded or aversive stimuli reflect physical impact, but not punishment. Neurons in pedunculopontine nucleus project their axons to dopamine neurons and process sensory stimuli, movements and rewards and reward-predicting stimuli without coding outright reward prediction errors. Neurons in striatum, besides their pronounced movement relationships, process rewards irrespective of sensory and motor aspects, integrate reward information into movement activity, code the reward value of individual actions, change their reward-related activity during learning, and code own reward in social situations depending on whose action produces the reward. These data demonstrate a variety of well-characterized reward processes in specific basal ganglia nuclei consistent with an important function in non-motor aspects of motivated behavior.
Collapse
Affiliation(s)
- Wolfram Schultz
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3DY, UK.
| |
Collapse
|
6
|
Waiblinger C, Brugger D, Whitmire CJ, Stanley GB, Schwarz C. Support for the slip hypothesis from whisker-related tactile perception of rats in a noisy environment. Front Integr Neurosci 2015; 9:53. [PMID: 26528148 PMCID: PMC4606012 DOI: 10.3389/fnint.2015.00053] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 10/02/2015] [Indexed: 11/15/2022] Open
Abstract
Rodents use active whisker movements to explore their environment. The “slip hypothesis” of whisker-related tactile perception entails that short-lived kinematic events (abrupt whisker movements, called “slips”, due to bioelastic whisker properties that occur during active touch of textures) carry the decisive texture information. Supporting this hypothesis, previous studies have shown that slip amplitude and frequency occur in a texture-dependent way. Further, experiments employing passive pulsatile whisker deflections revealed that perceptual performance based on pulse kinematics (i.e., signatures that resemble slips) is far superior to the one based on time-integrated variables like frequency and intensity. So far, pulsatile stimuli were employed in a noise free environment. However, the realistic scenario involves background noise (e.g., evoked by rubbing across the texture). Therefore, if slips are used for tactile perception, the tactile neuronal system would need to differentiate slip-evoked spikes from those evoked by noise. To test the animals under these more realistic conditions, we presented passive whisker-deflections to head-fixed trained rats, consisting of “slip-like” events (waveforms mimicking slips occurring with touch of real textures) embedded into background noise. Varying the (i) shapes (ramp or pulse); (ii) kinematics (amplitude, velocity, etc.); and (iii) the probabilities of occurrence of slip-like events, we observed that rats could readily detect slip-like events of different shapes against noisy background. Psychophysical curves revealed that the difference of slip event and noise amplitude determined perception, while increased probability of occurrence (frequency) had barely any effect. These results strongly support the notion that encoding of kinematics dominantly determines whisker-related tactile perception while the computation of frequency or intensity plays a minor role.
Collapse
Affiliation(s)
- Christian Waiblinger
- Systems Neurophysiology, Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen Tübingen, Germany ; Department of Cognitive Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen Tübingen, Germany ; Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University Atlanta, GA, USA
| | - Dominik Brugger
- Systems Neurophysiology, Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen Tübingen, Germany ; Department of Cognitive Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen Tübingen, Germany
| | - Clarissa J Whitmire
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University Atlanta, GA, USA
| | - Garrett B Stanley
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University Atlanta, GA, USA
| | - Cornelius Schwarz
- Systems Neurophysiology, Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen Tübingen, Germany ; Department of Cognitive Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen Tübingen, Germany
| |
Collapse
|
7
|
Stauffer WR, Lak A, Kobayashi S, Schultz W. Components and characteristics of the dopamine reward utility signal. J Comp Neurol 2015; 524:1699-711. [PMID: 26272220 DOI: 10.1002/cne.23880] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 08/12/2015] [Accepted: 08/12/2015] [Indexed: 11/05/2022]
Abstract
Rewards are defined by their behavioral functions in learning (positive reinforcement), approach behavior, economic choices, and emotions. Dopamine neurons respond to rewards with two components, similar to higher order sensory and cognitive neurons. The initial, rapid, unselective dopamine detection component reports all salient environmental events irrespective of their reward association. It is highly sensitive to factors related to reward and thus detects a maximal number of potential rewards. It also senses aversive stimuli but reports their physical impact rather than their aversiveness. The second response component processes reward value accurately and starts early enough to prevent confusion with unrewarded stimuli and objects. It codes reward value as a numeric, quantitative utility prediction error, consistent with formal concepts of economic decision theory. Thus, the dopamine reward signal is fast, highly sensitive and appropriate for driving and updating economic decisions.
Collapse
Affiliation(s)
- William R Stauffer
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, United Kingdom
| | - Armin Lak
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, United Kingdom
| | - Shunsuke Kobayashi
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, United Kingdom
| | - Wolfram Schultz
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, United Kingdom
| |
Collapse
|
8
|
Abstract
Rewards are crucial objects that induce learning, approach behavior, choices, and emotions. Whereas emotions are difficult to investigate in animals, the learning function is mediated by neuronal reward prediction error signals which implement basic constructs of reinforcement learning theory. These signals are found in dopamine neurons, which emit a global reward signal to striatum and frontal cortex, and in specific neurons in striatum, amygdala, and frontal cortex projecting to select neuronal populations. The approach and choice functions involve subjective value, which is objectively assessed by behavioral choices eliciting internal, subjective reward preferences. Utility is the formal mathematical characterization of subjective value and a prime decision variable in economic choice theory. It is coded as utility prediction error by phasic dopamine responses. Utility can incorporate various influences, including risk, delay, effort, and social interaction. Appropriate for formal decision mechanisms, rewards are coded as object value, action value, difference value, and chosen value by specific neurons. Although all reward, reinforcement, and decision variables are theoretical constructs, their neuronal signals constitute measurable physical implementations and as such confirm the validity of these concepts. The neuronal reward signals provide guidance for behavior while constraining the free will to act.
Collapse
Affiliation(s)
- Wolfram Schultz
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
9
|
Castagnola E, Maiolo L, Maggiolini E, Minotti A, Marrani M, Maita F, Pecora A, Angotzi GN, Ansaldo A, Boffini M, Fadiga L, Fortunato G, Ricci D. PEDOT-CNT-Coated Low-Impedance, Ultra-Flexible, and Brain-Conformable Micro-ECoG Arrays. IEEE Trans Neural Syst Rehabil Eng 2015; 23:342-50. [DOI: 10.1109/tnsre.2014.2342880] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
10
|
Angotzi GN, Baranauskas G, Vato A, Bonfanti A, Zambra G, Maggiolini E, Semprini M, Ricci D, Ansaldo A, Castagnola E, Ius T, Skrap M, Fadiga L. A compact and autoclavable system for acute extracellular neural recording and brain pressure monitoring for humans. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2015; 9:50-59. [PMID: 25486648 DOI: 10.1109/tbcas.2014.2312794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
One of the most difficult tasks for the surgeon during the removal of low-grade gliomas is to identify as precisely as possible the borders between functional and non-functional brain tissue with the aim of obtaining the maximal possible resection which allows to the patient the longer survival. For this purpose, systems for acute extracellular recordings of single neuron and multi-unit activity are considered promising. Here we describe a system to be used with 16 microelectrodes arrays that consists of an autoclavable headstage, a built-in inserter for precise electrode positioning and a system that measures and controls the pressure exerted by the headstage on the brain with a twofold purpose: to increase recording stability and to avoid disturbance of local perfusion which would cause a degradation of the quality of the recording and, eventually, local ischemia. With respect to devices where only electrodes are autoclavable, our design permits the reduction of noise arising from long cable connections preserving at the same time the flexibility and avoiding long-lasting gas sterilization procedures. Finally, size is much smaller and set up time much shorter compared to commercial systems currently in use in surgery rooms, making it easy to consider our system very useful for intra-operatory mapping operations.
Collapse
|
11
|
Musall S, von der Behrens W, Mayrhofer JM, Weber B, Helmchen F, Haiss F. Tactile frequency discrimination is enhanced by circumventing neocortical adaptation. Nat Neurosci 2014; 17:1567-73. [PMID: 25242306 DOI: 10.1038/nn.3821] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Accepted: 08/28/2014] [Indexed: 12/15/2022]
Abstract
Neocortical responses typically adapt to repeated sensory stimulation, improving sensitivity to stimulus changes, but possibly also imposing limitations on perception. For example, it is unclear whether information about stimulus frequency is perturbed by adaptation or encoded by precise response timing. We addressed this question in rat barrel cortex by comparing performance in behavioral tasks with either whisker stimulation, which causes frequency-dependent adaptation, or optical activation of cortically expressed channelrhodopsin-2, which elicits non-adapting neural responses. Circumventing adaption by optical activation substantially improved cross-hemispheric discrimination of stimulus frequency. This improvement persisted when temporal precision of optically evoked spikes was reduced. We were able to replicate whisker-driven behavior only by applying adaptation rules mimicking sensory-evoked responses to optical stimuli. Conversely, in a change-detection task, animals performed better with whisker than optical stimulation. Our results directly demonstrate that sensory adaptation critically governs the perception of stimulus patterns, decreasing fidelity under steady-state conditions in favor of change detection.
Collapse
Affiliation(s)
- Simon Musall
- 1] Brain Research Institute, University of Zurich, Zurich, Switzerland. [2] Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland. [3] Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Wolfger von der Behrens
- 1] Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland. [2] Institute of Neuroinformatics, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Johannes M Mayrhofer
- 1] Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland. [2] Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Bruno Weber
- 1] Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland. [2] Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Fritjof Helmchen
- 1] Brain Research Institute, University of Zurich, Zurich, Switzerland. [2] Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Florent Haiss
- 1] Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland. [2] Institute of Neuropathology, RWTH Aachen University, Aachen, Germany. [3] Department of Ophthalmology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
12
|
Abstract
To produce sensation, neuronal pathways must transmit and process stimulus patterns that unfold over time. This behavior is determined by short-term synaptic plasticity (STP), which shapes the temporal filtering properties of synapses in a pathway. We explored STP variability across thalamocortical (TC) synapses, measuring whole-cell responses to stimulation of TC fibers in layer 4 neurons of mouse barrel cortex in vitro. As expected, STP during stimulation from rest was dominated by depression. However, STP during ongoing stimulation was strikingly diverse across TC connections. Diversity took the form of variable tuning to the latest interstimulus interval: some connections responded weakly to shorter intervals, while other connections were facilitated. These behaviors did not cluster into categories but formed a continuum. Diverse tuning did not require disynaptic inhibition. Hence, monosynaptic excitatory lemniscal TC connections onto layer 4 do not behave uniformly during ongoing stimulation. Each connection responds differentially to particular stimulation intervals, enriching the ability of the pathway to convey complex, temporally fluctuating information.
Collapse
|
13
|
Maravall M, Diamond ME. Algorithms of whisker-mediated touch perception. Curr Opin Neurobiol 2014; 25:176-86. [PMID: 24549178 DOI: 10.1016/j.conb.2014.01.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 01/23/2014] [Indexed: 11/18/2022]
Abstract
Comparison of the functional organization of sensory modalities can reveal the specialized mechanisms unique to each modality as well as processing algorithms that are common across modalities. Here we examine the rodent whisker system. The whisker's mechanical properties shape the forces transmitted to specialized receptors. The sensory and motor systems are intimately interconnected, giving rise to two forms of sensation: generative and receptive. The sensory pathway is a test bed for fundamental concepts in computation and coding: hierarchical feature detection, sparseness, adaptive representations, and population coding. The central processing of signals can be considered a sequence of filters. At the level of cortex, neurons represent object features by a coordinated population code which encompasses cells with heterogeneous properties.
Collapse
Affiliation(s)
- Miguel Maravall
- Instituto de Neurociencias de Alicante UMH-CSIC, Campus de San Juan, Apartado 18, 03550 Sant Joan d'Alacant, Spain
| | - Mathew E Diamond
- Tactile Perception and Learning Lab, International School for Advanced Studies-SISSA, Via Bonomea 265, 34136 Trieste, Italy.
| |
Collapse
|
14
|
Abstract
Primates can store sensory stimulus parameters in working memory for subsequent manipulation, but until now, there has been no demonstration of this capacity in rodents. Here we report tactile working memory in rats. Each stimulus is a vibration, generated as a series of velocity values sampled from a normal distribution. To perform the task, the rat positions its whiskers to receive two such stimuli, "base" and "comparison," separated by a variable delay. It then judges which stimulus had greater velocity SD. In analogous experiments, humans compare two vibratory stimuli on the fingertip. We demonstrate that the ability of rats to hold base stimulus information (for up to 8 s) and their acuity in assessing stimulus differences overlap the performance demonstrated by humans. This experiment highlights the ability of rats to perceive the statistical structure of vibrations and reveals their previously unknown capacity to store sensory information in working memory.
Collapse
|
15
|
Omrani M, Lak A, Diamond ME. Learning not to feel: reshaping the resolution of tactile perception. Front Syst Neurosci 2013; 7:29. [PMID: 23847478 PMCID: PMC3701118 DOI: 10.3389/fnsys.2013.00029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 06/14/2013] [Indexed: 11/13/2022] Open
Abstract
We asked whether biased feedback during training could cause human subjects to lose perceptual acuity in a vibrotactile frequency discrimination task. Prior to training, we determined each subject's vibration frequency discrimination capacity on one fingertip, the Just Noticeable Difference (JND). Subjects then received 850 trials in which they performed a same/different judgment on two vibrations presented to that fingertip. They gained points whenever their judgment matched the computer-generated feedback on that trial. Feedback, however, was biased: the probability per trial of “same” feedback was drawn from a normal distribution with standard deviation twice as wide as the subject's JND. After training, the JND was significantly widened: stimulus pairs previously perceived as different were now perceived as the same. The widening of the JND extended to the untrained hand, indicating that the decrease in resolution originated in non-topographic brain regions. In sum, the acuity of subjects' sensory-perceptual systems shifted in order to match the feedback received during training.
Collapse
Affiliation(s)
- Mohsen Omrani
- Tactile Perception and Learning Lab, International School for Advanced Studies-SISSA Trieste, Italy ; School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM) Tehran, Iran ; Centre for Neuroscience Studies, Queen's University Kingston, ON, Canada
| | | | | |
Collapse
|
16
|
Castagnola E, Ansaldo A, Maggiolini E, Angotzi GN, Skrap M, Ricci D, Fadiga L. Biologically compatible neural interface to safely couple nanocoated electrodes to the surface of the brain. ACS NANO 2013; 7:3887-3895. [PMID: 23590691 DOI: 10.1021/nn305164c] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The ongoing interest in densely packed miniaturized electrode arrays for high-resolution epicortical recordings has induced many researchers to explore the use of nanomaterial coatings to reduce electrode impedance while increasing signal-to-noise ratio and charge injection capability. Although these materials are very effective, their use in clinical practice is strongly inhibited by concerns about the potential risks derived from the use of nanomaterials in direct contact with the human brain. In this work we propose a novel approach to safely couple nanocoated electrodes to the brain surface by encapsulating them with a biocompatible hydrogel. We prove that fibrin hydrogel coating over nanocoated high-density arrays of epicortical microelectrodes is electrically transparent and allows avoiding direct exposure of the brain tissue to the nanocoatings while maintaining all the advantages derived from the nanostructured electrode surface. This method may make available acute and sub-acute neural recordings with nanocoated high-resolution arrays for clinical applications.
Collapse
Affiliation(s)
- Elisa Castagnola
- Robotics, Brain and Cognitive Sciences Department, Istituto Italiano di Tecnologia, Genoa, Italy
| | | | | | | | | | | | | |
Collapse
|
17
|
Diamond ME, Arabzadeh E. Whisker sensory system - from receptor to decision. Prog Neurobiol 2012; 103:28-40. [PMID: 22683381 DOI: 10.1016/j.pneurobio.2012.05.013] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 05/11/2012] [Accepted: 05/15/2012] [Indexed: 11/30/2022]
Abstract
One of the great challenges of systems neuroscience is to understand how the neocortex transforms neuronal representations of the physical characteristics of sensory stimuli into the percepts which can guide the animal's decisions. Here we present progress made in understanding behavioral and neurophysiological aspects of a highly efficient sensory apparatus, the rat whisker system. Beginning with the 1970s discovery of "barrels" in the rat and mouse brain, one line of research has focused on unraveling the circuits that transmit information from the whiskers to the sensory cortex, together with the cellular mechanisms that underlie sensory responses. A second, more recent line of research has focused on tactile psychophysics, that is, quantification of the behavioral capacities supported by whisker sensation. The opportunity to join these two lines of investigation makes whisker-mediated sensation an exciting platform for the study of the neuronal bases of perception and decision-making. Even more appealing is the beginning-to-end prospective offered by this system: the inquiry can start at the level of the sensory receptor and conclude with the animal's choice. We argue that rats can switch between two modes of operation of the whisker sensory system: (1) generative mode and (2) receptive mode. In the generative mode, the rat moves its whiskers forward and backward to actively seek contact with objects and to palpate the object after initial contact. In the receptive mode, the rat immobilizes its whiskers to optimize the collection of signals from an object that is moving by its own power. We describe behavioral tasks that rats perform in these different modes. Next, we explore which neuronal codes in sensory cortex account for the rats' discrimination capacities. Finally, we present hypotheses for mechanisms through which "downstream" brain regions may read out the activity of sensory cortex in order to extract the significance of sensory stimuli and, ultimately, to select the appropriate action.
Collapse
Affiliation(s)
- Mathew E Diamond
- Cognitive Neuroscience Sector, International School for Advanced Studies, Trieste, Italy.
| | | |
Collapse
|
18
|
Miyashita T, Feldman DE. Behavioral detection of passive whisker stimuli requires somatosensory cortex. ACTA ACUST UNITED AC 2012; 23:1655-62. [PMID: 22661403 DOI: 10.1093/cercor/bhs155] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Rodent whisker sensation occurs both actively, as whiskers move rhythmically across objects, and in a passive mode in which externally applied deflections are sensed by static, non-moving whiskers. Passive whisker stimuli are robustly encoded in the somatosensory (S1) cortex, and provide a potentially powerful means of studying cortical processing. However, whether S1 contributes to passive sensation is debated. We developed 2 new behavioral tasks to assay passive whisker sensation in freely moving rats: Detection of unilateral whisker deflections and discrimination of right versus left whisker deflections. Stimuli were simple, simultaneous multi-whisker deflections. Local muscimol inactivation of S1 reversibly and robustly abolished sensory performance on these tasks. Thus, S1 is required for the detection and discrimination of simple stimuli by passive whiskers, in addition to its known role in active whisker sensation.
Collapse
Affiliation(s)
- Toshio Miyashita
- Department of Molecular and Cellular Biology, Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA 94720-3200, USA
| | | |
Collapse
|
19
|
Abstract
Rats use their vibrissal sensory system to collect information about the nearby environment. They can accurately and rapidly identify object location, shape, and surface texture. Which features of whisker motion does the sensory system extract to construct sensations? We addressed this question by training rats to make discriminations between sinusoidal vibrations simultaneously presented to the left and right whiskers. One set of rats learned to reliably identify which of two vibrations had higher frequency (f(1) vs. f(2)) when amplitudes were equal. Another set of rats learned to reliably identify which of two vibrations had higher amplitude (A(1) vs. A(2)) when frequencies were equal. Although these results indicate that both elemental features contribute to the rats' sensation, a further test found that the capacity to discriminate A and f was reduced to chance when the difference in one feature was counterbalanced by the difference in the other feature: Rats could not discriminate amplitude or frequency whenever A(1)f(1) = A(2)f(2). Thus, vibrations were sensed as the product Af rather than as separable elemental features, A and f. The product Af is proportional to a physical entity, the mean speed. Analysis of performance revealed that rats extracted more information about differences in Af than predicted by the sum of the information in elemental differences. These behavioral experiments support the predictions of earlier physiological studies by demonstrating that rats are "blind" to the elemental features present in a sinusoidal whisker vibration; instead, they perceive a composite feature, the speed of whisker motion.
Collapse
|
20
|
Abstract
Apresentamos a Psicofísica como uma ciência aplicada nas investigações e nas abordagens e diagnósticos clínicos. Inicialmente, introduzimos algo dos aspectos epistemológicos e teóricos da área, passamos para as abordagens que a Psicofísica pode apresentar na aplicabilidade clínica e, por fim, discutimos os avanços recentes da aplicação clínica, apresentamos as experiências de nosso laboratório de pesquisa clínica em psicofísica, finalizando com as perspectivas de ampliação do uso da psicofísica para investigações clínicas de funções perceptuais mais complexas.
Collapse
|