1
|
Arildii D, Matsumoto Y, Dopfer O. Effect of microhydration on the aromatic charge resonance interaction: the case of the pyrrole dimer cation. Phys Chem Chem Phys 2025; 27:10209-10226. [PMID: 40310265 DOI: 10.1039/d5cp00067j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
Charge resonance (CR) interactions between aromatic molecules are amongst the strongest intermolecular forces and responsible for many phenomena in chemistry and biology. Microhydration of an aromatic radical dimer cation allows investigation of the strong effects of stepwise solvation on the charge distribution and strength of the CR. We characterise herein the microhydration process of the pyrrole dimer cation (Py2+), a prototypical aromatic homodimer with a strong CR. The NH and OH stretch vibrations (νNH/OH) of mass-selected bare and colder Ar-tagged hydrated clusters of Py2+, Py2+(H2O)nArm (n ≤ 3, m ≤ 1), recorded by infrared photodissociation (IRPD) spectroscopy provide detailed insight into the preferred cluster growth and strengths of the various intermolecular interactions by comparison to dispersion-corrected density functional theory calculations. The analysis of systematic frequency shifts, structural parameters, binding energies, and charge distributions allows for a quantitative evaluation of the drastic effects of stepwise hydration on the strength and symmetry of the aromatic CR, the strengths of the various hydrogen bonds (H-bonds), and the competition between slightly noncooperative interior ion hydration and strongly cooperative formation of a H-bonded solvent network. The most stable Py2+H2O structure exhibits a strong NH⋯O ionic H-bond of H2O to the antiparallel stacked Py2+(a) core, thereby breaking the symmetry of the CR. Py2+(H2O)2 prefers a highly symmetric C2h structure with two equivalent NH⋯O H-bonds of Py2+(a) and an optimised CR. Starting from n = 3, clusters with a parallel configuration, Py2+(p), are more stable than those with Py2+(a), further highlighting the strong impact of (micro-)solvation on the structural motif of the aromatic CR. The spectral and computational data demonstrate a linear correlation of νNH of the free Py unit with its partial charge, illustrating that IR spectroscopy is a powerful tool for probing the charge distribution in aromatic CR cluster cations. Comparison of Py2+(H2O)n with neutral Py2(H2O)n and Py+(H2O)n reveals the impact of the magnitude of positive charge and the number of acidic proton donors on the structure of the microhydration shell and strength of the various competing intermolecular bonds.
Collapse
Affiliation(s)
- Dashjargal Arildii
- Institut für Optik und Atomare Physik, Technische Universität Berlin, Hardenbergstrasse 36, 10623 Berlin, Germany.
| | - Yoshiteru Matsumoto
- Department of Chemistry, Faculty of Science, Shizuoka University, 836 Ohya, Suruga, Shizuoka, 422-8529, Japan
| | - Otto Dopfer
- Institut für Optik und Atomare Physik, Technische Universität Berlin, Hardenbergstrasse 36, 10623 Berlin, Germany.
- International Research Frontiers Initiative, Institute of Science Tokyo, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan
| |
Collapse
|
2
|
Zhao H, An L, Zhang D, Yang X, Yao H, Zhang G, Mu H, Baumeier B. Unveiling Synergistic Interface Effects on Charge Trapping Regulation in Polymer Composite Dielectrics through Multiscale Modeling. J Phys Chem B 2025; 129:4216-4228. [PMID: 40264425 PMCID: PMC12051192 DOI: 10.1021/acs.jpcb.4c08661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/07/2025] [Accepted: 04/10/2025] [Indexed: 04/24/2025]
Abstract
Interface design is a promising strategy to enhance the dielectric strength in polymer composites through regulating the charge transport process. However, the targeted exploitation of interface effects is limited due to a lack of fundamental understanding of the underlying mechanisms involving elementary electronic processes and details of the intricate interplay of characteristics of molecular building blocks and the interfacial morphology - details that cannot fully be resolved with experimental methods or commonly used band transport models. Here, we instead build a proper theoretical framework for polymer dielectrics based on charge hopping and employ a multiscale modeling approach linking the quantum properties of the charge carriers with nano- and mesoscale structural details of complex interfaces. Applied to a prototypical application-proven cellulose-oil interface system, this approach demonstrates that charges are trapped in the disordered region. Specifically, it unveils this trapping as a synergistic effect of two transport-regulating interface mechanisms: back-transfer to the oil region is suppressed by energetic factors, while forward-transfer to the crystalline cellulose is suppressed by low electronic coupling. The insight into the molecular origins of interface effects via dual-interface regulation in the framework of charge hopping offers new development paths for developing advanced energy materials with tailored electrical properties.
Collapse
Affiliation(s)
- Haoxiang Zhao
- State
Key Laboratory of Electrical Insulation and Power Equipment, School
of Electrical Engineering, Xi’an
Jiaotong University, Xi’an 710049, China
- Department
of Mathematics and Computer Science, Eindhoven
University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands
| | - Lixuan An
- KERMIT,
Department of Data Analysis and Mathematical Modelling, Ghent University, 9000 Ghent, Belgium
| | - Daning Zhang
- State
Key Laboratory of Electrical Insulation and Power Equipment, School
of Electrical Engineering, Xi’an
Jiaotong University, Xi’an 710049, China
| | - Xiong Yang
- State
Key Laboratory of Electrical Insulation and Power Equipment, School
of Electrical Engineering, Xi’an
Jiaotong University, Xi’an 710049, China
| | - Huanmin Yao
- State
Key Laboratory of Electrical Insulation and Power Equipment, School
of Electrical Engineering, Xi’an
Jiaotong University, Xi’an 710049, China
| | - Guanjun Zhang
- State
Key Laboratory of Electrical Insulation and Power Equipment, School
of Electrical Engineering, Xi’an
Jiaotong University, Xi’an 710049, China
| | - Haibao Mu
- State
Key Laboratory of Electrical Insulation and Power Equipment, School
of Electrical Engineering, Xi’an
Jiaotong University, Xi’an 710049, China
| | - Björn Baumeier
- Department
of Mathematics and Computer Science, Eindhoven
University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands
| |
Collapse
|
3
|
Ortiz-Mahecha C, Schwob L, Leroux J, Bari S, Meißner RH, Bande A. X-ray absorption spectroscopy reveals charge transfer in π-stacked aromatic amino acids. Phys Chem Chem Phys 2025; 27:8202-8211. [PMID: 40176751 DOI: 10.1039/d4cp04615c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
X-ray absorption spectroscopy (XAS) and quantum mechanical calculations bear great potential to unravel π stacking side-chain interaction properties and structure in, e.g., proteins. However, core-excited state calculations for proteins and their associated interpretation for π-π interactions are challenging due to the complexity of the non-covalent interactions involved. A theoretical analysis is developed to decompose the core-to-valence transitions into their atomic contributions in order to characterize the π stacking of aromatic amino acids as a function of their non-covalent distance change. Three models were studied as a non-covalent mixed dimers of the phenylalanine, tyrosine and tryptophan amino acids. We found that there are carbon 1s → π* charge transfer transitions associated with the non-covalently paired aromatic amino acids through their side chains. The atomic-centered contributions to the electronic transition density quantify the excited state charge transfer of the pairing amino acid models, highlighting the π stacking interactions between their aromatic side chains.
Collapse
Affiliation(s)
- Carlos Ortiz-Mahecha
- Institute for Interface Physics and Engineering, Hamburg University of Technology, Hamburg, Germany.
- Deutsches Elektronen-Synchrotron DESY, 22603 Hamburg, Germany
| | - Lucas Schwob
- Deutsches Elektronen-Synchrotron DESY, 22603 Hamburg, Germany
| | - Juliette Leroux
- Deutsches Elektronen-Synchrotron DESY, 22603 Hamburg, Germany
- CIMAP, CEA/CNRS/ENSICAEN/Université de Caen Normandie, 14050 Caen, France
| | - Sadia Bari
- Deutsches Elektronen-Synchrotron DESY, 22603 Hamburg, Germany
- Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Robert H Meißner
- Institute for Interface Physics and Engineering, Hamburg University of Technology, Hamburg, Germany.
- Helmholtz-Zentrum Hereon, Institute of Surface Science, 21502 Geesthacht, Germany
| | - Annika Bande
- Institute of Inorganic Chemistry, Leibniz Hannover University, 30167 Hannover, Germany
- Theory of Electron Dynamics and Spectroscopy, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 14109 Berlin, Germany.
| |
Collapse
|
4
|
Dorfner MX, Ortmann F. Effective Electron-Vibration Coupling by Ab Initio Methods. J Chem Theory Comput 2025; 21:2371-2385. [PMID: 39992093 PMCID: PMC11912215 DOI: 10.1021/acs.jctc.4c01608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/23/2025] [Accepted: 01/31/2025] [Indexed: 02/25/2025]
Abstract
The description of electron-phonon coupling in materials is complex, with varying definitions of coupling constants in the literature and different theoretical approaches available. This article analyzes different levels of theory to introduce and compute these coupling constants. Within the quasi-particle picture, we derive an effective linear-coupling Hamiltonian, describing the interaction of electronic quasi-particles with vibrations. This description allows a comparison between coupling constants computed using density functional theory and higher-level quasi-particle approaches by identifying the Kohn-Sham potential as an approximation to the frequency-independent part of the self-energy. We also investigate their dependence on the exchange-correlation (XC) functional. Despite significant deviations of the Kohn-Sham eigenvalues, which arise from different XC functionals, the resulting coupling constants are remarkably similar. A comparison to quasi-particle methods, such as the well-established G0W0 approach, reveals significant quasi-particle weight renormalization. Surprisingly, however, in nearly all the considered cases, the coupling constants computed in the DFT framework are excellent approximates of the ones in the quasi-particle framework, which is traced back to a significant cancellation of competing terms. Other quasi-particle methods, such as the Outer Valence Green's Function approach and the ΔSCF method, are also included in the comparison. Moreover, we investigate the coupling of vibrations to excitonic excitations and find, by comparison to time-dependent density functional theory and extended multiconfiguration quasi-degenerate second-order perturbation theory, that knowing the underlying electron- and hole-vibration couplings is sufficient to accurately determine the exciton-vibration coupling constants in the studied cases.
Collapse
Affiliation(s)
- Maximilian
F. X. Dorfner
- TUM School of Natural Sciences, Technische Universität München, 85748 Garching
b. München, Germany
| | - Frank Ortmann
- TUM School of Natural Sciences, Technische Universität München, 85748 Garching
b. München, Germany
| |
Collapse
|
5
|
Bayse CA. Stack bonding in pentacene and its derivatives. Phys Chem Chem Phys 2025; 27:2958-2967. [PMID: 39821204 DOI: 10.1039/d4cp03970j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Understanding the nature of π-stacking interactions is important to molecular recognition, self-assembly, and organic semiconductors. The stack bond order (SBO) model of π-stacking has shown that the conformations of dimers are found at orientations where the combinations of monomer MOs are overall bonding within the stack. DFT calculations show that parallel displaced minima found on the potential energy surface for the π-stacked dimers of pentacene and perfluoropentacene occur when the dimer MOs are constructed from combinations of monomer MOs with an allowed SBO. An examination of the MOs of π-stacked dimers extracted from X-ray structures of alkynyl derivatives like TIPS-pentacene pack at one or more of the minima expected to show similar MO patterns. The π-stacking variability within these materials can be attributed to a balance between the minima allowed by SBO theory and steric effects within the lattice. The offset orientation of the pentacene cores observed in packing of these materials is attributed to the increased overlap of monomer lobes in the dimer and a reduction in two-orbital-four-electron repulsions. Charge mobility estimated from the frontier MOs of the dimer is related to the MO structure that favors PD conformations.
Collapse
Affiliation(s)
- Craig A Bayse
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, Virginia 23529, USA.
| |
Collapse
|
6
|
Zhang L, Zhao Y, Li J, Fu Y, Peng B, Yang J, Lu X, Miao Q. Molecular Orbital Tuning of Pentacene-Based Organic Semiconductors through N-Ethynylation of Dihydrodiazapentacene. J Am Chem Soc 2025; 147:3459-3467. [PMID: 39835460 PMCID: PMC11783513 DOI: 10.1021/jacs.4c14775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/11/2025] [Accepted: 01/13/2025] [Indexed: 01/22/2025]
Abstract
This study explores the concept of molecular orbital tuning for organic semiconductors through the use of N,N'-diethynylated derivatives of 6,13-dihydro-6,13-diazapentacene (2a and 2b). These novel molecules maintain the same molecular geometry and π-π stacking as their parent pentacene derivatives (1a and 1b), as confirmed by X-ray crystallography. However, they exhibit altered frontier molecular orbitals in terms of the phase, nodal properties, and energy levels. Theoretical calculations based on crystal structures indicate that 2a and 2b could significantly enhance the hole mobilities of the parent compounds by improving the hole transfer integral. Organic field-effect transistors (OFETs) of 1a and 2a were fabricated by using dip-coating and bar-coating methods. Both types of devices for 2a demonstrated a hole mobility exceeding 1 cm2 V-1 s-1, more than twice that of the respective devices for 1a. Additionally, unlike its pentacene parent, 2a is transparent to visible light and exhibits significantly enhanced environmental stability against light and air, making it a promising candidate for broader applications in organic electronic devices.
Collapse
Affiliation(s)
- Li Zhang
- Department
of Chemistry, The Chinese University of
Hong Kong, Shatin,
New Territories, Hong Kong, China
- State Key
Laboratory of Synthetic Chemistry, The Chinese
University of Hong Kong, Hong Kong, China
| | - Yujie Zhao
- MOE Key Laboratory
of Macromolecular Synthesis and Functionalization, Zhejiang University, Hangzhou 310027, China
- International
Research Center for X Polymers, Zhejiang
University, Hangzhou 310027, China
- Department
of Polymer Science and Engineering, Zhejiang
University, Hangzhou 310027, China
| | - Jiasheng Li
- Department
of Chemistry, The University of Hong Kong, Hong Kong, China
| | - Yuang Fu
- Department
of Physics, The Chinese University of Hong
Kong, Shatin,
New Territories, Hong Kong,
China
| | - Boyu Peng
- MOE Key Laboratory
of Macromolecular Synthesis and Functionalization, Zhejiang University, Hangzhou 310027, China
- International
Research Center for X Polymers, Zhejiang
University, Hangzhou 310027, China
- Department
of Polymer Science and Engineering, Zhejiang
University, Hangzhou 310027, China
| | - Jun Yang
- Department
of Chemistry, The University of Hong Kong, Hong Kong, China
- State
Key
Laboratory of Synthetic Chemistry, The University
of Hong Kong, Hong Kong, China
| | - Xinhui Lu
- Department
of Physics, The Chinese University of Hong
Kong, Shatin,
New Territories, Hong Kong,
China
| | - Qian Miao
- Department
of Chemistry, The Chinese University of
Hong Kong, Shatin,
New Territories, Hong Kong, China
- State Key
Laboratory of Synthetic Chemistry, The Chinese
University of Hong Kong, Hong Kong, China
| |
Collapse
|
7
|
Hergenhahn J, Holmes JM, Deng JR, Gotfredsen H, Jacobs RMJ, Kopp SM, Timmel CR, Anderson HL. Radical Anions of Porphyrin Molecular Wires: Delocalization and Dynamics. J Am Chem Soc 2025; 147:978-987. [PMID: 39780389 PMCID: PMC11726548 DOI: 10.1021/jacs.4c14161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025]
Abstract
The delocalization length of charge carriers in organic semiconductors influences their mobility and is an important factor in the design of functional materials. Here, we have studied the radical anions of a series of linear and cyclic butadiyne-linked porphyrin oligomers using CW-EPR, 1H Mims ENDOR and NIR/MIR spectroelectrochemistry together with DFT calculations and multiscale molecular modeling. Low-temperature hyperfine EPR spectroscopy and optical data show that polarons are delocalized nonuniformly over about four porphyrins with most of the spin density on just two units even in the cyclic structures, in which all porphyrin sites are identical. Room temperature CW-EPR spectra indicate a larger spatial distribution of spin density on the EPR time scale. We introduce a combined molecular dynamics simulations and DFT approach to demonstrate that dynamic migration of delocalized polarons can occur in porphyrin oligomers and that this fully accounts for the apparent spin density distribution at room temperature. This method is a powerful tool in both the study and development of molecular wires and molecular electronics.
Collapse
Affiliation(s)
- Janko Hergenhahn
- Centre
for Advanced Electron Spin Resonance, Department of Chemistry, University of Oxford, Oxford OX1 3QR, U.K.
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, U.K.
| | - Jake M. Holmes
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, U.K.
| | - Jie-Ren Deng
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, U.K.
| | - Henrik Gotfredsen
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, U.K.
| | - Robert M. J. Jacobs
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, U.K.
| | - Sebastian M. Kopp
- Centre
for Advanced Electron Spin Resonance, Department of Chemistry, University of Oxford, Oxford OX1 3QR, U.K.
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, U.K.
| | - Christiane R. Timmel
- Centre
for Advanced Electron Spin Resonance, Department of Chemistry, University of Oxford, Oxford OX1 3QR, U.K.
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, U.K.
| | - Harry L. Anderson
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, U.K.
| |
Collapse
|
8
|
Pan Z, Zhang G, Zhang X, Xing W, Zheng D, Wang S, Hou Y, Wang X. Unveiling the Key Obstacle in Photocatalytic Overall Water Splitting Reaction on Poly (heptazine imide) Semiconductors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2407307. [PMID: 39473317 DOI: 10.1002/smll.202407307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/11/2024] [Indexed: 01/11/2025]
Abstract
Poly (heptazine imide) (PHI), a classic 2D polymeric photocatalyst, represents a promising organic semiconductor for photocatalytic overall water splitting (POWS). However, since the key bottleneck in POWS of PHI remains unclear, its quantum efficiency of POWS is extremely restrained. To identify the key obstacle in POWS on the PHI, a series of PHI with different stacking modes is synthesized by tuning interlayer cations. The structural characterizations revealed that tuning the interlayer cations of PHI can induce rearrangements in interlayer stacking modes. Additionally, charge carriers dynamics uncover that optimizing the interlayer stacking modes of PHI can promote exciton diffusion and prolong the photoexcited electron lifetimes, thus improving the concentration of surface-reaching charge. More importantly, this confirms that the POWS activity of PHI is closely correlated with the interlayer stacking modes. This work offers new insight into structural regulation for governing charge-transport dynamics and the activity of 2D polymeric photocatalysts.
Collapse
Affiliation(s)
- Zhiming Pan
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Guigang Zhang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Xirui Zhang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Wandong Xing
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Dandan Zheng
- Department College of Environment & Safety Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Sibo Wang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Yidong Hou
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Xinchen Wang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| |
Collapse
|
9
|
Gatsios C, Dreher M, Amsalem P, Opitz A, Jouclas R, Geerts Y, Witte G, Koch N. Two Isomeric Thienoacenes in Thin Films: Unveiling the Influence of Molecular Structure and Intermolecular Packing on Electronic Properties. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2024; 128:21228-21236. [PMID: 39691904 PMCID: PMC11648078 DOI: 10.1021/acs.jpcc.4c06741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 12/19/2024]
Abstract
Isomerism of molecular structures is often encountered in the field of organic semiconductors, but little is known about how it can impact electronic and charge transport properties in thin films. This study reveals the molecular orientation, electronic structure, and intermolecular interactions of two isomeric thienoacenes (DN4T and isoDN4T) in thin films, in relation to their charge transport properties. Utilizing scanning tunneling microscopy (STM), angle-resolved photoemission spectroscopy (ARUPS), and near-edge X-ray absorption fine structure measurements (NEXAFS), we systematically analyze the behavior of these isomers from submonolayer to multilayer coverage on highly ordered pyrolytic graphite (HOPG) as substrates. We find that at submonolayer coverage both DN4T and isoDN4T molecules predominantly adopt a nearly flat-lying orientation on the surface, minimizing intermolecular interactions. The distinct emission features of the highest occupied molecular orbital (HOMO) level in ARUPS enables the determination of molecular reorganization energies. These are found to be in good agreement with theoretical predictions, suggesting superior charge transport in DN4T compared to isoDN4T. Notably, thickness-dependent photoemission measurements reveal a significant splitting (approximately 450 meV) of the HOMO level of isoDN4T, attributed to polarization-induced effects rather than wave function overlap, indicating a nuanced interplay between molecular packing and electronic properties. Our results underscore the importance of molecular packing and substrate interactions in determining the electronic structure and transport properties of organic semiconductor thin films. Substrate-induced polymorphism and the crucial role of polarization-induced effects influencing charge transport are highlighted. These insights are pivotal for future engineering of molecular and thin film structures, aiming to enhance the performance of organic semiconductor-based devices.
Collapse
Affiliation(s)
- Christos Gatsios
- Institut
für Physik & Center for the Science of Materials Berlin
(CSMB), Humboldt-Universität zu Berlin, Berlin 12489, Germany
| | - Maximilian Dreher
- Department
of Physics, Philipps-Universität
Marburg, Marburg 35037, Germany
| | - Patrick Amsalem
- Institut
für Physik & Center for the Science of Materials Berlin
(CSMB), Humboldt-Universität zu Berlin, Berlin 12489, Germany
| | - Andreas Opitz
- Institut
für Physik & Center for the Science of Materials Berlin
(CSMB), Humboldt-Universität zu Berlin, Berlin 12489, Germany
| | - Remy Jouclas
- Laboratoire
de Chimie des Polymères, Faculté des Sciences, Université Libre de Bruxelles (ULB), Boulevard du Triomphe, CP 206/01, Bruxelles 1050, Belgium
| | - Yves Geerts
- Laboratoire
de Chimie des Polymères, Faculté des Sciences, Université Libre de Bruxelles (ULB), Boulevard du Triomphe, CP 206/01, Bruxelles 1050, Belgium
- International
Solvay Institutes for Physics and Chemistry, Université Libre de Bruxelles (ULB), Boulevard du Triomphe, CP 231, Bruxelles 1050, Belgium
| | - Gregor Witte
- Department
of Physics, Philipps-Universität
Marburg, Marburg 35037, Germany
| | - Norbert Koch
- Institut
für Physik & Center for the Science of Materials Berlin
(CSMB), Humboldt-Universität zu Berlin, Berlin 12489, Germany
- Helmholtz-Zentrum
Berlin für Materialien und Energie GmbH, Berlin 12489, Germany
| |
Collapse
|
10
|
Dell'Angelo D, Karamanis I, Saeb MR, Balan L, Badawi M. Tailoring van der Waals interactions in ultra-thin two dimensional metal-organic frameworks (MOFs) for photoconductive applications. Phys Chem Chem Phys 2024; 26:26022-26029. [PMID: 39373066 DOI: 10.1039/d4cp03347g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
The diverse structural tunability of 2-dimensional π-stacked layered metal-organic frameworks (2D MOFs) enables the control of charge carrier mobility to achieve specific photoconductive characteristics. This study demonstrates the potential of various theoretical methodologies and frameworks in establishing a correlation between structure and functionality for such purposes. Through a focus on the archetypal Ni3(HITP)2 2D MOF, we examine the impact of quantum confinement and stacking fault defects on the absorption spectra using our recently-developed Frenkel-Holstein Hamiltonian. Specifically, the relationship between optical properties and number of layer units along the π-stacking direction is discussed. We employ Marcus rate theory to evaluate vertical carrier mobility subject to inter-layer proximity and different crystal packing which affect van der Waals interactions between layers. The insights presented in this research can inform the development of guidelines for enhancing photoconductive properties in 2D MOF nanosheets.
Collapse
Affiliation(s)
| | | | - Mohammad Reza Saeb
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, J. Hallera 107, 80-416 Gdańsk, Poland
| | - Lavinia Balan
- CEMHTI-UPR 3079 CNRS, Site Haute Température, 1D avenue de la Recherche Scientifique, 45071 Orl éans, France.
| | - Michael Badawi
- Université de Lorraine, CNRS, L2CM, F-57000 Metz, France.
| |
Collapse
|
11
|
Kumagai S, Ishida T, Kakiuchi S, Yamagishi M, Sato H, Ishii H, Nishihara Y, Okamoto T. Thiophene-fused fulminenes (FuDTs): promising platforms for high-mobility organic semiconductors with a zigzag shape. Chem Commun (Camb) 2024; 60:11152-11155. [PMID: 39291541 DOI: 10.1039/d4cc02767a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Zigzag-shaped [6]phenacene isomers with fused thiophene rings, fulmineno[2,1-b:10,9-b']dithiophene (FuDT-α) and fulmineno[1,2-b:9,10-b']dithiophene (FuDT-β), were syntheized and their p-type organic semicondutor properties were studied. Small effective masses of holes were estimated from the crystal structures of both isomers, which was particularly demonstrated by the hole mobility of 10.5 cm2 V-1 s-1 for FuDT-α single crystals.
Collapse
Affiliation(s)
- Shohei Kumagai
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259-G1-7 Nagatsuta, Midori-ku, Yokohama 226-8502, Japan.
| | - Takumi Ishida
- Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan.
| | - Shin Kakiuchi
- Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan.
| | - Masakazu Yamagishi
- National Institute of Technology, Toyama College, 13 Hongo-machi, Toyama, Toyama 939-8630, Japan
| | | | - Hiroyuki Ishii
- Department of Applied Physics, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Yasushi Nishihara
- Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan.
| | - Toshihiro Okamoto
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259-G1-7 Nagatsuta, Midori-ku, Yokohama 226-8502, Japan.
| |
Collapse
|
12
|
Schweicher G, Das S, Resel R, Geerts Y. On the importance of crystal structures for organic thin film transistors. Acta Crystallogr C Struct Chem 2024; 80:601-611. [PMID: 39226426 PMCID: PMC11451017 DOI: 10.1107/s2053229624008283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/22/2024] [Indexed: 09/05/2024] Open
Abstract
Historically, knowledge of the molecular packing within the crystal structures of organic semiconductors has been instrumental in understanding their solid-state electronic properties. Nowadays, crystal structures are thus becoming increasingly important for enabling engineering properties, understanding polymorphism in bulk and in thin films, exploring dynamics and elucidating phase-transition mechanisms. This review article introduces the most salient and recent results of the field.
Collapse
Affiliation(s)
- Guillaume Schweicher
- Université Libre de Bruxelles (ULB) Faculté des Sciences Laboratoire de chimie des polyméres Boulevard du Triomphe 1050 Bruxelles Belgium
| | - Susobhan Das
- Université Libre de Bruxelles (ULB) Faculté des Sciences Laboratoire de chimie des polyméres Boulevard du Triomphe 1050 Bruxelles Belgium
| | - Roland Resel
- Institute of Solid State Physics, Graz University of Technology, Petersgasse 16, 8010 Graz, Austria
| | - Yves Geerts
- Université Libre de Bruxelles (ULB) Faculté des Sciences Laboratoire de chimie des polyméres Boulevard du Triomphe 1050 Bruxelles Belgium
- Université Libre de Bruxelles (ULB), International Solvay Institutes of Physics and Chemistry, Boulevard du Triomphe, 1050 Bruxelles, Belgium
- WEL Research Institute, avenue Pasteur 6, 1300 Wavre, Belgium
| |
Collapse
|
13
|
Ogaki T, Matsui Y, Okamoto H, Nishida N, Sato H, Asada T, Naito H, Ikeda H. Machine Learning-Inspired Molecular Design, Divergent Syntheses, and X-Ray Analyses of Dithienobenzothiazole-Based Semiconductors Controlled by S⋅⋅⋅N and S⋅⋅⋅S Interactions. Chemistry 2024; 30:e202401080. [PMID: 39039606 DOI: 10.1002/chem.202401080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 07/22/2024] [Accepted: 07/22/2024] [Indexed: 07/24/2024]
Abstract
Inspired by the previous machine-learning study that the number of hydrogen-bonding acceptor (NHBA) is important index for the hole mobility of organic semiconductors, seven dithienobenzothiazole (DBT) derivatives 1 a-g (NHBA=5) were designed and synthesized by one-step functionalization from a common precursor. X-ray single-crystal structural analyses confirmed that the molecular arrangements of 1b (the diethyl and ethylthienyl derivative) and 1c (the di(n-propyl) and n-propylthienyl derivative) in the crystal are classified into brickwork structures with multidirectional intermolecular charge-transfer integrals, as a result of incorporation of multiple hydrogen-bond acceptors. The solution-processed top-gate bottom-contact devices of 1b and 1c had hole mobilities of 0.16 and 0.029 cm2 V-1s-1, respectively.
Collapse
Affiliation(s)
- Takuya Ogaki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan
- The Research Institute for Molecular Electronic Devices (RIMED), Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan
| | - Yasunori Matsui
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan
- The Research Institute for Molecular Electronic Devices (RIMED), Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan
| | - Haruki Okamoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan
| | - Naoyuki Nishida
- Department of Physics and Electronics, Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka, 599-8531, Japan
| | - Hiroyasu Sato
- Rigaku, 3-9-12 Matsubara-cho, Akishima, Tokyo, 196-8666, Japan
| | - Toshio Asada
- The Research Institute for Molecular Electronic Devices (RIMED), Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto Sumiyoshi-ku, Osaka-shi, 558-8585, Japan
| | - Hiroyoshi Naito
- The Research Institute for Molecular Electronic Devices (RIMED), Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan
- Department of Physics and Electronics, Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka, 599-8531, Japan
| | - Hiroshi Ikeda
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan
- The Research Institute for Molecular Electronic Devices (RIMED), Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan
| |
Collapse
|
14
|
Yang Y, Jin Q, Yin S. Development of an anisotropic polarizable model for the all-atom AMOEBA force field. Phys Chem Chem Phys 2024; 26:22900-22911. [PMID: 39169824 DOI: 10.1039/d4cp01568a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
For planar and rigid π-conjugated molecular systems, electrostatic and inductive interactions are pivotal in governing molecular packing structures and electron polarization energies. These electrostatic interactions typically exhibit an anisotropic nature within π-conjugated systems. In this study, we utilize the atoms in molecules (AIM) theory in conjunction with linear response theory to decompose molecular polarizability into distributed atomic polarizability tensors. On the basis of atomic polarizability tensors, we extended an anisotropic polarizable model into the AMOEBA polarizable force field. Both anisotropic and isotropic polarizable models in combination with various density functional theory (DFT)-derived atomic multipoles were applied to optimize the experimental crystals of naphthalene and anthracene. Furthermore, these two types of electrostatic models, coupled with the evolutionary algorithm USPEX program, are utilized to predict the crystal structures of oligoacenes. Our findings demonstrate that the anisotropic polarizable model exhibits superior performance in crystal refinement and crystal structure prediction. This enriched anisotropic polarizable model is seamlessly integrated into the AMOEBA polarizable force field and readily applicable within our modified Tinker program.
Collapse
Affiliation(s)
- Yanyan Yang
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an City 710119, People's Republic of China.
| | - Qianqian Jin
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an City 710119, People's Republic of China.
| | - Shiwei Yin
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an City 710119, People's Republic of China.
| |
Collapse
|
15
|
Arunkumar A, Ju XH. Computational method on highly efficient D-π-A-π-D-based different molecular acceptors for organic solar cells applications and non-linear optical behaviour. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 317:124391. [PMID: 38704998 DOI: 10.1016/j.saa.2024.124391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/22/2024] [Accepted: 04/29/2024] [Indexed: 05/07/2024]
Abstract
Eight molecular structures (BT-A1 to BT-A8) with high-performance non-fullerene acceptor (NFA) were selected for organic solar cells (OSCs) and non-linear optical (NLO) applications. Their electronic, photovoltaic (PV) and optoelectronic properties were tuned by adding powerful electron-withdrawing groups to the acceptor (A) of the D-π-A-π-D structure. Using time-dependent density functional theory (TD-DFT) techniques, based on the laws of quantum chemical calculations, the absorption spectra, stability of the highest and lowest-energy molecular orbitals (HOMO/LUMOs), electron density, intramolecular charge transfer (ICT), transition density matrix (TDM), were examined. The binding energy (Eb) and density of states (DOS) were probed to realize the optoelectronic analysis of the structures BT-A1 to BT-A8. Noncovalent interactions (NCIs) based on a reduced density gradient (RDG) were used to describe the nature and strength of D-A interactions in the molecules BT-A1 to BT-A8. The new refined molecules BT-A1 to BT-A8 exhibited strong absorbance bands between 408-721 nm and high electron transfer contribution (ETC) ranges between 87-96 %, along with the smallest excitation energies (Ex) between 1.71-3.55 eV in the solvent dichloromethane. Dipolar moment strengths ranging from 0.38 to 4.72 Debye in both the excited and ground states have determined with good solubility properties of BT-A1 to BT-A8 in polar solvent. Highly effective charge mobilities and prevention of charge recombination have been demonstrated by the electron (0.18-0.41 eV) and hole RE values (0.13-0.89 eV) for the new compounds. Power conversion efficiencies (PCE) of BT-A1 to BT-A8 were nearly the same because of better outcomes compared to the molecules in the BT. Compared to poly[4.8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b: 4,5-b']dithiophene-2,6- diyl-alt-(4-2-ethylhexyl)-3-fluorothieno[3,4-b]thiophene-)-2-carboxylate-2-6-diyl)] (PTB7-Th), the open circuit voltages (Voc) of compounds BT-A1 to BT-A8 were ranged from 1.52 to 2.13 eV. The polarizability (α) and hyperpolarizability (β) of the molecules BT-A1 to BT-A8 were used to determine the non-linear optical (NLO) properties. The results showed that BT-A2, BT-A6 and BT-A7 have good NLO activity. This computational analysis demonstrates the superiority of the molecules with NFA. Hence the compounds are advised for the use in production of high-performance OSCs and NLO activity.
Collapse
Affiliation(s)
- Ammasi Arunkumar
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China
| | - Xue-Hai Ju
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China.
| |
Collapse
|
16
|
Cunin CE, Meacham RF, Lee ER, Roh H, Samal S, Li W, Matthews JR, Zhao Y, He M, Gumyusenge A. Leveraging Insulator's Tacticity in Semiconducting Polymer Blends. ACS APPLIED MATERIALS & INTERFACES 2024; 16:39717-39727. [PMID: 39036945 DOI: 10.1021/acsami.4c06609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Blending conjugated polymers with insulating matrices is often utilized for engineering extrinsic properties in organic electronics. Semiconductor/insulator blends are typically processed to form a uniformly distributed network of conductive domains within the insulating matrix, marrying electronic and physical properties from individual components. Understanding of polymer-polymer interactions in such systems is thus crucial for property co-optimization. One of the commonly overlooked parameters is the structural configuration of the insulator on the resulting properties, especially the electronic properties. This study investigated how the tacticity of the matrix polymer, among other relevant parameters in play, impacts solid state crystallization in semiconductor/matrix blends and hence the resulting charge transport properties. We found an intricate dependence of the film morphology, aggregation behavior, electronic charge transport, and mixed ionic-electronic coupling properties on the insulator's tacticity. Our experimentally iterative approach shows that for a given application, when selecting semiconductor/insulator combinations, the tacticity of the matrix can be leveraged to optimize performance and vary solid-state structure.
Collapse
Affiliation(s)
- Camille E Cunin
- Department of Materials Science & Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Rebecca F Meacham
- Department of Materials Science & Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Eric R Lee
- Department of Materials Science & Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Heejung Roh
- Department of Materials Science & Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Sanket Samal
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Wenhao Li
- Laboratory of Molecular Materials and Devices, State Key Laboratory of Molecular Engineering of Polymers, Department of Materials Science, Fudan University, Shanghai 200438, China
| | - James R Matthews
- Corning Incorporated, One River Front Plaza, Corning, New York 14831, United States
| | - Yan Zhao
- Laboratory of Molecular Materials and Devices, State Key Laboratory of Molecular Engineering of Polymers, Department of Materials Science, Fudan University, Shanghai 200438, China
| | - Mingqian He
- Corning Incorporated, One River Front Plaza, Corning, New York 14831, United States
| | - Aristide Gumyusenge
- Department of Materials Science & Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
17
|
Bhat V, Ganapathysubramanian B, Risko C. Rapid Estimation of the Intermolecular Electronic Couplings and Charge-Carrier Mobilities of Crystalline Molecular Organic Semiconductors through a Machine Learning Pipeline. J Phys Chem Lett 2024; 15:7206-7213. [PMID: 38973725 DOI: 10.1021/acs.jpclett.4c01309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Organic semiconductors (OSC) offer tremendous potential across a wide range of (opto)electronic applications. OSC development, however, is often limited by trial-and-error design, with computational modeling approaches deployed to evaluate and screen candidates through a suite of molecular and materials descriptors that generally require hours to days of computational time to accumulate. Such bottlenecks slow the pace and limit the exploration of the vast chemical space comprising OSC. When considering charge-carrier transport in OSC, a key parameter of interest is the intermolecular electronic coupling. Here, we introduce a machine learning (ML) model to predict intermolecular electronic couplings in organic crystalline materials from their three-dimensional (3D) molecular geometries. The ML predictions take only a few seconds of computing time compared to hours by density functional theory (DFT) methods. To demonstrate the utility of the ML predictions, we deploy the ML model in conjunction with mathematical formulations to rapidly screen the charge-carrier mobility anisotropy for more than 60,000 molecular crystal structures and compare the ML predictions to DFT benchmarks.
Collapse
Affiliation(s)
- Vinayak Bhat
- Department of Chemistry & Center for Applied Energy Research, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Baskar Ganapathysubramanian
- Department of Mechanical Engineering & Translational AI Center, Iowa State University, Ames, Iowa 50010, United States
| | - Chad Risko
- Department of Chemistry & Center for Applied Energy Research, University of Kentucky, Lexington, Kentucky 40506, United States
| |
Collapse
|
18
|
Kiven DE, Bine FK, Nkungli NK, Tamafo Fouegue AD, Tasheh SN, Ghogomu JN. Enhancing the charge transport and luminescence properties of ethyl 4-[( E)-(2-hydroxy-4-methoxyphenyl)methyleneamino]benzoate through complexation: a DFT and TD-DFT study. RSC Adv 2024; 14:18646-18662. [PMID: 38863822 PMCID: PMC11166190 DOI: 10.1039/d4ra02250e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 06/04/2024] [Indexed: 06/13/2024] Open
Abstract
Organic light emitting diode (OLED) and organic solar cell (OSC) properties of ethyl 4-[(E)-(2-hydroxy-4-methoxyphenyl)methyleneamino]benzoate (EMAB) and its Pt2+, Pd2+, Ni2+, Ir3+, Rh3+, and Zn2+ complexes have been theoretically studied herein. Geometry optimizations have been performed via the r2SCAN-3c composite method while single-point calculations have been carried out at the PBE0-D3(BJ)/def2-TZVP level of theory. Results have shown that complexation with selected metal ions improves hole and electron transfer rates in Pt[EMAB]2 and Rh[EMAB]2 +. Specifically, the hole transport rate of Pt[EMAB]2, (k ct(h) = 6.15 × 1014 s-1), is found to be 44 times greater than that of [EMAB], (k ct(h) = 1.42 × 1013 s-1), whereas electron transport rate of Pt[EMAB]2, (k ct(e) = 4.6 × 1013 s-1) is 4 times that of EMAB (k ct(e) = 1.1 × 1013 s-1). Charge mobility for holes and electrons are equal to 19.182 cm2 V-1 s-1 and 1.431 cm2 V-1 s-1 respectively for Pt[EMAB]2, and equal to 4.11 × 10-1 cm2 V-1 s-1 and 3.43 × 10-1 cm2 V-1 s-1 for EMAB respectively. These results show that, charge transport in EMAB can be tuned for better performance through complexation with transition metals such as Pt2+. OSC properties of the complexes were also studied by comparing their HOMO/LUMO energies with those of (6,6)-phenyl-C61-butyric acid methyl ester (PCBM) and poly(3-hexylthiophene) (P3HT). It turned out that the energy gap of EMAB reduced significantly upon complexation from 2.904 eV to 0.56 eV in [Rh(EMAB)2]+ and to a lesser extent in the other complexes. The energy values of the HOMOs remained higher than those of PCBM while those of the LUMOs were found to be greater than that of P3HT with the exception of [Rh(EMAB)2]+. These findings show that the aforementioned species are good electron donors to PCBM. The open circuit voltage, V OC, of the compounds ranged between 0.705 × 10-19 V and 6.617 × 10-19 V, values that are good enough for practical usage in OSC applications. The UV-visible absorption spectra revealed absorption maxima well below 900 nm in all compounds, vital in the efficient functioning of solar cells. In general, this study has shown that platinoid complexation of EMAB can successfully modify both its OLED and OSC properties, making them better precursors in the electronic industry.
Collapse
Affiliation(s)
- Dinyuy Emmanuel Kiven
- Department of Chemistry, Faculty of Science, The University of Bamenda P. O. Box 39, Bambili Bamenda Cameroon
| | - Fritzgerald Kogge Bine
- Department of Fundamental and Cross-cutting Sciences, National Advanced School of Public Works P. O. Box 510 Yaounde Cameroon,
| | - Nyiang Kennet Nkungli
- Department of Chemistry, Faculty of Science, The University of Bamenda P. O. Box 39, Bambili Bamenda Cameroon
| | | | - Stanley Numbonui Tasheh
- Department of Chemistry, Faculty of Science, The University of Bamenda P. O. Box 39, Bambili Bamenda Cameroon
| | - Julius Numbonui Ghogomu
- Department of Chemistry, Faculty of Science, The University of Bamenda P. O. Box 39, Bambili Bamenda Cameroon
- Department of Chemistry, Research Unit of Noxious Chemistry and Environmental Engineering, Faculty of Science, University of Dschang P. O. Box 67 Dschang Cameroon
| |
Collapse
|
19
|
Wang J, Yang L, Yin D, Gao X, Dai X, Li K, Wang S, Wang Y. Semiconductive Behavior and Photoconductivity of Uranyl Dithiophosphinate Single Crystal. Inorg Chem 2024; 63:9706-9710. [PMID: 38747511 DOI: 10.1021/acs.inorgchem.4c00801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2024]
Abstract
Herein, we detail the synthesis, structure, and photoconductivity of the uranyl dithiophosphinate single crystal UO2[S2P(C6H5)2]2(CH3OH)·CH3OH (denoted as U-DPDPP). The formation of bonds between uranyl ions and sulfur-based ligands endows U-DPDPP with a distinct electronic absorption property with a broadband spectrum spanning from 250 to 550 nm, giving rise to a unique semiconductive property. Under X-ray illumination, U-DPDPP displays a distinctive photoconductivity response, with a charge carrier mobility lifetime (μτ) of 2.78 × 10-4 cm2·V-1 achieved, which contradicts the electronic-silence behavior of uranyl nitrate crystal.
Collapse
Affiliation(s)
- Junren Wang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Liangwei Yang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Dingrui Yin
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Xudong Gao
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Xing Dai
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Kai Li
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Shuao Wang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Yaxing Wang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| |
Collapse
|
20
|
Bhardwaj A, Mudasar Hussain C, Dewangan P, Mukhopadhyay P. Naphthalene diimide-Annulated Heterocyclic Acenes: Synthesis, Electrochemical and Semiconductor Properties and their Multifaceted Applications. Chemistry 2024; 30:e202400208. [PMID: 38454793 DOI: 10.1002/chem.202400208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 03/09/2024]
Abstract
Acenes and Naphthalene Diimides (NDIs) stand as distinguished classes of organic compounds, each possessing unique and intriguing properties that have garnered significant attention across various scientific disciplines. Acenes, characterized by linearly fused aromatic rings, have captivated researchers due to their diverse electronic structures and promising applications in materials science. On the other hand, NDIs, known for their distinctive electron-accepting properties, exhibit remarkable versatility in fields ranging from organic electronics, supramolecular to spin chemistry. In this review, we navigate through the fascinating realms of both acenes and NDIs before converging our focus on the highly diverse and distinctive subgroup of NDI-annulated heterocyclic acenes. This potentially important subgroup, has emerged as a subject of intense investigation, encapsulating their fascinating synthesis, optical and electrochemical characteristics, and multifaceted applications that span the realms of chemistry, physics, and biology. Through the exploration of their synthetic strategies, unique properties, and diverse applications, this review aims to offer a comprehensive understanding of the pivotal role played by NDI-based heterocyclic acenes in contemporary multidisciplinary research and technological innovation.
Collapse
Affiliation(s)
- Abhishek Bhardwaj
- Supramolecular and Material Chemistry Lab, School of Physical sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Ch Mudasar Hussain
- Supramolecular and Material Chemistry Lab, School of Physical sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Pratik Dewangan
- Supramolecular and Material Chemistry Lab, School of Physical sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Pritam Mukhopadhyay
- Supramolecular and Material Chemistry Lab, School of Physical sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| |
Collapse
|
21
|
Nikulshin PV, Makarov AY, Koskin IP, Becker CS, Kazantsev MS, Beckmann J, Balmohammadi Y, Grabowsky S, Mebs S, Naumova OV, Protasov DY, Svit KA, Irtegova IG, Radiush EA, Bagryanskaya IY, Shundrin LA, Zibarev AV. 1,2,3,4-Tetrafluorobiphenylene: A Prototype Janus-Headed Scaffold for Ambipolar Materials. Chempluschem 2024; 89:e202300692. [PMID: 38052725 DOI: 10.1002/cplu.202300692] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 12/07/2023]
Abstract
The title compound was synthesized by Ullmann cross-coupling in low yield as the first representative of [n]phenylene containing hydrocarbon and fluorocarbon rings. Stille/Suzuki-Miyaura cross-coupling reactions, as well as substitution of fluorine in suitable starting compounds, failed to give the same product. The geometric and electronic structures of the title compound were studied by X-ray diffraction, cyclic voltammetry and density functional theory calculations, together with Hirshfeld surface and reduced density gradient analyses. The crystal structure features head-to-tail π-stacking and other fluorine-related secondary bonding interactions. From the nucleus-independent chemical shifts descriptor, the four-membered ring of the title compound is antiaromatic, and the six-membered rings are aromatic. The Janus molecule is highly polarized; and the six-membered fluoro- and hydrocarbon rings are Lewis π-acidic and π-basic, respectively. The electrochemically-generated radical cation of the title compound is long-lived as characterized by electron paramagnetic resonance, whereas the radical anion is unstable in solution. The title compound reveals electrical properties of an insulator. On expanding its molecular scaffold towards partially fluorinated [n]phenylenes (n≥2), the properties presumably can be transformed into those of semiconductors. In this context, the title compound is suggested as a prototype scaffold for ambipolar materials for organic electronics and spintronics.
Collapse
Affiliation(s)
- Pavel V Nikulshin
- Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 630090, Novosibirsk, Russia
- Current address: Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia
| | - Alexander Yu Makarov
- Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 630090, Novosibirsk, Russia
| | - Igor P Koskin
- Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 630090, Novosibirsk, Russia
| | - Christina S Becker
- Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 630090, Novosibirsk, Russia
| | - Maxim S Kazantsev
- Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 630090, Novosibirsk, Russia
| | - Jens Beckmann
- Institute for Inorganic Chemistry and Crystallography, University of Bremen, 28359, Bremen, Germany
| | - Yaser Balmohammadi
- Department of Chemistry, Biochemistry and Pharmaceutical Science, University of Bern, 3012, Bern, Switzerland
| | - Simon Grabowsky
- Department of Chemistry, Biochemistry and Pharmaceutical Science, University of Bern, 3012, Bern, Switzerland
| | - Stefan Mebs
- Institute for Experimental Physics, Free University of Berlin, 14195, Berlin, Germany
| | - Olga V Naumova
- Rzhanov Institute of Semiconductor Physics, Siberian Branch of the Russian Academy of Sciences, 630090, Novosibirsk, Russia
| | - Dmitry Yu Protasov
- Rzhanov Institute of Semiconductor Physics, Siberian Branch of the Russian Academy of Sciences, 630090, Novosibirsk, Russia
| | - Kirill A Svit
- Rzhanov Institute of Semiconductor Physics, Siberian Branch of the Russian Academy of Sciences, 630090, Novosibirsk, Russia
| | - Irina G Irtegova
- Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 630090, Novosibirsk, Russia
| | - Ekaterina A Radiush
- Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 630090, Novosibirsk, Russia
| | - Irina Yu Bagryanskaya
- Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 630090, Novosibirsk, Russia
| | - Leonid A Shundrin
- Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 630090, Novosibirsk, Russia
| | - Andrey V Zibarev
- Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 630090, Novosibirsk, Russia
| |
Collapse
|
22
|
Gu X, Zeng R, He T, Zhou G, Li C, Yu N, Han F, Hou Y, Lv J, Zhang M, Zhang J, Wei Z, Tang Z, Zhu H, Cai Y, Long G, Liu F, Zhang X, Huang H. Simple-Structured Acceptor with Highly Interconnected Electron-Transport Pathway Enables High-Efficiency Organic Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2401370. [PMID: 38373399 DOI: 10.1002/adma.202401370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Indexed: 02/21/2024]
Abstract
Achieving desirable charge-transport highway is of vital importance for high-performance organic solar cells (OSCs). Here, it is shown how molecular packing arrangements can be regulated via tuning the alkyl-chain topology, thus resulting in a 3D network stacking and highly interconnected pathway for electron transport in a simple-structured nonfused-ring electron acceptor (NFREA) with branched alkyl side-chains. As a result, a record-breaking power conversion efficiency of 17.38% (certificated 16.59%) is achieved for NFREA-based devices, thus providing an opportunity for constructing low-cost and high-efficiency OSCs.
Collapse
Affiliation(s)
- Xiaobin Gu
- College of Materials Science and Opto-Electronic Technology, Center of Materials Science and Optoelectronics Engineering, CAS Center for Excellence in Topological Quantum Computation, CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Rui Zeng
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, In-situ Center for Physical Science, and Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Tengfei He
- School of Materials Science and Engineering, National Institute for Advanced Materials, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, China
| | - Guanqing Zhou
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, In-situ Center for Physical Science, and Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Congqi Li
- College of Materials Science and Opto-Electronic Technology, Center of Materials Science and Optoelectronics Engineering, CAS Center for Excellence in Topological Quantum Computation, CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Na Yu
- Center for Advanced Low-Dimension Materials State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Fei Han
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, In-situ Center for Physical Science, and Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yuqi Hou
- College of Materials Science and Opto-Electronic Technology, Center of Materials Science and Optoelectronics Engineering, CAS Center for Excellence in Topological Quantum Computation, CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Jikai Lv
- College of Materials Science and Opto-Electronic Technology, Center of Materials Science and Optoelectronics Engineering, CAS Center for Excellence in Topological Quantum Computation, CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Ming Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, In-situ Center for Physical Science, and Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jianqi Zhang
- Center for Excellence in Nanoscience (CAS), Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Zhixiang Wei
- Center for Excellence in Nanoscience (CAS), Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Zheng Tang
- Center for Advanced Low-Dimension Materials State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Haiming Zhu
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Yunhao Cai
- College of Materials Science and Opto-Electronic Technology, Center of Materials Science and Optoelectronics Engineering, CAS Center for Excellence in Topological Quantum Computation, CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Guankui Long
- School of Materials Science and Engineering, National Institute for Advanced Materials, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, China
| | - Feng Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, In-situ Center for Physical Science, and Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xin Zhang
- College of Materials Science and Opto-Electronic Technology, Center of Materials Science and Optoelectronics Engineering, CAS Center for Excellence in Topological Quantum Computation, CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Hui Huang
- College of Materials Science and Opto-Electronic Technology, Center of Materials Science and Optoelectronics Engineering, CAS Center for Excellence in Topological Quantum Computation, CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, 101408, China
| |
Collapse
|
23
|
Mhaske K, Gangai S, Fernandes R, Kamble A, Chowdhury A, Narayan R. Aerobic Catalytic Cross-Dehydrogenative Coupling of Furans with Indoles Provides Access to Fluorophores with Large Stokes Shift. Chemistry 2024; 30:e202302929. [PMID: 38175849 DOI: 10.1002/chem.202302929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Indexed: 01/06/2024]
Abstract
Sustainability in chemical processes is a crucial aspect in contemporary chemistry with sustainable catalysis as a vital parameter of the same. There has been a renewed focus on utilizing earth-abundant metal catalysts to expand the repertoire of organic reactions. Furan is a versatile heterocycle of natural origin used for multiple applications. However, it has scarcely been used in cross-dehydrogenative coupling. In this work, we have explored the cross-dehydrogentive coupling of furans with indoles using commonly available, inexpensive FeCl3 ⋅ 6H2 O (<0.25 $/g) as catalyst in the presence of so called 'ultimate oxidant' - oxygen, without the need for any external ligand or additive. The reactions were found to be scalable and to work even under partially aqueous conditions. This makes the reaction highly economical, practical, operationally simple and sustainable. The methodology provides direct access to π-conjugated short oligomers consisting of furan, thiophene and indole. These compounds were found to show interesting fluorescence properties with remarkably large Stokes shift (up to 205 nm). Mechanistic investigations reveal that the reaction proceeds through chemoselective oxidation of indole by the metal catalyst followed by nucleophilic trapping by furan.
Collapse
Affiliation(s)
- Krishna Mhaske
- School of Chemical and Materials Sciences, Indian Institute of Technology Goa, Farmagudi, Goa, 403401, India
| | - Shon Gangai
- School of Chemical and Materials Sciences, Indian Institute of Technology Goa, Farmagudi, Goa, 403401, India
| | - Rushil Fernandes
- School of Chemical and Materials Sciences, Indian Institute of Technology Goa, Farmagudi, Goa, 403401, India
| | - Angulimal Kamble
- School of Chemical and Materials Sciences, Indian Institute of Technology Goa, Farmagudi, Goa, 403401, India
| | - Arkaprava Chowdhury
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, Maharashtra, India
| | - Rishikesh Narayan
- School of Chemical and Materials Sciences, Indian Institute of Technology Goa, Farmagudi, Goa, 403401, India
- School of Interdisciplinary Life Sciences, Indian Institute of Technology Goa, Farmagudi, Goa, 403401, India
| |
Collapse
|
24
|
Bhattacharyya S, Sayer T, Montoya-Castillo A. Anomalous Transport of Small Polarons Arises from Transient Lattice Relaxation or Immovable Boundaries. J Phys Chem Lett 2024; 15:1382-1389. [PMID: 38288689 DOI: 10.1021/acs.jpclett.3c03380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Elucidating transport mechanisms is crucial for advancing material design, yet state-of-the-art theory is restricted to exact simulations of small lattices with severe finite-size effects or approximate ones that assume the nature of transport. We leverage algorithmic advances to tame finite-size effects and exactly simulate small polaron formation and transport in the Holstein model. We further analyze the applicability of the ubiquitously used equilibrium-based Green-Kubo relations and nonequilibrium methods to predict charge mobility. We find that these methods can converge to different values and track this disparity to finite-size dependence and the sensitivity of Green-Kubo relations to the system's topology. Contrary to standard perturbative calculations, our results demonstrate that small polarons exhibit anomalous transport that manifests transiently due to nonequilibrium lattice relaxation or permanently as a signature of immovable boundaries. These findings can offer new interpretations of transport experiments on polymers and transition metal oxides.
Collapse
Affiliation(s)
- Srijan Bhattacharyya
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Thomas Sayer
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Andrés Montoya-Castillo
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
25
|
van der Veen JR, Valianti S, van der Zant HSJ, Blanter YM, Meysman FJR. A model analysis of centimeter-long electron transport in cable bacteria. Phys Chem Chem Phys 2024; 26:3139-3151. [PMID: 38189548 DOI: 10.1039/d3cp04466a] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
The recent discovery of cable bacteria has greatly expanded the known length scale of biological electron transport, as these multi-cellular bacteria are capable of mediating electrical currents across centimeter-scale distances. To enable such long-range conduction, cable bacteria embed a network of regularly spaced, parallel protein fibers in their cell envelope. These fibers exhibit extraordinary electrical properties for a biological material, including an electrical conductivity that can exceed 100 S cm-1. Traditionally, long-range electron transport through proteins is described as a multi-step hopping process, in which the individual hopping steps are described by Marcus electron transport theory. Here, we investigate to what extent such a classical hopping model can explain the conductance data recorded for individual cable bacterium filaments. To this end, the conductive fiber network in cable bacteria is modelled as a set of parallel one-dimensional hopping chains. Comparison of model simulated and experimental current(I)/voltage(V) curves, reveals that the charge transport is field-driven rather than concentration-driven, and there is no significant injection barrier between electrodes and filaments. However, the observed high conductivity levels (>100 S cm-1) can only be reproduced, if we include much longer hopping distances (a > 10 nm) and lower reorganisation energies (λ < 0.2 eV) than conventionally used in electron relay models of protein structures. Overall, our model analysis suggests that the conduction mechanism in cable bacteria is markedly distinct from other known forms of long-range biological electron transport, such as in multi-heme cytochromes.
Collapse
Affiliation(s)
- Jasper R van der Veen
- Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, Delft, 2628CJ, The Netherlands.
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, Delft, 2629HZ, The Netherlands
| | - Stephanie Valianti
- Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, Delft, 2628CJ, The Netherlands.
| | - Herre S J van der Zant
- Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, Delft, 2628CJ, The Netherlands.
| | - Yaroslav M Blanter
- Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, Delft, 2628CJ, The Netherlands.
| | - Filip J R Meysman
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, Delft, 2629HZ, The Netherlands
- Excellence center for Microbial Systems Technology, University of Antwerp, Universiteitsplein 1, Wilrijk, 2610, Belgium.
| |
Collapse
|
26
|
He D, Li Y, Zhao F, Lin Y. Trap suppression in ordered organic photovoltaic heterojunctions. Chem Commun (Camb) 2024; 60:364-373. [PMID: 38099599 DOI: 10.1039/d3cc05559k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The high trap density (generally 1016-1018 cm-3) in organic solar cells (OSCs) brings about the localization of charge carriers and reduced charge carrier lifetime, mainly due to the weak intermolecular interactions of organic semiconductors resulting in their relatively poor crystallinity, which leads to low charge carrier mobilities and intense non-radiative recombination, thus impeding the further improvement of power conversion efficiencies (PCEs). Therefore, trap suppression is crucial to boost the performance of OSCs, and improving the crystallinity of donor/acceptor materials and enhancing the molecular order in devices can contribute to the trap suppression in OSCs. In this feature article, we summarize the recent advances of trap suppression in OSCs by material design and device engineering, and further outline possible development directions for trap suppression to enhance PCEs of OSCs.
Collapse
Affiliation(s)
- Dan He
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China.
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Yawen Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Fuwen Zhao
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China.
| | - Yuze Lin
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|
27
|
Gangai S, Fernandes R, Mhaske K, Narayan R. Cu(ii)-catalyzed aerobic oxidative coupling of furans with indoles enables expeditious synthesis of indolyl-furans with blue fluorescence. RSC Adv 2024; 14:1239-1249. [PMID: 38174245 PMCID: PMC10762296 DOI: 10.1039/d3ra08226a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 12/15/2023] [Indexed: 01/05/2024] Open
Abstract
With the purpose of incorporating sustainability in chemical processes, there has been a renewed focus on utilizing earth-abundant metal catalysts to expand the repertoire of organic reactions and processes. In this work, we have explored the atom-economic oxidative coupling between two important electron-rich heterocycles - indoles and furans - using commonly available, inexpensive metal catalyst CuCl2·2H2O (<0.25$ per g) to develop an expeditious synthesis of indolyl-furans. Moreover, the reaction proceeded well in the presence of the so-called 'ultimate oxidant' - air, without the need for any external ligand or additive. The reaction was found to be scalable and to work even under partially aqueous conditions. This makes the methodology highly economical, practical, operationally simple and sustainable. In addition, the methodology provides direct access to novel indole-furan-thiophene (IFT)-based electron-rich π-conjugated systems, which show green-yellow fluorescence with large Stokes shift and high quantum yields. Mechanistic investigations reveal that the reaction proceeds through chemoselective oxidation of indole by the metal catalyst followed by the nucleophilic attack by furan.
Collapse
Affiliation(s)
- Shon Gangai
- School of Chemical and Materials Sciences, Indian Institute of Technology Goa, GEC Campus Farmagudi Goa-403401 India
| | - Rushil Fernandes
- School of Chemical and Materials Sciences, Indian Institute of Technology Goa, GEC Campus Farmagudi Goa-403401 India
| | - Krishna Mhaske
- School of Chemical and Materials Sciences, Indian Institute of Technology Goa, GEC Campus Farmagudi Goa-403401 India
| | - Rishikesh Narayan
- School of Chemical and Materials Sciences, Indian Institute of Technology Goa, GEC Campus Farmagudi Goa-403401 India
- School of Interdisciplinary Life Sciences, Indian Institute of Technology Goa GEC Campus, Farmagudi Goa-403401 India
| |
Collapse
|
28
|
Xu M, Wei C, Zhang Y, Chen J, Li H, Zhang J, Sun L, Liu B, Lin J, Yu M, Xie L, Huang W. Coplanar Conformational Structure of π-Conjugated Polymers for Optoelectronic Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2301671. [PMID: 37364981 DOI: 10.1002/adma.202301671] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/05/2023] [Indexed: 06/28/2023]
Abstract
Hierarchical structure of conjugated polymers is critical to dominating their optoelectronic properties and applications. Compared to nonplanar conformational segments, coplanar conformational segments of conjugated polymers (CPs) demonstrate favorable properties for applications as a semiconductor. Herein, recent developments in the coplanar conformational structure of CPs for optoelectronic devices are summarized. First, this review comprehensively summarizes the unique properties of planar conformational structures. Second, the characteristics of the coplanar conformation in terms of optoelectrical properties and other polymer physics characteristics are emphasized. Five primary characterization methods for investigating the complanate backbone structures are illustrated, providing a systematical toolbox for studying this specific conformation. Third, internal and external conditions for inducing the coplanar conformational structure are presented, offering guidelines for designing this conformation. Fourth, the optoelectronic applications of this segment, such as light-emitting diodes, solar cells, and field-effect transistors, are briefly summarized. Finally, a conclusion and outlook for the coplanar conformational segment regarding molecular design and applications are provided.
Collapse
Affiliation(s)
- Man Xu
- State Key Laboratory of Organic Electronics and Information Displays & School of Chemistry and Life Sciences & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Chuanxin Wei
- State Key Laboratory of Organic Electronics and Information Displays & School of Chemistry and Life Sciences & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Yunlong Zhang
- State Key Laboratory of Organic Electronics and Information Displays & School of Chemistry and Life Sciences & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Jiefeng Chen
- State Key Laboratory of Organic Electronics and Information Displays & School of Chemistry and Life Sciences & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Hao Li
- State Key Laboratory of Organic Electronics and Information Displays & School of Chemistry and Life Sciences & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Jingrui Zhang
- State Key Laboratory of Organic Electronics and Information Displays & School of Chemistry and Life Sciences & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Lili Sun
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Bin Liu
- State Key Laboratory of Organic Electronics and Information Displays & School of Chemistry and Life Sciences & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Jinyi Lin
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Mengna Yu
- State Key Laboratory of Organic Electronics and Information Displays & School of Chemistry and Life Sciences & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Linghai Xie
- State Key Laboratory of Organic Electronics and Information Displays & School of Chemistry and Life Sciences & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Wei Huang
- State Key Laboratory of Organic Electronics and Information Displays & School of Chemistry and Life Sciences & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| |
Collapse
|
29
|
Sun S, Zhu J, Wang Z, Huang Y, Hu Y, Chen X, Sun Y, Li L, Hu W. Oxygen-Induced Lattice Strain for High-Performance Organic Transistors with Enhanced Stability. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2306975. [PMID: 37776045 DOI: 10.1002/adma.202306975] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/27/2023] [Indexed: 10/01/2023]
Abstract
Integrating the merits of low cost, flexibility, and large-area processing, organic semiconductors (OSCs) are promising candidates for the next-generation electronic materials. The mobility and stability are the key figures of merit for its practical application. However, it is greatly challenging to improve the mobility and stability simultaneously owing to the weak interactions and poor electronic coupling between OSCs molecules. Here, an oxygen-induced lattice strain (OILS) strategy is developed to achieve OSCs with both high mobility and high stability. Utilizing the strategy, the maximum mobility of dinaphtho[2,3-b:2',3'-f]thieno[3,2-b]thiophene (DNTT) organic field-effect transistor (OFET) rises to 15.3 cm2 V-1 s-1 and the contact resistance lowers to 25.5 Ω cm. Remarkably, the thermal stability of DNTT is much improved, and a record saturated power density of ≈3.4 × 104 W cm-2 is obtained. Both the experiments and theoretical calculations demonstrate that the lattice compressive strain induced by oxygen is responsible for their high performance and stability. Furthermore, the universality of the strategy is manifested in both n-type and p-type small OSCs. This work provides a novel strategy to improve both the mobility and the stability of OSCs, paving the way for the practical applications of organic devices.
Collapse
Affiliation(s)
- Shougang Sun
- Key Laboratory of Organic Integrated Circuits, Ministry of Education, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Jie Zhu
- Key Laboratory of Organic Integrated Circuits, Ministry of Education, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Zhongwu Wang
- Key Laboratory of Organic Integrated Circuits, Ministry of Education, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Yinan Huang
- Key Laboratory of Organic Integrated Circuits, Ministry of Education, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Yongxu Hu
- Key Laboratory of Organic Integrated Circuits, Ministry of Education, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Xiaosong Chen
- Key Laboratory of Organic Integrated Circuits, Ministry of Education, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Yajing Sun
- Key Laboratory of Organic Integrated Circuits, Ministry of Education, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Liqiang Li
- Key Laboratory of Organic Integrated Circuits, Ministry of Education, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou, 350207, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| | - Wenping Hu
- Key Laboratory of Organic Integrated Circuits, Ministry of Education, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou, 350207, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| |
Collapse
|
30
|
Plater MJ, Harrison WTA. New Functionalized Phenoxazines and Phenothiazines. ACS OMEGA 2023; 8:44163-44171. [PMID: 38027375 PMCID: PMC10666145 DOI: 10.1021/acsomega.3c06461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023]
Abstract
The reaction of either 2-aminophenol or 2-(N-methylamino)phenol with 1,2-difluoro-4,5-dinitrobenzene and sodium carbonate in EtOH gives 2,3-dinitrophenoxazines. One nitro group, conjugated to the aryl ether, was displaced from 2,3-dinitro-10-methylphenoxazine with different nucleophiles: BuNH2, KOEt, and KOH. The reaction of 2-aminothiophenol with 1,2-difluoro-4,5-dinitrobenzene under the same conditions gives 2,3-dinitrophenothiazine. This reacted with BuNH2 forming 2-butylamino-3-nitrophenothiazine. The dihedral angles of the different compounds are compared.
Collapse
Affiliation(s)
- M. John Plater
- Department of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, United
Kingdom of Great Britain and Northern Ireland
| | - William T. A. Harrison
- Department of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, United
Kingdom of Great Britain and Northern Ireland
| |
Collapse
|
31
|
Ji S, Peng D, Sun F, You Q, Wang R, Yan N, Zhou Y, Wang W, Tang Q, Xia N, Zeng Z, Wu Z. Coexistent, Competing Tunnelling, and Hopping Charge Transport in Compressed Metal Nanocluster Crystals. J Am Chem Soc 2023; 145:24012-24020. [PMID: 37903430 DOI: 10.1021/jacs.3c07007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Understanding charge transport among metal particles with sizes of approximately 1 nm poses a great challenge due to the ultrasmall nanosize, yet it holds great significance in the development of innovative materials as substitutes for traditional semiconductors, which are insulative and unstable in less than ∼10 nm thickness. Herein, atomically precise gold nanoclusters with well-defined compositions and structures were investigated to establish a mathematical relation between conductivity and interparticle distance. This was accomplished using high-pressure in situ resistance characterizations, synchrotron X-ray diffraction (XRD), and the Murnaghan equation of state. Based on this precise correlation, it was predicted that the conductivity of Au25(SNap)18 (SNap: 1-naphthalenethiolate) solid is comparable to that of bulk silver when the interparticle distance is reduced to approximately 3.6 Å. Furthermore, the study revealed the coexisting, competing tunneling, and incoherent hopping charge transport mechanisms, which differed from those previously reported. The introduction of conjugation-structured ligands, tuning of the structures of metal nanoclusters, and use of high-pressure techniques contributed to enhanced conductivity, and thus, the charge carrier types were determined using Hall measurements. Overall, this study provides valuable insight into the charge transport in gold nanocluster solids and represents an important advancement in metal nanocluster semiconductor research.
Collapse
Affiliation(s)
- Shiyu Ji
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, P. R. China
- University of Science and Technology of China, Hefei 230601, P. R. China
| | - Di Peng
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, P. R. China
- University of Science and Technology of China, Hefei 230601, P. R. China
| | - Fang Sun
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331, China
| | - Qing You
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, P. R. China
- Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
| | - Runguo Wang
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, P. R. China
- University of Science and Technology of China, Hefei 230601, P. R. China
| | - Nan Yan
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, P. R. China
- Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
| | - Yue Zhou
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, P. R. China
- University of Science and Technology of China, Hefei 230601, P. R. China
| | - Weiyi Wang
- University of Science and Technology of China, Hefei 230601, P. R. China
| | - Qing Tang
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331, China
| | - Nan Xia
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, P. R. China
- Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
| | - Zhi Zeng
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, P. R. China
| | - Zhikun Wu
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, P. R. China
- Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
| |
Collapse
|
32
|
Kaushal JB, Raut P, Kumar S. Organic Electronics in Biosensing: A Promising Frontier for Medical and Environmental Applications. BIOSENSORS 2023; 13:976. [PMID: 37998151 PMCID: PMC10669243 DOI: 10.3390/bios13110976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 11/25/2023]
Abstract
The promising field of organic electronics has ushered in a new era of biosensing technology, thus offering a promising frontier for applications in both medical diagnostics and environmental monitoring. This review paper provides a comprehensive overview of organic electronics' remarkable progress and potential in biosensing applications. It explores the multifaceted aspects of organic materials and devices, thereby highlighting their unique advantages, such as flexibility, biocompatibility, and low-cost fabrication. The paper delves into the diverse range of biosensors enabled by organic electronics, including electrochemical, optical, piezoelectric, and thermal sensors, thus showcasing their versatility in detecting biomolecules, pathogens, and environmental pollutants. Furthermore, integrating organic biosensors into wearable devices and the Internet of Things (IoT) ecosystem is discussed, wherein they offer real-time, remote, and personalized monitoring solutions. The review also addresses the current challenges and future prospects of organic biosensing, thus emphasizing the potential for breakthroughs in personalized medicine, environmental sustainability, and the advancement of human health and well-being.
Collapse
Affiliation(s)
- Jyoti Bala Kaushal
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (J.B.K.); (P.R.)
| | - Pratima Raut
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (J.B.K.); (P.R.)
| | - Sanjay Kumar
- Durham School of Architectural Engineering and Construction, Scott Campus, University of Nebraska-Lincoln, Omaha, NE 68182, USA
| |
Collapse
|
33
|
Nguyen TH, Le KM, Nguyen LH, Truong TN. Atom-Based Machine Learning Model for Quantitative Property-Structure Relationship of Electronic Properties of Fusenes and Substituted Fusenes. ACS OMEGA 2023; 8:38441-38451. [PMID: 37867641 PMCID: PMC10586267 DOI: 10.1021/acsomega.3c05212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/15/2023] [Indexed: 10/24/2023]
Abstract
This study presents the development of machine-learning-based quantitative structure-property relationship (QSPR) models for predicting electron affinity, ionization potential, and band gap of fusenes from different chemical classes. Three variants of the atom-based Weisfeiler-Lehman (WL) graph kernel method and the machine learning model Gaussian process regressor (GPR) were used. The data pool comprises polycyclic aromatic hydrocarbons (PAHs), thienoacenes, cyano-substituted PAHs, and nitro-substituted PAHs computed with density functional theory (DFT) at the B3LYP-D3/6-31+G(d) level of theory. The results demonstrate that the GPR/WL kernel methods can accurately predict the electronic properties of PAHs and their derivatives with root-mean-square deviations of 0.15 eV. Additionally, we also demonstrate the effectiveness of the active learning protocol for the GPR/WL kernel methods pipeline, particularly for data sets with greater diversity. The interpretation of the model for contributions of individual atoms to the predicted electronic properties provides reasons for the success of our previous degree of π-orbital overlap model.
Collapse
Affiliation(s)
- Tuan H. Nguyen
- Faculty
of Chemical Engineering, Ho Chi Minh City
University of Technology, 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 7000000, Vietnam
| | - Khang M. Le
- Faculty
of Chemistry, VNUHCM-University of Science, 227 Nguyen Van Cu Street, Ho Chi Minh City 700000, Vietnam
| | - Lam H. Nguyen
- Faculty
of Chemistry, VNUHCM-University of Science, 227 Nguyen Van Cu Street, Ho Chi Minh City 700000, Vietnam
- Institute
for Computational Science and Technology, Ho Chi Minh City 700000, Vietnam
| | - Thanh N. Truong
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
34
|
Lijina MP, Benny A, Sebastian E, Hariharan M. Keeping the chromophores crossed: evidence for null exciton splitting. Chem Soc Rev 2023; 52:6664-6679. [PMID: 37606527 DOI: 10.1039/d3cs00176h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Fundamental understanding of the supramolecular assemblies of organic chromophores and the development of design strategies have seen endless ripples of interest owing to their exciting photophysical properties and optoelectronic applications. The independent discovery of dye aggregates by Jelley and Scheibe was the commencement of the remarkable advancement in the field of aggregate photophysics. Subsequent research warranted an exceptional model for defining the exciton interactions in aggregates, proposed by Davydov, Kasha and co-workers, independently, based on the long-range Coulombic coupling. Fascinatingly, the orthogonally cross-stacked molecular transition dipole arrangement was foretold by Kasha to possess null exciton interaction leading to spectroscopically uncoupled molecular assembly, which lacked an experimental signature for decades. There have been several attempts to identify and probe atypical molecular aggregates for decoding their optical behaviour. Herein, we discuss the recent efforts in experimentally verifying the unusual exciton interactions supported with quantum chemical computations, primarily focusing on the less explored null exciton splitting. Exciton engineering can be realized through synthetic modifications that can additionally offer control over the assorted non-covalent interactions for orchestrating precise supramolecular assembly, along with molecular editing. The task of attaining a minimal excitonic coupling through an orthogonally cross-stacked crystalline architecture envisaged to offer a monomer-like optical behaviour was first reported in 1,7-dibromoperylene-3,4,9,10-tetracarboxylic tetrabutylester (PTE-Br2). The attempt to stitch molecules covalently in an orthogonal fashion to possess null excitonic character culminated in a spiro-conjugated perylenediimide dimer exhibiting a monomer-like spectroscopic signature. The computational and experimental efforts to map the emergent properties of the cross-stacked architecture are also discussed here. Using the null aggregates formed by the interference effects between CT-mediated and Coulombic couplings in the molecular array is another strategy for achieving monomer-like spectroscopic properties in molecular assemblies. Moreover, identifying supramolecular assemblies with precise angle-dependent properties can have implications in functional material design, and this review can provide insights into the uncharted realm of null exciton splitting.
Collapse
Affiliation(s)
- M P Lijina
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala P. O., Vithura, Thiruvananthapuram, Kerala, 695551, India.
| | - Alfy Benny
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala P. O., Vithura, Thiruvananthapuram, Kerala, 695551, India.
| | - Ebin Sebastian
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala P. O., Vithura, Thiruvananthapuram, Kerala, 695551, India.
| | - Mahesh Hariharan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala P. O., Vithura, Thiruvananthapuram, Kerala, 695551, India.
| |
Collapse
|
35
|
Wei Y, Cai Y, He L, Zhang Y, Yuan Y, Zhang J, Wang P. Molecular engineering of nitrogen-rich helicene based organic semiconductors for stable perovskite solar cells. Chem Sci 2023; 14:10285-10296. [PMID: 37772097 PMCID: PMC10530664 DOI: 10.1039/d3sc02845c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 09/04/2023] [Indexed: 09/30/2023] Open
Abstract
Polycyclic heteroaromatics play a pivotal role in advancing the field of high-performance organic semiconductors. In this study, we report the synthesis of a pyrrole-bridged double azahelicene through intramolecular oxidative cyclization. By incorporating bis(4-methoxyphenyl)amine (OMeDPA) and ethylenedioxythiophene-phenyl-OMeDPA (EP-OMeDPA) into the sp3-nitrogen rich double helicene framework, we have successfully constructed two organic semiconductors with ionization potentials suitable for application in perovskite solar cells. The amorphous films of both organic semiconductors exhibit hole density-dependent mobility and conductivity. Notably, the organic semiconductor utilizing EP-OMeDPA as the electron donor demonstrates superior hole mobility at a given hole density, which is attributed to reduced reorganization energy and increased centroid distance. Moreover, this organic semiconductor exhibits a remarkably elevated glass transition temperature of up to 230 °C and lower diffusivity for external small molecules and ions. When employed as the p-doped hole transport layer in perovskite solar cells, TMDAP-EP-OMeDPA achieves an improved average efficiency of 21.7%. Importantly, the solar cell with TMDAP-EP-OMeDPA also demonstrates enhanced long-term operational stability and storage stability at 85 °C. These findings provide valuable insights into the development of high-performance organic semiconductors, contributing to the practical application of perovskite solar cells.
Collapse
Affiliation(s)
- Yuefang Wei
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Chemistry, Zhejiang University Hangzhou 310030 China
| | - Yaohang Cai
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Chemistry, Zhejiang University Hangzhou 310030 China
| | - Lifei He
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Chemistry, Zhejiang University Hangzhou 310030 China
| | - Yuyan Zhang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Chemistry, Zhejiang University Hangzhou 310030 China
| | - Yi Yuan
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Chemistry, Zhejiang University Hangzhou 310030 China
| | - Jing Zhang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Chemistry, Zhejiang University Hangzhou 310030 China
| | - Peng Wang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Chemistry, Zhejiang University Hangzhou 310030 China
| |
Collapse
|
36
|
Can A, Deneme I, Demirel G, Usta H. Solution-Processable Indenofluorenes on Polymer Brush Interlayer: Remarkable N-Channel Field-Effect Transistor Characteristics under Ambient Conditions. ACS APPLIED MATERIALS & INTERFACES 2023; 15:41666-41679. [PMID: 37582254 PMCID: PMC10485804 DOI: 10.1021/acsami.3c07365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/04/2023] [Indexed: 08/17/2023]
Abstract
The development of solution-processable n-type molecular semiconductors that exhibit high electron mobility (μe ≥ 0.5 cm2/(V·s)) under ambient conditions, along with high current modulation (Ion/Ioff ≥ 106-107) and near-zero turn on voltage (Von) characteristics, has lagged behind that of other semiconductors in organic field-effect transistors (OFETs). Here, we report the design, synthesis, physicochemical and optoelectronic characterizations, and OFET performances of a library of solution-processable, low-LUMO (-4.20 eV) 2,2'-(2,8-bis(3-alkylthiophen-2-yl)indeno[1,2-b]fluorene-6,12-diylidene)dimalononitrile small molecules, β,β'-Cn-TIFDMTs, having varied alkyl chain lengths (n = 8, 12, 16). An intriguing correlation is identified between the solid-isotropic liquid transition enthalpies and the solubilities, indicating that cohesive energetics, which are tuned by alkyl chains, play a pivotal role in determining solubility. The semiconductors were spin-coated under ambient conditions on densely packed (grafting densities of 0.19-0.45 chains/nm2) ultrathin (∼3.6-6.6 nm) polystyrene-brush surfaces. It is demonstrated that, on this polymer interlayer, thermally induced dispersive interactions occurring over a large number of methylene units between flexible alkyl chains (i.e., zipper effect) are critical to achieve a favorable thin-film crystallization with a proper microstructure and morphology for efficient charge transport. While C8 and C16 chains show a minimal zipper effect upon thermal annealing, C12 chains undergo an extended interdigitation involving ∼6 methylene units. This results in the formation of large crystallites having lamellar stacking ((100) coherence length ∼30 nm) in the out-of-plane direction and highly favorable in-plane π-interactions in a slipped-stacked arrangement. Uninterrupted microstructural integrity (i.e., no face-on (010)-oriented crystallites) was found to be critical to achieving high mobilities. The excellent crystallinity of the C12-substituted semiconductor thin film was also evident in the observed crystal lattice vibrations (phonons) at 58 cm-1 in low-frequency Raman scattering. Two-dimensional micrometer-sized (∼1-3 μm), sharp-edged plate-like grains lying parallel with the substrate plane were observed. OFETs fabricated by the current small molecules showed excellent n-channel behavior in ambient with μe values reaching ∼0.9 cm2/(V·s), Ion/Ioff ∼ 107-108, and Von ≈ 0 V. Our study not only demonstrates one of the highest performing n-channel OFET devices reported under ambient conditions via solution processing but also elucidates significant relationships among chemical structures, molecular properties, self-assembly from solution into a thin film, and semiconducting thin-film properties. The design rationales presented herein may open up new avenues for the development of high-electron-mobility novel electron-deficient indenofluorene and short-axis substituted donor-acceptor π-architectures via alkyl chain engineering and interface engineering.
Collapse
Affiliation(s)
- Ayse Can
- Department
of Nanotechnology Engineering, Abdullah
Gül University, 38080 Kayseri, Turkey
| | - Ibrahim Deneme
- Department
of Nanotechnology Engineering, Abdullah
Gül University, 38080 Kayseri, Turkey
| | - Gokhan Demirel
- Bio-inspired
Materials Research Laboratory (BIMREL), Department of Chemistry, Gazi University, 06500 Ankara, Turkey
| | - Hakan Usta
- Department
of Nanotechnology Engineering, Abdullah
Gül University, 38080 Kayseri, Turkey
| |
Collapse
|
37
|
Sachnik O, Tan X, Dou D, Haese C, Kinaret N, Lin KH, Andrienko D, Baumgarten M, Graf R, Wetzelaer GJAH, Michels JJ, Blom PWM. Elimination of charge-carrier trapping by molecular design. NATURE MATERIALS 2023; 22:1114-1120. [PMID: 37386064 PMCID: PMC10465354 DOI: 10.1038/s41563-023-01592-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 05/25/2023] [Indexed: 07/01/2023]
Abstract
A common obstacle of many organic semiconductors is that they show highly unipolar charge transport. This unipolarity is caused by trapping of either electrons or holes by extrinsic impurities, such as water or oxygen. For devices that benefit from balanced transport, such as organic light-emitting diodes, organic solar cells and organic ambipolar transistors, the energy levels of the organic semiconductors are ideally situated within an energetic window with a width of 2.5 eV where charge trapping is strongly suppressed. However, for semiconductors with a band gap larger than this window, as used in blue-emitting organic light-emitting diodes, the removal or disabling of charge traps poses a longstanding challenge. Here we demonstrate a molecular strategy where the highest occupied molecular orbital and lowest unoccupied molecular orbital are spatially separated on different parts of the molecules. By tuning their stacking by modification of the chemical structure, the lowest unoccupied molecular orbitals can be spatially protected from impurities that cause electron trapping, increasing the electron current by orders of magnitude. In this way, the trap-free window can be substantially broadened, opening a path towards large band gap organic semiconductors with balanced and trap-free transport.
Collapse
Affiliation(s)
- Oskar Sachnik
- Max Planck Institute for Polymer Research, Mainz, Germany
| | - Xiao Tan
- Max Planck Institute for Polymer Research, Mainz, Germany
| | - Dehai Dou
- Max Planck Institute for Polymer Research, Mainz, Germany
| | | | - Naomi Kinaret
- Max Planck Institute for Polymer Research, Mainz, Germany
| | - Kun-Han Lin
- Max Planck Institute for Polymer Research, Mainz, Germany
| | | | | | - Robert Graf
- Max Planck Institute for Polymer Research, Mainz, Germany
| | | | | | - Paul W M Blom
- Max Planck Institute for Polymer Research, Mainz, Germany.
| |
Collapse
|
38
|
Góger S, Sandonas LM, Müller C, Tkatchenko A. Data-driven tailoring of molecular dipole polarizability and frontier orbital energies in chemical compound space. Phys Chem Chem Phys 2023; 25:22211-22222. [PMID: 37566426 PMCID: PMC10445328 DOI: 10.1039/d3cp02256k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/27/2023] [Indexed: 08/12/2023]
Abstract
Understanding correlations - or lack thereof - between molecular properties is crucial for enabling fast and accurate molecular design strategies. In this contribution, we explore the relation between two key quantities describing the electronic structure and chemical properties of molecular systems: the energy gap between the frontier orbitals and the dipole polarizability. Based on the recently introduced QM7-X dataset, augmented with accurate molecular polarizability calculations as well as analysis of functional group compositions, we show that polarizability and HOMO-LUMO gap are uncorrelated when considering sufficiently extended subsets of the chemical compound space. The relation between these two properties is further analyzed on specific examples of molecules with similar composition as well as homooligomers. Remarkably, the freedom brought by the lack of correlation between molecular polarizability and HOMO-LUMO gap enables the design of novel materials, as we demonstrate on the example of organic photodetector candidates.
Collapse
Affiliation(s)
- Szabolcs Góger
- Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg City, Luxembourg.
| | - Leonardo Medrano Sandonas
- Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg City, Luxembourg.
| | - Carolin Müller
- Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg City, Luxembourg.
| | - Alexandre Tkatchenko
- Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg City, Luxembourg.
| |
Collapse
|
39
|
Pan X, Montes E, Rojas WY, Lawson B, Vázquez H, Kamenetska M. Cooperative Self-Assembly of Dimer Junctions Driven by π Stacking Leads to Conductance Enhancement. NANO LETTERS 2023; 23:6937-6943. [PMID: 37486358 DOI: 10.1021/acs.nanolett.3c01540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
We demonstrate enhanced electronic transport through dimer molecular junctions, which self-assemble between two gold electrodes in π-π stabilized binding configurations. Single molecule junction conductance measurements show that benzimidazole molecules assemble into dimer junctions with a per-molecule conductance that is higher than that in monomer junctions. Density functional theory calculations reveal that parallel stacking of two benzimidazoles between electrodes is the most energetically favorable due to the large π system. Imidazole is smaller and has greater conformational freedom to access different stacking angles. Transport calculations confirm that the conductance enhancement of benzimidazole dimers results from the changed binding geometry of dimers on gold, which is stabilized and made energetically accessible by intermolecular π stacking. We engineer imidazole derivatives with higher monomer conductance than benzimidazole and large intermolecular interaction that promote cooperative in situ assembly of more transparent dimer junctions and suggest at the potential of molecular devices based on self-assembled molecular layers.
Collapse
Affiliation(s)
- Xiaoyun Pan
- Department of Chemistry, Boston University, Boston, Massachusetts 02155, United States
| | - Enrique Montes
- Institute of Physics, Czech Academy of Sciences, Cukrovarnická 10, Prague CZ-162 00, Czech Republic
| | - Wudmir Y Rojas
- Institute of Physics, Czech Academy of Sciences, Cukrovarnická 10, Prague CZ-162 00, Czech Republic
| | - Brent Lawson
- Department of Physics, Boston University, Boston, Massachusetts 02155, United States
| | - Héctor Vázquez
- Institute of Physics, Czech Academy of Sciences, Cukrovarnická 10, Prague CZ-162 00, Czech Republic
| | - Maria Kamenetska
- Department of Chemistry, Boston University, Boston, Massachusetts 02155, United States
- Department of Physics, Boston University, Boston, Massachusetts 02155, United States
- Division of Material Science and Engineering, Boston University, Boston, Massachusetts 02155, United States
| |
Collapse
|
40
|
Costello A, Duke R, Sorensen S, Kothalawala NL, Ogbaje M, Sarkar N, Kim DY, Risko C, Parkin SR, Huckaba AJ. Hydrogen-Bonding Trends in a Bithiophene with 3- and/or 4-Pyridyl Substituents. ACS OMEGA 2023; 8:24485-24494. [PMID: 37457451 PMCID: PMC10339323 DOI: 10.1021/acsomega.3c02423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023]
Abstract
To improve the charge-carrier transport capabilities of thin-film organic materials, the intermolecular electronic couplings in the material should be maximized. Decreasing intermolecular distance while maintaining proper orbital overlap in highly conjugated aromatic molecules has so far been a successful way to increase electronic coupling. We attempted to decrease the intermolecular distance in this study by synthesizing cocrystals of simple benzoic acid coformers and dipyridyl-2,2'-bithiophene molecules to understand how the coformer identity and pyridine N atom placement affected solid-state properties. We found that with the 5-(3-pyridyl)-5'-(4-pyridyl)-isomer, the 4-pyridyl ring interacted with electrophiles and protons more strongly. Synthesized cocrystal powders were found to have reduced average crystallite size in reference to the parent compounds. The opposite was found for the intermolecular electronic couplings, as determined via density functional theory (DFT) calculations, which were relatively large in some of the cocrystals.
Collapse
Affiliation(s)
- Alison
M. Costello
- Department
of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Rebekah Duke
- Department
of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
- Center
for Applied Energy Research, University
of Kentucky, Lexington, Kentucky 40511, United States
| | - Stephanie Sorensen
- Department
of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | | | - Moses Ogbaje
- Department
of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
- Center
for Applied Energy Research, University
of Kentucky, Lexington, Kentucky 40511, United States
| | - Nandini Sarkar
- Department
of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Doo Young Kim
- Department
of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Chad Risko
- Department
of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
- Center
for Applied Energy Research, University
of Kentucky, Lexington, Kentucky 40511, United States
| | - Sean R. Parkin
- Department
of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Aron J. Huckaba
- Department
of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| |
Collapse
|
41
|
Banks PA, Kleist EM, Ruggiero MT. Investigating the function and design of molecular materials through terahertz vibrational spectroscopy. Nat Rev Chem 2023; 7:480-495. [PMID: 37414981 DOI: 10.1038/s41570-023-00487-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2023] [Indexed: 07/08/2023]
Abstract
Terahertz spectroscopy has proved to be an essential tool for the study of condensed phase materials. Terahertz spectroscopy probes the low-frequency vibrational dynamics of atoms and molecules, usually in the condensed phase. These nuclear dynamics, which typically involve displacements of entire molecules, have been linked to bulk phenomena ranging from phase transformations to semiconducting efficiency. The terahertz region of the electromagnetic spectrum has historically been referred to as the 'terahertz gap', but this is a misnomer, as there exist a multitude of methods for accessing terahertz frequencies, and now there are cost-effective instruments that have made terahertz studies much more user-friendly. This Review highlights some of the most exciting applications of terahertz vibrational spectroscopy so far, and provides an in-depth overview of the methods of this technique and its utility to the study of the chemical sciences.
Collapse
Affiliation(s)
- Peter A Banks
- Department of Chemistry, University of Vermont, Burlington, VT, USA
| | - Elyse M Kleist
- Department of Chemistry, University of Vermont, Burlington, VT, USA
| | | |
Collapse
|
42
|
Zeng X, Wang L, Dai H, Huang T, Du M, Wang D, Zhang D, Duan L. Orbital Symmetry Engineering in Fused Polycyclic Heteroaromatics toward Extremely Narrowband Green Emissions with an FWHM of 13 nm. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211316. [PMID: 36859744 DOI: 10.1002/adma.202211316] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/17/2023] [Indexed: 06/02/2023]
Abstract
Multiresonance (MR) molecules generally face spectral broadening issues with redshifted emissions. Thus, green emitters with full widths at half maximum (FWHMs) of <20 nm are rarely reported, despite being highly desired. Herein, by properly fusing indolo(3,2,1-jk)carbazole (ICZ) and naphthalene moieties, green MR emitters are reported, which have FWHMs of merely 13 nm (0.064 eV) and 14 nm (0.069 eV) in dichloromethane, accompanied by high photoluminescence quantum yields of >95%, which represent not only the smallest FWHMs among all green MR emitters but also the first green emitters based on ICZ MR derivatives. Theoretical studies reveal that the orbital interactions between the antisymmetric sites of the segments play an important role in extending the conjugation length in the fusion architectures while simultaneously maintaining a small FWHM. The corresponding organic light-emitting diodes exhibit green emission peaks at 508-509 nm and the first green electroluminescence FWHM of <20 nm ever reported. Benefiting from the preferential horizontal dipole orientation, a high maximum external quantum efficiency of up to 30.9% is obtained, which remains at 28.9% and 23.2% under luminances of 1000 and 10 000 cd m-2 , respectively, outperforming most reported green devices based on narrowband emitters.
Collapse
Affiliation(s)
- Xuan Zeng
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| | - Lu Wang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Hengyi Dai
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Tianyu Huang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Mingxu Du
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Dong Wang
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| | - Dongdong Zhang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Lian Duan
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
43
|
Baruah RK, Yoo H, Lee EK. Interconnection Technologies for Flexible Electronics: Materials, Fabrications, and Applications. MICROMACHINES 2023; 14:1131. [PMID: 37374716 PMCID: PMC10305052 DOI: 10.3390/mi14061131] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/21/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023]
Abstract
Flexible electronic devices require metal interconnects to facilitate the flow of electrical signals among the device components, ensuring its proper functionality. There are multiple factors to consider when designing metal interconnects for flexible electronics, including their conductivity, flexibility, reliability, and cost. This article provides an overview of recent endeavors to create flexible electronic devices through different metal interconnect approaches, with a focus on materials and structural aspects. Additionally, the article discusses emerging flexible applications, such as e-textiles and flexible batteries, as essential considerations.
Collapse
Affiliation(s)
- Ratul Kumar Baruah
- Department of Electronics and Communication Engineering, Tezpur University, Assam 784028, India
| | - Hocheon Yoo
- Department of Electronic Engineering, Gachon University, Seongnam 13120, Republic of Korea
| | - Eun Kwang Lee
- Department of Chemical Engineering, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
44
|
Bhat V, Callaway CP, Risko C. Computational Approaches for Organic Semiconductors: From Chemical and Physical Understanding to Predicting New Materials. Chem Rev 2023. [PMID: 37141497 DOI: 10.1021/acs.chemrev.2c00704] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
While a complete understanding of organic semiconductor (OSC) design principles remains elusive, computational methods─ranging from techniques based in classical and quantum mechanics to more recent data-enabled models─can complement experimental observations and provide deep physicochemical insights into OSC structure-processing-property relationships, offering new capabilities for in silico OSC discovery and design. In this Review, we trace the evolution of these computational methods and their application to OSCs, beginning with early quantum-chemical methods to investigate resonance in benzene and building to recent machine-learning (ML) techniques and their application to ever more sophisticated OSC scientific and engineering challenges. Along the way, we highlight the limitations of the methods and how sophisticated physical and mathematical frameworks have been created to overcome those limitations. We illustrate applications of these methods to a range of specific challenges in OSCs derived from π-conjugated polymers and molecules, including predicting charge-carrier transport, modeling chain conformations and bulk morphology, estimating thermomechanical properties, and describing phonons and thermal transport, to name a few. Through these examples, we demonstrate how advances in computational methods accelerate the deployment of OSCsin wide-ranging technologies, such as organic photovoltaics (OPVs), organic light-emitting diodes (OLEDs), organic thermoelectrics, organic batteries, and organic (bio)sensors. We conclude by providing an outlook for the future development of computational techniques to discover and assess the properties of high-performing OSCs with greater accuracy.
Collapse
Affiliation(s)
- Vinayak Bhat
- Department of Chemistry & Center for Applied Energy Research, University of Kentucky, Lexington, Kentucky 40506-0055, United States
| | - Connor P Callaway
- Department of Chemistry & Center for Applied Energy Research, University of Kentucky, Lexington, Kentucky 40506-0055, United States
| | - Chad Risko
- Department of Chemistry & Center for Applied Energy Research, University of Kentucky, Lexington, Kentucky 40506-0055, United States
| |
Collapse
|
45
|
Willson JT, Liu W, Balzer D, Kassal I. Jumping Kinetic Monte Carlo: Fast and Accurate Simulations of Partially Delocalized Charge Transport in Organic Semiconductors. J Phys Chem Lett 2023; 14:3757-3764. [PMID: 37044057 DOI: 10.1021/acs.jpclett.3c00388] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Developing devices using disordered organic semiconductors requires accurate and practical models of charge transport. In these materials, charge transport occurs through partially delocalized states in an intermediate regime between localized hopping and delocalized band conduction. Partial delocalization can increase mobilities by orders of magnitude compared to those with conventional hopping, making it important for the design of materials and devices. Although delocalization, disorder, and polaron formation can be described using delocalized kinetic Monte Carlo (dKMC), it is a computationally expensive method. Here, we develop jumping kinetic Monte Carlo (jKMC), a model that approaches the accuracy of dKMC for modest amounts of delocalization (such as those found in disordered organic semiconductors), with a computational cost comparable to that of conventional hopping. jKMC achieves its computational performance by modeling conduction using identical spherical polarons, yielding a simple delocalization correction to the Marcus hopping rate that allows polarons to jump over their nearest neighbors. jKMC can be used in regimes of partial delocalization inaccessible to dKMC to show that modest delocalization can increase mobilities by as much as 2 orders of magnitude.
Collapse
Affiliation(s)
- Jacob T Willson
- School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia
| | - William Liu
- School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia
| | - Daniel Balzer
- School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia
| | - Ivan Kassal
- School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
46
|
Ahmad MS, Siddique AB, Khalid M, Ali A, Shaheen MA, Tahir MN, Imran M, Irfan A, Khan MU, Paixão MW. Synthesis, antioxidant activity, antimicrobial efficacy and molecular docking studies of 4-chloro-2-(1-(4-methoxyphenyl)-4,5-diphenyl-1 H-imidazol-2-yl)phenol and its transition metal complexes. RSC Adv 2023; 13:9222-9230. [PMID: 36959880 PMCID: PMC10029809 DOI: 10.1039/d2ra08327b] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/03/2023] [Indexed: 03/24/2023] Open
Abstract
Herein, a one-pot synthesis of tetra-substituted imidazole, 4-chloro-2-(1-(4-methoxyphenyl)-4,5-diphenyl-1H-imidazol-2-yl)phenol (HL), is reported by the reaction of benzil, 5-bromosalicylaldehyde, ammonium acetate and anisidine. The synthesized imidazole was reacted with salts of 1st row transition metals (Co(ii), Ni(ii), Cu(ii), Mn(ii) and Zn(ii)) to obtain metal complexes. The structure of the compounds was confirmed using various spectroscopic and analytical techniques. HL, which is crystalline, was characterized by SC-XRD. Subsequently, the synthesized compounds were evaluated for their antioxidant and antimicrobial activities. Antimicrobial studies revealed the more noxious nature of metal complexes compared to ligand against various strains of bacteria and fungi. Molecular docking results based on the binding energy values also supported the experimental results of the antioxidant activities of the compounds. HL was found to be a better antioxidant than metal complexes. For a better insight into the structure, computational studies of the compounds were also carried out. A clear intra-molecular charge transfer was perceived in the ligand and its metal complexes. The transfer integral values for holes (36.48 meV) were found to be higher than the electron transfer integrals (24.76 meV), which indicated that the ligand would be a better hole transporter. According to the frontier molecular orbitals of the dimer, the charge transfer within the molecule is found from monomer 1 to 2.
Collapse
Affiliation(s)
| | | | - Muhammad Khalid
- Institute of Chemistry, Khwaja Fareed University of Engineering & Information Technology Rahim Yar Khan 64200 Pakistan
- Centre for Theoretical and Computational Research, Khwaja Fareed University of Engineering & Information Technology Rahim Yar Khan 64200 Pakistan
| | - Akbar Ali
- Department of Chemistry, Government College University Faisalabad Faisalabad 38000 Pakistan
| | | | | | - Muhammad Imran
- Department of Chemistry, College of Science, King Khalid University PO. Box 9004 Abha 61413 Saudi Arabia
| | - Ahmad Irfan
- Department of Chemistry, College of Science, King Khalid University PO. Box 9004 Abha 61413 Saudi Arabia
- Research Center for Advanced Materials Science (RCAMS), King Khalid University PO. Box 9004 Abha 61413 Saudi Arabia
| | | | - Marcio Weber Paixão
- Department of Chemistry, Universidade Federal de São Carlos (UFSCar) São Carlos SP Brazil
| |
Collapse
|
47
|
Heterogeneous intercalated metal-organic framework active materials for fast-charging non-aqueous Li-ion capacitors. Nat Commun 2023; 14:1472. [PMID: 36928582 PMCID: PMC10020440 DOI: 10.1038/s41467-023-37120-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 03/01/2023] [Indexed: 03/18/2023] Open
Abstract
Intercalated metal-organic frameworks (iMOFs) based on aromatic dicarboxylate are appealing negative electrode active materials for Li-based electrochemical energy storage devices. They store Li ions at approximately 0.8 V vs. Li/Li+ and, thus, avoid Li metal plating during cell operation. However, their fast-charging capability is limited. Here, to circumvent this issue, we propose iMOFs with multi-aromatic units selected using machine learning and synthesized via solution spray drying. A naphthalene-based multivariate material with nanometric thickness allows the reversible storage of Li-ions in non-aqueous Li metal cell configuration reaching 85% capacity retention at 400 mA g-1 (i.e., 30 min for full charge) and 20 °C compared to cycling at 20 mA g-1 (i.e., 10 h for full charge). The same material, tested in combination with an activated carbon-based positive electrode, enables a discharge capacity retention of about 91% after 1000 cycles at 0.15 mA cm-2 (i.e., 2 h for full charge) and 20 °C. We elucidate the charge storage mechanism and demonstrate that during Li intercalation, the distorted crystal structure promotes electron delocalization by controlling the frame vibration. As a result, a phase transition suppresses phase separation, thus, benefitting the electrode's fast charging behavior.
Collapse
|
48
|
Xie G, Zhou J, Tang N, Zhang Y, Liu L, Xie Z, Ma Y. The Multiplicity of π-π Interactions of Fused-Ring Electron Acceptor Polymorphs on the Exciton Migration and Charge Transport. J Phys Chem Lett 2023; 14:2331-2338. [PMID: 36847477 DOI: 10.1021/acs.jpclett.3c00262] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Efficient long-range exciton migration and charge transport are the key parameters for organic photovoltaic materials, which strongly depend on the molecular stacking modes. Herein, we extracted the stacked structures of the archetype fused-ring electron acceptor molecule, ITIC, based on the information on four polymorphic crystals and investigated the relationship between molecular stacking modes and exciton migration/charge transport properties through the intermolecular Coulomb coupling and charge transfer integral calculation. Experimentally, the thin film texture is crystallized through a post-annealing treatment through grazing-incidence wide-angle X-ray scattering (GIWAXS) measurements, which lead to the enhanced exciton migration through exciton-exciton annihilation in the femtosecond transient absorption (fs-TA) measurements. This work demonstrates the relationship between the molecular arrangement and the exciton migration and electron transport and highlights the significance of optimizing molecular stacking for the development of high-performance electron acceptor materials.
Collapse
Affiliation(s)
- Guojing Xie
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, People's Republic of China
| | - Jiadong Zhou
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, People's Republic of China
| | - Ningning Tang
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, People's Republic of China
| | - Yu Zhang
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, People's Republic of China
| | - Linlin Liu
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, People's Republic of China
| | - Zengqi Xie
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, People's Republic of China
| | - Yuguang Ma
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, People's Republic of China
| |
Collapse
|
49
|
Abbinante VM, Zambra M, García-Espejo G, Pipitone C, Giannici F, Milita S, Guagliardi A, Masciocchi N. Molecular Design and Crystal Chemistry of Polyfluorinated Naphthalene-bis-phenylhydrazimides with Superior Thermal and Polymorphic Stability and High Solution Processability. Chemistry 2023; 29:e202203441. [PMID: 36477929 DOI: 10.1002/chem.202203441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022]
Abstract
Naphthalene tetracarboxylic diimides (NDIs) are highly promising air-stable n-type molecular semiconductor candidates for flexible and cost-effective organic solar cells and thermoelectrics. Nonetheless, thermal and polymorphic stabilities of environmentally stable NDIs in the low-to-medium temperature regime (<300 °C) remain challenging properties. Structural, thermal, spectroscopic, and computational features of polyfluorinated NDI-based molecular solids (with up to 14 F atoms per NDI molecule) are discussed upon increasing the fluorination level. Slip-stacked arrangement of the NDI cores with suitable π-π stacking and systematically short interplanar distances (<3.2 Å) are found. All these materials exhibit superior thermal stability (up to 260 °C or above) and thermal expansion coefficients indicating a response compatible with flexible polymeric substrates. Optical bandgaps increase from 2.78 to 2.93 eV with fluorination, while LUMO energy levels decrease down to -4.37 eV, as shown per DFT calculations. The compounds exhibit excellent solubility of 30 mg mL-1 in 1,4-dioxane and DMF.
Collapse
Affiliation(s)
- Vincenzo Mirco Abbinante
- Dipartimento di Scienza e Alta Tecnologia & To.Sca.Lab., INSTM Unit, Università dell'Insubria, via Valleggio 11, 22100, Como, Italy
| | - Marco Zambra
- Dipartimento di Scienza e Alta Tecnologia & To.Sca.Lab., INSTM Unit, Università dell'Insubria, via Valleggio 11, 22100, Como, Italy
| | - Gonzalo García-Espejo
- Dipartimento di Scienza e Alta Tecnologia & To.Sca.Lab., INSTM Unit, Università dell'Insubria, via Valleggio 11, 22100, Como, Italy
| | - Candida Pipitone
- Dipartimento di Fisica e Chimica "Emilio Segrè", Università di Palermo, viale delle Scienze, Ed. 17, 90128, Palermo, Italy
| | - Francesco Giannici
- Dipartimento di Fisica e Chimica "Emilio Segrè", Università di Palermo, viale delle Scienze, Ed. 17, 90128, Palermo, Italy
| | - Silvia Milita
- Istituto per la Microelettronica e Microsistemi, Consiglio Nazionale delle Ricerche, via Gobetti 101, 40129, Bologna, Italy
| | - Antonietta Guagliardi
- Istituto di Cristallografia & To.Sca.Lab., INSTM Unit, Consiglio Nazionale delle Ricerche, via Valleggio 11, 22100, Como, Italy
| | - Norberto Masciocchi
- Dipartimento di Scienza e Alta Tecnologia & To.Sca.Lab., INSTM Unit, Università dell'Insubria, via Valleggio 11, 22100, Como, Italy
| |
Collapse
|
50
|
Ozturk SE, Isci R, Faraji S, Sütay B, Majewski LA, Ozturk T. Synthesis, Photophysical Properties and OFET Application of Thienothiophene and Benzothiadiazole Based Donor-π-Acceptor- π (D- π -A- π) Type Conjugated Polymers. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.112028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|