1
|
Woods JP, Rackley A, Kwon HR, Olson LE. PDGFRα signaling regulates cartilage and fibrous tissue differentiation during synovial joint development. Nat Commun 2025; 16:4041. [PMID: 40301343 PMCID: PMC12041487 DOI: 10.1038/s41467-025-59207-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 04/14/2025] [Indexed: 05/01/2025] Open
Abstract
Synovial joints develop from mesenchymal structures called interzones, with progenitor cells differentiating into specialized cartilaginous and fibrous tissues of the joint. Platelet-derived growth factor receptor-α (PDGFRα) is a tyrosine kinase expressed by cells of the limb bud, but its role in limb development is unknown. To investigate PDGFRα function, we generated mice expressing mutant PDGFRα with a point mutation (D842V) that increases receptor signaling. Mutant hindlimbs are immobile with knee joints fused by cartilage and lacking ligaments and menisci. The interzone marker Gdf5 is initially expressed at E12.5 but is downregulated thereafter, suggesting a defect in interzone maintenance. Omics analysis of the joint tissues identifies ectopic cartilage matrix expressing genes for cartilage and fibrotic tissue. Thus, elevated PDGFRα signaling corrupts joint development by downregulating Gdf5 and redirecting interzone progenitors into a fibrocartilage fate. This suggests that tight regulation of tyrosine kinase activity is necessary for the development of the mouse knee joint.
Collapse
Affiliation(s)
- John P Woods
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Alex Rackley
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Hae Ryong Kwon
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA.
| | - Lorin E Olson
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA.
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
2
|
Yu X, Kawakami R, Yambe S, Yoshimoto Y, Sasaki T, Higuchi S, Watanabe H, Akiyama H, Miura S, Hu K, Kondoh G, Sagasaki R, Inui M, Adachi T, Docheva D, Imamura T, Shukunami C. Dynamic interactions between cartilaginous and tendinous/ligamentous primordia during musculoskeletal integration. Development 2025; 152:dev204512. [PMID: 40135875 DOI: 10.1242/dev.204512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 02/14/2025] [Indexed: 03/27/2025]
Abstract
Proper connections between cartilaginous and muscular primordia through tendinous/ligamentous primordia are essential for musculoskeletal integration. Herein, we report a novel double-reporter mouse model for investigating this process via fluorescently visualising scleraxis (Scx) and SRY-box containing gene 9 (Sox9) expression. We generated ScxTomato transgenic mice and crossed them with Sox9EGFP knock-in mice to obtain ScxTomato;Sox9EGFP mice. Deep imaging of optically cleared double-reporter embryos at E13.5 and E16.5 revealed previously unknown differences in the dynamic interactions between cartilaginous and tendinous/ligamentous primordia in control and Scx-deficient mice. Tendon/ligament maturation was evaluated through simultaneous detection of fluorescence and visualisation of collagen fibre formation using second harmonic generation imaging. Lack of deltoid tuberosity in Scx-deficient mice caused misdirected muscle attachment with morphological changes. Loss of Scx also dysregulated progenitor cell fate determination in the chondrotendinous junction, resulting in the formation of a rounded enthesis rather than the protruding enthesis observed in the control. Hence, our double-reporter mouse system, in combination with loss- or gain-of-function approaches, is a unique and powerful tool that could be used to gain a comprehensive understanding of musculoskeletal integration.
Collapse
Affiliation(s)
- Xinyi Yu
- Department of Molecular Biology and Biochemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Ryosuke Kawakami
- Department of Molecular Medicine for Pathogenesis, Graduate School of Medicine, Ehime University, Ehime 791-0295, Japan
| | - Shinsei Yambe
- Department of Molecular Biology and Biochemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Yuki Yoshimoto
- Department of Molecular Biology and Biochemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Takako Sasaki
- Department of Biochemistry II, Faculty of Medicine, Oita University, Oita 879-5593, Japan
| | - Shinnosuke Higuchi
- Department of Molecular Biology and Biochemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Hitomi Watanabe
- Laboratory of Integrative Biological Science, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Haruhiko Akiyama
- Department of Orthopaedic Surgery, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
- Center for One Medicine Innovative Translational Research (COMIT), Gifu University, Gifu 501-1193, Japan
| | - Shigenori Miura
- Department of Molecular Biology and Biochemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Kadi Hu
- Department of Molecular Biology and Biochemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Gen Kondoh
- Laboratory of Integrative Biological Science, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Ramu Sagasaki
- Laboratory of Animal Regeneration Systemology, Department of Life Sciences, School of Agriculture, Meiji University, Kanagawa 214-8571, Japan
| | - Masafumi Inui
- Laboratory of Animal Regeneration Systemology, Department of Life Sciences, School of Agriculture, Meiji University, Kanagawa 214-8571, Japan
| | - Taiji Adachi
- Laboratory of Biomechanics, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Denitsa Docheva
- Department of Musculoskeletal Tissue Regeneration, Orthopaedic Hospital König-Ludwig-Haus, University of Würzburg, 97074 Würzburg, Germany
| | - Takeshi Imamura
- Department of Molecular Medicine for Pathogenesis, Graduate School of Medicine, Ehime University, Ehime 791-0295, Japan
| | - Chisa Shukunami
- Department of Molecular Biology and Biochemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| |
Collapse
|
3
|
Guillaumin S, Rossoni A, Zeugolis D. State-of the-art and future perspective in co-culture systems for tendon engineering. BIOMATERIALS AND BIOSYSTEMS 2025; 17:100110. [PMID: 40130022 PMCID: PMC11932666 DOI: 10.1016/j.bbiosy.2025.100110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/05/2024] [Accepted: 03/04/2025] [Indexed: 03/26/2025] Open
Abstract
Tendon is a connective tissue that links bone to muscle, allowing for maintenance of skeleton posture, joint movement, energy storage and transmission of muscle force to bone. Tendon is a hypocellular and hypovascular tissue of poor self-regeneration capacity. Current surgical treatments are of limited success, frequently resulting in reinjury. Upcoming cell therapies are primarily based on tenocytes, a cell population of limited self-renewal capacity in vitro or mesenchymal stromal cells, a cell population prone to ectopic bone formation in vivo. Over the years mono- or multi- factorial cell culture technologies have failed to effectively maintain tenocyte phenotype in culture during expansion or to prime mesenchymal stromal cells towards tenogenic lineage prior to implantation. Upon these limitations the concept of co-culture was conceived. Here, we comprehensively review and discuss tenogenic differentiation of mesenchymal stromal cells through direct or indirect culture with tenocytes in an attempt to generate a tenocyte or a tendon-like cell population for regenerative medicine purposes.
Collapse
Affiliation(s)
- Salomé Guillaumin
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL) and Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, University of Galway, Galway, Ireland
| | - Andrea Rossoni
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, Conway Institute of Biomolecular and Biomedical Research and School of Mechanical and Materials Engineering, University College Dublin (UCD), Dublin, Ireland
| | - Dimitrios Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL) and Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, University of Galway, Galway, Ireland
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, Conway Institute of Biomolecular and Biomedical Research and School of Mechanical and Materials Engineering, University College Dublin (UCD), Dublin, Ireland
| |
Collapse
|
4
|
Sakai T, Kumagai K. Molecular dissection of tendon development and healing: Insights into tenogenic phenotypes and functions. J Biol Chem 2025; 301:108353. [PMID: 40015639 PMCID: PMC11986518 DOI: 10.1016/j.jbc.2025.108353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 02/14/2025] [Accepted: 02/18/2025] [Indexed: 03/01/2025] Open
Abstract
Tendon is a dense connective tissue that transmits contraction forces from skeletal muscles to bones. Adult tendon injury is a significant clinical problem because it occurs frequently with a high recurrence rate, and damaged tendon is rarely restored to full function. The main barrier to improving recovery outcomes is our incomplete understanding of the molecular mechanisms underlying the biological alterations following tendon injury in vivo. In this review, we specifically highlight the cellular dynamism of fibrotic tendon wound healing and the roles of mechanical loading. In particular, we document how tendon stem/progenitor cells expressing the tendon-specific transcription factor Scleraxis (Scx) play a role in fibrotic tendon wound healing, and describe novel experimental systems such as lineage cell tracing and single-cell analysis, both of which can shed light on tendon cell behavior and fate decisions during the tendon wound healing process.
Collapse
Affiliation(s)
- Takao Sakai
- Department of Diagnostic Pathology, School of Medicine, Fujita Health University, Toyoake, Aichi, Japan.
| | - Ken Kumagai
- Department of Orthopaedic Surgery, School of Medicine, Yokohama City University, Yokohama, Japan
| |
Collapse
|
5
|
Chida S, Chiba T, Uchida Y, Matsushima T, Kurimoto R, Miyazaki T, Yagasaki L, Nakamura S, Mihara E, Takagi J, Moriyama K, Asahara H. Impact of mechanotransduction on gene expression changes in periodontal ligament during orthodontic tooth movement. J Bone Miner Metab 2025:10.1007/s00774-025-01581-3. [PMID: 39893595 DOI: 10.1007/s00774-025-01581-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 01/09/2025] [Indexed: 02/04/2025]
Abstract
INTRODUCTION The periodontal ligament (PDL) is a structure between the alveolar bone and cementum, essential for tooth stability and composed of diverse cell types. Mohawk homeobox (Mkx) is a master transcription factor that regulates tendon and ligament homeostasis. However, the specific cell populations expressing Mkx and its role in mechanotransduction during orthodontic tooth movement (OTM) remain unclear. MATERIALS AND METHODS We conducted single-cell RNA sequencing on wild-type rat PDL at 0 day, 1 week, and 2 weeks of post-OTM using coil springs to elucidate Mkx's function and the changes in cell populations under continuous mechanical stimulation. In addition, RT-qPCR was performed to assess the relationship between tenogenic gene expression and Mkx expression in human PDL cells. RESULTS The rat PDL was identified to consist of 14 clusters, with Mkx and Scleraxis (Scx) expressed in distinct cell populations. Collagen and ECM production increased throughout the OTM period, while the sterile inflammatory response was initially heightened and later diminished, indicating that bone remodeling occurs later in the inflammatory response. Overexpression of MKX in human PDL cells enhanced COL1A1 and DECORIN expression. CONCLUSION Mechanical stimulation of the PDL appears to trigger an aseptic inflammatory response that disrupts PDL homeostasis and promotes bone remodeling. Mkx may exert a protective effect on the PDL during mechanical stimulation.
Collapse
Affiliation(s)
- Suzu Chida
- Department of Systems BioMedicine, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, 1-5-45, Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan
- Department of Maxillofacial Orthognathics, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, 1-5-45, Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan
| | - Tomoki Chiba
- Department of Systems BioMedicine, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, 1-5-45, Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan
| | - Yutaro Uchida
- Department of Systems BioMedicine, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, 1-5-45, Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan
| | - Takahide Matsushima
- Department of Systems BioMedicine, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, 1-5-45, Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan
| | - Ryota Kurimoto
- Department of Systems BioMedicine, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, 1-5-45, Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan
| | - Takayuki Miyazaki
- Department of Systems BioMedicine, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, 1-5-45, Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan
- Department of Maxillofacial Orthognathics, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, 1-5-45, Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan
| | - Lisa Yagasaki
- Department of Systems BioMedicine, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, 1-5-45, Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, 1-5-45, Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan
| | - Satoshi Nakamura
- Department of Systems BioMedicine, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, 1-5-45, Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan
- Department of Maxillofacial Orthognathics, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, 1-5-45, Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan
| | - Emiko Mihara
- Laboratory for Protein Synthesis and Expression, Institute for Protein Research, Osaka University, Yaamadaoka, 3-2, Suita, 565-0871, Japan
| | - Junichi Takagi
- Laboratory for Protein Synthesis and Expression, Institute for Protein Research, Osaka University, Yaamadaoka, 3-2, Suita, 565-0871, Japan
| | - Keiji Moriyama
- Department of Maxillofacial Orthognathics, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, 1-5-45, Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan
| | - Hiroshi Asahara
- Department of Systems BioMedicine, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, 1-5-45, Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan.
- Department of Molecular and Cellular Biology, The Scripps Research Institute, La Jolla, San Diego, CA, 92037, USA.
| |
Collapse
|
6
|
Jeong Y, Yang D, Solidum JG, Ortinau L, Park D. Comparative Single-Cell Analysis Reveals Tendon Progenitor Dysfunction by Age-Associated Oxidative Stress and Its Restoration by Antioxidant Treatments. J Cell Physiol 2025; 240:e70016. [PMID: 39987523 DOI: 10.1002/jcp.70016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 01/23/2025] [Accepted: 02/11/2025] [Indexed: 02/25/2025]
Abstract
Impaired healing of adult tendons with fibrosis remains clinical challenges while neonatal tendons have full functional restoration. However, age-associated cellular and molecular changes in tendon cells and tendon stem/progenitor cells (TSPCs) remain unknown. Here, comparative single cell transcriptomics of early postnatal (2 weeks old) and adult (20 weeks old) mouse tendons revealed that adult tendons have reduced number of TSPCs, decreased gene expression in tendon and cartilage development, and a greater population of fibro-tenogenic cells. Notably, adult TSPCs and tenocytes exhibit increased expression of immune-response and oxidative-stress genes with higher EGFR but decreased IGF signaling. Adult tendon cells show increased levels of intracellular reactive oxygen species (ROS) in vivo. In contrast, antioxidant treatment of adult tendons significantly reduces intracellular ROS of TSPCs and improves tendon strength in vivo. Hence, these findings suggest that increased inflammation and ROS during tendon aging deteriorates tendon function and regeneration that can be mitigated by antioxidant treatment.
Collapse
Affiliation(s)
- Youngjae Jeong
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Dongwook Yang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Jea Giezl Solidum
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines, Manila, Philippines
| | - Laura Ortinau
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Dongsu Park
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Center for Skeletal Biology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
7
|
Tam KT, Baar K. Using load to improve tendon/ligament tissue engineering and develop novel treatments for tendinopathy. Matrix Biol 2025; 135:39-54. [PMID: 39645093 DOI: 10.1016/j.matbio.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/15/2024] [Accepted: 12/01/2024] [Indexed: 12/09/2024]
Abstract
Tendon and ligament injuries are highly prevalent but heal poorly, even with proper care. Restoration of native tissue function is complicated by the fact that these tissues vary anatomically in terms of their mechanical properties, composition, and structure. These differences develop as adaptations to diverse mechanical demands; however, pathology may alter the loads placed on the tissue. Musculoskeletal loads can be generally categorized into tension, compression, and shear. Each of these regulate distinct molecular pathways that are involved in tissue remodeling, including many of the canonical tenogenic genes. In this review, we provide a perspective on the stage-specific regulation of mechanically sensitive pathways during development and maturation of tendon and ligament tissue, including scleraxis, mohawk, and others. Furthermore, we discuss structural features of healing and diseased tendon that may contribute to aberrant loading profiles, and how the associated disturbance in molecular signaling may contribute to incomplete healing or the formation of degenerative phenotypes. The perspectives provided here draw from studies spanning in vitro, animal, and human experiments of healthy and diseased tendon to propose a more targeted approach to advance rehabilitation, orthobiologics, and tissue engineering.
Collapse
Affiliation(s)
- Kenneth T Tam
- Biomedical Engineering Graduate Group, University of California Davis, Davis, CA 95616, USA; Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, CA 95616, USA
| | - Keith Baar
- Biomedical Engineering Graduate Group, University of California Davis, Davis, CA 95616, USA; Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, CA 95616, USA; Department of Physiology and Membrane Biology, University of California Davis, Davis, CA 95616, USA; VA Northern California Health Care System, Mather, CA 95655, USA.
| |
Collapse
|
8
|
Li Y, Wang W, Xu W. Mechanisms and new advances in the efficacy of plant active ingredients in tendon-bone healing. J Orthop Surg Res 2025; 20:106. [PMID: 39881382 PMCID: PMC11776161 DOI: 10.1186/s13018-025-05483-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/09/2025] [Indexed: 01/31/2025] Open
Abstract
The tendon-bone interface, known as the tenosynovial union or attachment, can be easily damaged by excessive exercise or trauma. Tendon-bone healing is a significant research topic in orthopedics, encompassing various aspects of sports injuries and postoperative recovery. Surgery is the most common treatment; however, it has limited efficacy in promoting tendon-bone healing and carries a risk of postoperative recurrence, necessitating the search for more effective treatments. Recently, plant-active ingredients such as tanshinone IIA, astragaloside, ginsenoside Rb1, and resveratrol have garnered significant attention due to their unique advantages in promoting tendon-bone healing. This review outlines the various mechanisms and research progress of these four plant-active ingredients, as well as compound ingredients, in promoting tendon-bone healing. For instance, tanshinone IIA significantly accelerates the healing rate and improves healing quality through anti-inflammatory, antioxidant, and cell proliferation-promoting mechanisms. Astragaloside expedites tendon-bone healing and enhances the mechanical strength of healing tissues primarily through anti-inflammatory, antioxidant, and immunoregulatory effects. Ginsenoside Rb1 enhances local blood supply and facilitates tendon-bone tissue repair through angiogenesis, anti-inflammatory, and antioxidant pathways. Resveratrol protects cellular function and accelerates tissue healing due to its potent antioxidant and anti-inflammatory effects. Additionally, the mechanisms and progress of certain Chinese herbal compound components in tendon-bone healing are outlined. This review concludes that these four plant-active ingredients and herbal compound components promote tendon-bone healing through various mechanisms. The efficacy mechanisms and research progress of these plant-active ingredients are summarized to provide references for clinical treatment and related research.
Collapse
Affiliation(s)
- Yuan Li
- The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, No.41 Linyin Road, Baotou, Inner Mongolia, 014010, China
| | - Wei Wang
- The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, No.41 Linyin Road, Baotou, Inner Mongolia, 014010, China
| | - Wensheng Xu
- The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, No.41 Linyin Road, Baotou, Inner Mongolia, 014010, China.
| |
Collapse
|
9
|
Nagel S, Meyer C, Pommerenke C. IRX-related homeobox gene MKX is a novel oncogene in acute myeloid leukemia. PLoS One 2024; 19:e0315196. [PMID: 39689089 DOI: 10.1371/journal.pone.0315196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/21/2024] [Indexed: 12/19/2024] Open
Abstract
Homeobox genes encode transcription factors which organize differentiation processes in all tissue types including the hematopoietic compartment. Recently, we have reported physiological expression of TALE-class homeobox gene IRX1 in early myelopoiesis restricted to the megakaryocyte-erythroid-progenitor stage and in early B-cell development to the pro-B-cell stage. In contrast, sister homeobox genes IRX2, IRX3 and IRX5 are aberrantly activated in the corresponding malignancies acute myeloid leukemia (AML) and B-cell progenitor acute lymphoid leukemia. Here, we examined the role of IRX-related homeobox gene MKX (also termed IRXL1 or mohawk) in normal and malignant hematopoiesis. Screening of public datasets revealed silent MKX in normal myelopoiesis and B-cell differentiation, and aberrant expression in subsets of AML and multiple myeloma (MM) cell lines and patients. To investigate its dysregulation and oncogenic function we used AML cell line OCI-AML3 as model which strongly expressed MKX at both RNA and protein levels. We found that IRX5, JUNB and NFkB activated MKX in this cell line, while downregulated GATA2 and STAT5 inhibited its expression. MKX downstream analysis was conducted by siRNA-mediated knockdown and RNA-sequencing in OCI-AML3, and by comparative expression profiling analysis of a public dataset from MM patients. Analysis of these data revealed activation of CCL2 which in turn promoted proliferation. Furthermore, MKX upregulated SESN3 and downregulated BCL2L11, which may together underlie decreased etoposide-induced apoptosis. Finally, myeloid differentiation genes CEBPD and GATA2 were respectively up- and downregulated by MKX. Taken together, our study identified MKX as novel aberrantly expressed homeobox gene in AML and MM, highlighting the function of IRX1 in normal myelopoiesis and B-cell development, and of IRX-related genes in corresponding malignancies. Our data merit further investigation of MKX and its deregulated target genes to serve as novel markers and/or potential therapeutic targets in AML patient subsets.
Collapse
Affiliation(s)
- Stefan Nagel
- Dept. of Human and Animal Cell Lines, Leibniz-Institute DSMZ, Braunschweig, Germany
| | - Corinna Meyer
- Dept. of Human and Animal Cell Lines, Leibniz-Institute DSMZ, Braunschweig, Germany
| | - Claudia Pommerenke
- Dept. of Human and Animal Cell Lines, Leibniz-Institute DSMZ, Braunschweig, Germany
| |
Collapse
|
10
|
Yamashita D, Hamano S, Hasegawa D, Sugii H, Itoyama T, Ikeya M, Maeda H. Establishment of Periodontal Ligament Stem Cell-like Cells Derived from Feeder-Free Cultured Induced Pluripotent Stem Cells. Stem Cells Dev 2024. [PMID: 39504137 DOI: 10.1089/scd.2024.0122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024] Open
Abstract
The periodontal ligament (PDL) is a fibrous connective tissue that connects the cementum of the root to the alveolar bone. PDL stem cells (PDLSCs) contained in the PDL can differentiate into cementoblasts, osteoblasts, and PDL fibroblasts, with essential roles in periodontal tissue regeneration. Therefore, PDLSCs are expected to be useful in periodontal tissue regeneration therapy. In a previous study, we differentiated induced pluripotent stem cells (iPSCs) into PDLSC-like cells (iPDLSCs), which expressed PDL-related markers and mesenchymal stem cell (MSC) markers; they also exhibited high proliferation and multipotency. However, the iPSCs used in this differentiation method were cultured on mouse embryonic fibroblasts; thus, they constituted on-feeder iPSCs (OF-iPSCs). Considering the risk of contamination with feeder cell-derived components, iPDLSCs differentiated from OF-iPSCs (ie, OF-iPDLSCs) are unsuitable for clinical applications. In this study, we aimed to obtain PDLSC-like cells from feeder-free iPSCs (FF-iPSCs) using OF-iPDLSC differentiation method. First, we differentiated FF-iPSCs into neural crest cell-like cells (FF-iNCCs) and confirmed that FF-iNCCs expressed NCC markers (eg, Nestin and p75NTR). Then, we cultured FF-iNCCs on human primary PDL cell-derived extracellular matrix for 2 weeks; the resulting cells were named FF-iPDLSCs. FF-iPDLSCs exhibited higher expression of PDL-related and MSC markers compared with OF-iPDLSCs. FF-iPDLSCs also demonstrated proliferation and multipotency in vitro. Finally, we analyzed the ability of FF-iPDLSCs to form periodontal tissue in vivo upon subcutaneous transplantation with β-tricalcium phosphate scaffolds into dorsal tissues of immunodeficient mice. Eight weeks after transplantation, FF-iPDLSCs had formed osteocalcin-positive bone/cementum-like tissues and collagen 1-positive PDL-like fibers. These results suggested that we successfully obtained PDLSC-like cells from FF-iPSCs. Our findings will contribute to the development of novel periodontal regeneration therapies.
Collapse
Affiliation(s)
- Daiki Yamashita
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Sayuri Hamano
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
- OBT Research Center, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Daigaku Hasegawa
- Department of Endodontology, Kyushu University Hospital, Fukuoka, Japan
| | - Hideki Sugii
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Tomohiro Itoyama
- Department of Endodontology, Kyushu University Hospital, Fukuoka, Japan
| | - Makoto Ikeya
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Hidefumi Maeda
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
- Department of Endodontology, Kyushu University Hospital, Fukuoka, Japan
| |
Collapse
|
11
|
Isaji M, Horiuchi K, Kondo S, Nakagawa T, Ishizaka T, Amako M, Chiba K. Suppression of TNF-α activity by immobilization rescues Mkx expression and attenuates tendon ossification in a mouse Achilles tenotomy model. J Orthop Res 2024; 42:2140-2148. [PMID: 38806292 DOI: 10.1002/jor.25906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/20/2024] [Accepted: 05/13/2024] [Indexed: 05/30/2024]
Abstract
Traumatic heterotopic ossification is a condition in which extraskeletal bone formation occurs in soft tissues after injury. It most commonly occurs in patients who had major orthopedic surgery and in those with severe extremity injuries. The lesion causes local pain and can impair motor function of the affected limb, but there is currently no established prophylaxis or treatment for this condition. In this study, we show that immobilization at an early stage of the inflammatory response after injury can attenuate ossification formation in a murine Achilles tenotomy model. Gene expression analysis revealed a decrease in the expression of Tnf and an increase in the expression of Mkx, which encodes one of the master regulators of tendon differentiation, Mohawk. Notably, we found that TNF-α suppressed the expression of Mkx transcripts and accelerated the osteogenic differentiation of tendon-derived mesenchymal stem cells (MSCs), suggesting that TNF-α acts as a negative regulator of Mkx transcription. Consistent with these findings, pharmaceutical inhibition of TNF-α increased the expression of Mkx transcripts and suppressed bone formation in this mouse model. These findings reveal the previously unrecognized involvement of TNF-α in regulating tendon MSC fate through suppression of Mkx expression and suggest that TNF-α is a potential target for preventing traumatic heterotopic ossification.
Collapse
Affiliation(s)
- Masashi Isaji
- Department of Orthopedic Surgery, National Defense Medical College, Saitama, Japan
| | - Keisuke Horiuchi
- Department of Orthopedic Surgery, National Defense Medical College, Saitama, Japan
| | - Shinya Kondo
- Department of Orthopedic Surgery, National Defense Medical College, Saitama, Japan
| | - Takahiro Nakagawa
- Department of Orthopedic Surgery, National Defense Medical College, Saitama, Japan
| | - Takahiro Ishizaka
- Department of Orthopedic Surgery, National Defense Medical College, Saitama, Japan
| | - Masatoshi Amako
- Department of Rehabilitation Medicine, National Defense Medical College Hospital, Saitama, Japan
| | - Kazuhiro Chiba
- Department of Orthopedic Surgery, National Defense Medical College, Saitama, Japan
| |
Collapse
|
12
|
Matsushima T, Hiroshi A. Molecular mechanisms of mechanosensing and plasticity of tendons and ligaments. J Biochem 2024; 176:263-269. [PMID: 38729213 PMCID: PMC11444931 DOI: 10.1093/jb/mvae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/08/2024] [Accepted: 04/29/2024] [Indexed: 05/12/2024] Open
Abstract
Tendons and ligaments, crucial components of the musculoskeletal system, connect muscles to bones. In the realm of sports, tendons and ligaments are vulnerable tissues, with injuries such as Achilles tendon rupture and anterior cruciate ligament tears directly impacting an athlete's career. Furthermore, repetitive trauma and tissue degeneration can lead to conditions like secondary osteoarthritis, ultimately affecting the overall quality of life. Recent research highlights the pivotal role of mechanical stress in maintaining homeostasis within tendons and ligaments. This review delves into the latest insights on the structure of tendons and ligaments and the plasticity of tendon tissue in response to mechanical loads.
Collapse
Affiliation(s)
- Takahide Matsushima
- Department of Systems BioMedicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo 113-8510, Japan
| | - Asahara Hiroshi
- Department of Systems BioMedicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo 113-8510, Japan
- Department of Molecular Medicine, Scripps Research, 10550 North Torrey Pines Road, MBB-102, La Jolla, CA 92037, USA
| |
Collapse
|
13
|
Pei Y, Liu F, Zhao Y, Lin H, Huang X. Role of hedgehog signaling in the pathogenesis and therapy of heterotopic ossification. Front Cell Dev Biol 2024; 12:1454058. [PMID: 39364140 PMCID: PMC11447292 DOI: 10.3389/fcell.2024.1454058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/05/2024] [Indexed: 10/05/2024] Open
Abstract
Heterotopic ossification (HO) is a pathological process that generates ectopic bone in soft tissues. Hedgehog signaling (Hh signaling) is a signaling pathway that plays an important role in embryonic development and involves three ligands: sonic hedgehog (Shh), Indian hedgehog (Ihh) and desert hedgehog (Dhh). Hh signaling also has an important role in skeletal development. This paper discusses the effects of Hh signaling on the process of HO formation and describes several signaling molecules that are involved in Hh-mediated processes: parathyroid Hormone-Related Protein (PTHrP) and Fkbp10 mediate the expression of Hh during chondrogenesic differentiation. Extracellular signal-regulated kinase (ERK), GNAs and Yes-Associated Protein (YAP) interact with Hh signaling to play a role in osteogenic differentiation. Runt-Related Transcription Factor 2 (Runx2), Mohawk gene (Mkx) and bone morphogenetic protein (BMP) mediate Hh signaling during both chondrogenic and osteogenic differentiation. This paper also discusses possible therapeutic options for HO, lists several Hh inhibitors and explores whether they could serve as emerging targets for the treatment of HO.
Collapse
Affiliation(s)
- Yiran Pei
- The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Fangzhou Liu
- The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Yike Zhao
- The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Hui Lin
- Department of Pathophysiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Xiaoyan Huang
- The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
14
|
Wada S, Ideno H, Nakashima K, Komatsu K, Demura N, Tomonari H, Kimura H, Tachibana M, Nifuji A. The histone H3K9 methyltransferase G9a regulates tendon formation during development. Sci Rep 2024; 14:20771. [PMID: 39237663 PMCID: PMC11377446 DOI: 10.1038/s41598-024-71570-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 08/29/2024] [Indexed: 09/07/2024] Open
Abstract
G9a is a histone methyltransferase that catalyzes the methylation of histone 3 lysine 9 (H3K9), which is involved in the regulation of gene expression. We had previously reported that G9a is expressed in developing tendons in vivo and in vitro and that G9a-deficient tenocytes show impaired proliferation and differentiation in vitro. In this study, we investigated the functions of G9a in tendon development in vivo by using G9a conditional knockout (G9a cKO) mice. We crossed Sox9Cre/+ mice with G9afl/fl mice to generate G9afl/fl; Sox9Cre/+ mice. The G9a cKO mice showed hypoplastic tendon formation at 3 weeks of age. Bromodeoxyuridine labeling on embryonic day 16.5 (E16.5) revealed decreased cell proliferation in the tenocytes of G9a cKO mice. Immunohistochemical analysis revealed decreased expression levels of G9a and its substrate, H3K9me2, in the vertebral tendons of G9a cKO mice. The tendon tissue of the vertebrae and limbs of G9a cKO mice showed reduced expression of a tendon marker, tenomodulin (Tnmd), and col1a1 genes, suggesting that tenocyte differentiation was suppressed. Overexpression of G9a resulted in enhancement of Tnmd and col1a1 expression in tenocytes in vitro. These results suggest that G9a regulates the proliferation and differentiation of tendon progenitor cells during tendon development. Thus, our results suggest that G9a plays an essential role in tendon development.
Collapse
Affiliation(s)
- Satoshi Wada
- Department of Pharmacology, School of Dental Medicine, Tsurumi University, Yokohama, Kanagawa, 230-8501, Japan
- Department of Oral and Maxillofacial Surgery, School of Medicine, Kanazawa Medical University, Uchinada, Ishikawa, 920-0293, Japan
- Department of Orthodontics, School of Dental Medicine, Tsurumi University, Yokohama, Kanagawa, 230-8501, Japan
| | - Hisashi Ideno
- Department of Pharmacology, School of Dental Medicine, Tsurumi University, Yokohama, Kanagawa, 230-8501, Japan
| | - Kazuhisa Nakashima
- Department of Pharmacology, School of Dental Medicine, Tsurumi University, Yokohama, Kanagawa, 230-8501, Japan
| | - Koichiro Komatsu
- Department of Pharmacology, School of Dental Medicine, Tsurumi University, Yokohama, Kanagawa, 230-8501, Japan
| | - Noboru Demura
- Department of Oral and Maxillofacial Surgery, School of Medicine, Kanazawa Medical University, Uchinada, Ishikawa, 920-0293, Japan
| | - Hiroshi Tomonari
- Department of Orthodontics, School of Dental Medicine, Tsurumi University, Yokohama, Kanagawa, 230-8501, Japan
| | - Hiroshi Kimura
- Department of Biological Sciences, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Kanagawa, 226-8501, Japan
| | - Makoto Tachibana
- Laboratory of Epigenome Dynamics, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Akira Nifuji
- Department of Pharmacology, School of Dental Medicine, Tsurumi University, Yokohama, Kanagawa, 230-8501, Japan.
| |
Collapse
|
15
|
Darrieutort-Laffite C, Blanchard F, Soslowsky LJ, Le Goff B. Biology and physiology of tendon healing. Joint Bone Spine 2024; 91:105696. [PMID: 38307405 DOI: 10.1016/j.jbspin.2024.105696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/11/2024] [Accepted: 01/23/2024] [Indexed: 02/04/2024]
Abstract
Tendon disorders affect people of all ages, from elite and recreational athletes and workers to elderly patients. After an acute injury, 3 successive phases are described to achieve healing: an inflammatory phase followed by a proliferative phase, and finally by a remodeling phase. Despite this process, healed tendon fails to recover its original mechanical properties. In this review, we proposed to describe the key factors involved in the process such as cells, transcription factors, extracellular matrix components, cytokines and growth factors and vascularization among others. A better understanding of this healing process could help provide new therapeutic approaches to improve patients' recovery while tendon disorders management remains a medical challenge.
Collapse
Affiliation(s)
- Christelle Darrieutort-Laffite
- Service de rhumatologie, CHU de Nantes, Nantes, France; Oniris, Regenerative Medicine and Skeleton, RMeS, UMR 1229, Inserm, CHU de Nantes, Nantes université, 44000 Nantes, France.
| | - Frédéric Blanchard
- Oniris, Regenerative Medicine and Skeleton, RMeS, UMR 1229, Inserm, CHU de Nantes, Nantes université, 44000 Nantes, France
| | - Louis J Soslowsky
- Department of Orthopaedic Surgery, McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, PA, USA
| | - Benoit Le Goff
- Service de rhumatologie, CHU de Nantes, Nantes, France; Oniris, Regenerative Medicine and Skeleton, RMeS, UMR 1229, Inserm, CHU de Nantes, Nantes université, 44000 Nantes, France
| |
Collapse
|
16
|
Wang Y, Qin Q, Wang Z, Negri S, Sono T, Tower RJ, Li Z, Xing X, Archer M, Thottappillil N, Zhu M, Suarez A, Kim DH, Harvey T, Fan CM, James AW. The Mohawk homeobox gene represents a marker and osteo-inhibitory factor in calvarial suture osteoprogenitor cells. Cell Death Dis 2024; 15:420. [PMID: 38886383 PMCID: PMC11183145 DOI: 10.1038/s41419-024-06813-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/20/2024]
Abstract
The regeneration of the mammalian skeleton's craniofacial bones necessitates the action of intrinsic and extrinsic inductive factors from multiple cell types, which function hierarchically and temporally to control the differentiation of osteogenic progenitors. Single-cell transcriptomics of developing mouse calvarial suture recently identified a suture mesenchymal progenitor population with previously unappreciated tendon- or ligament-associated gene expression profile. Here, we developed a Mohawk homeobox (MkxCG; R26RtdT) reporter mouse and demonstrated that this reporter identifies an adult calvarial suture resident cell population that gives rise to calvarial osteoblasts and osteocytes during homeostatic conditions. Single-cell RNA sequencing (scRNA-Seq) data reveal that Mkx+ suture cells display a progenitor-like phenotype with expression of teno-ligamentous genes. Bone injury with Mkx+ cell ablation showed delayed bone healing. Remarkably, Mkx gene played a critical role as an osteo-inhibitory factor in calvarial suture cells, as knockdown or knockout resulted in increased osteogenic differentiation. Localized deletion of Mkx in vivo also resulted in robustly increased calvarial defect repair. We further showed that mechanical stretch dynamically regulates Mkx expression, in turn regulating calvarial cell osteogenesis. Together, we define Mkx+ cells within the suture mesenchyme as a progenitor population for adult craniofacial bone repair, and Mkx acts as a mechanoresponsive gene to prevent osteogenic differentiation within the stem cell niche.
Collapse
Affiliation(s)
- Yiyun Wang
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Qizhi Qin
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Ziyi Wang
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Stefano Negri
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21205, USA
- Orthopaedic and Trauma Surgery Unit, Department of Surgery, Dentistry, Paediatrics and Gynaecology of the University of Verona, 37134, Verona, Italy
| | - Takashi Sono
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Robert J Tower
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Zhao Li
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Xin Xing
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Mary Archer
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | | | - Manyu Zhu
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Allister Suarez
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Deok-Ho Kim
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Tyler Harvey
- Department of Embryology, Carnegie Institution of Washington, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Chen-Ming Fan
- Department of Embryology, Carnegie Institution of Washington, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Aaron W James
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21205, USA.
| |
Collapse
|
17
|
Yang R, Xu Y, Li R, Zhang Y, Xu Y, Yang L, Cui W, Wang L. Synergistic Biofilter Tube for Promoting Scarless Tendon Regeneration. NANO LETTERS 2024; 24:7381-7388. [PMID: 38833276 PMCID: PMC11194804 DOI: 10.1021/acs.nanolett.4c01540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/06/2024]
Abstract
Inspired by the imbalance between extrinsic and intrinsic tendon healing, this study fabricated a new biofilter scaffold with a hierarchical structure based on a melt electrowriting technique. The outer multilayered fibrous structure with connected porous characteristics provides a novel passageway for vascularization and isolates the penetration of scar fibers, which can be referred to as a biofilter process. In vitro experiments found that the porous architecture in the outer layer can effectively prevent cell infiltration, whereas the aligned fibers in the inner layer can promote cell recruitment and growth, as well as the expression of tendon-associated proteins in a simulated friction condition. It was shown in vivo that the biofilter process could promote tendon healing and reduce scar invasion. Herein, this novel strategy indicates great potential to design new biomaterials for balancing extrinsic and intrinsic healing and realizing scarless tendon healing.
Collapse
Affiliation(s)
- Renhao Yang
- Shanghai
Key Laboratory for Prevention and Treatment of Bone and Joint Diseases,
Department of Orthopedics, Sports Medicine Center, Shanghai Institute
of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People’s Republic of China
| | - Yidong Xu
- Shanghai
Key Laboratory for Prevention and Treatment of Bone and Joint Diseases,
Department of Orthopedics, Sports Medicine Center, Shanghai Institute
of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People’s Republic of China
| | - Renxuan Li
- Shanghai
Key Laboratory for Prevention and Treatment of Bone and Joint Diseases,
Department of Orthopedics, Sports Medicine Center, Shanghai Institute
of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People’s Republic of China
| | - Yin Zhang
- Shanghai
Key Laboratory for Prevention and Treatment of Bone and Joint Diseases,
Department of Orthopedics, Sports Medicine Center, Shanghai Institute
of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People’s Republic of China
| | - Yang Xu
- Shanghai
Key Laboratory for Prevention and Treatment of Bone and Joint Diseases,
Department of Orthopedics, Sports Medicine Center, Shanghai Institute
of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People’s Republic of China
| | - Liuquan Yang
- School
of Mechanical Engineering, University of
Leeds, Leeds, LS2 9JT, U.K.
| | - Wenguo Cui
- Shanghai
Key Laboratory for Prevention and Treatment of Bone and Joint Diseases,
Department of Orthopedics, Sports Medicine Center, Shanghai Institute
of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People’s Republic of China
| | - Lei Wang
- Shanghai
Key Laboratory for Prevention and Treatment of Bone and Joint Diseases,
Department of Orthopedics, Sports Medicine Center, Shanghai Institute
of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People’s Republic of China
| |
Collapse
|
18
|
Lynch CA, Acosta SA, Anderson DM, Rogers GE, Wilson-Rawls J, Rawls A. The Transcription Factor Mohawk Facilitates Skeletal Muscle Repair via Modulation of the Inflammatory Environment. Int J Mol Sci 2024; 25:5019. [PMID: 38732238 PMCID: PMC11084535 DOI: 10.3390/ijms25095019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/02/2024] [Accepted: 05/02/2024] [Indexed: 05/13/2024] Open
Abstract
Efficient repair of skeletal muscle relies upon the precise coordination of cells between the satellite cell niche and innate immune cells that are recruited to the site of injury. The expression of pro-inflammatory cytokines and chemokines such as TNFα, IFNγ, CXCL1, and CCL2, by muscle and tissue resident immune cells recruits neutrophils and M1 macrophages to the injury and activates satellite cells. These signal cascades lead to highly integrated temporal and spatial control of muscle repair. Despite the therapeutic potential of these factors for improving tissue regeneration after traumatic and chronic injuries, their transcriptional regulation is not well understood. The transcription factor Mohawk (Mkx) functions as a repressor of myogenic differentiation and regulates fiber type specification. Embryonically, Mkx is expressed in all progenitor cells of the musculoskeletal system and is expressed in human and mouse myeloid lineage cells. An analysis of mice deficient for Mkx revealed a delay in postnatal muscle repair characterized by impaired clearance of necrotic fibers and smaller newly regenerated fibers. Further, there was a delay in the expression of inflammatory signals such as Ccl2, Ifnγ, and Tgfß. This was coupled with impaired recruitment of pro-inflammatory macrophages to the site of muscle damage. These studies demonstrate that Mkx plays a critical role in adult skeletal muscle repair that is mediated through the initial activation of the inflammatory response.
Collapse
Affiliation(s)
- Cherie Alissa Lynch
- School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, AZ 85287, USA; (C.A.L.); (S.A.A.); (D.M.A.); (G.E.R.); (J.W.-R.)
- Molecular and Cellular Biology Graduate Program, Arizona State University, Tempe, AZ 85287, USA
| | - Sofia A. Acosta
- School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, AZ 85287, USA; (C.A.L.); (S.A.A.); (D.M.A.); (G.E.R.); (J.W.-R.)
- Molecular and Cellular Biology Graduate Program, Arizona State University, Tempe, AZ 85287, USA
| | - Douglas M. Anderson
- School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, AZ 85287, USA; (C.A.L.); (S.A.A.); (D.M.A.); (G.E.R.); (J.W.-R.)
- Molecular and Cellular Biology Graduate Program, Arizona State University, Tempe, AZ 85287, USA
| | - Gavin E. Rogers
- School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, AZ 85287, USA; (C.A.L.); (S.A.A.); (D.M.A.); (G.E.R.); (J.W.-R.)
- Molecular and Cellular Biology Graduate Program, Arizona State University, Tempe, AZ 85287, USA
| | - Jeanne Wilson-Rawls
- School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, AZ 85287, USA; (C.A.L.); (S.A.A.); (D.M.A.); (G.E.R.); (J.W.-R.)
| | - Alan Rawls
- School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, AZ 85287, USA; (C.A.L.); (S.A.A.); (D.M.A.); (G.E.R.); (J.W.-R.)
| |
Collapse
|
19
|
Yagasaki L, Chiba T, Kurimoto R, Nakajima M, Iwata T, Asahara H. The essential role of Mkx in periodontal ligament on the metabolism of alveolar bone and cementum. Regen Ther 2024; 25:186-193. [PMID: 38230307 PMCID: PMC10789938 DOI: 10.1016/j.reth.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/24/2023] [Accepted: 12/17/2023] [Indexed: 01/18/2024] Open
Abstract
Introduction The periodontium is a connective tissue which consists of periodontal ligament, alveolar bone, cementum and gingiva. Periodontal ligament (PDL) is a specialized connective tissue that connects the cementum - coating the surface of the tooth - to the alveolar bone. Mohawk homeobox (Mkx) is a transcription factor that is expressed in PDL, that is known to play a vital role in the development and homeostasis of PDL. A detailed functional analysis of Mkx in the periodontal ligament for alveolar bone and cementum metabolism has not yet been conducted. Materials and methods Alveolar bone height, bone mineral density (BMD) and bone volume fractions (Bone volume/Total volume: BV/TV) were measured and analyzed using micro-computed tomography (Micro-CT) and 3DBon on 7-week-old male wild-type (WT) (Mkx+/+) (n = 10) and Mkx-knockout (Mkx-/-) (n = 6) rats. Hematoxylin and Eosin (H&E), tartrate-resistant acid phosphatase (TRAP), alkaline phosphatase (ALP) and Masson Trichrome staining were performed on 5, 6, and 7-week-old Mkx+/+ and Mkx-/- rats. Cementum surface area and the number of TRAP-positive osteoclasts/mm were quantified, measured, and compared for 5,6 and 7-week-old Mkx+/+ and Mkx-/- rats (n = 3 each). Results The level of alveolar bone height was significantly higher in Mkx-/- rats than in Mkx+/+ rats. On the other hand, there was significantly less BMD in Mkx-/- alveolar bone. A significant increase in cellular cementum could be observed as early as 5 weeks in Mkx-/- rats when compared with Mkx+/+ rats of the same age. More TRAP-positive osteoclasts were observed in Mkx-/- rats. Conclusion Our findings further reveal the essential roles of Mkx in the homeostasis of the periodontal tissue. Mkx was found to contribute to bone and cementum metabolism and may be essential to the prevention of diseases such as periodontitis, and could show potential in regenerative treatments.
Collapse
Affiliation(s)
- Lisa Yagasaki
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
- Department of Systems BioMedicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Tomoki Chiba
- Department of Systems BioMedicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Ryota Kurimoto
- Department of Systems BioMedicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Mitsuyo Nakajima
- Department of Systems BioMedicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Takanori Iwata
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Hiroshi Asahara
- Department of Systems BioMedicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
20
|
Liu Z, Han W, Meng J, Pi Y, Wu T, Fan Y, Guo Q, Hu X, Chen Y, Jiang W, Zhao F. Mohawk protects against tendon damage via suppressing Wnt/β-catenin pathway. Heliyon 2024; 10:e25658. [PMID: 38370202 PMCID: PMC10867664 DOI: 10.1016/j.heliyon.2024.e25658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/31/2024] [Accepted: 01/31/2024] [Indexed: 02/20/2024] Open
Abstract
Degenerative tendon injuries are common clinical problems associated with overuse or aging, and understanding the mechanisms of tendon injury and regeneration can contribute to the study of tendon healing and repair. As a transcription factor, Mohawk (Mkx) is responsible for tendons development, yet, the roles of which in tendon damage remain mostly elusive. In this study, using Mkx overexpressed mice on long treadmill as an in vivo model and MkxOE Achilles tenocytes stimulated by equiaxial stretch as an in vitro model, we anaylsed the effects of Mkx overexpression on the tendon. Mkx and tendon tension strength were decreased after the expose to excessive mechanical forces, and Mkx overexpression protected the tendon from damage. Moreover, we revealed that the Wnt/β-catenin activation, inflammation, and Runx2 expression were increased at the injured Achilles tendon, upregulated Mkx significantly reversed the increased Wnt/β-catenin pathway, Tnf-α, Il-1β, and Il-6 levels, and reduced tendon cell damage. However, Wnt3a, IWR and BIO had not significantly affected the Mkx expression in achilles tenocytes. In conclusion, Mkx is involved in tendon healing and protects the tendon from damage through suppressing Wnt/β-catenin pathway, suggesting Mkx/Wnt/β-catenin pathway may be potential therapeutic targets for tendon damage.
Collapse
Affiliation(s)
- Ziming Liu
- Department of Sports Medicine, Sports Medicine Institute, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Peking University Third Hospital, Beijing, China
| | - Wenfeng Han
- Department of Orthopedics, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| | - Jiao Meng
- Department of Neurosurgery, Bijie Traditional Chinese Medical Hospital, Bijie, Guizhou, China
| | - Yanbing Pi
- Department of Sports Medicine, Sports Medicine Institute, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Peking University Third Hospital, Beijing, China
| | - Tong Wu
- Department of Sports Medicine, Sports Medicine Institute, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Peking University Third Hospital, Beijing, China
| | - Yifei Fan
- Department of Sports Medicine, Sports Medicine Institute, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Peking University Third Hospital, Beijing, China
| | - Qinwei Guo
- Department of Sports Medicine, Sports Medicine Institute, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Peking University Third Hospital, Beijing, China
| | - Xiaoqing Hu
- Department of Sports Medicine, Sports Medicine Institute, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Peking University Third Hospital, Beijing, China
| | - Yuhua Chen
- Department of Neurosurgery, Bijie Traditional Chinese Medical Hospital, Bijie, Guizhou, China
| | - Wenxiao Jiang
- Department of Sports Medicine, Qilu Hospital of Shandong University (Qingdao Campus), Qingdao, Shandong, China
| | - Feng Zhao
- Department of Sports Medicine, Sports Medicine Institute, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Peking University Third Hospital, Beijing, China
| |
Collapse
|
21
|
Costes V, Sellem E, Marthey S, Hoze C, Bonnet A, Schibler L, Kiefer H, Jaffrezic F. Multi-omics data integration for the identification of biomarkers for bull fertility. PLoS One 2024; 19:e0298623. [PMID: 38394258 PMCID: PMC10890740 DOI: 10.1371/journal.pone.0298623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
Bull fertility is an important economic trait, and the use of subfertile semen for artificial insemination decreases the global efficiency of the breeding sector. Although the analysis of semen functional parameters can help to identify infertile bulls, no tools are currently available to enable precise predictions and prevent the commercialization of subfertile semen. Because male fertility is a multifactorial phenotype that is dependent on genetic, epigenetic, physiological and environmental factors, we hypothesized that an integrative analysis might help to refine our knowledge and understanding of bull fertility. We combined -omics data (genotypes, sperm DNA methylation at CpGs and sperm small non-coding RNAs) and semen parameters measured on a large cohort of 98 Montbéliarde bulls with contrasting fertility levels. Multiple Factor Analysis was conducted to study the links between the datasets and fertility. Four methodologies were then considered to identify the features linked to bull fertility variation: Logistic Lasso, Random Forest, Gradient Boosting and Neural Networks. Finally, the features selected by these methods were annotated in terms of genes, to conduct functional enrichment analyses. The less relevant features in -omics data were filtered out, and MFA was run on the remaining 12,006 features, including the 11 semen parameters and a balanced proportion of each type of-omics data. The results showed that unlike the semen parameters studied the-omics datasets were related to fertility. Biomarkers related to bull fertility were selected using the four methodologies mentioned above. The most contributory CpGs, SNPs and miRNAs targeted genes were all found to be involved in development. Interestingly, fragments derived from ribosomal RNAs were overrepresented among the selected features, suggesting roles in male fertility. These markers could be used in the future to identify subfertile bulls in order to increase the global efficiency of the breeding sector.
Collapse
Affiliation(s)
- Valentin Costes
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d’Alfort, BREED, Maisons-Alfort, France
- R&D Department, ELIANCE, 149 rue de Bercy, Paris, France
- Université Paris-Saclay, AgroParisTech, INRAE, GABI, Jouy-en-Josas, France
| | - Eli Sellem
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d’Alfort, BREED, Maisons-Alfort, France
- R&D Department, ELIANCE, 149 rue de Bercy, Paris, France
| | - Sylvain Marthey
- Université Paris-Saclay, AgroParisTech, INRAE, GABI, Jouy-en-Josas, France
- INRAE, MaIAGE, Université Paris-Saclay, Jouy-en-Josas, France
| | - Chris Hoze
- R&D Department, ELIANCE, 149 rue de Bercy, Paris, France
- Université Paris-Saclay, AgroParisTech, INRAE, GABI, Jouy-en-Josas, France
| | - Aurélie Bonnet
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d’Alfort, BREED, Maisons-Alfort, France
- R&D Department, ELIANCE, 149 rue de Bercy, Paris, France
| | | | - Hélène Kiefer
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d’Alfort, BREED, Maisons-Alfort, France
| | - Florence Jaffrezic
- Université Paris-Saclay, AgroParisTech, INRAE, GABI, Jouy-en-Josas, France
| |
Collapse
|
22
|
Nemska S, Serio S, Larcher V, Beltrame G, Portinaro NM, Bang ML. Whole Genome Expression Profiling of Semitendinosus Tendons from Children with Diplegic and Tetraplegic Cerebral Palsy. Biomedicines 2023; 11:2918. [PMID: 38001919 PMCID: PMC10669597 DOI: 10.3390/biomedicines11112918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/17/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
Cerebral palsy (CP) is the most common movement disorder in children, with a prevalence ranging from 1.5 to 4 per 1000 live births. CP is caused by a non-progressive lesion of the developing brain, leading to progressive alterations of the musculoskeletal system, including spasticity, often leading to the development of fixed contractures, necessitating tendon lengthening surgery. Total RNA-sequencing analysis was performed on semitendinosus tendons from diplegic and tetraplegic CP patients subjected to tendon lengthening surgery compared to control patients undergoing anterior cruciate ligament reconstructive surgery. Tetraplegic CP patients showed increased expression of genes implicated in collagen synthesis and extracellular matrix (ECM) turnover, while only minor changes were observed in diplegic CP patients. In addition, tendons from tetraplegic CP patients showed an enrichment for upregulated genes involved in vesicle-mediated transport and downregulated genes involved in cytokine and apoptotic signaling. Overall, our results indicate increased ECM turnover with increased net synthesis of collagen in tetraplegic CP patients without activation of inflammatory and apoptotic pathways, similar to observations in athletes where ECM remodeling results in increased tendon stiffness and tensile strength. Nevertheless, the resulting increased tendon stiffness is an important issue in clinical practice, where surgery is often required to restore joint mobility.
Collapse
Affiliation(s)
- Simona Nemska
- Milan Unit, Institute of Genetic and Biomedical Research (IRGB), National Research Council (CNR), 20138 Milan, Italy; (S.N.); (S.S.)
- IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
| | - Simone Serio
- Milan Unit, Institute of Genetic and Biomedical Research (IRGB), National Research Council (CNR), 20138 Milan, Italy; (S.N.); (S.S.)
- IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
| | - Veronica Larcher
- Institute of Cardiovascular Regeneration, Goethe University, 60590 Frankfurt, Germany;
| | - Giulia Beltrame
- Residency Program in Orthopedics and Traumatology, University of Milan, 20100 Milan, Italy;
| | - Nicola Marcello Portinaro
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy;
- Department of Pediatric Surgery, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20100 Milan, Italy
| | - Marie-Louise Bang
- Milan Unit, Institute of Genetic and Biomedical Research (IRGB), National Research Council (CNR), 20138 Milan, Italy; (S.N.); (S.S.)
- IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
| |
Collapse
|
23
|
Nguyen PK, Hall K, Holt I, Kuo CK. Recombinant lysyl oxidase effects on embryonic tendon cell phenotype and behavior. J Orthop Res 2023; 41:2175-2185. [PMID: 37365857 PMCID: PMC11487497 DOI: 10.1002/jor.25655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 05/11/2023] [Accepted: 06/21/2023] [Indexed: 06/28/2023]
Abstract
Lysyl oxidase (LOX) plays an important role in the elaboration of tendon mechanical properties during embryonic development by mediating enzymatic collagen crosslinking. We previously showed recombinant LOX (rLOX) treatment of developing tendon significantly increased LOX-mediated collagen crosslink density to enhance tendon mechanical properties at different stages of tissue formation. Working toward the future development of rLOX-based therapeutic strategies to enhance mechanical properties of tendons that are compromised, such as after injury or due to abnormal development, this study characterized the direct effects of rLOX treatment on embryonic tendon cells from different stages of tissue formation. Tendon cell morphology, proliferation rate, proliferative capacity, and metabolic activity were not affected by rLOX treatment. Tenogenic phenotype was stable with rLOX treatment, reflected by no change in cell morphology or tendon marker messenger RNA (mRNA) levels assessed by reverse-transcription polymerase chain reaction. Collagen mRNA levels also remained constant. Matrix metalloproteinase-9 expression levels were downregulated in later stage tendon cells, but not in earlier stage cells, whereas enzyme activity levels were undetected. Bone morphogenetic protein-1 (BMP-1) expression was upregulated in earlier stage tendon cells, but not in later stage cells. Furthermore, BMP-1 activity was unchanged when intracellular LOX enzyme activity levels were upregulated in both stage cells, suggesting exogenous rLOX may have entered the cells. Based on our data, rLOX treatment had minimal effects on tendon cell phenotype and behaviors. These findings will inform future development of LOX-focused treatments to enhance tendon mechanical properties without adverse effects on tendon cell phenotype and behaviors.
Collapse
Affiliation(s)
- Phong K. Nguyen
- Department of Biomedical Engineering, University of Rochester, NY
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY
- Fischell Department of Bioengineering, University of Maryland, College Park, MD
| | - Kaitlyn Hall
- Fischell Department of Bioengineering, University of Maryland, College Park, MD
| | - Iverson Holt
- Fischell Department of Bioengineering, University of Maryland, College Park, MD
| | - Catherine K. Kuo
- Department of Biomedical Engineering, University of Rochester, NY
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY
- Fischell Department of Bioengineering, University of Maryland, College Park, MD
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD
| |
Collapse
|
24
|
Huang AH, Galloway JL. Current and emerging technologies for defining and validating tendon cell fate. J Orthop Res 2023; 41:2082-2092. [PMID: 37211925 DOI: 10.1002/jor.25632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 05/09/2023] [Accepted: 05/18/2023] [Indexed: 05/23/2023]
Abstract
The tendon field has been flourishing in recent years with the advent of new tools and model systems. The recent ORS 2022 Tendon Section Conference brought together researchers from diverse disciplines and backgrounds, showcasing studies in biomechanics and tissue engineering to cell and developmental biology and using models from zebrafish and mouse to humans. This perspective aims to summarize progress in tendon research as it pertains to understanding and studying tendon cell fate. The successful integration of new technologies and approaches have the potential to further propel tendon research into a new renaissance of discovery. However, there are also limitations with the current methodologies that are important to consider when tackling research questions. Altogether, we will highlight recent advances and technologies and propose new avenues to explore tendon biology.
Collapse
Affiliation(s)
- Alice H Huang
- Department of Orthopedic Surgery, Columbia University, New York, New York, USA
| | - Jenna L Galloway
- Department of Orthopaedic Surgery, Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
25
|
Kaneda G, Chan JL, Castaneda CM, Papalamprou A, Sheyn J, Shelest O, Huang D, Kluser N, Yu V, Ignacio GC, Gertych A, Yoshida R, Metzger M, Tawackoli W, Vernengo A, Sheyn D. iPSC-derived tenocytes seeded on microgrooved 3D printed scaffolds for Achilles tendon regeneration. J Orthop Res 2023; 41:2205-2220. [PMID: 36961351 PMCID: PMC10518032 DOI: 10.1002/jor.25554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 03/06/2023] [Accepted: 03/11/2023] [Indexed: 03/25/2023]
Abstract
Tendons and ligaments have a poor innate healing capacity, yet account for 50% of musculoskeletal injuries in the United States. Full structure and function restoration postinjury remains an unmet clinical need. This study aimed to assess the application of novel three dimensional (3D) printed scaffolds and induced pluripotent stem cell-derived mesenchymal stem cells (iMSCs) overexpressing the transcription factor Scleraxis (SCX, iMSCSCX+ ) as a new strategy for tendon defect repair. The polycaprolactone (PCL) scaffolds were fabricated by extrusion through a patterned nozzle or conventional round nozzle. Scaffolds were seeded with iMSCSCX+ and outcomes were assessed in vitro via gene expression analysis and immunofluorescence. In vivo, rat Achilles tendon defects were repaired with iMSCSCX+ -seeded microgrooved scaffolds, microgrooved scaffolds only, or suture only and assessed via gait, gene expression, biomechanical testing, histology, and immunofluorescence. iMSCSCX+ -seeded on microgrooved scaffolds showed upregulation of tendon markers and increased organization and linearity of cells compared to non-patterned scaffolds in vitro. In vivo gait analysis showed improvement in the Scaffold + iMSCSCX+ -treated group compared to the controls. Tensile testing of the tendons demonstrated improved biomechanical properties of the Scaffold + iMSCSCX+ group compared with the controls. Histology and immunofluorescence demonstrated more regular tissue formation in the Scaffold + iMSCSCX+ group. This study demonstrates the potential of 3D-printed scaffolds with cell-instructive surface topography seeded with iMSCSCX+ as an approach to tendon defect repair. Further studies of cell-scaffold constructs can potentially revolutionize tendon reconstruction by advancing the application of 3D printing-based technologies toward patient-specific therapies that improve healing and functional outcomes at both the cellular and tissue level.
Collapse
Affiliation(s)
- Giselle Kaneda
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Julie L Chan
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Chloe M Castaneda
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Angela Papalamprou
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Julia Sheyn
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Oksana Shelest
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Dave Huang
- Orthopedics Biomechanics Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA
- Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, CA
| | | | - Victoria Yu
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Gian C Ignacio
- Orthopedics Biomechanics Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA
- Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Arkadiusz Gertych
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Ryu Yoshida
- Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Melodie Metzger
- Orthopedics Biomechanics Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA
- Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Wafa Tawackoli
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA
- Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, CA
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA
| | | | - Dmitriy Sheyn
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA
- Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, CA
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA
| |
Collapse
|
26
|
Lu J, Chen H, Lyu K, Jiang L, Chen Y, Long L, Wang X, Shi H, Li S. The Functions and Mechanisms of Tendon Stem/Progenitor Cells in Tendon Healing. Stem Cells Int 2023; 2023:1258024. [PMID: 37731626 PMCID: PMC10509002 DOI: 10.1155/2023/1258024] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 08/20/2023] [Accepted: 08/24/2023] [Indexed: 09/22/2023] Open
Abstract
Tendon injury is one of the prevalent disorders of the musculoskeletal system in orthopedics and is characterized by pain and limitation of joint function. Due to the difficulty of spontaneous tendon healing, and the scar tissue and low mechanical properties that usually develops after healing. Therefore, the healing of tendon injury remains a clinical challenge. Although there are a multitude of approaches to treating tendon injury, the therapeutic effects have not been satisfactory to date. Recent studies have shown that stem cell therapy has a facilitative effect on tendon healing. In particular, tendon stem/progenitor cells (TSPCs), a type of stem cell from tendon tissue, play an important role not only in tendon development and tendon homeostasis, but also in tendon healing. Compared to other stem cells, TSPCs have the potential to spontaneously differentiate into tenocytes and express higher levels of tendon-related genes. TSPCs promote tendon healing by three mechanisms: modulating the inflammatory response, promoting tenocyte proliferation, and accelerating collagen production and balancing extracellular matrix remodeling. However, current investigations have shown that TSPCs also have a negative effect on tendon healing. For example, misdifferentiation of TSPCs leads to a "failed healing response," which in turn leads to the development of chronic tendon injury (tendinopathy). The focus of this paper is to describe the characteristics of TSPCs and tenocytes, to demonstrate the roles of TSPCs in tendon healing, while discussing the approaches used to culture and differentiate TSPCs. In addition, the limitations of TSPCs in clinical application and their potential therapeutic strategies are elucidated.
Collapse
Affiliation(s)
- Jingwei Lu
- School of Physical Education, Southwest Medical University, Luzhou, China
| | - Hui Chen
- Geriatric Department, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Kexin Lyu
- School of Physical Education, Southwest Medical University, Luzhou, China
| | - Li Jiang
- School of Physical Education, Southwest Medical University, Luzhou, China
| | - Yixuan Chen
- School of Physical Education, Southwest Medical University, Luzhou, China
| | - Longhai Long
- Spinal Surgery Department, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Xiaoqiang Wang
- Spinal Surgery Department, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Houyin Shi
- Spinal Surgery Department, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Sen Li
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
27
|
Perry BW, McDonald AL, Trojahn S, Saxton MW, Vincent EP, Lowry C, Evans Hutzenbiler BD, Cornejo OE, Robbins CT, Jansen HT, Kelley JL. Feeding during hibernation shifts gene expression toward active season levels in brown bears ( Ursus arctos). Physiol Genomics 2023; 55:368-380. [PMID: 37486084 PMCID: PMC10642923 DOI: 10.1152/physiolgenomics.00030.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/28/2023] [Accepted: 07/17/2023] [Indexed: 07/25/2023] Open
Abstract
Hibernation in bears involves a suite of metabolical and physiological changes, including the onset of insulin resistance, that are driven in part by sweeping changes in gene expression in multiple tissues. Feeding bears glucose during hibernation partially restores active season physiological phenotypes, including partial resensitization to insulin, but the molecular mechanisms underlying this transition remain poorly understood. Here, we analyze tissue-level gene expression in adipose, liver, and muscle to identify genes that respond to midhibernation glucose feeding and thus potentially drive postfeeding metabolical and physiological shifts. We show that midhibernation feeding stimulates differential expression in all analyzed tissues of hibernating bears and that a subset of these genes responds specifically by shifting expression toward levels typical of the active season. Inferences of upstream regulatory molecules potentially driving these postfeeding responses implicate peroxisome proliferator-activated receptor gamma (PPARG) and other known regulators of insulin sensitivity, providing new insight into high-level regulatory mechanisms involved in shifting metabolic phenotypes between hibernation and active states.
Collapse
Affiliation(s)
- Blair W Perry
- School of Biological Sciences, Washington State University, Pullman, Washington, United States
| | - Anna L McDonald
- School of Biological Sciences, Washington State University, Pullman, Washington, United States
| | - Shawn Trojahn
- School of Biological Sciences, Washington State University, Pullman, Washington, United States
| | - Michael W Saxton
- School of Biological Sciences, Washington State University, Pullman, Washington, United States
| | - Ellery P Vincent
- School of Biological Sciences, Washington State University, Pullman, Washington, United States
| | - Courtney Lowry
- School of Biological Sciences, Washington State University, Pullman, Washington, United States
| | | | - Omar E Cornejo
- Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, California, United States
| | - Charles T Robbins
- School of the Environment, Washington State University, Pullman, Washington, United States
| | - Heiko T Jansen
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington, United States
| | - Joanna L Kelley
- Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, California, United States
| |
Collapse
|
28
|
Marín-Llera JC, García-García D, Garay-Pacheco E, Adrian Cortes-Morales V, Montesinos-Montesinos JJ, Chimal-Monroy J. Commitment of human mesenchymal stromal cells to skeletal lineages is independent of their morphogenetic capacity. World J Stem Cells 2023; 15:701-712. [PMID: 37545756 PMCID: PMC10401422 DOI: 10.4252/wjsc.v15.i7.701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 05/18/2023] [Accepted: 06/25/2023] [Indexed: 07/25/2023] Open
Abstract
BACKGROUND Mesenchymal stromal cells (MSCs) are multipotent cell populations obtained from fetal and adult tissues. They share some characteristics with limb bud mesodermal cells such as differentiation potential into osteogenic, chondrogenic, and tenogenic lineages and an embryonic mesodermal origin. Although MSCs differentiate into skeletal-related lineages in vitro, they have not been shown to self-organize into complex skeletal structures or connective tissues, as in the limb. In this work, we demonstrate that the expression of molecular markers to commit MSCs to skeletal lineages is not sufficient to generate skeletal elements in vivo.
AIM To evaluate the potential of MSCs to differentiate into skeletal lineages and generate complex skeletal structures using the recombinant limb (RL) system.
METHODS We used the experimental system of RLs from dissociated-reaggregated human placenta (PL) and umbilical cord blood (UCB) MSCs. After being harvested and reaggregated in a pellet, cultured cells were introduced into an ectodermal cover obtained from an early chicken limb bud. Next, this filled ectoderm was grafted into the back of a donor chick embryo. Under these conditions, the cells received and responded to the ectoderm’s embryonic signals in a spatiotemporal manner to differentiate and pattern into skeletal elements. Their response to differentiation and morphogenetic signals was evaluated by quantitative polymerase chain reaction, histology, immunofluorescence, scanning electron microscopy, and in situ hybridization.
RESULTS We found that human PL-MSCs and UCB-MSCs constituting the RLs expressed chondrogenic, osteogenic, and tenogenic molecular markers while differentially committing into limb lineages but could not generate complex structures in vivo. MSCs-RL from PL or UCB were committed early to chondrogenic lineage. Nevertheless, the UCB-RL osteogenic commitment was favored, although preferentially to a tenogenic cell fate. These findings suggest that the commitment of MSCs to differentiate into skeletal lineages differs according to the source and is independent of their capacity to generate skeletal elements or connective tissue in vivo. Our results suggest that the failure to form skeletal structures may be due to the intrinsic characteristics of MSCs. Thus, it is necessary to thoroughly evaluate the biological aspects of MSCs and how they respond to morphogenetic signals in an in vivo context.
CONCLUSION PL-MSCs and UCB-MSCs express molecular markers of differentiation into skeletal lineages, but they are not sufficient to generate complex skeletal structures in vivo.
Collapse
Affiliation(s)
- Jessica Cristina Marín-Llera
- Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Coyoacan 04510, Mexico
| | - Damián García-García
- Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Coyoacan 04510, Mexico
| | - Estefania Garay-Pacheco
- Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Coyoacan 04510, Mexico
| | - Victor Adrian Cortes-Morales
- Laboratorio de Células Troncales Mesenquimales, Unidad de Investigación Médica en Enfermedades Oncológicas, Hospital de Oncología Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico
| | - Juan Jose Montesinos-Montesinos
- Laboratorio de Células Troncales Mesenquimales, Unidad de Investigación Médica en Enfermedades Oncológicas, Hospital de Oncología Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico
| | - Jesus Chimal-Monroy
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Coyoacan 04510, Mexico
| |
Collapse
|
29
|
Pechanec MY, Beall JM, Katzman S, Maga EA, Mienaltowski MJ. Examining the Effects of In Vitro Co-Culture of Equine Adipose-Derived Mesenchymal Stem Cells With Tendon Proper and Peritenon Cells. J Equine Vet Sci 2023; 126:104262. [PMID: 36841345 DOI: 10.1016/j.jevs.2023.104262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 01/26/2023] [Accepted: 02/20/2023] [Indexed: 02/27/2023]
Abstract
Tendinopathies remain the leading contributor to career-ending injuries in horses because of the complexity of tendon repair. As such, cell-based therapies like injections of adipose-derived mesenchymal stem cells (ADMSCs, or MSCs) into injured tendons are becoming increasingly popular though their long-term efficacy on a molecular and wholistic level remains contentious. Thus, we co-cultured equine MSCs with intrinsic (tendon proper) and extrinsic (peritenon) tendon cell populations to examine interactions between these cells. Gene expression for common tenogenic, perivascular, and differentiation markers was quantified at 48 and 120 hours. Additionally, cellular metabolism of proliferation was examined every 24 hours for peritenon and tendon proper cells co-cultured with MSCs. MSCs co-cultured with tendon proper or peritenon cells had altered expression profiles demonstrating trend toward tenogenic phenotype with the exception of decreases in type I collagen (COL1A1). Peritenon cells co-cultured with MSCs had a trending and significant decrease in biglycan (BGN) and CSPG4 at 48 hours and 120 hours but overall significant increases in lysyl oxidase (LOX), mohawk (MKX), and scleraxis (SCX) within 48 hours. Tendon proper cells co-cultured with MSCs also exhibited increases in LOX and SCX at 48 hours. Furthermore, cell proliferation improved overall for tendon proper cells co-cultured with MSCs. The co-culture study results suggest that adipose-derived MSCs contribute beneficially to tenogenic stimulation of peritenon or tendon proper cells.
Collapse
Affiliation(s)
- Monica Y Pechanec
- Department of Animal Science, University of California Davis, Davis, CA
| | - Jessica M Beall
- Department of Animal Science, University of California Davis, Davis, CA
| | - Scott Katzman
- School of Veterinary Medicine, University of California Davis, Davis, CA
| | - Elizabeth A Maga
- Department of Animal Science, University of California Davis, Davis, CA
| | | |
Collapse
|
30
|
Abdalla AA, Pendegrass CJ. Biological approaches to the repair and regeneration of the rotator cuff tendon-bone enthesis: a literature review. BIOMATERIALS TRANSLATIONAL 2023; 4:85-103. [PMID: 38283917 PMCID: PMC10817785 DOI: 10.12336/biomatertransl.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/15/2023] [Accepted: 05/05/2023] [Indexed: 01/30/2024]
Abstract
Entheses are highly specialised organs connecting ligaments and tendons to bones, facilitating force transmission, and providing mechanical strengths to absorb forces encountered. Two types of entheses, fibrocartilaginous and fibrous, exist in interfaces. The gradual fibrocartilaginous type is in rotator cuff tendons and is more frequently injured due to the poor healing capacity that leads to loss of the original structural and biomechanical properties and is attributed to the high prevalence of retears. Fluctuating methodologies and outcomes of biological approaches are challenges to overcome for them to be routinely used in clinics. Therefore, stratifying the existing literature according to different categories (chronicity, extent of tear, and studied population) would effectively guide repair approaches. This literature review supports tissue engineering approaches to promote rotator cuff enthesis healing employing cells, growth factors, and scaffolds period. Outcomes suggest its promising role in animal studies as well as some clinical trials and that combination therapies are more beneficial than individualized ones. It then highlights the importance of tailoring interventions according to the tear extent, chronicity, and the population being treated. Contributing factors such as loading, deficiencies, and lifestyle habits should also be taken into consideration. Optimum results can be achieved if biological, mechanical, and environmental factors are approached. It is challenging to determine whether variations are due to the interventions themselves, the animal models, loading regimen, materials, or tear mechanisms. Future research should focus on tailoring interventions for different categories to formulate protocols, which would best guide regenerative medicine decision making.
Collapse
Affiliation(s)
- Ahlam A. Abdalla
- Institute of Sport, Exercise and Health (ISEH), Division of Surgery & Interventional Sciences, University College London, London, UK
| | - Catherine J. Pendegrass
- Department of Orthopaedics & Musculoskeletal Science, Division of Surgery & Interventional Sciences, University College London, Brockley Hill, Stanmore, UK
| |
Collapse
|
31
|
Gonzalez RD, Small GW, Green AJ, Akhtari FS, Motsinger-Reif AA, Quintanilha JCF, Havener TM, Reif DM, McLeod HL, Wiltshire T. MKX-AS1 Gene Expression Associated with Variation in Drug Response to Oxaliplatin and Clinical Outcomes in Colorectal Cancer Patients. Pharmaceuticals (Basel) 2023; 16:ph16050757. [PMID: 37242540 DOI: 10.3390/ph16050757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/11/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Oxaliplatin (OXAL) is a commonly used chemotherapy for treating colorectal cancer (CRC). A recent genome wide association study (GWAS) showed that a genetic variant (rs11006706) in the lncRNA gene MKX-AS1 and partnered sense gene MKX could impact the response of genetically varied cell lines to OXAL treatment. This study found that the expression levels of MKX-AS1 and MKX in lymphocytes (LCLs) and CRC cell lines differed between the rs11006706 genotypes, indicating that this gene pair could play a role in OXAL response. Further analysis of patient survival data from the Cancer Genome Atlas (TCGA) and other sources showed that patients with high MKX-AS1 expression status had significantly worse overall survival (HR = 3.2; 95%CI = (1.17-9); p = 0.024) compared to cases with low MKX-AS1 expression status. Alternatively, high MKX expression status had significantly better overall survival (HR = 0.22; 95%CI = (0.07-0.7); p = 0.01) compared to cases with low MKX expression status. These results suggest an association between MKX-AS1 and MKX expression status that could be useful as a prognostic marker of response to OXAL and potential patient outcomes in CRC.
Collapse
Affiliation(s)
- Ricardo D Gonzalez
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Center for Pharmacogenomics and Individualized Therapy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - George W Small
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Center for Pharmacogenomics and Individualized Therapy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Adrian J Green
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27606, USA
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27606, USA
| | - Farida S Akhtari
- Biostatistics and Computational Biology Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Alison A Motsinger-Reif
- Biostatistics and Computational Biology Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | | | - Tammy M Havener
- Structural Genomics Consortium and Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - David M Reif
- Predictive Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Howard L McLeod
- Center for Precision Medicine and Functional Genomics, Utah Tech University, St. George, UT 84770, USA
| | - Tim Wiltshire
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Center for Pharmacogenomics and Individualized Therapy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
32
|
Gögele C, Vogt J, Hahn J, Breier A, Bernhardt R, Meyer M, Schröpfer M, Schäfer-Eckart K, Schulze-Tanzil G. Co-Culture of Mesenchymal Stem Cells and Ligamentocytes on Triphasic Embroidered Poly(L-lactide-co-ε-caprolactone) and Polylactic Acid Scaffolds for Anterior Cruciate Ligament Enthesis Tissue Engineering. Int J Mol Sci 2023; 24:ijms24076714. [PMID: 37047686 PMCID: PMC10095212 DOI: 10.3390/ijms24076714] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/26/2023] [Accepted: 03/28/2023] [Indexed: 04/07/2023] Open
Abstract
Successful anterior cruciate ligament (ACL) reconstructions strive for a firm bone-ligament integration. With the aim to establish an enthesis-like construct, embroidered functionalized scaffolds were colonized with spheroids of osteogenically differentiated human mesenchymal stem cells (hMSCs) and lapine (l) ACL fibroblasts in this study. These triphasic poly(L-lactide-co-ε-caprolactone) and polylactic acid (P(LA-CL)/PLA) scaffolds with a bone-, a fibrocartilage transition- and a ligament zone were colonized with spheroids directly after assembly (DC) or with 14-day pre-cultured lACL fibroblast and 14-day osteogenically differentiated hMSCs spheroids (=longer pre-cultivation, LC). The scaffolds with co-cultures were cultured for 14 days. Cell vitality, DNA and sulfated glycosaminoglycan (sGAG) contents were determined. The relative gene expressions of collagen types I and X, Mohawk, Tenascin C and runt-related protein (RUNX) 2 were analyzed. Compared to the lACL spheroids, those with hMSCs adhered more rapidly. Vimentin and collagen type I immunoreactivity were mainly detected in the hMSCs colonizing the bone zone. The DNA content was higher in the DC than in LC whereas the sGAG content was higher in LC. The gene expression of ECM components and transcription factors depended on cell type and pre-culturing condition. Zonal colonization of triphasic scaffolds using spheroids is possible, offering a novel approach for enthesis tissue engineering.
Collapse
Affiliation(s)
- Clemens Gögele
- Institute of Anatomy and Cell Biology, Paracelsus Medical University, Nuremberg and Salzburg, Prof. Ernst Nathan Str. 1, 90419 Nuremberg, Germany
| | - Julia Vogt
- Institute of Anatomy and Cell Biology, Paracelsus Medical University, Nuremberg and Salzburg, Prof. Ernst Nathan Str. 1, 90419 Nuremberg, Germany
| | - Judith Hahn
- Department Materials Engineering, Institute of Polymers Materials, Leibniz-Institut für Polymerforschung Dresden e.V. (IPF), Hohe Straße 6, 01069 Dresden, Germany
| | - Annette Breier
- Department Materials Engineering, Institute of Polymers Materials, Leibniz-Institut für Polymerforschung Dresden e.V. (IPF), Hohe Straße 6, 01069 Dresden, Germany
| | - Ricardo Bernhardt
- Department Materials Engineering, Institute of Polymers Materials, Leibniz-Institut für Polymerforschung Dresden e.V. (IPF), Hohe Straße 6, 01069 Dresden, Germany
| | - Michael Meyer
- FILK Freiberg Institute gGmbH (FILK), Meißner Ring 1-5, 09599 Freiberg, Germany
| | - Michaela Schröpfer
- FILK Freiberg Institute gGmbH (FILK), Meißner Ring 1-5, 09599 Freiberg, Germany
| | - Kerstin Schäfer-Eckart
- Bone Marrow Transplantation Unit, Medizinische Klinik 5, Klinikum Nürnberg, 90419 Nuremberg, Germany
| | - Gundula Schulze-Tanzil
- Institute of Anatomy and Cell Biology, Paracelsus Medical University, Nuremberg and Salzburg, Prof. Ernst Nathan Str. 1, 90419 Nuremberg, Germany
| |
Collapse
|
33
|
Fu S, Lan Y, Wang G, Bao D, Qin B, Zheng Q, Liu H, Wong VKW. External stimulation: A potential therapeutic strategy for tendon-bone healing. Front Bioeng Biotechnol 2023; 11:1150290. [PMID: 37064229 PMCID: PMC10102526 DOI: 10.3389/fbioe.2023.1150290] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/23/2023] [Indexed: 04/03/2023] Open
Abstract
Injuries at the tendon-bone interface are very common in the field of sports medicine, and healing at the tendon-bone interface is complex. Injuries to the tendon-bone interface can seriously affect a patient’s quality of life, so it is essential to restore stability and promote healing of the tendon-bone interface. In addition to surgical treatment, the healing of tendons and bones can also be properly combined with extracorporeal stimulation therapy during the recovery process. In this review, we discuss the effects of extracorporeal shock waves (ESWs), low-intensity pulsed ultrasound (LIPUS), and mechanical stress on tendon-bone healing, focusing on the possible mechanisms of action of mechanical stress on tendon-bone healing in terms of transcription factors and biomolecules. The aim is to provide possible therapeutic approaches for subsequent clinical treatment.
Collapse
Affiliation(s)
- Shijie Fu
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
- Department of Orthopedics, Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Yujian Lan
- Department of Orthopedics, Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Guoyou Wang
- Department of Orthopedics, Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Dingsu Bao
- Department of Orthopedics, Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Bo Qin
- Department of Orthopedics, Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Qiu Zheng
- Department of Orthopedics, Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Huan Liu
- Department of Orthopedics, Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
- *Correspondence: Huan Liu, ; Vincent Kam Wai Wong,
| | - Vincent Kam Wai Wong
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
- *Correspondence: Huan Liu, ; Vincent Kam Wai Wong,
| |
Collapse
|
34
|
Mechanisms of skeletal muscle-tendon development and regeneration/healing as potential therapeutic targets. Pharmacol Ther 2023; 243:108357. [PMID: 36764462 DOI: 10.1016/j.pharmthera.2023.108357] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023]
Abstract
Skeletal muscle contraction is essential for the movement of our musculoskeletal system. Tendons and ligaments that connect the skeletal muscles to bones in the correct position at the appropriate time during development are also required for movement to occur. Since the musculoskeletal system is essential for maintaining basic bodily functions as well as enabling interactions with the environment, dysfunctions of these tissues due to disease can significantly reduce quality of life. Unfortunately, as people live longer, skeletal muscle and tendon/ligament diseases are becoming more common. Sarcopenia, a disease in which skeletal muscle function declines, and tendinopathy, which involves chronic tendon dysfunction, are particularly troublesome because there have been no significant advances in their treatment. In this review, we will summarize previous reports on the development and regeneration/healing of skeletal muscle and tendon tissues, including a discussion of the molecular and cellular mechanisms involved that may be used as potential therapeutic targets.
Collapse
|
35
|
Ning C, Li P, Gao C, Fu L, Liao Z, Tian G, Yin H, Li M, Sui X, Yuan Z, Liu S, Guo Q. Recent advances in tendon tissue engineering strategy. Front Bioeng Biotechnol 2023; 11:1115312. [PMID: 36890920 PMCID: PMC9986339 DOI: 10.3389/fbioe.2023.1115312] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 02/06/2023] [Indexed: 02/22/2023] Open
Abstract
Tendon injuries often result in significant pain and disability and impose severe clinical and financial burdens on our society. Despite considerable achievements in the field of regenerative medicine in the past several decades, effective treatments remain a challenge due to the limited natural healing capacity of tendons caused by poor cell density and vascularization. The development of tissue engineering has provided more promising results in regenerating tendon-like tissues with compositional, structural and functional characteristics comparable to those of native tendon tissues. Tissue engineering is the discipline of regenerative medicine that aims to restore the physiological functions of tissues by using a combination of cells and materials, as well as suitable biochemical and physicochemical factors. In this review, following a discussion of tendon structure, injury and healing, we aim to elucidate the current strategies (biomaterials, scaffold fabrication techniques, cells, biological adjuncts, mechanical loading and bioreactors, and the role of macrophage polarization in tendon regeneration), challenges and future directions in the field of tendon tissue engineering.
Collapse
Affiliation(s)
- Chao Ning
- Chinese PLA Medical School, Beijing, China
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Pinxue Li
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Cangjian Gao
- Chinese PLA Medical School, Beijing, China
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Liwei Fu
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Zhiyao Liao
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Guangzhao Tian
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Han Yin
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Muzhe Li
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Xiang Sui
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Zhiguo Yuan
- Department of Bone and Joint Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Shuyun Liu
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Quanyi Guo
- Chinese PLA Medical School, Beijing, China
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
36
|
Talpan D, Salla S, Meusel L, Walter P, Kuo CC, Franzen J, Fuest M. Cytoprotective Effects of Human Platelet Lysate during the Xeno-Free Culture of Human Donor Corneas. Int J Mol Sci 2023; 24:ijms24032882. [PMID: 36769200 PMCID: PMC9917909 DOI: 10.3390/ijms24032882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/18/2023] [Accepted: 01/25/2023] [Indexed: 02/05/2023] Open
Abstract
We evaluated the suitability of 2% human platelet lysate medium (2%HPL) as a replacement for 2% fetal bovine serum medium (2%FBS) for the xeno-free organ culture of human donor corneas. A total of 32 corneas from 16 human donors were cultured in 2%FBS for 3 days (TP1), then evaluated using phase contrast microscopy (endothelial cell density (ECD) and cell morphology). Following an additional 25-day culture period (TP2) in either 2%FBS or 2%HPL, the pairs were again compared using microscopy; then stroma and Descemet membrane/endothelium (DmE) were processed for next generation sequencing (NGS). At TP2 the ECD was higher in the 2%HPL group (2179 ± 288 cells/mm2) compared to 2%FBS (2113 ± 331 cells/mm2; p = 0.03), and endothelial cell loss was lower (ECL HPL = -0.7% vs. FBS = -3.8%; p = 0.01). There were no significant differences in cell morphology between TP1 and 2, or between 2%HPL and 2%FBS. NGS showed the differential expression of 1644 genes in endothelial cells and 217 genes in stromal cells. It was found that 2%HPL led to the upregulation of cytoprotective, anti-inflammatory and anti-fibrotic genes (HMOX1, SERPINE1, ANGPTL4, LEFTY2, GADD45B, PLIN2, PTX3, GFRA1/2), and the downregulation of pro-inflammatory/apoptotic genes (e.g., CXCL14, SIK1B, PLK5, PPP2R3B, FABP5, MAL, GATA3). 2%HPL is a suitable xeno-free substitution for 2%FBS in human cornea organ culture, inducing less ECL and producing potentially beneficial alterations in gene expression.
Collapse
Affiliation(s)
- Delia Talpan
- Department of Ophthalmology, RWTH Aachen University, 52074 Aachen, Germany
| | - Sabine Salla
- Department of Ophthalmology, RWTH Aachen University, 52074 Aachen, Germany
- Cornea Bank Aachen, RWTH Aachen University, 52074 Aachen, Germany
| | - Linus Meusel
- Department of Ophthalmology, RWTH Aachen University, 52074 Aachen, Germany
- Cornea Bank Aachen, RWTH Aachen University, 52074 Aachen, Germany
| | - Peter Walter
- Department of Ophthalmology, RWTH Aachen University, 52074 Aachen, Germany
- Cornea Bank Aachen, RWTH Aachen University, 52074 Aachen, Germany
| | - Chao-Chung Kuo
- Genomics Facility, Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University, 52074 Aachen, Germany
| | - Julia Franzen
- Genomics Facility, Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University, 52074 Aachen, Germany
| | - Matthias Fuest
- Department of Ophthalmology, RWTH Aachen University, 52074 Aachen, Germany
- Cornea Bank Aachen, RWTH Aachen University, 52074 Aachen, Germany
- Correspondence:
| |
Collapse
|
37
|
Nichols AEC, Wagner NW, Ketonis C, Loiselle AE. Epitenon-derived cells comprise a distinct progenitor population that contributes to both tendon fibrosis and regeneration following acute injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.30.526242. [PMID: 36778469 PMCID: PMC9915485 DOI: 10.1101/2023.01.30.526242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Flexor tendon injuries are common and heal poorly owing to both the deposition of function- limiting peritendinous scar tissue and insufficient healing of the tendon itself. Therapeutic options are limited due to a lack of understanding of the cell populations that contribute to these processes. Here, we identified a bi-fated progenitor cell population that originates from the epitenon and goes on to contribute to both peritendinous fibrosis and regenerative tendon healing following acute tendon injury. Using a combination of genetic lineage tracing and single cell RNA-sequencing (scRNA-seq), we profiled the behavior and contributions of each cell fate to the healing process in a spatio-temporal manner. Branched pseudotime trajectory analysis identified distinct transcription factors responsible for regulation of each fate. Finally, integrated scRNA-seq analysis of mouse healing with human peritendinous scar tissue revealed remarkable transcriptional similarity between mouse epitenon- derived cells and fibroblasts present in human peritendinous scar tissue, which was further validated by immunofluorescent staining for conserved markers. Combined, these results clearly identify the epitenon as the cellular origin of an important progenitor cell population that could be leveraged to improve tendon healing.
Collapse
|
38
|
Peserico A, Barboni B, Russo V, Bernabò N, El Khatib M, Prencipe G, Cerveró-Varona A, Haidar-Montes AA, Faydaver M, Citeroni MR, Berardinelli P, Mauro A. Mammal comparative tendon biology: advances in regulatory mechanisms through a computational modeling. Front Vet Sci 2023; 10:1175346. [PMID: 37180059 PMCID: PMC10174257 DOI: 10.3389/fvets.2023.1175346] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/03/2023] [Indexed: 05/15/2023] Open
Abstract
There is high clinical demand for the resolution of tendinopathies, which affect mainly adult individuals and animals. Tendon damage resolution during the adult lifetime is not as effective as in earlier stages where complete restoration of tendon structure and property occurs. However, the molecular mechanisms underlying tendon regeneration remain unknown, limiting the development of targeted therapies. The research aim was to draw a comparative map of molecules that control tenogenesis and to exploit systems biology to model their signaling cascades and physiological paths. Using current literature data on molecular interactions in early tendon development, species-specific data collections were created. Then, computational analysis was used to construct Tendon NETworks in which information flow and molecular links were traced, prioritized, and enriched. Species-specific Tendon NETworks generated a data-driven computational framework based on three operative levels and a stage-dependent set of molecules and interactions (embryo-fetal or prepubertal) responsible, respectively, for signaling differentiation and morphogenesis, shaping tendon transcriptional program and downstream modeling of its fibrillogenesis toward a mature tissue. The computational network enrichment unveiled a more complex hierarchical organization of molecule interactions assigning a central role to neuro and endocrine axes which are novel and only partially explored systems for tenogenesis. Overall, this study emphasizes the value of system biology in linking the currently available disjointed molecular data, by establishing the direction and priority of signaling flows. Simultaneously, computational enrichment was critical in revealing new nodes and pathways to watch out for in promoting biomedical advances in tendon healing and developing targeted therapeutic strategies to improve current clinical interventions.
Collapse
|
39
|
Graça AL, Gomez-Florit M, Gomes ME, Docheva D. Tendon Aging. Subcell Biochem 2023; 103:121-147. [PMID: 37120467 DOI: 10.1007/978-3-031-26576-1_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
Tendons are mechanosensitive connective tissues responsible for the connection between muscles and bones by transmitting forces that allow the movement of the body, yet, with advancing age, tendons become more prone to degeneration followed by injuries. Tendon diseases are one of the main causes of incapacity worldwide, leading to changes in tendon composition, structure, and biomechanical properties, as well as a decline in regenerative potential. There is still a great lack of knowledge regarding tendon cellular and molecular biology, interplay between biochemistry and biomechanics, and the complex pathomechanisms involved in tendon diseases. Consequently, this reflects a huge need for basic and clinical research to better elucidate the nature of healthy tendon tissue and also tendon aging process and associated diseases. This chapter concisely describes the effects that the aging process has on tendons at the tissue, cellular, and molecular levels and briefly reviews potential biological predictors of tendon aging. Recent research findings that are herein reviewed and discussed might contribute to the development of precision tendon therapies targeting the elderly population.
Collapse
Affiliation(s)
- Ana Luísa Graça
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Manuel Gomez-Florit
- Health Research Institute of the Balearic Islands (IdISBa), Palma de Mallorca, Spain
| | - Manuela Estima Gomes
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Denitsa Docheva
- Department of Musculoskeletal Tissue Regeneration, Orthopaedic Hospital König-Ludwig-Haus, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
40
|
Citro V, Clerici M, Boccaccini AR, Della Porta G, Maffulli N, Forsyth NR. Tendon tissue engineering: An overview of biologics to promote tendon healing and repair. J Tissue Eng 2023; 14:20417314231196275. [PMID: 37719308 PMCID: PMC10501083 DOI: 10.1177/20417314231196275] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/06/2023] [Indexed: 09/19/2023] Open
Abstract
Tendons are dense connective tissues with a hierarchical polarized structure that respond to and adapt to the transmission of muscle contraction forces to the skeleton, enabling motion and maintaining posture. Tendon injuries, also known as tendinopathies, are becoming more common as populations age and participation in sports/leisure activities increases. The tendon has a poor ability to self-heal and regenerate given its intrinsic, constrained vascular supply and exposure to frequent, severe loading. There is a lack of understanding of the underlying pathophysiology, and it is not surprising that disorder-targeted medicines have only been partially effective at best. Recent tissue engineering approaches have emerged as a potential tool to drive tendon regeneration and healing. In this review, we investigated the physiochemical factors involved in tendon ontogeny and discussed their potential application in vitro to reproduce functional and self-renewing tendon tissue. We sought to understand whether stem cells are capable of forming tendons, how they can be directed towards the tenogenic lineage, and how their growth is regulated and monitored during the entire differentiation path. Finally, we showed recent developments in tendon tissue engineering, specifically the use of mesenchymal stem cells (MSCs), which can differentiate into tendon cells, as well as the potential role of extracellular vesicles (EVs) in tendon regeneration and their potential for use in accelerating the healing response after injury.
Collapse
Affiliation(s)
- Vera Citro
- School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent, Staffordshire, UK
- Department of Materials Science and Engineering, Institute of Biomaterials University of Erlangen-Nuremberg, Cauerstrasse 6, Erlangen, Germany
| | - Marta Clerici
- School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent, Staffordshire, UK
- Department of Medicine, Surgery and Dentistry, University of Salerno, via S. Allende, Baronissi, Salerno, Italy
| | - Aldo R. Boccaccini
- Department of Materials Science and Engineering, Institute of Biomaterials University of Erlangen-Nuremberg, Cauerstrasse 6, Erlangen, Germany
| | - Giovanna Della Porta
- Department of Medicine, Surgery and Dentistry, University of Salerno, via S. Allende, Baronissi, Salerno, Italy
- Interdepartmental Centre BIONAM, University of Salerno, via Giovanni Paolo I, Fisciano, Salerno, Italy
| | - Nicola Maffulli
- School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent, Staffordshire, UK
- Department of Medicine, Surgery and Dentistry, University of Salerno, via S. Allende, Baronissi, Salerno, Italy
- Department of Trauma and Orthopaedic Surgery, University Hospital ‘San Giovanni di Dio e Ruggi D’Aragona’, Salerno, Italy
| | - Nicholas R. Forsyth
- School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent, Staffordshire, UK
- Vice Principals’ Office, University of Aberdeen, Kings College, Aberdeen, UK
| |
Collapse
|
41
|
Wang K, Cheng L, He B, Tan Y. Hypoxia inducible factor-1α mediates the mechanism of the Hedgehog pathway in tendinopathy repair by Asperosaponin VI. Regen Ther 2022; 21:511-518. [DOI: 10.1016/j.reth.2022.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/10/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
|
42
|
Amini M, Venkatesan JK, Liu W, Leroux A, Nguyen TN, Madry H, Migonney V, Cucchiarini M. Advanced Gene Therapy Strategies for the Repair of ACL Injuries. Int J Mol Sci 2022; 23:ijms232214467. [PMID: 36430947 PMCID: PMC9695211 DOI: 10.3390/ijms232214467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/07/2022] [Accepted: 11/19/2022] [Indexed: 11/23/2022] Open
Abstract
The anterior cruciate ligament (ACL), the principal ligament for stabilization of the knee, is highly predisposed to injury in the human population. As a result of its poor intrinsic healing capacities, surgical intervention is generally necessary to repair ACL lesions, yet the outcomes are never fully satisfactory in terms of long-lasting, complete, and safe repair. Gene therapy, based on the transfer of therapeutic genetic sequences via a gene vector, is a potent tool to durably and adeptly enhance the processes of ACL repair and has been reported for its workability in various experimental models relevant to ACL injuries in vitro, in situ, and in vivo. As critical hurdles to the effective and safe translation of gene therapy for clinical applications still remain, including physiological barriers and host immune responses, biomaterial-guided gene therapy inspired by drug delivery systems has been further developed to protect and improve the classical procedures of gene transfer in the future treatment of ACL injuries in patients, as critically presented here.
Collapse
Affiliation(s)
- Mahnaz Amini
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, D-66421 Homburg, Germany
| | - Jagadeesh K. Venkatesan
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, D-66421 Homburg, Germany
| | - Wei Liu
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, D-66421 Homburg, Germany
| | - Amélie Leroux
- Laboratoire CSPBAT UMR CNRS 7244, Université Sorbonne Paris Nord, Avenue JB Clément, 93430 Villetaneuse, France
| | - Tuan Ngoc Nguyen
- Laboratoire CSPBAT UMR CNRS 7244, Université Sorbonne Paris Nord, Avenue JB Clément, 93430 Villetaneuse, France
| | - Henning Madry
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, D-66421 Homburg, Germany
| | - Véronique Migonney
- Laboratoire CSPBAT UMR CNRS 7244, Université Sorbonne Paris Nord, Avenue JB Clément, 93430 Villetaneuse, France
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, D-66421 Homburg, Germany
- Correspondence: or
| |
Collapse
|
43
|
Mohawk impedes angiofibrosis by preventing the differentiation of tendon stem/progenitor cells into myofibroblasts. Sci Rep 2022; 12:20003. [PMID: 36411329 PMCID: PMC9678895 DOI: 10.1038/s41598-022-24195-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 11/11/2022] [Indexed: 11/23/2022] Open
Abstract
Adult tendons heal via fibrovascular scarring with inferior biomechanical properties. Mohawk (Mkx) emerged as a pivotal actor in tenolineage commitment. However, its precise function in tendinopathy remains poorly understood. This study investigates the cellular and molecular mechanisms underlying Mkx' role in fibrovascular healing. Human samples were collected to test fibrovascular markers. We then performed RNAseq on Mkx-/- mice compared to their wild type littermates to decipher Mkx regulome. We therefore sought to reproduce TSPCs transition to myofibroblasts in-vitro by over-expressing MyoD and followed by phenotypic and experimental cells' characterization using microscopy, qRT-PCR, flow cytometry sorting, presto-blue cell viability assay and immunofluorescence. Two different in vivo models were used to assess the effect of the MyoD-expressing myofibroblasts: transplantation in the dorsal area of immunodeficient mice and in an adult Achilles tendon injury model. To prevent angiofibrosis, we tested the molecule Xav939 and proceeded with histological stainings, q-RT PCR transcriptional quantification of angifibrotic markers, mechanical tests, and immunofluorescence. Tendinopathy samples showed fibrovascular healing with decreased tenolineage phenotype. Transcriptomic analysis of Mkx-/- tendons revealed myofibroblast-associated biological processes. Over-expression of MyoD in WT tendon stem progenitor cells (TSPCs) gave rise to myofibroblasts reprogramming in-vitro and fibrovascular scarring in-vivo. MKX directly binds to MyoD promoter and underlies global regulative processes related to angiogenesis and Wnt signaling pathway. Blocking Wnt signaling with the small molecule Xav393 resulted in higher histological and biomechanical properties. Taken together, our data provide the first in vivo and in-vitro evidence of tendon stem progenitor cells to myofibroblasts transition and show improved tendon healing via angiofibrosis modulation, thus opening potential therapeutic avenues to treat tendinopathy patients.
Collapse
|
44
|
Tendon-Specific Activation of Tenogenic Transcription Factors Enables Keeping Tenocytes' Identity In Vitro. Int J Mol Sci 2022; 23:ijms232214078. [PMID: 36430562 PMCID: PMC9695818 DOI: 10.3390/ijms232214078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/11/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022] Open
Abstract
We generated a novel tetracycline-inducible transgenic mouse line with the tendon-specific expression of a series of tendon-critical transcription factors. Primary tenocytes derived from this mouse line consistently expressed green fluorescent protein reporter transcription factors in response to doxycycline. The tenocytes maintained their tendon cell properties for a longer time after the transient induction in the absence of growth factors and mechanical stress. Four key transcription factors for tendon development and the green fluorescent protein reporter were linked with different viral 2A self-cleaving peptides. They were expressed under the control of the tet-responsive element. In combination with the expression of BFP, which reports on the tendon-specific collagen I, and mScarlet, which reports on the tendon-specific transcription factor Scleraxis (Scx), we observed the more extended maintenance of the tendon cell identity of in vitro cultured tendon cells and Achilles tendon explants. This means that the Scleraxis bHLH transcription factor (Scx), mohawk homeobox (Mkx), early growth response 1 (Egr1) and early growth response 2 (Egr2) contributed to the maintenance of tenocytes' identity in vitro, providing a new model for studying extracellular matrix alterations and identifying alternative biomaterials in vitro.
Collapse
|
45
|
Fujisawa Y, Ming L, Yamada D, Takao T, Takarada T. Establishment of a human pluripotent stem cell-derived MKX-td Tomato reporter system. Stem Cell Res Ther 2022; 13:515. [DOI: 10.1186/s13287-022-03203-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/27/2022] [Indexed: 11/14/2022] Open
Abstract
AbstractTendon regeneration is difficult because detailed knowledge about tendon progenitor cells (TPCs), which produce tenocytes to repair tendon tissue, has not been revealed. Mohawk homeobox (MKX) is a marker of TPCs or tenocytes, but a human pluripotent stem cell (hPSC)-based reporter system that visualizes MKX+ cells has not been developed. Here, we established an hPSC-derived MKX-tdTomato reporter cell line and tested the induction ratio of MKX-tdTomato+ cells using our stepwise/xeno-free differentiation protocol. MKX-tdTomato+ cells were generated with high efficiency and expressed tendon-specific markers, including MKX, SCX, TNMD, and COL1A1. Our MKX-tdTomato hPSC line would be a useful tool for studying the development or regeneration of tendon tissue.
Collapse
|
46
|
Chen Z, Chen P, Zheng M, Gao J, Liu D, Wang A, Zheng Q, Leys T, Tai A, Zheng M. Challenges and perspectives of tendon-derived cell therapy for tendinopathy: from bench to bedside. Stem Cell Res Ther 2022; 13:444. [PMID: 36056395 PMCID: PMC9438319 DOI: 10.1186/s13287-022-03113-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/03/2022] [Indexed: 11/18/2022] Open
Abstract
Tendon is composed of dense fibrous connective tissues, connecting muscle at the myotendinous junction (MTJ) to bone at the enthesis and allowing mechanical force to transmit from muscle to bone. Tendon diseases occur at different zones of the tendon, including enthesis, MTJ and midsubstance of the tendon, due to a variety of environmental and genetic factors which consequently result in different frequencies and recovery rates. Self-healing properties of tendons are limited, and cell therapeutic approaches in which injured tendon tissues are renewed by cell replenishment are highly sought after. Homologous use of individual’s tendon-derived cells, predominantly differentiated tenocytes and tendon-derived stem cells, is emerging as a treatment for tendinopathy through achieving minimal cell manipulation for clinical use. This is the first review summarizing the progress of tendon-derived cell therapy in clinical use and its challenges due to the structural complexity of tendons, heterogeneous composition of extracellular cell matrix and cells and unsuitable cell sources. Further to that, novel future perspectives to improve therapeutic effect in tendon-derived cell therapy based on current basic knowledge are discussed.
Collapse
Affiliation(s)
- Ziming Chen
- Division of Surgery, Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, WA, 6009, Australia
| | - Peilin Chen
- Division of Surgery, Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, WA, 6009, Australia
| | - Monica Zheng
- Department of Orthopaedic Surgery, Sir Charles Gairdner Hospital, Nedlands, WA, 6009, Australia
| | - Junjie Gao
- Perron Institute for Neurological and Translational Science, Nedlands, WA, 6009, Australia.,Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Shanghai Sixth People's Hospital, Shanghai, 200233, China
| | - Delin Liu
- Division of Surgery, Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, WA, 6009, Australia.,Perron Institute for Neurological and Translational Science, Nedlands, WA, 6009, Australia
| | - Allan Wang
- Division of Surgery, Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, WA, 6009, Australia
| | - Qiujian Zheng
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510000, Guangdong, China.,Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510000, Guangdong, China
| | - Toby Leys
- Department of Orthopaedic Surgery, Sir Charles Gairdner Hospital, Nedlands, WA, 6009, Australia
| | - Andrew Tai
- Perron Institute for Neurological and Translational Science, Nedlands, WA, 6009, Australia.
| | - Minghao Zheng
- Division of Surgery, Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, WA, 6009, Australia. .,Perron Institute for Neurological and Translational Science, Nedlands, WA, 6009, Australia.
| |
Collapse
|
47
|
Nagata M, English JD, Ono N, Ono W. Diverse stem cells for periodontal tissue formation and regeneration. Genesis 2022; 60:e23495. [PMID: 35916433 PMCID: PMC9492631 DOI: 10.1002/dvg.23495] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/09/2022] [Accepted: 05/13/2022] [Indexed: 11/10/2022]
Abstract
The periodontium is comprised of multiple units of mineralized and nonmineralized tissues including the cementum on the root surface, the alveolar bone, periodontal ligament (PDL), and the gingiva. PDL contains a variety of cell populations including mesenchymal stem/progenitor cells (MSCs) termed PDLSCs, which contribute to periodontal regeneration. Recent studies utilizing mouse genetic models shed light on the identities of these mesenchymal progenitors in their native environment, particularly regarding how they contribute to homeostasis and repair of the periodontium. The current concept is that mesenchymal progenitors in the PDL are localized to the perivascular niche. Single-cell RNA sequencing (scRNA-seq) analyses reveal heterogeneity and cell-type specific markers of cells in the periodontium, as well as their developmental relationship with precursor cells in the dental follicle. The characteristics of PDLSCs and their diversity in vivo are now beginning to be unraveled thanks to insights from mouse genetic models and scRNA-seq analyses, which aid to uncover the fundamental properties of stem cells in the human PDL. The new knowledge will be highly important for developing more effective stem cell-based regenerative therapies to repair periodontal tissues in the future.
Collapse
Affiliation(s)
- Mizuki Nagata
- Department of Orthodontics, University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, United States
| | - Jeryl D. English
- Department of Orthodontics, University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, United States
| | - Noriaki Ono
- Department of Diagnostic & Biomedical Sciences, University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, United States
| | - Wanida Ono
- Department of Orthodontics, University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, United States
| |
Collapse
|
48
|
Wu T, Qi W, Shan H, Tu B, Jiang S, Lu Y, Wang F. Ginsenoside Rg1 enhances the healing of injured tendon in achilles tendinitis through the activation of IGF1R signaling mediated by oestrogen receptor. J Ginseng Res 2022; 46:526-535. [PMID: 35818420 PMCID: PMC9270649 DOI: 10.1016/j.jgr.2021.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 07/22/2021] [Accepted: 08/17/2021] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND During the pathogenesis of tendinopathy, the chronic inflammation caused by the injury and apoptosis leads to the generation of scars. Ginsenoside Rg1 (Rg1) is extracted from ginseng and has anti-inflammatory effects. Rg1 is a unique phytoestrogen that can activate the estrogen response element. This research aimed to explore whether Rg1 can function in the process of tendon repair through the estrogen receptor. METHODS In this research, the effects of Rg1 were evaluated in tenocytes and in a rat model of Achilles tendinitis (AT). Protein levels were shown by western blotting. qRT-PCR was employed for evaluating mRNA levels. Cell proliferation was evaluated through EdU assay and cell migration was evaluated by transwell assay and scratch test assay. RESULTS Rg1 up-regulated the expression of matrix-related factors and function of tendon in AT rat model. Rg1 reduced early inflammatory response and apoptosis in the tendon tissue of AT rat model. Rg1 promoted tenocyte migration and proliferation. The effects of Rg1 on tenocytes were inhibited by ICI182780. Rg1 activates the insulin-like growth factor-I receptor (IGF1R) and MAPK signaling pathway. CONCLUSION Rg1 promotes injured tendon healing in AT rat model through IGF1R and MAPK signaling pathway activation.
Collapse
Affiliation(s)
| | | | - Haojie Shan
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Bin Tu
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Shilin Jiang
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Ye Lu
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Feng Wang
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
49
|
Omoto T, Yimiti D, Sanada Y, Toriyama M, Ding C, Hayashi Y, Ikuta Y, Nakasa T, Ishikawa M, Sano M, Lee M, Akimoto T, Shukunami C, Miyaki S, Adachi N. Tendon-Specific Dicer Deficient Mice Exhibit Hypoplastic Tendon Through the Downregulation of Tendon-Related Genes and MicroRNAs. Front Cell Dev Biol 2022; 10:898428. [PMID: 35784484 PMCID: PMC9241168 DOI: 10.3389/fcell.2022.898428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/23/2022] [Indexed: 12/17/2022] Open
Abstract
Tendon is a fibrous connective tissue, that is, transmitting the forces that permit body movement. However, tendon/ligament biology is still not fully understood and especially, the role of miRNAs in tendon/ligament is sparse and uncharacterized in in vivo models. The objectives of this study were to address the function of DICER using mice with tendon/ligament-specific deletion of Dicer (Dicer conditional knockout; cKO), and to identify key miRNAs in tendon/ligament. Dicer cKO mice exhibited hypoplastic tendons through structurally abnormal collagen fibrils with downregulation of tendon-related genes. The fragility of tendon did not significantly affect the tensile strength of tendon in Dicer cKO mice, but they showed larger dorsiflexion angle in gait compared with Control mice. We identified two miRNAs, miR-135a and miR-1247, which were highly expressed in the Achilles tendon of Control mice and were downregulated in the Achilles tendon of Dicer cKO mice compared with Control mice. miR-135a mimic increased the expression of tendon-related genes in injured Achilles tendon-derived fibroblasts. In this study, Dicer cKO mice exhibited immature tendons in which collagen fibrils have small diameter with the downregulation of tendon-related genes such as transcriptional factor, extracellular matrix, and miRNAs. Thus, DICER plays an important role in tendon maturation, and miR-135a may have the potential to become key miRNA for tendon maturation and healing.
Collapse
Affiliation(s)
- Takenori Omoto
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Dilimulati Yimiti
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yohei Sanada
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan
| | - Minoru Toriyama
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Chenyang Ding
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yuta Hayashi
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Department of Musculoskeletal Traumatology and Reconstructive Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yasunari Ikuta
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Tomoyuki Nakasa
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan
| | - Masakazu Ishikawa
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Department of Artificial Joints and Biomaterials, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Masayuki Sano
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Minjung Lee
- Faculty of Sport Sciences, Waseda University, Saitama, Japan
| | | | - Chisa Shukunami
- Department of Molecular Biology and Biochemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Shigeru Miyaki
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan
- *Correspondence: Shigeru Miyaki,
| | - Nobuo Adachi
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
50
|
Nakamichi R, Ma S, Nonoyama T, Chiba T, Kurimoto R, Ohzono H, Olmer M, Shukunami C, Fuku N, Wang G, Morrison E, Pitsiladis YP, Ozaki T, D'Lima D, Lotz M, Patapoutian A, Asahara H. The mechanosensitive ion channel PIEZO1 is expressed in tendons and regulates physical performance. Sci Transl Med 2022; 14:eabj5557. [PMID: 35648809 DOI: 10.1126/scitranslmed.abj5557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
How mechanical stress affects physical performance via tendons is not fully understood. Piezo1 is a mechanosensitive ion channel, and E756del PIEZO1 was recently found as a gain-of-function variant that is common in individuals of African descent. We generated tendon-specific knock-in mice using R2482H Piezo1, a mouse gain-of-function variant, and found that they had higher jumping abilities and faster running speeds than wild-type or muscle-specific knock-in mice. These phenotypes were associated with enhanced tendon anabolism via an increase in tendon-specific transcription factors, Mohawk and Scleraxis, but there was no evidence of changes in muscle. Biomechanical analysis showed that the tendons of R2482H Piezo1 mice were more compliant and stored more elastic energy, consistent with the enhancement of jumping ability. These phenotypes were replicated in mice with tendon-specific R2482H Piezo1 replacement after tendon maturation, indicating that PIEZO1 could be a target for promoting physical performance by enhancing function in mature tendon. The frequency of E756del PIEZO1 was higher in sprinters than in population-matched nonathletic controls in a small Jamaican cohort, suggesting a similar function in humans. Together, this human and mouse genetic and physiological evidence revealed a critical function of tendons in physical performance, which is tightly and robustly regulated by PIEZO1 in tenocytes.
Collapse
Affiliation(s)
- Ryo Nakamichi
- Department of Molecular Medicine, Scripps Research, 10550 North Torrey Pines Road, MBB-102, La Jolla, CA 92037, USA.,Department of Systems BioMedicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo 113-8510, Japan.,Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Shang Ma
- Howard Hughes Medical Institute, Department of Neuroscience, Dorris Neuroscience Center, Scripps Research, La Jolla, CA, 92037, USA.,Howard Hughes Medical Institute, Chevy Chase, MD 20815-6789, USA
| | - Takayuki Nonoyama
- Faculty of Advanced Life Science and Global Station for Soft Matter, Global Institution for Collaborative Research and Education (GSS, GI-CoRE), Hokkaido University, Sapporo 001-0021, Japan
| | - Tomoki Chiba
- Department of Systems BioMedicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo 113-8510, Japan
| | - Ryota Kurimoto
- Department of Systems BioMedicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo 113-8510, Japan
| | - Hiroki Ohzono
- Department of Molecular Medicine, Scripps Research, 10550 North Torrey Pines Road, MBB-102, La Jolla, CA 92037, USA
| | - Merissa Olmer
- Department of Molecular Medicine, Scripps Research, 10550 North Torrey Pines Road, MBB-102, La Jolla, CA 92037, USA
| | - Chisa Shukunami
- Department of Molecular Biology and Biochemistry and Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Noriyuki Fuku
- Graduate School of Health and Sports Science, Juntendo University, Chiba 270-1965, Japan
| | - Guan Wang
- School of Sport and Health Sciences, University of Brighton, Brighton BN2 4AT, UK.,Centre for Regenerative Medicine and Devices, University of Brighton, Brighton BN2 4AT, UK
| | - Errol Morrison
- National Commission on Science and Technology, PCJ Building, 36 Trafalgar Road, Kingston 10, Jamaica
| | - Yannis P Pitsiladis
- School of Sport and Health Sciences, University of Brighton, Brighton BN2 4AT, UK.,Centre of Stress and Age-related Disease, University of Brighton, Brighton BN2 4AT, UK
| | - Toshifumi Ozaki
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Darryl D'Lima
- Department of Molecular Medicine, Scripps Research, 10550 North Torrey Pines Road, MBB-102, La Jolla, CA 92037, USA
| | - Martin Lotz
- Department of Molecular Medicine, Scripps Research, 10550 North Torrey Pines Road, MBB-102, La Jolla, CA 92037, USA
| | - Ardem Patapoutian
- Howard Hughes Medical Institute, Department of Neuroscience, Dorris Neuroscience Center, Scripps Research, La Jolla, CA, 92037, USA.,Howard Hughes Medical Institute, Chevy Chase, MD 20815-6789, USA
| | - Hiroshi Asahara
- Department of Molecular Medicine, Scripps Research, 10550 North Torrey Pines Road, MBB-102, La Jolla, CA 92037, USA.,Department of Systems BioMedicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo 113-8510, Japan
| |
Collapse
|