1
|
Natarajan A, Velmurugu Y, Becerra Flores M, Dibba F, Beesam S, Kikvadze S, Wang X, Wang W, Li T, Shin HW, Cardozo T, Krogsgaard M. In situ cell-surface conformation of the TCR-CD3 signaling complex. EMBO Rep 2024; 25:5719-5742. [PMID: 39511422 PMCID: PMC11624261 DOI: 10.1038/s44319-024-00314-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 10/22/2024] [Accepted: 10/26/2024] [Indexed: 11/15/2024] Open
Abstract
The extracellular molecular organization of the individual CD3 subunits around the αβ T cell receptor (TCR) is critical for initiating T cell signaling. In this study, we incorporate photo-crosslinkers at specific sites within the TCRα, TCRβ, CD3δ, and CD3γ subunits. Through crosslinking and docking, we identify a CD3ε'-CD3γ-CD3ε-CD3δ arrangement situated around the αβTCR in situ within the cell surface environment. We demonstrate the importance of cholesterol in maintaining the stability of the complex and that the 'in situ' complex structure mirrors the structure from 'detergent-purified' complexes. In addition, mutations aimed at stabilizing extracellular TCR-CD3 interfaces lead to poor signaling, suggesting that subunit fluidity is indispensable for signaling. Finally, employing photo-crosslinking and CD3 tetramer assays, we show that the TCR-CD3 complex undergoes minimal subunit movements or reorientations upon interaction with activating antibodies and pMHC tetramers. This suggests an absence of 'inactive-active' conformational states in the TCR constant regions and the extracellular CD3 subunits, unlike the transmembrane regions of the complex. This study contributes a nuanced understanding of TCR signaling, which may inform the development of therapeutics for immune-related disorders.
Collapse
MESH Headings
- Signal Transduction
- CD3 Complex/chemistry
- CD3 Complex/metabolism
- Humans
- Receptor-CD3 Complex, Antigen, T-Cell/chemistry
- Receptor-CD3 Complex, Antigen, T-Cell/metabolism
- Receptor-CD3 Complex, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell, alpha-beta/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Protein Conformation
- Cell Membrane/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Cholesterol/metabolism
- Cholesterol/chemistry
- Protein Binding
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/chemistry
- Protein Subunits/chemistry
- Protein Subunits/metabolism
- Models, Molecular
- Cross-Linking Reagents/chemistry
Collapse
Affiliation(s)
- Aswin Natarajan
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, 10016, USA
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, 10016, USA
| | - Yogambigai Velmurugu
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, 10016, USA
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, 10016, USA
| | - Manuel Becerra Flores
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, 10016, USA
| | - Fatoumatta Dibba
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, 10016, USA
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, 10016, USA
| | - Saikiran Beesam
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, 10016, USA
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, 10016, USA
| | - Sally Kikvadze
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, 10016, USA
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, 10016, USA
| | - Xiaotian Wang
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, 10016, USA
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, 10016, USA
| | - Wenjuan Wang
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, 10016, USA
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, 10016, USA
| | - Tianqi Li
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, 10016, USA
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, 10016, USA
| | - Hye Won Shin
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, 10016, USA
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, 10016, USA
| | - Timothy Cardozo
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, 10016, USA
| | - Michelle Krogsgaard
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, 10016, USA.
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, 10016, USA.
| |
Collapse
|
2
|
Kim CY, Parrish HL, Kuhns MS. The TCR Cα Domain Regulates Responses to Self-pMHC Class II. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:2033-2041. [PMID: 36426940 PMCID: PMC9643626 DOI: 10.4049/jimmunol.2200377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 09/05/2022] [Indexed: 12/31/2022]
Abstract
T cells play a central role in adaptive immunity by recognizing peptide Ags presented by MHC molecules (pMHC) via their clonotypic TCRs. αβTCRs are heterodimers, consisting of TCRα and TCRβ subunits that are composed of variable (Vα, Vβ) and constant (Cα, Cβ) domains. Whereas the Vα, Vβ, and Cβ domains adopt typical Ig folds in the extracellular space, the Cα domain lacks a top β sheet and instead has two loosely associated top strands (C- and F-strands) on its surface. Previous results suggest that this unique Ig-like fold mediates homotypic TCR interactions and influences signaling in vitro. To better understand why evolution has selected this unique structure, we asked, what is the fitness cost for development and function of mouse CD4+ T cells bearing a mutation in the Cα C-strand? In both TCR retrogenic and transgenic mice we observed increased single-positive thymocytes bearing mutant TCRs compared with those expressing wild-type TCRs. Furthermore, our analysis of mutant TCR transgenic mice revealed an increase in naive CD4+ T cells experiencing strong tonic TCR signals, increased homeostatic survival, and increased recruitment of responders to cognate pMHC class II upon immunization compared with the wild-type. The mutation did not, however, overtly impact CD4+ T cell proliferation or differentiation after immunization. We interpret these data as evidence that the unique Cα domain has evolved to fine-tune TCR signaling, particularly in response to weak interactions with self-pMHC class II.
Collapse
Affiliation(s)
- Caleb Y. Kim
- Department of Immunobiology, The University of Arizona College of Medicine, Tucson, AZ
| | - Heather L. Parrish
- Department of Immunobiology, The University of Arizona College of Medicine, Tucson, AZ
| | - Michael S. Kuhns
- Department of Immunobiology, The University of Arizona College of Medicine, Tucson, AZ
- Genetics Graduate Interdisciplinary Program, The University of Arizona, Tucson, AZ
- The BIO-5 Institute, The University of Arizona, Tucson, AZ
- The University of Arizona Cancer Center, Tucson, AZ
- The Arizona Center on Aging, The University of Arizona College of Medicine, Tucson, AZ
| |
Collapse
|
3
|
Sušac L, Vuong MT, Thomas C, von Bülow S, O'Brien-Ball C, Santos AM, Fernandes RA, Hummer G, Tampé R, Davis SJ. Structure of a fully assembled tumor-specific T cell receptor ligated by pMHC. Cell 2022; 185:3201-3213.e19. [PMID: 35985289 PMCID: PMC9630439 DOI: 10.1016/j.cell.2022.07.010] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 04/05/2022] [Accepted: 07/15/2022] [Indexed: 12/12/2022]
Abstract
The T cell receptor (TCR) expressed by T lymphocytes initiates protective immune responses to pathogens and tumors. To explore the structural basis of how TCR signaling is initiated when the receptor binds to peptide-loaded major histocompatibility complex (pMHC) molecules, we used cryogenic electron microscopy to determine the structure of a tumor-reactive TCRαβ/CD3δγε2ζ2 complex bound to a melanoma-specific human class I pMHC at 3.08 Å resolution. The antigen-bound complex comprises 11 subunits stabilized by multivalent interactions across three structural layers, with clustered membrane-proximal cystines stabilizing the CD3-εδ and CD3-εγ heterodimers. Extra density sandwiched between transmembrane helices reveals the involvement of sterol lipids in TCR assembly. The geometry of the pMHC/TCR complex suggests that efficient TCR scanning of pMHC requires accurate pre-positioning of T cell and antigen-presenting cell membranes. Comparisons of the ligand-bound and unliganded receptors, along with molecular dynamics simulations, indicate that TCRs can be triggered in the absence of spontaneous structural rearrangements.
Collapse
Affiliation(s)
- Lukas Sušac
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | - Mai T Vuong
- Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK; Medical Research Council Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Christoph Thomas
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | - Sören von Bülow
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, 60438 Frankfurt am Main, Germany
| | - Caitlin O'Brien-Ball
- Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK; Medical Research Council Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Ana Mafalda Santos
- Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK; Medical Research Council Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Ricardo A Fernandes
- Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK; Medical Research Council Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Gerhard Hummer
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, 60438 Frankfurt am Main, Germany; Institute of Biophysics, Goethe University Frankfurt, Max-von-Laue-Str. 1, 60438 Frankfurt am Main, Germany
| | - Robert Tampé
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany.
| | - Simon J Davis
- Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK; Medical Research Council Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK.
| |
Collapse
|
4
|
Nieves DJ, Pandzic E, Gunasinghe SD, Goyette J, Owen DM, Justin Gooding J, Gaus K. The T cell receptor displays lateral signal propagation involving non-engaged receptors. NANOSCALE 2022; 14:3513-3526. [PMID: 35171177 DOI: 10.1039/d1nr05855j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
T cells are highly sensitive to low levels of antigen, but how this sensitivity is achieved is currently unknown. Here, we imaged proximal TCR-CD3 signal propagation with single molecule localization microscopy (SMLM) in T cells activated with nanoscale clusters of TCR stimuli. We observed the formation of large TCR-CD3 clusters that exceeded the area of the ligand clusters, and required multivalent interactions facilitated by TCR-CD3 phosphorylation for assembly. Within these clustered TCR-CD3 domains, TCR-CD3 signaling spread laterally for ∼500 nm, far beyond the activating site, via non-engaged receptors. Local receptor density determined the functional cooperativity between engaged and non-engaged receptors, but lateral signal propagation was not influenced by the genetic deletion of ZAP70. Taken together, our data demonstrates that clustered ligands induced the clustering of non-ligated TCR-CD3 into domains that cooperatively facilitate lateral signal propagation.
Collapse
Affiliation(s)
- Daniel J Nieves
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences and the ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney, Australia
- Institute of Immunology and Immunotherapy, School of Mathematics, and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK.
| | - Elvis Pandzic
- Katharina Gaus Light Microscopy Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, Australia
| | - Sachith D Gunasinghe
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences and the ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney, Australia
| | - Jesse Goyette
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences and the ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney, Australia
| | - Dylan M Owen
- Institute of Immunology and Immunotherapy, School of Mathematics, and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK.
| | - J Justin Gooding
- School of Chemistry and Australian Centre for NanoMedicine, University of New South Wales, Sydney, Australia
| | - Katharina Gaus
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences and the ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney, Australia
| |
Collapse
|
5
|
Feher K, Graus MS, Coelho S, Farrell MV, Goyette J, Gaus K. K-Neighbourhood Analysis: A Method for Understanding SMLM Images as Compositions of Local Neighbourhoods. FRONTIERS IN BIOINFORMATICS 2021; 1:724127. [PMID: 36303786 PMCID: PMC9581049 DOI: 10.3389/fbinf.2021.724127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 10/04/2021] [Indexed: 11/30/2022] Open
Abstract
Single molecule localisation microscopy (SMLM) is a powerful tool that has revealed the spatial arrangement of cell surface signalling proteins, producing data of enormous complexity. The complexity is partly driven by the convolution of technical and biological signal components, and partly by the challenge of pooling information across many distinct cells. To address these two particular challenges, we have devised a novel algorithm called K-neighbourhood analysis (KNA), which emphasises the fact that each image can also be viewed as a composition of local neighbourhoods. KNA is based on a novel transformation, spatial neighbourhood principal component analysis (SNPCA), which is defined by the PCA of the normalised K-nearest neighbour vectors of a spatially random point pattern. Here, we use KNA to define a novel visualisation of individual images, to compare within and between groups of images and to investigate the preferential patterns of phosphorylation. This methodology is also highly flexible and can be used to augment existing clustering methods by providing clustering diagnostics as well as revealing substructure within microclusters. In summary, we have presented a highly flexible analysis tool that presents new conceptual possibilities in the analysis of SMLM images.
Collapse
Affiliation(s)
- Kristen Feher
- School of Medical Sciences, EMBL Australia Node in Single Molecule Science, University of New South Wales, Kensington, NSW, Australia
- ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney, NSW, Australia
| | - Matthew S. Graus
- School of Medical Sciences, EMBL Australia Node in Single Molecule Science, University of New South Wales, Kensington, NSW, Australia
- ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney, NSW, Australia
| | - Simao Coelho
- School of Medical Sciences, EMBL Australia Node in Single Molecule Science, University of New South Wales, Kensington, NSW, Australia
- ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney, NSW, Australia
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Megan V. Farrell
- School of Medical Sciences, EMBL Australia Node in Single Molecule Science, University of New South Wales, Kensington, NSW, Australia
- ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney, NSW, Australia
| | - Jesse Goyette
- School of Medical Sciences, EMBL Australia Node in Single Molecule Science, University of New South Wales, Kensington, NSW, Australia
- ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney, NSW, Australia
| | - Katharina Gaus
- School of Medical Sciences, EMBL Australia Node in Single Molecule Science, University of New South Wales, Kensington, NSW, Australia
- ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
6
|
Merkle PS, Trabjerg E, Hongjian S, Ferber M, Cuendet MA, Jørgensen TJD, Luescher I, Irving M, Zoete V, Michielin O, Rand KD. Probing the Conformational Dynamics of Affinity-Enhanced T Cell Receptor Variants upon Binding the Peptide-Bound Major Histocompatibility Complex by Hydrogen/Deuterium Exchange Mass Spectrometry. Biochemistry 2021; 60:859-872. [PMID: 33689297 DOI: 10.1021/acs.biochem.1c00035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Binding of the T cell receptor (TCR) to its cognate, peptide antigen-loaded major histocompatibility complex (pMHC) is a key interaction for triggering T cell activation and ultimately elimination of the target cell. Despite the importance of this interaction for cellular immunity, a comprehensive molecular understanding of TCR specificity and affinity is lacking. We conducted hydrogen/deuterium exchange mass spectrometry (HDX-MS) analyses of individual affinity-enhanced TCR variants and clinically relevant pMHC class I molecules (HLA-A*0201/NY-ESO-1157-165) to investigate the causality between increased binding affinity and conformational dynamics in TCR-pMHC complexes. Differential HDX-MS analyses of TCR variants revealed that mutations for affinity enhancement in TCR CDRs altered the conformational response of TCR to pMHC ligation. Improved pMHC binding affinity was in general observed to correlate with greater differences in HDX upon pMHC binding in modified TCR CDR loops, thereby providing new insights into the TCR-pMHC interaction. Furthermore, a specific point mutation in the β-CDR3 loop of the NY-ESO-1 TCR associated with a substantial increase in binding affinity resulted in a substantial change in pMHC binding kinetics (i.e., very slow kon, revealed by the detection of EX1 HDX kinetics), thus providing experimental evidence for a slow induced-fit binding mode. We also examined the conformational impact of pMHC binding on an unrelated TRAV12-2 gene-encoded TCR directed against the immunodominant MART-126-35 cancer antigen restricted by HLA-A*0201. Our findings provide a molecular basis for the observed TRAV12-2 gene bias in natural CD8+ T cell-based immune responses against the MART-1 antigen, with potential implications for general ligand discrimination and TCR cross-reactivity processes.
Collapse
MESH Headings
- Humans
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/chemistry
- Receptors, Antigen, T-Cell/immunology
- HLA-A2 Antigen/chemistry
- HLA-A2 Antigen/immunology
- HLA-A2 Antigen/metabolism
- HLA-A2 Antigen/genetics
- Protein Conformation
- Hydrogen Deuterium Exchange-Mass Spectrometry
- Protein Binding
- Peptides/chemistry
- Peptides/metabolism
- Peptides/immunology
- Major Histocompatibility Complex
- Antigens, Neoplasm/chemistry
- Antigens, Neoplasm/metabolism
- Antigens, Neoplasm/immunology
- Antigens, Neoplasm/genetics
- Peptide Fragments/chemistry
- Peptide Fragments/metabolism
- Peptide Fragments/genetics
- Peptide Fragments/immunology
- Deuterium Exchange Measurement
- Mutation
Collapse
Affiliation(s)
- Patrick S Merkle
- Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Esben Trabjerg
- Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Song Hongjian
- Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Mathias Ferber
- Swiss Institute of Bioinformatics, Bâtiment Génopode, UNIL Sorge, 1015 Lausanne, Switzerland
| | - Michel A Cuendet
- Swiss Institute of Bioinformatics, Bâtiment Génopode, UNIL Sorge, 1015 Lausanne, Switzerland
- Weill Cornell Medical College, 1300 York Avenue, New York, New York 10065, United States
| | - Thomas J D Jørgensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Immanuel Luescher
- Ludwig Branch for Cancer Research of the University of Lausanne, 8001 Zurich, Switzerland
| | - Melita Irving
- Swiss Institute of Bioinformatics, Bâtiment Génopode, UNIL Sorge, 1015 Lausanne, Switzerland
- Ludwig Branch for Cancer Research of the University of Lausanne, 8001 Zurich, Switzerland
| | - Vincent Zoete
- Swiss Institute of Bioinformatics, Bâtiment Génopode, UNIL Sorge, 1015 Lausanne, Switzerland
| | - Olivier Michielin
- Swiss Institute of Bioinformatics, Bâtiment Génopode, UNIL Sorge, 1015 Lausanne, Switzerland
| | - Kasper D Rand
- Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark
| |
Collapse
|
7
|
Mørch AM, Bálint Š, Santos AM, Davis SJ, Dustin ML. Coreceptors and TCR Signaling - the Strong and the Weak of It. Front Cell Dev Biol 2020; 8:597627. [PMID: 33178706 PMCID: PMC7596257 DOI: 10.3389/fcell.2020.597627] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 09/28/2020] [Indexed: 12/02/2022] Open
Abstract
The T-cell coreceptors CD4 and CD8 have well-characterized and essential roles in thymic development, but how they contribute to immune responses in the periphery is unclear. Coreceptors strengthen T-cell responses by many orders of magnitude - beyond a million-fold according to some estimates - but the mechanisms underlying these effects are still debated. T-cell receptor (TCR) triggering is initiated by the binding of the TCR to peptide-loaded major histocompatibility complex (pMHC) molecules on the surfaces of other cells. CD4 and CD8 are the only T-cell proteins that bind to the same pMHC ligand as the TCR, and can directly associate with the TCR-phosphorylating kinase Lck. At least three mechanisms have been proposed to explain how coreceptors so profoundly amplify TCR signaling: (1) the Lck recruitment model and (2) the pseudodimer model, both invoked to explain receptor triggering per se, and (3) two-step coreceptor recruitment to partially triggered TCRs leading to signal amplification. More recently it has been suggested that, in addition to initiating or augmenting TCR signaling, coreceptors effect antigen discrimination. But how can any of this be reconciled with TCR signaling occurring in the absence of CD4 or CD8, and with their interactions with pMHC being among the weakest specific protein-protein interactions ever described? Here, we review each theory of coreceptor function in light of the latest structural, biochemical, and functional data. We conclude that the oldest ideas are probably still the best, i.e., that their weak binding to MHC proteins and efficient association with Lck allow coreceptors to amplify weak incipient triggering of the TCR, without comprising TCR specificity.
Collapse
Affiliation(s)
- Alexander M. Mørch
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
- Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Štefan Bálint
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Ana Mafalda Santos
- Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Simon J. Davis
- Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Michael L. Dustin
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
8
|
Bassan D, Gozlan YM, Sharbi-Yunger A, Tzehoval E, Eisenbach L. Optimizing T-cell receptor avidity with somatic hypermutation. Int J Cancer 2019; 145:2816-2826. [PMID: 31381134 DOI: 10.1002/ijc.32612] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 07/11/2019] [Accepted: 07/22/2019] [Indexed: 12/22/2022]
Abstract
Adoptive transfer of T cells that have been genetically modified to express an antitumor T-cell receptor (TCR) is a potent immunotherapy, but only if TCR avidity is sufficiently high. Endogenous TCRs specific to shared (self) tumor-associated antigens (TAAs) have low affinity due to central tolerance. Therefore, for effective therapy, anti-TAA TCRs with higher and optimal avidity must be generated. Here, we describe a new in vitro system for directed evolution of TCR avidity using somatic hypermutation (SHM), a mechanism used in nature by B cells for antibody optimization. We identified 44 point mutations to the Pmel-1 TCR, specific for the H-2Db -gp10025-33 melanoma antigen. Primary T cells transduced with TCRs containing two or three of these mutations had enhanced activity in vitro. Furthermore, the triple-mutant TCR improved in vivo therapy of tumor-bearing mice, which exhibited improved survival, smaller tumors and delayed or no relapse. TCR avidity maturation by SHM may be an effective strategy to improve cancer immunotherapy.
Collapse
Affiliation(s)
- David Bassan
- Department of immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Yosi Meir Gozlan
- Department of immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Adi Sharbi-Yunger
- Department of immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Esther Tzehoval
- Department of immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Lea Eisenbach
- Department of immunology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
9
|
Pageon SV, Govendir MA, Kempe D, Biro M. Mechanoimmunology: molecular-scale forces govern immune cell functions. Mol Biol Cell 2019; 29:1919-1926. [PMID: 30088799 PMCID: PMC6232972 DOI: 10.1091/mbc.e18-02-0120] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Immune cell recognition of antigens is a pivotal process in initiating immune responses against injury, pathogens, and cancers. Breakthroughs over the past decade support a major role for mechanical forces in immune responses, laying the foundation for the emerging field of mechanoimmunology. In this Perspective, we discuss the mechanical forces acting at the level of ligand–receptor interactions and how they underpin receptor triggering, signal initiation, and immune cell activation. We also highlight the novel biophysical tools and advanced imaging techniques that have afforded us the recent progress in our understanding of the role of forces in immune cell functions.
Collapse
Affiliation(s)
- Sophie V Pageon
- EMBL Australia, Single Molecule Science Node, School of Medical Sciences, and
| | - Matt A Govendir
- EMBL Australia, Single Molecule Science Node, School of Medical Sciences, and
| | - Daryan Kempe
- EMBL Australia, Single Molecule Science Node, School of Medical Sciences, and
| | - Maté Biro
- EMBL Australia, Single Molecule Science Node, School of Medical Sciences, and.,ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
10
|
|
11
|
Glassman CR, Parrish HL, Lee MS, Kuhns MS. Reciprocal TCR-CD3 and CD4 Engagement of a Nucleating pMHCII Stabilizes a Functional Receptor Macrocomplex. Cell Rep 2018; 22:1263-1275. [PMID: 29386113 PMCID: PMC5813697 DOI: 10.1016/j.celrep.2017.12.104] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 12/07/2017] [Accepted: 12/27/2017] [Indexed: 12/24/2022] Open
Abstract
CD4+ T cells convert the time that T cell receptors (TCRs) interact with peptides embedded within class II major histocompatibility complex molecules (pMHCII) into signals that direct cell-fate decisions. In principle, TCRs relay information to intracellular signaling motifs of the associated CD3 subunits, while CD4 recruits the kinase Lck to those motifs upon coincident detection of pMHCII. But the mechanics by which this occurs remain enigmatic. In one model, the TCR and CD4 bind pMHCII independently, while in another, CD4 interacts with a composite surface formed by the TCR-CD3 complex bound to pMHCII. Here, we report that the duration of TCR-pMHCII interactions impact CD4 binding to MHCII. In turn, CD4 increases TCR confinement to pMHCII via reciprocal interactions involving membrane distal and proximal CD4 ectodomains. The data suggest that a precisely assembled macrocomplex functions to reliably convert TCR-pMHCII confinement into reproducible signals that orchestrate adaptive immunity.
Collapse
Affiliation(s)
- Caleb R Glassman
- Department of Immunobiology, The University of Arizona College of Medicine, Tucson, AZ 85724, USA
| | - Heather L Parrish
- Department of Immunobiology, The University of Arizona College of Medicine, Tucson, AZ 85724, USA
| | - Mark S Lee
- Department of Immunobiology, The University of Arizona College of Medicine, Tucson, AZ 85724, USA
| | - Michael S Kuhns
- Department of Immunobiology, The University of Arizona College of Medicine, Tucson, AZ 85724, USA; The BIO-5 Institute, The University of Arizona College of Medicine, Tucson, AZ 85724, USA; The Arizona Center on Aging, The University of Arizona College of Medicine, Tucson, AZ 85724, USA; The University of Arizona Cancer Center, The University of Arizona College of Medicine, Tucson, AZ 85724, USA.
| |
Collapse
|
12
|
An optimized single chain TCR scaffold relying on the assembly with the native CD3-complex prevents residual mispairing with endogenous TCRs in human T-cells. Oncotarget 2018; 7:21199-221. [PMID: 27028870 PMCID: PMC5008279 DOI: 10.18632/oncotarget.8385] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 03/10/2016] [Indexed: 12/29/2022] Open
Abstract
Immunotherapy of cancer envisions the adoptive transfer of T-cells genetically engineered with tumor-specific heterodimeric α/β T-cell receptors (TCRα/β). However, potential mispairing of introduced TCRα/β-chains with endogenous β/α-ones may evoke unpredictable autoimmune reactivities. A novel single chain (sc)TCR format relies on the fusion of the Vα-Linker-Vβ-fragment to the TCR Cβ-domain and coexpression of the TCR Cα-domain capable of recruiting the natural CD3-complex for full and hence, native T-cell signaling. Here, we tested whether such a gp100(280-288)- or p53(264-272) tumor antigen-specific scTCR is still prone to mispairing with TCRα. In a human Jurkat-76 T-cell line lacking endogenous TCRs, surface expression and function of a scTCR could be reconstituted by any cointroduced TCRα-chain indicating mispairing to take place on a molecular basis. In contrast, transduction into human TCRα/β-positive T-cells revealed that mispairing is largely reduced. Competition experiments in Jurkat-76 confirmed the preference of dcTCR to selfpair and to spare scTCR. This also allowed for the generation of dc/scTCR-modified cytomegalovirus/tumor antigen-bispecific T-cells to augment T-cell activation in CMV-infected tumor patients. Residual mispairing was prevented by strenghtening the Vα-Li-Vβ-fragment through the design of a novel disulfide bond between a Vα- and a linker-resident residue close to Vβ. Multimer-stainings, and cytotoxicity-, IFNγ-secretion-, and CFSE-proliferation-assays, the latter towards dendritic cells endogenously processing RNA-electroporated gp100 antigen proved the absence of hybrid scTCR/TCRα-formation without impairing avidity of scTCR/Cα in T-cells. Moreover, a fragile cytomegalovirus pp65(495-503)-specific scTCR modified this way acquired enhanced cytotoxicity. Thus, optimized scTCR/Cα inhibits residual TCR mispairing to accomplish safe adoptive immunotherapy for bulk endogenous TCRα/β-positive T-cells.
Collapse
|
13
|
Abstract
T cell receptors (TCRs) are protein complexes formed by six different polypeptides. In most T cells, TCRs are composed of αβ subunits displaying immunoglobulin-like variable domains that recognize peptide antigens associated with major histocompatibility complex molecules expressed on the surface of antigen-presenting cells. TCRαβ subunits are associated with the CD3 complex formed by the γ, δ, ε, and ζ subunits, which are invariable and ensure signal transduction. Here, we review how the expression and function of TCR complexes are orchestrated by several fine-tuned cellular processes that encompass (a) synthesis of the subunits and their correct assembly and expression at the plasma membrane as a single functional complex, (b) TCR membrane localization and dynamics at the plasma membrane and in endosomal compartments, (c) TCR signal transduction leading to T cell activation, and (d) TCR degradation. These processes balance each other to ensure efficient T cell responses to a variety of antigenic stimuli while preventing autoimmunity.
Collapse
Affiliation(s)
- Andrés Alcover
- Lymphocyte Cell Biology Unit, INSERM U1221, Department of Immunology, Institut Pasteur, Paris 75015, France; ,
| | - Balbino Alarcón
- Severo Ochoa Center for Molecular Biology, CSIC-UAM, Madrid 28049, Spain;
| | - Vincenzo Di Bartolo
- Lymphocyte Cell Biology Unit, INSERM U1221, Department of Immunology, Institut Pasteur, Paris 75015, France; ,
| |
Collapse
|
14
|
Singh NK, Riley TP, Baker SCB, Borrman T, Weng Z, Baker BM. Emerging Concepts in TCR Specificity: Rationalizing and (Maybe) Predicting Outcomes. THE JOURNAL OF IMMUNOLOGY 2017; 199:2203-2213. [PMID: 28923982 DOI: 10.4049/jimmunol.1700744] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 07/10/2017] [Indexed: 12/14/2022]
Abstract
T cell specificity emerges from a myriad of processes, ranging from the biological pathways that control T cell signaling to the structural and physical mechanisms that influence how TCRs bind peptides and MHC proteins. Of these processes, the binding specificity of the TCR is a key component. However, TCR specificity is enigmatic: TCRs are at once specific but also cross-reactive. Although long appreciated, this duality continues to puzzle immunologists and has implications for the development of TCR-based therapeutics. In this review, we discuss TCR specificity, emphasizing results that have emerged from structural and physical studies of TCR binding. We show how the TCR specificity/cross-reactivity duality can be rationalized from structural and biophysical principles. There is excellent agreement between predictions from these principles and classic predictions about the scope of TCR cross-reactivity. We demonstrate how these same principles can also explain amino acid preferences in immunogenic epitopes and highlight opportunities for structural considerations in predictive immunology.
Collapse
Affiliation(s)
- Nishant K Singh
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556.,Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556; and
| | - Timothy P Riley
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556.,Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556; and
| | - Sarah Catherine B Baker
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556.,Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556; and
| | - Tyler Borrman
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Brian M Baker
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556; .,Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556; and
| |
Collapse
|
15
|
Merkle PS, Irving M, Hongjian S, Ferber M, Jørgensen TJD, Scholten K, Luescher I, Coukos G, Zoete V, Cuendet MA, Michielin O, Rand KD. The T-Cell Receptor Can Bind to the Peptide-Bound Major Histocompatibility Complex and Uncomplexed β2-Microglobulin through Distinct Binding Sites. Biochemistry 2017; 56:3945-3961. [DOI: 10.1021/acs.biochem.7b00385] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Patrick S. Merkle
- Department
of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Melita Irving
- Swiss Institute of Bioinformatics, Bâtiment Génopode, UNIL Sorge, 1015 Lausanne, Switzerland
- Ludwig
Branch for Cancer Research, University of Lausanne, 1015 Lausanne, Switzerland
| | - Song Hongjian
- Department
of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Mathias Ferber
- Swiss Institute of Bioinformatics, Bâtiment Génopode, UNIL Sorge, 1015 Lausanne, Switzerland
| | - Thomas J. D. Jørgensen
- Department
of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | - Kirsten Scholten
- Ludwig
Branch for Cancer Research, University of Lausanne, 1015 Lausanne, Switzerland
| | - Immanuel Luescher
- Ludwig
Branch for Cancer Research, University of Lausanne, 1015 Lausanne, Switzerland
| | - George Coukos
- Ludwig
Branch for Cancer Research, University of Lausanne, 1015 Lausanne, Switzerland
| | - Vincent Zoete
- Swiss Institute of Bioinformatics, Bâtiment Génopode, UNIL Sorge, 1015 Lausanne, Switzerland
| | - Michel A. Cuendet
- Swiss Institute of Bioinformatics, Bâtiment Génopode, UNIL Sorge, 1015 Lausanne, Switzerland
- Department
of Physiology and Biophysics, Weill Cornell Medical College, 1300
York Avenue, New York, New
York 10065, United States
| | - Olivier Michielin
- Swiss Institute of Bioinformatics, Bâtiment Génopode, UNIL Sorge, 1015 Lausanne, Switzerland
| | - Kasper D. Rand
- Department
of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark
| |
Collapse
|
16
|
Bethune MT, Gee MH, Bunse M, Lee MS, Gschweng EH, Pagadala MS, Zhou J, Cheng D, Heath JR, Kohn DB, Kuhns MS, Uckert W, Baltimore D. Domain-swapped T cell receptors improve the safety of TCR gene therapy. eLife 2016; 5. [PMID: 27823582 PMCID: PMC5101000 DOI: 10.7554/elife.19095] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 10/11/2016] [Indexed: 12/17/2022] Open
Abstract
T cells engineered to express a tumor-specific αβ T cell receptor (TCR) mediate anti-tumor immunity. However, mispairing of the therapeutic αβ chains with endogenous αβ chains reduces therapeutic TCR surface expression and generates self-reactive TCRs. We report a general strategy to prevent TCR mispairing: swapping constant domains between the α and β chains of a therapeutic TCR. When paired, domain-swapped (ds)TCRs assemble with CD3, express on the cell surface, and mediate antigen-specific T cell responses. By contrast, dsTCR chains mispaired with endogenous chains cannot properly assemble with CD3 or signal, preventing autoimmunity. We validate this approach in cell-based assays and in a mouse model of TCR gene transfer-induced graft-versus-host disease. We also validate a related approach whereby replacement of αβ TCR domains with corresponding γδ TCR domains yields a functional TCR that does not mispair. This work enables the design of safer TCR gene therapies for cancer immunotherapy. DOI:http://dx.doi.org/10.7554/eLife.19095.001 T cells enable the immune system to recognize invading microbes and diseased cells while ignoring healthy cells. The ability of a T cell to recognize a specific microbe or diseased cell is determined by two proteins that pair to form its “T cell receptor.” The paired receptors are exported to the surface of the T cell, where they bind to infected or cancerous cells. Those T cells that produce receptors that bind healthy cells are eliminated during development. T cells can generally distinguish between the body’s own cells and the cells of invading bacteria or other microbes. However, cancer cells are more difficult to identify because they are similar to healthy cells. Efforts to develop therapies that enhance the immune system’s ability to recognize cancer cells have had only limited success. One successful approach – known as T cell receptor gene therapy – modifies T cells to destroy cancer cells by arming them with a cancer-specific T cell receptor. This technique produces T cells possessing two T cell receptors – the cancer-specific receptor and the one it had originally – so it is possible for proteins from the two receptors to mispair. This impedes the correct pairing of the cancer-specific T cell receptor, reducing the effectiveness of the therapy. More importantly, mispaired T cell receptors may cause the immune cells to attack healthy cells in the body, leading to autoimmune disease. To make T cell receptor gene therapy safe, the cancer-specific receptor must not mispair with the resident receptor. Here, Bethune et al. describe a new strategy to prevent T cell receptors from mispairing. The researchers altered the arrangement of particular regions in a cancer-specific T cell receptor to make a new receptor called a domain-swapped T cell receptor (dsTCR). Like normal T cell receptors, the dsTCRs were exported to the T cell surface and were able to interact with other proteins involved in immune responses. Furthermore, T cells armed with dsTCRs were able to kill cancer cells and prevent tumor growth in mice. Unlike other cancer-specific receptors, dsTCRs did not mispair with the resident T cell receptors in mouse or human cells, and did not cause autoimmune disease in mice. The findings of Bethune et al. show that the structure of the T cell receptor is unexpectedly robust, in that it still works even if it is modified. The next step is to study dsTCRs in more detail with the aim of optimizing them so that they might be used in human clinical trials in the future. DOI:http://dx.doi.org/10.7554/eLife.19095.002
Collapse
Affiliation(s)
- Michael T Bethune
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Marvin H Gee
- Program in Immunology, Stanford University School of Medicine, Stanford, United States
| | - Mario Bunse
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Mark S Lee
- Department of Immunobiology, University of Arizona, Tucson, United States.,The BIO5 Institute, University of Arizona, Tucson, United States
| | - Eric H Gschweng
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, United States
| | - Meghana S Pagadala
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Jing Zhou
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, United States
| | - Donghui Cheng
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, United States
| | - James R Heath
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, United States
| | - Donald B Kohn
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, United States
| | - Michael S Kuhns
- Department of Immunobiology, University of Arizona, Tucson, United States.,The BIO5 Institute, University of Arizona, Tucson, United States
| | - Wolfgang Uckert
- Max Delbrück Center for Molecular Medicine, Berlin, Germany.,Institute of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - David Baltimore
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| |
Collapse
|
17
|
A conserved αβ transmembrane interface forms the core of a compact T-cell receptor-CD3 structure within the membrane. Proc Natl Acad Sci U S A 2016; 113:E6649-E6658. [PMID: 27791034 DOI: 10.1073/pnas.1611445113] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The T-cell antigen receptor (TCR) is an assembly of eight type I single-pass membrane proteins that occupies a central position in adaptive immunity. Many TCR-triggering models invoke an alteration in receptor complex structure as the initiating event, but both the precise subunit organization and the pathway by which ligand-induced alterations are transferred to the cytoplasmic signaling domains are unknown. Here, we show that the receptor complex transmembrane (TM) domains form an intimately associated eight-helix bundle organized by a specific interhelical TCR TM interface. The salient features of this core structure are absolutely conserved between αβ and γδ TCR sequences and throughout vertebrate evolution, and mutations at key interface residues caused defects in the formation of stable TCRαβ:CD3δε:CD3γε:ζζ complexes. These findings demonstrate that the eight TCR-CD3 subunits form a compact and precisely organized structure within the membrane and provide a structural basis for further investigation of conformationally regulated models of transbilayer TCR signaling.
Collapse
|
18
|
Functional role of T-cell receptor nanoclusters in signal initiation and antigen discrimination. Proc Natl Acad Sci U S A 2016; 113:E5454-63. [PMID: 27573839 DOI: 10.1073/pnas.1607436113] [Citation(s) in RCA: 153] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Antigen recognition by the T-cell receptor (TCR) is a hallmark of the adaptive immune system. When the TCR engages a peptide bound to the restricting major histocompatibility complex molecule (pMHC), it transmits a signal via the associated CD3 complex. How the extracellular antigen recognition event leads to intracellular phosphorylation remains unclear. Here, we used single-molecule localization microscopy to quantify the organization of TCR-CD3 complexes into nanoscale clusters and to distinguish between triggered and nontriggered TCR-CD3 complexes. We found that only TCR-CD3 complexes in dense clusters were phosphorylated and associated with downstream signaling proteins, demonstrating that the molecular density within clusters dictates signal initiation. Moreover, both pMHC dose and TCR-pMHC affinity determined the density of TCR-CD3 clusters, which scaled with overall phosphorylation levels. Thus, TCR-CD3 clustering translates antigen recognition by the TCR into signal initiation by the CD3 complex, and the formation of dense signaling-competent clusters is a process of antigen discrimination.
Collapse
|
19
|
Glassman CR, Parrish HL, Deshpande NR, Kuhns MS. The CD4 and CD3δε Cytosolic Juxtamembrane Regions Are Proximal within a Compact TCR-CD3-pMHC-CD4 Macrocomplex. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2016; 196:4713-22. [PMID: 27183595 PMCID: PMC4875830 DOI: 10.4049/jimmunol.1502110] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 03/29/2016] [Indexed: 12/15/2022]
Abstract
TCRs relay information about peptides embedded within MHC molecules (pMHC) to the ITAMs of the associated CD3γε, CD3δε, and CD3ζζ signaling modules. CD4 then recruits the Src kinase p56(Lck) (Lck) to the TCR-CD3 complex to phosphorylate the ITAMs, initiate intracellular signaling, and drive CD4(+) T cell fate decisions. Whereas the six ITAMs of CD3ζζ are key determinants of T cell development, activation, and the execution of effector functions, multiple models predict that CD4 recruits Lck proximal to the four ITAMs of the CD3 heterodimers. We tested these models by placing FRET probes at the cytosolic juxtamembrane regions of CD4 and the CD3 subunits to evaluate their relationship upon pMHC engagement in mouse cell lines. The data are consistent with a compact assembly in which CD4 is proximal to CD3δε, CD3ζζ resides behind the TCR, and CD3γε is offset from CD3δε. These results advance our understanding of the architecture of the TCR-CD3-pMHC-CD4 macrocomplex and point to regions of high CD4-Lck + ITAM concentrations therein. The findings thus have implications for TCR signaling, as phosphorylation of the CD3 ITAMs by CD4-associated Lck is important for CD4(+) T cell fate decisions.
Collapse
Affiliation(s)
- Caleb R Glassman
- Department of Immunobiology, The University of Arizona College of Medicine, Tucson, AZ 85724
| | - Heather L Parrish
- Department of Immunobiology, The University of Arizona College of Medicine, Tucson, AZ 85724
| | - Neha R Deshpande
- Department of Immunobiology, The University of Arizona College of Medicine, Tucson, AZ 85724; The Arizona Center on Aging, The University of Arizona College of Medicine, Tucson, AZ 85724; and
| | - Michael S Kuhns
- Department of Immunobiology, The University of Arizona College of Medicine, Tucson, AZ 85724; The Arizona Center on Aging, The University of Arizona College of Medicine, Tucson, AZ 85724; and The BIO5 Institute, The University of Arizona College of Medicine, Tucson, AZ 85724
| |
Collapse
|
20
|
Natarajan A, Nadarajah V, Felsovalyi K, Wang W, Jeyachandran VR, Wasson RA, Cardozo T, Bracken C, Krogsgaard M. Structural Model of the Extracellular Assembly of the TCR-CD3 Complex. Cell Rep 2016; 14:2833-45. [PMID: 26997265 DOI: 10.1016/j.celrep.2016.02.081] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 12/24/2015] [Accepted: 02/21/2016] [Indexed: 11/29/2022] Open
Abstract
Antigen recognition of peptide-major histocompatibility complexes (pMHCs) by T cells, a key step in initiating adaptive immune responses, is performed by the T cell receptor (TCR) bound to CD3 heterodimers. However, the biophysical basis of the transmission of TCR-CD3 extracellular interaction into a productive intracellular signaling sequence remains incomplete. Here we used nuclear magnetic resonance (NMR) spectroscopy combined with mutational analysis and computational docking to derive a structural model of the extracellular TCR-CD3 assembly. In the inactivated state, CD3γε interacts with the helix 3 and helix 4-F strand regions of the TCR Cβ subunit, whereas CD3δε interacts with the F and C strand regions of the TCR Cα subunit in this model, placing the CD3 subunits on opposing sides of the TCR. This work identifies the molecular contacts between the TCR and CD3 subunits, identifying a physical basis for transmitting an activating signal through the complex.
Collapse
Affiliation(s)
- Aswin Natarajan
- Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016, USA
| | - Vidushan Nadarajah
- Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016, USA
| | - Klara Felsovalyi
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Wenjuan Wang
- Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016, USA
| | - Vivian R Jeyachandran
- Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016, USA
| | - Riley A Wasson
- Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016, USA
| | - Timothy Cardozo
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Clay Bracken
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065, USA
| | - Michelle Krogsgaard
- Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016, USA; Interdiciplinary Cooperative Melanoma Group, New York University School of Medicine, New York, NY 10016, USA; Department of Pathology, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
21
|
Paensuwan P, Hartl FA, Yousefi OS, Ngoenkam J, Wipa P, Beck-Garcia E, Dopfer EP, Khamsri B, Sanguansermsri D, Minguet S, Schamel WW, Pongcharoen S. Nck Binds to the T Cell Antigen Receptor Using Its SH3.1 and SH2 Domains in a Cooperative Manner, Promoting TCR Functioning. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2016; 196:448-458. [PMID: 26590318 DOI: 10.4049/jimmunol.1500958] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 10/23/2015] [Indexed: 11/19/2022]
Abstract
Ligand binding to the TCR causes a conformational change at the CD3 subunits to expose the CD3ε cytoplasmic proline-rich sequence (PRS). It was suggested that the PRS is important for TCR signaling and T cell activation. It has been shown that the purified, recombinant SH3.1 domain of the adaptor molecule noncatalytic region of tyrosine kinase (Nck) can bind to the exposed PRS of CD3ε, but the molecular mechanism of how full-length Nck binds to the TCR in cells has not been investigated so far. Using the in situ proximity ligation assay and copurifications, we show that the binding of Nck to the TCR requires partial phosphorylation of CD3ε, as it is based on two cooperating interactions. First, the SH3.1(Nck) domain has to bind to the nonphosphorylated and exposed PRS, that is, the first ITAM tyrosine has to be in the unphosphorylated state. Second, the SH2(Nck) domain has to bind to the second ITAM tyrosine in the phosphorylated state. Likewise, mutations of the SH3.1 and SH2 domains in Nck1 resulted in the loss of Nck1 binding to the TCR. Furthermore, expression of an SH3.1-mutated Nck impaired TCR signaling and T cell activation. Our data suggest that the exact pattern of CD3ε phosphorylation is critical for TCR functioning.
Collapse
Affiliation(s)
- Pussadee Paensuwan
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Frederike A Hartl
- Department of Molecular Immunology, Faculty of Biology, BIOSS Centre for Biological Signaling Studies and Centre of Chronic Immunodeficiency, University of Freiburg, Freiburg 79108, Germany
| | - O Sascha Yousefi
- Department of Molecular Immunology, Faculty of Biology, BIOSS Centre for Biological Signaling Studies and Centre of Chronic Immunodeficiency, University of Freiburg, Freiburg 79108, Germany; Spemann Graduate School of Biology and Medicine, Albert Ludwigs University Freiburg, Freiburg 79104, Germany
| | - Jatuporn Ngoenkam
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Piyamaporn Wipa
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Esmeralda Beck-Garcia
- Department of Molecular Immunology, Faculty of Biology, BIOSS Centre for Biological Signaling Studies and Centre of Chronic Immunodeficiency, University of Freiburg, Freiburg 79108, Germany; International Max Planck Research School for Molecular and Cellular Biology, Freiburg 79108, Germany
| | - Elaine P Dopfer
- Department of Molecular Immunology, Faculty of Biology, BIOSS Centre for Biological Signaling Studies and Centre of Chronic Immunodeficiency, University of Freiburg, Freiburg 79108, Germany
| | - Boonruang Khamsri
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Donruedee Sanguansermsri
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Susana Minguet
- Department of Molecular Immunology, Faculty of Biology, BIOSS Centre for Biological Signaling Studies and Centre of Chronic Immunodeficiency, University of Freiburg, Freiburg 79108, Germany
| | - Wolfgang W Schamel
- Department of Molecular Immunology, Faculty of Biology, BIOSS Centre for Biological Signaling Studies and Centre of Chronic Immunodeficiency, University of Freiburg, Freiburg 79108, Germany;
| | - Sutatip Pongcharoen
- Centre of Excellence in Medical Biotechnology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand; Research Center for Academic Excellence in Petroleum, Petrochemical and Advanced Materials, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand; and Department of Medicine, Faculty of Medicine, Naresuan University, Phitsanulok 65000, Thailand
| |
Collapse
|
22
|
Geometry Dynamics of α -Helices in Different Class I Major Histocompatibility Complexes. J Immunol Res 2015; 2015:173593. [PMID: 26649324 PMCID: PMC4651647 DOI: 10.1155/2015/173593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 09/30/2015] [Accepted: 09/30/2015] [Indexed: 01/05/2023] Open
Abstract
MHC α-helices form the antigen-binding cleft and are of particular interest for immunological reactions. To monitor these helices in molecular dynamics simulations, we applied a parsimonious fragment-fitting method to trace the axes of the α-helices. Each resulting axis was fitted by polynomials in a least-squares sense and the curvature integral was computed. To find the appropriate polynomial degree, the method was tested on two artificially modelled helices, one performing a bending movement and another a hinge movement. We found that second-order polynomials retrieve predefined parameters of helical motion with minimal relative error. From MD simulations we selected those parts of α-helices that were stable and also close to the TCR/MHC interface. We monitored the curvature integral, generated a ruled surface between the two MHC α-helices, and computed interhelical area and surface torsion, as they changed over time. We found that MHC α-helices undergo rapid but small changes in conformation. The curvature integral of helices proved to be a sensitive measure, which was closely related to changes in shape over time as confirmed by RMSD analysis. We speculate that small changes in the conformation of individual MHC α-helices are part of the intrinsic dynamics induced by engagement with the TCR.
Collapse
|
23
|
Lee MS, Glassman CR, Deshpande NR, Badgandi HB, Parrish HL, Uttamapinant C, Stawski PS, Ting AY, Kuhns MS. A Mechanical Switch Couples T Cell Receptor Triggering to the Cytoplasmic Juxtamembrane Regions of CD3ζζ. Immunity 2015; 43:227-39. [PMID: 26231119 PMCID: PMC4545397 DOI: 10.1016/j.immuni.2015.06.018] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 04/30/2015] [Accepted: 06/23/2015] [Indexed: 10/23/2022]
Abstract
The eight-subunit T cell receptor (TCR)-CD3 complex is the primary determinant for T cell fate decisions. Yet how it relays ligand-specific information across the cell membrane for conversion to chemical signals remains unresolved. We hypothesized that TCR engagement triggers a change in the spatial relationship between the associated CD3ζζ subunits at the junction where they emerge from the membrane into the cytoplasm. Using three in situ proximity assays based on ID-PRIME, FRET, and EPOR activity, we determined that the cytosolic juxtamembrane regions of the CD3ζζ subunits are spread apart upon assembly into the TCR-CD3 complex. TCR engagement then triggered their apposition. This mechanical switch resides upstream of the CD3ζζ intracellular motifs that initiate chemical signaling, as well as the polybasic stretches that regulate signal potentiation. These findings provide a framework from which to examine triggering events for activating immune receptors and other complex molecular machines.
Collapse
Affiliation(s)
- Mark S Lee
- Department of Immunobiology, The University of Arizona College of Medicine, Tucson, AZ 85724, USA
| | - Caleb R Glassman
- Department of Immunobiology, The University of Arizona College of Medicine, Tucson, AZ 85724, USA
| | - Neha R Deshpande
- Department of Immunobiology, The University of Arizona College of Medicine, Tucson, AZ 85724, USA; The Arizona Center on Aging, The University of Arizona College of Medicine, Tucson, AZ 85724, USA
| | - Hemant B Badgandi
- Department of Immunobiology, The University of Arizona College of Medicine, Tucson, AZ 85724, USA
| | - Heather L Parrish
- Department of Immunobiology, The University of Arizona College of Medicine, Tucson, AZ 85724, USA
| | - Chayasith Uttamapinant
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02138, USA
| | - Philipp S Stawski
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02138, USA
| | - Alice Y Ting
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02138, USA
| | - Michael S Kuhns
- Department of Immunobiology, The University of Arizona College of Medicine, Tucson, AZ 85724, USA; The Arizona Center on Aging, The University of Arizona College of Medicine, Tucson, AZ 85724, USA; The BIO-5 Institute, The University of Arizona College of Medicine, Tucson, AZ 85724, USA.
| |
Collapse
|
24
|
Parrish HL, Glassman CR, Keenen MM, Deshpande NR, Bronnimann MP, Kuhns MS. A Transmembrane Domain GGxxG Motif in CD4 Contributes to Its Lck-Independent Function but Does Not Mediate CD4 Dimerization. PLoS One 2015; 10:e0132333. [PMID: 26147390 PMCID: PMC4493003 DOI: 10.1371/journal.pone.0132333] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 06/14/2015] [Indexed: 12/24/2022] Open
Abstract
CD4 interactions with class II major histocompatibility complex (MHC) molecules are essential for CD4+ T cell development, activation, and effector functions. While its association with p56lck (Lck), a Src kinase, is important for these functions CD4 also has an Lck-independent role in TCR signaling that is incompletely understood. Here, we identify a conserved GGxxG motif in the CD4 transmembrane domain that is related to the previously described GxxxG motifs of other proteins and predicted to form a flat glycine patch in a transmembrane helix. In other proteins, these patches have been reported to mediate dimerization of transmembrane domains. Here we show that introducing bulky side-chains into this patch (GGxxG to GVxxL) impairs the Lck-independent role of CD4 in T cell activation upon TCR engagement of agonist and weak agonist stimulation. However, using Forster’s Resonance Energy Transfer (FRET), we saw no evidence that these mutations decreased CD4 dimerization either in the unliganded state or upon engagement of pMHC concomitantly with the TCR. This suggests that the CD4 transmembrane domain is either mediating interactions with an unidentified partner, or mediating some other function such as membrane domain localization that is important for its role in T cell activation.
Collapse
Affiliation(s)
- Heather L. Parrish
- Department of Immunobiology, The University of Arizona College of Medicine, Tucson, Arizona, United States of America
| | - Caleb R. Glassman
- Department of Immunobiology, The University of Arizona College of Medicine, Tucson, Arizona, United States of America
| | - Madeline M. Keenen
- Department of Immunobiology, The University of Arizona College of Medicine, Tucson, Arizona, United States of America
| | - Neha R. Deshpande
- Department of Immunobiology, The University of Arizona College of Medicine, Tucson, Arizona, United States of America
- The Arizona Center on Aging, The University of Arizona College of Medicine, Tucson, Arizona, United States of America
| | - Matthew P. Bronnimann
- Department of Immunobiology, The University of Arizona College of Medicine, Tucson, Arizona, United States of America
| | - Michael S. Kuhns
- Department of Immunobiology, The University of Arizona College of Medicine, Tucson, Arizona, United States of America
- The Arizona Center on Aging, The University of Arizona College of Medicine, Tucson, Arizona, United States of America
- The BIO-5 Institute, The University of Arizona College of Medicine, Tucson, Arizona, United States of America
- * E-mail:
| |
Collapse
|
25
|
He Y, Rangarajan S, Kerzic M, Luo M, Chen Y, Wang Q, Yin Y, Workman CJ, Vignali KM, Vignali DAA, Mariuzza RA, Orban J. Identification of the Docking Site for CD3 on the T Cell Receptor β Chain by Solution NMR. J Biol Chem 2015; 290:19796-805. [PMID: 26109064 DOI: 10.1074/jbc.m115.663799] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Indexed: 12/23/2022] Open
Abstract
The T cell receptor (TCR)-CD3 complex is composed of a genetically diverse αβ TCR heterodimer associated noncovalently with the invariant CD3 dimers CD3ϵγ, CD3ϵδ, and CD3ζζ. The TCR mediates peptide-MHC recognition, whereas the CD3 molecules transduce activation signals to the T cell. Although much is known about downstream T cell signaling pathways, the mechanism whereby TCR engagement by peptide-MHC initiates signaling is poorly understood. A key to solving this problem is defining the spatial organization of the TCR-CD3 complex and the interactions between its subunits. We have applied solution NMR methods to identify the docking site for CD3 on the β chain of a human autoimmune TCR. We demonstrate a low affinity but highly specific interaction between the extracellular domains of CD3 and the TCR constant β (Cβ) domain that requires both CD3ϵγ and CD3ϵδ subunits. The mainly hydrophilic docking site, comprising 9-11 solvent-accessible Cβ residues, is relatively small (∼400 Å(2)), consistent with the weak interaction between TCR and CD3 extracellular domains, and devoid of glycosylation sites. The docking site is centered on the αA and αB helices of Cβ, which are located at the base of the TCR. This positions CD3ϵγ and CD3ϵδ between the TCR and the T cell membrane, permitting us to distinguish among several possible models of TCR-CD3 association. We further correlate structural results from NMR with mutational data on TCR-CD3 interactions from cell-based assays.
Collapse
Affiliation(s)
- Yanan He
- From the W. M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland 20850, the Departments of Chemistry and Biochemistry and
| | - Sneha Rangarajan
- From the W. M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland 20850, Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742
| | - Melissa Kerzic
- From the W. M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland 20850
| | - Ming Luo
- From the W. M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland 20850, the Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China, and
| | - Yihong Chen
- From the W. M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland 20850
| | - Qian Wang
- From the W. M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland 20850
| | - Yiyuan Yin
- From the W. M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland 20850
| | - Creg J Workman
- the Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Kate M Vignali
- the Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Dario A A Vignali
- the Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Roy A Mariuzza
- From the W. M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland 20850, Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742,
| | - John Orban
- From the W. M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland 20850, the Departments of Chemistry and Biochemistry and
| |
Collapse
|
26
|
Beck-García K, Beck-García E, Bohler S, Zorzin C, Sezgin E, Levental I, Alarcón B, Schamel WW. Nanoclusters of the resting T cell antigen receptor (TCR) localize to non-raft domains. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:802-9. [DOI: 10.1016/j.bbamcr.2014.12.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 12/04/2014] [Accepted: 12/15/2014] [Indexed: 10/24/2022]
|
27
|
Abstract
αβ T-cell receptor (TCR) activation plays a crucial role for T-cell function. However, the TCR itself does not possess signaling domains. Instead, the TCR is noncovalently coupled to a conserved multisubunit signaling apparatus, the CD3 complex, that comprises the CD3εγ, CD3εδ, and CD3ζζ dimers. How antigen ligation by the TCR triggers CD3 activation and what structural role the CD3 extracellular domains (ECDs) play in the assembled TCR-CD3 complex remain unclear. Here, we use two complementary structural approaches to gain insight into the overall organization of the TCR-CD3 complex. Small-angle X-ray scattering of the soluble TCR-CD3εδ complex reveals the CD3εδ ECDs to sit underneath the TCR α-chain. The observed arrangement is consistent with EM images of the entire TCR-CD3 integral membrane complex, in which the CD3εδ and CD3εγ subunits were situated underneath the TCR α-chain and TCR β-chain, respectively. Interestingly, the TCR-CD3 transmembrane complex bound to peptide-MHC is a dimer in which two TCRs project outward from a central core composed of the CD3 ECDs and the TCR and CD3 transmembrane domains. This arrangement suggests a potential ligand-dependent dimerization mechanism for TCR signaling. Collectively, our data advance our understanding of the molecular organization of the TCR-CD3 complex, and provides a conceptual framework for the TCR activation mechanism.
Collapse
|
28
|
Klotzsch E, Stiegler J, Ben-Ishay E, Gaus K. Do mechanical forces contribute to nanoscale membrane organisation in T cells? BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1853:822-9. [PMID: 25447546 DOI: 10.1016/j.bbamcr.2014.10.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 09/26/2014] [Accepted: 10/25/2014] [Indexed: 12/23/2022]
Abstract
Mechanotransduction describes how a cell senses and interacts with its environment. The concept originated in adhesion biology where adhesion receptors, integrins, facilitate force transmission between the extracellular matrix and the intracellular actin cytoskeleton. Indeed, during any adhesive contacts, cells do exert mechanical force. Hence, the probing of the local environment by cells results in mechanical cues that contribute to cellular functions and cell fate decisions such as migration, proliferation, differentiation and apoptosis. On the molecular level, mechanical forces can rearrange proteins laterally within the membrane, regulate their activity by inducing conformational changes and probe the mechanical properties and bond strength of receptor-ligands. From this point of view, it appears surprising that molecular forces have been largely overlooked in membrane organisation and ligand discrimination processes in lymphocytes. During T cell activation, the T cell receptor recognises and distinguishes antigenic from benign endogenous peptides to initiate the reorganisation of membrane proteins into signalling clusters within the immunological synapse. In this review, we asked whether characteristics of fibroblast force sensing could be applied to immune cell antigen recognition and signalling, and outline state-of-the-art experimental strategies for studying forces in the context of membrane organisation. This article is part of a Special Issue entitled: Nanoscale membrane orgainisation and signalling.
Collapse
Affiliation(s)
- Enrico Klotzsch
- Centre for Vascular Research, ARC Centre of Excellence in Advanced Molecular Imaging and Australian Centre for Nanomedicine, University of New South Wales, Sydney, Australia.
| | - Johannes Stiegler
- Centre for Vascular Research, ARC Centre of Excellence in Advanced Molecular Imaging and Australian Centre for Nanomedicine, University of New South Wales, Sydney, Australia
| | - Eldad Ben-Ishay
- Centre for Vascular Research, ARC Centre of Excellence in Advanced Molecular Imaging and Australian Centre for Nanomedicine, University of New South Wales, Sydney, Australia
| | - Katharina Gaus
- Centre for Vascular Research, ARC Centre of Excellence in Advanced Molecular Imaging and Australian Centre for Nanomedicine, University of New South Wales, Sydney, Australia.
| |
Collapse
|
29
|
Govers C, Sebestyén Z, Roszik J, van Brakel M, Berrevoets C, Szöőr Á, Panoutsopoulou K, Broertjes M, Van T, Vereb G, Szöllősi J, Debets R. TCRs Genetically Linked to CD28 and CD3ε Do Not Mispair with Endogenous TCR Chains and Mediate Enhanced T Cell Persistence and Anti-Melanoma Activity. THE JOURNAL OF IMMUNOLOGY 2014; 193:5315-26. [DOI: 10.4049/jimmunol.1302074] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
30
|
TAO CHANGLI, SHAO HONGWEI, YUAN YIN, WANG HUI, ZHANG WENFENG, ZHENG WENLING, MA WENLI, HUANG SHULIN. Imaging of T-cell receptor fused to CD3ζ reveals enhanced expression and improved pairing in living cells. Int J Mol Med 2014; 34:849-55. [DOI: 10.3892/ijmm.2014.1839] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 06/27/2014] [Indexed: 11/06/2022] Open
|
31
|
Dopfer E, Hartl F, Oberg HH, Siegers G, Yousefi OS, Kock S, Fiala G, Garcillán B, Sandstrom A, Alarcón B, Regueiro J, Kabelitz D, Adams E, Minguet S, Wesch D, Fisch P, Schamel W. The CD3 Conformational Change in the γδ T Cell Receptor Is Not Triggered by Antigens but Can Be Enforced to Enhance Tumor Killing. Cell Rep 2014; 7:1704-1715. [DOI: 10.1016/j.celrep.2014.04.049] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Revised: 03/15/2014] [Accepted: 04/23/2014] [Indexed: 12/24/2022] Open
|
32
|
Abstract
T cells are key players of the mammalian adaptive immune system. They experience different mechanical microenvironments during their life cycle, from the thymus, secondary lymph organs, and peripheral tissues that are free of externally applied force, but display variable substrate rigidities to the blood and lymphatic circulation systems, where complicated hydrodynamic forces are present. Regardless of whether T cells are subject to external forces or generate their own internal forces, they respond and adapt to different biomechanical cues to modulate their adhesion, migration, trafficking, and triggering of immune functions through mechanical regulation of various molecules that bear force. These include adhesive receptors, immunoreceptors, motor proteins, cytoskeletal proteins, and their associated molecules. Here, we discuss the forces acting on various surface and cytoplasmic proteins of a T cell in different mechanical milieus. We review existing data on how force regulates protein conformational changes and interactions with counter molecules, including integrins, actin, and the T-cell receptor, and how each relates to T-cell functions.
Collapse
Affiliation(s)
- Wei Chen
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | | |
Collapse
|
33
|
Castro M, van Santen HM, Férez M, Alarcón B, Lythe G, Molina-París C. Receptor Pre-Clustering and T cell Responses: Insights into Molecular Mechanisms. Front Immunol 2014; 5:132. [PMID: 24817867 PMCID: PMC4012210 DOI: 10.3389/fimmu.2014.00132] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 03/15/2014] [Indexed: 11/13/2022] Open
Abstract
T cell activation, initiated by T cell receptor (TCR) mediated recognition of pathogen-derived peptides presented by major histocompatibility complex class I or II molecules (pMHC), shows exquisite specificity and sensitivity, even though the TCR-pMHC binding interaction is of low affinity. Recent experimental work suggests that TCR pre-clustering may be a mechanism via which T cells can achieve such high sensitivity. The unresolved stoichiometry of the TCR makes TCR-pMHC binding and TCR triggering, an open question. We formulate a mathematical model to characterize the pre-clustering of T cell receptors (TCRs) on the surface of T cells, motivated by the experimentally observed distribution of TCR clusters on the surface of naive and memory T cells. We extend a recently introduced stochastic criterion to compute the timescales of T cell responses, assuming that ligand-induced cross-linked TCR is the minimum signaling unit. We derive an approximate formula for the mean time to signal initiation. Our results show that pre-clustering reduces the mean activation time. However, additional mechanisms favoring the existence of clusters are required to explain the difference between naive and memory T cell responses. We discuss the biological implications of our results, and both the compatibility and complementarity of our approach with other existing mathematical models.
Collapse
Affiliation(s)
- Mario Castro
- Grupo de Dinámica No-Lineal and Grupo Interdisciplinar de Sistemas Complejos (GISC), Escuela Técnica Superior de Ingeniería (ICAI), Universidad Pontificia Comillas , Madrid , Spain
| | - Hisse M van Santen
- Departamento de Biología Celular e Inmunología, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid , Madrid , Spain
| | - María Férez
- Departamento de Biología Celular e Inmunología, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid , Madrid , Spain
| | - Balbino Alarcón
- Departamento de Biología Celular e Inmunología, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid , Madrid , Spain
| | - Grant Lythe
- Department of Applied Mathematics, School of Mathematics, University of Leeds , Leeds , UK
| | - Carmen Molina-París
- Department of Applied Mathematics, School of Mathematics, University of Leeds , Leeds , UK
| |
Collapse
|
34
|
Gross M, Ben-Califa N, McMullin MF, Percy MJ, Bento C, Cario H, Minkov M, Neumann D. Polycythaemia-inducing mutations in the erythropoietin receptor (EPOR): mechanism and function as elucidated by epidermal growth factor receptor-EPOR chimeras. Br J Haematol 2014; 165:519-28. [DOI: 10.1111/bjh.12782] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 12/27/2013] [Indexed: 12/27/2022]
Affiliation(s)
- Mor Gross
- Department of Cell and Developmental Biology; Sackler Faculty of Medicine; Tel-Aviv University; Tel Aviv Israel
| | - Nathalie Ben-Califa
- Department of Cell and Developmental Biology; Sackler Faculty of Medicine; Tel-Aviv University; Tel Aviv Israel
| | | | | | - Celeste Bento
- Department of Haematology; Centro Hospitalar e Universitário de Coimbra; Coimbra Portugal
| | - Holger Cario
- Department of Paediatrics and Adolescent Medicine; University Medical Centre Ulm; Ulm Germany
| | - Milen Minkov
- Department of Haematology/Oncology; St. Anna Children's Hospital; Medical University of Vienna; Vienna Austria
| | - Drorit Neumann
- Department of Cell and Developmental Biology; Sackler Faculty of Medicine; Tel-Aviv University; Tel Aviv Israel
| |
Collapse
|
35
|
Li Y, Yin Y, Mariuzza RA. Structural and biophysical insights into the role of CD4 and CD8 in T cell activation. Front Immunol 2013; 4:206. [PMID: 23885256 PMCID: PMC3717711 DOI: 10.3389/fimmu.2013.00206] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 07/08/2013] [Indexed: 11/19/2022] Open
Abstract
T cell receptors (TCRs) recognize peptides presented by MHC molecules (pMHC) on an antigen-presenting cell (APC) to discriminate foreign from self-antigens and initiate adaptive immune responses. In addition, T cell activation generally requires binding of this same pMHC to a CD4 or CD8 co-receptor, resulting in assembly of a TCR–pMHC–CD4 or TCR–pMHC–CD8 complex and recruitment of Lck via its association with the co-receptor. Here we review structural and biophysical studies of CD4 and CD8 interactions with MHC molecules and TCR–pMHC complexes. Crystal structures have been determined of CD8αα and CD8αβ in complex with MHC class I, of CD4 bound to MHC class II, and of a complete TCR–pMHC–CD4 ternary complex. Additionally, the binding of these co-receptors to pMHC and TCR–pMHC ligands has been investigated both in solution and in situ at the T cell–APC interface. Together, these studies have provided key insights into the role of CD4 and CD8 in T cell activation, and into how these co-receptors focus TCR on MHC to guide TCR docking on pMHC during thymic T cell selection.
Collapse
Affiliation(s)
- Yili Li
- W. M. Keck Laboratory for Structural Biology, Institute for Bioscience and Biotechnology Research, University of Maryland , Rockville, MD , USA ; Department of Cell Biology and Molecular Genetics, University of Maryland , College Park, MD , USA
| | | | | |
Collapse
|
36
|
Abstract
Despite the low affinity of the T-cell antigen receptor (TCR) for its peptide/major histocompatibility complex (pMHC) ligand, T cells are very sensitive to their antigens. This paradox can be resolved if we consider that the TCR may be organized into pre-existing oligomers or nanoclusters. Such structures could improve antigen recognition by increasing the functional affinity (avidity) of the TCR-pMHC interaction and by allowing cooperativity between individual TCRs. Up to approximately 20 TCRs become tightly apposed in these nanoclusters, often in a linear manner, and such structures could reflect a relatively generalized phenomenon: the non-random concentration of membrane receptors in specific areas of the plasma membrane known as protein islands. The association of TCRs into nanoclusters can explain the enhanced kinetics of the pMHC-TCR interaction in two dimensional versus three dimensional systems, but also their existence calls for a revision of the TCR triggering models based on pMHC-induced TCR clustering. Interestingly, the B-cell receptor and the FcεRI have also been shown to form nanoclusters, suggesting that the formation of pre-existing receptor oligomers could be widely used in the immune system.
Collapse
Affiliation(s)
- Wolfgang W A Schamel
- Department of Molecular Immunology, Institute of Biology III, Faculty of Biology, BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany
| | | |
Collapse
|
37
|
Kuhns MS, Badgandi HB. Piecing together the family portrait of TCR-CD3 complexes. Immunol Rev 2013; 250:120-43. [PMID: 23046126 DOI: 10.1111/imr.12000] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The pre-T-cell receptor (TCR)-, αβTCR-, and γδTCR-CD3 complexes are members of a family of modular biosensors that are responsible for driving T-cell development, activation, and effector functions. They inform essential checkpoint decisions by relaying key information from their ligand-binding modules (TCRs) to their signaling modules (CD3γε + CD3δε and CD3ζζ) and on to the intracellular signaling apparatus. Their actions shape the T-cell repertoire, as well as T-cell-mediated immunity; yet, the mechanisms that underlie their activity remain an enigma. As with any molecular machine, understanding how they function depends upon understanding how their parts fit and work together. In the 30 years since the initial biochemical and genetic characterizations of the αβTCR, the structure and function of the individual components of these family members have been extensively characterized. Cumulatively, this information has allowed us to piece together a portrait of the αβTCR-CD3 complex and outline the form of the remaining family members. Here we review the known structural and functional characteristics of the components of these TCR-CD3 complex family members. We then discuss how these data have informed our understanding of the architecture of the αβTCR-CD3 complex as well as their implications for the other family members. The intent is to provide a framework for considering: (i) how these thematically similar complexes diverge to execute their specific functions and (ii) how our knowledge of the form and function of these distinct family members can cross-inform our understanding of the other family members.
Collapse
Affiliation(s)
- Michael S Kuhns
- Department of Immunobiology, The University of Arizona College of Medicine, Tucson, USA.
| | | |
Collapse
|
38
|
Sharma S, Juffer AH. An atomistic model for assembly of transmembrane domain of T cell receptor complex. J Am Chem Soc 2013; 135:2188-97. [PMID: 23320396 DOI: 10.1021/ja308413e] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The T cell receptor (TCR) together with accessory cluster of differentiation 3 (CD3) molecules (TCR-CD3 complex) is a key component in the primary function of T cells. The nature of association of the transmembrane domains is of central importance to the assembly of the complex and is largely unknown. Using multiscale molecular modeling and simulations, we have investigated the structure and assembly of the TCRα-CD3ε-CD3δ transmembrane domains both in membrane and in micelle environments. We demonstrate that in a membrane environment the transmembrane basic residue of the TCR closely interacts with both of the transmembrane acidic residues of the CD3 dimer. In contrast, in a micelle the basic residue interacts with only one of the acidic residues. Simulations of a recent micellar nuclear magnetic resonance structure of the natural killer (NK) cell-activating NKG2C-DAP12-DAP12 trimer in a membrane further indicate that the environment significantly affects the way these trimers associate. Since the currently accepted model for transmembrane association is entirely based on a micellar structure, we propose a revised model for the association of transmembrane domains of the activating immune receptors in a membrane environment.
Collapse
Affiliation(s)
- Satyan Sharma
- Biocenter Oulu and Department of Biochemistry, University of Oulu, P.O. Box 3000, Oulu FI-90014, Finland
| | | |
Collapse
|
39
|
Wang JH, Reinherz EL. Revisiting the putative TCR Cα dimerization model through structural analysis. Front Immunol 2013; 4:16. [PMID: 23386853 PMCID: PMC3558723 DOI: 10.3389/fimmu.2013.00016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 01/08/2013] [Indexed: 12/18/2022] Open
Abstract
Despite major advances in T cell receptor (TCR) biology and structure, how peptide-MHC complex (pMHC) ligands trigger αβ TCR activation remains unresolved. Two views exist. One model postulates that monomeric TCR-pMHC ligation events are sufficient while a second proposes that TCR-TCR dimerization in cis via Cα domain interaction plus pMHC binding is critical. We scrutinized 22 known TCR/pMHC complex crystal structures, and did not find any predicted molecular Cα-Cα contacts in these crystals that would allow for physiological TCR dimerization. Moreover, the presence of conserved glycan adducts on the outer face of the Cα domain preclude the hypothesized TCR dimerization through the Cα domain. Observed functional consequences of Cα mutations are likely indirect, with TCR microclusters at the immunological synapse driven by TCR transmembrane/cytoplasmic interactions via signaling molecules, scaffold proteins, and/or cytoskeletal elements.
Collapse
Affiliation(s)
- Jia-Huai Wang
- Laboratory of Immunobiology, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical SchoolBoston, MA, USA
- Department of Pediatrics, Harvard Medical SchoolBoston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical SchoolBoston, MA, USA
| | - Ellis L. Reinherz
- Laboratory of Immunobiology, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical SchoolBoston, MA, USA
- Department of Medicine, Harvard Medical SchoolBoston, MA, USA
| |
Collapse
|
40
|
Abstract
It is increasingly recognized that cell signaling, as a chemical process, must be considered at the local, micrometer scale. Micro- and nanofabrication techniques provide access to these dimensions, with the potential to capture and manipulate the spatial complexity of intracellular signaling in experimental models. This review focuses on recent advances in adapting surface engineering for use with biomolecular systems that interface with cell signaling, particularly with respect to surfaces that interact with multiple receptor systems on individual cells. The utility of this conceptual and experimental approach is demonstrated in the context of epithelial cells and T lymphocytes, two systems whose ability to perform their physiological function is dramatically impacted by the convergence and balance of multiple signaling pathways.
Collapse
Affiliation(s)
- L.C. Kam
- Deparment of Biomedical Engineering, Columbia University, New York, NY 10027
| | - K. Shen
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114;
| | - M.L. Dustin
- Molecular Pathogenesis Program, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016;
| |
Collapse
|
41
|
Abstract
The recognition of peptide/MHC antigens by T-cells has continued to challenge the imagination of immunologists, biochemists, and cell biologists alike. This is at least in part because T-cell recognition connects a diversity of issues and transcends many scientific disciplines. A fundamental unsolved issue is how T-cells manage to detect even a single molecule of an agonist pMHC complex, which is vastly outnumbered by endogenous pMHCs, many of which involve the same MHC molecule. They do so although TCRs are cross-reactive and typically low in affinity when measured in isolation. Importantly, T-cell antigen recognition takes place within the contact zone between a T-cell and the antigen-presenting cell, termed the immunological synapse. This bimembrane structure sets the stage for the antigen-binding events and all subsequent molecular recognition events. There is increasing evidence that the molecular dynamics of receptor-ligand interactions are not only dependent on the intrinsic properties of the binding partners but also become transformed by cell biological parameters such as the geometrical constraints within the immune synapse, mechanical forces, and local molecular crowding. To appreciate the complete picture, we think a multidisciplinary approach is imperative, which includes genetics, biochemistry, and structure determination and also biophysical analyses and the latest molecular imaging techniques. Here, we review earlier pioneering work and also recent developments in the fascinating and interdisciplinary science of T-cell antigen recognition. In many ways, this work may present a useful "roadmap" for work in other systems of cell-cell recognition, which underlie many fundamental biological phenomenons of interest.
Collapse
|
42
|
Abstract
Using an elaborately evolved language of cytokines and chemokines as well as cell-cell interactions, the different components of the immune system communicate with each other and orchestrate a response (or wind one down). Immunological synapses are a key feature of the system in the ways in which they can facilitate and direct these responses. Studies analyzing the structure of an immune synapse as it forms between two cells have provided insight into how the stability and kinetics of this interaction ultimately affect the sensitivity, potency, and magnitude of a given response. Furthermore, we have gained an appreciation of how the immunological synapse provides directionality and contextual cues for downstream signaling and cellular decision-making. In this review, we discuss how using a variety of techniques, developed over the last decade, have allowed us to visualize and quantify key aspects of the dynamic synaptic interface and have furthered our understanding of their function. We describe some of the many characteristics of the immunological synapse that make it a vital part of intercellular communication and some of the questions that remain to be answered.
Collapse
Affiliation(s)
- Jianming Xie
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Cristina M. Tato
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - Mark M. Davis
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
- The Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
43
|
Rossy J, Williamson DJ, Benzing C, Gaus K. The integration of signaling and the spatial organization of the T cell synapse. Front Immunol 2012. [PMID: 23189081 PMCID: PMC3504718 DOI: 10.3389/fimmu.2012.00352] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Engagement of the T cell antigen receptor (TCR) triggers signaling pathways that lead to T cell selection, differentiation and clonal expansion. Superimposed onto the biochemical network is a spatial organization that describes individual receptor molecules, dimers, oligomers and higher order structures. Here we discuss recent findings and new concepts that may regulate TCR organization in naïve and memory T cells. A key question that has emerged is how antigen-TCR interactions encode spatial information to direct T cell activation and differentiation. Single molecule super-resolution microscopy may become an important tool in decoding receptor organization at the molecular level.
Collapse
Affiliation(s)
- Jérémie Rossy
- Centre for Vascular Research and Australian Centre for Nanomedicine, University of New South Wales Sydney, NSW, Australia
| | | | | | | |
Collapse
|
44
|
Wang JH, Reinherz EL. The structural basis of αβ T-lineage immune recognition: TCR docking topologies, mechanotransduction, and co-receptor function. Immunol Rev 2012; 250:102-19. [PMID: 23046125 PMCID: PMC3694212 DOI: 10.1111/j.1600-065x.2012.01161.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Self versus non-self discrimination is at the core of T-lymphocyte recognition. To this end, αβ T-cell receptors (TCRs) ligate 'foreign' peptides bound to major histocompatibility complex (MHC) class I or class II molecules (pMHC) arrayed on the surface of antigen-presenting cells (APCs). Since the discovery of TCRs approximately 30 years ago, considerable structural and functional data have detailed the molecular basis of their extraordinary ligand specificity and sensitivity in mediating adaptive T-cell immunity. This review focuses on the structural biology of the Fab-like TCRαβ clonotypic heterodimer and its unique features in conjunction with those of the associated CD3εγ and CD3εδ heterodimeric molecules, which, along with CD3ζζ homodimer, comprise the TCR complex in a stoichiometry of 1:1:1:1. The basis of optimized TCRαβ docking geometry on the pMHC linked to TCR mechanotransduction and required for T-cell signaling as well as CD4 and CD8 co-receptor function is detailed. A model of the TCR ectodomain complex including its connecting peptides suggests how force generated during T-cell immune surveillance and at the immunological synapse results in dynamic TCR quaternary change involving its heterodimeric components. Potential insights from the structural biology relevant to immunity and immunosuppression are revealed.
Collapse
MESH Headings
- Animals
- Antigen-Presenting Cells/cytology
- Antigen-Presenting Cells/immunology
- Antigen-Presenting Cells/metabolism
- Antigens/chemistry
- Antigens/immunology
- Antigens/metabolism
- CD3 Complex/chemistry
- CD3 Complex/immunology
- CD3 Complex/metabolism
- CD4-Positive T-Lymphocytes/cytology
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/cytology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Humans
- Major Histocompatibility Complex/immunology
- Mechanotransduction, Cellular
- Mice
- Models, Molecular
- Peptides/chemistry
- Peptides/immunology
- Peptides/metabolism
- Protein Conformation
- Protein Multimerization
- Receptors, Antigen, T-Cell, alpha-beta/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
Collapse
Affiliation(s)
- Jia-huai Wang
- Laboratory of Immunobiology and Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Ellis L. Reinherz
- Laboratory of Immunobiology and Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
45
|
Molnár E, Swamy M, Holzer M, Beck-García K, Worch R, Thiele C, Guigas G, Boye K, Luescher IF, Schwille P, Schubert R, Schamel WWA. Cholesterol and sphingomyelin drive ligand-independent T-cell antigen receptor nanoclustering. J Biol Chem 2012; 287:42664-74. [PMID: 23091059 DOI: 10.1074/jbc.m112.386045] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The T-cell antigen receptor (TCR) exists in monomeric and nanoclustered forms independently of antigen binding. Although the clustering is involved in the regulation of T-cell sensitivity, it is unknown how the TCR nanoclusters form. We show that cholesterol is required for TCR nanoclustering in T cells and that this clustering enhances the avidity but not the affinity of the TCR-antigen interaction. Investigating the mechanism of the nanoclustering, we found that radioactive photocholesterol specifically binds to the TCRβ chain in vivo. In order to reduce the complexity of cellular membranes, we used a synthetic biology approach and reconstituted the TCR in liposomes of defined lipid composition. Both cholesterol and sphingomyelin were required for the formation of TCR dimers in phosphatidylcholine-containing large unilamellar vesicles. Further, the TCR was localized in the liquid disordered phase in giant unilamellar vesicles. We propose a model in which cholesterol and sphingomyelin binding to the TCRβ chain causes TCR dimerization. The lipid-induced TCR nanoclustering enhances the avidity to antigen and thus might be involved in enhanced sensitivity of memory compared with naive T cells. Our work contributes to the understanding of the function of specific nonannular lipid-membrane protein interactions.
Collapse
Affiliation(s)
- Eszter Molnár
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Garcia KC. Reconciling views on T cell receptor germline bias for MHC. Trends Immunol 2012; 33:429-36. [PMID: 22771140 PMCID: PMC3983780 DOI: 10.1016/j.it.2012.05.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 05/13/2012] [Accepted: 05/13/2012] [Indexed: 01/25/2023]
Abstract
Whether MHC restriction by the T cell receptor (TCR) is a product of evolutionary pressures leading to germline-encoded 'rules of engagement' remains avidly debated. Structural results derived from analysis of TCR-peptide-MHC complexes appear to support a model of physical specificity between TCR germline V regions and MHC. Yet, some recent evidence suggests that thymic selection, and co-receptors may have misled us into thinking the TCR is exclusively MHC-specific, when in fact, TCRs can robustly engage non-MHC ligands when given the chance. Here, I propose that seemingly contradictory data and hypotheses for, and against, germline bias are, in fact, compatible and can be reconciled into a unifying model.
Collapse
Affiliation(s)
- K Christopher Garcia
- Howard Hughes Medical Institute, Department of Molecular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
47
|
Kuhns MS, Davis MM. TCR Signaling Emerges from the Sum of Many Parts. Front Immunol 2012; 3:159. [PMID: 22737151 PMCID: PMC3381686 DOI: 10.3389/fimmu.2012.00159] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2012] [Accepted: 05/27/2012] [Indexed: 11/30/2022] Open
Abstract
“How does T cell receptor signaling begin?” Answering this question requires an understanding of how the parts of the molecular machinery that mediates this process fit and work together. Ultimately this molecular architecture must (i) trigger the relay of information from the TCR-pMHC interface to the signaling substrates of the CD3 molecules and (ii) bring the kinases that modify these substrates in close proximity to interact, initiate, and sustain signaling. In this contribution we will discuss advances of the last decade that have increased our understanding of the complex machinery and interactions that underlie this type of signaling.
Collapse
Affiliation(s)
- Michael S Kuhns
- Department of Immunobiology, The University of Arizona College of Medicine Tucson, AZ, USA
| | | |
Collapse
|
48
|
Hawse WF, Champion MM, Joyce MV, Hellman LM, Hossain M, Ryan V, Pierce BG, Weng Z, Baker BM. Cutting edge: Evidence for a dynamically driven T cell signaling mechanism. THE JOURNAL OF IMMUNOLOGY 2012; 188:5819-23. [PMID: 22611242 DOI: 10.4049/jimmunol.1200952] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
T cells use the αβ TCR to bind peptides presented by MHC proteins (pMHC) on APCs. Formation of a TCR-pMHC complex initiates T cell signaling via a poorly understood process, potentially involving changes in oligomeric state, altered interactions with CD3 subunits, and mechanical stress. These mechanisms could be facilitated by binding-induced changes in the TCR, but the nature and extent of any such alterations are unclear. Using hydrogen/deuterium exchange, we demonstrate that ligation globally rigidifies the TCR, which via entropic and packing effects will promote associations with neighboring proteins and enhance the stability of existing complexes. TCR regions implicated in lateral associations and signaling are particularly affected. Computational modeling demonstrated a high degree of dynamic coupling between the TCR constant and variable domains that is dampened upon ligation. These results raise the possibility that TCR triggering could involve a dynamically driven, allosteric mechanism.
Collapse
Affiliation(s)
- William F Hawse
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Irving M, Zoete V, Hebeisen M, Schmid D, Baumgartner P, Guillaume P, Romero P, Speiser D, Luescher I, Rufer N, Michielin O. Interplay between T cell receptor binding kinetics and the level of cognate peptide presented by major histocompatibility complexes governs CD8+ T cell responsiveness. J Biol Chem 2012; 287:23068-78. [PMID: 22549784 DOI: 10.1074/jbc.m112.357673] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Through a rational design approach, we generated a panel of HLA-A*0201/NY-ESO-1(157-165)-specific T cell receptors (TCR) with increasing affinities of up to 150-fold from the wild-type TCR. Using these TCR variants which extend just beyond the natural affinity range, along with an extreme supraphysiologic one having 1400-fold enhanced affinity, and a low-binding one, we sought to determine the effect of TCR binding properties along with cognate peptide concentration on CD8(+) T cell responsiveness. Major histocompatibility complexes (MHC) expressed on the surface of various antigen presenting cells were peptide-pulsed and used to stimulate human CD8(+) T cells expressing the different TCR via lentiviral transduction. At intermediate peptide concentration we measured maximum cytokine/chemokine secretion, cytotoxicity, and Ca(2+) flux for CD8(+) T cells expressing TCR within a dissociation constant (K(D)) range of ∼1-5 μM. Under these same conditions there was a gradual attenuation in activity for supraphysiologic affinity TCR with K(D) < ∼1 μM, irrespective of CD8 co-engagement and of half-life (t(1/2) = ln 2/k(off)) values. With increased peptide concentration, however, the activity levels of CD8(+) T cells expressing supraphysiologic affinity TCR were gradually restored. Together our data support the productive hit rate model of T cell activation arguing that it is not the absolute number of TCR/pMHC complexes formed at equilibrium, but rather their productive turnover, that controls levels of biological activity. Our findings have important implications for various immunotherapies under development such as adoptive cell transfer of TCR-engineered CD8(+) T cells, as well as for peptide vaccination strategies.
Collapse
Affiliation(s)
- Melita Irving
- Division of Experimental Oncology, Multidisciplinary Oncology Center (CePO), Lausanne, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Fernandes RA, Shore DA, Vuong MT, Yu C, Zhu X, Pereira-Lopes S, Brouwer H, Fennelly JA, Jessup CM, Evans EJ, Wilson IA, Davis SJ. T cell receptors are structures capable of initiating signaling in the absence of large conformational rearrangements. J Biol Chem 2012; 287:13324-35. [PMID: 22262845 PMCID: PMC3339974 DOI: 10.1074/jbc.m111.332783] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 01/10/2012] [Indexed: 12/18/2022] Open
Abstract
Native and non-native ligands of the T cell receptor (TCR), including antibodies, have been proposed to induce signaling in T cells via intra- or intersubunit conformational rearrangements within the extracellular regions of TCR complexes. We have investigated whether any signatures can be found for such postulated structural changes during TCR triggering induced by antibodies, using crystallographic and mutagenesis-based approaches. The crystal structure of murine CD3ε complexed with the mitogenic anti-CD3ε antibody 2C11 enabled the first direct structural comparisons of antibody-liganded and unliganded forms of CD3ε from a single species, which revealed that antibody binding does not induce any substantial rearrangements within CD3ε. Saturation mutagenesis of surface-exposed CD3ε residues, coupled with assays of antibody-induced signaling by the mutated complexes, suggests a new configuration for the complex within which CD3ε is highly exposed and reveals that no large new CD3ε interfaces are required to form during antibody-induced signaling. The TCR complex therefore appears to be a structure that is capable of initiating intracellular signaling in T cells without substantial structural rearrangements within or between the component subunits. Our findings raise the possibility that signaling by native ligands might also be initiated in the absence of large structural rearrangements in the receptor.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/immunology
- CD3 Complex/chemistry
- CD3 Complex/genetics
- CD3 Complex/immunology
- Crystallography, X-Ray
- Dimerization
- Epitopes, T-Lymphocyte/immunology
- Humans
- Immunoglobulin Fab Fragments/immunology
- Jurkat Cells
- Mice
- Mutagenesis, Site-Directed
- Protein Conformation
- Protein Structure, Tertiary
- Receptors, Antigen, T-Cell/chemistry
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Signal Transduction/immunology
- Structure-Activity Relationship
Collapse
Affiliation(s)
- Ricardo A. Fernandes
- From the Nuffield Department of Clinical Medicine and Medical Research Council Human Immunology Unit, The University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DU, United Kingdom and
| | - David A. Shore
- From the Nuffield Department of Clinical Medicine and Medical Research Council Human Immunology Unit, The University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DU, United Kingdom and
| | - Mai T. Vuong
- From the Nuffield Department of Clinical Medicine and Medical Research Council Human Immunology Unit, The University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DU, United Kingdom and
| | - Chao Yu
- From the Nuffield Department of Clinical Medicine and Medical Research Council Human Immunology Unit, The University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DU, United Kingdom and
| | - Xueyong Zhu
- the Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037
| | - Selma Pereira-Lopes
- From the Nuffield Department of Clinical Medicine and Medical Research Council Human Immunology Unit, The University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DU, United Kingdom and
| | - Heather Brouwer
- From the Nuffield Department of Clinical Medicine and Medical Research Council Human Immunology Unit, The University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DU, United Kingdom and
| | - Janet A. Fennelly
- From the Nuffield Department of Clinical Medicine and Medical Research Council Human Immunology Unit, The University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DU, United Kingdom and
| | - Claire M. Jessup
- From the Nuffield Department of Clinical Medicine and Medical Research Council Human Immunology Unit, The University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DU, United Kingdom and
| | - Edward J. Evans
- From the Nuffield Department of Clinical Medicine and Medical Research Council Human Immunology Unit, The University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DU, United Kingdom and
| | - Ian A. Wilson
- the Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037
| | - Simon J. Davis
- From the Nuffield Department of Clinical Medicine and Medical Research Council Human Immunology Unit, The University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DU, United Kingdom and
| |
Collapse
|