1
|
Gaballa JM, Valdez C, Mack DG, Minhajuddin F, Raza M, Mohammad TA, Martin AK, Getahun A, Dinarello CA, Fontenot AP, Atif SM. Interleukin-1 signaling and CD4 + T cells control B cell recruitment to the lungs in chronic beryllium disease. Front Immunol 2025; 16:1479348. [PMID: 39935485 PMCID: PMC11810750 DOI: 10.3389/fimmu.2025.1479348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 01/06/2025] [Indexed: 02/13/2025] Open
Abstract
Chronic beryllium disease (CBD) is a debilitating pulmonary disorder that occurs due to persistent exposure to beryllium (Be) particles in the workplace. Be-exposure causes activation of the innate immune system, resulting in the secretion of interleukins and chemokines that drive the accumulation of B and T cells in the lungs. However, the mechanisms by which innate molecules influence the recruitment of B cells and B cell-mediated protection in CBD are poorly understood. In this study, we employed multiple approaches to examine the role of innate immune signaling and CD4+ T cells in B cell recruitment and function in the lungs. We show that the absence or blocking of IL-1R1 signaling prevents the recruitment of B cells to the lungs of BeO-exposed mice. Additionally, we show that B cell recruitment to the lungs depends on the chemokine receptor, CXCR5, and CD4+ T cells. In BeO-exposed mice, lung B cells down-regulate IgM but showed an increased IgD and CD44 surface expression. Further, RNA sequencing of pulmonary tissue-specific B cells in CBD revealed distinct gene signatures compared to splenic B cells, with increased expression of pathways involved in antigen presentation, tight junction interactions, and interferon signaling. Overall, our study shows that B cell recruitment and aggregate formation during CBD depend on sequential activation of innate and adaptive immune responses.
Collapse
MESH Headings
- Animals
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- Mice
- Signal Transduction/immunology
- Lung/immunology
- Lung/pathology
- Lung/metabolism
- Berylliosis/immunology
- Berylliosis/metabolism
- Berylliosis/pathology
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- Chronic Disease
- Mice, Inbred C57BL
- Receptors, Interleukin-1 Type I/genetics
- Receptors, Interleukin-1 Type I/metabolism
- Receptors, Interleukin-1 Type I/immunology
- Mice, Knockout
- Receptors, CXCR5/metabolism
- Receptors, CXCR5/genetics
- Receptors, CXCR5/immunology
- Beryllium
- Immunity, Innate
- Disease Models, Animal
Collapse
Affiliation(s)
- Joseph M. Gaballa
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Caley Valdez
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Douglas G. Mack
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Faiz Minhajuddin
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Masoom Raza
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Tabrez A. Mohammad
- Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Allison K. Martin
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Andrew Getahun
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Charles A. Dinarello
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Andrew P. Fontenot
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Shaikh M. Atif
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
2
|
Mack SJ, Single RM, Solberg OD, Thomson G, Erlich HA. Population genetic dissection of HLA-DPB1 amino acid polymorphism to infer selection. Hum Immunol 2024; 85:111151. [PMID: 39413638 PMCID: PMC11827675 DOI: 10.1016/j.humimm.2024.111151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/02/2024] [Accepted: 10/01/2024] [Indexed: 10/18/2024]
Abstract
Although allele frequency data for most HLA loci provide strong evidence for balancing selection at the allele level, the DPB1 locus is a notable exception, with allele frequencies compatible with neutral evolution (genetic drift) or directional selection in most populations. This discrepancy is especially interesting as evidence for balancing selection has been seen at the nucleotide and amino acid (AA) sequence levels for DPB1. We describe methods used to examine the global distribution of DPB1 alleles and their constituent AA sequences. These methods allow investigation of the influence of natural selection in shaping DPβ diversity in a hierarchical fashion for DPB1 alleles, all polymorphic DPB1 exon 2-encoded AA positions, as well as all pairs and trios of these AA positions. In addition, we describe how asymmetric linkage disequilibrium for all DPB1 exon 2-encoded AA pairs can be used to complement other methods. Application of these methods provides strong evidence for the operation of balancing selection on AA positions 56, 85-87, 36, 55 and 84 (listed in decreasing order of the strength of selection), but no evidence for balancing selection on DPB1 alleles.
Collapse
Affiliation(s)
- Steven J Mack
- Department of Pediatrics, University of California, San Francisco, Oakland, CA, United States.
| | - Richard M Single
- Department of Mathematics and Statistics, University of Vermont, Burlington, VT, United States
| | - Owen D Solberg
- Bioinformatics and Biostatistics, Monogram Biosciences, South San Francisco, CA, United States
| | - Glenys Thomson
- Department of Integrative Biology, University of California, Berkeley, CA, United States
| | - Henry A Erlich
- Center for Genetics, Children's Hospital & Research Center Oakland, Oakland, CA, United States
| |
Collapse
|
3
|
Single RM, Mack SJ, Solberg OD, Thomson G, Erlich HA. Natural Selection on HLA-DPB1 Amino Acids Operates Primarily on DP Serologic Categories. Hum Immunol 2024; 85:111153. [PMID: 39461275 PMCID: PMC12022158 DOI: 10.1016/j.humimm.2024.111153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
The DPB1 locus is notable among the classical HLA loci in that allele frequencies at this locus are consistent with genetic drift, whereas the frequencies of specific DPβ amino acids are consistent with the action of balancing selection. We investigated the influence of natural selection in shaping the diversity of three functional categories of DPB1 diversity defined by specific amino acid motifs, DPB1 T-cell epitopes, DPB1 supertypes and DP1-DP4 serologic categories (SCs), via Ewens-Watterson (EW) selective neutrality and asymmetric Linkage Disequilibrium (ALD) analyses in a worldwide sample of 136 populations. These EW analyses provide strong evidence for the operation of balancing selection on DP SCs, but no evidence for balancing selection on T-cell epitopes or supertypes. We further investigated the global distribution of SCs. Each SC is common in a different region of the world, with the DP1 SC most common in Southeast Asia and Oceania, the DP2 SC in North and South America, the DP3 SC in South America, and the DP4 SC in Europe. The DP2 SC is present in all populations, while 14% of populations are missing at least one DP1, DP3, or DP4 SC. We observed consistent DPA1∼DP SC haplotype associations across 10 populations from five global regions, and found that asymmetric linkage disequilibrium (LD) between the DPB1 locus and the four most-common DPA1 alleles (DPA1*01:03, *02:01, *02:02 and *03:01) is determined by variation at DPβ AA positions 85-87. These positions are in LD with both DPα positions 31 and 50. We conclude from these EW analyses that natural selection is primarily operating to maintain population-level diversity of DP SCs, rather than DPB1 alleles or other functional categories of DPB1 diversity.
Collapse
Affiliation(s)
- Richard M Single
- Department of Mathematics and Statistics, University of Vermont, Burlington, VT, United States
| | - Steven J Mack
- Department of Pediatrics, University of California, San Francisco, Oakland, CA, United States.
| | - Owen D Solberg
- Bioinformatics and Biostatistics, Monogram Biosciences, South San Francisco, CA, United States
| | - Glenys Thomson
- Department of Integrative Biology, University of California, Berkeley, CA, United States
| | - Henry A Erlich
- Center for Genetics, Children's Hospital & Research Center Oakland, Oakland, CA, United States
| |
Collapse
|
4
|
Zhong S, Hu M, Zhang L, Li H, Zhang Q, Ru X, Wang LA. Leaching behavior and kinetics of beryllium in beryllium-containing sludge (BCS). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 358:124497. [PMID: 38964645 DOI: 10.1016/j.envpol.2024.124497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/14/2024] [Accepted: 07/02/2024] [Indexed: 07/06/2024]
Abstract
Beryllium-containing sludge (BCS) is a byproduct of the physicochemical treatment of beryllium smelting wastewater. The pollutant element beryllium within BCS is highly unstable and extremely toxic, characterized by its small ionic radius and low charge density, resulting in a high risk of leaching and migration. This study is the first to investigate the leaching behavior, influencing mechanisms, and kinetic processes of beryllium in BCS under various environmental conditions. The results indicate that, under national standard conditions, beryllium exhibits a rapid leaching phase within the first 5 h, which then stabilizes after 10 h, with the total leached content significantly exceeding the leaching toxicity identification standards. Under mildly acidic (pH ≤ 5) or highly alkaline (pH = 14) conditions, beryllium demonstrates pronounced leaching and migration behaviors. Notably, in acidic conditions, the leaching rate exceeds 80% within 5 h. Combining the treatment process of beryllium-containing wastewater with analytical methods such as SEM, XPS, ToF-SIMS, and FTIR, it is revealed that due to the heterogeneous nature of BCS, the particle aggregates dissociate over time under acidic conditions. The particle surfaces become increasingly rough, leading to dissolution and the emergence of more reactive sites, resulting in a high proportion of beryllium leaching. Under these conditions, the gradual reaction of Be(OH)2 in BCS to form soluble Be2+ and its hydrolytic complexes is identified as the primary mechanism for extensive beryllium migration. The process encounters minimal diffusion resistance and is classified as reaction-controlled. In acidic conditions with pH = 4, the leaching rate of beryllium significantly increases with rising temperature. The leaching kinetics equation is [(1-x)-0.44]=e(18.26-53050RT)·t, with an apparent activation energy of 53.05 kJ mol-1.
Collapse
Affiliation(s)
- Shan Zhong
- College of Life Sciences, Guilin University of Electronic Technology, 541004, PR China.
| | - Min Hu
- College of Life Sciences, Guilin University of Electronic Technology, 541004, PR China.
| | - Lishan Zhang
- College of Life Sciences, Guilin University of Electronic Technology, 541004, PR China.
| | - Huifang Li
- College of Life Sciences, Guilin University of Electronic Technology, 541004, PR China.
| | - Qian Zhang
- College of Life Sciences, Guilin University of Electronic Technology, 541004, PR China.
| | - Xuan Ru
- College of Life Sciences, Guilin University of Electronic Technology, 541004, PR China.
| | - Li Ao Wang
- School of Resource and Safety Engineeing, Chongqing University, Chongqing, 40044, PR China.
| |
Collapse
|
5
|
Hong J, Zhong L, Liu L, Wu Q, Zhang W, Chen K, Wei D, Sun H, Zhou X, Zhang X, Kang YF, Huang Y, Chen J, Wang G, Zhou Y, Chen Y, Feng QS, Yu H, Li S, Zeng MS, Zeng YX, Xu M, Zheng Q, Chen Y, Zhang X, Xia N. Non-overlapping epitopes on the gHgL-gp42 complex for the rational design of a triple-antibody cocktail against EBV infection. Cell Rep Med 2023; 4:101296. [PMID: 37992686 PMCID: PMC10694767 DOI: 10.1016/j.xcrm.2023.101296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 06/24/2023] [Accepted: 10/26/2023] [Indexed: 11/24/2023]
Abstract
Epstein-Barr virus (EBV) is closely associated with cancer, multiple sclerosis, and post-acute coronavirus disease 2019 (COVID-19) sequelae. There are currently no approved therapeutics or vaccines against EBV. It is noteworthy that combining multiple EBV glycoproteins can elicit potent neutralizing antibodies (nAbs) against viral infection, suggesting possible synergistic effects. Here, we characterize three nAbs (anti-gp42 5E3, anti-gHgL 6H2, and anti-gHgL 10E4) targeting different glycoproteins of the gHgL-gp42 complex. Two antibody cocktails synergistically neutralize infection in B cells (5E3+6H2+10E4) and epithelial cells (6H2+10E4) in vitro. Moreover, 5E3 alone and the 5E3+6H2+10E4 cocktail confer potent in vivo protection against lethal EBV challenge in humanized mice. The cryo-EM structure of a heptatomic gHgL-gp42 immune complex reveals non-overlapping epitopes of 5E3, 6H2, and 10E4 on the gHgL-gp42 complex. Structural and functional analyses highlight different neutralization mechanisms for each of the three nAbs. In summary, our results provide insight for the rational design of therapeutics or vaccines against EBV infection.
Collapse
Affiliation(s)
- Junping Hong
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Research Unit of Frontier Technology of Structural Vaccinology of the Chinese Academy of Medical Sciences, Xiang An Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361005, China; Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Ling Zhong
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Liqin Liu
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Research Unit of Frontier Technology of Structural Vaccinology of the Chinese Academy of Medical Sciences, Xiang An Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361005, China
| | - Qian Wu
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Research Unit of Frontier Technology of Structural Vaccinology of the Chinese Academy of Medical Sciences, Xiang An Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361005, China
| | - Wanlin Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Kaiyun Chen
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Research Unit of Frontier Technology of Structural Vaccinology of the Chinese Academy of Medical Sciences, Xiang An Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361005, China
| | - Dongmei Wei
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Research Unit of Frontier Technology of Structural Vaccinology of the Chinese Academy of Medical Sciences, Xiang An Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361005, China
| | - Hui Sun
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Research Unit of Frontier Technology of Structural Vaccinology of the Chinese Academy of Medical Sciences, Xiang An Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361005, China
| | - Xiang Zhou
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Xinyu Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Yin-Feng Kang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Yang Huang
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Research Unit of Frontier Technology of Structural Vaccinology of the Chinese Academy of Medical Sciences, Xiang An Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361005, China
| | - Junyu Chen
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Research Unit of Frontier Technology of Structural Vaccinology of the Chinese Academy of Medical Sciences, Xiang An Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361005, China
| | - Guosong Wang
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Research Unit of Frontier Technology of Structural Vaccinology of the Chinese Academy of Medical Sciences, Xiang An Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361005, China
| | - Yan Zhou
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Yanhong Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Qi-Sheng Feng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Hai Yu
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Research Unit of Frontier Technology of Structural Vaccinology of the Chinese Academy of Medical Sciences, Xiang An Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361005, China
| | - Shaowei Li
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Research Unit of Frontier Technology of Structural Vaccinology of the Chinese Academy of Medical Sciences, Xiang An Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361005, China
| | - Mu-Sheng Zeng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Yi-Xin Zeng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Miao Xu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China.
| | - Qingbing Zheng
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Research Unit of Frontier Technology of Structural Vaccinology of the Chinese Academy of Medical Sciences, Xiang An Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361005, China.
| | - Yixin Chen
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Research Unit of Frontier Technology of Structural Vaccinology of the Chinese Academy of Medical Sciences, Xiang An Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361005, China.
| | - Xiao Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| | - Ningshao Xia
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Research Unit of Frontier Technology of Structural Vaccinology of the Chinese Academy of Medical Sciences, Xiang An Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
6
|
Stražar M, Park J, Abelin JG, Taylor HB, Pedersen TK, Plichta DR, Brown EM, Eraslan B, Hung YM, Ortiz K, Clauser KR, Carr SA, Xavier RJ, Graham DB. HLA-II immunopeptidome profiling and deep learning reveal features of antigenicity to inform antigen discovery. Immunity 2023; 56:1681-1698.e13. [PMID: 37301199 PMCID: PMC10519123 DOI: 10.1016/j.immuni.2023.05.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 02/08/2023] [Accepted: 05/11/2023] [Indexed: 06/12/2023]
Abstract
CD4+ T cell responses are exquisitely antigen specific and directed toward peptide epitopes displayed by human leukocyte antigen class II (HLA-II) on antigen-presenting cells. Underrepresentation of diverse alleles in ligand databases and an incomplete understanding of factors affecting antigen presentation in vivo have limited progress in defining principles of peptide immunogenicity. Here, we employed monoallelic immunopeptidomics to identify 358,024 HLA-II binders, with a particular focus on HLA-DQ and HLA-DP. We uncovered peptide-binding patterns across a spectrum of binding affinities and enrichment of structural antigen features. These aspects underpinned the development of context-aware predictor of T cell antigens (CAPTAn), a deep learning model that predicts peptide antigens based on their affinity to HLA-II and full sequence of their source proteins. CAPTAn was instrumental in discovering prevalent T cell epitopes from bacteria in the human microbiome and a pan-variant epitope from SARS-CoV-2. Together CAPTAn and associated datasets present a resource for antigen discovery and the unraveling genetic associations of HLA alleles with immunopathologies.
Collapse
Affiliation(s)
- Martin Stražar
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jihye Park
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Hannah B Taylor
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Thomas K Pedersen
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Eric M Brown
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Computational and Integrative Biology, Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Basak Eraslan
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Yuan-Mao Hung
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Computational and Integrative Biology, Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Kayla Ortiz
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Karl R Clauser
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Steven A Carr
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ramnik J Xavier
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Computational and Integrative Biology, Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Daniel B Graham
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Computational and Integrative Biology, Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
7
|
Butler-Laporte G, Auckland K, Noor Z, Kabir M, Alam M, Carstensen T, Wojcik GL, Chong AY, Pomilla C, Noble JA, McDevitt SL, Smits G, Wareing S, van der Klis FRM, Jeffery K, Kirkpatrick BD, Sirima S, Madhi S, Elliott A, Richards JB, Hill AVS, Duggal P, Sandhu MS, Haque R, Petri WA, Mentzer AJ. Targeting hepatitis B vaccine escape using immunogenetics in Bangladeshi infants. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.06.26.23291885. [PMID: 37425840 PMCID: PMC10327284 DOI: 10.1101/2023.06.26.23291885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Hepatitis B virus (HBV) vaccine escape mutants (VEM) are increasingly described, threatening progress in control of this virus worldwide. Here we studied the relationship between host genetic variation, vaccine immunogenicity and viral sequences implicating VEM emergence. In a cohort of 1,096 Bangladeshi children, we identified human leukocyte antigen (HLA) variants associated with response vaccine antigens. Using an HLA imputation panel with 9,448 south Asian individuals DPB1*04:01 was associated with higher HBV antibody responses (p=4.5×10-30). The underlying mechanism is a result of higher affinity binding of HBV surface antigen epitopes to DPB1*04:01 dimers. This is likely a result of evolutionary pressure at the HBV surface antigen 'a-determinant' segment incurring VEM specific to HBV. Prioritizing pre-S isoform HBV vaccines may tackle the rise of HBV vaccine evasion.
Collapse
Affiliation(s)
- Guillaume Butler-Laporte
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec, Canada
- Division of Infectious Diseases, McGill University Health Centre, Montréal, Québec, Canada
| | - Kathryn Auckland
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Zannatun Noor
- International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Mamun Kabir
- International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Masud Alam
- International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Tommy Carstensen
- Wellcome Trust Sanger Institute, University of Cambridge, Hinxton, United Kingdom
- Queen Mary University of London, London, United Kingdom
| | - Genevieve L Wojcik
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Amanda Y Chong
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Cristina Pomilla
- Wellcome Trust Sanger Institute, University of Cambridge, Hinxton, United Kingdom
| | - Janelle A Noble
- Children’s Hospital Oakland Research Institute, Oakland, California, USA
- Department of Pediatrics, University of California, San Francisco, California, USA
| | | | - Gaby Smits
- National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Susan Wareing
- Microbiology Department, John Radcliffe Hospital, Oxford University NHS Foundation Trust, Oxford, UK
| | - Fiona RM van der Klis
- National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Katie Jeffery
- Microbiology Department, John Radcliffe Hospital, Oxford University NHS Foundation Trust, Oxford, UK
| | - Beth D Kirkpatrick
- Department of Microbiology and Molecular Genetics, Vaccine Testing Center, University of Vermont College of Medicine, Vermont, USA
| | - Sodiomon Sirima
- Groupe de Recherche Action en Santé (GRAS) 06 BP 10248 Ouagadougou, Burkina Faso
| | - Shabir Madhi
- South African Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit, University of the Witwatersrand, Johannesburg, South Africa
| | - Alison Elliott
- Department of Clinical Research, London School of Hygiene & Tropical Medicine, London, UK
- Medical Research Council/Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - J Brent Richards
- Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec, Canada
- Department of Human Genetics, McGill University, Montréal, Québec, Canada
- 5 Prime Sciences Inc, Montreal, Quebec, Canada
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montréal, Québec, Canada
- Department of Twin Research, King’s College London, London, United Kingdom
| | - Adrian VS Hill
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Priya Duggal
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | | | - Manjinder S Sandhu
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, United Kingdom
| | - Rashidul Haque
- International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - William A Petri
- Department of Medicine, Infectious Diseases and International Health, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Alexander J Mentzer
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
8
|
Ciacchi L, van de Garde MDB, Ladell K, Farenc C, Poelen MCM, Miners KL, Llerena C, Reid HH, Petersen J, Price DA, Rossjohn J, van Els CACM. CD4 + T cell-mediated recognition of a conserved cholesterol-dependent cytolysin epitope generates broad antibacterial immunity. Immunity 2023; 56:1082-1097.e6. [PMID: 37100059 DOI: 10.1016/j.immuni.2023.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 12/31/2022] [Accepted: 03/30/2023] [Indexed: 04/28/2023]
Abstract
CD4+ T cell-mediated immunity against Streptococcus pneumoniae (pneumococcus) can protect against recurrent bacterial colonization and invasive pneumococcal diseases (IPDs). Although such immune responses are common, the pertinent antigens have remained elusive. We identified an immunodominant CD4+ T cell epitope derived from pneumolysin (Ply), a member of the bacterial cholesterol-dependent cytolysins (CDCs). This epitope was broadly immunogenic as a consequence of presentation by the pervasive human leukocyte antigen (HLA) allotypes DPB1∗02 and DPB1∗04 and recognition via architecturally diverse T cell receptors (TCRs). Moreover, the immunogenicity of Ply427-444 was underpinned by core residues in the conserved undecapeptide region (ECTGLAWEWWR), enabling cross-recognition of heterologous bacterial pathogens expressing CDCs. Molecular studies further showed that HLA-DP4-Ply427-441 was engaged similarly by private and public TCRs. Collectively, these findings reveal the mechanistic determinants of near-global immune focusing on a trans-phyla bacterial epitope, which could inform ancillary strategies to combat various life-threatening infectious diseases, including IPDs.
Collapse
Affiliation(s)
- Lisa Ciacchi
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Martijn D B van de Garde
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Utrecht 3721MA, the Netherlands
| | - Kristin Ladell
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff CF14 4XN, UK
| | - Carine Farenc
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Martien C M Poelen
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Utrecht 3721MA, the Netherlands
| | - Kelly L Miners
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff CF14 4XN, UK
| | - Carmen Llerena
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Hugh H Reid
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Jan Petersen
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - David A Price
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff CF14 4XN, UK; Systems Immunity Research Institute, Cardiff University School of Medicine, University Hospital of Wales, Cardiff CF14 4XN, UK.
| | - Jamie Rossjohn
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff CF14 4XN, UK; Systems Immunity Research Institute, Cardiff University School of Medicine, University Hospital of Wales, Cardiff CF14 4XN, UK.
| | - Cécile A C M van Els
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Utrecht 3721MA, the Netherlands; Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht 3584CL, the Netherlands.
| |
Collapse
|
9
|
The dubious origin of beryllium toxicity. Struct Chem 2023. [DOI: 10.1007/s11224-023-02130-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
AbstractFour mechanisms have been proposed in the literature to explain beryllium toxicity; they can be divided in two groups of two mechanisms: (i) replacement type: models 1 and 2; (ii) addition type: models 3 and 4. At this moment is not possible to select the best model not even to establish if one of these models will be the ultimate mechanism of beryllium toxicity. However, it is important to know the still open discussion about something so important associated with one of the simplest elements of the periodic table.
Collapse
|
10
|
Margolis DJ, Duke JL, Mitra N, Berna RA, Hoffstad OJ, Wasserman JR, Dinou A, Damianos G, Kotsopoulou I, Tairis N, Ferriola DA, Mosbruger TL, Hayeck TJ, Yan AC, Monos DS. A combination of HLA-DP α and β chain polymorphisms paired with a SNP in the DPB1 3' UTR region, denoting expression levels, are associated with atopic dermatitis. Front Genet 2023; 14:1004138. [PMID: 36911412 PMCID: PMC9995861 DOI: 10.3389/fgene.2023.1004138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/13/2023] [Indexed: 02/25/2023] Open
Abstract
Introduction: Components of the immune response have previously been associated with the pathophysiology of atopic dermatitis (AD), specifically the Human Leukocyte Antigen (HLA) Class II region via genome-wide association studies, however the exact elements have not been identified. Methods: This study examines the genetic variation of HLA Class II genes using next generation sequencing (NGS) and evaluates the resultant amino acids, with particular attention on binding site residues, for associations with AD. The Genetics of AD cohort was used to evaluate HLA Class II allelic variation on 464 subjects with AD and 384 controls. Results: Statistically significant associations with HLA-DP α and β alleles and specific amino acids were found, some conferring susceptibility to AD and others with a protective effect. Evaluation of polymorphic residues in DP binding pockets revealed the critical role of P1 and P6 (P1: α31M + (β84G or β84V) [protection]; α31Q + β84D [susceptibility] and P6: α11A + β11G [protection]) and were replicated with a national cohort of children consisting of 424 AD subjects. Independently, AD susceptibility-associated residues were associated with the G polymorphism of SNP rs9277534 in the 3' UTR of the HLA-DPB1 gene, denoting higher expression of these HLA-DP alleles, while protection-associated residues were associated with the A polymorphism, denoting lower expression. Discussion: These findings lay the foundation for evaluating non-self-antigens suspected to be associated with AD as they potentially interact with particular HLA Class II subcomponents, forming a complex involved in the pathophysiology of AD. It is possible that a combination of structural HLA-DP components and levels of expression of these components contribute to AD pathophysiology.
Collapse
Affiliation(s)
- David J. Margolis
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Jamie L. Duke
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Nandita Mitra
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Ronald A. Berna
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Ole J. Hoffstad
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Jenna R. Wasserman
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Amalia Dinou
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Georgios Damianos
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Ioanna Kotsopoulou
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Nikolaos Tairis
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Deborah A. Ferriola
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Timothy L. Mosbruger
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Tristan J. Hayeck
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Pathology and Laboratory Medicine, Perelman Schools of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Albert C. Yan
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Section of Dermatology, Division of General Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Dimitri S. Monos
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Pathology and Laboratory Medicine, Perelman Schools of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
11
|
Zhang Q, Xu Z, Huang H, Zhang M. Whole Exome Sequencing Identified Two Single Nucleotide Polymorphisms of Human Leukocyte Antigen-DRB5 in Familial Sarcoidosis in China. Curr Gene Ther 2023; 23:215-227. [PMID: 36658707 DOI: 10.2174/1566523223666230119143501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/25/2022] [Accepted: 11/27/2022] [Indexed: 01/21/2023]
Abstract
BACKGROUND Sarcoidosis is a multisystem granulomatous disorder whose etiology is related to genetic and immunological factors. Familial aggregation and ethnic prevalence suggest a genetic predisposition and inherited susceptibility to sarcoidosis. OBJECTIVE This study aimed to identify suspected risk loci for familial sarcoidosis patients. METHODS We conducted whole exome sequencing on two sarcoidosis patients and five healthy family members in a Chinese family for a case-control study. The two sarcoidosis patients were siblings who showed chronic disease. RESULTS The Gene Ontology results showed single nucleotide polymorphisms in three genes, including human leukocyte antigen (HLA)-DRB1, HLA-DRB5, and KIR2DL4, associated with both 'antigen processing and presentation' and 'regulation of immune response.' Sanger sequencing verified two nonsynonymous mutations in HLA-DRB5 (rs696318 and rs115817940) located on 6p21.3 in the major histocompatibility complex (MHC) class II beta 1 region. The structural model simulated on Prot- Param protein analysis by the Expert Protein Analysis System predicted that the hydropathy index changed at two mutation sites (rs696318: p.F96L, -1.844 to -1.656 and rs115817940: p.T106N, -0.322 to -0.633), which indicated the probability of changes in peptide-binding selectivity. CONCLUSION Our results indicated that two nonsynonymous mutations of HLA-DRB5 have been identified in two sarcoidosis siblings, while their healthy family members do not have the mutations. The two HLA-DRB5 alleles may influence genetic susceptibility and chronic disease progression through peptide mutations on the MHC class II molecule among the two affected family members.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Respiratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan-100730, Beijing
| | - Zuojun Xu
- Department of Respiratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan-100730, Beijing
| | - Hui Huang
- Department of Respiratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan-100730, Beijing
| | - Meijun Zhang
- ANNOROAD CO., Building B1, Yizhuang Biological Medicine Park, Kechuang 6th Street, Beijing Economic Development Zone, Beijing, China
| |
Collapse
|
12
|
Abstract
Human leukocyte antigen (HLA) molecules present small peptide antigens to T cells, thereby allowing them to recognize pathogen-infected and cancer cells. A central dogma over the last 50+ y is that peptide binding to HLA molecules is mediated by the docking of side chains of particular amino acids in the peptide into pockets in the HLA molecules in a conserved N- to C-terminal orientation. Whether peptides can be presented in a reversed C- to N-terminal orientation remains unclear. Here, we performed large-scale identification of peptides bound to HLA-DP molecules and observed that in addition to peptide binding in an N- to C-terminal orientation, in 9 out of 14 HLA-DP allotypes, reverse motifs are found, compatible with C- to N-terminal peptide binding. Moreover, we isolated high-avidity human cytomegalovirus (CMV)-specific HLA-DP-restricted CD4+ T cells from the memory repertoire of healthy donors and demonstrate that such T cells recognized CMV-derived peptides bound to HLA-DPB1*01:01 or *05:01 in a reverse C- to N-terminal manner. Finally, we obtained a high-resolution HLA-DPB1*01:01-CMVpp65(142-158) peptide crystal structure, which is the molecular basis for C- to N-terminal peptide binding to HLA-DP. Our results point to unique features of HLA-DP molecules that substantially broaden the HLA class II bound peptide repertoire to combat pathogens and eliminate cancer cells.
Collapse
|
13
|
Atif SM, Mack DG, Martin AK, Fontenot AP. Protective role of tissue-resident regulatory T cells in a murine model of beryllium-induced disease. JCI Insight 2022; 7:156098. [PMID: 35819849 PMCID: PMC9462505 DOI: 10.1172/jci.insight.156098] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 07/07/2022] [Indexed: 11/17/2022] Open
Abstract
CD4+ T cells drive the immunopathogenesis of chronic beryllium disease (CBD), and their recruitment to the lung heralds the onset of granulomatous inflammation. We have shown that regulatory CD4+ T cells (Tregs) control granuloma formation in an HLA-DP2 transgenic (Tg) model of CBD. In these mice, Be oxide (BeO) exposure resulted in the accumulation of three distinct CD4+ T cell subsets in the lung with the majority of tissue-resident memory cells expressing FoxP3. The amount of Be regulated the number of total and antigen-specific CD4+ T cells and Tregs in the lungs of HLA-DP2 Tg mice. Depletion of Tregs increased the number of IFN-γ-producing CD4+ T cells and enhanced lung injury while mice treated with IL2/αIL-2 complexes had increased Tregs and reduced inflammation and Be-responsive T cells in the lung. BeO-experienced resident Tregs suppressed anti-CD3-induced proliferation of CD4+ T cells in a contact-dependent manner. CLTLA-4 and ICOS blockade as well as addition of LPS to BeO-exposed mice increased the Teff/Treg ratio and enhanced lung injury. Collectively, these data show that the protective role of tissue-resident Tregs is dependent on quantity of Be exposure and is overcome by blocking immune regulatory molecules or additional environmental insults.
Collapse
Affiliation(s)
- Shaikh M Atif
- Department of Medicine, University of Colorado Anschutz Medical Campus, Auroroa, United States of America
| | - Douglas G Mack
- Department of Medicine, University of Colorado Anschutz Medical Campus, Auroroa, United States of America
| | - Allison K Martin
- Department of Medicine, University of Colorado Anschutz Medical Campus, Auroroa, United States of America
| | - Andrew P Fontenot
- Department of Medicine, University of Colorado Anschutz Medical Campus, Auroroa, United States of America
| |
Collapse
|
14
|
Osoegawa K, Marsh SGE, Holdsworth R, Heidt S, Fischer G, Murphey C, Maiers M, Fernández Viňa MA. A new strategy for systematically classifying HLA alleles into serological specificities. HLA 2022; 100:193-231. [PMID: 35538616 DOI: 10.1111/tan.14662] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/30/2022] [Accepted: 05/08/2022] [Indexed: 11/30/2022]
Abstract
HLA serological specificities were defined by the reactivity of HLA molecules with sets of sera and monoclonal antibodies. Many recently identified alleles defined by molecular typing lack their serotype assignment. We surveyed the literature describing the correlation of the reactivity of serologic reagents with AA residues. 20 - 25 AA residues determining epitopes (DEP) that correlated with 82 WHO serologic specificities were identified for HLA class I loci. Thirteen DEP each located in the beta-1 domains that correlated with 24 WHO serologic specificities were identified for HLA-DRB1 and -DQB1 loci. The designation of possible HLA-DPB1, -DQA1, -DPA1, and additional serological specificities that result from epitopes defined by residues located at both -DQA1 and -DQB1 subunits were also examined. HATS software was developed for automated serotype assignments to HLA alleles in one of the three hierarchical matching criteria: 1) all DEP (FULL); 2) selected DEP specific to each serological specificities (SEROTYPE); 3) one AA mismatch with one or more SEROTYPES (INCOMPLETE). Results were validated by evaluating the alleles whose serotypes do not correspond to the first field of the allele name listed in the HLA dictionary. Additional 85 and 21 DEP patterns that do not correspond to any WHO serologic specificities for common HLA class I and DRB1 alleles were identified, respectively. A comprehensive antibody identification panel would allow for accurate unacceptable antigen listing and compatibility predictions in solid organ transplantations. We propose that antibody-screening panels should include all serologic specificities identified in this study. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Kazutoyo Osoegawa
- Histocompatibility and Immunogenetics Laboratory, Stanford Blood Center, Palo Alto, CA, USA
| | - Steven G E Marsh
- Anthony Nolan Research Institute & UCL Cancer Institute, Royal Free Campus, London, United Kingdom
| | | | - Sebastiaan Heidt
- Department of Immunology, Leiden University Medical Center, Leiden, the Netherlands
| | - Gottfried Fischer
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Vienna, Vienna, Austria
| | - Cathi Murphey
- Histocompatibility and Immunogenetics Laboratory at Southwest Immunodiagnostics, Inc, San Antonio, TX, USA
| | - Martin Maiers
- Innovation, National Marrow Donor Program, Minneapolis, MN, USA
| | - Marcelo A Fernández Viňa
- Histocompatibility and Immunogenetics Laboratory, Stanford Blood Center, Palo Alto, CA, USA.,Department of Pathology, Stanford University School of Medicine, Palo Alto, CA, USA
| |
Collapse
|
15
|
McKee AS, Atif SM, Falta MT, Fontenot AP. Innate and Adaptive Immunity in Noninfectious Granulomatous Lung Disease. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1835-1843. [PMID: 35418504 PMCID: PMC9106315 DOI: 10.4049/jimmunol.2101159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/08/2022] [Indexed: 11/19/2022]
Abstract
Sarcoidosis and chronic beryllium disease are noninfectious lung diseases that are characterized by the presence of noncaseating granulomatous inflammation. Chronic beryllium disease is caused by occupational exposure to beryllium containing particles, whereas the etiology of sarcoidosis is not known. Genetic susceptibility for both diseases is associated with particular MHC class II alleles, and CD4+ T cells are implicated in their pathogenesis. The innate immune system plays a critical role in the initiation of pathogenic CD4+ T cell responses as well as the transition to active lung disease and disease progression. In this review, we highlight recent insights into Ag recognition in chronic beryllium disease and sarcoidosis. In addition, we discuss the current understanding of the dynamic interactions between the innate and adaptive immune systems and their impact on disease pathogenesis.
Collapse
Affiliation(s)
- Amy S McKee
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO; and
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Shaikh M Atif
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO; and
| | - Michael T Falta
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO; and
| | - Andrew P Fontenot
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO; and
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
16
|
Siavoshinia L, Kheirollah A, Zeinali M, Barzegari E, Jamalan M. Combinatorial in silico and in vivo evaluation of immune response elicitation by the affibody Z HER2. Int Immunopharmacol 2021; 101:108368. [PMID: 34857479 DOI: 10.1016/j.intimp.2021.108368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 10/19/2022]
Abstract
Due to the high affinity for binding to target molecules and also other unique attributes, affibodies have a great potential to be used in immunotherapeutic and diagnostic approaches. However, the possibility of undesirable immune response is still a great concern. In the current study, we investigated the possible antigenicity, allergenicity and cytotoxicity of the HER2-targeting affibody ZHER2. The binding affinity of potential epitopes of the affibody to murine major histocompatibility complex (MHC) molecules was investigated by immunoinformatics tools and docking approaches. The possible interaction of ZHER2 with human leukocyte antigens HLA-DP, HLA-DM, HLA-DQ and HLA-DR was also studied by protein-protein docking. Additionally, the synthesized affibody gene was expressed and the protein was purified for boosted immunization of Balb/c mice. Induced secretion of IFN-γ, IL-2, IL-4 and IL-10, and total serum IgG were assessed in the immunized mice. Furthermore, MTT cell viability test was performed to evaluate the cytotoxicity of ZHER2 in splenocytes of the treated mice. In silico analyses showed the possible induction of the immune response by ZHER2. While the affibody could elicit the secretion of cellular immune cytokines, it could not induce a significant humoral response in the treated mice and did not show any cytotoxic effects on the exposed splenocytes. These findings explain the practicability of ZHER2 for therapeutic and in vivo diagnostic usages, though its ubiquitous application may need more studies.
Collapse
Affiliation(s)
- Leila Siavoshinia
- Department of Biochemistry, Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Science, Medical School, Ahvaz, Iran
| | - Alireza Kheirollah
- Department of Biochemistry, Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Science, Medical School, Ahvaz, Iran
| | - Majid Zeinali
- Biotechnology Research Center, Research Institute of Petroleum Industry (RIPI), Tehran, Iran
| | - Ebrahim Barzegari
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mostafa Jamalan
- Department of Biochemistry, Abadan University of Medical Sciences, Abadan, Iran.
| |
Collapse
|
17
|
Greaves SA, Ravindran A, Santos RG, Chen L, Falta MT, Wang Y, Mitchell AM, Atif SM, Mack DG, Tinega AN, Maier LA, Dai S, Pinilla C, Grunewald J, Fontenot AP. CD4+ T cells in the lungs of acute sarcoidosis patients recognize an Aspergillus nidulans epitope. J Exp Med 2021; 218:212583. [PMID: 34410304 PMCID: PMC8383815 DOI: 10.1084/jem.20210785] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/18/2021] [Accepted: 07/22/2021] [Indexed: 11/05/2022] Open
Abstract
Löfgren’s syndrome (LS) is an acute form of sarcoidosis characterized by a genetic association with HLA-DRB1*03 (HLA-DR3) and an accumulation of CD4+ T cells of unknown specificity in the bronchoalveolar lavage (BAL). Here, we screened related LS-specific TCRs for antigen specificity and identified a peptide derived from NAD-dependent histone deacetylase hst4 (NDPD) of Aspergillus nidulans that stimulated these CD4+ T cells in an HLA-DR3–restricted manner. Using ELISPOT analysis, a greater number of IFN-γ– and IL-2–secreting T cells in the BAL of DR3+ LS subjects compared with DR3+ control subjects was observed in response to the NDPD peptide. Finally, increased IgG antibody responses to A. nidulans NDPD were detected in the serum of DR3+ LS subjects. Thus, our findings identify a ligand for CD4+ T cells derived from the lungs of LS patients and suggest a role of A. nidulans in the etiology of LS.
Collapse
Affiliation(s)
- Sarah A Greaves
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Avinash Ravindran
- Department of Medicine, Solna, Karolinska University Hospital, Stockholm, Sweden.,Centre for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Radleigh G Santos
- Department of Mathematics, Nova Southeastern University, Ft. Lauderdale, FL
| | - Lan Chen
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Michael T Falta
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Yang Wang
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Angela M Mitchell
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Shaikh M Atif
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Douglas G Mack
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Alex N Tinega
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Lisa A Maier
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO.,Department of Medicine, National Jewish Health, Denver, CO
| | - Shaodong Dai
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Clemencia Pinilla
- Center for Translational Science, Florida International University, Port St. Lucie, FL
| | - Johan Grunewald
- Department of Medicine, Solna, Karolinska University Hospital, Stockholm, Sweden
| | - Andrew P Fontenot
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO.,Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
18
|
Bradshaw R, Dunn P. Detection of a novel allele, HLA-DPA1*01:58, originating from a recombination within exon 2 of the DPA1 gene. HLA 2021; 99:72-74. [PMID: 34605210 DOI: 10.1111/tan.14436] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 11/27/2022]
Abstract
A crossover in exon 2 between DPA1*01:03:01:02 and DPA1*02:01:01:01 results in a novel hybrid allele, HLA-DPA1*01:58.
Collapse
Affiliation(s)
- Robert Bradshaw
- Transplant Laboratory, University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Paul Dunn
- Transplant Laboratory, University Hospitals of Leicester NHS Trust, Leicester, UK
| |
Collapse
|
19
|
Abyaz B, Mahdavifar Z, Schreckenbach G, Gao Y. Prediction of beryllium clusters (Be n; n = 3-25) from first principles. Phys Chem Chem Phys 2021; 23:19716-19728. [PMID: 34524334 DOI: 10.1039/d1cp02513a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Evolutionary searches using the USPEX method (Universal Structure Predictor: Evolutionary Xtallography) combined with density functional theory (DFT) calculations were performed to obtain the global minimum structures of beryllium (Ben, n = 3-25) clusters. The thermodynamic stability, optoelectronic and photocatalytic properties as well as the nature of bonding are considered for the most stable clusters. It is found that the cluster with n = 15 is the transition point at which the configurations change from 3D hollow cages to filled cage structures (with an interior atom appearing in the structure). All the ground state structures are energetically favorable with negative binding energies, suggesting good synthetic feasibility for these structures. The calculated relative stabilities and electronic structure show that the Be4, Be10 and, Be17 clusters are the most stable structures and can be considered as superatoms. The electron configurations of Be4, Be10 and Be17 clusters with 8, 20 and 34 electrons are identified as 1S2 1P6, 1S2 1P6 1D10 2S2, 1S2 1P6 1D10 2S2 1F14, respectively. Theoretical simulations determined that all the ground state structures exhibit excellent thermal stability, where the upper-limit temperature that the structures can tolerate is 900 K. During AIMD simulation of O2 adsorption onto the Be17 cluster an interesting phenomenon was happening in which the pristine Be17 cluster becomes a new stable Be17O16 cluster. Based on ELF (electron localization function) analysis, it can be concluded that the Be-Be bonds in the small clusters are primarily of van der Waals type, while for the larger clusters, the bonds are of metallic nature. The Ben clusters show very strong absorption in the UV and visible regions with absorption coefficients larger than 105 cm-1, which suggests a wide range of potential advanced optoelectronics applications. The Be17 cluster has a suitable band alignment in the visible-light excitation region which will produce enhanced photocatalytic activities (making it a promising material for water splitting).
Collapse
Affiliation(s)
- Behnaz Abyaz
- Department of Chemistry, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Zabiollah Mahdavifar
- Department of Chemistry, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Georg Schreckenbach
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Yang Gao
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada.,Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| |
Collapse
|
20
|
Abualrous ET, Sticht J, Freund C. Major histocompatibility complex (MHC) class I and class II proteins: impact of polymorphism on antigen presentation. Curr Opin Immunol 2021; 70:95-104. [PMID: 34052735 DOI: 10.1016/j.coi.2021.04.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/23/2021] [Accepted: 04/25/2021] [Indexed: 01/01/2023]
Abstract
The major histocompatibility complex (MHC) loci are amongst the most polymorphic regions in the genomes of vertebrates. In the human population, thousands of MHC gene variants (alleles) exist that translate into distinct allotypes equipped with overlapping but unique peptide binding profiles. Understanding the differential structural and dynamic properties of MHC alleles and their interaction with critical regulators of peptide exchange bears the potential for more personalized strategies of immune modulation in the context of HLA-associated diseases.
Collapse
Affiliation(s)
- Esam T Abualrous
- Protein Biochemistry, Institute for Biochemistry, Freie Universität Berlin, Thielallee 63, 14195 Berlin, Germany
| | - Jana Sticht
- Protein Biochemistry, Institute for Biochemistry, Freie Universität Berlin, Thielallee 63, 14195 Berlin, Germany
| | - Christian Freund
- Protein Biochemistry, Institute for Biochemistry, Freie Universität Berlin, Thielallee 63, 14195 Berlin, Germany.
| |
Collapse
|
21
|
Falta MT, Crawford JC, Tinega AN, Landry LG, Crawford F, Mack DG, Martin AK, Atif SM, Li L, Santos RG, Nakayama M, Kappler JW, Maier LA, Thomas PG, Pinilla C, Fontenot AP. Beryllium-specific CD4+ T cells induced by chemokine neoantigens perpetuate inflammation. J Clin Invest 2021; 131:144864. [PMID: 33630763 PMCID: PMC8087207 DOI: 10.1172/jci144864] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 02/23/2021] [Indexed: 12/12/2022] Open
Abstract
Discovering dominant epitopes for T cells, particularly CD4+ T cells, in human immune-mediated diseases remains a significant challenge. Here, we used bronchoalveolar lavage (BAL) cells from HLA-DP2-expressing patients with chronic beryllium disease (CBD), a debilitating granulomatous lung disorder characterized by accumulations of beryllium-specific (Be-specific) CD4+ T cells in the lung. We discovered lung-resident CD4+ T cells that expressed a disease-specific public CDR3β T cell receptor motif and were specific to Be-modified self-peptides derived from C-C motif ligand 4 (CCL4) and CCL3. HLA-DP2-CCL/Be tetramer staining confirmed that these chemokine-derived peptides represented major antigenic targets in CBD. Furthermore, Be induced CCL3 and CCL4 secretion in the lungs of mice and humans. In a murine model of CBD, the addition of LPS to Be oxide exposure enhanced CCL4 and CCL3 secretion in the lung and significantly increased the number and percentage of CD4+ T cells specific for the HLA-DP2-CCL/Be epitope. Thus, we demonstrate a direct link between Be-induced innate production of chemokines and the development of a robust adaptive immune response to those same chemokines presented as Be-modified self-peptides, creating a cycle of innate and adaptive immune activation.
Collapse
Affiliation(s)
- Michael T. Falta
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Jeremy C. Crawford
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Alex N. Tinega
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Laurie G. Landry
- Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | | | - Douglas G. Mack
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Allison K. Martin
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Shaikh M. Atif
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Li Li
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
| | - Radleigh G. Santos
- Department of Mathematics, Nova Southeastern University, Ft. Lauderdale, Florida, USA
| | - Maki Nakayama
- Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - John W. Kappler
- Department of Biomedical Research and
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Lisa A. Maier
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
| | - Paul G. Thomas
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | | | - Andrew P. Fontenot
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
22
|
Inaba H, Ariyasu H, Iwakura H, Kurimoto C, Takeshima K, Morita S, Furuta H, Hotomi M, Akamizu T. Distinct clinical features and prognosis between persistent and temporary thyroid dysfunctions by immune-checkpoint inhibitors. Endocr J 2021; 68:231-241. [PMID: 33012745 DOI: 10.1507/endocrj.ej20-0371] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Immune-related adverse events in the thyroid glands (thyroid irAEs) during treatment with immune-checkpoint inhibitors (ICIs) are most frequent endocrine irAE. Thyroid irAE can be divided into that requiring continuous therapy for thyroid dysfunction (P-THY), and that requiring only temporal treatment (T-THY). However, predictive factors for those differential outcomes are unknown, and susceptibility of human leukocyte antigen (HLA) to thyroid irAE has never been investigated. This study aimed to elucidate clinical courses and prognosis of P-THY in comparison with T-THY in the aspect of thyroid immunity and HLA. Patients with P-THY (n = 15) that required L-T4 supplemental therapy for hypothyroidism for more than 3 months, and patients with T-THY who required no therapy or therapy within 1 month were enrolled in the study. Lower-value of TSH, higher-value of FT4, and lower value of TSH/FT4 were thought to be predictive markers to estimate P-THY. In addition, anti-thyroglobulin antibody (TgAb) levels were significantly higher in patients with P-THY than those in patients with T-THY. HLA-DPA1*01:03 and HLA-DPB1*02:01 allele, and their haplotype frequencies were significantly higher in patients with P-THY than those in controls. P-THY had better survival rate than T-THY. Pre-existing thyroid autoimmunity, the extent of thyroid dysfunction, and predisposing HLA were associated with the differential course of thyroid irAEs. It was suggested that thyroid function tests, TgAb, and HLA typing tests are useful for prediction of clinical course in thyroid irAEs.
Collapse
Affiliation(s)
- Hidefumi Inaba
- The First Department of Medicine, Wakayama Medical University, Wakayama, Japan
| | - Hiroyuki Ariyasu
- The First Department of Medicine, Wakayama Medical University, Wakayama, Japan
| | - Hiroshi Iwakura
- The First Department of Medicine, Wakayama Medical University, Wakayama, Japan
| | - Chiaki Kurimoto
- The First Department of Medicine, Wakayama Medical University, Wakayama, Japan
| | - Ken Takeshima
- The First Department of Medicine, Wakayama Medical University, Wakayama, Japan
| | - Shuhei Morita
- The First Department of Medicine, Wakayama Medical University, Wakayama, Japan
| | - Hiroto Furuta
- The First Department of Medicine, Wakayama Medical University, Wakayama, Japan
| | - Muneki Hotomi
- Department of Otolaryngology-Head and Neck Surgery, Wakayama Medical University, Wakayama, Japan
| | - Takashi Akamizu
- The First Department of Medicine, Wakayama Medical University, Wakayama, Japan
| |
Collapse
|
23
|
Toyooka T, Koda S. [Management of occupational health for adverse health effects of beryllium and its compounds in workplaces - Recent trends and issues in Japan]. SANGYŌ EISEIGAKU ZASSHI = JOURNAL OF OCCUPATIONAL HEALTH 2020; 63:31-42. [PMID: 32788509 DOI: 10.1539/sangyoeisei.2020-030-a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVES Beryllium is primarily used in its metallic form, in alloys, or in beryllium oxide ceramics. Its physical and mechanical properties make it useful for many applications across a range of industries. Because beryllium is recognized as a sensitizing and carcinogenic agent, the management of occupational health for workers who may be occupationally exposed to beryllium has long been an important issue in the world. Under these circumstances, the U.S. Occupational Safety and Health Administration (OSHA) had published a rule in January 2017, to prevent the development of chronic beryllium disease and lung cancer. This rule strengthens the regulations governing the use of beryllium and its compounds. With the announcement of the OSHA rule in January 2017, the purpose of this study is to gain insight into the health problems and industrial hygiene associated with the use of beryllium and share the issues related to the management of occupational health for persons working with beryllium in Japan. METHODS We collected information regarding the beryllium industry, beryllium exposure, beryllium-induced health disorders, OSHA rule of January 2017, and regulations for beryllium use in Japan. After reviewing them, we discussed the issues concerning occupational health management of workers exposed to beryllium in Japan. RESULTS It has been reconfirmed that in recent years, the most serious health problem due to beryllium exposure is chronic beryllium disease caused by beryllium sensitization. Management of occupational health that emphasizes reduction of beryllium sensitization and early detection of beryllium-sensitized workers is important. CONCLUSIONS It was suggested that the following should be considered as the issues of management of occupational health of workers exposed to beryllium in Japan: (1) Collect epidemiologic data on health hazards from beryllium exposure in Japan. (2) Review the diagnostic items of special medical check-ups. (3) Review the definition of beryllium and its compounds in the Ordinance on Prevention of Hazards due to Specified Chemical Substances.
Collapse
Affiliation(s)
| | - Shigeki Koda
- National Institute of Occupational Safety and Health
| |
Collapse
|
24
|
Berger RJ, Håkansson P, Mera-Adasme R. A consistent model for the key complex in chronic beryllium disease. ACTA ACUST UNITED AC 2020. [DOI: 10.1515/znb-2020-0010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Abstract
A hypothesis on the structure of the key complex in chronic beryllium disease (CBD) is discussed with respect to the current knowledge on CBD, and with respect to the constraints implied by the coordination chemistry of beryllium and experimental data on the engaged protein complexes. The structure hypothesis is based on the [Be4O]6+ moiety as a coordination center, which is also found in the so called “basic beryllium carboxylates”. The structure of a small molecular model, optimized at the DFT level of theory, is used to compare the structural demands of this coordination center with a structure of the in vitro model of a beryllium immunoprotein complex determined previously by protein crystallography (Clayton & al., Cell
2014, 158, 132). 9Be NMR chemical shielding values, quadrupole coupling constants and asymmetry parameters (η) have been calculated.
Collapse
Affiliation(s)
- Raphael J.F. Berger
- Department for Chemistry and Physics of Materials , Universität Salzburg , Jakob-Haringer-Str.2 a , A-5020 Salzburg , Austria
| | - Pär Håkansson
- NMR Research Unit , University of Oulu , P. O. Box 3000 , 90014 Oulu , Finland
| | - Raúl Mera-Adasme
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología , Universidad de Santiago de Chile (USACH) , Santiago de Chile , Chile , E-mail:
| |
Collapse
|
25
|
Greaves SA, Atif SM, Fontenot AP. Adaptive Immunity in Pulmonary Sarcoidosis and Chronic Beryllium Disease. Front Immunol 2020; 11:474. [PMID: 32256501 PMCID: PMC7093490 DOI: 10.3389/fimmu.2020.00474] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 02/28/2020] [Indexed: 12/11/2022] Open
Abstract
Pulmonary sarcoidosis and chronic beryllium disease (CBD) are inflammatory granulomatous lung diseases defined by the presence of non-caseating granulomas in the lung. CBD results from beryllium exposure in the workplace, while the cause of sarcoidosis remains unknown. CBD and sarcoidosis are both immune-mediated diseases that involve Th1-polarized inflammation in the lung. Beryllium exposure induces trafficking of dendritic cells to the lung in a mechanism dependent on MyD88 and IL-1α. B cells are also recruited to the lung in a MyD88 dependent manner after beryllium exposure in order to protect the lung from beryllium-induced injury. Similar to most immune-mediated diseases, disease susceptibility in CBD and sarcoidosis is driven by the expression of certain MHCII molecules, primarily HLA-DPB1 in CBD and several HLA-DRB1 alleles in sarcoidosis. One of the defining features of both CBD and sarcoidosis is an infiltration of activated CD4+ T cells in the lung. CD4+ T cells in the bronchoalveolar lavage (BAL) of CBD and sarcoidosis patients are highly Th1 polarized, and there is a significant increase in inflammatory Th1 cytokines present in the BAL fluid. In sarcoidosis, there is also a significant population of Th17 cells in the lungs that is not present in CBD. Due to persistent antigen exposure and chronic inflammation in the lung, these activated CD4+ T cells often display either an exhausted or anergic phenotype. Evidence suggests that these T cells are responding to common antigens in the lung. In CBD there is an expansion of beryllium-responsive TRBV5.1+ TCRs expressed on pathogenic CD4+ T cells derived from the BAL of CBD patients that react with endogenous human peptides derived from the plexin A protein. In an acute form of sarcoidosis, there are expansions of specific TRAV12-1/TRBV2 T cell receptors expressed on BAL CD4+ T cells, indicating that these T cells are trafficking to and expanding in the lung in response to common antigens. The specificity of these pathogenic CD4+T cells in sarcoidosis are currently unknown.
Collapse
Affiliation(s)
- Sarah A Greaves
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Shaikh M Atif
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Andrew P Fontenot
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.,Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
26
|
Abstract
Abstract
Beryllium has long been considered the most toxic non-radioactive element to humans. However, it is shown that the acute toxicity of beryllium ions does not exceed that of other toxic cations like Cd2+, Ba2+, Hg2+ or As3+. The physiological mechanisms liable for the development of beryllium-associated diseases are discussed. Additionally an overview over proposed low-molecular model system for the beryllium species responsible for beryllioses is presented.
Collapse
Affiliation(s)
- Magnus R. Buchner
- Anorganische Chemie, Nachwuchsgruppe Berylliumchemie, Fachbereich Chemie , Philipps-Universität Marburg , Hans-Meerwein-Straße 4 , 35032 Marburg , Germany
| |
Collapse
|
27
|
De S, Sabu G, Zacharias M. Molecular mechanism of Be2+-ion binding to HLA-DP2: tetrahedral coordination, conformational changes and multi-ion binding. Phys Chem Chem Phys 2020; 22:799-810. [DOI: 10.1039/c9cp05695e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Be small and positive: the smaller size and higher charge of the Be2+-ion results in strong binding between the M2 peptide and the β-chain of HLA-DP2, which induces conformational changes at the periphery suitable for TCR binding.
Collapse
Affiliation(s)
- Susmita De
- Department of Applied Chemistry
- Cochin University of Science and Technology
- Kochi 682 022
- India
- Inter University Centre for Nanomaterials and Devices (IUCND)
| | - Gopika Sabu
- Department of Applied Chemistry
- Cochin University of Science and Technology
- Kochi 682 022
- India
| | - Martin Zacharias
- Physics Department
- Technical University of Munich
- Garching 85747
- Germany
| |
Collapse
|
28
|
Abstract
Metal-induced hypersensitivity is driven by T-cell sensitization to metal ions. Although numerous metals are associated with the development of diffuse parenchymal lung disease, beryllium-induced hypersensitivity is the best-studied to date. This review focuses on the interaction between innate and adaptive immunity that leads to the development of chronic beryllium disease. After beryllium exposure, activation of the innate immune system occurs through the engagement of pattern-recognition receptors. This activation leads to cell death, release of alarmins, and activation and migration of dendritic cells to lung-draining lymph nodes. These events culminate in the development of an adaptive immune response that is characterized by beryllium-specific, T-helper type 1-polarized, CD4+ T-cells and granuloma formation in the lung. The unique ability of beryllium to bind to human leukocyte antigen-DP molecules that express a glutamic acid at position 69 of the β-chain alters the charge and conformation of the human leukocyte antigen-DP-peptide complex. These changes induce post-translational modifications that are recognized as non-self. In essence, the ability of beryllium to create neoantigens underlies the genesis of chronic beryllium disease, and demonstrates the similarity between beryllium-induced hypersensitivity and autoimmunity.
Collapse
|
29
|
Wang LY, Chen CF, Wu TW, Lai SK, Chu CC, Lin HH. Response to hepatitis B vaccination is co-determined by HLA-DPA1 and -DPB1. Vaccine 2019; 37:6435-6440. [PMID: 31515149 DOI: 10.1016/j.vaccine.2019.09.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 07/30/2019] [Accepted: 09/02/2019] [Indexed: 01/05/2023]
Abstract
BACKGROUND AND AIMS No report explored the combined effects of HLA-DPA1 and -DPB1 with long-term response to hepatitis B (HB) vaccination (HBVac). The specific aims of the study were to assess the combined effects and relative contributions of DPA1 and DPB1 genes. METHODS The cases were 152 adolescents who had undetectable (<1.0 mIU/mL) post-booster anti-HBs titers and the controls were adolescents who had residual anti-HBs ≥ 10 mIU/mL at aged 16 years (n = 207) or had detectable (≥1.0 mIU/mL) anti-HBs titers after booster HBVac (n = 481). HLA-DPA1 and -DPB1 genotypes were determined by sequence-based typing. RESULTS HLA-DPA1*01:03:01 was correlated with lower ORs of undetectable anti-HBs titers, while -DPA1*02:02:02 and -DPB1*05:01:01 were correlated with higher ORs. The ORs for HLA-DPA1*01:03:01-DPB1*05:01:01 and DPA1*02:02:02-DPB1*protective combinatory types were significantly less than 1.0. As compared with subjects who had no protective allele, the adjusted ORs (95% CI) were 0.545 (0.328-0.906), 0.350 (0.174-0.702), and 0.122 (0.058-0.257), for subjects who had protective alleles on DPA1only, DPB1 only, and both genes, respectively. Analyses of amino acid polymorphisms showed that subjects who carried Arg81-Pro158-Val191-Pro259α + Met234β and Gln62-Arg82α + Met234β combinations had 4.3-to-4.6 folds of risks. CONCLUSION Both DPA1 and DPB1 genes contribute to the persistence of immunological response to primary infantile HBVac. The effects of HLA-DP risk alleles were dominated by the protective alleles and there were significant gene-gene interactions. Our findings provide evidences for the design of more potent HB vaccine.
Collapse
Affiliation(s)
- Li-Yu Wang
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan; Institute of Biomedical Sciences, Mackay Medical College, New Taipei City, Taiwan.
| | - Chuen-Fei Chen
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| | - Tzu-Wei Wu
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| | - Sheng-Kai Lai
- Medical Research Department, Mackay Memorial Hospital, New Taipei City, Taiwan; Institute of Molecular Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chen-Chung Chu
- Medical Research Department, Mackay Memorial Hospital, New Taipei City, Taiwan.
| | - Hans Hsienhong Lin
- Department of Gastroenterology, Buddhist Tzu Chi General Hospital Taipei Branch, New Taipei City, Taiwan
| |
Collapse
|
30
|
Niehrs A, Garcia-Beltran WF, Norman PJ, Watson GM, Hölzemer A, Chapel A, Richert L, Pommerening-Röser A, Körner C, Ozawa M, Martrus G, Rossjohn J, Lee JH, Berry R, Carrington M, Altfeld M. A subset of HLA-DP molecules serve as ligands for the natural cytotoxicity receptor NKp44. Nat Immunol 2019; 20:1129-1137. [PMID: 31358998 PMCID: PMC8370669 DOI: 10.1038/s41590-019-0448-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 06/06/2019] [Indexed: 01/25/2023]
Abstract
Natural killer (NK) cells can recognize virus-infected and stressed cells1 using activating and inhibitory receptors, many of which interact with HLA class I. Although early studies also suggested a functional impact of HLA class II on NK cell activity2,3, the NK cell receptors that specifically recognize HLA class II molecules have never been identified. We investigated whether two major families of NK cell receptors, killer-cell immunoglobulin-like receptors (KIRs) and natural cytotoxicity receptors (NCRs), contained receptors that bound to HLA class II, and identified a direct interaction between the NK cell receptor NKp44 and a subset of HLA-DP molecules, including HLA-DP401, one of the most frequent class II allotypes in white populations4. Using NKp44ζ+ reporter cells and primary human NKp44+ NK cells, we demonstrated that interactions between NKp44 and HLA-DP401 trigger functional NK cell responses. This interaction between a subset of HLA-DP molecules and NKp44 implicates HLA class II as a component of the innate immune response, much like HLA class I. It also provides a potential mechanism for the described associations between HLA-DP subtypes and several disease outcomes, including hepatitis B virus infection5-7, graft-versus-host disease8 and inflammatory bowel disease9,10.
Collapse
Affiliation(s)
- Annika Niehrs
- Research Department Virus Immunology, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Wilfredo F Garcia-Beltran
- Research Department Virus Immunology, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Paul J Norman
- Division of Biomedical Informatics and Personalized Medicine, University of Colorado School of Medicine, Aurora, CO, USA
- Department of Microbiology and Immunology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Gabrielle M Watson
- Infection and Immunity Program and The Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria, Australia
| | - Angelique Hölzemer
- Research Department Virus Immunology, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
- First Department of Internal Medicine, University Medical Center Eppendorf, Hamburg, Germany
| | - Anaïs Chapel
- Research Department Virus Immunology, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
- Unité HIV Inflammation et Persistance, Institut Pasteur, Paris, France
| | - Laura Richert
- Research Department Virus Immunology, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
- Inserm Inria SISTM Bordeaux Population Health Research Center UMR 1219, Univ. Bordeaux, Bordeaux, France
| | | | - Christian Körner
- Research Department Virus Immunology, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | | | - Glòria Martrus
- Research Department Virus Immunology, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Jamie Rossjohn
- Infection and Immunity Program and The Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria, Australia
- Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | | | - Richard Berry
- Infection and Immunity Program and The Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria, Australia
| | - Mary Carrington
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Basic Science Program, HLA Immunogenetics Section, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Marcus Altfeld
- Research Department Virus Immunology, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany.
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany.
| |
Collapse
|
31
|
Lorentino F, Sacchi N, Oldani E, Miotti V, Picardi A, Gallina AM, Crivello P, Bernasconi P, Saccardi R, Farina L, Benedetti F, Cerno M, Grassi A, Bruno B, Patriarca F, Ciceri F, Fleischhauer K, Vago L, Bonifazi F. Comparative evaluation of biological human leukocyte antigen DPB1 mismatch models for survival and graft- versus-host disease prediction after unrelated donor hematopoietic cell transplantation. Haematologica 2019; 105:e186-e189. [PMID: 31471374 DOI: 10.3324/haematol.2019.225177] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
- Francesca Lorentino
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Nicoletta Sacchi
- Italian Bone Marrow Donor Registry, E.O. Galliera, Genova, Italy
| | - Elena Oldani
- Hematology and BMT Unit, Ospedale Papa Giovanni XXIII, Bergamo, Italy
| | - Valeria Miotti
- Azienda Sanitaria Universitaria Integrata di Udine, Udine, Italy
| | - Alessandra Picardi
- Biomedicine and Prevention Department, Tor Vergata University, Roma, Italy.,Hematology with Stem Cell Transplant Unit, AORN A. Cardarelli, Napoli, Italy
| | | | - Pietro Crivello
- Institute for Experimental Cellular Therapy, Essen University Hospital, Essen, Germany
| | - Paolo Bernasconi
- Bone Marrow Transplant Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | | | - Lucia Farina
- Hematology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Fabio Benedetti
- Department of Medicine, Section of Hematology and Bone Marrow Transplant Unit, University of Verona, Verona, Italy
| | - Michela Cerno
- Azienda Sanitaria Universitaria Integrata di Udine, Udine, Italy
| | - Anna Grassi
- Hematology and BMT Unit, Ospedale Papa Giovanni XXIII, Bergamo, Italy
| | - Benedetto Bruno
- Department of Oncology, AOU Città della Salute e della Scienza, Torino, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | | | - Fabio Ciceri
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milano, Italy.,Vita-Salute San Raffaele University, Milano, Italy
| | - Katharina Fleischhauer
- Institute for Experimental Cellular Therapy, Essen University Hospital, Essen, Germany .,German Cancer Consortium, Heidelberg, Germany
| | - Luca Vago
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milano, Italy.,Unit of Immunogenetics, Leukemia Genomics and Immunobiology, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Francesca Bonifazi
- Institute of Hematology "L. and A. Seràgnoli", University Hospital S. Orsola-Malpighi, Bologna, Italy
| |
Collapse
|
32
|
Lee YY, Seo HW, Kyung JS, Hyun SH, Han BC, Park S, So SH, Lee SH, Yi EC. Proteomic studies of putative molecular signatures for biological effects by Korean Red Ginseng. J Ginseng Res 2019; 43:666-675. [PMID: 31700262 PMCID: PMC6823813 DOI: 10.1016/j.jgr.2019.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 04/17/2019] [Accepted: 05/02/2019] [Indexed: 12/22/2022] Open
Abstract
Background Korean Red Ginseng (KRG) has been widely used as an herbal medicine to normalize and strengthen body functions. Although many researchers have focused on the biological effects of KRG, more studies on the action mechanism of red ginseng are still needed. Previously, we investigated the proteomic changes of the rat spleen while searching for molecular signatures and the action mechanism of KRG. The proteomic analysis revealed that differentially expressed proteins (DEPs) were involved in the increased immune response and phagocytosis. The aim of this study was to evaluate the biological activities of KRG, especially the immune-enhancing response of KRG. Methods Rats were divided into 4 groups: 0 (control group), 500, 1000, and 2000 mg/kg administration of KRG powder for 6 weeks, respectively. Isobaric tags for relative and absolute quantitation was performed with Q-Exactive LC-MS/MS to compare associated proteins between the groups. The putative DEPs were identified by a current UniProt rat protein database search and by the Gene Ontology annotations. Results The DEPs appear to increase the innate and acquired immunity as well as immune cell movement. These results suggest that KRG can stimulate immune responses. This analysis refined our targets of interest to include the potential functions of KRG. Furthermore, we validated the potential molecular targets of the functions, representatively LCN2, CRAMP, and HLA-DQB1, by Western blotting. Conclusion These results may provide molecular signature candidates to elucidate the mechanisms of the immune response by KRG. Here, we demonstrate a strategy of tissue proteomics for the discovery of the molecular function of KRG.
Collapse
Affiliation(s)
- Yong Yook Lee
- The Korean Ginseng Research Institute, Korea Ginseng Corporation, Daejeon, Republic of Korea
| | - Hwi Won Seo
- The Korean Ginseng Research Institute, Korea Ginseng Corporation, Daejeon, Republic of Korea
| | - Jong-Su Kyung
- The Korean Ginseng Research Institute, Korea Ginseng Corporation, Daejeon, Republic of Korea
| | - Sun Hee Hyun
- The Korean Ginseng Research Institute, Korea Ginseng Corporation, Daejeon, Republic of Korea
| | - Byung Cheol Han
- The Korean Ginseng Research Institute, Korea Ginseng Corporation, Daejeon, Republic of Korea
| | - Songhee Park
- The Korean Ginseng Research Institute, Korea Ginseng Corporation, Daejeon, Republic of Korea
| | - Seung Ho So
- The Korean Ginseng Research Institute, Korea Ginseng Corporation, Daejeon, Republic of Korea
| | - Seung Ho Lee
- The Korean Ginseng Research Institute, Korea Ginseng Corporation, Daejeon, Republic of Korea
| | - Eugene C Yi
- Department of Molecular Medicine and Biopharmaceutical Sciences, School of Convergence Science and Technology and College of Medicine or College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
33
|
González-Serna D, López-Isac E, Yilmaz N, Gharibdoost F, Jamshidi A, Kavosi H, Poursani S, Farsad F, Direskeneli H, Saruhan-Direskeneli G, Vargas S, Sawalha AH, Brown MA, Yavuz S, Mahmoudi M, Martin J. Analysis of the genetic component of systemic sclerosis in Iranian and Turkish populations through a genome-wide association study. Rheumatology (Oxford) 2019; 58:289-298. [PMID: 30247649 DOI: 10.1093/rheumatology/key281] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Indexed: 12/13/2022] Open
Abstract
Objectives SSc is an autoimmune disease characterized by alteration of the immune response, vasculopathy and fibrosis. Most genetic studies on SSc have been performed in European-ancestry populations. The aim of this study was to analyse the genetic component of SSc in Middle Eastern patients from Iran and Turkey through a genome-wide association study. Methods This study analysed data from a total of 834 patients diagnosed with SSc and 1455 healthy controls from Iran and Turkey. DNA was genotyped using high-throughput genotyping platforms. The data generated were imputed using the Michigan Imputation Server, and the Haplotype Reference Consortium as a reference panel. A meta-analysis combining both case-control sets was conducted by the inverse variance method. Results The highest peak of association belonged to the HLA region in both the Iranian and Turkish populations. Strong and independent associations between the classical alleles HLA-DRB1*11: 04 [P = 2.10 × 10-24, odds ratio (OR) = 3.14] and DPB1*13: 01 (P = 5.37 × 10-14, OR = 5.75) and SSc were observed in the Iranian population. HLA-DRB1*11: 04 (P = 4.90 × 10-11, OR = 2.93) was the only independent signal associated in the Turkish cohort. An omnibus test yielded HLA-DRB1 58 and HLA-DPB1 76 as relevant amino acid positions for this disease. Concerning the meta-analysis, we also identified two associations close to the genome-wide significance level outside the HLA region, corresponding to IRF5-TNPO3 rs17424921-C (P = 1.34 × 10-7, OR = 1.68) and NFKB1 rs4648133-C (P = 3.11 × 10-7, OR = 1.47). Conclusion We identified significant associations in the HLA region and suggestive associations in IRF5-TNPO3 and NFKB1 loci in Iranian and Turkish patients affected by SSc through a genome-wide association study and an extensive HLA analysis.
Collapse
Affiliation(s)
- David González-Serna
- Cell Biology and Immunology Department, Institute of Parasitology and Biomedicine López-Neyra, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Elena López-Isac
- Cell Biology and Immunology Department, Institute of Parasitology and Biomedicine López-Neyra, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Neslihan Yilmaz
- Department of Rheumatology, Istanbul Bilim University, Istanbul, Turkey
| | - Farhad Gharibdoost
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmadreza Jamshidi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hoda Kavosi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Shiva Poursani
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Faraneh Farsad
- Department of Rheumatology, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | - Sofia Vargas
- Cell Biology and Immunology Department, Institute of Parasitology and Biomedicine López-Neyra, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Amr H Sawalha
- Division of Rheumatology, Department of Internal Medicine, Ann Arbor MI, USA
- Department of Computational Medicine and Bioinformatics, The Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor MI, USA
| | - Matthew A Brown
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Translational Research Institute, Princess Alexandra Hospital, Queensland, Australia
| | - Sule Yavuz
- Department of Rheumatology, Istanbul Bilim University, Istanbul, Turkey
| | - Mahdi Mahmoudi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Javier Martin
- Cell Biology and Immunology Department, Institute of Parasitology and Biomedicine López-Neyra, Consejo Superior de Investigaciones Científicas, Granada, Spain
| |
Collapse
|
34
|
|
35
|
Dooley CT, Ferrer T, Pagán H, O’Corry-Crowe GM. Bridging immunogenetics and immunoproteomics: Model positional scanning library analysis for Major Histocompatibility Complex class II DQ in Tursiops truncatus. PLoS One 2018; 13:e0201299. [PMID: 30070993 PMCID: PMC6072028 DOI: 10.1371/journal.pone.0201299] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 07/12/2018] [Indexed: 02/02/2023] Open
Abstract
The Major Histocompatibility Complex (MHC) is a critical element in mounting an effective immune response in vertebrates against invading pathogens. Studies of MHC in wildlife populations have typically focused on assessing diversity within the peptide binding regions (PBR) of the MHC class II (MHC II) family, especially the DQ receptor genes. Such metrics of diversity, however, are of limited use to health risk assessment since functional analyses (where changes in the PBR are correlated to recognition/pathologies of known pathogen proteins), are difficult to conduct in wildlife species. Here we describe a means to predict the binding preferences of MHC proteins: We have developed a model positional scanning library analysis (MPSLA) by harnessing the power of mixture based combinatorial libraries to probe the peptide landscapes of distinct MHC II DQ proteins. The algorithm provided by NNAlign was employed to predict the binding affinities of sets of peptides generated for DQ proteins. These binding affinities were then used to retroactively construct a model Positional Scanning Library screen. To test the utility of the approach, a model screen was compared to physical combinatorial screens for human MHC II DP. Model library screens were generated for DQ proteins derived from sequence data from bottlenose dolphins from the Indian River Lagoon (IRL) and the Atlantic coast of Florida, and compared to screens of DQ proteins from Genbank for dolphin and three other cetaceans. To explore the peptide binding landscape for DQ proteins from the IRL, combinations of the amino acids identified as active were compiled into peptide sequence lists that were used to mine databases for representation in known proteins. The frequency of which peptide sequences predicted to bind the MHC protein are found in proteins from pathogens associated with marine mammals was found to be significant (p values <0.0001). Through this analysis, genetic variation in MHC (classes I and II) can now be associated with the binding repertoires of the expressed MHC proteins and subsequently used to identify target pathogens. This approach may be eventually applied to evaluate individual population and species risk for outbreaks of emerging diseases.
Collapse
Affiliation(s)
- Colette T. Dooley
- Torrey Pines Institute for Molecular Studies, Port St. Lucie, Florida, United States of America
| | - Tatiana Ferrer
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, Florida, United States of America
| | - Heidi Pagán
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, Florida, United States of America
| | - Gregory M. O’Corry-Crowe
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, Florida, United States of America
| |
Collapse
|
36
|
Research to Practice Implications of High-Risk Genotypes for Beryllium Sensitization and Disease. J Occup Environ Med 2018; 58:855-60. [PMID: 27414009 DOI: 10.1097/jom.0000000000000805] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Beryllium workers may better understand their genetic susceptibility to chronic beryllium disease (CBD) expressed as population-based prevalence, rather than odds ratios from case-control studies. METHODS We calculated CBD prevalences from allele-specific DNA sequences of 853 workers for Human Leukocyte Antigen (HLA)-DPB1 genotypes and groups characterized by number of E69-containing alleles and by calculated surface electronegativity of HLA-DPB1. RESULTS Of 18 groups of at least 10 workers with specific genotypes, CBD prevalence was highest, 72.7%, for the HLA-DPB102:01:02/DPB117:01 genotype. Population-based grouped genotypes with two E69 alleles wherein one allele had -9 surface charge had a beryllium sensitization (BeS) of 52.6% and a CBD prevalence of 42.1%. CONCLUSIONS The high CBD and BeS prevalences associated with -9-charged E69 alleles and two E69s suggest that workers may benefit from knowing their genetic susceptibility in deciding whether to avoid future beryllium exposure.
Collapse
|
37
|
Association of Japanese cedar pollinosis and sensitization with HLA-DPB1 in the Japanese adolescent. Allergol Int 2018; 67:61-66. [PMID: 28460831 DOI: 10.1016/j.alit.2017.04.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 03/22/2017] [Accepted: 03/30/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Allergic rhinitis (AR) is a heterogeneous disorder that significantly affects daily activity, work productivity, sleep, learning, and quality of life in all generations. Japanese cedar (JC) pollen is the most common allergen responsible for the development of AR in Japan. AR caused by JC pollen is considered to be a multifactorial inheritance disease that is caused by both environmental and genetic factors. The aim of this study was to investigate whether Human Leukocyte Antigen-DPB1 (HLA-DPB1) is associated with JC sensitization/pollinosis. METHODS Subjects in the present study were 544 students at the University of Tsukuba from 2013 to 2015. PCR-SSOP was performed to determine each individual's HLA-DPB1 alleles. Logistic regression analysis was performed to examine relationships between JC-related phenotypes and alleles/amino acid polymorphisms of HLA-DPB1. RESULTS HLA-DPB1*02 allele were significantly associated with both JC sensitization/pollinosis (q < 0.05). Furthermore, HLA-DPB1*02:01 and HLA-DPB1*02:02 had a protective tendency for JC sensitization/pollinosis, and HLA-DPB1*05:01 had a susceptible tendency for sensitization (P < 0.05). In amino acid polymorphism analyses, Glutamic acid in position 69, Glycine-Glycine-Proline-Methionine in positions 84-87, Threonine in position 170 and Methionine in position 205 were also observed to have a protective tendency for JC sensitization (P < 0.05). Amino acid positions 69 and 84-87 were located in binding pocket 5 and 1 of HLA-DPβ1, respectively. CONCLUSIONS Amino acid changes in the allergen-binding pocket of HLA-DPβ1 are likely to influence pollinosis/sensitization to the allergenic peptide of JC pollen and determine the pollinosis risk for each individual exposed to JC pollen.
Collapse
|
38
|
Alvaro-Benito M, Morrison E, Wieczorek M, Sticht J, Freund C. Human leukocyte Antigen-DM polymorphisms in autoimmune diseases. Open Biol 2017; 6:rsob.160165. [PMID: 27534821 PMCID: PMC5008016 DOI: 10.1098/rsob.160165] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 07/19/2016] [Indexed: 12/20/2022] Open
Abstract
Classical MHC class II (MHCII) proteins present peptides for CD4+ T-cell surveillance and are by far the most prominent risk factor for a number of autoimmune disorders. To date, many studies have shown that this link between particular MHCII alleles and disease depends on the MHCII's particular ability to bind and present certain peptides in specific physiological contexts. However, less attention has been paid to the non-classical MHCII molecule human leucocyte antigen-DM, which catalyses peptide exchange on classical MHCII proteins acting as a peptide editor. DM function impacts the presentation of both antigenic peptides in the periphery and key self-peptides during T-cell development in the thymus. In this way, DM activity directly influences the response to pathogens, as well as mechanisms of self-tolerance acquisition. While decreased DM editing of particular MHCII proteins has been proposed to be related to autoimmune disorders, no experimental evidence for different DM catalytic properties had been reported until recently. Biochemical and structural investigations, together with new animal models of loss of DM activity, have provided an attractive foundation for identifying different catalytic efficiencies for DM allotypes. Here, we revisit the current knowledge of DM function and discuss how DM function may impart autoimmunity at the organism level.
Collapse
Affiliation(s)
- Miguel Alvaro-Benito
- Protein Biochemistry Group, Institute for Chemistry and Biochemistry, Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Eliot Morrison
- Protein Biochemistry Group, Institute for Chemistry and Biochemistry, Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Marek Wieczorek
- Protein Biochemistry Group, Institute for Chemistry and Biochemistry, Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Jana Sticht
- Protein Biochemistry Group, Institute for Chemistry and Biochemistry, Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Christian Freund
- Protein Biochemistry Group, Institute for Chemistry and Biochemistry, Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
39
|
Ermakov YA, Kamaraju K, Dunina-Barkovskaya A, Vishnyakova KS, Yegorov YE, Anishkin A, Sukharev S. High-Affinity Interactions of Beryllium(2+) with Phosphatidylserine Result in a Cross-Linking Effect Reducing Surface Recognition of the Lipid. Biochemistry 2017; 56:5457-5470. [PMID: 28872302 DOI: 10.1021/acs.biochem.7b00644] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Beryllium has multiple industrial applications, but its manufacture is associated with a serious occupational risk of developing chronic inflammation in the lungs known as berylliosis, or chronic beryllium disease. Although the Be2+-induced abnormal immune responses have recently been linked to a specific MHC-II allele, the nature of long-lasting granulomas is not fully understood. Here we show that Be2+ binds with a micromolar affinity to phosphatidylserine (PS), the major surface marker of apoptotic cells. Isothermal titration calorimetry indicates that, like that of Ca2+, binding of Be2+ to PS liposomes is largely entropically driven, likely by massive desolvation. Be2+ exerts a compacting effect on PS monolayers, suggesting cross-linking through coordination by both phosphates and carboxyls in multiple configurations, which were visualized in molecular dynamics simulations. Electrostatic modification of PS membranes by Be2+ includes complete neutralization of surface charges at ∼30 μM, accompanied by an increase in the boundary dipole potential. The data suggest that Be2+ can displace Ca2+ from the surface of PS, and being coordinated in a tight shell of four oxygens, it can mask headgroups from Ca2+-mediated recognition by PS receptors. Indeed, 48 μM Be2+ added to IC-21 cultured macrophages specifically suppresses binding and engulfment of PS-coated silica beads or aged erythrocytes. We propose that Be2+ adsorption at the surface of apoptotic cells may potentially prevent normal phagocytosis, thus causing accumulation of secondary necrotic foci and the resulting chronic inflammation.
Collapse
Affiliation(s)
- Yuri A Ermakov
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences , Leninsky Prospect 31, Moscow 117071, Russia
| | - Kishore Kamaraju
- Department of Biology, University of Maryland , College Park, Maryland 20742, United States
| | | | - Khava S Vishnyakova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences , Vavilov Street 32, Moscow 119991, Russia
| | - Yegor E Yegorov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences , Vavilov Street 32, Moscow 119991, Russia
| | - Andriy Anishkin
- Department of Biology, University of Maryland , College Park, Maryland 20742, United States
| | - Sergei Sukharev
- Department of Biology, University of Maryland , College Park, Maryland 20742, United States
| |
Collapse
|
40
|
Yordanov V, Dimitrov I, Doytchinova I. Proteochemometrics-Based Prediction of Peptide Binding to HLA-DP Proteins. J Chem Inf Model 2017; 58:297-304. [PMID: 28719212 DOI: 10.1021/acs.jcim.7b00026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Human leukocyte antigens (HLA) class II proteins are involved in the antigen processing in the antigen presenting cells. They form complexes with antigen peptide fragments. The peptide-HLA protein complexes are presented on the cell surface where they are recognized by helper T cells (Th cells). HLA-DP is one of the three HLA class II loci. The HLA-DP proteins are associated with a significant number of autoimmune diseases, as well as with a susceptibility or resistance to a number of infectious agents. In the present study, we apply proteochemometrics-a method for bioactivity modeling of multiple ligands binding to multiple target proteins-to derive and validate a robust model for peptide binding prediction to the 7 most frequent HLA-DP proteins. The model is able to identify 86% of the binders in the top 10% of the best predicted nonamers generated from one protein.
Collapse
Affiliation(s)
- Ventsislav Yordanov
- Faculty of Pharmacy, Medical University of Sofia , 2 Dunav Street, Sofia 1000, Bulgaria
| | - Ivan Dimitrov
- Faculty of Pharmacy, Medical University of Sofia , 2 Dunav Street, Sofia 1000, Bulgaria
| | - Irini Doytchinova
- Faculty of Pharmacy, Medical University of Sofia , 2 Dunav Street, Sofia 1000, Bulgaria
| |
Collapse
|
41
|
Cortés A, Coral J, McLachlan C, Benítez R, Pinilla L. Planar molecular arrangements aid the design of MHC class II binding peptides. Mol Biol 2017. [DOI: 10.1134/s002689331702008x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
42
|
Using DR52c/Ni 2+ mimotope tetramers to detect Ni 2+ reactive CD4 + T cells in patients with joint replacement failure. Toxicol Appl Pharmacol 2017; 331:69-75. [PMID: 28554661 DOI: 10.1016/j.taap.2017.05.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/15/2017] [Accepted: 05/17/2017] [Indexed: 11/20/2022]
Abstract
T cell mediated hypersensitivity to nickel (Ni2+) is one of the most common causes of allergic contact dermatitis. Ni2+ sensitization may also contribute to the failure of Ni2+ containing joint implants, and revision to non-Ni2+ containing hardware can be costly and debilitating. Previously, we identified Ni2+ mimotope peptides, which are reactive to a CD4+ T cell clone, ANi2.3 (Vα1, Vβ17), isolated from a Ni2+ hypersensitive patient with contact dermatitis. This T cell is restricted to the major histocompatibility complex class II (MHCII) molecule, Human Leukocyte Antigen (HLA)-DR52c (DRA, DRB3*0301). However, it is not known if Ni2+ induced T cell responses in sensitized joint replacement failure patients are similar to subjects with Ni2+ induced contact dermatitis. Here, we generated DR52c/Ni2+ mimotope tetramers, and used them to test if the same Ni2+ T cell activation mechanism could be generalized to Ni2+ sensitized patients with associated joint implant failure. We confirmed the specificity of these tetramers by staining of ANi2.3T cell transfectomas. The DR52c/Ni2+ mimotope tetramer detected Ni2+ reactive CD4+ T cells in the peripheral blood mononuclear cells (PBMC) of patients identified as Ni2+ sensitized by patch testing and a positive Ni2+ LPT. When HLA-typed by a DR52 specific antibody, three out of four patients were DR52 positive. In one patient, Ni2+ stimulation induced the expansion of Vβ17 positive CD4+ T cells from 0.8% to 13.3%. We found that the percentage of DR52 positivity and Vβ17 usage in Ni2+ sensitized joint failure patients are similar to Ni sensitized skin allergy patients. Ni2+ independent mimotope tetramers may be a useful tool to identify the Ni2+ reactive CD4+ T cells.
Collapse
|
43
|
Yamashita Y, Anczurowski M, Nakatsugawa M, Tanaka M, Kagoya Y, Sinha A, Chamoto K, Ochi T, Guo T, Saso K, Butler MO, Minden MD, Kislinger T, Hirano N. HLA-DP 84Gly constitutively presents endogenous peptides generated by the class I antigen processing pathway. Nat Commun 2017; 8:15244. [PMID: 28489076 PMCID: PMC5436232 DOI: 10.1038/ncomms15244] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 03/09/2017] [Indexed: 12/17/2022] Open
Abstract
Classical antigen processing leads to the presentation of antigenic peptides derived from endogenous and exogenous sources for MHC class I and class II molecules, respectively. Here we show that, unlike other class II molecules, prevalent HLA-DP molecules with β-chains encoding Gly84 (DP84Gly) constitutively present endogenous peptides. DP84Gly does not bind invariant chain (Ii) via the class II-associated invariant chain peptide (CLIP) region, nor does it present CLIP. However, Ii does facilitate the transport of DP84Gly from the endoplasmic reticulum (ER) to the endosomal/lysosomal pathway by transiently binding DP84Gly via a non-CLIP region(s) in a pH-sensitive manner. Accordingly, like class I, DP84Gly constitutively presents endogenous peptides processed by the proteasome and transported to the ER by the transporter associated with antigen processing (TAP). Therefore, DP84Gly, found only in common chimpanzees and humans, uniquely uses both class I and II antigen-processing pathways to present peptides derived from intracellular and extracellular sources.
Collapse
Affiliation(s)
- Yuki Yamashita
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada M5G 2M9
| | - Mark Anczurowski
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada M5G 2M9.,Department of Immunology, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | - Munehide Nakatsugawa
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada M5G 2M9
| | - Makito Tanaka
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - Yuki Kagoya
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada M5G 2M9
| | - Ankit Sinha
- Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada M5G 1L7.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada M5G 2M9
| | - Kenji Chamoto
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada M5G 2M9
| | - Toshiki Ochi
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada M5G 2M9
| | - Tingxi Guo
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada M5G 2M9.,Department of Immunology, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | - Kayoko Saso
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada M5G 2M9
| | - Marcus O Butler
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada M5G 2M9.,Department of Immunology, University of Toronto, Toronto, Ontario, Canada M5S 1A8.,Department of Medicine, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | - Mark D Minden
- Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada M5G 2M9.,University of Toronto, Toronto, Ontario, Canada M5G 2M9
| | - Thomas Kislinger
- Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada M5G 1L7.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada M5G 2M9
| | - Naoto Hirano
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada M5G 2M9.,Department of Immunology, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| |
Collapse
|
44
|
The Presence, Persistence and Functional Properties of Plasmodium vivax Duffy Binding Protein II Antibodies Are Influenced by HLA Class II Allelic Variants. PLoS Negl Trop Dis 2016; 10:e0005177. [PMID: 27959918 PMCID: PMC5154503 DOI: 10.1371/journal.pntd.0005177] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 11/09/2016] [Indexed: 11/21/2022] Open
Abstract
Background The human malaria parasite Plasmodium vivax infects red blood cells through a key pathway that requires interaction between Duffy binding protein II (DBPII) and its receptor on reticulocytes, the Duffy antigen/receptor for chemokines (DARC). A high proportion of P. vivax-exposed individuals fail to develop antibodies that inhibit DBPII-DARC interaction, and genetic factors that modulate this humoral immune response are poorly characterized. Here, we investigate if DBPII responsiveness could be HLA class II-linked. Methodology/Principal Findings A community-based open cohort study was carried out in an agricultural settlement of the Brazilian Amazon, in which 336 unrelated volunteers were genotyped for HLA class II (DRB1, DQA1 and DQB1 loci), and their DBPII immune responses were monitored over time (baseline, 6 and 12 months) by conventional serology (DBPII IgG ELISA-detected) and functional assays (inhibition of DBPII–erythrocyte binding). The results demonstrated an increased susceptibility of the DRB1*13:01 carriers to develop and sustain an anti-DBPII IgG response, while individuals with the haplotype DRB1*14:02-DQA1*05:03-DQB1*03:01 were persistent non-responders. HLA class II gene polymorphisms also influenced the functional properties of DBPII antibodies (BIAbs, binding inhibitory antibodies), with three alleles (DRB1*07:01, DQA1*02:01 and DQB1*02:02) comprising a single haplotype linked with the presence and persistence of the BIAbs response. Modelling the structural effects of the HLA-DRB1 variants revealed a number of differences in the peptide-binding groove, which is likely to lead to altered antigen binding and presentation profiles, and hence may explain the differences in subject responses. Conclusions/Significance The current study confirms the heritability of the DBPII antibody response, with genetic variation in HLA class II genes influencing both the development and persistence of IgG antibody responses. Cellular studies to increase knowledge of the binding affinities of DBPII peptides for class II molecules linked with good or poor antibody responses might lead to the development of strategies for controlling the type of helper T cells activated in response to DBPII. Vaccines are a crucial component of the current efforts to eliminate malaria, and much of the vaccine-related research on P. vivax has been focused on the Duffy binding protein II (DBPII), a ligand for human blood stage infection. A high proportion of individuals who are naturally exposed to P. vivax fail to develop neutralizing antibodies, but the host genetic factors modulating this immune response are poorly characterized. We investigated whether DBPII responsiveness was dependent on the variability of human leucocyte antigen (HLA) class II cell surface proteins involved in the regulation of immune responses. To obtain a reliable estimate of DBPII antibodies, we carried out a longitudinal study, collecting serum from the same individuals over a period of 12-months. The results confirmed the heritability of the DBPII immune response, with genetic variation in HLA class II genes influencing both the development and persistence of the antibody response. HLA class II genotype also influenced the ability of DBPII antibodies to block the ligand-receptor interaction in vitro. Computational approaches identified structural specificity between HLA variants, which we propose as an explanation for differences between a good or poor antibody responder. These results may have implications for vaccine development, and might lead to strategies for controlling the type of immune response activated in response to DBPII.
Collapse
|
45
|
Otting N, van der Wiel MKH, de Groot N, de Vos-Rouweler AJM, de Groot NG, Doxiadis GGM, Wiseman RW, O'Connor DH, Bontrop RE. The orthologs of HLA-DQ and -DP genes display abundant levels of variability in macaque species. Immunogenetics 2016; 69:87-99. [PMID: 27771735 DOI: 10.1007/s00251-016-0954-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 10/12/2016] [Indexed: 11/29/2022]
Abstract
The human major histocompatibility complex (MHC) region encodes three types of class II molecules designated HLA-DR, -DQ, and -DP. Both the HLA-DQ and -DP gene region comprise a duplicated tandem of A and B genes, whereas in macaques, only one set of genes is present per region. A substantial sequencing project on the DQ and DP genes in various macaque populations resulted in the detection of previously 304 unreported full-length alleles. Phylogenetic studies showed that humans and macaques share trans-species lineages for the DQA1 and DQB1 genes, whereas the DPA1 and DPB1 lineages in macaques appear to be species-specific. Amino acid variability plot analyses revealed that each of the four genes displays more allelic variation in macaques than is encountered in humans. Moreover, the numbers of different amino acids at certain positions in the encoded proteins are higher than in humans. This phenomenon is remarkably prominent at the contact positions of the peptide-binding sites of the deduced macaque DPβ-chains. These differences in the MHC class II DP regions of macaques and humans suggest separate evolutionary mechanisms in the generation of diversity.
Collapse
Affiliation(s)
- Nel Otting
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre (BPRC), Lange Kleiweg 161, 2288 GJ, Rijswijk, The Netherlands.
| | - Marit K H van der Wiel
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre (BPRC), Lange Kleiweg 161, 2288 GJ, Rijswijk, The Netherlands
| | - Nanine de Groot
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre (BPRC), Lange Kleiweg 161, 2288 GJ, Rijswijk, The Netherlands
| | - Annemiek J M de Vos-Rouweler
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre (BPRC), Lange Kleiweg 161, 2288 GJ, Rijswijk, The Netherlands
| | - Natasja G de Groot
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre (BPRC), Lange Kleiweg 161, 2288 GJ, Rijswijk, The Netherlands
| | - Gaby G M Doxiadis
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre (BPRC), Lange Kleiweg 161, 2288 GJ, Rijswijk, The Netherlands
| | - Roger W Wiseman
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - David H O'Connor
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Ronald E Bontrop
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre (BPRC), Lange Kleiweg 161, 2288 GJ, Rijswijk, The Netherlands.,Department of Biology, Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
46
|
Simmons DP, Kafetzi ML, Wood I, Macaskill PC, Milford EL, Guleria I. Antibodies against HLA-DP recognize broadly expressed epitopes. Hum Immunol 2016; 77:1128-1139. [PMID: 27664843 DOI: 10.1016/j.humimm.2016.09.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 08/20/2016] [Accepted: 09/20/2016] [Indexed: 11/27/2022]
Abstract
HLA matching and avoidance of pre-transplant donor-specific antibodies are important in selection of donors for solid organ transplant. Solid phase testing with single antigen beads allows resolution of antibody reactivity to the level of the allele. Single antigen bead testing results at a large transplant center were reviewed to identify selective reactivity patterns of anti-HLA antibodies. Many HLA-DP antibodies were identified in the context of other HLA antibodies, but some sera had antibodies against only HLA-DP. B cell flow crossmatch testing was positive for 2 out of 9 sera with HLA-DP antibodies. Many patterns of reactivity corresponded to epitopes in hypervariable regions C and F of DPB1, but some matched epitopes in other regions or DPA1. Through analysis of single antigen bead testing from a large number of patients, we report that anti-HLA-DP antibodies predominantly recognize broadly cross-reactive epitopes. The United Network for Organ Sharing has mandated HLA-DP typing on all deceased kidney donors, and HLA-DP epitopes should be considered as the major antigens for avoidance of pre-transplant donor-specific antibodies.
Collapse
Affiliation(s)
- Daimon P Simmons
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, United States
| | - Maria L Kafetzi
- Biochemistry and Endocrinology Laboratory, Children's Hospital P&A Kyriakou, Athens, Greece
| | - Isabelle Wood
- Clinical Laboratory Division, Tissue Typing Laboratory, Brigham and Women's Hospital, Boston, MA, United States
| | - Peter C Macaskill
- Clinical Laboratory Division, Tissue Typing Laboratory, Brigham and Women's Hospital, Boston, MA, United States
| | - Edgar L Milford
- Clinical Laboratory Division, Tissue Typing Laboratory, Brigham and Women's Hospital, Boston, MA, United States; Renal Transplant Program, Division of Renal Medicine, Brigham and Women's Hospital, Boston, MA, United States; Harvard Medical School, Boston, MA, United States
| | - Indira Guleria
- Clinical Laboratory Division, Tissue Typing Laboratory, Brigham and Women's Hospital, Boston, MA, United States; Renal Transplant Program, Division of Renal Medicine, Brigham and Women's Hospital, Boston, MA, United States; Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
47
|
Shiraishi K, Okada Y, Takahashi A, Kamatani Y, Momozawa Y, Ashikawa K, Kunitoh H, Matsumoto S, Takano A, Shimizu K, Goto A, Tsuta K, Watanabe SI, Ohe Y, Watanabe Y, Goto Y, Nokihara H, Furuta K, Yoshida A, Goto K, Hishida T, Tsuboi M, Tsuchihara K, Miyagi Y, Nakayama H, Yokose T, Tanaka K, Nagashima T, Ohtaki Y, Maeda D, Imai K, Minamiya Y, Sakamoto H, Saito A, Shimada Y, Sunami K, Saito M, Inazawa J, Nakamura Y, Yoshida T, Yokota J, Matsuda F, Matsuo K, Daigo Y, Kubo M, Kohno T. Association of variations in HLA class II and other loci with susceptibility to EGFR-mutated lung adenocarcinoma. Nat Commun 2016; 7:12451. [PMID: 27501781 PMCID: PMC4980483 DOI: 10.1038/ncomms12451] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Accepted: 06/24/2016] [Indexed: 01/21/2023] Open
Abstract
Lung adenocarcinoma driven by somatic EGFR mutations is more prevalent in East Asians (30–50%) than in European/Americans (10–20%). Here we investigate genetic factors underlying the risk of this disease by conducting a genome-wide association study, followed by two validation studies, in 3,173 Japanese patients with EGFR mutation-positive lung adenocarcinoma and 15,158 controls. Four loci, 5p15.33 (TERT), 6p21.3 (BTNL2), 3q28 (TP63) and 17q24.2 (BPTF), previously shown to be strongly associated with overall lung adenocarcinoma risk in East Asians, were re-discovered as loci associated with a higher susceptibility to EGFR mutation-positive lung adenocarcinoma. In addition, two additional loci, HLA class II at 6p21.32 (rs2179920; P =5.1 × 10−17, per-allele OR=1.36) and 6p21.1 (FOXP4) (rs2495239; P=3.9 × 10−9, per-allele OR=1.19) were newly identified as loci associated with EGFR mutation-positive lung adenocarcinoma. This study indicates that multiple genetic factors underlie the risk of lung adenocarcinomas with EGFR mutations. EGFR mutations in lung adenocarcinoma are more frequent in East Asians compared to other populations. Here, the authors carry out a genome-wide association study in EGFR mutant cancers and identify loci that are associated with risk of developing this molecular subtype of cancer.
Collapse
Affiliation(s)
- Kouya Shiraishi
- Division of Genome Biology, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Yukinori Okada
- Department of Human Genetics and Disease Diversity, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan.,Department of Statistical Genetics, Osaka University Graduate School of Medicine, Yokohama 230-0045, Japan.,Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Atsushi Takahashi
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan.,Omics Research Center, National Cerebral and Cardiovascular Center, Osaka 565-8565, Japan
| | - Yoichiro Kamatani
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Yukihide Momozawa
- Laboratory for Genotyping Development, Center for Integrative Medical Sciences, RIKEN, Yokohama 113-8510, Japan
| | - Kyota Ashikawa
- Laboratory for Genotyping Development, Center for Integrative Medical Sciences, RIKEN, Yokohama 113-8510, Japan
| | - Hideo Kunitoh
- Department of Medical Oncology, Japanese Red Cross Medical Center, Tokyo 150-0012, Japan
| | - Shingo Matsumoto
- Division of Translational Research, Exploratory Oncology Research and Clinical Trial Center (EPOC), National Cancer Center Research Institute, Chiba 277-0882, Japan
| | - Atsushi Takano
- Center for Antibody and Vaccine Therapy, Research Hospital, Institute of Medical Science, The University of Tokyo, Tokyo 108-0071, Japan.,Department of Medical Oncology and Cancer Center, Shiga University of Medical Science, Otsu 520-2121, Japan
| | - Kimihiro Shimizu
- Department of Integrative Center of General Surgery, Gunma University Hospital, Gunma 371-8511, Japan
| | - Akiteru Goto
- Department of Cellular and Organ Pathology, Graduate School of Medicine, Akita University, Akita 010-8543, Japan
| | - Koji Tsuta
- Department of Pathology, National Cancer Center Hospital, Tokyo 104-0045, Japan.,Department of Pathology and Laboratory Medicine, Kansai Medical University, Osaka 573-1010, Japan
| | - Shun-Ichi Watanabe
- Division of Thoracic Surgery, National Cancer Centre Hospital, Tokyo 104-0045, Japan
| | - Yuichiro Ohe
- Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Yukio Watanabe
- Division of Thoracic Surgery, National Cancer Centre Hospital, Tokyo 104-0045, Japan
| | - Yasushi Goto
- Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Hiroshi Nokihara
- Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Koh Furuta
- Department of Clinical Laboratories, National Cancer Center Hospital, Tokyo 104-0045, Japan.,Division of Clinical Laboratory, Kanagawa Cancer Center, Kanagawa 241-0815, Japan
| | - Akihiko Yoshida
- Department of Pathology, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Koichi Goto
- Department of Thoracic Oncology, National Cancer Center Hospital East, Chiba 277-0882, Japan
| | - Tomoyuki Hishida
- Department of Thoracic Surgery, National Cancer Center Hospital East, Chiba 277-0882, Japan
| | - Masahiro Tsuboi
- Department of Thoracic Surgery, National Cancer Center Hospital East, Chiba 277-0882, Japan
| | - Katsuya Tsuchihara
- Division of Translational Research, Exploratory Oncology Research and Clinical Trial Center (EPOC), National Cancer Center Research Institute, Chiba 277-0882, Japan
| | - Yohei Miyagi
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Kanagawa 241-0815, Japan
| | - Haruhiko Nakayama
- Department of Thoracic Surgery, Kanagawa Cancer Center, Kanagawa 241-0815, Japan
| | - Tomoyuki Yokose
- Department of Pathology, Kanagawa Cancer Center, Kanagawa 241-0815, Japan
| | - Kazumi Tanaka
- Department of Integrative Center of General Surgery, Gunma University Hospital, Gunma 371-8511, Japan
| | - Toshiteru Nagashima
- Department of Integrative Center of General Surgery, Gunma University Hospital, Gunma 371-8511, Japan
| | - Yoichi Ohtaki
- Department of Integrative Center of General Surgery, Gunma University Hospital, Gunma 371-8511, Japan
| | - Daichi Maeda
- Department of Cellular and Organ Pathology, Graduate School of Medicine, Akita University, Akita 010-8543, Japan
| | - Kazuhiro Imai
- Department of Thoracic Surgery, Graduate School of Medicine, Akita University, Akita 010-8543, Japan
| | - Yoshihiro Minamiya
- Department of Thoracic Surgery, Graduate School of Medicine, Akita University, Akita 010-8543, Japan
| | - Hiromi Sakamoto
- Division of Genetics, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | | | - Yoko Shimada
- Division of Genome Biology, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Kuniko Sunami
- Division of Genome Biology, National Cancer Center Research Institute, Tokyo 104-0045, Japan.,Department of Clinical Laboratories, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Motonobu Saito
- Division of Genome Biology, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Johji Inazawa
- Department of Molecular Cytogenetics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan.,Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan.,Bioresource Research Center, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Yusuke Nakamura
- Department of Medicine and Department of Surgery, Center for Personalized Therapeutics, The University of Chicago, Chicago 60637, USA
| | - Teruhiko Yoshida
- Division of Genetics, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Jun Yokota
- Genomics and Epigenomics of Cancer Prediction Program, Institute of Predictive and Personalized Medicine of Cancer (IMPPC), 08916 Badalona, Spain
| | - Fumihiko Matsuda
- Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Keitaro Matsuo
- Division of Division of Molecular Medicine, Aichi Cancer Center Research Institute, Chikusa-ku, Nagoya 464-8681, Japan
| | - Yataro Daigo
- Center for Antibody and Vaccine Therapy, Research Hospital, Institute of Medical Science, The University of Tokyo, Tokyo 108-0071, Japan.,Department of Medical Oncology and Cancer Center, Shiga University of Medical Science, Otsu 520-2121, Japan
| | - Michiaki Kubo
- Laboratory for Genotyping Development, Center for Integrative Medical Sciences, RIKEN, Yokohama 113-8510, Japan
| | - Takashi Kohno
- Division of Genome Biology, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| |
Collapse
|
48
|
Li Z, Xia Y, Feng LN, Chen JR, Li HM, Cui J, Cai QQ, Sim KS, Nairismägi ML, Laurensia Y, Meah WY, Liu WS, Guo YM, Chen LZ, Feng QS, Pang CP, Chen LJ, Chew SH, Ebstein RP, Foo JN, Liu J, Ha J, Khoo LP, Chin ST, Zeng YX, Aung T, Chowbay B, Diong CP, Zhang F, Liu YH, Tang T, Tao M, Quek R, Mohamad F, Tan SY, Teh BT, Ng SB, Chng WJ, Ong CK, Okada Y, Raychaudhuri S, Lim ST, Tan W, Peng RJ, Khor CC, Bei JX. Genetic risk of extranodal natural killer T-cell lymphoma: a genome-wide association study. Lancet Oncol 2016; 17:1240-7. [PMID: 27470079 DOI: 10.1016/s1470-2045(16)30148-6] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 05/05/2016] [Accepted: 05/05/2016] [Indexed: 12/22/2022]
Abstract
BACKGROUND Extranodal natural killer T-cell lymphoma (NKTCL), nasal type, is a rare and aggressive malignancy that occurs predominantly in Asian and Latin American populations. Although Epstein-Barr virus infection is a known risk factor, other risk factors and the pathogenesis of NKTCL are not well understood. We aimed to identify common genetic variants affecting individual risk of NKTCL. METHODS We did a genome-wide association study of 189 patients with extranodal NKTCL, nasal type (WHO classification criteria; cases) and 957 controls from Guangdong province, southern China. We validated our findings in four independent case-control series, including 75 cases from Guangdong province and 296 controls from Hong Kong, 65 cases and 983 controls from Guangdong province, 125 cases and 1110 controls from Beijing (northern China), and 60 cases and 2476 controls from Singapore. We used imputation and conditional logistic regression analyses to fine-map the associations. We also did a meta-analysis of the replication series and of the entire dataset. FINDINGS Associations exceeding the genome-wide significance threshold (p<5 × 10(-8)) were seen at 51 single-nucleotide polymorphisms (SNPs) mapping to the class II MHC region on chromosome 6, with rs9277378 (located in HLA-DPB1) having the strongest association with NKTCL susceptibility (p=4·21 × 10(-19), odds ratio [OR] 1·84 [95% CI 1·61-2·11] in meta-analysis of entire dataset). Imputation-based fine-mapping across the class II MHC region suggests that four aminoacid residues (Gly84-Gly85-Pro86-Met87) in near-complete linkage disequilibrium at the edge of the peptide-binding groove of HLA-DPB1 could account for most of the association between the rs9277378*A risk allele and NKTCL susceptibility (OR 2·38, p value for haplotype 2·32 × 10(-14)). This association is distinct from MHC associations with Epstein-Barr virus infection. INTERPRETATION To our knowledge, this is the first time that a genetic variant conferring an NKTCL risk is noted at genome-wide significance. This finding underlines the importance of HLA-DP antigen presentation in the pathogenesis of NKTCL. FUNDING Top-Notch Young Talents Program of China, Special Support Program of Guangdong, Specialized Research Fund for the Doctoral Program of Higher Education (20110171120099), Program for New Century Excellent Talents in University (NCET-11-0529), National Medical Research Council of Singapore (TCR12DEC005), Tanoto Foundation Professorship in Medical Oncology, New Century Foundation Limited, Ling Foundation, Singapore National Cancer Centre Research Fund, and the US National Institutes of Health (1R01AR062886, 5U01GM092691-04, and 1R01AR063759-01A1).
Collapse
Affiliation(s)
- Zheng Li
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China; Genome Institute of Singapore, Singapore
| | - Yi Xia
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Li-Na Feng
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Jie-Rong Chen
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Hong-Min Li
- State Key Laboratory of Molecular Oncology, Beijing, China; Department of Etiology and Carcinogenesis, Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, Beijing, China; Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Cui
- Division of Rheumatology, Immunology, and Allergy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Qing-Qing Cai
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | | | - Maarja-Liisa Nairismägi
- Lymphoma Genomic Translational Research Laboratory, National Cancer Centre Singapore, Singapore
| | - Yurike Laurensia
- Lymphoma Genomic Translational Research Laboratory, National Cancer Centre Singapore, Singapore
| | | | - Wen-Sheng Liu
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yun-Miao Guo
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Li-Zhen Chen
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Qi-Sheng Feng
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Chi Pui Pang
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Li Jia Chen
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Soo Hong Chew
- Department of Economics, National University of Singapore, Singapore
| | - Richard P Ebstein
- Department of Psychology, National University of Singapore, Singapore
| | | | | | - Jeslin Ha
- Lymphoma Genomic Translational Research Laboratory, National Cancer Centre Singapore, Singapore
| | - Lay Poh Khoo
- Lymphoma Genomic Translational Research Laboratory, National Cancer Centre Singapore, Singapore
| | - Suk Teng Chin
- Lymphoma Genomic Translational Research Laboratory, National Cancer Centre Singapore, Singapore
| | - Yi-Xin Zeng
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China; Beijing Hospital, Beijing, China
| | - Tin Aung
- Singapore Eye Research Institute, Singapore
| | - Balram Chowbay
- Laboratory of Clinical Pharmacology, Division of Medical Sciences, Humphrey Oei Institute of Cancer Research, National Cancer Centre, Singapore; Clinical Pharmacology, SingHealth, Singapore; Office of Clinical Sciences, Duke-National University of Singapore Medical School, Singapore
| | | | - Fen Zhang
- Department of Pathology, Guangdong General Hospital, Guangzhou, China
| | - Yan-Hui Liu
- Department of Pathology, Guangdong General Hospital, Guangzhou, China
| | - Tiffany Tang
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - Miriam Tao
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - Richard Quek
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - Farid Mohamad
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - Soo Yong Tan
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore; Department of Pathology, Singapore General Hospital, Singapore; Institute of Molecular and Cell Biology, A*STAR, Singapore; Department of Pathology, University of Malaya, Kuala Lumpur, Malaysia; Department of Pathology, National University of Singapore, Singapore
| | - Bin Tean Teh
- Program in Cancer and Stem Cell Biology, Duke-National University of Singapore Medical School, Singapore; Institute of Molecular and Cell Biology, A*STAR, Singapore; Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre Singapore, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Siok Bian Ng
- Department of Pathology, National University of Singapore, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Singapore; Department of Pathology, National University Hospital, National University Health System, Singapore
| | - Wee Joo Chng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore; Department of Haematology-Oncology, National University Cancer Institute of Singapore, National University Health System, Singapore
| | - Choon Kiat Ong
- Lymphoma Genomic Translational Research Laboratory, National Cancer Centre Singapore, Singapore
| | - Yukinori Okada
- Department of Human Genetics and Disease Diversity, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan; Department of Statistical Genetics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Soumya Raychaudhuri
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Division of Rheumatology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Partners Center for Personalized Genetic Medicine, Boston, MA, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Institute of Inflammation and Repair, University of Manchester, Manchester, UK; Rheumatology Unit, Department of Medicine, Karolinska Institutet and Karolinska University Hospital Solna, Stockholm, Sweden
| | - Soon Thye Lim
- Lymphoma Genomic Translational Research Laboratory, National Cancer Centre Singapore, Singapore; Division of Medical Oncology, National Cancer Centre Singapore, Singapore; Office of Education, Duke-National University of Singapore Medical School, Singapore
| | - Wen Tan
- State Key Laboratory of Molecular Oncology, Beijing, China; Department of Etiology and Carcinogenesis, Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, Beijing, China; Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Rou-Jun Peng
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Chiea Chuen Khor
- Genome Institute of Singapore, Singapore; Singapore Eye Research Institute, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jin-Xin Bei
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China; Genome Institute of Singapore, Singapore; Center for Precision Medicine, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
49
|
Fontenot AP, Falta MT, Kappler JW, Dai S, McKee AS. Beryllium-Induced Hypersensitivity: Genetic Susceptibility and Neoantigen Generation. THE JOURNAL OF IMMUNOLOGY 2016; 196:22-7. [PMID: 26685315 DOI: 10.4049/jimmunol.1502011] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Chronic beryllium (Be) disease is a granulomatous lung disorder that results from Be exposure in a genetically susceptible host. The disease is characterized by the accumulation of Be-responsive CD4(+) T cells in the lung, and genetic susceptibility is primarily linked to HLA-DPB1 alleles possessing a glutamic acid at position 69 of the β-chain. Recent structural analysis of a Be-specific TCR interacting with a Be-loaded HLA-DP2-peptide complex revealed that Be is coordinated by amino acid residues derived from the HLA-DP2 β-chain and peptide and showed that the TCR does not directly interact with the Be(2+) cation. Rather, the TCR recognizes a modified HLA-DP2-peptide complex with charge and conformational changes. Collectively, these findings provide a structural basis for the development of this occupational lung disease through the ability of Be to induce posttranslational modifications in preexisting HLA-DP2-peptide complexes, resulting in the creation of neoantigens.
Collapse
Affiliation(s)
- Andrew P Fontenot
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045; Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045;
| | - Michael T Falta
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - John W Kappler
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045; Howard Hughes Medical Institute, National Jewish Health, Denver, CO 80206; and Department of Biomedical Research, National Jewish Health, Denver, CO 80206
| | - Shaodong Dai
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045; Department of Biomedical Research, National Jewish Health, Denver, CO 80206
| | - Amy S McKee
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| |
Collapse
|
50
|
Lee JS, Park JK, Kim HJ, Lee HK, Song YW, Lee EB. Negatively-charged amino acids at the peptide-binding pocket of HLA-DPB1 alleles are associated with susceptibility to anti-topoisomerase I-positive systemic sclerosis. Hum Immunol 2016; 77:550-4. [PMID: 27208855 DOI: 10.1016/j.humimm.2016.05.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 04/19/2016] [Accepted: 05/17/2016] [Indexed: 01/07/2023]
Abstract
We investigated shared characteristics of amino acid sequences in the at risk HLA-DPB1 alleles in systemic sclerosis (SSc). Amino acid sequences and their structural features of HLA-DP molecules in 127 Korean SSc patients and 548 healthy Korean controls were analyzed with a focus on known HLA-DP binding motifs. The binding grooves containing more negatively-charged triplets (NCT) had higher odds ratios of anti-topoisomerase I antibody (ATA)-positive SSc. In particular, the co-existence of a NCT at position 82-85 and more than one additional NCT were critical for increased risk of ATA-positive SSc. Molecular dynamic simulations showed that the model peptide with positive charge from topoisomerase I fits more closely into HLA-DP alleles possessing more NCTs. ATA-positive SSc patients share NCTs at the peptide-binding groove of HLA-DPB1 molecules.
Collapse
Affiliation(s)
- Jeong Seok Lee
- Division of Rheumatology, Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jin Kyun Park
- Division of Rheumatology, Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | | | - Hyung Ki Lee
- Dong-A Pharmaceutical Co, Seoul, Republic of Korea
| | - Yeong Wook Song
- Division of Rheumatology, Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Eun Bong Lee
- Division of Rheumatology, Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|